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Introduction
 

In recent years, personal communications in high Megahertz and low Gigahertz 
frequency ranges are booming. Behind this achievements was the technological 

progress in integrated circuitry on one hand and application of frequency 
synthesis on the other hand. 

I. Principles 

The task of the phase locked loops is to maintain coherence between input 
(reference) signal frequency, fi, and the respective output frequency, f , via o

phase comparison. The theory is explained in many textbooks [e.g., 1, 2] and 
practically in all books on frequency synthesis. [3 through 10].  Here, we shall 

repeat, in short, all major features with some new achievements. 

A/ Basic equations 

Each PLL loop works as a feedback system shown in Fig. 1. 

Fig. 1 Basic feedback network of PLL
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To get more insight into the PLL properties, we shall simplify, 
without any loss of generality, the block diagram to that shown in Fig. 2. 
and introduce the Laplace transfer functions of the individual building 
circuits - suitable for investigation of small signal properties. 

Fig. 2 Simplified block diagram of the PLL with individual transfer 
functions 

Investigation of the above figure reveals that the input phase ŒŒŒŒi(t) is 
compared with the output phase ŒŒŒŒo(t) in phase detector (ring modulator, 

sampling circuit, etc.). 

(1)
 

the proportionality factor, Kd [volt/2____], is called the "phase detector 
gain." 
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Next, vd(t) passes the loop filter, F(s)
 

(2) 

where hf(t) is the time response of the loop filter. After applying v2(t) on 
the frequency control element of the voltage controlled oscillator (VCO) we 
get the output phase 

(3)
 

the proportionality factor, Ko [2____ Hz/volt], is the oscillator gain. 

Since, in most cases, Kd and Ko are voltage dependent the general 
mathematical model of a PLL is a nonl+inear differential equation. Its 
linearization, justified in small signal cases ("steady state" working modes), 
provides a good insight into the problem. 

the relation between input and output phase in the Laplace transform 

(4)
 

The ratio, jjjjo(s)/jjjji(s), the PLL transfer function, is given by
 

(5)
 

where we have introduced the forward loop gain K =KdKo 
and the open loop gain G(s) 

(6) 

B/ Order of PLL 
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In the simplest case there are no filters both in forward and feedback paths. 

(7)

This phase lock loop is designated as the first order loop
 
Generally the denominator in H(s) is of a higher order in s and we speak
 

about PLL of the second, third, ect
 

C/ Type of PLL 

The number of poles in the transfer function G(s), i.e. the number of
 
integrators in the loop define the
 

type of the loop 

D/ Phase error at the output of the phase detector (PD) 

(8) 

where 

(9) 

After elimination of jjjjo(s) 

(10)
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By assuming  the gain, G(s), as a ratio of two polynomials 

(11) 

where n is number of integrators in PLLwe get for the phase error 

(12)
 

E/ Transient and steady state errors
 

Due to input phase steps, frequency steps, and steady frequency changes
 

(13)
 

After introducing any of the respective steps into (10 or 12) and performing 
the inverse Laplce transform we find the respective transients

 With the assistance of the Laplace limit theorem we get for the final value 
of the phase error 

(14)
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F/ Block diagram algebra 

Actual PLLs are often much more complicated than block diagrams in 

Fig. 1 or 2


 For arriving at  transfer functions,
 

|H(s)|2 and |1 - H(s)|2 

we can apply  the rules of the Block diagram algebra. 

Investigation of the relation (5) reveals that the feedback block
 
can be put outside of the basic loop. 


In this way we arrive at the effective  transfer functions, 


|H’(s)|2 and |1 - H ’(s)|2 ,
 

or 


(15)
 

(16)
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Fig. 3 Simplification of the block diagrams of PLL: a/ series connection, b/ parallel 
connection, c/ and d/ feedback arrangement, e/ more complicated system. 

II. Phase locked loops  of the 1st and 2nd order 
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The most common PLLs are those of the 2nd order. Their advantage is the 
absolute stability and simple theoretical and practical design. 

A/ PLL of the 1st  order. 

their open loop gain is 

(17) 

with transfer functions 

(18) 

Note that DC gain KA can be used for changing the corner frequency, of this simple 
PLL, to any desired value - Fig. 4. 

Fig. 4. The block diagram of the 1st order PLL 

Since the open loop gain K has dimension of the 2____Hz normalization of the
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input or reference frequency in respect to it provides nearly all information
 
about the behaviour of the PLL.
 

(19) 

The transfer function H(jx) behaves as a low pass filter in 
respect to the noise and spurious signals accompanying the 
reference signal whereas 1 - H(jx) as a high pass filter in 
respect to the noise and spurious of the VCO.- see Fig. 5. 

0.01 0.1 1 10 100
40 

30 

20 

10 

0 

10
10 

40 

Hi m 

Ho m 

1000.01 x m 

[dB] 

Fig. 5. Transfer functions Hi(jx) = 20log(|H(jx)|) and Ho(jx) = 20log(|1-H(jx)|) 
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B/ PLLs of the 2nd order. 

1st order PLL has only one degree of freedom, namely the DC gain
 

K=KdKoKA
 

Other difficulties are rather modest attenuation in the respective stop
 
bands 


only 20 dB/ decade.
 

This last problem can be removed with introduction of a suitable low pass
 
filter into the forward path.
 

(1) A simple RC filter 

In instances where we need to increase attenuation of the PLL for high
 
frequencies application of the simple RC low pas filter, provides the
 

desired effect.
 
Note that the filter time constant T1


 presents an additional degree of freedom


 for the design of PLL properties. 

Fig. 6. 2nd order PLL loop filters: a simple RC filter.
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The open loop gain is
 

(20)
 

the transfer function H(s) of the PLL
 

(21) 

After introduction of the natural frequency qqqqn  and the damping factor KKKK 

(22)
 

we can rearrange the open loop gain into
 

(23)
 

and the PLL transfer function into its “characteristic form”
 

(24)
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After normalization of the frequency qqqq in respect to the natural frequency 


(25) 

we get for the open loop transfer function 

(26)
 

and for the PLL transfer functions
 

(27) 

Fig.7(a) Transfer functions Hi(jx) = 20log(|H(jx)|) and Ho(jx) = 20log(|1-H(jx)|), 
(b) phase characteristic of the open loop gain G(jx) of the 2nd order PLL loop 
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with a simple RC filter. 
(2) Phase lag-lead or RRC filter (Fig. 8) 

Fig. 8. 2nd order PLL loop filters: phase lag-lead or 
proportional - integral networks. 

Transfer function of  the RRC filter 

(28)
 

provides a further degree of freedom.  The open loop gain is
 

(29)
 

the respective transfer function 


(30)
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We can again introduce the natural frequency and the damping factor 

(31)
 

and arrive to the characteristic form the transfer functions 

(32)
 

and to 

(33)
 

Note that the freedom for independent choice of qqqqn and KKKK resulted in reduced slope of 
the stop band of H(jx) on one hand and in a reduced phase margin on the other hand 
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Transfer functions Hi(jx) = 20log(|H(jx)|) and Ho(jx) = 20log(|1-H(jx)|), (b) 
phase characteristic of the open loop gain G(jx) of the 2nd order PLL loop 

with an RRC filter. 
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C/ PLLs of the 2nd order of the type 2.
 

The loop contains two integrators, the second one in the loop filter
 

Fig. 10  2nd order PLL loop filters: active phase-lag lead network
 ( dashed is one of the 3rd order loop configuration). 

Its transfer function is 

(34)
 

For operation amplifier (A>>1) the time constants are
 

(35)
 

and the open loop gain
 

(36)
 

Effective loop gain K=KdKAKo, however, for DC the gain  is KDC=KdKAKoF(0) 
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=KdKAKoA The PLL transfer function 

(37)
 

the natural frequency qqqqn and damping KKKK
 

(38)
 

from which 

(39) 

Introduction of qqqqn and damping KKKK leads to the PLL transfer functions 

(40)
 

After plotting the transfer functions Hi(x) and Ho(x) we find out that they 
coincide with those plotted in Fig. 9 for the PLL with the gain K (high gain 
loops). However, we find a substantial difference with the phase 
characteristic which starts, due to the two integrators in G(s), at nearly -
180 degrees. This is very important in instances with unintentionally 
introduced poles or delays, due to the use of sampled phase detectors, into 
the loop gain G(s) since the stability of the system deteriorates. The 
problem will be discussed in the next sections. 
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Fig. 11(a) Transfer functions Hi(jx) = 20log(|H(jx)|) and Ho(jx) = 20log(|1 
H(jx)|); of the 2nd order PLL loop of the type 2;(b) phase characteristic of 

the open loop gain G(jx). 
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b) 

17
 



 

 

  

 

III. Phase locked loops  of the 3rd order type 2. 

Investigation of Figs 7, 9, and 11 reveals PLL of the 2nd order with simple
 
RC filter exhibits the slope of the transfer function
 

Hi(jx) in the stop band of -40 dB/dec.
 
But the high gain RRC loops have the slope 


of 40 dB/dec.  in the stop band of the Ho(jx) transfer function.
 

The problem will be solved with introduction of an independent RC section
 
in the loop filter F(s) in the type 2 systems
 

(41)
 

Note that even this 3rd order loop is unconditionally stable since G(s)
 
exhibits a positive phase margin.
 

(42)
 

After introduction of the natural frequency qqqqn and the damping factor KKKK

 we get for the transfer function
 

(43)
 

The transfer functions together with the phase margin are plotted in Fig. 12 
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Fig. 12 Transfer functions Hi(jx) = 20log(|H(jx)|), Ho(jx) = 20log(|1-H(jx)|), and 
open loop gain Go(jx) of the 3rd order PLL loop of the type 2; SSSS=.3 and KKKK=1.5. 

Fig. 13 Properties of the 3rd order PLL for different damping constants of 
the original 2nd order loop and for different SSSS of the additional RC section: 

a) phase of the open loop gain; b) magnitude of the overshoot Mp of the 
transfer function 20log(|H(jx)|2). 
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IV. Time delays in  PLL. 

A/ Simple time delay 
Simple time delay, gggg, is respected by multiplying the open loop gain by the factor 

(44) 

Evidently it only changes the phase margin. From Fig. 14 we see that its influence 
might be considerable [11]. 

Fig. 14 Phase shift introduced by a simple normalized
 
time delay qgqgqgqg.
 

20
 



 

 

B/ Sampling 

In modern technology many analog processes are replaced with digital processing 

.This is also true for PLLs 

The proper approach would be the investigation with the assistance of the  z-
transform . 

The other possibility is to modify the original Laplace transform of G(s) 

(45) 

where 

(46) 

and 

(47)
 

Evidently 

(48)
 

and 

(49)
 

The situation with the sampled PLL is illustrated in Fig. 15 
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Fig. 15 a) block diagram of the PLL with sampling phase detector; 

b) the simulating analog system 

Finally we arrive at the often suggested approximation of the sampling process, 
with the assistance of an additional RC section. 
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Fig.16Properties of the transfer function Hom= 20log(|Fh(s)|) compared with that 
of a simple RC section Hfm = 20log[|1/(1+jqqqqT/2)]. 
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Fig. 17 Transfer functions Hi(jx) = 20log(|H(jx)|), 

Ho(jx) = 20log(|1-H(jx)|)and 20log(|G(jx)|)
 

of the sampled 3rd order PLL loop of the type 2 as in Fig. 12. 


Note the reduced phase margin for the case where the

 ratio of the natural frequency qqqqn to sampling frequency qqqqs is
 

1:10
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V. Responses of PLL to the step and periodic phase and 
frequency changes.

 The respective changes can be divided into three major groups: 

1) Phase or frequency steps
 
2) Periodic changes (spurious phase or frequency modulations,
 
discrete spurious signals, etc.)
 
3) Noises accompanying both reference and VCO signals
 

The information provides the phase difference at the output of the phase 
detector jjjje(s) or more exactly ŒŒŒŒe(t). Since jjjje(s)/jjjji(s) = 1-H(s) we must 
investigate the following relation

(50) 

A) Step changes 

(1) Phase step FkFkFkFk  at the input of the phase detector (   i jjjj (s)=i FFFFjjjj /s). i

In the normalized form we have 

(51) 

Solution of the quadratic equation in the denominator reveals 

(52) 

After application of the Laplace transform tables (e.g. [12]) and the above roots we get 

(53) 
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Fig.  18 Normalized transients FkFkFkFk (t)/e1 FkFkFkFk  due to the phase step i
FkFkFkFk  for different damping factors i KKKK ; 
a) for simple RC loop filter; 
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 b) for high gain loop with lag lead RC filter.
 

(2)Frequency step FqFqFqFqi at the input of the phase detector (qqqqi(s)=FFFF qqqqi/s
2). 

After a step change of the division ratio N in the feedback path by FFFFN the 
effective change of the “feedback reference frequency “ is FFFFfr = fr FFFFN/N. The 
consequence is the transient in the output phase kkkke(t). 

(54)
 

Application of the roots from (52) and of the Laplace transform tables gives
 

(55)
 

Which simplifies for very high gain and the type 2 loops
 

(56)
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Fig.  19 Normal 
ized transie 

nts FkFkFkFk (t)/(e2 FqFqFqFq /i qqqq ) due to the frequency step n FqFqFqFq  for different damping i
factors KKKK  for high gain loop with lag lead RC filter; a) for simple RC loop 

filter; b) for high gain loop with lag lead RC filter. 

(3) A step of acceleration (frequency ramp) FFFF i (radians /s^2) 
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In this case we get
 

(57)
 

After performing the inverse Laplace transform we arrive at
 

(58)
 

Fig. 
20 

Nor 
maliz 

ed transients FkFkFkFk (t)/(e3 FFFF /i qq
2qq ) due to the frequency ramp  n FFFF  for i

different damping factors KKKK  for high gain loop (DC phase error is retained). 
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2) Periodic changes.
 

In these instances we are interested in settled or steady states
 

(A) Phase modulation of the input signal.
 

For simplicity we shall consider modulation with a single sine wave
 

(59)
 

The output modulation would remain sinusoidal,
 

(60) 

however, shifted by the transfer function 

In instances where PLL should be used as phase detector then the desired 
information must be recovered at the output of the loop detector, however, 

only for frequencies outside of the pass band ,i.e. for }}}}>qqqqn. 

(B) Frequency modulation of the input signal. 

By starting again with the sinusoidal modulation 

(61)
 

which remains unaltered for modulation frequencies }}}}<qqqqn, however, only
 
for PLLs of the type 1.
 

The amplitude of the normalized phase at the output of the loop detector in
 
the instances of the PLLs of the type 2 is peaking for KKKK <1
 

(62)
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VI. Stability of PLL 

 Since PLL are feedback systems with the feedback transfer function G(s) 
they will oscillate whenever the gain G(s) is equal to minus 1, i.e. 

(63) 

This condition is met in instances where 

(64) 

i.e. for 

(65) 

and 

(66) 

Investigation of the 1st and 2nd order loops reveals unconditionally stabile.
 

However, this need not be the case with higher order loops.
 

By taking into account that
 

(68) 

(69)
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condition (1) depends on character of the polynomial P(s) 



 

A) Hurwitz criterion of stability 

We shall write a determinant FFFFn from the coefficients of the 
polynomial Pn(s) in accordance with the following rules: 
1) We start the first column with an-1 and proceeds with an-3, etc. in rows 

below 
2) We start the second column with an and proceeds with an-2, etc. in rows 

below 
3) We start the 3rd and 4th column with zeros but further apply the 1st and 

2nd columns 
4) We start the 5th  and 6th column with two zeros but further apply the 1st 

and 2nd columns, etc 
5) We finish as soon as the determinant has n columns and n rows. 

We evaluate all principle minor subdeterminants (minors) FFFFi; if they 
all are larger than zero the feedback system is a stable one. 

B) Computation of the roots of the polynomial P(s). 

If real parts of all roots are negative the loop is stable. 

C) Expansion of the function 1/[1+G(s)] into a sum of simple fractions 

Investigation of the function 1/[1+G(s)] reveals that that it is equal to the 
ratio of two polynomials R(s)/S(s) 

(70) 

where s1, s2, ...sn, are roots of the polynomial S(s). 

Application of the tables with Laplace transform pairs provides solution in 
the time domain. Another procedure is in changing the above relation into a 
sum of simple fractions with constants in the nominators, i.e. 

(71) 

D/ The root-locus method 
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Root-locus method of the function 1+G(s) is intended to find location 

of the respective roots in the complex plain. 
At present computer solution of the polynomial of Pn(s), with the 

changing parameter K or any other, provides us with a set of roots which 
can be thereafter plotted in the complex plain. 

Example: We will plot roots of the 2nd order PLL with the open loop gain

(72) 

The polynomial for computation of roots is of the 2nd order 

(73) 

The above equation is that of the circle with the center, -1/T2, 0, and the 
radius r2 = 1/T2

2 - 1/T1T2. After introducing the loop parameters qqqqn and KKKK 
the root locus is their function. 

Fig. 25 Root locus of 1+G(s) 
for the 2nd order PLL type 2 with the RRC loop filter 

E/ Frequency analysis of the transfer functions - Bode plots 
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Transfer functions of individual PLL blocks provide information about all 
important properties of 

Phase-lock loops enclosing stability. 

1/ Frequency independent gain K=KdKaKo 

2/ Factor with one zero in the origin jqqqq 

3/ Factor with one pole in the origin 1/jqqqq 

4/ Factor with one zero 1+jqqqqTo 

5/ Factor with one pole 1/(1+jqqqqTo) 

6/ Time delay  exp(-jqtqtqtqt) 

7/ A quadratic transfer function which can be encountered both in the 
nominator and denominator 

[(jqqqq)2 + 2jKqKqKqKqn +qqqqn
2 ]±1 

In the earlier and often in the contemporary literature stability of the 
PLL systems is investigated with the simple Bode plots in accordance with 
the old tradition of servo systems. 

However, application of modern computers provides more insight and more 
precision solutions. 

Nevertheless, for the sake of completeness we shall repeat here some 
basic rules for construction of the Bode plots. After computing logarithm of 
the open loop gain we get 
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Fig. 26 Bode plots for 1/ Frequency independent gain K=KdKAKo ,
 
2/ Factor with one zero in the origin jqqqq, 3/ Factor with one pole in the origin
 

1/jqqqq: A/ Decibel gain, B/ phase
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Fiug. 27 Bode plot of the function 1+jqqqqTo
 

Fiug. 28 Bode plot of the function 1/(1+jqqqqTo)
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In Fig. 29 we compare an old Bode plot construction with 


the computer drawing.
 

a) 
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Fig. 29 Bode plot of the 3rd order type 2 PLL
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 VII. Phase locked loops  of the 4th and higher orders. 

We have seen that the 2nd and 3rd order loops were unconditionally stable

  However, we often introduce intentionally additional filtering sections to 
improve properties of PLL’s but the stability is endangered. 

A/ Twin-T RC filter 

In instances where we need  large attenuation at a specific frequency 
addition of the Twin-T RC filter, shown in Fig. 30 may solve the problem. 

Fig.  17 Twin-T RC filter
 

This network exhibits “infinite attenuation” for the following arrangement
 

(74) 

After introducing following relations 

(75) 
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we get for the “resonant” frequency, qqqqrf,
 

(76)
 

For the input resistance Ri << R and the output resistance Rout >> R 

The transfer function of the Twin-T  is 

0.1 1 10
90 

81 

72 

63 

54 

45 

36 

27 

18 

9 

0
0 

90 

20 log G2 m 
. 

ψ2 m 

10.1 x m 

(77)
 

Fig. 18 Transfer function and phase characteristic of the Twin-T filter
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Investigation of the properties of these PLL will be started with the normalized  open loop 
gain of the second order loop-type two, G2(jx), 

(78) 

and thereafter by adding additional gains as that of Twin-T, 

GT(jx), and sampling Ge(jx) 

(79)
 

where we have introduced the “resonant” frequency frf and the sampling frequency fs 

(80) 

The overall open loop gain 

(81)
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The transfer functions Hi(x) and Ho(x) are plotted in Fig. 32 togther with 
the open loop gain G(jx) and the phase margin ||||(jx)  for LLLL =.1 and TTTT = .05; 

Note that the phase margin is small,  20 deg., only. In addition both transfer 
functions have peaks of about 10 dB which indicates under damping. 
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Fig. 32 Transfer functions Hi(x) = 20log(|H(jx)|), Ho(jx) = 20log(|1-H(jx)|)and
 
20log(|G(jx)|) of the sampled 4rd order PLL loop of the type 2 with
 

additional Twin-T filter with parameters LLLL =.1 and TTTT = .05
 

B/ Active 2nd order low pass filter
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From different configurations we shall investigated the only one shown 

Fig. 33 Active 2nd order low pass filter 

Its transfer function with a very large gain of the operation amplifier is 

(82)
 

After introduction of the natural frequency qqqqnf 

(83) 

and damping d 

(84)
 

we get for the transfer function (in the normalized form) 
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(85)
 

which is plotted in Fig. 34 for different damping constants together with the respective 
phase characteristics. 

Fig. 34  a/ Transfer functions of the active 2nd order low pass filter; b/ its phase 
characteristics. 
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Fig. 35 Transfer functions Hi(x) = 20log(|H(jx)|), Ho(jx) = 20log(|1-H(jx)|)and 20log(|G(jx)|) 
of the sampled: a) 4th order PLL loop of the type 2 with additional 2nd order low pass 

filter with parameters ???? =.1 and d = .6; b) of the 5th order PLL with parameters ???? =.1, d 
= .6 and SSSS=.2. 

C/Phase lock loop of type 3 

Loop of the type 3 are encountered rarely for special services only. For the sake of 
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simplicity we will consider two active RRC filters (see Fig. 10) in series. 

(86) 

After introducing the natural loop frequency qqqqn and the damping factor KKKK we can change 
the above relation into 

(87) 

A typical transfer functions with the respective phase characteristic are 
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Fig. 36 Transfer functions Hi(x) = 20log(|H(jx)|), Ho(jx) = 20log(|1-H(jx)|2)and 
20log(|G(jx)|) of the 3rd order PLL loop of the type 3 with two additional 2nd order low 

pass filters and  with parameters EEEE = .5 and KKKK =.7 

VIII. Noise properties of PLL
 
Random fluctuations of phase and amplitudes (generally designated as noise) of frequency 
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generators are often limiting factors for many applications even in PLL’s. 

(88) 

Due to the limiting processes we can  consider only 

(89) 

where 

(90) 

A/ Basic frequency instability measures in the frequency domain
 

1) Phase measures
 

The autocorrelation of the random phase departures kkkk(t) is defined
 

(91)
 

and the respective Power Spectral Density (PSD) S’ (qqqq) (primed 
kkkk

indicate two sided spectra) is 

(92)
 

We often encounter another definition, i.e. ©©©©(f), defining 
ration of the phase power at frequencies fo±f in the 1 Hz bandwidth 
(where f is the so called Fourier frequency) in respect to the whole 
power of the investigated signal 
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(93)
 

where S (f) is the so called one sided PSD. 
kkkk

2) Frequency measures 

In contradistinction to the uncertainty about the first moment of phase 
fluctuations, the first moment of frequency fluctuations can be put to zero 

(94) 

However, this is not the case with the 2nd moment which can be defined as 

(95)
 

A further simplification will be achieved by normalizing frequency 
fluctuations in respect to the carrier frequency iiiio = fo 

(96) 

Relation between the Power Spectral Density (PSD) 
S (f) and  S (f)y kkkk

(97) 

B/ Basic frequency instability measures in the time domain 

At very low frequencies direct evaluation of phase PSD is difficult. The 

46
 



problem is solved with sample variances which provide other and very 
effective frequency stability measures. Nevertheless, in actual practice we 
encounter the Allan variance ( two sample variance) defined as 

(98)
 

or the modified Allan variance
 

(99)
 

where
 

(100)
 

Frequency stability defined in the frequency and time domain measures are
 
related with the assistance of a transfer function
 

(101)
 

The difficulty is that we can evaluate the integral in (102), in the closed form,
 
only for a very particular form of Sy(f), namely a piece-wise linearized 


(102)
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Fig. 37 Piece wise 
linearized noise characterist 
ic of a 5 MHz crystal 

oscillator 

Note two dB measures on the vertical axis: the on the r.h. side are values of 
Sk (f), however, that on the l.h. side retains slopes of the Sk (f), but it is 
invariant in respect to the carrier frequency as S (f). Consequently we can y
compare noise characteristics of different generators in one and the same figure. 
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All important noise processes, generally encountered 
by evaluating the frequency instability, are 

the random walk of frequency with the noise constant
 h-2 

the flicker frequency noise with the noise 
constant  h-1 

the white frequency noise with the noise 
constant  ho 

the flicker phase noise with the noise constant h1 

the white phase noise with the noise constant h2 
Sy(f) cy

2(g) Mod cy
2(g) 

K.076goh2fH/(ngo)3 

h-2/f2

h-1/f 

ho

h1f 

h2f2 

(2_)2 
gh-2/6 

2h-1ln(2 ho/2g) 

ho/2g 

h1(2_g)-2[1.38+3ln(qHg)] 

3h2fH(2_g)-2  f

K 5.4ngoh-2 

K 0.94h-1 

Kho/4ngo 

K.084h1/(ngo)2 

H/n(2_ng)2 
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C/ Noise in oscillators 

1/ Crystal oscillators 
The resonator circuit exhibits the flicker and white noise 

(104) 

where Pr is the dissipated power and ar the flicker noise constant. 


(105)
 

The noise of the maintaining circuit is 


(106) 

Finally, we arrive at the PSD of the oscillator phase noise 
where we have introduced the unloaded QU by putting 2QLKKKKQU. 

The magnitude of ar can be appreciated from noise measurements performed
 
on quartz resonators. Its value was found approximately to be arKKKK10-12.75 .
 
After introducing this value, together with the quartz material constant, 


foQU KKKK 1.3*1013, we get 


(107) 

and the plateau in the Allan variance is approximately for all quartz crystal 
resonators (since generally ar > ae) 

(108)
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2/ LC oscillators 

The relation (106) is also valid for LC oscillators. For the mean values we
 
can write
 

(109) 

Note that the coefficients hi (see 103) are mean values form experimental
 
measurements. Actual noise coefficients can differ by -2 to +1 order
 

For a preliminary estimation of the oscillator noise both crystal and LC we
 
can use the following diagram
 

Fig.  37 Noise characteristic of oscillators with parameters QL and fo.
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D/ Noise in digital frequeny dividers 

We provide practical formulae for a preliminary  estimation of the output
 
noise of digital dividers.
 

For TTL and ECL divider family 

(110) 

For GaAs divider family the above relation requires only a small correction
 
in the first term
 

(111) 

We expect that these formulae can be also used for appreciation of the  noise 
quality of actual devices. 

a)  b) 

Fig. 38 a) Flicker phase noise of TTL and ELC digital dividers  b) white 
phase noise of TTL and ELC digital dividers. 
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E/ Noise in Phase detectors and amplifiers 

For a preliminary estimation we can apply an experimentally found relation 

(112)
 

F/ Noise in loop filters 
After comparing actual PLL PSD S 

kkkk,L (in the white noise region) with 
magnitudes added by dividers S 

kkkk,D and S 
kkkk,PD we find out that its level is 

(113)
 

orders higher; the reason is Johnson noise generated in the filter resistors. 
Consequently 
Example : KKKK = .1, Kd = 5/2____, Cmax = 10-6, T1/T2 = 10: S 

kkkk,L KKKK 10
13/fn 

Fig. 39 PSD S 
kkkk

 of the additive noise of different PLL’s together with ,L
practical (full line) and theoretical limits (RRRR). 
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G/ Noise in PLL 

We shall start from a rather general PLL arrangement. 

Fig. 40 Block diagram of a general PLL with additive noise sources.
 

54
 



  

By assuming a locked  loop we can write with the assistance of the Laplace
 
transform  for the linearized arrangement
 

(114)
 

where
 

(115)
 

Since most of the noise components are random by nature and uncorrelated
 
the PSD of the PLL output phase is
 

(116)
 

All the additive noises, due to the phase detector, loop frequency dividers,
 
loop amplifiers, and loop filters can be summarized into a PSD SL(f) 


(117)
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Fig. 41 Output noise of 100MHz VCO locked to a 10 MHz crystal oscillator
 
via a 5th order loop investigated in Fig. 35.
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IX. Acquisition 

Working ranges of PLL 

1) Hold–in range FqFqFqFqH 

(115) 

2) Pull-in range FqFqFqFqP 

Let us assume that the difference between the reference frequency qqqq  and i
the free running VCO frequency qqqq  is larger than c FqFqFqFq  the result is a beat P

evidently 

(116) 

(117) 

After taking into account the feedback properties of PLL and the principle 
of the harmonic balance we get for the 2nd order type 2 loops 

(118) 

Minimum of the above relation reveals 

(119) 

and for the pull-in range we get 
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(120)
 

a) 2nd order simple DC filter 

(121) 

b) Lag lead (RRC) filter ( PLL type 1) 

(122)
 

c) Lag  lead (RRC) filter ( PLL type 2)
 

(123)
 

d) Lag lead (RRC) filter ( PLL type 2) with time delay
 

Note that it exists certain delay for which the pull-in range is zero. This  is 
illustrated with Fig. 42 and 43. The oscillating branch in Fig. 42 indicates 
the possibility of false locks. 
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Fig. 42 Normalized detuning xc=iiiic/qqqqn as function of x=iiii/qqqqn for PLL of
 
the 2nd order type 2 for two amplifier gains and different delays
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Fig. 43 Normalized pull-im range xP = FqFqFqFqP/qqqqn for PLL of the 2nd order 

type 2 for two amplifier gains and normalized delay 


(points were found by computers).
 

3) Lock-in range L 

Acquisition is ex

FqFqFqFq

pected without cycle slipping. This condition is met with
 
zero beat note at the output of the PD 


(125) 

a) PLL of the 1st order 

(126) 

b) PLL of the 2nd order with RC filter 

(127) 

c) PLL of  the 2nd order with RRC filter (high gain loops) 

(128) 

4) Pull-out frequency FqFqFqFqPO 

From investigation of the transients due to the frquency step we get for its 
maximum 

(129)
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and finally 

(130) 

5) False locks 

In some instances the pull-in process may result in 
The principle can be explained with the assistance of the following figure 

Fig. 44 Block diagram of the PLL with the beat note a bit smaller than 
FqFqFqFqP 

For the slowly varying detuning Fq we have 

(131) 

Additional filtering or time delays may cause nnnn >____ /2 which will change 
the sign of the slowly varying tuning voltage u2(t) and starts to push the 
loop out of lock and in some instances lock the VCO on a false frequency cf. 
Fig.45 
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Fig. 45 The DC component FqFqFqFq/K in the pull-in process: 

a)PLL of the 4th order Type 2 with two additional sections RC;


 b) PLL of the 3rd  order Type 2 with additional time delay 

(KKKK=.7, SSSS=.3).
 

6) Pull-in time 

Solution will start with the simplified block diagram in Fig. 44. Note that 
the AC path is responsible for the magnitude of the beat note YYYYc. 
Furthermore we will assume the 2nd order loop with RRC filter with the 
reduced gain 

(132) 
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Finally we arrive at an approximate pull-in time for the sine wave PD
 

(133)
 

with sligh 
tly diffe 
rent value 
s for other 
types of 
phase detec 
tors  see 
Fig. 46 
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Fig. 46 Asymptotic approximations of the pull-in time for PLL 

of the 2nd order : a) for a simple phase detector; b) for a phase-frequency
 

detector for two different damping constants
 

References: 
[1] F.M. Gardner: Phaselock Techniques.  New York: J. Wiley, 1966, 2nd 

ed 1979 
[2] W.F. Egan, Frequency Synthesis by Phase Lok, New York: J. Wiley, 

1998, 2nd ed. 2000. 
[3] V. F. Kroupa, Frequency Synthesis: Theory, Design et Applications. 

London: Ch. Griffin, 1973; New York: J. Wiley, 1973. 
[4] V. Manassewitsch, Frequency Synthesizers, Theory and Design.	 New 

York: Wiley, 1976, 1980. 
[5] W.F. Egan, Frequency Synthesis by Phase Lock. New York: Wiley 1981. 
[6] U.L. Rohde, Digital PLL Frequency Synthesizers, Theory and Design. 

Englewood Clifs: Prentice Hall, 1983. 
[7] J.A. Crawford, Frequency Synthesizer Design Handbook. 

Boston/London: Artech House, 1994. 
[8] Bar-Giora Goldberg, Digital Techniques in Frequency synthesis.	 New 

York: MacGraw-Hill, 1996. 
[9] U.L. Rohde, Microwave and Wireless Synthesizers, Theory and Design. 

John Wiley 1997.  [10] V.F. Kroupa , ed. Direct Digital Frequency 
Synthesizers. IEEE Press 1999. 

[11] V.F. Kroupa, Theory of Phase-Locked Loops and Their Applications 
in Eectronics, Praha: Academia 1995 (in Czech). 

[12] G.A. Korn and T.M. Korn: Mathematical Handbook for Scientists 
and Engineers. New York : McGraw-Hill, 1961. 

[13] E.J. Angelo, “A Tutorial Introduction to Digital Filtering,” The Bell 
System Technical Journal, Vol. 60, No. 7, September 1981. 

Acknowledgment. 

This work has been supported by the Grant Agency of the Czech republic 

64
 



under the contract No. 102/00/0958.
 

65
 




