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Abstract
In this bachelor thesis three different Sudoku solving algorithms are
studied. The study is primarily concerned with solving ability, but
also includes the following: difficulty rating, puzzle generation ability,
and suitability for parallelizing. These aspects are studied for individ-
ual algorithms but are also compared between the different algorithms.
The evaluated algorithms are backtrack, rule-based and Boltzmann ma-
chines. Measurements are carried out by measuring the solving time on
a database of 17-clue puzzles, with easier versions used for the Boltz-
mann machine. Results are presented as solving time distributions for
every algorithm, but relations between the algorithms are also shown.
We conclude that the rule-based algorithm is by far the most efficient al-
gorithm when it comes to solving Sudoku puzzles. It is also shown that
some correlation in difficulty rating exists between the backtrack and
rule-based algorithms. Parallelization is applicable to all algorithms to
a varying extent, with clear implementations for search-based solutions.
Generation is shown to be suitable to implement using deterministic
algorithms such as backtrack and rule-based.



Referat
En studie om Sudokulösningsalgoritmer

Den här exjobbsrapporten på kandidatnivå presenterar tre olika lös-
ningsalgoritmer för Sudoku. Studiens huvudsyfte är att studera lösnings-
prestanda men analyserar även svårighetsgrad, möjligheter till genere-
ring och parallelisering. Samtliga aspekter studeras för varje algoritm
och jämförs även mellan enskilda algoritmer. De utvalda algoritmer-
na är backtrack, regelbaserad och Boltzmann-maskiner. Samtliga mät-
ningar görs på en databas med pussel som har 17 ledtrådar, med vissa
anpassningar för Boltzmann-maskiner. Resultaten presenteras med för-
delningar som visar lösningstider för varje algoritm separat. Slutsatsen
är att regelbaserade lösare är effektivast på att lösa Sudokupussel. En
korrelation mellan den regelbaserades och den backtrack-baserade lösa-
res svårighetsrating visas. Parallelisering visas vara tillämpbart till olika
grad för de olika algoritmerna och är enklast att tillämpa på sökbase-
rade lösare. Generering konstateras vara lättast att implementera med
deterministiska algoritmer som backtrack och rule-based.
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Chapter 1

Introduction

Sudoku is a game that under recent years has gained popularity. Many newspapers
today contain Sudoku puzzles and there are even competitions devoted to Sudoku
solving. It is therefore of interest to study how to solve, generate and rate such
puzzles by the help of computer algorithms. This thesis explores these concepts for
three chosen algorithms.

1.1 Problem specification
There are multiple algorithms for solving Sudoku puzzles. This report is limited
to the study of three different algorithms, each representing various solving ap-
proaches. Primarly the focus is to measure and analyze those according to their
solving potential. However there are also other aspects that will be covered in this
thesis. Those are difficulty rating, Sudoku puzzle generation, and how well the al-
gorithms are suited for parallelizing. The goal of this thesis is to conclude how well
each of those algorithms performs from these aspects and how they relate to one
another. Another goal is to see if any general conclusions regarding Sudoku puzzles
can be drawn. The evaluated algorithms are backtrack, rule-based and Boltzmann
machines. All algorithms with their respective implementation issues are further
discussed in section 2 (background).

1.2 Scope
As this project is quite limited in time and in expected scope, there are several
limitations. The most notably of those limitations are listed below:

• Limited number of algorithms: There are as mentioned several other Sudoku
solving algorithms. The chosen algorithms can also be modified and studied
to determine which variation gives what properties. We have as mentioned
limited the number of algorithms to three and we are also very restrictive in
which variations we study.
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CHAPTER 1. INTRODUCTION

• Optimization: All algorithms are implemented by ourselves and optimiza-
tion is therefore an issue. We have therefore only aimed for exploring the
underlying ideas of the algorithms and not the algorithms themselves. This
means that some implementations are consciously made in a certain way even
if optimizations exists.

• Special Sudokus: There are several variations of Sudoku including different
sizes of the grid. This thesis is, however, limited to the study of ordinary
Sudoku, which is 9x9 grids.

1.3 Purpose
As already mentioned, Sudoku is today a popular game throughout the world and it
appears in multiple medias, including websites, newspapers and books. As a result,
it is of interest to find effective Sudoku solving and generating algorithms. For most
purposes there already exists satisfactory algorithms, and it might be hard to see
the benefit of studying Sudoku solving algorithms. There is, however, still some
value in studying Sudoku solving algorithms as it might reveal how to deal with
difficult variations of Sudoku, such as puzzles with 16x16 grids. Sudoku is also, as
will be discussed in section 2, a NP-Complete problem which means that it is one
of a set of computational difficult problems.[1] One goal of this study is therefore
to contribute to the discussion about how such puzzles can be dealt with.

1.4 Definitions
Box: A 3x3 grid inside the Sudoku puzzle. It works the same as rows and columns,

meaning it must contain the digits 1-9.

Region: This refers to a row, column or box.

Candidate: An empty square in a Sudoku puzzle have a certain set of numbers
that does not conflict with the row, column and box it is in. Those numbers
are called candidates or candidate numbers.

Clue: A clue is defined as a number in the original Sudoku puzzle. Meaning that
a Sudoku puzzle have a certain number of clues which is then used to fill in
new squares. The numbers filled in by the solver is, however, not regarded as
clues.
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Chapter 2

Background

The background gives an introduction to Sudoku solving and the various approaches
to creating efficient solvers. It also introduces some theoretical background about
Sudoku puzzles which is of interest when discussing and choosing algorithms. Fi-
nally the algorithms that will be studied in this thesis is presented.

2.1 Sudoku fundamentals

A Sudoku game consists of a 9x9 grid of numbers, where each number belong to
the range 1-9. Initially a subset of the grid is revealed and the goal is to fill the
remaining grid with valid numbers. The grid is divided into 9 boxes of size 3x3.
Sudoku has only one rule and that is that all regions, that is rows, columns, and
boxes, contains the numbers 1-9 exactly once.[2] In order to be regarded as a proper
Sudoku puzzle it is also required that a unique solution exists, a property which
can be determined by solving for all possible solutions.

Different Sudoku puzzles are widely accepted to have varying difficulty levels.
The level of difficulty is not always easy to classify as there is no easy way of
determining hardness by simply inspecting a grid. Instead the typical approach
is trying to solve the puzzle in order to determine how difficult it is. A common
misconception about Sudoku is that the number of clues describes how difficult it is.
While this is true for the bigger picture it is far from true that specific 17-clue puzzles
are more difficult than for instance 30-clue puzzles.[11] The difficulty of a puzzle
is not only problematic as it is hard to determine, but also as it is not generally
accepted how puzzles are rated. Puzzles solvable with a set of rules may be classified
as easy, and the need for some additional rules may give the puzzle moderate or
advanced difficulty rating. In this study difficulty will however be defined as the
solving time for a certain algorithm, meaning that higher solving times implies a
more difficult puzzle. Another interesting aspect related to difficulty ratings is that
the minimum number of clues in a proper Sudoku puzzle is 17.[2] Since puzzles
generally become more difficult to solve with an decreasing number of clues, due
to the weak correlation in difficulty, it is probable that some of the most difficult
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CHAPTER 2. BACKGROUND

puzzles have 17 clues.

2.2 Computational perspective
Sudoku solving is a research area in computer science and mathematics, with areas
such as solving, puzzle difficulty rating and puzzle generation.[5, 10, 7]

The problem of solving n2 ∗ n2 Sudoku puzzles is NP-complete.[1] While being
theoretically interesting as an result it has also motivated research into heuristics,
resulting in a wide range of available solving methods. Some of the existing solving
algorithms are backtrack [6], rule-based [3], cultural genetic with variations[5], and
Boltzmann machines [4].

Given the large variety of solvers available, it is interesting to group them to-
gether with similar features in mind, and try to make generic statements about their
performance and other aspects. One of the important selection criterion for choos-
ing algorithms for this thesis have therefore been the algorithms underlying method
of traversing the search space, in this case deterministic and stochastic methods.
Deterministic solvers include backtrack and rule-based. The typical layout of these
is a predetermined selection of rules and a deterministic way of traversing all possi-
ble solutions. They can be seen as performing discrete steps and at every moment
some transformation is applied in a deterministic way. Stochastic solvers include ge-
netic algorithms and Boltzmann machines. They are typically based on a different
stochastic selection criteria that decides how candidate solutions are constructed
and how the general search path is built up. While providing more flexibility and
a more generic approach to Sudoku solving there are weaker guarantees surround-
ing execution time until completion, since a solution can become apparent at any
moment, but also take longer time [5].

2.3 Evaluated algorithms
Given the large amount of different algorithms available it is necessary to reduce the
candidates, while still providing a quantitative study with broad results. With these
requirements in mind, three different algorithms were chosen: backtrack, rule-based
and Boltzmann machine. These represent different groups of solvers and were all
possible to implement within a reasonable time frame. A short description is given
below with further in depth studies in the following subsections.

• Backtrack: Backtrack is probably the most basic Sudoku solving strategy
for computer algorithms. This algorithm is a brute-force method which tries
different numbers, and if it fails it backtracks and tries a different number.

• Rule-based: This method uses several rules that logically proves that a square
either must have a certain number or roles out numbers that are impossible
(which for instance could lead to a square with only one possible number).
This method is very similar to how humans solve Sudoku and the rules used
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2.3. EVALUATED ALGORITHMS

are in fact derived from human solving methods. The rule-based approach is
a heuristic, meaning that all puzzles cannot be solved by it. In this thesis, the
rule-based algorithm is instead a combination of a heuristic and a brute-force
algorithm, which will be discussed more in section 2.3.2.

• Boltzmann machine: The Boltzmann machine algorithm models Sudoku by
using a constraint solving artificial neural network. Puzzles are seen as con-
straints describing which nodes that can not be connected to each other.
These constraints are encoded into weights of an artificial neural network and
then solved until a valid solution appears, with active nodes indicating chosen
digits. This algorithm is a stochastic algorithm in contrast to the other two
algorithms. Some theoretical background about neural networks is provided
in section 2.3.3.

2.3.1 Backtrack
The backtrack algorithm for solving Sudoku puzzles is a brute-force method. This
can be viewed as guessing which numbers goes where. When a dead end is reached,
the algorithm backtracks to a earlier guess and tries something else. This means
that the backtrack algorithm does an exhaustive search to find a solution, which
means that a solution is guaranteed to be found if enough time is provided. Even
thought this algorithm runs in exponential time, it is plausible to try it since it is
widely thought that no polynomial time algorithms exists for NP-complete problem
such as Sudoku. One way to deal with such problems is with brute-force algorithms
provided that they are sufficiently fast. This method may also be used to determine
if a solution is unique for a puzzle as the algorithm can easily be modified to continue
searching after finding one solution. It follows that the algorithm can be used to
generate valid Sudoku puzzles (with unique solutions), which will be discussed in
section 4.4.

There are several interesting variations of this algorithm that might prove to be
more or less efficient. At every guess, a square is chosen. The most trivial method
would be to take the first empty square. This might however be very inefficient since
there are worst case scenarios where the first squares have very many candidates.
Another approach would be to take a random square and this would avoid the above
mentioned problem with worst case scenarios. There is, however, a still better
approach. When dealing with search trees one generally benefits from having as
few branches at the root of the search tree. To achieve this the square with least
candidates may be chosen. Note that this algorithm may solve puzzles very fast
provided that they are easy enough. This is because it will always choose squares
with only one candidate if such squares exists and all puzzles which are solvable by
that method will therefore be solved immediately with no backtracking.

A better understanding of the behaviour of the algorithm might be achieved by
examining the psuedocode below.

Puzzle Backtrack(puzzle)

5



CHAPTER 2. BACKGROUND

(x,y) = findSquare(puzzle) //Find square with least candidates
for i in puzzle[y][x].possibilities() //Loop through possible candidates

puzzle[y][x] = i //Assign guess
puzzle’ = Backtrack(puzzle) //Recursion step
if(isValidAndComplete(puzzle’)) //Check if guess lead to solution

return puzzle’
//else continue with the guessing

return null //No solution was found

2.3.2 Rule-based
This algorithm builds on a heuristic for solving Sudoku puzzles. The algorithm con-
sists of testing a puzzle for certain rules that fills in squares or eliminates candidate
numbers. This algorithm is similar to the one human solver uses, but lacks as only
a few rules are implemented in the algorithm used in this thesis. Those rules are
listed below:

• Naked Single: This means that a square only have one candidate number.

• Hidden Single: If a region contains only one square which can hold a specific
number then that number must go into that square.

• Naked pair: If a region contains two squares which each only have two specific
candidates. If one such pair exists, then all occurrences of these two candidates
may be removed from all other squares in that region. This concept can also
be extended to three or more squares.

• Hidden pair: If a region contains only two squares which can hold two specific
candidates, then those squares are a hidden pair. It is hidden because those
squares might also include several other candidates. Since these squares must
contain those two numbers, it follows that all other candidates in these two
squares may be removed. Similar to naked pairs, this concept may also be
extended to three or more squares.

• Guessing (Nishio): The solver finds an empty square and fills in one of the
candidates for that square. It then continues from there and sees if the guess
leads to a solution or an invalid puzzle. If an invalid puzzle comes up the
solver return to the point where it made its guess and makes another guess.
The reader might recognize this approach from the backtrack algorithm and
it is indeed the same method. The same method for choosing which square to
begin with is also used.

Before continuing the reader shall note that naked tuples (pair, triple etc) and
hidden tuples in fact are the same rules, but inverted. Consider for instance a row
with five empty squares. If three of those form a naked triple the other two must
form a hidden pair. The implemented rules therefore are naked single, naked tuples
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2.3. EVALUATED ALGORITHMS

and guessing. Note that naked single and naked tuples are different as the naked
single rule fills in numbers in squares whilst the naked tuple rule only deals with
candidates for squares.

At the beginning of this section it was stated that this algorithm was built on a
heuristic which is true. It is, however, a combination between a brute-force method
and a heuristic. This is because of the guess rule which is necessary to guarantee
that the algorithm will find a solution. Without the guess rule it is possible to end
up with an unsolved puzzle where none of the other two rules are applicable. The
algorithm will produce a solution in polynomial time given that no backtracking is
required.

The psuedocode for this algorithm is presented below.

puzzle Rulebased(puzzle)
while(true){

//Apply the rules and restart the loop if the rule
//was applicable. Meaning that the advanced rules
//are only applied when the simple rules failes.
//Note also that applyNakedSingle/Tuple takes a reference
//to the puzzle and therefore changes the puzzle directly
if(applyNakedSingle(puzzle))

continue
if(applyNakedTuple(puzzle))

continue
break

}
//Resort to backtrack as no rules worked
(x,y) = findSquare(puzzle) //Find square with least candidates
for i in puzzle[y][x].possibilities() //Loop through possible candidates

puzzle[y][x] = i //Assign guess
puzzle’ = Rulebased(puzzle) //Recursion step
if(isValidAndComplete(puzzle’)) //Check if guess lead to solution

return puzzle’
//else continue with the guessing

return null //No solution was found

2.3.3 Boltzmann machine

The concept of Boltzmann machines is gradually introduced by beginning with the
neuron, network of neurons and finally concluding with a discussion on simulation
techniques.

The central part of an artificial neural network (ANN) is the neuron, as pictured
in figure 2.1. A neuron can be considered as a single computation unit. It begins
by summing up all weighted inputs, and thresholding the value for some constant

7
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Figure 2.1. A single neuron showing weighted inputs from other neurons on the
left. These form a summation of which the bias threshold θ is withdrawn. Finally
the activation function s decides if to set the binary output active.

threshold θ. Then a transfer function is applied which sets the binary output if the
input value is over some limit.

In the case of Boltzmann machines the activation function is stochastic and the
probability of a neuron being active is defined as follows:

pi=on = 1

1 + e− ∆Ei
T

Ei is the summed up energy of the whole network into neuron i, which is a fully
connected to all other neurons. A neural network is simply a collection of nodes
interconnected in some way. All weights are stored in a weight matrix, describing
connections between all the neurons. T is a temperature constant controlling the
rate of change during several evaluations with the probability pi=on during simula-
tion. Ei is defined as follows [9]:

∆Ei =
∑

j

wijsj − θ

where sj is a binary value set if neuron j is in a active state, which occurs with
probability pi=on, and wij are weights between the current node and node j. θ is a
constant offset used to control the overall activation.

The state of every node and the associated weights describes the entire network
and encodes the problem to be solved. In the case of Sudoku there is a need to
represent all 81 grid values, each having 9 possible values. The resulting 81∗9 = 729
nodes are fully connected and have a binary state which is updated at every discrete
time step. Some of these nodes will have predetermined outputs since the initial
puzzle will fix certain grid values and simplify the problem. In order to produce

8
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valid solutions it is necessary to insert weights describing known relations. This is
done by inserting negative weights, making the interconnected nodes less likely to
fire at the same time, resulting in reduced probability of conflicts. Negative weights
are placed in rows, columns, boxes, and between nodes in the same square, since a
single square should only contain a single active digit.

In order to produce a solution the network is simulated in discrete time steps.
For every step, all probabilities are evaluated and states are assigned active with the
given probability. Finally the grid is checked for conflicts and no conflicts implies a
valid solution, which is gathered by inspecting which nodes are in a active state.

Even though the procedure detailed above eventually will find a solution, there
are enhanced techniques used in order to converge faster to a valid solution. The
temperature, T , can be controlled over time and is used to adjust the rate of change
in the network while still allowing larger state changes to occur. A typical scheme
being used is simulated annealing [12]. By starting off with a high temperature
(typically T0 = 100) and gradually decreasing the value as time progresses, it is
possible to reach a global minimum. Due to practical constraints it is not possible
to guarantee a solution but simulated annealing provides a good foundation which
was used.

The temperature descent is described by the following function, where i is the
current iteration:

T (i) = T0 ∗ exp(Kt ∗ i)

Kt controls the steepness of the temperature descent and can be adjusted in order
to make sure that low temperatures are not reached too early. The result section
describes two different decline rates and their respective properties.

There are some implications of using a one-pass temperature descent which was
chosen to fit puzzles as best as possible. Typically solutions are much less likely to
appear in a Boltzmann machine before the temperature has been lowered enough to
a critical level. This is due to the scaling of probabilities in the activation function.
At a big temperature all probabilities are more or less equal, even though the
energy is vastly different. With a low temperature the temperature difference will
be scaled and produce a wider range of values, resulting in increasing probability of
ending up with less conflicts. This motivates the choice of an exponential decline in
temperature over time; allowing solutions at lower temperatures to appear earlier.

An overview of the Boltzmann machine is given here in pseudocode.

boltzmann(puzzle):
temperature = T_0
i = 0
//encode puzzle
nodes <- {0}
for each square in puzzle

nodes[same row as square][square] = -10
nodes[same column as square][square] = -10
nodes[sharing the same node][square] = -20

9
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//iterate until a valid solution is found
while(checkSudoku(nodes) != VALID)

//update the state of all nodes
for each node in nodes

node.offset = calculateOffset(nodes, node)
probability = 1/(1 + exp(temperature * node.offset))
node.active = rand() < probability

//perform temperature decline
i++
temperature = T_0 * exp(TEMP_DECLINE * i)

return nodes

checkSudoku(nodes):
//begin by building the Sudoku grid
grid = {0}
for each node in nodes:
//check if this node should be used
//for the current square
if(node.offset > nodes[same square])

grid.add(node)

//check constraints on grid
if unique rows &&

unique columns &&
unique subsquares

return true
return false

calculateOffset(nodes, selected):
offset = 0
//iterates over all nodes and calculates the summed weights
//many negative connections implies a large negative offset
for each node in nodes

offset += nodes[node][selected]

return offset
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Chapter 3

Method

Since this report has several aims, this section have been divided into different parts
to clearly depict what aspects have been considered regarding the different aims.
Those sections will also describe in detail how the results were generated. Section 3.1
is devoted to explaining the test setup which includes hardware specifications but
also an overview picture of the setup. Section 3.2 focuses on how and what aspects
of the algorithms where analyzed. Section 3.3 explains the process of choosing test
data. The last section (3.4) gives an overview of the statistical analysis which was
performed on the test data. This also includes what computational limitations were
present and how this effected the results.

3.1 Test setup
The central part of the test setup is the test framework which extracts timing and
tests every algorithm on different puzzles. In order to provide flexibility, the test
framework was implemented as a separate part, which made it possible to guarantee
correct timing and also solving correctness of the algorithms. All execution times
were measured and logged for further analysis. Since there might be variations
in processor performance and an element of randomness in stochastic algorithms,
multiple tests were performed on each puzzle. Lastly when all values satisfied the
given confidence intervals, a single value (the mean value) was recorded, gradually
building up the solving time distribution.

All tests were run on a system using a Intel Q9550 quad core processor @ 2.83
GHz, 4 GB of RAM running on Ubuntu 10.04 x64. Both the test framework and
all solvers were compiled using GNU GCC with optimizations enabled on the -O2
level.

3.2 Comparison Methods
Multiple aspects of the results were considered when analyzing and comparing the
algorithms. The following three sections describes those aspects in more detail.
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3.2.1 Solving
The solving ability of the algorithm is the main interest of this thesis. This is
measured by measuring the time it takes for each Sudoku solver algorithm to solve
different puzzles. By doing that on a representative set of puzzles, it is possible to
determine which algorithms are more effective. Solving ability is often given in the
form of a mean value, but since puzzles vary greatly in difficulty this misses the
bigger picture. An algorithm might for instance be equally good at all puzzles and
one algorithm might be really good for one special kind of puzzles while perform-
ing poorly at others. They can still have the same mean value which illustrates
why that is not a good enough representation of the algorithms effectiveness. The
representation of the algorithms performances are therefore presented in the form
of histograms, which shows the frequency at which puzzles fall into a set of time
intervals. This does not only depict a more interesting view of the Sudoku solvers
performance, but also shows possible underlying features such as if the Sudoku
solver solves the puzzle with an already known distribution. This topic is mostly
studied for each algorithm, but will also to some extent be compared between the
algorithms.

3.2.2 Puzzle difficulty
Puzzle books commonly includes difficulty ratings associated with Sudoku puzzles.
Those are often based on the level of human solving techniques that are needed to
solve the puzzle in question. This study will similarly measure the puzzles difficulty,
but will not rely on which level of human solving techniques that are needed, but
instead on how well each algorithm performs at solving each puzzle. The test will
primarily consist of determining if certain puzzles are inherently difficult, meaning
that all algorithms rate them as hard. During the implementation process it was
discovered that the Boltzmann machine performed much worse than the other al-
gorithms and could therefore not be tested on the same set of puzzles. This aspect
of comparison is therefore limited to the rule-based and backtrack algorithms.

3.2.3 Generation and parallelization
This is a more theoretical aspect of the comparison, with only a discussion rather
than actual implementations. It is however still possible to discuss how well the
algorithms are suited for generating puzzles and how well they can be parallelized.
Computer generation of puzzles is obviously interesting, since it is required in or-
der to construct new puzzles. Sudoku puzzles can be generated in multiple ways,
but since this thesis is about Sudoku solving algorithms, only generating methods
involving such algorithms will be considered. The main way of generating Sudoku
puzzles is then by inserting random numbers into an empty Sudoku grid and then
attempting to solve the puzzle.

Parallelization is however not entirely obvious why it is of interest. Normal Su-
doku puzzles can be solved in a matter of milliseconds by the best Sudoku solvers
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and it might therefore be difficult to see the need for parallelization of the stud-
ied solvers. This topic is indeed quite irrelevant for normal Sudoku puzzles, but
the discussion that will be held about the algorithms might still hold some value.
Sudoku solvers can be constructed for N ∗ N puzzles and as those algorithms can
quickly get very time consuming as N increases, it is likely that computational im-
provements are needed. Since the algorithms to some extent also can be applied to
other NP-complete problems, the discussion could also be relevant in determining
which type of algorithms are useful for similar problems.

3.3 Benchmark puzzles
The test data is built up by multiple puzzles that were chosen beforehand. Since the
set of test puzzles can affect the outcome of this thesis it is appropriate to motivate
the choice of puzzles. As was discovered during the study, the Boltzmann machine
algorithm did not perform as well as the other algorithms and some modifications
to which puzzles was used was therefore done. The backtrack and rule-based al-
gorithms were however both tested on a set of 49151 17-clue puzzles. They were
found by Royle and it is claimed to be a collection of all 17-clue puzzles that he has
been able to find on the Internet.[8] The reason for choosing this specific database
is because the generation of the puzzles does not involve a specific algorithm but
is rather a collection of puzzles found by different puzzle generating algorithms.
The puzzles are therefore assumed to be representative of all 17-clue puzzles. This
assumption is the main motivating factor for choosing this set of puzzles, but there
is also other factors that makes this set of puzzles suitable. As recently discovered
by Tugemann and Civario, no 16-clue puzzle exists which means that puzzles must
contain 17 clues to have unique solutions.[2]

As mentioned, the Boltzmann machine could not solve 17-clue puzzles efficiently
enough which forced a change in test puzzles. The Boltzmann machine algorithm
was therefore tested on 400 46-clue puzzles. Those where generated from a random
set of the 17-clue puzzles used for the other algorithms and is therefore assumed that
they are not biased towards giving a certain result. One problematic aspect is that
they can probably not be said to represent all 46-clue puzzles. This is because they
are generated from puzzles that are already solvable and the new puzzles should
therefore have more logical constraints then the general 46-clue puzzle. Most 46-
clue puzzles already have a lot of logical constraints due to the high number of clues
and the difference of the generated puzzle and the general 46-clue puzzle is therefore
thought to be negligible.

3.4 Statistical analysis
Due to several reasons statistical analysis is required to make a rigorous statement
about the results. This is mainly due to two reason. Firstly the results contain
a very large data set and secondly there are some randomness in the test results
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which can only be dealt with by using statistical models. Most statistical tests
give a confidence value to depict the reliability of the results. Naturally a higher
confidence and more precise results leads to higher requirements on the statistical
test. As described in section 3.4.2 some of the statistical tests have been limited by
computational constraints. This leads to a lower confidence level being required for
those tests.

3.4.1 Statistical tests

This section explains which statistical tests and methods are used in the study. The
first statistical method that is applied is to make sure that variance in processor
performance does not affect the results considerable. This is done by measuring
a specific algorithms solving time for a specific puzzle multiple times. The mean
value of those times is then calculated and bootstrapping are used to attain a 95%
confidence interval of 0.05 seconds. The reason bootstrapping is used is because it
does not require the stochastic variable to belong to a certain distribution. This is
necessary since the distribution of the processor performance is unknown and also
since the distribution might vary between different puzzles. The solving time may
also vary greatly if the algorithm uses a stochastic approach, such as the Boltzmann
machine algorithm.

The mean values are then saved as described in section 3.1. Even if the represen-
tation of the results does not really classify as a statistical method it is appropriate
to mention that the results are displayed as histograms which means that the data
are sorted and divided into bars of equal width. For this study this means each
bar represents a fixed size solution time interval. The height of the bars are pro-
portional to the frequency data points falls into that bar’s time interval. After the
histograms are displayed, the results can be compared between different algorithms.
A comparison can also be done of individual solving time distributions.

The first thing of interest is how the different algorithms compare in solving
ability. Since the distribution is unknown, there is a need for general statistical
tests. One of those is Wilcoxons sign test. This makes use of the fact that the
difference in solving times between two algorithms will have a mean value of 0 if
there is no difference between the two algorithms. The tests uses the binomial
distribution to see if the sign of the difference is unevenly distributed. The null
hypothesis is that the two algorithms perform equally and to attain a confidence
for the result, the probability that one falsely rejects the null hypothesis given the
test results are computed.

The difficulty distributions of the puzzles can be seen by looking at the his-
tograms for each algorithm. One aspect that is of interest is if some of the puzzles
are inherently difficult, or easy, independent of which algorithm is used for solving
it. The method used for determining this is built on the fact that independent
events, say A and B, must follow the following property:

P (A ∩B) = P (A)P (B)
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To illustrate what this means for this thesis, lets consider the following scenario. A
is chosen to be the event that a puzzle is within algorithm one’s worst 10% puzzles.
B is similarly chosen to be the event that a puzzle is within the 10 % worst puzzles
for algorithm 2. The event A∩B shall if the algorithms are independent then have a
probability of 1%. To test if this is the case, the binomial distribution is used, with
the null hypothesis being that the two algorithms are independent. This hypothesis
is then tested in the same way as the above described method (wilcoxons sign test).

3.4.2 Computational constraints
The computational constraints of the computations done in relation to this thesis
mainly originates from processor performance. This was as above described handled
by running multiple tests on the same algorithm with each puzzle. The problem is
that bootstrapping, which was used to determine confidence levels of the measured
mean value, requires a large data set to attain a high confidence level. At the
same time the puzzle set was very big which required a compromise which lead to
a confidence interval of 0.05 seconds and a confidence level of 95%. The number of
tests that were allowed for each puzzle was also limited to 100 tries. The puzzles
that could not pass the requirements for the confidence interval were marked as
unstable measurements.

Another problematic aspect concerning computational constraints is the running
time for each algorithm. During the implementation phase it was discovered that
the backtrack algorithm was slow for some puzzles with 17 clues and the Boltzmann
machine was discovered to be too slow for 17 clue puzzles. The way this was handled
was by setting a runtime limit of 20 seconds for each test run for the backtrack solver.
The Boltzmann machine required a more dramatic solution and the test puzzles were
exchanged with ones with 46 clues instead of 17. This was quite unfortunate as this
leaves some of the comparison aspects to only two algorithms.
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Chapter 4

Analysis

In this section multiple results are presented together with a discussion about how
the results could be interpreted. Section 4.1 is devoted to presenting how different
algorithms perform. Section 4.2 show how the algorithms performs relative to the
each other and discusses different aspect of comparison. Section 4.3 explores the
idea of difficulty rating and the concept of some puzzles being inherently difficult.
Section 4.4 compares the algorithms by how well they are suited for generation and
parallelizing.

4.1 Time distributions

To get an idea of how each algorithm performs it is suitable to plot solving times in
a histogram. Another way of displaying the performance is to sort the solving times
and plot puzzle index versus solving time. Both of these are of interest however
since they can reveal different things about the algorithms performance.

4.1.1 Rule-based solver

The rule-based solver was by far the fastest algorithm in the study with a mean
solving time of 0.02 seconds. Variation in solving time was also small with a standard
deviation of 0.02 seconds. It solved all 49151 17-clue puzzles that was in the puzzle
database used for testing and none of the puzzles resulted in a unstable measurement
of solving time.

Figure 4.1 is a histogram on a logarithmic scale that shows how the rule-based
solver performed over all test puzzles. It is observable that there is a quite small
time interval at which most puzzles are solved. This is probably due to the use of
logic rules with a polynomial time complexity. When the solver instead starts to
use guessing the time complexity is changed to exponential time and it is therefore
reasonable to believe that the solving time will then increase substantially. As will
be seen in section 4.1.2 the backtrack algorithm have a similar behavior which is
also taken as a reason to believe that the rule-based solver starts to use guessing
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after the peak. Guessing might of course be used sparingly at or even before the
peak, but the peak is thought to decrease as a result of a more frequent use of
guessing.

Figure 4.1. A histogram displaying the solving times for the rule-based solver. The
x-axis showing solving time have a logarithmic scale to clarify the result. The reader
shall note that this makes the bars in the histograms’ widths different, but they still
represent the same time interval. All puzzles was solved and none had an unstable
measurement in running time. The confidence level for the measured solving times
was 95 % at an interval of 0.05 seconds.

Figure 4.2 shows a zoomed in view of figure 4.1 but with a linear time scale.
The histogram’s bars also has half the width compared to figure 4.1. The histogram
begins at the end of the peak that is illustrated in figure 4.1. This is to illustrate
that the histogram continues to decrease. The histogram also illustrates that the
maximum time was 1.36 seconds, but that only very few puzzles have a solving time
close to that. As can be seen most puzzles, over 99%, will have solving time less
than 0.4 seconds.
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Figure 4.2. A zoomed in view of the histogram in figure 4.1 showing the rule-based
solvers time distribution among all 49151 puzzles. The bars represent half the time
interval compared to figure 4.1. All puzzles was solved and none had an unstable
measurement in running time. The confidence level for the measured solving times
was 95 % at an interval of 0.05 seconds.

Another way to visualize the result is shown in figure 4.3. The figure have plotted
the puzzle indices sorted after solving time against their solving times. Note that
the y-axis is a logarithmic scale of the solving time. As in figure 4.2, only a few
puzzles had relatively high solving times. This picture also more clearly illustrates
the idea explored above. Namely that the algorithm will increase its solving times
fast at a certain point. That point is as mentioned thought to be the point where the
solver starts to rely more upon guessing then the logical rules. From that statement,
it can be concluded that only a small portion of all Sudoku puzzles are difficult, in
the sense that the logic rules that the rule-based solver uses is not enough.
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Figure 4.3. The x-axis is the indices of the puzzles when sorted according to the
solving time for the rule-based solver. The y-axis shows a logarithmic scale of the
solving time for each puzzle. All 49151 puzzles was solved and none had an unstable
measurement in running time. The confidence level for the measured solving times
was 95% at an interval of 0.05 seconds.

4.1.2 Backtrack solver
The backtrack algorithm was the second most efficient algorithm of the tested al-
gorithms. It had a mean solving time of 1.66 seconds and a standard deviation of
3.04 seconds. The backtrack algorithm was tested on the same set of puzzles as the
rule-based algorithm, but did not manage to solve all puzzles within the time limit
of 20 seconds. It had 142 puzzles with unstable measurements and was unable to
solve 1150 puzzles out of all 49151 puzzles. In figure 4.4 the solving time is plotted
against the number of occurrences within each time interval. Each data point repre-
sents 0.5 seconds and it is also notable that the y-axis uses a logarithmic scale of the
solving time. It can be seen that solving times seems to decrease at approximately
exponential rate. That is linear in the diagram as the y-axis is a logarithmic scale.
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Figure 4.4. A plot similar to a histogram showing the results of the backtrack solver
for all solved puzzles. The algorithm left 1150 unsolved (time limit was 20 seconds)
and 142 with unstable measured solving times out of all 49151 puzzles. Note that
the y-axis is a logarithmic scale of the solving times. The confidence level for the
measured solving times was 95% at an interval of 0.05 seconds.

The performance can also be displayed by plotting the indices of the puzzles
sorted according to solution time against their solution times, as in figure 4.3, show-
ing the corresponding result for the rule-based solver. As observable in figure 4.5,
the solving times increase in a similar fashion to the rule-based solver. Note that
figure 4.3 uses a logarithmic scale while this figure (figure 4.5) does not. The solv-
ing times are higher though, and the increase is not as abrupt as for the rule-based
algorithm. It can also be observed that some solving times reach the time limit of
20 seconds. This probably means that the solving times would have continued to
increase for the last 1150 unsolved puzzles. In the case of extrapolation, the time it
would take to solve the last puzzle would be very large since the slope is very large
at the last solved puzzles. As this is a deterministic algorithm, there is a limit on
the solving time of a puzzle, but since it remains unknown, it is impossible to know
what the solving times of the last puzzles would be. There has however been no
reason identified to believe that the limit is close to 20 seconds.
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Figure 4.5. The backtrack algorithm’s puzzles plotted against their solving times.
The x-axis is the indices of the puzzles when sorted according to solving times. Note
that this plot is different from figure 4.3 as this plot have a linear y-axis. The plot
shows the distribution of the solved puzzles with stable measurements of their running
times. There where 49151 puzzles in total tested and 1150 of those were unsolved
(time limit was 20 seconds) and 142 of those had unstable measurements of their
solving times. The confidence level for the measured solving times was 95% at an
interval of 0.05 seconds.

From figure 4.4 and figure 4.5 it is deemed likely that the solution times are
exponentially distributed since both of those figures hinted that the probability of
finding puzzles with increased solving times decreased exponentially. As figure 4.6
shows this is not the case. The figure instead shows that the distribution for the
backtrack algorithm’s solving times seems to have a higher concavity than the fitted
exponential distribution have.
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Figure 4.6. The distribution of the backtrack algorithm’s solving times as a proba-
bility intensity function plotted together with a fitted exponential distribution. The
fitted exponential distribution was obtained by using the reciprocal of the mean value
of the solving times for the backtrack algorithm as λ (which is the parameter used in
the exponential distribution). The 1150 unsolved puzzles and the 142 puzzles with
unstable measurement out of the 49151 puzzles was left out of this computation.
The confidence level for the measured solving times was 95 % at an interval of 0.05
seconds.

4.1.3 Boltzmann machine solver

The Boltzmann machine solver did not perform as well as the other algorithms and
therefore required to be tested on puzzles with 46 clues, in order to have reason-
able execution times. Two different parameter settings were tested and the results
demonstrates some important differences in solving capabilities. All results share
the time limit of 20 seconds, with worse results or unstable measurements not shown.

Figure 4.7 shows all resulting execution times, belonging to a 95% confidence
interval of 1 second, when using a fast decline in temperature. The solved puzzles
represent 98.5% of all tested puzzles, with no measurements being unstable. These
values were produced using a temperature decline constant of Kt = −3.5 ∗ 10−5.

Figure 4.8 show the corresponding histogram for a temperature constant of
Kt = −2.5 ∗ 10−5. The resulting distribution is slightly shifted to higher solving
times, indicating that less puzzles are solved at a lower temperature. A total of
97.5% of all puzzles were solved. This slower temperature decline resulted in 2%
unstable measurements, which is an increase over the faster version.

Given the requirement of a less strict confidence interval, due to higher variance
within estimates of single puzzles, there is a higher margin of error in the results.
Inspection of the two different distributions indicates that all solved puzzles are
completed within their respective small intervals, with further conclusions being
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Figure 4.7. Histogram showing distribution of Boltzmann machine results running
on 400 puzzles with 46 clues using a fast decline in temperature. All results belong to
a 95% confidence interval of 1 second. The image only contains puzzles being solved
under the 20 second limit, which were 98.5% of all tested puzzles.

limited by the margin of error.
A strong reason for the big representation of solutions clustered at a low tem-

perature is the general layout of a Boltzmann solver. Given that solutions are more
likely to be observed at lower temperatures, as explained in the background section,
it is expected to have more solutions at the end of the spectrum. For example
by studying the fast solver it is observable that the average value of 8 seconds is
equivalent to a temperature of about 0.5%. This leads to a conclusion of this be-
ing a critical temperature for solutions to stabilize. After the intervals of critical
temperatures there were no puzzles being solved within the limit of 20 seconds.
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Figure 4.8. Histogram showing distribution of Boltzmann machine results running
on 400 puzzles with 46 clues using a slow decline in temperature. All results belong to
a 95% confidence interval of 1 second. The image only contains puzzles being solved
under the 20 second limit, which were 97.5% of all tested puzzles. Another 2% were
unstable measurements.

4.2 Comparison

As the reader have already seen in section 4.1 the algorithms performance rela-
tive to each other seems quite clear. The rule-based algorithm performed best, the
backtrack algorithm was next and the Boltzmann machine performed worst. It
is however still interesting to see plots of the differences between the algorithms.
Figure 4.9 is one such plot which in this case shows the difference between the
backtrack algorithm and the rule-based algorithm. The differences in solving time
are sorted and plotted with the sorted differences indices as the x-axis. Note also
that the y-axis is a logaritmic scale of the solving time differences. This also means
that zero and negative numbers are not included, which in turn means that it is
not possible to see puzzles where backtrack performed better than the rule-based
algorithm. The backtrack did however perform better than the rule-based algorithm
at 2324 puzzles. This is interesting since it means that the rule-based algorithm is
spending time on checking logic rules which will not be of any use. The reason why
this can be concluded is because the rule-based and backtracking algorithm are in
fact implemented as the same algorithm, with the only difference being that the
rule-based algorithm uses two additional rules in addition to guessing. Since the
guessing is equally implemented for both, the only way the rule-based algorithm

25



CHAPTER 4. ANALYSIS

can be slower is by checking rules in situations where they cannot be applied.

Figure 4.9. Plot of the difference for each puzzle that was solved by both the
backtrack algorithm and the rule-based algorithm. Since the rule-based algorithm
solved all puzzles with no unstable measurement, it was the backtrack algorithm that
limited the puzzles used in this plot. The backtrack algorithm did not solve 1150
puzzles and had 142 unstable measurements. Both algorithm was tested on a total of
49151 puzzles with a measurement of their solving time with a confidence interval of
0.05 seconds to the confidence level of 95%. The difference is the backtrack algorithm’s
solving time minus the rule-based algorithm’s solving time. Note also that negative
numbers are not included since it is a logaritmic scale.

Even if figure 4.9 is quite clear on the matter, a statistical test shall be performed
to determine that the rule-based algorithm is indeed better than the backtrack
algorithm. If this is performed with the proposed method in section 3.4.1, namely
Wilcoxons sign test, a confidence level is obtained. This confidence level is much
higher than 99.9% and it can therefore be concluded that the rule-based solver, with
certainty, is better than the backtrack algorithm, as expected. Another interesting
aspect of figure 4.9 is that some puzzles that are very difficult for the backtrack
algorithm are easy for the rule-based algorithm. This means that the rule-based
algorithm makes use of the naked tuple rule. This can be deduced from the fact
that the naked single rule is implicitly applied by the backtrack algorithm because
of the way it chooses which square to guess at (it chooses the square with least
candidates and in the case of a naked single there is only one candidate).

To sum up all the solving algorithms, a figure with all the algorithms plotted
alongside each other would be usefull. This is, however, not as easy as it sounds
as the algorithms have dramatic differences in solving time distributions. By dis-
playing the solving times as cumulative distribution functions, this can however be
done, see figure 4.10. Note that the x-axis is logarithmic as the rulebased algorithm
plot would otherwise not be observable. In figure 4.10 the three algorithms includ-
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ing the two variations of the boltzmann machine are plotted. The plots are colored
red, blue, black and magenta for boltzmann machine with slow temperature de-
cline, boltzmann machine with fast temperature decline, backtrack algorithm and
rulebased algorithm respectively. This figure is however not very useful when it
comes to quantitatively comparing the algorithms, mainly because the algorithms
were measured on different puzzles, with different number of unstable measurements
and unsolved puzzles. To add to that, the confidence intervals of the solving times
also varied. This figure is however useful in getting an overview of the algorithms.
Before the figures comparative properties are totally dismissed, it shall however be
mentioned that the backtrack algorithm and the rulebased algorithm may be com-
pared using this figure as they were tested under similar circumstances. This figure
for instance shows that the backtrack algorithm is more likely to solve puzzles very
fast, that is in less than 0.01 seconds, compared to the rulebased solver. Apart from
that it also shows what has already been observed regarding deviations in solving
times.

Figure 4.10. The plot shows cumulative probability functions of the three algo-
rithms studied, including the two variations of the boltzmann machine. The red line
is the boltzmann machine with fast declining temperature and the blue line is the
boltzmann machine with slow temperature decline. The black and magenta line is the
backtracking algorithm and rulebased algorithm respectively. The reader shall note
that the x-axis is a logarithmic scale of the solving times. It shall also be noted that
the boltzmann machine was executed on different puzzles and that all algorithms had
different amounts of puzzles which were unsolved or with unstable measurements. The
confidence interval for solving times also varied between the algorithms. Primarily
this graph is included in order to provide an overview of the algorithms performances,
without any specific details or conclusions being drawn.
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4.3 Puzzle difficulty
Both the backtrack solver and the rule-based solver were executed on the same set
of puzzles. One interesting aspect to study is to see if some of those puzzles are
difficult for both algorithms or if they are independent when it comes to which
puzzles they perform well at. Even if the rule-based solver uses backtrack search
as a last resort it is not clear if the most difficult puzzles correlate between the
two algorithms. The reason for this is because a puzzle can be very hard for the
backtrack algorithm, but still trivial for the rule-based solver. This has to do with
the naked tuple rule in the rule-based solver that quickly can reduce the number of
candidates in each square.

To test for independence the statistical method described in section 3.4.1 is used.
The measurements shows that about 20% of the worst 10% puzzles are common for
both algorithms. This means that some puzzles are inherently difficult regardless
of which of the two algorithms are used. If that would not have been the case only
10% of the worst puzzles for one algorithm shall have been among the 10% worst
puzzles for the other algorithm. The statistical test also confirms this with a high
confidence level, higher than 99.9%.

While there is interest to correlate results of the Boltzmann machine solver
with others, there are difficulties with doing this. Considering the large variance in
running time for individual puzzles there is little room for statistical significance in
the results.

4.4 Generation and parallelization
As already mentioned, no tests were performed to measure the algorithms puzzle
generating abilities or their improvement when parallelized. Those are however
qualities that will be discussed purely theoretically.

4.4.1 Generation

When generating puzzle it is required that the generated puzzle is valid and has
a unique solution. Puzzles with multiple solutions are often disregarded as Su-
doku puzzles and are also unpractical for human solvers, since some values must be
guessed during the solving process in order to complete the puzzle. The generation
process can be implemented multiple ways, but since this thesis is about Sudoku
solving algorithms only this viewpoint is presented. The way puzzles are generated
is by randomly inserting numbers into an empty Sudoku board and then trying to
solve the puzzle. If successful the puzzle is valid and it is then checked for unique-
ness. Both the rule-based solver and backtrack solver can do this by backtracking
even thought a solution was found. In practice this means that they can search
the whole search tree to guarantee that all possible solutions were considered. The
rule-based solver does this much faster since it can apply logical rules to rule out
some part of the search tree. Stochastic algorithms such as the Boltzmann machine
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solver can not do this as easily and are therefore not considered suitable for gener-
ation. If the Boltzmann machine is used for checking validity and backtracking is
used for checking uniqueness, the result would be that backtracking would have to
exhaust all possible solutions anyway and no improvement would be made. Another
problem with generation using a Boltzmann machine solver is that it can not know
if it is ever going to find a solution. The solver might therefore end up in a situation
where it can not proceed, but where a solution for the puzzle still exists. If the
solver was allowed to continue it will eventually find the solution, but as the solver
will have to have a limit to function practically it is not suitable for generation. As
described the Boltzmann machine uses puzzles generated from already existing puz-
zles. Empty squares in a valid puzzle is filled in by the correct numbers by looking
at the solution of the puzzle that have been obtained previously with any algorithm.
This is a kind of generation even if it is not generally considered as generation. It
is however applicable to generating easier puzzles from a difficult puzzle.

4.4.2 Parallelization

The discussion about parallelization of the studied algorithms is of interest mainly
because it has applications in similar problems. There are mainly two ways when
it comes to parallelizing Sudoku solving algorithms. The first and most obvious
one is to solve multiple puzzles in parallel. That is however not parallelizing of
the algorithms themselves and will therefore not be discussed. The other form of
parallelizing is separating the algorithms into parts, which are then run in parallel
and combined to form the result. This might be easy to do for some algorithms, but
the separation into subproblems is not necessarily something that can be done for
all algorithms. All the algorithms in this study does however have some possibilities
when it comes to parallelizing them. The rule-based algorithm could for instance
check multiple rules for multiple regions at once. This is not problematic since the
result can easily be combined by applying the results of all rules on the original
puzzle. Every region and every rule can be evaluated by a separate thread, with
some exceptions. If more advanced rules are used they may require the whole puzzle
instead of just one region. Either way, it is likely that there is more than enough
separation to perform parallelization at the required level.

The backtracking algorithm may be parallelized by separating the search tree
and searching each branch in parallel. Then the results can be combined since only
one branch can succeed if the puzzle is unique and valid. Depending on the branch-
ing factor in the puzzle it might not always be easy to parallelize the algorithm. It
might provide significant benefit to choose a square with the number of candidates
wanted to get enough parts for parallelization.

The Boltzmann machine can also be run in parallel to some extent. On a high
level the solving process goes through all nodes and updates their respective states.
This is done sequentially since the network is fully connected. By splitting up
updating of individual neurons it is possible to have constant number of actions
being performed in parallel. Typically these operations are additions of conflicting

29



CHAPTER 4. ANALYSIS

node offsets and are calculated by traversing the whole Sudoku grid.
The conclusion that can be drawn from this is that all algorithms in this thesis

may effectively be parallelized with more or less effort. All the algorithms can
furthermore be parallelized without adding any considerable overhead.
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Chapter 5

Conclusion

Three different Sudoku solvers have been studied; backtrack search, rule-based
solver and Boltzmann machines. All solvers were tested with statistically signif-
icant results being produced. They have shown to be dissimilar to each other in
terms of performance and general behavior.

Backtrack search and rule-based solvers are deterministic and form execution
time distributions that are precise with relatively low variance. Their execution
time was also shown to have rather low variance when sampling the same puzzle
repeatedly, which is believed to result from the highly deterministic behavior. Com-
paring the two algorithms leads to the conclusion that rule-based performs better
overall. There were some exceptions at certain puzzles, but overall solution times
were significantly lower.

The Boltzmann machine solver was not capable of solving harder puzzles with
less clues within a reasonable time frame. A suitable number of clues was found
to be 46 with a 20 second execution time limit, resulting in vastly worse general
capabilities than the other solvers. Due to stochastic behavior, which is a central
part of the Boltzmann solver, there was a relatively large variance when sampling
the execution time of a single puzzle. Another important aspect of the Boltzmann is
the method of temperature descent, in this case selected to be simulated annealing
with a single descent. This affected the resulting distribution times in a way that
makes the probability of puzzles being solved under a certain critical temperature
limit high. The critical temperature was found to be about 0.5% of the starting
temperature, with no puzzles being solved after this interval.

Additionally two different methods of temperature descent were studied. The
results demonstrates that a slower descent solves more puzzles, even though the
execution times are clustered closer to the 20 second execution limit.

All results indicate that deterministic solvers based on a set of rules perform well
and are capable of solving Sudokus with a low amount of clues. Boltzmann machines
were found to be relatively complex and requires implementation of temperature
descent and adjustment of parameters.

With regards to parallelization it is possible to implement to a varying extent in
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all algorithms. The most obvious way of solving several different puzzles in parallel
has been used in the test framework. Parallel solving of individual puzzles requires
extensive analysis of individual algorithms, but both backtrack and rule-based have
shown to inhibit parallelizable properties. Boltzmann machines can be made parallel
on a more fine grain level but are somewhat limited due to synchronous updates of
node states.

Deterministic algorithms such as backtrack and rule-based have been discussed
in the context of puzzle generation, and are considered to perform well. This follows
by their search structure which can guarantee a unique solution, in opposite of
the general stochastic behavior of Boltzmann machines, that only gives very weak
guarantees.

Future work includes studying the behavior of Boltzmann machines in relation
to the final distribution of execution times. The large variance and stochastic be-
havior most likely demands a study with access to large amounts of computational
power. It is also interesting to study the influence of different temperature descent
methods used in Boltzmann machines, with restarting being a suitable alternative
to endlessly decreasing temperatures. The rule-based algorithm may be studied
in more detail by adding additional rules and also varying the order in which the
rules are applied. The backtrack algorithm may similarly be studied in more de-
tail by adding additional variations to it, which primarily includes how it chooses
which square to start each search tree with. Overall there is room for larger studies
with more algorithms utilizing the same statistical approach that was taken in this
report.
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Appendix A

Source code

All source code used in the project is included below. Requests for archives can be
made over email. All files are released with the GNU GPLv2 license.

A.1 Test Framework

A.1.1 TestFramework.cpp

#include <algorithm>
#include <cmath>
#include <ctime>
#include <fstream>
#include <iostream>

#include " TestFramework . h "
#include " Randomizer . h "

/∗∗
∗ Setups a t e s t framework wi th f i l e paths .
∗ @param puzz l ePath Path to p u z z l e s .
∗ @param matlabPath Path f o r matlab output .
∗/

TestFramework : : TestFramework ( std : : s t r i n g puzzlePath , std : : s t r i n g matlabPath ) : o f (matlabPath )
{

this−>puzzlePath = puzzlePath ;
}

/∗∗
∗ Destruc tor t h a t c l o s e s the a s s o c i a t e d output f i l e .
∗/

TestFramework : : ~ TestFramework ( )
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{
o f . c l o s e ( ) ;

}

/∗∗
∗ Reads a l l p u z z l e s a s s o c i a t e d wi th a g iven s o l v e r .
∗ @param s o l v e r So l v e r to be used .
∗/

void TestFramework : : r eadPuzz le s ( SudokuSolver ∗ s o l v e r )
{

puzz l e s . c l e a r ( ) ;
this−>puzzlePath = puzzlePath ;
std : : i f s t r e am input ( puzzlePath , std : : i f s t r e am : : in ) ;
s td : : vector<std : : s t r i ng> l i n e s ;

s td : : s t r i n g l i n e ;
while ( std : : g e t l i n e ( input , l i n e ) ) {

std : : s t r i n g so lved ;
std : : g e t l i n e ( input , so lved ) ;

i f ( so lve r−>reducedComplexity ( ) ) {
Randomizer r ;
r . r e f e r e n c e ( so lved , l i n e ) ;
r . setMutationRate ( so lve r−>puzzleComplexity ( ) ) ;
for ( int i = 0 ; i < so lve r−>puzz l eFactor ( ) ; i++) {

l i n e s . push_back ( r . generateCandidate ( ) ) ;
}

}
else {

l i n e s . push_back ( l i n e ) ;
}

}

std : : vector<std : : s t r i ng >: : i t e r a t o r i t ;
for ( i t = l i n e s . begin ( ) ; i t != l i n e s . end ( ) ; i t++) {

grid_t puzz l e ;
for ( int i = 0 ; i < 81 ; i++) {

puzz l e . g r i d [ i / 9 ] [ i %9] = (∗ i t ) [ i ] − ’ 0 ’ ;
}
puzz l e s . push_back ( puzz l e ) ;

}
}

/∗∗
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∗ Adds a s o l v e r f o r f u t u r e t e s t i n g .
∗ @param s o l v e r So l v e r to be added .
∗/

void TestFramework : : addSolver ( SudokuSolver ∗ s o l v e r )
{

s o l v e r s . push_back ( s o l v e r ) ;
}

/∗∗
∗ Runs a l l t e s t s .
∗ @return A l l time measurements .
∗/

std : : vector<resu l t_t> TestFramework : : runTests ( )
{

std : : vector<resu l t_t> r e s u l t s ;
s td : : vector<SudokuSolver ∗>:: i t e r a t o r i t S o l v e r = s o l v e r s . begin ( ) ;

for ( ; i t S o l v e r != s o l v e r s . end ( ) ; i t S o l v e r++) {
re su l t_t r e s ;
r e s . a lgor i thm = (∗ i t S o l v e r )−>getName ( ) ;
r e s . unstableCount = re s . unsolvedCount = 0 ;
o f << re s . a lgor i thm << " ␣=␣ [ " ;

r eadPuzz le s (∗ i t S o l v e r ) ;
s td : : vector<grid_t >: : i t e r a t o r i tPuz z l e = puzz l e s . begin ( ) ;

for ( ; i tPuz z l e != puzz l e s . end ( ) ; i tPuz z l e++) {
f loat r e s u l t = runSampledSolver (∗ i t S o l v e r , ∗ i tPuz z l e ) ;
r e s . timeStamps . push_back ( r e s u l t ) ;
o f << re s . timeStamps . back ( ) << " ␣ " ;
o f . f l u s h ( ) ;
i f ( r e s u l t < 0) {

std : : c e r r << "Warning : ␣ Inva l i d ␣measurement␣with␣ s o l v e r : ␣ "
<< re s . a lgor i thm << " , ␣ code : ␣ " << r e s u l t << std : : endl ;

i f ( r e s u l t == UNSTABLE_MEASUREMENT) {
r e s . unstableCount++;

}
else {

r e s . unsolvedCount++;
}

}
}

o f << " ] ; \ n " ;
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r e s . avg = sampledAverage ( r e s . timeStamps ) ;
std : : c e r r << " Unstable ␣measurements : ␣ "

<< re s . unstableCount
<< " , ␣Unsolved␣ puzz l e s : ␣ " << re s . unsolvedCount
<< " , ␣ t o t a l : ␣ " << puzz l e s . s i z e ( ) << std : : endl ;

}

return ( r e s u l t s ) ;
}

/∗∗
∗ So l v e s a g iven p u z z l e r e p e a t e d l y and re turns an average .
∗ @param s o l v e r So l v e r to be used .
∗ @param p u z z l e Puzz l e to be s o l v e d .
∗ @return Average running time .
∗/

f loat TestFramework : : runSampledSolver ( SudokuSolver ∗ so lve r , gr id_t puzz l e )
{

std : : vector<f loat> samples ;
long measurement ;

for (measurement = 1 ; measurement <= MAX_TRIES; measurement++) {
std : : cout << "Running␣measurement␣#" << measurement << std : : endl ;
f loat runtime ;
so lve r−>addPuzzle ( puzz l e ) ;

c lock_t r e f e r e n c e = c lo ck ( ) ;
bool r e t = so lve r−>runStep ( c l o ck ()+CLOCKS_PER_SEC∗MAX_EXECUTION_TIME) ;

i f ( ! r e t ) {
return (NO_SOLUTION_FOUND) ;

}

runtime = ( c l o ck ( ) − r e f e r e n c e )/ ( f loat )CLOCKS_PER_SEC;
samples . push_back ( runtime ) ;

f loat avg = sampledAverage ( samples ) ;
i f ( boots t rap ( samples , CONFIDENCE) && measurement >= MIN_MEASUREMENT) {

return ( avg ) ;
}

}

return (UNSTABLE_MEASUREMENT) ;
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}

bool compareFloat ( const f loat a , const f loat b)
{

return ( a < b ) ;
}

/∗∗
∗ P e r c e n t i l e boo t s t r ap implementat ion .
∗ See : www. p u b l i c . i a s t a t e . edu/~vardeman/ s ta t511 / Boo t s t r apPercen t i l e . pd f
∗ @param data Values to be used in c a l c u l a t i o n .
∗ @param conf idence Confidence l e v e l used in e s t imat ion .
∗ @return Boolean i n d i c a t i n g boos t rap succe s s .
∗/

bool TestFramework : : boots t rap ( std : : vector<f loat> data , f loat con f idence )
{

i f ( data . s i z e ( ) <= 1) {
return ( fa l se ) ;

}

std : : s o r t ( data . begin ( ) , data . end ( ) , compareFloat ) ;

f loat inv = 1 − con f idence ;
f loat f i r s t P e r c e n t i l e = ( inv / 2)∗ ( data . s i z e ( ) − 1 ) ;
f loat s e condPe r c en t i l e = ((1 − inv / 2 ) )∗ ( data . s i z e ( ) − 1 ) ;

i f ( data [ round ( s e condPe r c en t i l e ) ] − data [ round ( f i r s t P e r c e n t i l e ) ]
<= BOOTSTRAP_INTERVAL) {

return ( true ) ;
}

return ( fa l se ) ;
}

/∗∗
∗ C a l c u l a t e s sampled standard d e v i a t i o n .
∗ @param data Samples to be used .
∗ @param avg Average va lue o f samples .
∗ @return standard d e v i a t i o n .
∗/

f loat TestFramework : : sampledStdDeviat ion ( const std : : vector<f loat> & data , f loat avg )
{

std : : vector<f loat >:: c on s t_ i t e r a to r i t ;
f loat var iance = 0 ;
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for ( i t = data . begin ( ) ; i t != data . end ( ) ; i t++) {
var iance += pow(∗ i t − avg , 2 ) ;

}

i f ( data . s i z e ( ) > 1) {
var iance /= data . s i z e ( ) − 1 ;

}
else {

var iance = 0 ;
}

return ( s q r t ( var iance ) ) ;
}

/∗∗
∗ C a l c u l a t e s average o f a l l p o s i t i v e i tems .
∗ @param data Samples to be used in c a l c u l a t i o n .
∗ @return Average o f samples .
∗/

f loat TestFramework : : sampledAverage ( const std : : vector<f loat> & data )
{

std : : vector<f loat >:: c on s t_ i t e r a to r i t ;
s td : : vector<f loat> f i l t e r e d ;
f loat avg = 0 .0 f ;

i f ( data . s i z e ( ) == 0) {
return ( 0 ) ;

}

for ( i t = data . begin ( ) ; i t != data . end ( ) ; i t++) {
i f (∗ i t >= 0) {

f i l t e r e d . push_back (∗ i t ) ;
}

}

for ( i t = f i l t e r e d . begin ( ) ; i t != f i l t e r e d . end ( ) ; i t++) {
avg += ∗ i t / f i l t e r e d . s i z e ( ) ;

}

return ( avg ) ;
}

A.1.2 TestFramework.h
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#ifndef TESTFRAMEWORK_H_
#define TESTFRAMEWORK_H_

#include <fstream>
#include <st r ing>
#include <vector>

#include " SudokuSolver . h "

const long MAX_TRIES = 100 ;
const long MIN_MEASUREMENT = 4 ;
const f loat STD_DEVIATION_LIMIT = 0.1 f ;
const clock_t MAX_EXECUTION_TIME = 20 ;
const f loat UNSTABLE_MEASUREMENT = −1;
const f loat NO_SOLUTION_FOUND = −2;
const f loat CONFIDENCE = 0 . 9 5 ;
const f loat BOOTSTRAP_INTERVAL = 1.0 f ;

/∗∗
∗ St ruc tu re d e s c r i b i n g r e s u l t s f o r a s i n g l e s o l v e r .
∗/

typedef struct
{

std : : s t r i n g a lgor i thm ;
f loat avg ;
unsigned int unstableCount , unsolvedCount ;
std : : vector<f loat> timeStamps ;

} r e su l t_t ;

/∗∗
∗ Test framework wi th f u n c t i o n a l i t y f o r measuring Sudoku s o l v i n g performance .
∗/

class TestFramework
{

public :
TestFramework ( std : : s t r i n g puzzlePath , std : : s t r i n g matlabPath ) ;
~TestFramework ( ) ;
void addSolver ( SudokuSolver ∗ s o l v e r ) ;
s td : : vector<resu l t_t> runTests ( ) ;

private :
void readPuzz le s ( SudokuSolver ∗ s o l v e r ) ;
f loat runSampledSolver ( SudokuSolver ∗ so lve r , gr id_t puzz l e ) ;
f loat sampledStdDeviat ion ( const std : : vector<f loat> & data , f loat avg ) ;
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f loat sampledAverage ( const std : : vector<f loat> & data ) ;
bool boots t rap ( std : : vector<f loat> data , f loat con f idence ) ;

s td : : vector<SudokuSolver∗> so l v e r s ;
s td : : vector<grid_t> puzz l e s ;
s td : : s t r i n g puzzlePath ;
std : : o f s tream of ;

} ;

#endif

A.1.3 SodukuSolver.cpp

#include <iostream>
#include <s t r i n g . h>
#include " SudokuSolver . h "

/∗∗
∗ Counts the number o f row and columns c o n f l i c t s .
∗ @param gr i d Grid to be used .
∗ @return Number o f c o n f l i c t s .
∗/

unsigned int SudokuSolver : : countRowColumnConflicts ( const grid_t & gr id )
{

// s t d : : cout << " countRowColumnConflicts ( ) \n " ;
unsigned int c o n f l i c t s = 0 ;

for ( int i = 0 ; i < 9 ; i++) {
uint8_t used [ 2 ] [ 9 ] ;
memset(&used [ 0 ] , 0 , 9 ) ;
memset(&used [ 1 ] , 0 , 9 ) ;

for ( int j = 0 ; j < 9 ; j++) {
i f ( used [ 0 ] [ g r i d . g r id [ j ] [ i ] − 1 ] ) {

return ( 1 ) ;
c o n f l i c t s++;

}
else {

used [ 0 ] [ g r i d . g r id [ j ] [ i ] − 1 ] = 1 ;
}

i f ( used [ 1 ] [ g r i d . g r id [ i ] [ j ] − 1 ] ) {
return ( 1 ) ;
c o n f l i c t s++;
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}
else {

used [ 1 ] [ g r i d . g r id [ i ] [ j ] − 1 ] = 1 ;
}

}
}

return ( c o n f l i c t s ) ;
}

/∗∗
∗ Counts the number o f sub−square c o n f l i c t s .
∗ @param gr i d Grid to be used .
∗ @return Number o f c o n f l i c t s .
∗/

unsigned int SudokuSolver : : countSubSquareConf l i c t s ( const grid_t & gr id )
{

// s t d : : cout << " countSubSquareConf l i c t s ( ) \n " ;
unsigned int c o n f l i c t s = 0 ;

for ( int square = 0 ; square < 9 ; square++) {
uint8_t used [ 9 ] ;
memset ( used , 0 , 9 ) ;

for ( int i = 0 ; i < 9 ; i++) {
int x = ( i % 3) + ( ( square ∗ 3) % 9 ) ;
int y = ( i / 3) + ( ( square / 3) ∗ 3 ) ;

i f ( used [ g r id . g r id [ x ] [ y ] − 1 ] ) {
c o n f l i c t s++;

}
else {

used [ g r id . g r id [ x ] [ y ] − 1 ] = 1 ;
}

}
}

return ( c o n f l i c t s ) ;
}

/∗∗
∗ Checks i f g r i d i s a v a l i d s o l u t i o n .
∗ @param gr i d Grid to be used .
∗ @return True i f a v a l i d Sudoku .
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∗/
bool SudokuSolver : : i sVa l i dSo l u t i o n ( const grid_t & gr id )
{

int a , b ;
return ( ! countRowColumnConflicts ( g r id ) && ! countSubSquareConf l i c t s ( g r id ) ) ;

}

A.1.4 SodukuSolver.h

#ifndef SUDOKUSOLVER_H_
#define SUDOKUSOLVER_H_

#include <ctime>
#include <cstd in t>
#include <st r ing>

typedef struct
{

uint8_t g r id [ 9 ] [ 9 ] ;
} gr id_t ;

/∗∗
∗ Parent c l a s s f o r sudoku s o l v e r s .
∗/

class SudokuSolver
{

public :
virtual ~SudokuSolver ( ) {}
virtual void addPuzzle ( gr id_t puzz l e ) = 0 ;
virtual grid_t getGrid ( ) = 0 ;
virtual std : : s t r i n g getName ( ) = 0 ;
virtual bool runStep ( c lock_t l a s tC lo ck ) = 0 ;
bool i sVa l i dSo l u t i on ( const grid_t & gr id ) ;
virtual bool reducedComplexity ( ) { return ( fa l se ) ; }
virtual int puzzleComplexity ( ) { return ( 0 ) ; }
virtual int puzz l eFactor ( ) { return ( 0 ) ; }

protected :
unsigned int countRowColumnConflicts ( const grid_t & gr id ) ;
unsigned int countSubSquareConf l i c t s ( const grid_t & gr id ) ;

} ;

#endif
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A.1.5 Randomizer.cpp

#include " Randomizer . h "

/∗∗
∗ Se t s the r e f e r ence p u z z l e s o l u t i o n and a reduced p u z z l e .
∗ @param s o l v e d So lu t i on to p u z z l e .
∗ @param reduced Actual p u z z l e .
∗/

void Randomizer : : r e f e r e n c e ( std : : s t r i n g so lved , std : : s t r i n g reduced )
{

this−>so lved = so lved ;
this−>reduced = reduced ;

}

/∗∗
∗ Se t s the number o f c l u e s to be withdrawn from the complete s o l u t i o n .
∗ @param ra t e Number o f c lues , i n v e r t e d .
∗/

void Randomizer : : setMutationRate ( int r a t e )
{

this−>rate = ra t e ;
}

/∗∗
∗ Generates a s i n g l e p u z z l e .
∗ @return New p u z z l e .
∗/

std : : s t r i n g Randomizer : : generateCandidate ( )
{

std : : s t r i n g candidate = so lved ;

for ( int i = 0 ; i < ra t e ; i++) {
int pos ;
do {

pos = rand ( ) % candidate . s i z e ( ) ;
} while ( candidate [ pos ] == ’ 0 ’ | | reduced [ pos ] != ’ 0 ’ ) ;

candidate [ pos ] = ’ 0 ’ ;
}

return ( candidate ) ;
}
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A.1.6 Randomizer.h

#ifndef RANDOMIZER_H_
#define RANDOMIZER_H_

#include <st r ing>

/∗∗
∗ Randomizer p rov ide s f u n c t i o n a l i t y f o r randomly genera t ing Sudokus .
∗/

class Randomizer
{

public :
Randomizer ( ) {} ;
void r e f e r e n c e ( std : : s t r i n g so lved , std : : s t r i n g reduced ) ;
void setMutationRate ( int r a t e ) ;
s td : : s t r i n g generateCandidate ( ) ;

private :
s td : : s t r i n g so lved , reduced ;
int r a t e ;

} ;

#endif

A.2 Boltzmann machine

A.2.1 Boltzmann.cpp

#include " Boltzmann . h "
#include <cmath>
#include <cs td l i b >
#include <iostream>

/∗∗
∗ Resets the curren t s t a t e .
∗/

Boltzmann : : Boltzmann ( )
{

r e s e t ( ) ;
}

/∗∗
∗ Randomizes the RNG and performs a r e s e t .
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∗/
void Boltzmann : : r e s e t ( )
{

srand ( time ( 0 ) ) ;
temperature = MAX_TEMPERATURE;
g r id . c l e a r ( ) ;

}

/∗∗
∗ Adds a p u z z l e to be s o l v e d .
∗ @puzz le Puzz l e to be s o l v e d .
∗/

void Boltzmann : : addPuzzle ( gr id_t puzz l e )
{

r e s e t ( ) ;
for ( int i = 0 ; i < 9 ; i++) {

group_t row ;
for ( int j = 0 ; j < 9 ; j++) {

i f ( puzz l e . g r i d [ i ] [ j ] == 0) {
row . push_back ( Square ( ) ) ;

}
else {

row . push_back ( Square ( puzz l e . g r i d [ i ] [ j ] ) ) ;
}

}
g r id . push_back ( row ) ;

}
}

/∗∗
∗ Returns the curren t g r i d .
∗ @return Current g r i d .
∗/

grid_t Boltzmann : : getGrid ( )
{

grid_t g ;
inte rna l_gr id_t : : i t e r a t o r rowIt ;
for ( rowIt = gr id . begin ( ) ; rowIt != gr id . end ( ) ; rowIt++) {

group_t : : i t e r a t o r squa r e I t ;
for ( squa r e I t = rowIt−>begin ( ) ; s qua r e I t != rowIt−>end ( ) ; s qua r e I t++) {

int f i r s t = std : : d i s t anc e ( g r id . begin ( ) , rowIt ) ;
int second = std : : d i s t anc e ( rowIt−>begin ( ) , s qua r e I t ) ;
g . g r i d [ f i r s t ] [ second ] = square I t−>bestMatch ( ) + 1 ;

}
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}

return ( g ) ;
}

void Boltzmann : : pr intGr id ( gr id_t g )
{

for ( int i = 0 ; i < 9 ; i++) {
for ( int j = 0 ; j < 9 ; j++) {

std : : cout << (char ) ( g . g r id [ i ] [ j ] + ’ 0 ’ ) << " ␣ " ;
}
std : : cout << std : : endl ;

}
}

/∗∗
∗ Runs u n t i l a g i ven dead l i ne .
∗ @param endTime c l o c k ( ) dead l i ne .
∗ @return True on s o l v i n g succe s s .
∗/

bool Boltzmann : : runStep ( c lock_t endTime )
{

unsigned long i t e r a t i o n = 0 ;
do {

inte rna l_gr id_t : : i t e r a t o r rowIt ;
for ( rowIt = gr id . begin ( ) ; rowIt != gr id . end ( ) ; rowIt++) {

group_t : : i t e r a t o r squa r e I t ;
for ( squa r e I t = rowIt−>begin ( ) ; s qua r e I t != rowIt−>end ( ) ; s qua r e I t++) {

i f ( ! square I t−>isReso lved ( ) ) {
updateNode ( rowIt , s qua r e I t ) ;

}
}

}

i f ( i sVa l i dSo l u t i on ( getGrid ( ) ) ) {
return ( true ) ;

}

i t e r a t i o n++;
temperature = std : : max( ( f loat ) (MAX_TEMPERATURE∗exp (dTEMPERATURE∗ i t e r a t i o n ) ) , MIN_TEMPERATURE) ;

} while ( c l o ck ( ) < endTime ) ;

return ( fa l se ) ;
}
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/∗∗
∗ Updates a s i n g l e g r i d node .
∗ @param row Current row .
∗ @param square Current g r i d node .
∗ @return True on succe s s .
∗/

bool Boltzmann : : updateNode ( inte rna l_gr id_t : : i t e r a t o r row ,
group_t : : i t e r a t o r square )

{
std : : vector<int> d i g i t s (9 , 0 ) ;

//Check row
group_t : : i t e r a t o r rowIt = row−>begin ( ) ;
for ( ; rowIt != row−>end ( ) ; rowIt++) {

i f ( rowIt != square ) {
rowIt−>sum( d i g i t s ) ;

}
}

//Check column , doesn ’ t count the r e f e r ence square .
in te rna l_gr id_t : : i t e r a t o r c o l I t = gr id . begin ( ) ;
int pos = square − row−>begin ( ) ;
for ( ; c o l I t != gr id . end ( ) ; c o l I t++) {

i f ( c o l I t−>begin ( ) + pos != square ) {
c o l I t−>at ( pos ) . sum( d i g i t s ) ;

}
}

//Check quadrant
d i g i t s = checkQuadrant ( d i g i t s , row , square ) ;

//Update curren t f a i l u r e o f f s e t and s t a t e
return ( square−>update ( d i g i t s , temperature ) ) ;

}

/∗∗
∗ Checks a s i n g l e quadrant f o r c o n f l i c t s .
∗ @param d i g i t s Current accumulator o f d i g i t s o f f s e t s .
∗ @param row Current row .
∗ @param square Current g r i d node .
∗ @return Updated accumulator wi th added o f f s e t s .
∗/

std : : vector<int> Boltzmann : : checkQuadrant ( std : : vector<int> d i g i t s ,
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in te rna l_gr id_t : : i t e r a t o r row , group_t : : i t e r a t o r square )
{

inte rna l_gr id_t : : d i f f e r ence_type f i r s tX , f i r s tY ;

f i r s tX = ( std : : d i s t anc e ( row−>begin ( ) , square ) / 3) ∗ 3 ;
f i r s tY = ( std : : d i s t anc e ( g r id . begin ( ) , row ) / 3) ∗ 3 ;

row = gr id . begin ( ) + f i r s tY ;

for ( int i = 0 ; i < 3 ; i++, row++) {
square = row−>begin ( ) + f i r s tX ;
for ( int j = 0 ; j < 3 ; j++, square++) {

square−>sum( d i g i t s ) ;
}

}

return ( d i g i t s ) ;
}

A.2.2 Boltzmann.h

#ifndef BOLTZMANN_H_
#define BOLTZMANN_H_

#include <vector>
#include <cstd in t>

#include " Square . h "
#include " . . / t e s t /SudokuSolver . h "

const int MAX_TEMPERATURE = 100 ; /∗ Maximum temperature ∗/
const f loat dTEMPERATURE = −0.000035; /∗ Simulated annea l ing cons tant ∗/
const f loat MIN_TEMPERATURE = 0 . 0 0 1 ; /∗ Minimum temperature ever reached ∗/
const int REDUCED_PUZZLE_RATE = 35 ; /∗ Number o f c l u e s to draw from a comp le t e l y s o l v e d p u z z l e ∗/
const int REDUCED_PUZZLE_FACTOR = 4 ; /∗ Number o f p u z z l e s to genera te from every input p u z z l e pa i r ∗/

typedef std : : vector<Square> group_t ;
typedef std : : vector<group_t> interna l_gr id_t ;

/∗
∗ Boltzmann implements the main s t r u c t u r e o f a Boltzmann machine .
∗/

class Boltzmann : public SudokuSolver
{
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public :
Boltzmann ( ) ;
void addPuzzle ( gr id_t puzz l e ) ;
gr id_t getGrid ( ) ;
s td : : s t r i n g getName ( ) { return ( " Boltzmann␣machine " ) ; }
bool runStep ( c lock_t endTime ) ;
bool reducedComplexity ( ) { return ( true ) ; }
int puzzleComplexity ( ) { return (REDUCED_PUZZLE_RATE) ; }
int puzz l eFactor ( ) { return (REDUCED_PUZZLE_FACTOR) ; }

private :
void pr intGr id ( grid_t g ) ;
void p r i n tD i g i t s ( std : : vector<int> d i g i t s ) ;
void r e s e t ( ) ;
s td : : vector<int> checkQuadrant ( std : : vector<int> d i g i t s ,

in te rna l_gr id_t : : i t e r a t o r row , group_t : : i t e r a t o r square ) ;
bool updateNode ( inte rna l_gr id_t : : i t e r a t o r row ,

group_t : : i t e r a t o r square ) ;

in te rna l_gr id_t g r id ;
f loat temperature ;

} ;

#endif

A.2.3 Square.cpp

#include <cmath>
#include <cs td l i b >
#include <iostream>

#include " Square . h "

/∗∗
∗ Assigns a l l nodes to not be used .
∗/

Square : : Square ( )
{

Node n = { false , 0} ;
for ( int i = 0 ; i < 9 ; i++) {

d i g i t s . push_back (n ) ;
}

r e s o l v ed = 0 ;
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}

/∗∗
∗ Assigns the curren t node be clamped at a g iven va lue .
∗ @param d i g i t Value to be used .
∗/

Square : : Square ( int d i g i t )
{

for ( int i = 0 ; i < 9 ; i++) {
Node n = { false , 0} ;
i f ( i == d i g i t − 1) {

n . used = true ;
}
d i g i t s . push_back (n ) ;

}

r e s o l v ed = d i g i t ;
}

/∗∗
∗ Updates the curren t node wi th the g iven f a i l u r e o f f s e t s .
∗ @param va lue s Current d i g i t v a l u e s f o r t h i s c o l l e c t i o n o f cand ida te s .
∗ @param temperature Current temperature .
∗ @return Returns t rue on succe s s .
∗/

bool Square : : update ( std : : vector<int> values , f loat temperature )
{

std : : vector<int >:: c on s t_ i t e r a to r i tVa lue s = va lue s . begin ( ) ;
s td : : vector<Node>: : i t e r a t o r itNode = d i g i t s . begin ( ) ;
bool c o n f l i c t = false , used = fa l se ;

for ( ; i tVa lue s != va lue s . end ( ) ; i tVa lue s++, itNode++) {
itNode−>o f f s e t = ∗ i tVa lue s + BIAS ;
f loat p r obab i l i t y = 1 .0 / ( 1 . 0 + exp(− itNode−>o f f s e t / temperature ) ) ;
itNode−>used = ( rand ( ) % 1000) < ( p r obab i l i t y ∗ 1000) ;

}

return ( true ) ;
}

/∗∗
∗ Adds an o f f s e t f o r every c o l l i s i o n wi th the curren t node .
∗ @param va lue s Accumulator used f o r f a i l u r e o f f s e t s .
∗/
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void Square : : sum( std : : vector<int> & va lues )
{

std : : vector<int >:: i t e r a t o r i tAcc = va lues . begin ( ) ;
s td : : vector<Node>: : c on s t_ i t e r a t o r i t S t o r ed = d i g i t s . begin ( ) ;

i f ( r e s o l v ed ) {
va lue s [ r e s o l v ed − 1 ] += COLLISION_GIVEN_OFFSET;

}

for ( ; i tAcc != va lue s . end ( ) ; i tAcc++, i t S t o r ed++) {
i f ( i tS to red−>used ) {

∗ i tAcc += COLLISION_OFFSET;
}

}
}

/∗∗
∗ Checks i f t h i s square i s r e s o l v e d to a s i n g l e d i g i t .
∗ @return True i f clamped to a s i n g l e va lue .
∗/

bool Square : : i sReso lved ( )
{

return ( r e s o l v ed != 0 ) ;
}

/∗∗
∗ Returns the b e s t matching d i g i t f o r the current square .
∗ @return Best matching d i g i t .
∗/

uint8_t Square : : bestMatch ( )
{

i f ( r e s o l v ed ) {
return ( r e s o l v ed − 1 ) ;

}
for ( int i = 0 ; i < 9 ; i++) {

i f ( d i g i t s [ i ] . used ) {
return ( i ) ;

}
}
return ( 0 ) ;

}

A.2.4 Square.h
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#ifndef SQUARE_H_
#define SQUARE_H_

#include <cstd in t>
#include <vector>

/∗ O f f s e t added to c o l l i d i n g nodes ∗/
const int COLLISION_OFFSET = −2;
/∗ O f f s e t added to c o l l i d i n g nodes i f a l r eady r e s o l v e d ∗/
const int COLLISION_GIVEN_OFFSET = −20;
/∗ Bias va lue used in o f f s e t c a l c u l a t i o n ∗/
const f loat BIAS = 3.0 f ;

/∗∗
∗ Node d e s c r i b e s a p o s s i b l e candida te f o r the curren t g r i d p o s i t i o n .
∗/

struct Node
{

bool used ;
int o f f s e t ;

} ;

/∗∗
∗ Square c l a s s d e s c r i b e s a s i n g l e Sudoku g r i d va lue .
∗/

class Square
{

public :
Square ( ) ;
Square ( int d i g i t ) ;
bool update ( std : : vector<int> values , f loat temperature ) ;
bool i sReso lved ( ) ;
void sum( std : : vector<int> & va lues ) ;
uint8_t bestMatch ( ) ;

private :
s td : : vector<Node> d i g i t s ;
uint8_t r e s o l v ed ;

} ;

#endif
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A.3 Rule-based / Backtrack
The backtracking algorithm and the rule-based algorithm uses the same implemen-
tation with one exception. When using only backtracking the whileloop in the
applyRules function in Rulebased.cpp is commented out.

A.3.1 Rulebased.cpp

#include<vector>
#include<st r ing>
#include<iostream>
#include<ctime>
#include " Rulebased . h "

using namespace std ;

/∗∗
∗ Constructor which i n i t i a l i s e s the p u z z l e wi th the
∗ g iven g r i d .
∗ @param gr i d i s the 9 by 9 p u z z l e .
∗/

Rulebased : : Rulebased ( int g r id [ 9 ] [ 9 ] ) {
board = ∗(new Board ( ) ) ;
board . setBoard ( g r id ) ;

}

/∗∗
∗ Changes the p u z z l e to the new p u z z l e g i ven .
∗ @param p u z z l e d e s c r i b e s the new p u z z l e and i s a 9 by 9 i n t arra .
∗/

void Rulebased : : addPuzzle ( gr id_t puzz l e ){
int newgrid [ 9 ] [ 9 ] ;
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
newgrid [ i ] [ j ] = puzz l e . g r i d [ i ] [ j ] ;

}
}
board = ∗(new Board ( ) ) ;
board . setBoard ( newgrid ) ;

}

/∗∗
∗ Returns the board in an u_int8 9 by 9 array ( gr id_t ) .
∗ @return the board used .
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∗/
grid_t Rulebased : : getGrid ( ){

grid_t r e tu rng r i d ;
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
r e tu rng r i d . g r id [ i ] [ j ] = ( uint8_t ) board . board [ i ] [ j ] [ 0 ] ;

}
}
return r e tu rng r i d ;

}

/∗∗
∗ Constructor o f the c l a s s Rulebased
∗ Creates a s o l v e r wi th the s p e c i f i e d p u z z l e .
∗ Note t h a t i t cop i e s the board as to avoid m u l t i p l e
∗ s o l v e r s us ing the same board .
∗ @param b i s the board the s o l v e r w i l l use .
∗/

Rulebased : : Rulebased (Board b){
board = b ;

}

/∗∗
∗ So l v e s the p u z z l e and re turns t rue i f s u c c e s f u l l .
∗ There i s a l s o a t i m e l i m i t which must be ho ld .
∗ @param the endtime which the s o l v e r must not exceed .
∗ @return t rue i f s o l v e d wi th in the t i m e l i m i t and f a l s e o the rw i s e .
∗/

bool Rulebased : : runStep ( c lock_t stoppTime ){
endTime = stoppTime ;
return s o l v e ( ) ;

}

/∗∗
∗ So l v e s the p u z z l e s t o r ed in the s o l v e r
∗ wi th in the endtime t h a t i s a l s o s t o r ed wi th in the s o l v e r .
∗ @returns t rue i f the p u z z l e was s o l v e d wi th in the s p e c i f i e d time .
∗/

bool Rulebased : : s o l v e ( ){
int s o l u t i o n s = applyRules ( ) ;
i f ( s o l u t i o n s == 0){

return fa l se ;
} else {

// board . printBoard ( "SIMPLE" ) ;
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return true ;
}
/∗
i f ( s o l u t i o n s >= 1 && board . v a l i d ( ) ){

cout <<"s o l u t i o n s : "<<s o l u t i o n s <<end l ;
board . printBoard ( ) ;
cout<<end l ;

} e l s e {
cout <<"UNSOLVED"<<end l ;

board . printBoard ( ) ;
}
∗/

}

/∗∗
∗ App l i e s the r u l e s t h a t s o l v e s the p u z z l e s .
∗ Consideres the endingt ime f o r s o l u t i o n s and re turns i f t h i s time i s exceeded .
∗ @return the number o f s o l u t i o n s
∗/

int Rulebased : : applyRules ( ){
i f ( c l o ck ()>endTime ){

return 0 ;
}

/∗
whi l e ( t rue ){

//The easy r u l e s f i r s t .
i f ( s i n g l e ( ) )

cont inue ;
i f ( naked ( ) )

cont inue ;
break ;

}
∗/

return guess ( ) ;
}

/∗
Returns 1 i f unique s o l u t i o n was found
Returns 0 i f none s o l u t i o n e x i s t s
Returns >1 i f more than one s o l u t i o n e x i s t s

∗/
int Rulebased : : guess ( ){

//Find square wi th l e a s t p o s s i b i l i t i e s
int min [ 3 ] = {100 ,0 ,0} ; // [ min , i , j ]
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for ( int i =0; i <9; i++){
for ( int j =0; j <9; j++){

i f ( board . board [ i ] [ j ] [0 ]==0 &&
min [0] > board . board [ i ] [ j ] . s i z e ( ) ) {

min [0 ]= board . board [ i ] [ j ] . s i z e ( ) ;
min [1 ]= i ; min [2 ]= j ;

}
}

}
/∗
cout <<"Minsta : s i z e : "<<min[0]<<" i : "<<min[1]<<" j : "<<min[2]<< end l ;
cout <<" P o s s i b i l i t i e s : " ;
f o r ( i n t i =0; i<board . board [ min [ 1 ] ] [ min [ 2 ] ] . s i z e ( ) ; i++){

cout<<board . board [ min [ 1 ] ] [ min [ 2 ] ] [ i ]<<" " ;
}
cout<<end l ;
board . p r i n t P o s s i b i l i t i e s ( ) ;
∗/
i f (min [0]==100){

return 1 ;
}
i f ( board . board [ min [ 1 ] ] [ min [ 2 ] ] . s i z e ()==1){

return 0 ;
}
vector<Board> cor r e c tGues s e s ;
for ( int g_index=1;g_index<

board . board [ min [ 1 ] ] [ min [ 2 ] ] . s i z e ( ) ; g_index++){

int g = board . board [ min [ 1 ] ] [ min [ 2 ] ] [ g_index ] ;
// cout<<endl <<"Guess"<<g<<end l ;
Board tmp ;
tmp . operator=(board ) ;
vector<int> ∗ tmpvector = &tmp . board [ min [ 1 ] ] [ min [ 2 ] ] ;
//tmp . p r i n t P o s s i b i l i t i e s ( ) ;
(∗ tmpvector ) [ 0 ] = g ;
//tmp . p r i n t P o s s i b i l i t i e s ( ) ;
(∗ tmpvector ) . e r a s e ( (∗ tmpvector ) . begin ()+1 ,(∗ tmpvector ) . end ( ) ) ;
// cout <<"be f o r e and a f t e r remove"<<end l ;
//tmp . p r i n t P o s s i b i l i t i e s ( ) ;
// cout<<end l ;
tmp . remove (min [ 1 ] , min [ 2 ] ) ;
//tmp . p r i n t P o s s i b i l i t i e s ( ) ;
Rulebased s o l v e r (tmp ) ;
s o l v e r . setTime ( endTime ) ;
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int ok = so l v e r . applyRules ( ) ;
i f ( ok>0){

co r r e c tGues s e s . push_back ( s o l v e r . getBoard ( ) ) ;
break ; //Break i f m u l t i p l e s o l u t i o n s i s u n i n t r e s t i n g

}
}
i f ( co r r e c tGues s e s . s i z e ()==0){

return 0 ;
} else {

board . operator=(cor r e c tGues s e s [ 0 ] ) ;
return co r r e c tGues s e s . s i z e ( ) ;

}

}

/∗∗
∗ App l i e s the r u l e f o r s i n g l e Candidate .
∗ This means t h a t t h e r e i s a s i n g l e candida te in a square
∗ and t h i s candida te i s t h e r e f o r e as s i gned to t h a t square .
∗ @return t rue i f the r u l e was a p p l y a b l e .
∗/

bool Rulebased : : s i n g l e ( ){
bool match = fa l se ;
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
vector<int> ∗ square = &(board . board [ i ] [ j ] ) ;
i f ( (∗ square ) . s i z e ()==2){

// cout <<"S i n g l e match at : "<<i <<" "<<j<<end l ;
match = true ;
int tmp = (∗ square ) [ 1 ] ;
(∗ square ) . c l e a r ( ) ;
(∗ square ) . push_back (tmp ) ;
//remove from squares wi th common l ine , column , box
board . remove ( i , j ) ;

}
}

}
return match ;

}

/∗∗
∗ App l i e s the r u l e o f hidden and naked pairs , t r i p l e s and up to o c t u p l e s .
∗ Note t h a t naked and hidden t u p l e s are the same r u l e but in r e v e r s e .
∗ This means t h a t i f t h e r e i s a s e t o f squares t h a t t o g e t h e r form
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∗ a hidden t u p l e than the o ther squares in t h a t reg ion i s a naked t u p l e .
∗ Therefore , one only needs to check f o r naked t u p l e s .
∗ @return t rue i f the r u l e was a p p l y a b l e .
∗/

bool Rulebased : : naked ( ){
bool match = fa l se ;
for ( int i =0; i <27; i++){

// cout <<"i : "<<i<<end l ;
i f ( naked ( board . r e g i on s [ i ] ) ) {

match = true ;
}

}
return match ;

}

/∗∗
∗ App l i e s the r u l e o f naked/ hidden t u p l e s to a s p e c i f i c reg ion .
∗ @param reg ion i s an 9 array o f p o i n t e r s to vec tor <int >
∗ @return t rue i f the r u l e was a p p l y a b l e f o r the s p e c i f i c reg ion .
∗/

bool Rulebased : : naked ( vector<int> ∗ r eg i on [ ] ) {
bool match = fa l se ;
vector<int> n ;
for ( int i =0; i <9; i++){

i f ( (∗ r eg i on [ i ] ) [ 0 ] == 0){
n . push_back ( i ) ;

}
}
//Loop through naked pair , t r i p l e , quadrup le
// This a l s o i n c l u d e s hidden s i n g l e , pair , t r i p l e , quad . . .
for ( int r=2; r<=8;r++){

vector< vector<int> > comb = findCombinations (n , r , 0 ) ;
for ( int c=0;c<comb . s i z e ( ) ; c++){

bool numbers [ 9 ] ;
for ( int t=0; t <9; t++){

numbers [ t ]= fa l se ;
}
for ( int i =0; i<comb [ c ] . s i z e ( ) ; i++){

// cout<<comb [ c ] [ i ] ;
int s qua r e i = comb [ c ] [ i ] ;
for ( int j =1; j <(∗ r eg i on [ s qua r e i ] ) . s i z e ( ) ; j++){

// cout <<"("<<(∗ reg ion [ s quare i ] ) [ j ] < <")";
numbers [ ( ∗ r eg i on [ s qua r e i ] ) [ j ]−1]=true ;

}
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}
// cout <<" " ;
for ( int t=0; t <9; t++){

// cout<<numbers [ t ]<<" " ;
}
// cout<<end l ;
int count=0;
for ( int t=0; t <9; t++){

i f ( numbers [ t ] ) { count++;}
}
i f ( count<=r ){

//Found naked pair , t r i p l e . . .
//But i t may have a l r eady been found p r e v i o u s l y
// so match i s not s e t to t rue

// cout <<"Found : "<<comb [ c ][0] < <" "<<comb [ c ][1]<< end l ;
for ( int i =0; i <9; i++){

// Search i f i i s conta ined in found pair , t r i p l e . . .
bool sk ip = fa l se ;
for ( int t=0; t<comb [ c ] . s i z e ( ) ; t++){

i f (comb [ c ] [ t ]== i ){
sk ip = true ;
break ;

}
}
i f ( sk ip ){

continue ;
}
for ( int j =1; j <(∗ r eg i on [ i ] ) . s i z e ( ) ; j++){

i f ( numbers [ ( ∗ r eg i on [ i ] ) [ j ]−1]){
(∗ r eg i on [ i ] ) . e r a s e (

(∗ r eg i on [ i ] ) . begin ()+ j ) ;
j−−; // compensate f o r removal
// Something changed so match i s t rue
match = true ;

}
}

}
}

}
}
return match ;

}
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/∗∗
∗ Finds a l l combinat ions from an i n t v ec t o r con ta in ing r numbers and
∗ beg inn ing wi th a number wi th l e a s t index i .
∗ The method f i n d s the combinat ions by r e c u r s i v e l y c a l l i n g i t s e l f
∗ and changing i and r . The combinat ions are then concatenated in to an
∗ vec t o r c o n s i s t i n g o f the combinat ions which are o f the type vec tor <int >.
∗ @param n i s the vec to r from which the numbers in the combination w i l l
∗ come from .
∗ @param r i s the number o f numbers t h a t s h a l l be p icked fron n .
∗ @param i i s the l e a s t index a number can have . i=0 means t h a t any
∗ number cou ld be p icked .
∗ @return vector < vector <int > > which conta ins r−s i z e d v e c t o r s in a vec to r
∗ con ta in ing a l l p o s s i b l e combinat ions found .
∗/

vector< vector<int> > Rulebased : : f indCombinat ions (
vector<int> n , int r , int i ){

i f ( r==0){
vector< vector<int> > x ;
x . push_back ( vector<int >()) ;
return x ;

}
else i f ( i>=n . s i z e ( ) ) {

return vector< vector<int> >() ;
}
vector< vector<int> > combinat ions ;
vector< vector<int> > a ;
vector< vector<int> > b ;
a = findCombinat ions (n , r−1, i +1);
for ( int t=0; t<a . s i z e ( ) ; t++){

a [ t ] . push_back (n [ i ] ) ;
combinat ions . push_back ( a [ t ] ) ;

}

b = findCombinations (n , r , i +1);
for ( int t=0; t<b . s i z e ( ) ; t++){

combinat ions . push_back (b [ t ] ) ;
}
return combinat ions ;

}

A.3.2 Rulebased.h

#ifndef RULEBASED_H_
#define RULEBASED_H_
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#include " Board . h "
#include " . . / . . / t e s t /SudokuSolver . h "

class Rulebased : public SudokuSolver {
private :

c lock_t endTime ;
Board board ;
vector< vector<int> > findCombinations ( vector<int> n , int r , int i ) ;

public :
Rulebased ( ) { } ;
Rulebased ( int [ ] [ 9 ] ) ;
Rulebased (Board ) ;
void addPuzzle ( gr id_t ) ;
gr id_t getGrid ( ) ;
s t r i n g getName ( ){ return " RuleBasedSolver " ; }
Board getBoard ( ){ return board ; }
bool runStep ( c lock_t ) ;
void printBoard ( ){ board . pr intBoard ( "SIMPLE" ) ; }
void pr intReg ions ( ) ;
bool s o l v e ( ) ;
bool naked ( ) ;
bool naked ( vector<int> ∗ [ ] ) ;
bool s i n g l e ( ) ;
int guess ( ) ;
int applyRules ( ) ;
void setTime ( clock_t newTime){ endTime = newTime ; }

} ;

#endif

A.3.3 Board.cpp

#include " Board . h "
#include <iostream>
using namespace std ;

/∗∗
∗ Prin t s a l l p o s s i b i l i t i e s f o r a l l s quares in the p u z z l e .
∗ The f i r s t number i s the as s i gned number f o r t h a t square which
∗ cou ld e i t h e r have been ass i gned by a r u l e / guess or by the d e f a u l t p u z z l e .
∗/
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void Board : : p r i n t P o s s i b i l i t i e s ( ){
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
cout<<" [ " ;
for ( int k=0;k<board [ i ] [ j ] . s i z e ( ) ; k++){

cout<<board [ i ] [ j ] [ k ] ;
}
cout<<" ] , ␣ " ;

}
cout<<endl ;

}
}

/∗∗
∗ Used f o r t e s t i n g . Behaves the same
∗ as p r i n t P o s s i b i l i t i e s ( ) as long as reg i ons i s i n i t i a l i z e d c o r r e c t l y
∗/

void Board : : p r i n t P o s s i b i l i t i e s 1 ( ){
cout<<" pr in t ␣ from␣ r eg i on s "<<endl ;
for ( int s=0; s <3; s++){
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
cout<<" [ " ;
for ( int k=0;k<(∗ r e g i on s [ i+s ∗ 9 ] [ j ] ) . s i z e ( ) ; k++){

cout<<(∗ r e g i on s [ i+s ∗ 9 ] [ j ] ) [ k ] ;
}
cout<<" ] , ␣ " ;

}
cout<<endl ;

}
cout<<endl ;
}
cout<<" end␣ pr in t ␣ from␣ r eg i on s "<<endl ;

}

/∗∗
∗ Prin t s the board in a normal 9 by 9 g r i d
∗/

void Board : : pr intBoard ( ){
printBoard ( "NORMAL" ) ;

}

/∗∗
∗ Prin t s the board in e i t h e r a normal f a sh i on wi th
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∗ a 9 by 9 g r i d or in a s imple f a sh i on wi th on ly one l i n e wi th 81 charac t e r s .
∗ @param s t r "NORMAL" r e s u l t s in normal p r i n t i n g
∗ and s imple r e s u l t s in s imple one−l i n e p r i n t i n g .
∗/

void Board : : pr intBoard ( s t r i n g s t r ){
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
cout<<board [ i ] [ j ] [ 0 ] ;

}
i f ( s t r == "NORMAL" )

cout<<endl ;
}
i f ( s t r == "SIMPLE" )

cout<<endl ;
}

/∗∗
∗ p r i n t a l l r e g i ons . rows , columns and boxes .
∗ used to t e s t t h a t those are c o r r e c t l y i n i t i a l i z e d .
∗/

void Board : : pr intReg ions ( ){
cout<<"−−BOXES−−␣−−ROWS−−−␣−COLUMNS−"<<endl ;
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
cout<< (∗ boxes [ i ] [ j ] ) [ 0 ] ;

}
cout<<" ␣ " ;
for ( int j =0; j <9; j++){

cout<< (∗ rows [ i ] [ j ] ) [ 0 ] ;
}
cout<<" ␣ " ;
for ( int j =0; j <9; j++){

cout<< (∗ columns [ i ] [ j ] ) [ 0 ] ;
}
cout << endl ;

}
cout << endl << "−REGIONS−"<<endl ;
for ( int i =0; i <27; i++){

for ( int j =0; j <9; j++){
cout << (∗ r e g i on s [ i ] [ j ] ) [ 0 ] ;

}
cout << endl ;
i f ( ( i+1)%9==0 && i >0)

cout << endl ;
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}
}

/∗∗
∗ Check i f the board i s v a l i d and completed ( s o l v e d ) .
∗ @return t rue i f comp l e t e l y s o l v e d and f a l s e o the rw i s e
∗/

bool Board : : v a l i d ( ){
a n a l y s e P o s s i b i l i t i e s ( ) ;
for ( int i =0; i <27; i++){

bool numbers [ 9 ] ;
for ( int t=0; t <9; t++){

numbers [ t ]= fa l se ;
}
for ( int j =0; j <9; j++){

i f ( (∗ r e g i on s [ i ] [ j ] ) [0 ]==0){
return fa l se ;

} else i f ( numbers [ ( ∗ r e g i on s [ i ] [ j ] ) [ 0 ] − 1 ] ) {
return fa l se ;

} else {
numbers [ ( ∗ r e g i on s [ i ] [ j ] ) [ 0 ] −1 ]= true ;

}
}

}
return true ;

}

/∗∗
∗ Resets a l l p o s s i b i l i t i e s and r e c r e a t e s those
∗ from the c o n s t r a i n t s in the p u z z l e . The p o s s i b i l i t i e s
∗ are s t o r ed as v e c t o r s from index 1 in the board array .
∗ A square which cou ld be e i t h e r a 1 or 3 w i l l t h e r e f o r e have
∗ the vec t o r {0 ,1 ,3} as s i gned to i t . The 0 i s because the
∗ square have not ye t been ass i gned any number .
∗/

void Board : : a n a l y s e P o s s i b i l i t i e s ( ){
// Erase o ld data
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
int temp = board [ i ] [ j ] [ 0 ] ;
board [ i ] [ j ] . c l e a r ( ) ;
board [ i ] [ j ] . push_back ( temp ) ;
for ( int x=1;x<=9;x++){

board [ i ] [ j ] . push_back (x ) ;
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}
}

}
//Remove from p o s s i b i l i t y v e c t o r s
for ( int i =0; i <27; i++){

for ( int j =0; j <9; j++){
int nr = (∗ r e g i on s [ i ] [ j ] ) [ 0 ] ;
i f ( nr==0){

continue ;
}
(∗ r e g i on s [ i ] [ j ])= vector<int >();
(∗ r e g i on s [ i ] [ j ] ) . push_back ( nr ) ;
for ( int k=0;k<9;k++){

i f ( k==j ){
continue ;

}
for ( int l =1; l <(∗ r e g i on s [ i ] [ k ] ) . s i z e ( ) ; l++){

vector<int> ∗ square = r eg i on s [ i ] [ k ] ;
i f ( (∗ square ) [ l ]==nr ){

(∗ square ) . e r a s e ( (∗ square ) . begin ()+ l ) ;
break ;

}
}

}
}

}
}

/∗∗
∗ Overloads = opera tor . This has to be done
∗ due to the use o f r e f e r e n c e s in reg ions , rows , columns and boxes .
∗ The d i f f e r e n c e i s t h a t the r e f e r e n c e s w i l l not be copied but ra the r
∗ r ea s s i gned to the new board crea t ed .
∗ @param b i s the Board which i s cop ied .
∗ @return the board t h a t was wr i t t en to .
∗∗/

Board Board : : operator= (Board b){
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
(∗ this ) . board [ i ] [ j ] = b . board [ i ] [ j ] ;

}
}
(∗ this ) . c r e a t eRe f e r enc e s ( ) ;
/∗
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cout <<" t h i s : "<<th i s <<end l ;
cout <<"b : "<<&b<<end l ;
∗/
return ∗ this ;

}

/∗∗
∗ Used to c r ea t e p o i n t e r s to the v e c t o r s in board .
∗ Those p o i n t e r s are s t o r ed in the arrays rows , columns , boxes and reg ions .
∗/

void Board : : c r e a t eRe f e r enc e s ( ){
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
rows [ i ] [ j ] = &board [ i ] [ j ] ;
columns [ j ] [ i ] = &board [ i ] [ j ] ;
r e g i on s [ i ] [ j ] = &board [ i ] [ j ] ;
r e g i on s [ j +9] [ i ] = &board [ i ] [ j ] ;
// cout <<"i : "<<i <<" j : "<<j <<" adress : "<<&board [ i ] [ j ]<<end l ;

}
}
for ( int b=0;b<9;b++){

for ( int i =0; i <3; i++){
for ( int j =0; j <3; j++){

int i s h i f t = 3∗(b /3 ) ;
int j s h i f t = 3∗(b%3);
boxes [ b ] [ i ∗3+ j ] = &board [ i+i s h i f t ] [ j+j s h i f t ] ;
r e g i on s [ b+18] [ i ∗3+ j ] = boxes [ b ] [ i ∗3+ j ] ;

}
}

}
}

/∗∗
∗ Set the board to the s p e c i f i e d g r i d .
∗ The p o i n t e r s from reg ions i s a l s o changed .
∗ @param gr i d i s a 9 by 9 g r i d which d e s c r i b e s a p u z z l e g r i d .
∗/

void Board : : setBoard ( int g r id [ 9 ] [ 9 ] ) {
for ( int i =0; i <9; i++){

for ( int j =0; j <9; j++){
board [ i ] [ j ] = vector<int >();
board [ i ] [ j ] . push_back ( g r id [ i ] [ j ] ) ;

}
}
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c r e a t eRe f e r enc e s ( ) ;
a n a l y s e P o s s i b i l i t i e s ( ) ;

/∗
f o r ( i n t i =0; i <9; i++){

f o r ( i n t j =0; j <9; j++){
i f (&board [ i ] [ j ] != reg ions [ i ] [ j ] ) {

cout<<i <<" "<<j <<" KAOS"<<end l ;
}
i f (&board [ i ] [ j ] != reg ions [ j +9][ i ] ) {

cout<<i <<" "<<j <<" KAOS2"<<end l ;
}
i f (&board [ i ] [ j ] != reg ions [18+3∗( i /3)+ j / 3 ] [ 3 ∗ ( i%3)+j %3]){

cout<<i <<" "<<j <<" KAOS3"<<end l ;
}

}
}
∗/
/∗
pr in tReg ions ( ) ;
cout << end l ;
printBoard ( ) ;
cout<<end l ;
p r i n t P o s s i b i l i t i e s ( ) ;
∗/

}

/∗∗
∗ Removes a l l cand ida te s in the same
∗ row , column and box as the s p e c i f i e d square .
∗ @param i i s the y−koord ina te o f the square .
∗ @param j i s the x−koord ina te o f the square .
∗/

void Board : : remove ( int i , int j ){
// cout <<"Remove : "<<i <<" "<<j<<end l ;
// p r i n t P o s s i b i l i t i e s ( ) ; cout<<end l ;
// p r i n t P o s s i b i l i t i e s 1 ( ) ; cout<<end l ;
remove ( r e g i on s [ i ] , board [ i ] [ j ] [ 0 ] ) ;
remove ( r e g i on s [ j +9] , board [ i ] [ j ] [ 0 ] ) ;
remove ( r e g i on s [18+3∗( i /3)+( j / 3 ) ] , board [ i ] [ j ] [ 0 ] ) ;

}

/∗∗
∗ Removes a l l occurences o f a number in a array o f i n t v e c t o r s .
∗ Only numbers at an index h i gher than 0 i s removed .
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∗ Used to remove p o s s i b i l i t i e s from p o s s i b i l i t y v e c t o r s f o r each square .
∗ Since the p o s s i b i l i t i e s are de s c r i b ed by the numbers on index 1 and forward
∗ only those numbers are cons idered .
∗ @param reg ion i s an array c o n s i s t i n g o f 9 p o i n t e r s to vec tor <int >
∗ @param nr i s the numbered to be removed i f found .
∗/

void Board : : remove ( vector<int> ∗ r eg i on [ ] , int nr ){
for ( int i =0; i <9; i++){

// cout <<" "<<(∗ reg ion [ i ] ) [ 0 ] < <" [ " ;
for ( int j =1; j <(∗ r eg i on [ i ] ) . s i z e ( ) ; j++){

// cout <<(∗reg ion [ i ] ) [ j ] ;
i f ( (∗ r eg i on [ i ] ) [ j ]==nr ){

// cout <<"∗";
(∗ r eg i on [ i ] ) . e r a s e ( (∗ r eg i on [ i ] ) . begin ()+ j ) ;
/∗ cout <<"(";
f o r ( i n t t =0; t <(∗ reg ion [ i ] ) . s i z e ( ) ; t++){

cout <<(∗reg ion [ i ] ) [ t ] ;
}
∗/
// cout <<")";
break ;

}
}
// cout <<"] " ;

}
// cout<<end l ;

}

A.3.4 Board.h

#ifndef BOARD_H_

#define BOARD_H_
#include<st r ing>
#include<vector>
using namespace std ;
class Board{

public :
vector<int> board [ 9 ] [ 9 ] ;
vector<int> ∗ rows [ 9 ] [ 9 ] ;
vector<int> ∗ columns [ 9 ] [ 9 ] ;
vector<int> ∗ boxes [ 9 ] [ 9 ] ;
vector<int> ∗ r e g i on s [ 2 7 ] [ 9 ] ;
void a n a l y s e P o s s i b i l i t i e s ( ) ;
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void setBoard ( int [ ] [ 9 ] ) ;
void printBoard ( ) ;
void printBoard ( s t r i n g ) ;
void pr intReg ions ( ) ;
void p r i n t P o s s i b i l i t i e s ( ) ;
void p r i n t P o s s i b i l i t i e s 1 ( ) ;
void remove ( int , int ) ;
bool va l i d ( ) ;
Board operator= (Board b ) ;

private :
void c r e a t eRe f e r enc e s ( ) ;
void remove ( vector<int> ∗ [ ] , int ) ;

} ;

#endif
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