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Abstract. Software architectures shift developers’ focus from lines-of-code to
coarser-grained architectural elements and their interconnection structure. Architec-
ture description languages (ADLs) have been proposed as modeling notations to
support architecture-based development. There is, however, little consensus in the
research community on what is an ADL, what aspects of an architecture should be
modeled in an ADL, and which ADL is best suited for a particular problem. Fur-
thermore, the distinction is rarely made between ADLs on one hand and formal
specification, module interconnection, simulation, and programming languages on
the other. This paper attempts to provide an answer to these questions. It motivates
and presents a definition and a classification framework for ADLs. The utility of the
definition is demonstrated by using it to differentiate ADLs from other modeling
notations. The framework is used to classify and compare several existing ADLs.1
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1  Introduction
Software architecture research is directed at reducing costs of developing applications
and increasing the potential for commonality between different members of a closely
related product family [GS93, PW92]. Software development based on common archi-
tectural idioms has its focus shifted from lines-of-code to coarser-grained architectural
elements (software components and connectors) and their overall interconnection
structure. To support architecture-based development, formal modeling notations and
analysis and development tools that operate on architectural specifications are needed.
Architecture description languages (ADLs) and their accompanying toolsets have been
proposed as the answer. Loosely defined, “an ADL for software applications focuses
on the high-level structure of the overall application rather than the implementation
details of any specific source module” [Ves93]. ADLs have recently become an area of
intense research in the software architecture community [GPT95, Gar95, Wolf96].

A number of ADLs have been proposed for modeling architectures both within a
particular domain and as general-purpose architecture modeling languages. Examples
specifically considered in this paper are Aesop [GAO94], MetaH [Ves96], LILEANNA
[Tra93], ArTek [TLPD95], C2 [MTW96, MORT96, Med96], Rapide [LKA+95,
LV95], Wright [AG94a, AG94b], UniCon [SDK+95], Darwin [MDEK95, MK96], and
SADL [MQR95]. Recently, initial work has been done on an architecture interchange
language, ACME [GMW95, GMW97], which is intended to support mapping of archi-

1 This material is based upon work sponsored by the Air Force Materiel Command, Rome Laboratory, and
the Advanced Research Projects Agency under contract number F30602-94-C-0218. The content of the
information does not necessarily reflect the position or policy of the Government and no official endorse-
ment should be inferred.



tectural specifications from one ADL to another, and hence enable integration of sup-
port tools across ADLs.2

There is, however, still little consensus in the research community on what an ADL
is, what aspects of an architecture should be modeled by an ADL, and what should be
interchanged in an interchange language [MTW96]. For example, Rapide may be char-
acterized as a general-purpose system description language that allows modeling of
component interfaces and their externally visible behavior, while Wright formalizes
the semantics of architectural connections. Furthermore, the distinction is rarely made
between ADLs on one hand and formal specification, module interconnection (MIL),
simulation, and programming languages (PL) on the other. Indeed, for example,
Rapide can be viewed as both an ADL and a simulation language, while Clements con-
tends that CODE [NB92], a parallel programming language, is also an ADL [Cle96a].

Several researchers have attempted to shed light on these issues, either by survey-
ing what they consider existing ADLs [KC94, KC95, Cle96a, Ves93] or by listing
“essential requirements” for an ADL [LV95, SDK+95, SG94, SG95]. Each of these
attempts furthers our understanding of what an ADL is; however, for various reasons,
each ultimately falls short in providing a compelling answer to the question.

This paper builds upon the results of these efforts. It is further influenced by
insights obtained from studying individual ADLs, relevant elements of languages com-
monly not considered ADLs (e.g., PLs), and experiences and needs of an ongoing
research project, C2. The paper presents a definition and a relatively concise classifica-
tion framework for ADLs: an ADL must explicitly modelcomponents, connectors, and
their configurations; furthermore, to be truly usable and useful, it must providetool
support for architecture-based development and evolution. These four elements of an
ADL are further broken down into their constituent parts.

The remainder of the paper is organized as follows. Section 2 motivates our defini-
tion and taxonomy of ADLs. Section 3 demonstrates the utility of the definition by
determining whether several existing notations are ADLs. Sections 4-7 describe the
elements of components, connectors, configurations, and tool support, respectively,
and assess the above ADLs based on these criteria. Conclusions round out the paper.

2  ADL Classification and Comparison Framework
Any effort such as this one must be based on discoveries and conclusions of other
researchers in the field. For that reason, we closely examined ADL surveys conducted
by Kogut and Clements [KC94, KC95, Cle96a] and Vestal [Ves93]. We also studied
several researchers’ attempts at identifying essential ADL characteristics and require-
ments: Luckham and Vera [LV95], Shaw and colleagues [SDK+95], Shaw and Garlan
[SG94, SG95], and Tracz [Wolf97]. As a basis for architectural interchange, ACME
[GMW95, GMW97] gave us key insights into what needs to remain constant across
ADLs. Finally, we built upon our conclusions from an earlier attempt to shed light on
the nature and needs of architecture modeling [MTW96].3

Individually, none of the above attempts adequately answers the question of what
an ADL is. Instead, they reflect their authors’ views on what an ADLshould haveor

2 Although ACME is not an ADL, it contains a number of ADL-like features. We include it in the paper in
order to highlight the difference between an ADL and an interchange language.

3 Due to space constraints, details of these approaches are omitted. They are provided in [Med97].



should be able to do. However, a closer study of their various collections of features
and requirements shows that there is a common theme among them, which is used as a
guide in formulating this framework for ADL classification and comparison. To a large
degree, this taxonomy reflects features supported by existing ADLs. In certain cases,
also included are those characteristics typically not supported by ADLs, but which
have been identified as important for architecture-based development.

To properly enable further discussion, several definitions are needed. There is no
standard definition of architecture, but we will use as our working definition the one
provided by Garlan and Shaw [GS93]:

[Software architecture is a level of design that] goes beyond the algorithms
and data structures of the computation: designing and specifying the over-
all system structure emerges as a new kind of problem. Structural issues
include gross organization and global control structure; protocols for com-
munication, synchronization, and data access; assignment of functionality
to design elements; physical distribution; composition of design elements;
scaling and performance; and selection among design alternatives.

An ADL is a language that provides features for modeling a software system’scon-
ceptual architecture. ADLs provide a concrete syntax and a conceptual framework for
characterizing architectures [GMW97]. The conceptual framework typically subsumes
the ADL’s underlying semantic theory (e.g, CSP, Petri nets, finite state machines).

The building blocks of an architectural description arecomponents, connectors,
andarchitectural configurations.4 An ADL must provide the means for theirexplicit
specification; this enables us to determine whether or not a particular notation is an
ADL. In order to infer any kind of information about an architecture, at a minimum,
interfaces of constituent components must also be modeled. Without this information,
an architectural description becomes but a collection of (interconnected) identifiers.

Several aspects of both components and connectors are desirable, but not essential:
their benefits have been acknowledged and possibly demonstrated by some ADL, but
their absence does not mean that a given language is not an ADL. These features are
interfaces (for connectors), andtypes, semantics, constraints, andevolution (for both).
Desirable features of configurations areunderstandability, heterogeneity, composition-
ality, constraints, refinement and traceability, scalability, evolution, anddynamism.

Finally, even though the suitability of a given language for modeling software
architectures is independent of whether and what kinds of tool support it provides, an
accompanying toolset will render an ADL both more usable and useful. The kinds of
tools that are desirable in an ADL are those foractive specification, multiple views,
analysis, refinement, code generation, anddynamism.

This framework is depicted in Fig. 1. It is intended to be extensible and modifiable,
which is crucial in a field that is still largely in its infancy. The features of a number of
surveyed languages are still changing (e.g., SADL, ACME, C2, ArTek). Moreover,
work is being continuously done on extending tool support for all ADLs. Sections 4-7
elaborate further on components, connectors, configurations, and tool support in
ADLs. They motivate the taxonomy and compare existing ADLs based on their level
of support of the different categories.5

4 “Architectural configurations” will, at various times, be referred to as “configurations” or “topologies.”
5 Due to space restrictions, the comparison of ADLs in Sections 4-7 is limited to a representative subset of

the languages whenever possible. A complete comparison of existing ADLs is given in [Med97].



Figure 1.ADL classification and comparison framework. Essential modeling features are bolded.

3  Differentiating ADLs from Other Languages
In order to clarify whatis an ADL, it may be useful to point out several notations (e.g.,
high-level design notations, MILs, PLs, OO modeling notations, and formal specifica-
tion languages) that, though similar, arenot ADLs according to our definition.

The requirement to modelconfigurations explicitly distinguishes ADLs from some
high-level design languages. Existing languages that are commonly referred to as
ADLs can be grouped into three categories based on how they model configurations:
• implicit configuration languagesmodel configurations implicitly through intercon-

nection information that is distributed across definitions of individual components
and connectors;

• in-line configuration languagesmodel configurations explicitly, but specify compo-
nent interconnections, along with any interaction protocols, “in-line;”

• explicit configuration languagesmodel both components and connectors separately
from configurations.
The first category, implicit configuration languages, are, by definition given in this

paper,not ADLs, although they may serve as useful tools in modeling certain aspects
of architectures. Two examples of such languages are LILEANNA and ArTek. In
LILEANNA, interconnection information is distributed amongwith clauses of individ-
ual packages, package bindings (view construct), and compositions (make). In ArTek,
there is no configuration specification; instead, each connector specifies component
ports to which it is attached.

The focus on conceptual architecture and explicit treatment ofconnectors as first-
class entities differentiate ADLs from MILs [DK76, PN86], PLs, and OO notations
and languages (e.g., Unified Method [BR95]). MILs typically describe theuses rela-
tionships among modules in animplemented system and support only one type of con-
nection [AG94a, SG94]. PLs describe a system’s implementation, whose architecture
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is typically implicit in subprogram definitions and calls. Explicit treatment of connec-
tors also distinguishes ADLs from OO languages, as demonstrated in [LVM95].

It is important to note, however, that there is less than a firm boundary between
ADLs and MILs. Certain ADLs, e.g., Wright and Rapide, model components and con-
nectors at a high level of abstraction and do not assume or prescribe a particular rela-
tionship between an architectural description and an implementation. We refer to these
languages asimplementation independent. On the other hand, several ADLs, e.g., Uni-
Con and MetaH, require a much higher degree of fidelity of an architecture to its
implementation. Components modeled in these languages are directly related to their
implementations, so that a module interconnection specification may be indistinguish-
able from an architectural description in such a language. These areimplementation
constraining languages.

An ADL typically subsumes a formal semantic theory. That theory is part of an
ADL’s underlying framework for characterizing architectures; it influences the ADL’s
suitability for modeling particular kinds of systems (e.g., highly concurrent systems)
or particular aspects of a given system (e.g., its static properties). Examples of formal
specification theories are Petri nets [Pet62], Statecharts [Har87], partially-ordered
event sets [LVB+93], communicating sequential processes (CSP) [Hoa85], model-
based formalisms (e.g.,CHemicalAbstractMachine [IW95], Z [Spi89]), algebraic for-
malisms (e.g., Obj [GW88]), and axiomatic formalisms (e.g., Anna [Luc87]).

Of the above-mentioned formal notations, Z has been demonstrated appropriate for
modeling only certain aspects of architectures, such as architectural style rules
[AAG93, MTW96]. Partially-ordered event sets, CSP, Obj, and Anna have already
been successfully used by existing modeling languages (Rapide, Wright, and
LILEANNA, respectively). Modeling capabilities of the remaining three, Petri nets,
Statecharts, and CHAM are somewhat similar to those of ADLs. Although they do not
express systems in terms of components, connectors, and configurations per se, their
features may be cast in that mold and they may be considered ADLs in their existing
forms. In the remainder of this section we will discuss why it would be inappropriate
to do so.6

3.1  Petri Nets
Petri net places can be viewed as components maintaining state, transitions as compo-
nents performing operations, arrows between places and transitions as simple connec-
tors, and their overall interconnection structure as a configuration. Petri nets mandate
that processing components may only be connected to state components and vice-
versa. This may be an unreasonable restriction. Overcoming it may require some cre-
ative and potentially counterintuitive architecting. A bigger problem is that Petri nets
do not model component interfaces, i.e., they do not distinguish between different
types of tokens. If we think of tokens as messages exchanged among components, this
is a crucial shortcoming. Colored Petri nets [Jen92, Jen94] attempt to remedy this
problem by allowing different types of tokens. However, even they explicitly model

6 These three notations represent only a small subset of ADL-like formal specification languages. They are
used here to draw attention to what differentiates them from ADLs and to outline heuristics for determin-
ing whether a potential candidate is indeed an ADL according to our definition. These heuristics can then
be used in the future to evaluate other notations as possible ADLs.



only the interfaces of state components (places), but not of processing components
(transitions). Therefore, Petri nets violate the definition of ADLs.

3.2  Statecharts
Statecharts is a modeling formalism based on finite state machines (FSM), which pro-
vides a state encapsulation construct, support for concurrency, and broadcast commu-
nication. To compare Statecharts to an ADL, the states would be viewed as
components, transitions among them as simple connectors, and their interconnections
as configurations. However, Statecharts does not model architectural configurations
explicitly: interconnections and interactions among a set of concurrently executing
components are implicit inintra-component transition labels. In other words, as was
the case with LILEANNA and ArTek, the topology of an “architecture” described as a
Statechart can only be ascertained by studying its constituent components. Therefore,
Statecharts is not an ADL.

3.3 CHAM
In the CHAM approach, an architecture is modeled as an abstract machine fashioned
after chemicals and chemical reactions. A CHAM is specified by defining molecules,
their solutions, and transformation rules that specify how solutions evolve. An archi-
tecture is then specified with processing, data, and connecting elements. The interfaces
of processing and connecting elements are implied by (1) their topology and (2) the
data elements their current configuration allows them to exchange. The topology is, in
turn, implicit in a solution and transformation rules. Therefore, even though CHAM
can be used effectively to prove certain properties of architectures, without additional
syntactic constructs it does not fulfill the requirements to be an ADL.

4  Components
A component is a unit of computation or a data store. Therefore, components are loci
of computation and state [SDK+95]. A component in an architecture may be as small
as a single procedure (e.g., MetaHprocedures) or as large as an entire application (e.g.,
hierarchical components in C2 and Rapide ormacros in MetaH). It may require its
own data and/or execution space, or it may share them with other components.

Each surveyed ADL models components in one form or another. In this section, we
present the aspects of components that need to be modeled in an ADL and assess exist-
ing ADLs with respect to them.

4.1  Interface
A component’s interface is a set of interaction points between it and the external world.
An interface specifies the services (messages, operations, and variables) a component
provides. In order to be able to adequately reason about a component and its encom-
passing architecture, ADLs also typically provide facilities for specifying component
needs, i.e., services required of other components in the architecture. Interfaces also
enable a certain, though limited, degree of reasoning about component semantics.

All surveyed ADLs support specification of component interfaces. They differ in
the terminology and the kinds of information they specify. For example, each interface
point in MetaH, ACME, Aesop, and Wright is aport. On the other hand, in C2, the
entire interface is provided through a single port; individual interface elements are
messages. In UniCon, an interface point is aplayer, and in Rapide aconstituent.



4.2  Types
Software reuse is one of the primary goals of architecture-based development [BS92,
GAO95, MOT96]. Since architectural decomposition is performed at a level of
abstraction above source code, ADLs can support reuse by modeling abstract compo-
nents as types and instantiating them multiple times in an architectural specification.
Abstract component types can also be parameterized, further facilitating reuse.7

All of the surveyed ADLs distinguish component types from instances. MetaH and
UniCon support only a predefined set of types. Three ADLs make explicit use of
parameterization: ACME, Darwin, and Rapide.

4.3  Semantics
Modeling of component semantics enables analysis, constraint enforcement, and map-
pings of architectures across levels of abstraction. Several languages do not model
component semantics beyond interfaces. SADL and Wright focus on other aspects of
architectural description (connectors and refinement), although, in principle, Wright
allows specification of component functionality in CSP.

Underlying semantic models vary across those ADLs that do support specification
of component semantics. For example, Rapide uses partially ordered event sets
(posets), while Darwin usesπ-calculus [MPW92]. MetaH and UniCon supply certain
kinds of semantic information in property lists, e.g., specification of event traces in
UniCon to describe component semantics. MetaH also uses an accompanying lan-
guage, ControlH, for modeling algorithms in the guidance, navigation, and control
domain [BEJV94].

4.4  Constraints
A constraint is a property of or assertion about a system or one of its parts, the viola-
tion of which will render the system unacceptable to one or more stakeholders
[Cle96b]. In order to ensure adherence to intended component uses, enforce usage
boundaries, and establish intra-component dependencies, constraints on them must be
specified. Constraints may be defined in a separate constraint language or using the
notation of the given ADL and its underlying semantic model.

All surveyed languages restrict component usage via interfaces. Specification of
semantics further constrains internal elements of a component. Several ADLs provide
additional means for specifying constraints on components: Wright specifies protocols
of interaction with a component for each port; Rapide uses an algebraic language to
specify constraints on the abstract state of a component; MetaH and UniCon constrain
specification, implementation, and usage of components by specifying their non-func-
tional attributes; SADL and Aesop provide and enforce stylistic invariants.

4.5  Evolution
As design elements, components evolve. ADLs should support component evolution
through subtyping and refinement. Only a subset of existing ADLs provide this sup-
port. Even within those ADLs, evolution support is limited and often relies on the cho-
sen implementation language. The remainder of the ADLs view and model
components as inherently static.

7 A detailed discussion of the role of parameterization in reuse is given in [Kru92].



Rapide supports inheritance. MetaH and UniCon define component types by enu-
meration, allowing no subtyping, and hence no evolution. ACME supports structural
subtyping via itsextends feature, while Aesop supports behavior preserving subtyping
to create substyles. C2 provides a more advanced subtyping and type checking mecha-
nism, described in [MORT96].

5  Connectors
Connectors are architectural building blocks used to model interactions among compo-
nents and rules that govern those interactions. Unlike components, connectors might
not correspond to compilation units in implemented systems. They may be separately
compilable message routing devices, or shared variables, table entries, buffers, instruc-
tions to a linker, dynamic data structures, procedure calls, initialization parameters, cli-
ent-server protocols, pipes, etc. [GMW95, SDK+95].

Surveyed ADLs model connectors in many forms. Languages such as C2, Wright,
UniCon, ACME, and SADL model them explicitly and refer to them asconnectors. In
Rapide and MetaH they areconnections, modeled in-line, and cannot be named, sub-
typed, or reused. Rapide does allow abstracting away complex connection behavior
into a “connector component.” Connectors in Darwin arebindings and are also speci-
fied in-line. In this section, we present the aspects of connectors that we believe need
to be modeled in an ADL and compare existing ADLs with respect to them.

5.1  Interface
In order to enable proper connectivity of components and their communication in an
architecture, a connector should export as its interface those services it expects. There-
fore, a connector’s interface is a set of interaction points between it and the compo-
nents attached to it. It enables reasoning about the well-formedness of a configuration.

Only those ADLs that model connectors explicitly support specification of connec-
tor interfaces. Wright, Aesop, ACME, and UniCon refer to connector interface points
as roles. Explicit connection of component ports (players in UniCon) and connector
roles is then required in an architectural configuration. In C2, on the other hand, a con-
nector’s interface is modeled withports and is determined by (potentially dynamic)
interfaces of its attached components. This added flexibility may prove a liability when
analyzing for interface mismatches between communicating components.

5.2  Types
Architecture-level communication is often expressed with complex protocols. To
abstract away these protocols and make them reusable, ADLs should model connectors
as types. This is typically done in two ways: as extensible type systems defined in
terms of communication protocols and independent of implementation, or as enumer-
ated types based on their implementation mechanisms.

Only ADLs that model connectors as first-class entities distinguish connector types
from instances. This excludes MetaH, Rapide, and Darwin. Wright, ACME, C2, and
Aesop base connector types on protocols. SADL and UniCon, on the other hand, only
allow prespecified, though extensible, sets of connector types.

5.3  Semantics
To perform analyses of component interactions, consistent refinements across levels of
abstraction, and enforcement of interconnection and communication constraints, archi-



tectural descriptions should provide connector protocol and transaction semantics. It is
interesting to note that languages that do not model connectors as first-class objects,
e.g., Rapide, may model connector semantics, while some ADLs that do model con-
nectors explicitly, such as C2, do not provide means for defining their semantics.

ADLs generally use a single semantic model for both components and connectors.
For example, Rapide uses posets, and Wright models connectorglue with CSP. As was
the case with its components, UniCon allows specification of semantic information for
connectors in property lists.

5.4  Constraints
In order to ensure adherence to interaction protocols, establish intra-connector depen-
dencies, and enforce usage boundaries, connector constraints must be specified. With
the exception of C2, ADLs that model connectors as first-class objects constrain their
usage via interfaces. Wright further constrains connectors by specifying protocols for
each role, while UniCon restricts the types of players that can serve in a given role
using theAccept attribute. C2 restricts the number of component ports that may be
attached to each connector port (one). ADLs that specify connections in-line (e.g.,
Rapide, MetaH, and Darwin) place no such constraints on them.

5.5  Evolution
Component interactions are governed by complex and changing protocols. Maximiz-
ing connector reuse is achieved by modifying or refining existing connectors. ADLs
can support connector evolution with subtyping and refinement.

ADLs that do not model connectors as first-class objects also provide no facilities
for their evolution. Others currently only focus on component evolution (C2) or pro-
vide a predefined set of connector types with no evolution support (UniCon). Wright
does not facilitate connector subtyping, but supports type conformance, where a role
and its attached port may have behaviorally related, but not necessarily identical, pro-
tocols. Aesop and SADL provide more extensive support for connector evolution.
Aesop supports behavior preserving subtyping, while SADL supports refinements of
connectors across styles and levels of abstraction.

6  Configurations
Architectural configurations, or topologies, are connected graphs of components and
connectors that describe architectural structure. This information is needed to deter-
mine whether: appropriate components are connected, their interfaces match, connec-
tors enable proper communication, and their combined semantics result in desired
behavior. In concert with models of components and connectors, descriptions of con-
figurations enable assessment of concurrent and distributed aspects of an architecture,
e.g., potential for deadlocks and starvation, performance, reliability, security, etc. Con-
figurations also enable analyses for adherence to design heuristics and style con-
straints.

6.1  Understandable Specifications
A major role of architectures is to facilitate understanding of systems at a high level of
abstraction. Therefore, ADLs must model structural information with simple and
understandable syntax, where system structure is clear from a configuration specifica-
tion alone.



Configuration descriptions inin-line configuration ADLs, such as Rapide, Darwin,
and MetaH, tend to be encumbered with connector details, whileexplicit configuration
ADLs, such as UniCon, ACME, Wright, SADL, and C2 have the best potential to facil-
itate understandability of architectural structure.

Several languages provide both a graphical and textual notation. Graphical specifi-
cation provides another way of achieving understandability. However, this is only the
case if there is a precise relationship between the graphical description and the under-
lying model. UniCon, MetaH, Aesop, C2, Rapide, and Darwin, support such “semanti-
cally sound” graphical notations, while ACME, SADL, and Wright do not.

6.2  Compositionality
Architectures may be required to describe software systems at different levels of detail,
where complex behaviors are either explicitly represented or abstracted away into sin-
gle components and connectors. An ADL may also need to support situations in which
an entire architecture becomes a single component in another, larger architecture.
Therefore, support for compositionality, or hierarchical composition, is crucial.

Several ADLs provide explicit features to support hierarchical composition: MetaH
macros, ACME templates and rep-maps, composite elements in Darwin and UniCon,
internal component architecture in C2, and Rapide and SADL maps. Other ADLs,
such as Wright, allow hierarchical composition in principle, but provide no specific
constructs to support it.

6.3  Heterogeneity
A goal of architectures is to facilitate development of large systems, with components
and connectors of varying granularity, implemented by different developers, in differ-
ent programming languages, and with varying OS requirements. It is therefore impor-
tant that ADLs provide facilities for architectural specification and development with
heterogeneous components and connectors.

ADLs may be tightly tied to a particular formal modeling or implementation lan-
guage, or they may support multiple such languages. Some ADLs fail to maximize
reuse by supporting only certain types of components and connectors. For example,
UniCon can use existing filters and sequential files, but not spreadsheets or constraint
solvers. Most surveyed ADLs support modeling of both fine- and coarse-grain compo-
nents. At one extreme,computations in UniCon orprocedures in MetaH describe a
single operation, while the other can be achieved by hierarchical composition, dis-
cussed above. Finally, MetaH requires that each component contain a loop with a call
to a predeclared procedure to periodically dispatch a process. Any existing compo-
nents have to be modified to include this construct.

6.4  Constraints
Constraints that depict desired dependencies among components and connectors in a
configuration are as important as those specific to individual components and connec-
tors. Many global constraints are derived from or directly dependent upon local con-
straints. For example, performance of a system will depend upon the performance of
each individual element.

Only a handful of ADLs provide facilities for global constraint specification.
Aesop, SADL, and C2 specify stylistic invariants. Aesop and SADL allow specifica-
tion of invariants corresponding to different styles, while in C2 they refer to a single



(C2) style and are therefore fixed. Refinement maps in SADL and Rapide constrain
valid configuration refinements. Rapide’s timed poset constraint language can be used
to constrain configurations. Finally, MetaH allows explicit constraint ofapplications8

with non-functional attributes.

6.5  Refinement and Traceability
ADLs provide expressive and semantically elaborate facilities for specifying architec-
tures. However, an ADL must also enable correct and consistent refinement of archi-
tectures to executable systems and traceability of changes across levels of refinement.
This may very well be the area in which existing ADLs are most lacking.

Several languages enable system generation directly from architectural specifica-
tions; these are typically theimplementation constraining languages (see Section 3).
Both UniCon and MetaH allow specification of source files that corresponds to given
architectural elements. There are several problems with this approach: the assumption
that the relationship between architectural elements and those of the resulting imple-
mentation is 1-to-1 may be unreasonable; there is also no guarantee that specified
source modules will correctly implement the desired behavior or that future changes to
those modules will be traced back to the architecture and vice versa.

Only SADL and Rapide support refinement and traceability. Both provide refine-
ment maps for architectures at different abstraction levels. SADL uses the maps to cor-
rectly refine architectures across styles, while Rapide generates comparative
simulations of architectures at different abstraction levels. Both languages thus provide
the means for tracing decisions across levels of architectural specification.9

6.6  Scalability
Architectures are intended to support large-scale systems. For that reason, ADLs must
support specification and development of systems that may grow in size. Objectively
evaluating an ADL’s support for scalability is difficult, but certain heuristics can be of
help.

One way of supporting scalability is through hierarchical composition, discussed in
Section 6.2. Furthermore, it is generally easier to expand architectures described in
explicit configuration ADLs (e.g., C2, UniCon) thanin-line configuration ADLs (e.g.,
Rapide): connectors in the latter are described solely in terms of the components they
connect; adding new components may require modification of existing connectors.

ADLs, such as C2, that allow a variable number of components to be attached to a
connector are better suited to scaling up than those, such as Wright or ACME, which
specify the exact number of components a connector can handle. UniCon allows archi-
tects to either specify the maximum number roles in a connector or leave it unbounded.

Note that these are heuristics and should not be used as the only criteria in exclud-
ing a candidate ADL from consideration. For example, both Wright and Rapide have
been highlighted as examples of ADLs lacking scalability features, yet they have both
been used to specify architectures of large, “real world” systems [All96, LKA+95].

8 MetaH applications specify architectures containing both hardware and software elements of a system.
9 [Med97] discusses in detail the drawbacks of each approach and motivates a hybrid approach.



6.7  Evolution
Architectures evolve to reflect evolution of a single software system; they also evolve
into families of related systems. ADLs need to augment evolution support at the level
of components and connectors with features for incremental development and support
for system families.

Incrementality of an architectural configuration can be viewed from two different
perspectives. One is its ability to accommodate addition of new components. Issues
inherent in doing so were discussed above and the arguments applied to scalability also
largely apply to incrementality.

Another view of incrementality is an ADL’s support for incomplete architectural
descriptions. Most existing ADLs and their supporting toolsets have been built to pre-
vent precisely these kinds of situations. For example, UniCon, and Rapide compilers
and constraint checkers raise exceptions if such situation arise. Thus, an ADL, such as
Wright, which focuses its analyses on information local to a connector is better suited
to accommodate incremental specification than, e.g., SADL, which is very rigorous in
its refinement ofentire architectures.

Another aspect of evolution is support for application families. In [MT96], we
showed that the number of possible architectures in a component-based style grows
exponentially as a result of a linear expansion of a collection of components. All such
architectures may not belong to the same logical family. Therefore, relying on compo-
nent and connector evolution mechanisms is insufficient. Aesop, and, more recently,
ACME and Wright have provided support for system families.

6.8  Dynamism
Explicit modeling of architectures is intended to support development and evolution of
large and potentially long-running systems. It may be necessary to evolve such sys-
tems during execution. Configurations exhibit dynamism by allowing replication,
insertion, removal, and reconnection of architectural elements or subarchitectures.

The majority of existing ADLs view configurations statically. The exceptions are
Darwin, Rapide, and C2. Darwin allows runtime replication of components via
dynamic instantiation, as well as deletion and rebinding of components by interpreting
Darwin scripts. Rapide’swhere clause supports a form of architectural rewiring at
runtime. Finally, C2’s architecture construction notation supports insertion, removal,
and rewiring of elements in an architecture at runtime [Med96].

7  Tool Support for ADLs
A major impetus behind developing languages for architectural description is that their
formality renders them suitable for manipulation by software tools. The usefulness of
an ADL is directly related to the kinds of tools it provides to support architectural
design, evolution, refinement, constraints, analysis, and executable system generation.

The need for tool support in architectures is well recognized. However, there is a
definite gap between what is identified as desirable by the research community and the
state of the practice. While every surveyed ADL provides some tool support, they tend
to focus on a single area, such as analysis or refinement, and direct their attention to a
particular technique (e.g., Wright’s analysis for deadlocks), leaving other facets unex-
plored. This is the very reason ACME has been proposed as an architecture inter-
change language: to enable interaction and cooperation among different ADLs’



toolsets and thus fill in these gaps. This section surveys the tools provided by different
ADLs, attempting to highlight the biggest shortcomings.

7.1  Active Specification
Only a handful of existing ADLs provide tools that support active specification of
architectures. In general, such tools can be proactive or reactive. UniCon’s graphical
editor is proactive; it invokes the language processor’s checking facilities toprevent
errors during design. Reactive specification tools detectexisting errors. They may
either only inform the architect of the error or also force him to correct it before mov-
ing on. An example of the former is C2’s Argo design environment [RR96], and of the
latter MetaH’s graphical editor.

7.2  Multiple Views
When defining an architecture, different stakeholders may require different views of
the architecture. Customers may be satisfied with a “boxes-and-lines” description;
developers may want detailed component and connector models; managers may
require a view of the corresponding development process.

Several ADLs (e.g., Rapide, UniCon, Aesop, MetaH, Darwin, and C2) support two
basic views of an architecture: textual and graphical. UniCon, MetaH, and Aesop fur-
ther distinguish different types of components and connectors iconically, while Darwin
and C2, for example, do not. Each of these ADLs allows both top-level and detailed
views of composite elements.

Support for other views is sparse. C2 provides a view of the development process
that corresponds to the architecture [RR96]. Rapide and C2 allow visualization of an
architecture’s execution behavior by building a simulation and providing tools for
viewing and filtering events generated by the simulation.

7.3  Analysis
Architectural descriptions are often intended to model large, distributed, concurrent
systems. Evaluating properties of such systems upstream, at architectural level, can
substantially lessen the costs of any errors.

The types of analyses for which an ADL is well suited depend on its underlying
semantic model. For example, Wright, which is based on CSP, analyzes individual
connectors for deadlocks. MetaH and UniCon both support schedulability analysis by
specifying non-functional properties, such as criticality and priority. SADL can estab-
lish relative correctness of two architectures with respect to a refinement map.
Rapide’s and C2’s event monitoring and filtering tools also facilitate analysis of archi-
tectures. C2 uses critics to establish adherence to style rules and design guidelines.

Language parsers and compilers are another kind of analysis tools. Parsers analyze
architectures for syntactic correctness, while compilers establish semantic correctness.
All of the surveyed languages have parsers. UniCon, MetaH, and Rapide also have
compilers, which enable these languages to generate executable systems from architec-
tural descriptions. Wright uses FDR [For92], a model checker, to establish type con-
formance.

Another aspect of analysis is enforcement of constraints. Parsers and compilers
enforce constraints implicit in types, non-functional attributes, component and connec-
tor interfaces, and semantic models. Rapide’s constraint checker also analyzes the con-
formance of a Rapide simulation to formal constraints defined in the architecture.



7.4  Refinement
The importance of supporting refinement of architectures across styles and levels of
detail was argued in Section 6.5 and, more extensively, in [MQR95] and [Gar96].
Refining architectural descriptions is a complex task whose correctness cannot always
be guaranteed by formal proof, but adequate tool support can give us increased confi-
dence in this respect.

Only SADL and Rapide provide tool support for refinement of architectures.
SADL requires manual proofs of mappings of constructs between an abstract and a
concrete style. Such a proof need be performed only once, after which SADL provides
a tool that checks whether two architectural descriptions adhere to the mapping.

Rapide’s event pattern mappings ensure behavioral consistency between architec-
tures. Maps are used to verify that the events generated by simulating an architecture
satisfy constraints in the architecture to which it is mapped.

7.5  Code Generation
The ultimate goal of software design and modeling is to produce the executable sys-
tem. An elegant and effective architectural model is of limited value unless it can be
converted into a running application. Doing so manually may result in many problems
of consistency and traceability between an architecture and its implementation. It is,
therefore, desirable, if not imperative, for an ADL to provide code generation tools.

A large number of ADLs, but not all, do so. Aesop generates C++ code, MetaH -
Ada, UniCon - C, and C2 - Java, C++, and Ada. Rapide can construct executable sys-
tems in C, C++, Ada, VHDL, and Rapide. On the other hand, SADL, ACME, and
Wright are used strictly as modeling notations and provide no code generation support.

7.6  Dynamism
Given that the support for modeling dynamism in existing ADLs is limited, it is of no
surprise that tool support for dynamism is not very prevalent. Rapide can model only
planned modifications at runtime; its compilation tools ensure that all possible config-
uration alternatives are enabled. C2’sArchShell tool [Ore96, MOT97], on the other
hand, currently enables arbitrary interactive construction, execution, and runtime-mod-
ification of C2-style architectures implemented in Java. Darwin supports both planned
(thedyn construct) and unplanned runtime changes (interpretation of Darwin scripts)

8  Conclusions and Future Work
Classifying and comparing any two languages objectively is a difficult task. For exam-
ple, a PL, such as Ada, contains MIL-like features and debates rage over whether Java
is “better” than C++ and why. On the other hand, there exist both an exact litmus test
(Turing completeness) and a way to distinguish different kinds of PLs (imperative vs.
declarative vs. functional, procedural vs. OO). Similarly, formal specification lan-
guages have been grouped into model-based, state-based, algebraic, axiomatic, etc.
Until now, however, no such definition or classification existed for ADLs.

The main contribution of this paper is just such a definition and classification
framework. The definition provides a simple litmus test for ADLs that largely reflects
community consensus on what is essential in modeling an architecture: an architectural
description differs from other notations by itsexplicit focus on connectors and archi-
tectural configurations. We have demonstrated how the definition and the accompany-



ing framework can be used to determine whether a given notation is an ADL and, in
the process, discarded several notations as potential ADLs. Some (LILEANNA and
ArTek) may be more surprising than others (Petri nets and Statecharts), but the same
criteria were applied to all.

Of those languages that passed the litmus test, several straddled the boundary by
either modeling their connectors in-line (in-line configuration ADLs) or assuming a
bijective relationship between architecture and implementation (implementation con-
straining ADLs). We have discussed the drawbacks of both categories. Nevertheless, it
should be noted that, by simplifying the relationship between architecture and imple-
mentation,implementation constraining ADLs have been more successful in generat-
ing code than “mainstream” (implementation independent) ADLs. Thus, for example,
although C2 is implementation independent, we assumed this 1-to-1 relationship in
building the initial prototype of our code generation tools [MOT97].

Finally, neither the definition nor the accompanying framework have been pro-
posed as immutable laws on ADLs. Quite the contrary, we expect both to be modified
and extended in the future. We are currently considering several issues: providing a
clearer distinction between descriptive languages (e.g., ACME) and those that prima-
rily provide semantic modeling (e.g., Wright); distinguishing style- or domain-specific
ADLs from “general purpose” ADLs; and expanding the “top” level of the framework
to include criteria such as support for system families, openness, and extensibility. We
have also had to resort to heuristics and subjective criteria in comparing ADLs at
times, indicating areas where future work should be concentrated. However, what this
taxonomy provides is an important first attempt at answering the question of what an
ADL is and why, and how it compares to other ADLs. Such information is needed both
for evaluating new and improving existing ADLs, and for targeting architecture inter-
change efforts more precisely.
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