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ABSTRACT

GRAIL  and LOOM, two terminological knowledge representation systems, are compared both
qualitatively and quantitatively. The objective is to achieve a better understanding of GRAIL

and its relation to other KL-ONE languages, to empirically compare the performance of the
two terminological classifiers, and to contrast GRAIL ’s custom design with LOOM’s general
purpose design.

GRAIL  has been specially developed to represent knowledge about medical terminology; it
has some powerful and original features but a restricted terminological language. LOOM has
been designed to satisfy a wide range of knowledge representation requirements by
combining a highly expressive terminological language with an efficient classifier.

The quantitative comparison tests scaleability by measuring the rate of performance
degradation with increasing knowledge base size. A large GRAIL  knowledge base (2,000
concepts) from a real application (the GALEN project) was used for the experiment and
translated into LOOM for the purpose. Both systems performed well in view of the tractability
problems associated with KL-ONE languages and showed no sign of an exponential explosion
in classification time.

The qualitative comparison is based on a set theoretic account of the semantics of the two
languages and on the experience of attempting to translate a GRAIL  knowledge base into
LOOM. Although LOOM’s terminological expressiveness allows it to represent concepts which
are difficult or impossible to represent in GRAIL , it proved impossible to satisfactorily
translate GRAIL ’s special features into LOOM. However, a detailed study of GRAIL  revealed
some serious problems with the classifier which, in its current form, is shown to be both
incomplete and unsound.
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CHAPTER 1 INTRODUCTION

1.1 The purpose of this thesis

As part of the European GALEN1  project, researchers in Manchester University’s Medical
Informatics Group are building a large concept model representing knowledge about medical
terminology. GRAIL2 , a terminological knowledge representation system (TKRS) in the KL-
ONE tradition, has been developed specifically for the task of building the concept model.
This thesis compares GRAIL  with LOOM, a state of the art general purpose TKRS with the
aim of:

• better understanding GRAIL ’s semantics and expressive power through a formal
comparison using set theoretic interpretations;

• comparing scaleability by measuring the rate of performance degradation with increasing
knowledge base size;

• evaluating both systems with particular reference to their ability to satisfy the
requirements of the medical terminology application;

• enhancing GRAIL ’s future development through the detailed study of an alternative
system.

This chapter describes the motivation for GRAIL ’s development, explains why LOOM was
chosen for the comparison and details the bases of the comparison. After a brief note on
nomenclature the chapter concludes with an outline of the remainder of the thesis.

1.2 Motivation for the development of GRAIL

The development of GRAIL  [GBS+94], and its predecessor SMK3  [NR91], has been
motivated by the requirements of two medical informatics research projects: PEN&PAD

[NRK+90] which is developing clinical information systems with predictive data entry and
GALEN which “aims to develop language independent concept representation systems as the
foundations for the next generation of multilingual coding systems” [RNG93]. Both projects
make use of knowledge about medical terminology represented in the GRAIL  concept model.

The GALEN project uses the concept model and GRAIL  classifier to drive a networked
terminology server (TeS) [RSNR94]. It is intended that such servers will facilitate the
integration of medical informatics applications and the sharing of medical data by providing
sophisticated terminology and coding services. PEN&PAD’s design incorporates an advanced
user interface which uses knowledge from the model to predict what extra detail a clinician
might want to add to a concept description.

                                               
1 Generalised Architecture for Languages Encyclopaedias and Nomenclatures in Medicine.
2 The GALEN Representation And Integration Language.
3 Structured Meta Knowledge.
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1.3 Why use a Terminological Knowledge Representation System?

The requirement for a standard coding system for medical data has long been recognised and
attempts to solve the problem using enumerative coding schemes4  date back over 200 years
[Now93]. The size, complexity and diversity of medicine make the development of a
comprehensive system a difficult and probably infeasible task – increasing expressiveness
causes a combinatorial explosion in the number of codes needed [RNG93]. Table 1.1 shows
how adding information about location, degree, aetiology and cause increases the number of
codes required to represent a burn from 1 to 12,000.

Table 1.1 – Combinatorial explosion in static coding schemes
Description Additional Detail Number of Codes

Burn none 1

Burn+Location ≈200 anatomical locations 200 × 1 =      200

Burn+Location+Degree 4 degrees – 1st/2nd/3rd/not-known 4 × 200 =      800

Burn+Location+Degree
  +Aetiology

3 aetiologies – chemical/thermal/
  not-known

3 × 800 =   2,400

Burn+Location+Degree
  +Aetiology+Cause

5 (say) causes – home/work/
  traffic-accident/other/not-known

5 × 2,400 = 12,000

Multiaxial schemes allow terms from a number of broad axes, such as topography,
morphology and aetiology, to be combined to form complex codes. While representing an
advance over simple enumerative schemes multiaxial systems still impose a rigid structure,
have limited expressiveness, and rely on enumeration within the axes. Multiaxial systems
also introduce new problems of their own including vague semantics and the possibility of
creating nonsensical terms [Now93].

The GALEN project aims to improve on static and multiaxial coding schemes by using the
GRAIL  TKRS to build a concept model of medical terminology. TKRSs are designed to
support “ the definition of complex concepts and the discovery of their interrelationships”
[BMPSR91]. The features of TKRSs directly address many of the problems associated with
static and multiaxial coding schemes:

• unlimited expressiveness – there are no pre-defined axes and concepts can be combined
and specialised in an arbitrary manner and to an arbitrary extent;

• unambiguous semantics – the relations between concepts and the meaning of complex
terms have a clearly defined “criterial semantics”  [WS92];

• facilitates extension and maintenance – automatic classification, inheritance and the
detection of inconsistencies aid knowledge acquisition.

TKRSs have also been shown to be useful in the integration of heterogeneous databases
[NSA+94] and in knowledge sharing [PFPS+92]. Database integration is important given the
number of different coding schemes already in use; sharing and re-usability are central to the
aims of the GALEN project.

                                               
4 Schemes which list medical concepts and assign each concept a unique code.
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1.4 Why compare GRAIL  with another TKRS?

A wide range of TKRSs, based on the KL-ONE paradigm [BS85], have now been developed
by research groups in America and Europe. These include BACK [Pel91], CLASSIC [PS91],
CycL [LG91], K-Rep [MDW91], KRIS [BH91], LOOM [Mac91b] and SB-ONE [Kob91]. The
range of systems now available has been said to make it “ reasonable to build upon an existing
terminological system instead of building one from scratch”  [HKNP94].

GRAIL  is a special purpose system tailored to the requirements of a specific application.
Comparing GRAIL  with a modern general purpose TKRS is intended to show whether
GRAIL ’s custom design offers significant advantages in meeting the application requirements.
It is also hoped that a more formal analysis of GRAIL ’s semantics and a better understanding
of another TKRS will prove useful in GRAIL ’s future development.

1.4.1 Why compare GRAIL  with LOOM?

LOOM was chosen for the comparison due to its combination of expressiveness and efficiency
[HKNP94]. The power and flexibility of LOOM’s terminological language made it likely to
provide a stringent and revealing test for GRAIL . The efficiency of LOOM’s classifier would
also provide an interesting comparison. If LOOM is unable to satisfy GRAIL ’s design goals it
is unlikely that this could be achieved by less expressive and less efficient systems.

LOOM has the added advantage of being a relatively mature system with an established user
base. LOOM is made available to approved researchers via an ftp site and the LOOM

development team provide technical support via a mailing list; the mailing list also acts as a
forum for the LOOM user community to exchange ideas and information.

1.5 The bases of comparison.

The two systems are compared both qualitatively and quantitatively on the basis of their
features, the performance of their classifiers and their ability to satisfy the requirements of
the medical terminology application.

1.5.1 Features

The features and expressive capabilities of the two languages are compared by giving a
formal account of their semantics using a slightly extended version of the terminological
logic proposed by Baader et al. [BHH+91]. An informal extensional semantics is also
provided based on the operational descriptions in the LOOM Reference Manual [Bri93].

1.5.2 Performance

Theoretical complexity analyses of subsumption and classification have produced
discouraging results [LB85], [Neb88], [PS89], [SS89]. Nebel has shown that even the least
expressive languages must have worst case complexity which is at least co-NP-complete
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[Neb90]. Fortunately Nebel goes on to observe that the pathological cases which give rise to
these results are rarely encountered in applications.

This thesis empirically compares the performances of GRAIL  and LOOM using a large
knowledge base from a real application – the CORE5  model from the GALEN project
[RGG+94]. The CORE model consists of 2,128 concepts and 416 relations providing basic
terms and definitions intended to act as a foundation for the extension and expansion of the
medical terminology knowledge base. The scaleability of performance is measured by
gradually increasing the size of the knowledge base up to a maximum of 3,987 concepts6 .

1.5.3 Satisfying the application requirements

The capabilities of the two systems are examined, with particular reference to the
requirements of the medical terminology server application, in order to ascertain:

• if a highly expressive system like LOOM can emulate those features of GRAIL  designed to
meet specific application requirements;

• if LOOM’s extra expressiveness is applicable to types of knowledge known to be difficult
to represent using GRAIL ;

• how easy they are to use and what tools are provided to help with knowledge acquisition;

• how stable, robust and reliable they are.

1.6 A note on nomenclature

There is an unfortunate degree of confusion and disagreement surrounding the vocabulary
used to talk about TKRSs. In particular the terms relation, role and attribute have been given
a number of different interpretations. To promote clarity a brief interpretation is given here
and used consistently throughout regardless of the system being discussed:

concept an intensional description which represents a set of objects in the domain.

For example: Person or Female.

individual a unique object in the domain7 .

For example: John or Mary .

relation an intensional description which represents a set of binary tuples relating pairs of
objects in the domain8 .

For example: has-child or is-sibling-of.

                                               
5 COmmon REference model.
6 This figure has no special significance – sections 4.4.2 and 4.4.3 explain how it comes about.
7 It may be more accurate to consider individuals as representing disjoint sets of objects in the domain
[BPS94].
8 LOOM is capable of supporting n-ary relations.



15

instance an individual member of a concept or relation’s extension.

For example: Mary  is an instance of both Person and Female; (Mary,  John) is an
instance of has-child.

role a concept forming expression which involves a relation.

For example: (some has-child Person) forms a concept which represents the set of
objects which are related to an instance of Person via the has-child relation.

filler the filler of a role is an object in the domain which is a value of a role. Range
restricted roles can only be filled by instances of the range restricting concept;
unrestricted roles can be filled with arbitrary objects (such as atoms, lists or
numbers) which may or may not be instances of some concept.

For example: John is a filler of the role has-child on Mary.

attribute a role which must have exactly 1 filler.

For example: (Person ∧  (has-spouse Person)) might be used as the definition of a
concept called Married-Person. All instances of Married-Person must be instances
of Person and must be related to exactly one other instance of Person via the has-
spouse attribute9 .

criterion the GRAIL  name for a role or attribute. Criteria constructed from many valued
relations are equivalent to roles while those constructed from single valued
relations are equivalent to attributes.

For example: <has-child Person> ≡ (some has-child Person);
<has-spouse Person> ≡ (has-spouse Person).

1.7 Outline of the remainder of this thesis

Chapter 2 describes the rationale behind the design of GRAIL  and explains how its features
were determined by the application requirements.

Chapter 3 compares the terminological services provided by the two systems through a
formal analysis of their semantics.

Chapter 4 describes the translation of the CORE model into LOOM and the design of the
performance comparison experiments.

Chapter 5 presents and analyses the results of the performance comparison experiments.

Chapter 6 compares the two systems and assesses their performance in meeting the design
goals set by the medical terminology application.

Chapter 7 is the discussion and conclusions – it summarises what has been learned and
suggests directions for future work.

                                               
9 Internally LOOM translates attributes into roles, adding a cardinality restriction of exactly 1.
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CHAPTER 2 THE DESIGN OF GRAIL

This chapter briefly describes the rationale behind the design of SMK and GRAIL  and
explains how their features were determined by the requirements of the terminology server
application. A detailed study of the work which led to the identification of these requirements
is beyond the scope of this thesis; the interested reader is referred to [Now93].

2.1 GRAIL  design goals and solutions

GRAIL  has been designed as a tool for a single specific task: to build a concept model of
medical terminology10  which can be used in both the PEN&PAD and GALEN projects. The
primary requirements for the model are that it should be reusable and extensible while still
being computationally tractable.

2.1.1 Concept only terminological model

Brachman has stated that a key element in the design of a terminological knowledge base is
determining the correct type (concept, relation or individual) for objects in the domain
[BMPSR91]. GRAIL  aims to promote re-usability by providing terminological services at the
concept and relation level. Implementors are free to make their own design decisions – based
on the requirements of a particular application – about the level of detail which is appropriate
for individuals. By using the concept model as a classification schema applications can be
independently developed while still guaranteeing data interoperability.

2.1.2 Restricted expressiveness

Brachman and Levesque have shown that there is a “ fundamental trade-off”  between
expressiveness and computational tractability in knowledge representation [LB85]. TKRSs
are no exception to this rule – Brachman and Levesque go on to demonstrate that even a very
small increase in the expressive power of a terminological language can drastically affect
tractability11 .

If GRAIL  is to meet the requirements of the GALEN project it will have to be capable of
supporting a very large knowledge base and classifying new concepts in real time.
Computational tractability is therefore of crucial importance and in order to minimise the
complexity of classification, the expressiveness of GRAIL ’s concept and relation forming
operators is severely restricted – the constructs supported are intended to be just those which
are necessary for the modelling of medical terminology [RNK92].

                                               
10 GRAIL  may be a useful tool in other application areas but this has yet to be clearly demonstrated.
11 Addition of the restr operator to a simple frame description language changes subsumption from
polynomial to co-NP-hard.
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2.1.3 Necessary statements – terminologically significant assertions

Most KL-ONE derived TKRSs provide for extra non-definitional characteristics to be asserted
about concepts. Such assertions represent characteristics which, while true of a concept, are
not essential for the recognition of an individual as a member of the concept’s extension. In
systems which follow the KRYPTON [BFL83] philosophy of strictly separating terminological
and assertional knowledge (such as KANDOR [PS84], CLASSIC, LOOM and BACK), assertions
do not affect the classification of concepts by the terminological classifier (T-box); in these
systems assertions only affect inferences about individuals made by the assertional reasoner
(A-box).

The strict separation of terminological and assertional knowledge has been questioned by
Doyle and Patil, with particular reference to medical knowledge representation, on the
grounds that it severely restricts the usefulness of classification based reasoning [DP91]; they
suggest that the correct classification of some concepts is dependant on assertional
knowledge. Woods has also shown that the rejection of assertional knowledge restricts the
kinds of facts that can be represented by a terminological system [Woo91].

It has also been pointed out by Doyle and Patil [DP91], and by MacGregor [Mac91a], that
the extreme stance taken by KRYPTON has been softened in almost all subsequent systems so
as to allow some assertional knowledge to be represented in the T-box.  Subsumption
relations between primitive concepts and the definition of disjoint concepts are examples of
assertional knowledge which is visible to the classifier in many TKRSs.

GRAIL  takes this process one stage further by making certain knowledge which would be
treated as assertional in other TKRSs visible to the classifier through necessary statements.
This enhances the utility of classification based reasoning and GRAIL ’s ability to reduce
concepts to a canonical form. In GRAIL  the assertion that “all cancers are necessarily severe”
allows “cancer”  and “severe cancer”  to be recognised as the same concept while still
classifying all “cancers”  as kinds of “severe conditions” . A classifier which ignored
assertional knowledge would give a very different result: asserting “severe”  as a
characteristic of “cancer”  would not result in “severe cancer”  being recognised as the same
concept as “cancer”  nor in the classification of all “cancers”  as kinds of “severe conditions” ;
including the “severe”  characteristic in the definition of “cancer”  would require that a
condition be explicitly described as “severe”  before it could be classified as a kind of
“cancer” .

2.1.4 Sanctioning – controlled genericity

In most TKRSs there is no restriction on the generation of new concepts. The classifier will
detect concepts whose definitions are logically inconsistent and classify them as incoherent12 

but there is nothing to prevent the creation of concepts whose definitions, while logically
consistent, are nonsensical. Examples such as “ fractured lung”  and “severe aspirin”  are easily
generated in unconstrained systems.

                                               
12 An incoherent concept is one who’s extension can be proved to be empty, for example as the result of
conflicting role cardinality restrictions.
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As well as detecting incoherent concepts GRAIL  provides a hierarchical sanctioning
mechanism which constrains the generation of new concepts. New specialisations – non-
primitive concepts created by adding criteria to existing concepts – are checked by GRAIL

and rejected if any criterion is not sanctioned. Sanctioned specialisations do not add any new
knowledge but are a kind of lazy evaluation of the model – the existence of such concepts
can be inferred from sanctioning knowledge but they are only defined and installed in the
model when required by an application. Sanctioning supports arbitrary expressiveness and
tractability by representing a potentially very large or even infinite number of concepts in a
sparse model which can be dynamically extended in response to application demand.

Sanctioning also addresses some of the problems associated with knowledge acquisition. The
construction and maintenance of a concept model of medical terminology sufficiently
comprehensive to meet the goals of the GALEN project will be a large and difficult task;
multi-level sanctioning provides a mechanism for the guidance and control of this task.

2.1.5 Refinement and transitivity – co-ordinating taxonomies

Subsumption or is-a-kind-of relations form the backbone of the taxonomic hierarchy in a
TKRS. GRAIL  is designed to support the construction of multiple taxonomies of basic
medical concepts which can be combined to form more complex terminological concepts;
some of these taxonomies are naturally based on the subsumption relation but others are not.
In particular taxonomies which deal with physically composed objects, for example in
anatomy, are more naturally described using the transitive part-whole relation [PL94].

Figure 2.1 – has-location transitive across part-of

fracture

fracture
has-location

femur

fracture
has-location

shaft-of-f emur

femur

shaft-of-f emur

       is-a-kind-of
           is-part-of
      has-location
transiti ve across

has-location

has-location

In a subsumption based taxonomy all relations are transitive across the special is-a-kind-of
relation. GRAIL ’s refinement mechanism supports the co-ordination of taxonomies by
allowing the definition of relations which are transitive across other user-defined relations.
Figure 2.1 shows how refinement enables the classifier to recognise that a “ fracture which
has location shaft of the femur”  is a kind of “ fracture which has location femur”  in spite of
the “shaft of the femur”  being a part of and not a kind of “ femur” . In this example the co-
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ordination of the anatomical and process taxonomies requires that the “has-location”  relation
be transitive across the “ is-part-of”  relation.

In some TKRSs, including LOOM, refinement can be represented using assertions; CycL, the
TKRS used in the Cyc project, recognises the need to represent this kind of knowledge and
provides the TransfersThro statement which has been optimised for efficient truth
maintenance [LG89]. However these representations only effect assertional inferences and
not T-box classification. While some TKRSs do support T-box transitivity [HKQ+93] – the
special case of refinement where a relation is transitive across itself – support for refinement
in the T-box is unique to GRAIL .

2.2 Summary

Table 2.1 summarises GRAIL ’s design goals and the solutions adopted. The result is a system
which, while clearly in the KL-ONE tradition, has a distinctly different set of features to those
normally found in a KL-ONE derived TKRSs.

Table 2.1 – GRAIL  design goals and solutions
reusable • concept only terminological model acts as an application independent

classification schema;

• necessary statements enhance the reduction of concepts to a canonical
form and the recognition of trivial variants;

• necessary statements support varying requirements for descriptive
detail by minimising concept definitions while providing full
classification based on asserted characteristics;

• refinement and transitivity  co-ordinate taxonomies based on relations
other than is-a.

extensible • restricted expressiveness and a simple and transparent terminological
language which is easily understood by model builders;

• sanctioning and constrained genericity allows large numbers of
concepts to be created from a sparse model;

• sanctioning helps guide model builders by controlling how the model
can be extended.

tractable • restricted expressiveness supporting only those features which are
necessary for modelling medical terminology.

• sanctioning and constrained genericity allow the size of the basic model
to be kept to a minimum.
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CHAPTER 3 FEATURE COMPARISON

This chapter compares the features of the two languages and the terminological services they
provide. Their expressive capabilities are interpreted using a combination of set theoretic and
informal descriptive semantics adapted from [BHH+91], [WS92], [HKNP94] and [Brill93].

3.1 Descriptive semantics

The symbols used in concept and relation definitions are summarised in table 3.1. Concept,
relation, attribute and individual names are assumed to be unique. Concept expressions define
a new concept in terms of existing concepts; for example the concept Man could be defined
as the conjunction of the concepts Person and Male. Relation expressions define a new
relation in terms of existing relations; for example the relation daughter could be described as
the relation child with its range restricted to the concept Female.

Table 3.1 – Symbols

Symbol Meaning Examples

CN Concept Name Person, Male, Female

RN Relation Name child, sibling

AN Attribute Name mother, spouse

IN Individual Name John, Mary

C Concept expression Person ∧  Male      (i.e. Man)

R Relation expression child|Female          (i.e. daughter)

A Attribute expression spouse|Female           (i.e. wife)

Concept and relation forming operators are described using a generalised LISP-like syntax
(concrete form), logic symbols (abstract form), and an informal extensional semantics.

• A concept C is defined by the set of individuals In which form its extension in the domain
∆.

• Concept forming operators are defined in terms of the extensions of the new concept and
those of the composing concepts. For example if an individual I is in the extension of
concept C which is formed from the conjunction C1 ∧ ...∧ Cn, I must be in the extensions of
each of C1...Cn.

• A relation R is defined by the set of tuples (I1..In) which form its extension. In the case of
binary relations, this is the set of (I1,I2) which form a subset of ∆ × ∆.

• Relation forming operators are defined in terms of the extensions of the new relation and
those of the composing relations. For example if a tuple (I1,I2) is in the extension of R
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which is formed from the disjunction R1∨ ...∨ Rn, (I1,I2) must be in the extension of one of
R1...Rn.

3.2 LOOM  overview

LOOM offers a complete high level programming environment for the development of
knowledge based systems and applications [LOOM93]. As well as a term classifier (T-Box)
and assertional reasoner (A-Box) LOOM provides integrated support for two object oriented
programming paradigms: pattern-directed programming (methods) and data-driven
programming (production rules). LOOM's terminological language is highly expressive and
forms a superset of most other languages [HKNP94], [WS92]. Assertion and retrieval is
based on a query language which embodies the full first order predicate calculus. The LOOM

system is under continued development with new features regularly being added including, in
version 2.1, a context mechanism, negation and temporal extensions [LOOM94].

Some systems, most notably CLASSIC, restrict expressiveness in order to guarantee
tractability and completeness13  [BPS94]. LOOM provides greater expressiveness by
supporting terminological constructions which are known to be intractable or even
undecidable14 . LOOM’s designers acknowledge that the classifier must therefore be
incomplete; this is justified on the grounds that complete systems, while of theoretical
interest, are too restrictive to be of use in most applications [Mac94]. Users are said to
consistently demand more functionality and it is suggested that additional features are likely
to be better designed and controlled as part of the system rather than being implemented by
users on an ad hoc basis [Mac91a].

Borgida has pointed out that one problem with this approach is the difficulty of
characterising to users the exact circumstances which will result in incomplete reasoning or
intractability [Bor92]. LOOM tackles the intractability aspect of this  problem by providing a
power-level function which allows the user to limit the computational effort expended in
seeking “expensive types of inferencing”  [Bri93]; however it is admitted to be “difficult to
precisely characterise the types of inferencing affected”  – users still have no precise
indication as to when reasoning is incomplete.

LOOM is written in COMMON LISP and requires a full native CLOS. LOOM consists of a set of
pre-defined concepts and relations along with an extensive library of functions, macros and
methods numbering approximately 250. These provide the user with facilities for creating,
manipulating and querying knowledge bases both interactively and from within applications.
However no tools are provided to assist in these tasks beyond a few basic macros which
provide textual listings detailing various aspects of the current state of the knowledge base.

3.3 LOOM  semantics

Most of LOOM’s pre-defined functions are designed to facilitate application programming by
supporting the retrieval of information about concepts, relations and individuals. The

                                               
13 A system is complete if it is guaranteed to find all valid inferences.
14 An undecidable inference is one which no algorithm can be guaranteed to find regardless of the
computational effort expended.
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characteristics and functionality of the system are illustrated by describing the definition of
concepts and relations. The definition of individuals and the formation of query expressions
is also described.

3.3.1 Term classifier (T-box)

Concepts and Relations are defined using the defconcept and defrelation macros or their
functional equivalents define-concept and define-relation; the available concept and relation
forming operators are described in tables 3.2 and 3.3 respectively while table 3.4 describes
the available terminological axioms. LOOM does not allow incremental changes to the
terminological definitions of concepts or relations but deletion and re-definition are
supported.

Table 3.2 – LOOM  concept forming operators
Concrete Form Abstract Form Semantics

top Â ∆ – every I is an instance of top

bottom ⊥ ∅  – bottom has no instances

(and C1...Cn) C1∧ ...∧ Cn Ic is an instance of all of C1...Cn

(or C1...Cn) C1∨ ...∨ Cn Ic is an instance of at least one of C1...Cn

(not C) ¬C Ic is not an instance of C15 

(one-of I1...In) {I 1...In} Ic is one of I1...In

(one-of N1...Nn) {N 1...Nn} Ic is one of N1...Nn

(through N1 N2) {N 1–N2} Ic is in range N1 to N2

(at-least n R) ≥nR Ic:R has at least n fillers

(at-most n R) ≤nR Ic:R has at most n fillers

(exactly n R) nR Ic:R has exactly n fillers

(all R C) ∀ R:C all fillers of Ic:R are instances of C

(some R C) ∃ R:C some filler of Ic:R is an instance of C

(in A C) A:C the filler of Ic:A is an instance of C

(filled-by R v1...vn) R:v1∧ ...∧ R:vn Ic:R is filled by all of v1...vn

(not-filled-by R v1...vn) ¬R:v1∧ ...∧ ¬R:vn Ic:R is not filled by any of v1...vn

(eq R1 R2) R1 = R2 Ic:R1 and Ic:R2 have the same fillers

(subset R1 R2) R1 ⊆  R2 Ic:R1’s fillers are a subset of Ic:R2’s

({<,>,=,≠} A 1 A2) A1 {<,>,=,≠} A 2 fillers of Ic:A1 & I c:A2 are {<,>,=,≠}

(relates R A1 A2) A1 R A2 fillers if  Ic:A1 & I c:A2 are related by R

(satisfies (?X) Q) ∀ I:Q(I) Q(Ic) = True

(predicate (X) f1..fj) ∀ I:P(I) (lambda (Ic) f1...fj) ≠ nil

(function () f1...fj) {F()} Ic ∈  (lambda () f1...fj)

Ic is an instance of the concept formed by the described operator; v1...vn are role values (LOOM or
LISP objects); Nn is a member of the built-in concept number (can be integer or real); Q is a
LOOM query expression; (f1...fj) are LISP forms.

                                               
15 LOOM’s open-world assumption means that an individual can only be recognised as a member of (not C) if
it is provably not a member of C, and vice versa.
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Constructs can be combined to form definitions of arbitrary complexity. Inconsistent
definitions are not treated as illegal but are classified under the built-in concept incoherent. It
is also possible to use these constructs to attach assertions16  to concepts and relations either
at definition time or incrementally. Assertions can be made either strict, using the :implies
keyword, or default, using the :default keyword. Strict assertions always apply whereas
default assertions only apply if they do not result in incoherence. Assertions are ignored by
the LOOM classifier.

Table 3.3 – LOOM  relation forming operators
Concrete Form Abstract Form Semantics

(and R1...Rn) R1∧ ...∧ Rn (I1,I2) is an instance of all of R1...Rn

(domain C) C|R I1 is an instance of C

(restrict C) R|C I2 is an instance of C

(domains C1...Cn-1) C1...Cn-1|R if (I1,...,In) is an instance of an n-ary
R, I1...In-1 are instances of C1...Cn-1

(inverse R) R-1 (I2,I1) is an instance of R

(compose R1...Rn) R1 o...o Rn if (I1,In+1) is an instance of R, then
for j from 1 to n, there is an (I j,Ij+1)
which is an instance of Rj

(satisfies (?X1...?Xn) Q) ∀ (I1...In):Q(I1...In) Q(I1...In) = True

(predicate (X1...Xn) f1...fj) ∀ (I1...In):P(I1...In) (lambda (I1...In) f1...fj) ≠ nil

(function (X1...Xn-1) f1...fj) {F()} I
n
 ∈  (lambda (I1...In-1) f1...fj)

(I1,I2) is an instance of a binary relation formed by the described operator; Q is a LOOM query
expression; f1...fj are LISP forms

Additional characteristics can be attached to concepts and relations using key words. Among
the more interesting of these are: :backward-chaining which instructs LOOM only to classify
individuals in response to a query; :closed-world which allows LOOM to draw additional
inferences by making the assumption that current information about individuals is complete;
and :monotonic which tells LOOM that the recognition of individuals is indefeasible. The
keywords :partitions, :exhaustive-partitions and :in-partition can be used to assert explicit
disjunctions and disjoint coverings.

Table 3.4 – LOOM  terminological axioms
Concrete Form Abstract Form Semantics

(defconcept CN C) CN = C I ∈  CN ⇔ I ∈  C

(defrelation RN R) RN = R (I1,...,In) ∈  RN ⇔ (I1,...,In) ∈  R

(defprimconcept CN C) CN ⊆  C I ∈  CN ⇒  I ∈  C

(defprimrelation RN R) RN ⊆  R (I1,...,In) ∈  RN ⇒  (I1,...,In) ∈  R

(defdisjoint CN1...CNn) CN1||...||CNn I ∈  CNj ⇒  I ∉  CN1∨ ...∨ CNj-1

                       ∨ CNj+1∨ ...∨ CNn

                                               
16 Rules which are implied by membership of a concept but which do not form part of its definition.
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In spite of its complexity LOOM’s classifier is comparatively efficient, although many classes
of possible inference are not supported [HKNP94]. Reasoning about role cardinality
restrictions, role value restrictions, role value maps, equality of attribute chains and inverse
roles is known to be incomplete. The powerful satisfies, predicate and function constructs are
completely opaque to the classifier: even identical definitions are not recognised as being
equivalent. Role fillers are also ignored by the classifier except in so far as they impose
minimum cardinality restrictions17 .

3.3.2 Assertional reasoner (A-box)

Table 3.5 summarises the available assertional axioms. Recognition18  and truth maintenance
do not take place until the LOOM matcher is invoked by a call to the createm, tellm or
destroym macros. LOOM will then ‘seal’ the network, generating an error if there are any
incompletely defined objects. The matcher re-computes the types of any modified instances
and propagates changes throughout the knowledge base using a forward chaining algorithm
[MB92]. The A-Box uses full concept and relation definitions for recognition and may
succeed in finding some of the more difficult inferences which are missed or not
implemented in the classifier [HKNP94].

Table 3.5 – LOOM  assertional axioms
Concrete Form Abstract Form Semantics

(C IN) IN ∈  C IN is an instance of C

(R IN1,...,INn) (IN1,...,INn) ∈  R (IN1,...,INn) is an instance of R

(same-as IN1 IN2) IN1 = IN2 IN1 and IN2 are merged

3.3.3 Query language

Much of LOOM’ s assertional reasoning power is vested in its query and retrieval mechanism.
Query expressions of arbitrary complexity can be formed using the operators summarised in
table 3.6 and can return either a truth value or a set of matching objects from the knowledge
base. Query expressions can also be included in concept and relation definitions using the
satisfies construct. Individuals and tuples which satisfy the query expression will then be
recognised by the A-Box as instances of the concept or relation.

                                               
17 It has been shown to be necessary to ignore individuals as role fillers in order to maintain the monotonicity
of classification when assertional retractions and redefinitions are permitted [Bor92].
18 The classification of individuals in terms of the concepts they instantiate.
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Table 3.6 – LOOM  query expressions
Expression Returns

(same-as v1 v2) true if v1 and v2 are equivalent

(subset v1 v2) true if v1 & v2 are sets & v1 is a subset of v2

(about I C) true if I is an instance of C

(about I (R v)) true if I:R is filled with v

(about I (filled-by R v1...vn) true if I:R is filled by all of v1...vn

(about I (at-least/most n R)) true if I:R has at least/most n fillers

(about I (exactly n R)) true if I:R has exactly n fillers

(about I (all/some R C)) true if all/some fillers of I:R are instances of C

(about I (the R C)) true if I:R is filled by exactly one of C

(predcall P v) true if (P v) ≠ nil

(and Q1...Qn) true if all of Q1...Qn are true

(or Q1...Qn) true if any of Q1...Qn are true

(not Q) true if Q is not true

(fail Q) true if Q is not provably true

(for-some (?x1...?xn) Q) true if ∃  a binding for ?x1...?xn such that Q is true

(for-all (?x1...?xn) (Q1 Q2)) true if all ?x1...?xn that satisfy Q1 also satisfy Q2

(collect ?x Q) returns v1...vn for which Q(?x) is satisfied

v is a LISP value which can be a LOOM concept, relation or instance; ?x is a variable which
can be bound to a value; Q is a query expression; P is a LISP predicate.

3.4 GRAIL  overview

Unlike LOOM, GRAIL  is not designed to be directly accessible to applications programmers;
GRAIL  is encapsulated within the TeS which provides a high level application interface and a
sophisticated graphical environment for the development of terminological models. The
GRAIL  language has restricted expressiveness in terms of concept and relation forming
operators but provides powerful additional features in the form of sanctioning, necessary
statements and refinement.

The current version of GRAIL  is written in Smalltalk. C++ implementations of the classifier
have been developed for the IBM-PC and a C++ implementation for parallel platforms is
under development [GGJ94].

3.5 GRAIL  semantics

The current version of GRAIL  has no assertional component and consists entirely of a term
classifier (T-box). GRAIL ’s simple syntax makes it necessary to use combinations of
statements to define concepts and relations incrementally. There is for example no explicit
conjunction operator but a semantically equivalent result can be achieved by using addSuper
statements to assert additional subsumers. Table 3.7 summarises the mapping between GRAIL

statements and their equivalent concrete forms.
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Table 3.7 – GRAIL  compound statements and equivalencies
GRAIL  Statements Equivalent Concrete Form

TopThing which R C  – where R is many valued (some R C)

TopThing which R C  – where R is single valued (in A C)

(C1 newSub CN) addSuper [C2...Cn] (defprimconcept CN (and C1...Cn))
C1 whichG <C2 ...Cn>   – where (C1∧ C2)...(C1∧ Cn)
are grammatically sanctioned

(and C1...Cn))  – where C2...Cn are role
restriction concepts of the form (∃ R:C) or
(A:C)

C1 which <C2...Cn>   – where (C1∧ C2)...(C1∧ Cn)
are sensibly sanctioned

(and C1...Cn)  – where C2...Cn are role

restriction concepts of the form (∃ R:C) or
(A:C)

(R1 newAttribute RN) addSuper [R2...Rn] (and R1...Rn)

Care must be taken when using statements which add to definitions as this can introduce
inconsistencies which are not detected by the current classifier; concepts and relations should
be fully defined before being used in further definitions. Section 6.4.3 describes this problem
in more detail.

3.5.1 Term classifier

Concepts are defined using a combination of newSub, addSub, addSuper, which and
whichG statements – table 3.8 summarises the available concept forming operators while
table 3.10 summarises the available terminological axioms. The form of the which and
whichG statements restricts non-primitive concepts to the special case where a single
primitive base is conjoined with one or more role restriction concepts (see table 3.7).

Table 3.8 – GRAIL  concept forming operators
Concrete Form Abstract Form Descriptive Semantics

top Â ∆ – every I is an instance of top

bottom ⊥ ∅  – bottom has no instances19 

(and C1...Cn) C1∧ ...∧ Cn Ic is an instance of all of C1...Cn

(some R C) ∃ R:C some filler of Ic:R is an instance of C

(in A C) A:C the filler of Ic:A is an instance of C

Ic is an instance of the concept formed by the described operator.

GRAIL  has an unusual syntax for role cardinality restrictions: the cardinality of a role, which
can only be specified as single or multiple, is fixed by the relation definition. All roles
formed from a given relation therefore have the same cardinality restriction.

Role restrictions can be introduced in one of two ways in GRAIL : either by the which and
whichG operators or by necessary statements. All role restrictions are of the range restriction
types (∃ R:C) and (A:C), referred to in GRAIL  as criteria. The form (∃ R:C) describes criteria

                                               
19 The current implementation of GRAIL  does not maintain bottom in the sense of a concept which is
subsumed by all other concepts but it still theoretically exists.
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where R is a many valued relation while (A:C) describes criteria where R is a single valued
relation.

Table 3.9 – GRAIL  relation forming operators
Concrete Form Abstract Form Descriptive Semantics

(and R1...Rn) R1∧ ...∧ Rn (I1,I2) is an instance of all of R1...Rn

(trans R) R+
(I1,I2)∈ R ∧  (I2,I3)∈ R ⇒  (I1,I3)∈ R

(trans-across R R1) R+R1  – see note20 (I1,I2)∈ R ∧  (I2,I3)∈ R1 ⇒  (I1,I3)∈ R

(I1,I2) is an instance of a binary relation formed by the described operator.

Relations are defined using the newAttribute statement which can be combined with addSub
and addSuper statements to form conjunctions; all GRAIL  relations are primitive (see table
3.10). Relation definitions can be extended by adding transitivity and refinement
characteristics. The newAttribute statement defines a relation–inverse pair; inverse relations
are used by sanctioning and necessary statements, which are bi-directional, and by the
refinement/transitivity mechanism. Table 3.9 summarises the available relation forming
operators.

Table 3.10 – GRAIL  terminological axioms
Concrete Form Abstract Form Semantics

(defconcept CN C) CN = C I ∈  CN ⇔ I ∈  C

(defprimconcept CN C) CN ⊆  C I ∈  CN ⇒  I ∈  C

(defprimrelation RN R) RN ⊆  R (I1,I2) ∈  RN ⇒  (I1,I2) ∈  R

3.5.2 Necessary statements

The process of classification has two distinct phases. A concept is located in the hierarchy by
first finding those more general concepts which are ‘above’ it – its subsumers – and then
finding those more specialised concepts which are ‘below’ it – its subsumees. Unlike LOOM

implications GRAIL  necessary statements are visible to the classifier – assertional knowledge
is used during upwards classification by treating asserted characteristics as part of a concept’s
description when evaluating its subsumers. However as assertions represent characteristics
which are not essential for the recognition of members of a concept they are not considered
when evaluating subsumees in the downwards classification phase.

GRAIL  provides three statements for adding asserted characteristics to concepts: necessarily,
topicNecessarily and valueNecessarily. All three have identical syntax to the which
statement but are not concept forming; instead they attach strict implications to existing
concepts. The statement:

C1 topicNecessarily R C2

                                               
20 The R+ notation for transitive relations is extended so that R+R1 describes the relation R which is transitive
across the relation R1.
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allows the classifier to infer that all instances of the concept C1 are also instances of the
concept (R:C2)21 ; a similar valueNecessarily statement would allow the classifier to infer that
all instances of the concept C2 are also instances of the concept (R-1:C1); a necessarily
statement allows both inferences to be made and is equivalent to a combination of
topicNecessarily and valueNecessarily statements:

C1 valueNecessarily R C2 ≡       C2 topicNecessarily R-1 C1

C1 topicNecessarily R C2

     + ≡       C1 necessarily R C2
C1 valueNecessarily R C2

Figure 3.1 – Necessary statements

         C
explicit subsumption
inferred subsumption

               inheritance         C ∧  (R2:C2)

             C ∧  (R1:C1) necc. (R2:C2)

C ∧  R1:C1 ∧  R3:C3 [necc. (R2:C2)]

If concept C ∧  (R1:C1) has an attached necessary statement (R2:C2) it will be subsumed by C
∧  (R2:C2) but will still subsume C ∧  (R1:C1) ∧  (R3:C3). The necessary criterion (R2:C2)
would then be inherited by C ∧  (R1:C1) ∧  (R3:C3).

3.5.3 Sanctioning

GRAIL  provides a sanctioning mechanism which constrains both the formation of new non-
primitive concepts, using the which and whichG statements, and the addition of asserted
characteristics using necessary statements.

Before a base–criterion conjunction C1∧ (R:C2) can be used in a which, whichG or necessary
statement it must be sanctioned at the appropriate level. Sanctioning is hierarchical and has 3
levels: ‘conceivable’, ‘grammatical’ and ‘sensible’. A conjunction is sanctioned at the
conceivable level if the base concept C1, the relation R and the range restriction concept C2

                                               
21 The implication is of attribute form (∃ R:C2 ∧  1R) for a single valued R and existential form (∃ R:C2) for a
many valued R.
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all exist; grammatical and sensible sanctions are explicitly applied to the base concept using
sanctioning statements. Grammatical and sensible sanctions must themselves be sanctioned
by conceivable and grammatical sanctions respectively. Sanctioning statements cause
sanctions to be applied symmetrically: if C1∧ (R:C2) is sanctioned the same sanction will be
applied to C2∧ (R-1:C1).

Table 3.11 – GRAIL  sanctions
Sanction Example Semantics

Conceivable C1, R and C2 all exist C1∧ (R:C2) or C2∧ (R-1:C1) may be
grammatically sanctioned

Grammatical C1 grammatically R C2 C1∧ (R:C2) or C2∧ (R-1:C1) may be sensibly
sanctioned or conjoined to form a new
concept using the whichG statement

Sensible C1 sensibly R C2 C1∧ (R:C2) or C2∧ (R-1:C1) may be
conjoined to form a new concept using the
which statement or conjoined assertively
using a necessary statement

Sanctions are treated as assertions which are not terminologically significant: they do not
affect the evaluation of the subsumption relation but they are inherited down the subsumption
hierarchy. If a conjunction is sanctioned the same sanction applies to all its subsumees. When
a conjunction is used in a which, whichG or necessary statement the resulting concept(s)22 

must inherit a sanction at the appropriate level in respect of itself or of a subsuming
conjunction. Conjunctions used in which and necessary statements must be sanctioned at the
sensible level; conjunctions used in whichG statements need only be sanctioned at the
grammatical level. The classifier will reject any statement which would result in a concept
being inadequately sanctioned.

Sanctioning highlights a fundamental difference in the GRAIL  and LOOM design philosophies:
GRAIL  makes a default closed-world assumption whereas LOOM assumes an open world. In
GRAIL  all relations are restricted until explicitly relaxed by sanctioning; in LOOM all relations
are unrestricted until explicitly tightened by role restrictions. GRAIL  starts out with the
implicit assumption that for every relation R the concept top has a restriction of the form
(∀ R:bottom); these restrictions are relaxed as sanctions are applied. A sensible sanction
(R:C1) applied to a concept has the effect of relaxing the inherited role restriction so that it
becomes (∀ R:C1). Another sensible sanction (R:C2) would further relax the restriction so that
it becomes (∀ R:(C1∨ C2)). This makes it impossible to transpose sanctions into role
restriction assertions23  as, in KL-ONE based systems like LOOM, restrictions can only be
tightened as the concept hierarchy is descended.

                                               
22 The result may be a new concept, in the case of which and whichG statements, an incrementally redefined
concept in the case of topicNecessarilly and valueNecessarily statements or a pair of incrementally redefined
concepts in the case of the symmetrical necessarily statement.
23 They would have to be assertions as they are not terminologically significant.
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3.5.4 Refinement and transitivity

In GRAIL  relations can be made transitive across other user-defined relations using the
specialisedBy operator:

R1 specialisedBy R2  ≡  (trans-across R1 R2)

In the example in figure 2.1 refinement is used to make the “hasLocation”  relation transitive
across the “ isPartOf”  relation:

hasLocation specialisedBy isPartOf

This allows (hasLocation:shaftOfFemur) to be recognised by the classifier as a “kind-of”
(hasLocation:femur) which in turn allows the classifier to find the subsumption relation:

fracture ∧  (hasLocation:femur)

subsumes

fracture ∧  (hasLocation:shaftOfFemur)

Transitivity has the special case where a relation is transitive across itself – the syntactic
form:

R  transitiveDown

is provided as a convenience. This is equivalent to:

R specialisedBy R

3.6 Summary

As can be seen from the preceding sections the terminological services provided by the two
languages are quite diverse – GRAIL ’s necessary statements, sanctioning and refinement have
no direct terminological equivalent in LOOM while GRAIL ’s concept and relation forming
operators are only a small subset of those available in LOOM. This diversity is reflected in the
difficulties encountered in translating the CORE model from GRAIL  into LOOM, as described
in chapter 4.
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CHAPTER 4 EXPERIMENTAL METHOD

This chapter describes how the GRAIL  CORE model was translated into LOOM, how the
performance comparison experiments were designed and how they were carried out.

4.1 Related work

Given that all TKRSs are theoretically intractable, performance analyses using real
knowledge bases are of interest. Heinsohn et al. empirically tested the classifiers of 6
different TKRSs including CLASSIC and LOOM [HKNP94]. Baader et al. used the same data
to compare the effect of various optimisation techniques on the KRIS classifier, an early
version of which had performed poorly in Heinsohn’s tests [BHNP92]. A problem common
to both these studies is that the “ realistic”  knowledge bases used for the tests were relatively
small (the largest having 435 concepts and 10 relations) and of questionable realism – most
were exemplars provided by the developers of the TKRSs being tested. Both studies also
used larger randomly generated knowledge bases but the structure of these knowledge bases
was very different from the kind of structure anticipated in a TeS application: 80% of the
concepts were primitive, there were only 10 different relations and range restriction roles
were formed from a random combination of relations and concepts.

This thesis compares the performances of GRAIL  and LOOM using the CORE model from the
GALEN project. The timing experiments test classifier performance when expanding the
CORE model by adding sanctioned specialisations and when querying the model by re-
classifying concepts which have already been added. This should represent a realistic pattern
of use in a TeS application.

4.2 Translating the CORE model

In order to conduct performance comparison experiments the GRAIL  CORE model was
directly translated into LOOM. This may not have made for a completely fair comparison – a
different modelling methodology would probably have been chosen if building the model
from scratch using LOOM – but it still produced useful and interesting results. Translating the
model also highlighted the differences between the two systems.

4.2.1 Separation of parsing and translating

The translation process is separated into two operations, parsing/pre-processing and code
generation. The parsing/pre-processing phase is performed by a stand-alone program which
converts GRAIL  statements into an intermediate LISP readable form. A translation module is
loaded along with LOOM and generates LOOM code from the parser’s output. Separating the
two phases allows the overhead of parsing GRAIL  syntax to be eliminated from the
performance experiments. The parser would also be reusable for the translation of GRAIL  into
other LISP based systems such as CLASSIC.
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4.3 Translating GRAIL  into LOOM

This section describes the process of translating GRAIL  into LOOM. Emphasis is given to the
problems encountered and the solutions adopted when translating GRAIL ’s unusual features
and syntax.

4.3.1 Relations – cardinality and inverses

Mapping GRAIL ’s primitive relation hierarchy to LOOM’s much richer representation would
be straightforward except for GRAIL ’s unusual treatment of role cardinalities and inverses.

LOOM provides no mechanism for specifying cardinality restrictions as part of relation
definitions. A :single-valued characteristic can be attached to relations but this is effectively
an A-box assertion – it causes the A-box to retract previous role filler assertions when a new
filler is asserted for a :single-valued role (if the global :clip-roles characteristic has been
specified). To emulate GRAIL ’s behaviour the translation module notes relation cardinalities
(in LISP property lists) and adds appropriate role cardinality restrictions to concept
definitions.

Similarly for inverses LOOM’s interpretation is assertion based: using the :inverse key word
in a LOOM relation definition is an assertion that for any tuple (I1,I2) which satisfies the
relation, (I2,I1) will satisfy the specified inverse relation. In GRAIL  the definition of an
inverse is used by symmetrical operations such as sanctioning and necessary statements. The
translation module notes inverse relations and uses this information to perform symmetrical
operations when required.

4.3.2 Primitive Concepts

Both GRAIL  and LOOM provide for the definition of primitive concepts with explicitly
asserted subsumption relations. However GRAIL ’s syntax, which requires the incremental
definition of concepts with multiple parents, and a problem with LOOM, which restricts the
retrieval of concept definitions24 , makes the translation process surprisingly difficult.

The implemented translation of GRAIL ’s addSuper and addSub statements retrieves the
currently asserted subsumers and adds the new subsumer to form a new definition. This will
only function correctly if the definition of a concept’s subsumers is completed before any
sanctioning or necessary statements are applied. This is adequate for translating the CORE

model which conforms to approved modelling practice and always asserts any explicit
subsumers immediately after a concept’s definition.

                                               
24 The version of LOOM used did not allow the range restriction concept C to be retrieved from existentially
quantified role restriction concepts of the form (∃ R:C). This problem has been fixed in more recent versions
of LOOM.
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4.3.3 Non-primitive concepts and GRAIL  knowledge names

GRAIL  which statements perform a dual query/create function: if a concept matching the
definition is located in the model it is simply returned; if not a new concept is created. The
which statement does not name concepts but a ‘knowledge name’ can be added with a
subsequent name statement.

Although the LOOM define-concept function can be used in a similar manner, another
problem with LOOM25  prevents the direct translation of which and name statements into
define-concept and rename-concept functions. As a result the translation process is much
more complex and requires two hash tables to map between GRAIL  and LOOM names. The
first hash table maps GRAIL  ‘knowledge names’ to LOOM concept names; the second hash
maps LOOM names back to GRAIL  definitions and ‘knowledge names’.

4.3.4 Necessary statements

The semantics of GRAIL  necessary statements cannot be emulated by the LOOM T-box as
LOOM’s classifier ignores all non-definitional characteristics. However the translation module
can use the LOOM matcher to emulate necessary statements in the A-box by instantiating
concepts.

When a concept is instantiated all its inherited characteristics, both definitional and
assertional, are used by the LOOM matcher to infer the ‘types’26  of the resulting individual.
The recognition of new types can cause extra assertional characteristics to be inherited and
initiate further iterations of the matching process; iterations continue until no new types are
discovered [MB92]. This closely parallels the upwards phase of classification in GRAIL  – the
types and characteristics of a LOOM concept’s instantiation will be the same as the subsumers
and characteristics of an equivalent GRAIL  concept. The translation module can use instances
to answer queries about subsumers and sanctioning with identical results to those obtained
from the GRAIL  model. Instances can also be used to find the GRAIL-equivalent subsumees of
a concept but this is more complex, requiring multiple LOOM queries and additional
processing in the translation module.

4.3.5 Sanctioning

The translation module implements sanctioning using LOOM’s ability to have arbitrary LISP

objects as role fillers. Like sanctions, role fillers do not affect classification – the concept
hierarchy is used only as an inheritance mechanism. Two special relations are defined for
GRAIL ’s ‘grammatical’ and ‘sensible’ sanctions. When a sanction is applied the sanctioned
criterion, in the form of a two element list, is added to the fillers of the corresponding role.

                                               
25 LOOM crashes if a concept with a system-generated name is renamed after assertions have been added to its
definition. The existence of this bug is acknowledged by LOOM’s developers but they state that fixing the bug
is low priority as “our design philosophy is that users shouldn’t reference anything but user-named concepts”
[Rus95].
26 The types of an individual are those concepts which it is recognised as being an instance of.
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The translation module tests the sanctioning of a new non-primitive concept by checking that
all its defining criteria are subsumed by a filler of the appropriate sanctioning role: the
grammatical role in the case of whichG statements and the sensible role in the case of which
statements. As the process of deleting a classified LOOM concept is rather drastic – all
concepts which reference it are recursively deleted – the translation module does not delete
un-sanctioned concepts. Instead it prints a message informing the user of the sanctioning
violation. The LOOM find-subsumers&subsumees function could be used to check
sanctioning before installing new concepts in the hierarchy but this would result in all new
non-primitive concepts being classified twice.

4.3.6 Refinement and transitivity

Refinement and transitivity follow a similar pattern to necessary statements: GRAIL

implements both in the classifier whereas LOOM provides the facility for making suitable
assertions which will only affect A-box inferences. In [Bri93] an example definition of R+,
the transitive closure of relation R, is given which uses the satisfies relation forming
operator; a similar result could be achieved using the predicate or function operators. Using
these operators is equivalent to an extensional definition of the relation in first order logic:

R(x,z) ∨  ∃ y(R(x,y) ∧  R+(y,z)) → R+(x,z)

An A-box tuple (x,z) satisfies the transitive closure relation R+ if (x,z) satisfies R or if there
exists some individual y such that (x,y) satisfies R and (y,z) satisfies R+. Refined relations
can be similarly defined. For example the relation R+R1, which is equivalent to the GRAIL

statement R specialisedBy R1, can be defined as:

R(x,z) ∨  ∃ y(R(x,y) ∧  R1(y,z)) → R+R1(x,z)

Using satisfies, predicate or function operators to implement transitive and refined relations
in the A-box necessitates instantiating roles as well as concepts. The translation module
achieves this using implies and default statements to assert role fillers when a concept’s
definition includes which, whichG or necessary statements.

4.3.7 A concept only model

The implementation of necessary statements, transitivity and refinement described above –
using complex and opaque LISP functions to answer classification based queries – is very
clumsy and is clearly using LOOM in a way contrary to its design philosophy. To give a more
balanced performance comparison two extra LOOM models are used which progressively
eliminate these features from the translation module. LOOM model ‘A’ is the full
implementation as described above; LOOM model ‘B’ does not include transitivity and
refinement; LOOM model ‘C’ is a concept only model and does not support transitivity and
refinement or necessary statements. The reduced functionality of the ‘B’ and ‘C’ models
results in LOOM missing some subsumption relations which are found by GRAIL .
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4.4 Quantitative experiments using the models.

Simple measurements of the times taken to compile the various models are of limited
significance in comparing the performances of the two systems. The efficiency of the
underlying host systems – Smalltalk in the case of GRAIL  and LISP/CLOS in the case of
LOOM – can vary widely. Factors such as compilation strategy and garbage collection can
also have a significant effect on performance and cannot be controlled consistently across
both systems. The experiments are therefore designed to test the scaleability of performance
by measuring the rate of change of classification speed with increasing model size.

4.4.1 Compiling the models

The performance scaleability tests use pre-compiled versions of the CORE model. The
compilation times for all four models, the GRAIL  model plus the three LOOM versions of the
model, were measured, taking an average over three compilations. Core images of the
successfully compiled models were then saved for use in future tests.

4.4.2 Creating the test files

The performance scaleability experiments require the size of the CORE model to be increased
by adding sanctioned specialisations. A LISP function in the translation module was used to
automatically generate this data. It does this by examining every concept in the LOOM model
and searching the list of sensibly sanctioned criteria for one which could be used to create a
new concept. Before searching, the list is randomised using the LISP random function; this
avoids any bias towards the use of criteria which are applied at more general levels within the
model and which might be expected to occur near the beginning of sanction lists. If an
appropriate criterion can be found, a GRAIL  statement which defines the new concept is
written to an output file. Using this function with the LOOM ‘B’ model yielded a test file
containing 1,859 new concept definitions.

To counter any effects due to the ordering of the generated concepts, and to check the
consistency of the timings, the experiments use 5 randomised copies of the test file; the LISP

random function was again used in the randomisation process. Each of the test files is
divided into 10 groups for timing purposes – 9 groups of 186 concepts and one group of 185
concepts.

4.4.3 Classifying and installing new concepts

The time taken to classify and install each of the 10 groups of concepts is measured and the
measurements are repeated for each of the 5 randomised test files. Installing the 1,859 new
concepts increases the size of the CORE model from 2,128 to 3,987 concepts although it does
not increase the amount of knowledge represented – the existence of these concepts has been
inferred from existing sanctioning knowledge.

Of the initial 2,128 concepts in the CORE model, only 483 (23%) are non-primitive. Installing
the new concepts, all of which are non-primitive, changes this proportion to 2,342 non-
primitive concepts out of a total of 3,987 (59%).
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4.4.4 Querying the models

As well as classifying and installing new concepts a TeS application would be expected to
spend a considerable amount of its time answering queries by classifying concept
descriptions and discovering identical concepts already installed in the model. In fact it is to
be hoped that as the model grows, an increasing proportion of classifications would result in
the discovery of an installed concept – if this is not the case the size of the model could be
expected to grow out of control.

Re-classifying installed concepts ought to be faster than adding new ones as it is only
necessary to perform the first phase of classification – locating the concept in the hierarchy
by finding its subsumers. If this process discovers an identical concept already installed in the
hierarchy the second phase of classification – locating the concepts subsumees – can be
dispensed with.

Due to time constraints the re-classification of installed concepts is only measured for one of
the five test files; the test file which produced the most nearly average results for the
classification tests, file number 3, is used in this experiment. The experiment measures the
time taken to classify and install and then to re-classify each of the 10 groups of concepts in
the test file.

A minor complication caused by this method is that the average size of the model during the
query phase is larger, because the whole group has already been classified. In order to avoid
this it would be necessary to classify and re-classify each concept individually. While
feasible for LOOM this would not be possible for GRAIL  due to Smalltalk’s lack of support for
precise timing measurements.

4.4.5 Measuring performance

Performance is measured in terms of CPU time used. As Smalltalk does not provide any
built-in means of measuring CPU time the GRAIL  timings were performed by running the
UNIX ‘top’ utility and noting the CPU time used before and after each section of the test.
This method gives a maximum precision of 1 second – adequate for the purposes of this
experiment. Timings for the LOOM models were performed using the LISP time function to
run each section of the test. This returns the CPU time used in units of 10 milli-seconds.

LOOM uses lazy evaluation for A-box inferences and truth maintenance – they are not
performed until required by an A-box query or until forced by a special form of the assertion
macro provided for this purpose. LOOM refers to this evaluation process as ‘sealing the
network’. All timed groups of LOOM code conclude with a call to the macro which causes the
network to be sealed. For versions of the LOOM model which instantiate concepts separate
timings are provided for the building and sealing phases.

The translation process is assumed to be insignificant in the overall timings of the LOOM

models. This assumption was tested by running the translation module with a set of dummy
LOOM functions; timings of the translation-only process showed that the overhead represents
less than 0.5% of the measured times.
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4.4.6 System specification

All tests were run on a Sun SPARCstation 20/61 equipped with a 60MHz superSPARC
processor, a 1Mbyte off-chip cache and 128Mbytes of RAM. The operating system was
SunOS Release 4.1.3_U1.

The LOOM tests used LOOM version 2.1 patch level 144 compiled using Harlequin
LispWorks version 3.2.0. LOOM was compiled after setting optimisations as follows:

(proclaim ‘(optimize (speed 3) (safety 1) (compilation-speed 0)))

The GRAIL  tests used TeS version 1.4b running under VisualWorks, Release 1.0.

CORE model version 1.4.5j was used in all the tests.
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CHAPTER 5 EXPERIMENTAL RESULTS

This chapter presents and analyses the results of the performance comparison experiments.

5.1 Compiling the CORE model

Although the primary purpose of the experiments is to compare performance degradation
when the size of the CORE model is increased, the compilation times for the different
versions of the model are of interest and are presented in table 5.1.

Table 5.1 – CORE model compilation times
model compilation time (CPU seconds)

version load seal total per concept

GRAIL 5,143 – 5,143 2.42

LOOM ‘A’ >216,000 – – –

LOOM ‘B’ 5,296 43,208 48,504 22.79

LOOM ‘C’ 1,535 48 1,583 0.74

It proved impossible to compile version ‘A’ of the LOOM model. After sixty hours of CPU
time only a fraction of the model had been compiled and the rate of compilation – monitored
by observing LOOM’s trace output – was continually degrading. Comparison of the
compilation times for versions ‘A’ and ‘B’ of the LOOM model make it clear that it is the
inclusion of A-box transitivity and refinement which is causing the unacceptably poor
performance.

This problem was brought to the attention of the LOOM development team at ISI. After
investigation they stated that the poor performance is caused by inefficiencies in the LOOM

code which handles relation definitions using satisfies, function or predicate operators. Work
is underway to fix this problem but as the changes required are considerable they will only be
incorporated into a future version of LOOM 3.0 [Mac95]. In the meantime further
experiments using the LOOM ‘A’ model were abandoned.

5.2 Increasing the size of the CORE model

The three pre-compiled versions of the CORE model (GRAIL , LOOM ‘B’ and LOOM ‘C’) were
used to conduct the performance scaleability experiments. Measurements were taken when
adding the 5 different random orderings of the new concepts created from the LOOM ‘B’
model.
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5.2.1 The GRAIL  model

Table 5.2 lists classification times for the GRAIL  model. All the concepts created from the
LOOM ‘B’ model were successfully classified by GRAIL .

Table 5.2 – GRAIL  classification times
avg. model data set timings (CPU seconds)

size 1 2 3 4 5 average

2,221 625 709 889 659 676 711.6

2,407 1,049 899 765 810 842 873.0

2,593 1,120 1,044 1,308 915 936 1,064.6

2,779 1,217 1,113 988 1,143 1,061 1,104.4

2,965 1,396 1,368 1,341 1,054 1,300 1,291.8

3,151 1,337 1,640 1,298 1,753 1,427 1,491.0

3,337 1,609 1,453 1,456 1,839 1,757 1,622.8

3,523 1,748 1,491 2,221 1,986 1,625 1,814.2

3,709 2,050 2,043 1,780 2,593 1,954 2,084.0

3,894 1,654 1,933 2,077 2,305 2,011 1,996.0

total 13,805 13,693 14,123 15,057 13,589 14,053.4

The graph in figure 5.1 plots the average time taken to classify each concept against the
average model size.

Figure 5.1 – GRAIL  classification time –v– model size
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The increase in classification time seems to be fairly linear and, taking the average of the five
orderings, is approximately 1.6 times greater than the increase in model size.

5.2.2 LOOM  model ‘B’

LOOM model ‘B’ is the version of the LOOM model which uses A-box inferences to imitate
the behaviour of GRAIL  necessary statements. It proved impossible to run the timing
experiments using this model as LOOM consistently crashed while classifying the new
concepts. The debug output from LOOM stated that an internal integrity check had failed.

This problem has been reported to the LOOM development team but they have yet to find a
solution. Partial timings obtained for 2 of the data sets are listed in table 5.3.

Table 5.3 – LOOM  model ‘B’ classification times
average data set timings (CPU seconds)

model 1 2

size load seal total load seal total

2,221 13,971 9,678 23,649 14,012 11,052 25,064

2,407 16,302 11,772 28,074 17,698 –* –

2,593 19,050 –* – – – –

Entries marked * indicate that LOOM crashed during this phase of the test.

5.2.3 LOOM  model ‘C’

LOOM model ‘C’ is the concept only model – no use is made of the LOOM A-box.
Classification times are listed in table 5.4; the times given are those to load the concepts into
LOOM – the time taken to seal the network was 0 in all cases as no instances were created.
Ninety-two of the new concepts proved to be inadequately sanctioned when classified by the
LOOM ‘C’ model. This is due to the fact that the LOOM ‘C’ model misses subsumption
relations which are found by the ‘B’ model using its emulation of GRAIL ’s necessary
statements. Sanctions which would be inherited across these subsumption relations are
therefore not present in the ‘C’ model. However the test timings should be unaffected as the
translation module classifies inadequately sanctioned concepts in the normal manner, only
causing a notification to be printed on the terminal.
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Table 5.4 – LOOM  model ‘C’ classification times
avg. model data set timings (CPU seconds)

size 1 2 3 4 5 avg.

2,221 115.31 96.18 86.53 82.34 94.02 93.42

2,407 83.30 79.37 87.25 84.44 68.21 79.84

2,593 74.35 83.54 88.36 99.93 87.52 85.85

2,779 85.56 90.14 79.44 70.43 85.46 81.16

2,965 97.18 113.06 79.91 132.89 108.98 105.34

3,151 115.70 74.55 80.68 97.24 77.48 87.99

3,337 79.07 82.61 103.18 93.58 110.54 92.84

3,523 107.15 117.57 93.59 92.03 119.30 104.42

3,709 130.34 161.67 178.14 153.05 133.69 149.73

3,894 99.86 117.26 124.25 110.97 97.05 108.14

total 987.82 1,015.95 1,001.33 1,016.90 982.25 988.73

The graph in figure 5.2 plots the average time taken to classify each concept against the
average model size. The data does not show a linear increase in classification times but
displays marked peaks when the model size reaches approximately 3,000 and 3,700 concepts.
There may also be a peak at a model size of approximately 2,200 concepts but this is not so
clear as it coincides with the first data point.

Figure 5.2 – LOOM  model ‘C’ classification time –v– model size
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It seems likely that the peaking effect is caused by some “housekeeping”  operation being
performed by LOOM or LISP rather than being characteristic of the performance of LOOM’s
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classification algorithm. The obvious candidate was LISP garbage collection but initiating a
full garbage collection sweep between the classification of each set of concepts did not
significantly change the results. It has been suggested by LOOM’s developers that the peaking
could be caused by LOOM changing data structures from association lists to hash tables
although this would normally be expected only when using the A-box.

The peaking effect makes it difficult to give a precise rate at which classification time is
increasing relative to model size. However comparing the average time taken to classify each
concept in the first 5 groups (0.48s) with that of the second 5 groups (0.58s) gives an increase
in classification time approximately 0.9 times the increase in average model size.

5.2.4 Comparing GRAIL  with LOOM

To compare GRAIL  with LOOM the graph in figure 5.3 plots the average classification times
for the GRAIL  and LOOM ‘C’ models scaled so that the time taken to classify the first group
of new concepts is 1. This clearly shows the different rates of increasing classification time
for the two models.

Figure 5.3 – Normalised classification time –v– model size
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5.3 Querying the models

After the failure of the earlier experiments with the LOOM ‘A’ and ‘B’ models only the
GRAIL  and LOOM ‘C’ models were used in this test. The CORE model was again expanded by
adding the 3rd randomly ordered test file, but this time each of the 10 groups was classified
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twice. A pair of timings for classification and querying/re-classification is given for each
group.

5.3.1 The GRAIL  model

Classification and query times for the GRAIL  model are listed in table 5.5.

Table 5.5 – GRAIL  model classification and query times
classify (CPU seconds) query (CPU seconds)

model size group per concept model size group per concept

2,221 704 3.78 2,314 32 0.17

2,407 934 5.02 2,500 23 0.12

2,593 1042 5.60 2,686 34 0.18

2,779 1162 6.25 2,872 33 0.18

2,965 1366 7.34 3,058 26 0.14

3,151 1708 9.18 3,244 24 0.13

3,337 1527 8.21 3,430 26 0.14

3,523 1545 8.31 3,616 30 0.16

3,709 2124 11.42 3,802 27 0.15

3,894 2036 11.01 3,987 29 0.16

total 14148 7.61 total 284 0.15

The graph in figure 5.4 plots the average time taken to classify and query each concept
against the average model size.
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Figure 5.4 – GRAIL  classification and query times –v– model size
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The results show a remarkable contrast between classification and querying with the total
times varying by a factor of 50:1. The difference is so great that it was necessary to use a
logarithmic scale for time in the graph in figure 5.4. The other notable point about this data is
that the query times show very little variation with increasing model size.

The algorithm used by the GRAIL  classifier gives a possible explanation for the large
difference between the classification and query times [Bec95]. GRAIL  concepts have at most
one primitive base and the classifier optimises its search for subsumers by starting at the
primitive base instead of at bottom. After finding all subsumers in this reduced search the
classifier would normally have to search the rest of the model for any additional subsumers.
However if the classifier checks for equality at this point and finds a concept which matches
the definition being classified it can avoid searching the rest of the model as well as avoiding
the subsumee phase of classification.

5.3.2 The LOOM  ‘C’ model

Classification and query times for the LOOM ‘C’ model are listed in table 5.6.
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Table 5.6 – LOOM  ‘C’ model classification and query times
classify (CPU seconds) query (CPU seconds)

model size group per concept model size group per concept

2,221      96.10 0.5167 2,314    36.03 0.1937

2,407      79.07 0.4251 2,500    36.40 0.1957

2,593      86.09 0.4628 2,686    46.03 0.2475

2,779     101.54 0.5459 2,872     48.40 0.2602

2,965     128.34 0.6900 3,058     58.45 0.3142

3,151      76.43 0.4109 3,244    47.26 0.2541

3,337      87.67 0.4713 3,430    49.49 0.2661

3,523     125.71 0.6759 3,616     66.67 0.3584

3,709     173.05 0.9304 3,802     88.15 0.4739

3,894     128.19 0.6929 3,987     72.78 0.3934

total  1,082.19 0.5821 total    549.66 0.2958

The graph in figure 5.5 plots the average time taken to classify and re-classify each concept
against the average model size.

Figure 5.5 – LOOM  classification and query times –v– model size
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While classification in the LOOM model is slower than querying, the ratio of approximately
2:1 is far less than that observed with the GRAIL  model. A full explanation of this effect is
impossible without more information about LOOM’s classification algorithm; one possible
explanation is that LOOM takes about the same time for subsumer and subsumee classification
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and, as querying saves having to  perform the subsumee phase, classification times are
halved.

5.4 Summary

CPU time used is a very crude measure of performance; when studying optimisations of the
KRIS classifier subsumption tests were assumed to be by far the most expensive operation and
the number of subsumption tests made was used as a measure of performance [BHNP92].
However this assumption may not be completely valid for GRAIL , which has been designed
to make subsumption testing relatively easy. More detailed profiling, showing where CPU
time was being used, might enable the observed differences in performance to be explained –
and would indicate where efforts at optimisation could best be concentrated – but without
this kind of information it is difficult to draw any firm conclusions.

In spite of these limitations the results do show some interesting features: there is no obvious
sign of an exponential increase in classification time with increasing model size; GRAIL

showed a dramatically improved performance when querying the knowledge base; and LOOM

performed well in spite of its potential intractability. These features are discussed in more
detail in section 7.3.
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CHAPTER 6 QUALITATIVE ANALYSIS

This chapter compares GRAIL  and LOOM based on the experience gained in carrying out the
translation and experimental work. The features of the two systems are examined with
particular reference to their applicability to the representation of medical terminology.
Support for knowledge acquisition, ease of use and robustness are also considered.

6.1 Terminological expressiveness

GRAIL ’s terminological language has deliberately limited expressive power. The range of
concept and relation forming operators provided is extremely restricted – it is far from
satisfying the minimum criteria set out in [PSS93] for a core knowledge base. Primitive
concepts can be formed from arbitrary conjunctions but the only operation available for the
formation of non-primitive concepts is the addition of criteria using which and whichG
statements. GRAIL ’s range of relation forming operators is even more restricted: relations can
only be formed from primitive conjunctions. This means that the role hierarchy has only
‘operational semantics’ [WS92]: the position of a role in the hierarchy is explicitly
determined and is independent of its definition. The ability to build a role hierarchy with
‘criterial semantics’ similar to those of the concept hierarchy is central to KL-ONE influenced
knowledge representation systems [ibid.].

In contrast LOOM has a highly expressive terminological language with a wide range of
concept and role forming operators. Constructs which are available in LOOM but not in
GRAIL  include:

• Arbitrary non-primitive conjunctions

• Disjunctions

• Negation

• A full range of cardinality restrictions

• Role chains

• Role value maps

• Ordered sets

LOOM’s expressiveness facilitates the representation of some concepts which are difficult or
impossible to represent in GRAIL . This is exemplified by Essential Hypertension, a problem
case from [RNGM93].

6.1.1 Essential Hypertension

Essential Hypertension is described in [RNGM93] as ‘hypertension which, after
investigation, does not have a known cause’. Secondary Hypertension is hypertension which
does have a known cause (for example a renal condition). This is difficult to represent in
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GRAIL  as the concept “essential hypertension”  is defined by the exclusion of causes –
equivalent to a zero cardinality restriction on the “cause”  relation – and GRAIL  can only
represent cardinalities of one and many. In this example it is important not to confuse
exclusion with lack of specification as this could result in the classification of all
“hypertensions”  as “essential hypertension”  unless a cause is stated. LOOM supports arbitrary
role cardinality restrictions, allowing the two forms of hypertension to be defined as:

secondary-hypertension = hypertension ∧  (≥1 cause)

essential-hypertension = hypertension ∧  (0 cause)

A “hypertension”  would only be classified as “essential hypertension”  if the exclusion of
“cause”  was explicitly stated or could be inferred; this is not the case for descriptions of
“hypertension”  which merely fail to specify a “cause” . “Secondary hypertension”  would be
recognised whenever a “hypertension”  was defined as having some “cause” . LOOM’s ability
to define concepts with arbitrary role cardinality restrictions solves this representation
problem in a clear and principled manner.

It is possible to represent “essential hypertension”  in GRAIL  – the solution suggested in
[RNGM93] is to define it as a primitive concept and to cancel the sanctioning of all criteria
which include the “cause”  relation. However this has a number of disadvantages: the
meaning of “essential hypertension”  is not clear from its definition – it is simply introduced
into the model as a primitive; “essential hypertension”  can never be recognised from a
concept description unless it is explicitly stated; allowing cancellation is an exception to the
general principle of sanctioning and is “still not completely understood”  [RNGM93]. Future
versions of GRAIL  may be able to improve on this solution by adding support for a limited
form of negation.

6.2 GRAIL ’s special features

Although GRAIL  has restricted concept and relation forming operators it does provide a
number of powerful features which enhance classification based reasoning. These features
are deeply embedded in the design of the GRAIL  classifier and proved difficult or impossible
to satisfactorily implement using LOOM.

6.2.1 Necessary Statements

Necessary statements are difficult to translate into LOOM as they embody a fundamental
difference in the behaviour of the two classifiers: the LOOM classifier will only consider
definitional characteristics whereas the GRAIL  classifier is also able to consider non-
definitional characteristics when evaluating a concept’s subsumers.

Although it is technically feasible to imitate the behaviour of the GRAIL  classifier using
LOOM’s A-box and additional LISP code in the translation module this is unsatisfactory in
terms of design transparency and also resulted in an unacceptable performance penalty. In
fact it proved impossible to add all the test concepts to the LOOM model using the translation
module in this mode without causing the LOOM classifier to crash.
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6.2.2 Sanctioning

Sanctioning’s underlying closed world assumption and the ability to relax the implied range
restrictions make it impossible to translate sanctions directly into LOOM. Sanctioning was
however relatively easy to implement by treating sanctions as extrinsic information, using the
concept hierarchy purely as an inheritance mechanism and writing LISP functions to perform
the sanction checking.

Apart from the undesirability of implementing additional features in LISP code, using a
sanction checking mechanism which is not tightly integrated with the classifier is bound to
result in a performance penalty. A concept’s sanctioning can only be checked after sanctions
have been inherited from all its subsumers. In GRAIL  sanctioning can be checked after the
evaluation of a concept’s subsumers but before evaluating its subsumees and installing it in
the hierarchy. If the concept is appropriately sanctioned the classifier can proceed with
classification and installation; if not no change is made to the existing hierarchy and the
concept is rejected.

It is impossible to stop half way through LOOM’s classification process and check on
sanctioning. As deleting concepts from a LOOM model is difficult sanctioning must either be
checked before classification or un-sanctioned concepts must be left in the model. Checking
sanctioning using the find-subsumers&subsumees function will result in all concepts being
fully classified and sanctioned concepts being classified twice; leaving un-sanctioned
concepts in the model will still result in their being fully classified and will cause an
unnecessary increase in model size.

6.2.3 Refinement and Transitivity

The LOOM classifier does not support refinement or transitivity. Although it is technically
feasible to imitate GRAIL ’s refinement and transitivity using LOOM’s A-box, the resulting
performance is so poor as to make this solution unusable in large concept models.

6.3 Modelling Tools

GRAIL  provides a complete modelling environment which includes an extensive array of
tools designed to facilitate the model building task. These include browsers and editors for
working directly with the model or with source files [GALEN94]. LOOM incorporates no
facilities of this kind and working with anything other than ‘toy’ sized models proved
extremely difficult.

LOOM’s sole concession to interactive usability is the provision of a number of macros
designed for the interactive retrieval of information from the model. The interface is however
limited to typing macros and parameters into the LISP interpreter and the information
retrieved by any one macro is limited. For example to retrieve a concept’s definition the user
can type:

(pc concept-name)
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This will cause the LOOM definition of the concept to be printed on the terminal. Output from
the LOOM ‘C’ model in response to the command (pc femur) is shown in figure 6.1 with the
sensible and grammatical role fillers truncated for clarity.

Figure 6.1 – LOOM  display for (pc femur)
(defconcept |Femur|
  :is-primitive |LongBone|
  :implies (:and (:some |hasTopology| |Topology*G48712|)
                 (:all |hasTopology| |Topology*G48712|)
                 (:at-most 1 |hasTopology|)
                 (:some |hasShapeAnalagousTo| |AnatomicalShape*G47812|)
                 (:all |hasShapeAnalagousTo| |AnatomicalShape*G47812|)
                 (:at-most 1 |hasShapeAnalagousTo|)
                 (:filled-by Grammatical (|boundsSpace| |BodySpace|)
                       (|hasLayer| |BodyStructure*G52289|) (|hasLayer| |BodySubstance|)
                       (|isStructuralComponentOf| |Organism|)
                       (|isSolidDivisionOf| |BodyStructure|) .... )
                 (:at-least 57 Grammatical)
                 (:some |hasIntrinsicAbnormalityStatus| |normal|)
                 (:all |hasIntrinsicAbnormalityStatus| |normal|)
                 (:at-most 1 |hasIntrinsicAbnormalityStatus|)
                 (:some |hasSurfaceVisibility| |internal|)
                 (:all |hasSurfaceVisibility| |internal|)
                 (:at-most 1 |hasSurfaceVisibility|)
                 (:some |hasCountability| |discrete|)
                 (:all |hasCountability| |discrete|)
                 (:at-most 1 |hasCountability|)
                 (:filled-by Sensible (|boundsSpace| |BodySpace|)
                       (|isActedOnBy| |BodyProcess*G51050|)
                       (|isActedOnSpecificallyBy| |Ischaemia|)
                       (|isLocationOf| |DegenerativeLesion|) .... )
                 (:at-least 29 Sensible)
                 (:some |isStructuralComponentOf| |Thigh|)
                 (:filled-by Necessary (|hasTopology| |Topology*G48712|)
                       (|hasShapeAnalagousTo| |AnatomicalShape*G47812|)
                       (|hasCountability| |discrete|) (|hasSurfaceVisibility| |internal|) .... )
                 (:at-least 6 Necessary))
  :characteristics (:closed-world :monotonic)
  :system-characteristics (:closed-world))

Given the fact that all non-primitive concepts in the translated CORE model have meaningless
system generated names, such as |BodyStructure*G52289|, examining the model via this
method is extremely inconvenient. The provision of browsing and editing tools would greatly
facilitate the use of LOOM in a large modelling task.
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6.4 Problems with the GRAIL  classifier

The process of formalising GRAIL ’s semantics, translating the CORE model into LOOM and
conducting the timing experiments brought to light a number of problems with the GRAIL

classifier.

6.4.1 Inferred non-primitive conjunctions

GRAIL ’s closed world assumption in respect of sanctioning, as described in section 3.5.3, is
also extended to concept disjunction: GRAIL  makes the default assumption that all primitive
concepts are disjoint. This assumption is used by the GRAIL  classifier when checking for
incoherence caused by conflicting cardinality restrictions.

Consider for example a concept of the form:

C = Cx ∧  (R:Cy) ∧  (R:Cz)

where the criteria (R:Cy) and (R:Cz) are both sensibly sanctioned with respect to Cx. If  R is a
single valued relation the classifier can infer that the range restriction is the conjunction of Cy

and Cz:

Cx ∧  (R:Cy) ∧  (R:Cz) ∧  (1R) ⇒  Cx ∧  (R:(Cy ∧  Cz)) ∧  (1R)

In the general case all GRAIL  concepts are of the form:

B ∧  (R1:C1) ∧  ... ∧  (Rn:Cn)

where B is a primitive base and (Ri:Ci) are criteria. If n=0, there are no criteria and the
concept is the primitive B. The conjunction (Cy ∧  Cz) thus becomes:

By ∧  Bz ∧  (Ry1:Cy1) ∧  ... ∧  (Ryn:Cyn) ∧  (Rz1:Cz1) ∧  ... ∧  (Rzn:Czn)

If one of By or Bz subsumes the other, or if they are equal, the primitive base reduces to the
most specialised of the two. In this case the conjunction is a normal GRAIL  concept, which
must be sanctioned as all of the criteria were sanctioned on one of By or Bz, and the new
concept C is accepted by the classifier. If By and Bz do not subsume the classifier assumes
they are disjoint and rejects C as incoherent.

Unfortunately this assumption is not valid as a primitive conjunction of By and Bz may
already exist in the hierarchy:

(By newSub B'join) addSuper Bz ⇒  B'join ⊆  (By ∧  Bz).

The conjunction B'join must be primitive as GRAIL ’s concept forming operators only support
the definition of non-primitive concepts in the special case where a single primitive is
conjoined with role restriction concepts (criteria). The existence of B'join proves that By and
Bz are not disjoint. However the range restriction conjunction (By ∧  Bz) cannot be inferred to
be equal to B'join – a primitive’s definition consists of conditions which are necessary but not



52

sufficient for membership; the range restriction is a non-primitive conjunction Bjoin which
subsumes B'join. GRAIL  provides no mechanism for defining or describing such a concept.

Figure 6.2 – Primitive and non-primitive conjunctions

By Bz

Bjoin = (By ∧  Bz)

B'join ⊆  (By ∧  Bz)

In these circumstances the classifier can either classify the concept C as incoherent (as it does
now) or allow the inferred existence of a range restriction concept Bjoin which cannot be
described using the GRAIL  language. Clearly neither of these choices is completely
satisfactory and an extension to the language, which would allow sanctioned non-primitive
conjunctions to be defined, is currently under consideration.

6.4.2 Cardinality restrictions and the relation hierarchy

GRAIL  fails to detect incoherence resulting from an interaction between cardinality
restrictions and the relation hierarchy. Single valued relations with multiple subsumees can
result in an implied cardinality inconsistency which is not detected by the classifier. For
example given 3 single-valued relations R, R1 and R2:

if R1 ⊆  R;  R2 ⊆  R;  C1 || C2

then C ∧  (R1:C1) ∧  (R2:C2)  ⇒   ≥2R  ⇒   incoherent.

6.4.3 Inconsistencies resulting from concept and relation redefinitions

GRAIL ’s simple syntax means that many concepts and relations must be incrementally
redefined by adding explicit subsumers, explicit subsumees, necessary statements, refinement
and transitivity. Changing the definition of concepts and relations in this way is potentially
dangerous as it allows inconsistencies to be introduced into the concept hierarchy. For
example, assuming the existence of the appropriate sanctioning, that R1 is single valued and
that Cx and Cy are disjoint:

C1 topicNecessarily R1 Cx.

(C1 newSub C3) addSuper C2.
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C2 topicNecessarily R1 Cy.

will result in the incoherence of C3 due to its inheriting conflicting role restrictions from the
two necessary statements. However this incoherence goes undetected because it did not exist
when C3 was defined: it results from the subsequent redefinition of C2.

In order to be certain of maintaining the consistency of the model it is necessary not only to
reclassify redefined concepts27  but also to recursively reclassify all concepts whose definition
references a redefined concept or relation. This is not done by the GRAIL  classifier on the
grounds that it is a potentially expensive operation28 : instead GRAIL  users are advised that
concepts and relations should be fully defined before being used in other definitions.

Not initiating an integrity check when concepts and relations are redefined has a number of
disadvantages:

• The occasions when an integrity check would be very costly are precisely those when one
is most necessary: the redefinition of concepts or relations with large numbers of
dependants. If users follow the modelling guidelines and fully define concepts and
relations before using them in other definitions the cost of integrity checking should be
minimal.

• Delaying integrity checking throws away the advantage of being able to restrict the range
of the check to those concepts which might be affected.

• Delaying integrity checking might make it difficult to identify the operation which caused
the inconsistency.

LOOM’s syntax provides for the complete definition of concepts and relations using a single
statement. This means that, unlike GRAIL , redefinitions can be the exception rather than the
rule. In the case where an existing concept or relation is redefined LOOM does perform all the
necessary reclassification and checking to ensure that the consistency of the model is
maintained.

6.4.4 Inheritance of refinement and transitivity

In the current version of the GRAIL  classifier refinement and transitivity characteristics are
inherited down the relation hierarchy [BS94]. This is not semantically justified. For example
the relations “parent” , “grandparent”  and “great-grandparent”  would all be subsumed by the
transitive relation “ancestor” , but it would be wrong for any of them to inherit the transitivity
characteristic.

                                               
27 In most terminological logics it would also be necessary to reclassify a redefined relation but this is not the
case in GRAIL  as the relation hierarchy does not have criterial semantics - the position of a relation in the
hierarchy does not depend on its definition.
28 A model checking tool is provided, using which it is possible to initiate a consistency check of the entire
model.
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6.5 Problems with the LOOM  classifier

The LOOM classifier has far greater inferential power than the GRAIL  classifier: it finds all the
inferences missed by GRAIL  and can make many more inferences as a result of its much
richer syntax. However this increased power does seem to result in an increased fragility.

6.5.1 Fragility of the LOOM  classifier

While experimenting with the translation process a number of bugs were discovered which
resulted in a total failure of the LOOM system. For example:

(defconcept a)
(defconcept b)
(defrelation r)
(implies a (:all r b))
(get-role 'a 'r)
(implies a (:at-least 2 r))
(get-role 'a 'r)
(implies a (:at-most 5 r))
(get-role 'a 'r)

caused the system to crash and enter the debugger indicating a CLOS error.

All of the bugs encountered were reported to LOOM’s development team and several have
now been fixed, including the above example. Judging from this experience and the
frequency of bug reports observed in the LOOM users mailing list it is clear that the current
version of LOOM is very much a beta-test release.

6.5.2 Performance of the LOOM  A-box

The performance of LOOM’s A-box was so poor as to render it unusable with a knowledge
base as large as the CORE model. Simply creating one instance of each concept caused
compilation to slow by a factor of 30 – classification was 5 times slower with the remaining
difference being accounted for by the A-box. Attempts to enlarge the CORE model caused
LOOM to fail completely.

When instance definitions were expanded to include role fillers classification performance
became so poor that it proved impossible to compile the CORE model.

6.6 Maturity, stability and development

It became clear while using the two systems that neither is fully stable and mature. Ongoing
research and development in respect of both systems result in regular bug fixes and new
releases.



55

CHAPTER 7 DISCUSSION AND CONCLUSIONS

This chapter summarises what has been learned and the extent to which the aims of the
project have been satisfied. It concludes with a discussion of possible future work.

7.1 Recapitulation of aims

The aims of this thesis, as stated in the introduction, were to compare GRAIL  and LOOM in
order to: achieve a better understanding of GRAIL ; test the performance and scaleability of
both systems; assess how well the systems satisfied the requirements of the GALEN and
PEN&PAD projects; and to enhance GRAIL ’s future development.

7.2 A better understanding of GRAIL

The formalising of GRAIL ’s semantics and the comparison with LOOM has resulted in a much
clearer understanding of GRAIL ’s features and how they relate to other KL-ONE languages.
The improved understanding of GRAIL ’s semantics has also highlighted some problems with
the GRAIL  classifier.

One basic difference which has emerged is that GRAIL  is fundamentally oriented towards
constraint whereas LOOM is fundamentally oriented towards inference. When presented with
a new piece of information, in the form of a concept definition, GRAIL ’s approach can be
characterised as: “given what I know so far, does this new piece of information make
sense?”. In the same circumstances LOOM’s approach can be characterised as: “given what I
know so far, how can I make sense of this new piece of information?” .

GRAIL ’s constraint orientated approach is reflected in its closed world assumptions with
respect to sanctioning and disjunction. The default assumption of concept disjunction has
been shown to be problematical in some circumstances and this will probably result in a
redefinition of part of the language.

The relationship between sanctioning and role restrictions has also been clarified. The
semantics of sanctioning have been shown to be poorly understood and to be difficult to
reconcile with the semantics of a KL-ONE language. Sanctions correspond more closely to
conceptual relations which Sowa describes as “constraints on the use of relations in
conceptual graphs”  [Sow84].

7.3 Performance and scaleability

Given the well known tractability problems associated with TKRSs the results of the
performance tests were encouraging. When increasing the size of the knowledge base in a
very selective manner, by installing sanctioned specialisations, both GRAIL  and LOOM

showed a relatively slow increase in classification times, in the order of 1.6n for GRAIL  and
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0.9n for LOOM. GRAIL  also showed a remarkably improved performance when querying the
knowledge base – averaging over 50 times faster than classification – with no measurable
degradation of performance as the size of the knowledge base increased.

These results are much better than might be theoretically expected, and much better than
those obtained by testing classifiers with large randomly generated knowledge bases when it
was observed that runtime grew “at least quadratically with the size of the knowledge base”
[HKNP94]. LOOM’s better classification performance, in spite of its very expressive
terminological language, and the very large discrepancy between classification and query
times in GRAIL , indicate that there may be considerable scope for optimisation in the GRAIL

classifier.

LOOM’s performance also shows that an expressive and potentially intractable terminological
language can give acceptable performance when used in a limited manner – the user is able
to “pay only as s/he goes”  [HKNP94]. This indicates that one of GRAIL ’s design precepts –
that tractability requires severely restricted expressiveness – may not be completely valid.

7.4 Representing medical terminology

LOOM’s expressive terminological language could be usefully employed to solve some of the
representational problems encountered in medical terminology. However GRAIL ’s special
features – features which were designed specifically for the representation of medical
terminology – proved almost impossible to translate into LOOM: only sanctioning could be
represented without using LOOM’s A-box.

Using LOOM’s A-box to implement features not supported in the T-box, such as refinement
and necessary statements, proved impractical due to the its very poor performance. Even if
performance was not an issue, the use of opaque external code is antithetical to a TKRS
which should have “a well understood declarative semantics”  [BHH+91].

7.5 Future work

It is clear from this study that while GRAIL  does come closer to satisfying the requirements
for a system designed to represent medical terminology, work remains to be done before
GRAIL  could be considered a complete solution:

• Experience of using GRAIL  in the GALEN project has inevitably resulted in the
identification of additional modelling requirements, in particular the use of sanctioning
knowledge to enhance canonical reduction [Rec95].

• Although the scaleability experiments were reasonably encouraging, GRAIL ’s absolute
performance is still poor. Work is already underway to evaluate the possible benefits of
parallel processing in classification [GGJ94].

• GRAIL ’s limited support for role cardinality proved to be a serious restriction when
attempting to use the system in a multimedia database modelling application [Hau95].

As well as application specific enhancements to GRAIL  there are a number of areas which
would be of general interest in TKRS research:
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• The representation of part-whole relations in TKRSs is an area of active research
[Hor94], [PL94], [SPS94]. GRAIL ’s refinement mechanism gives it a considerable
advantage but work is needed to study part-whole inferences and their implementation.

• GRAIL ’s necessary statements provide a powerful mechanism for representing assertional
information within the classifier. However the current implementation does not support
multiple semi-disjoint definitions which are required in order to represent concepts such
as “ triangle”  which can be defined in more than one way: as a 3-sided polygon which
necessarily has 3 angles or as a 3-angled polygon which necessarily has 3 sides [Woo91].

7.5.1 The GRAIL  classifier

It has been demonstrated in sections 6.4.1 (inferred non-primitive conjunctions) and 6.4.2
(cardinality restrictions and the relation hierarchy) that there are some serious problems with
GRAIL ’s classification algorithm. In certain circumstances the classifier identifies concepts as
incoherent when this is not justified by the semantics of the language; in other circumstances
it fails to identify provably incoherent concepts. Given these two behaviours the current
classifier is certainly incomplete and is arguably unsound. Many useful TKRSs have been
shown to have incomplete classifiers but soundness is a fundamental requirement – a system
which is both incomplete and unsound allows nothing to be inferred with certainty. It should
however be pointed out that the areas of incompleteness and unsoundness in GRAIL  are small
and (now) well understood.

Complete, sound and provably correct classification algorithms now exist, based on lattice
theory [AKBLN89], and have been successfully applied in the CLASSIC system [BPS94].
These algorithms need to be studied to see if they can be adapted to deal with GRAIL ’s
necessary statements and refinement.

7.6 GRAIL  versus LOOM?

It was never the intention of this study to pick an overall ‘best’ and, given the diversity of the
two systems, it would be impossible to do so. GRAIL  and LOOM both have powerful features
but there is surprisingly little common ground: most of LOOM’s expressive terminological
language could not be represented in GRAIL  and GRAIL ’s enhanced classification based
reasoning proved impossible to implement in LOOM. The diversity of the two systems might
prompt a reconsideration of the range of design choices available in TKRSs.
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APPENDIX 1 GRAIL SYNTAX

Producing a parser revealed a number of errors and omissions in the existing formal syntax
specification. The following specification is adapted from [RNGM93] with the main
differences being:

• All operations are terminated with a period (including directives);

• The use of a semicolon for repeat operations on an entity;

• Separate definitions for criteria/non-expandable lists and entities/expandable lists.

The specification is not claimed to be exhaustive, particularly with respect to compiler
directives, but is sufficient to parse the CORE model.

%%% Token Classes %%%

<whitespace> :[\s\t\r]+
<comment> :\"~[\"]*\"
<identifier> :[a-zA-Z_][a-zA-Z0-9_]*
<variable> :$[a-zA-Z_][a-zA-Z0-9_]*
<integer> :[0-9]+
<string> :'~[']*'

%%% Production Rules %%%

Operations : [Operation '.']*
;

Operation : Directive
| Assignment
| Statement
;
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Directive : '#include'
| '#include' String
| '#path' String
| '#addPathSegment' String
| '#removePathSegment'
| '#saveImageAs' String
| '#begin' Identifier
| '#end'
| '#model' String
| '#modelTitle' String
| '#require' String
| '#requireTMVersion' String
| '#author' Identifier
| '#resetAuthor'
| '#printTime'
| '#printMessage' String
;

Assignment : <variable> '=' Entity

Statement : Entity
| Entity Constructs
;

Constructs : Construct
| Construct ';' Constructs
;

Construct : MonadicOp
| DyadicOp Entity
| CriterionOp Criteria
| TripleOp Criteria Qualifier
| CommentOp String
| 'newAttribute' Identifier Identifier Inheritance Cardinality
| 'descriptions' Qualifier
| 'precedence' Number
;

MonadicOp : 'dependants'
| 'retract'
| 'subs'
| 'supers'
| 'transitiveDown'
| 'isAbstract'
;
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DyadicOp : 'addSub'
| 'addSuper'
| 'name'
| 'newSub'
| 'refinedAlong'
| 'specialisedBy'
;

CriterionOp : 'which'
| 'whichG'
| 'grammatically'
| 'sensibly'
| 'necessarily'
| 'topicNecessarily'
| 'valueNecessarily'
| 'grammaticallyAndSensibly'
| 'grammaticallySensiblyAndNecessarily'
| 'grammaticallySensiblyAndTopicNecessarily'
| 'grammaticallySensiblyAndValueNecessarily'
| 'sensiblyAndNecessarily'
| 'sensiblyAndTopicNecessarily'
| 'sensiblyAndValueNecessarily'
| 'mayNot'
| 'byDefault'
;

TripleOp : 'triple'
| 'whichQ'
;

Entity : Entity1
| '[' Entity+ ']'
;

Entity1 : Identifier
| Number
| '(' Statement ')'
;

Criteria: Entity Entity
| '<' Criteria1+ '>'
;

Criteria1 : Entity1 Entity1
;
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Qualifier : Qualifier1
| '[' Qualifier+ ']'
;

Qualifier1 : 'conceivable'
| 'grammatical'
| 'possible'
| 'necessary'
;

Cardinality : Cardinality1
| '[' Cardinality+ ']'
;

Cardinality1 : 'oneOne'
| 'oneMany'
| 'manyOne'
| 'manyMany'
;

Inheritance : Inheritance1
| '[' Inheritance+ ']'
;

Inheritance1 : 'nilNil'
| 'nilAll'
| 'allNil'
| 'allAll'
;

Identifier : <identifier>
Number : <integer>
String : <string>
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APPENDIX 2 EXAMPLE TRANSLATION

The following is a short example showing the translation of a GRAIL  knowledge base into
LOOM. The knowledge base used is a ‘toy’ example taken from the GRAIL  Tutorial [BS94]; it
demonstrates the main features of GRAIL  including necessary statements, sanctioning and
refinement. The translation module is used in its fully featured mode – as in the ‘A’ version
of the CORE model – which includes the A-box implementation of necessary statements and
refinement; this is made possible by the small size of the model.

A2.1 GRAIL  source code

This section shows the GRAIL  source code which defines the concepts and relations which
make up the knowledge base.

"** Create a primitive concept hierarchy."
TopCategory newSub TransportCategory.
"** TopCategory is a built-in concept used as Top in the concept hierarchy."
TransportCategory newSub Vehicle.
Vehicle newSub [RoadVehicle RailVehicle

ElectricVehicle PetrolVehicle DieselVehicle].
"** GRAIL syntax - a list enclosed in square brackets is equivalent to the
    expanded form Vehicle newSub RoadVehicle. Vehicle newSub RailVehicle. etc."
RoadVehicle newSub Bus.
"** Bus is both a RoadVehicle and a DieselVehicle."
DieselVehicle addSub Bus.
RoadVehicle newSub Car.
"** Car is both a RoadVehicle and a PetrolVehicle."
PetrolVehicle addSub Car.
RailVehicle newSub Train.
RailVehicle newSub Tram.
"** Tram is both a RailVehicle and an ElectricVehicle."
Tram addSuper ElectricVehicle.
TopCategory newSub Person.
(SymbolicValueType newSub SexValueType) newSub [male female].
(SymbolicValueType newSub AgeValueType) newSub [young old].

"** Create some relations. In this example the relation hierarchy is completely
    'flat' - all relations are direct subs of the Top relation."
Attribute newAttribute DomainAttribute inverseDomainAttribute allAll manyMany.
"** Attribute is a built-in relation used as Top in the relation hierarchy."
DomainAttribute newAttribute hasDriver isDriverOf allAll manyOne.
DomainAttribute newAttribute hasSex isSexOf allAll manyOne.
DomainAttribute newAttribute hasAge isAgeOf allAll manyOne.
DomainAttribute newAttribute hasInsuranceRating isRatingOf allAll manyOne.

"** Sanction some conjunctions."
Vehicle grammatically hasDriver Person.
"** It is reasonable to talk about Vehicles having drivers of type Person."
RoadVehicle sensibly hasDriver Person.
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"** In our model only RoadVehicles can actually have drivers."
Person grammaticallyAndSensibly hasSex SexValueType.
Person grammaticallyAndSensibly hasAge AgeValueType.

"** An example of a necessary statement - an assertion that the concept formed
    from the conjunction of Person and (∃ isDriverOf:RoadVehicle) is also subsumed
    by the concept (hasAge:old)."
(Person which isDriverOf RoadVehicle) necessarily hasAge old.

"** Form some non-primitive conjunctions and name them."
((Person which hasSex male) which hasAge old) name Man.
((Person which hasSex male) which hasAge young) name Boy.
((Person which hasSex female) which hasAge old) name Woman.
((Person which hasSex female) which hasAge young) name Girl.
(Person which isDriverOf Car) name CarDriver.

"** Create a non-primitive conjunction which is only grammatically sanctioned
    and use it to add sanctioning knowledge at a more general level than would
    otherwise be possible."
(Person whichG isDriverOf Vehicle) grammaticallyAndSensibly

hasInsuranceRating IntegerValueType.
"** IntegerValueType is a built in concept representing the set of integers."

"** An example of refinement."
(SymbolicValueType newSub CompanyValueType) newSub

[britRail busCo megaCorp gmBuses].
DomainAttribute newAttribute isOwnedBy owns allAll manyMany.
DomainAttribute newAttribute isPartOf contains allAll manyMany.
isOwnedBy specialisedBy isPartOf.
Vehicle grammaticallyAndSensibly isOwnedBy CompanyValueType.
CompanyValueType grammaticallyAndSensibly isPartOf CompanyValueType.
busCo necessarily isPartOf megaCorp.
"** Any concept which is subsumed by (∃ isOwnedBy:busCo) will now also be subsumed
    by (∃ isOwnedBy:megaCorp).
    For example:-"
Bus which isOwnedBy busCo.

"** An example of transitivity:-"
isPartOf transitiveDown.
"** NOTE: this is bad practice - the relation isPartOf should have been fully
    defined, including the transitivity characteristic, before being used in
    concept forming statements."
CompanyValueType newSub enormousMultiNational.
megaCorp necessarily isPartOf enormousMultiNational.
"** Any concept which is subsumed by (∃ isPartOf:megaCorp) – for example busCo –
    will now also be subsumed by (∃ isPartOf:enormousMultiNational).”

"** Form some un-named non-primitive conjunctions (specialisations). Note that
    these add no knowledge to the model - their potential existence is implied
    by the sanction 'RoadVehicle sensibly hasDriver Person'."
Car which hasDriver Person.
Car which hasDriver Man.
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A2.2 LOOM  knowledge base

This section shows a LOOM dump of the translated knowledge base; it consists of the
concept, relation and instance definitions which make up the LOOM version of the knowledge
base. Due to problems with the LOOM rename-concept function (as described in section
4.3.3) GRAIL  knowledge names are not reflected in the names of non-primitive LOOM

concepts; to aid clarity, comments have been added which include GRAIL  concept definitions
and knowledge names where applicable.

;** Relation definitions.
(defrelation |Attribute|)
(defrelation Criteria-List)
(defrelation |DomainAttribute|
  :is-primitive |Attribute|
  :characteristics :monotonic)
(defrelation Grammatical)
(defrelation Necessary)
(defrelation Sensible)
(defrelation |contains|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)
(defrelation |hasAge|
  :is-primitive |DomainAttribute|
  :characteristics :monotonic)
(defrelation |hasDriver|
  :is-primitive |DomainAttribute|
  :characteristics :monotonic)
(defrelation |hasInsuranceRating|
  :is-primitive |DomainAttribute|
  :characteristics :monotonic)
(defrelation |hasSex|
  :is-primitive |DomainAttribute|
  :characteristics :monotonic)
(defrelation |inverseDomainAttribute|
  :is-primitive |Attribute|
  :characteristics :monotonic)
(defrelation |isAgeOf|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)
(defrelation |isDriverOf|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)

;** An example of refinement – isOwnedBy specialisedBy isPartOf.
(defrelation |isOwnedBy|
  :is-primitive |DomainAttribute|
  :characteristics (:open-world :monotonic)
  :antecedents (:satisfies (?X ?Z) (:for-some ?Y (:and (|isOwnedBy| ?X ?Y) (|isPartOf| ?Y ?Z)))))

;** An example of transitivity – isPartOf transitiveDown.
(defrelation |isPartOf|
  :is-primitive |DomainAttribute|
  :characteristics (:open-world :monotonic)
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  :antecedents (:satisfies (?X ?Z) (:for-some ?Y (:and (|isPartOf| ?X ?Y) (|isPartOf| ?Y ?Z)))))

(defrelation |isRatingOf|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)
(defrelation |isSexOf|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)
(defrelation |owns|
  :is-primitive |inverseDomainAttribute|
  :characteristics :monotonic)

;** Concept definitions.
(defconcept |AgeValueType|
  :is-primitive |SymbolicValueType|
  :implies (:and (:filled-by Grammatical '(|isAgeOf| |Person|))
                 (:filled-by Sensible '(|isAgeOf| |Person|)))
  :characteristics (:open-world :monotonic))

;** |Bus| is both a |RoadVehicle| and a |DieselVehicle|.
(defconcept |Bus|
  :is-primitive (:and |DieselVehicle| |RoadVehicle|)
  :characteristics :monotonic)
;** Bus which isOwnedBy busCo.
;    Instances of this concept – such as |I*Bus*G24158| – would also be recognised by the
;    A-box as instances of the concept (∃ isOwnedBy:megaCorp).
(defconcept |Bus*G24158|
  :is (:and |Bus|
            (:some |isOwnedBy| |busCo|))
  :implies (:and (:filled-by Grammatical (|hasDriver| |Person|)

(|isOwnedBy| |CompanyValueType|))
                 (:at-least 2 Grammatical)
                 (:filled-by Sensible (|isOwnedBy| |CompanyValueType|) (|hasDriver| |Person|))
                 (:at-least 2 Sensible)
                 (:some |isOwnedBy| |busCo|)
                 (:filled-by Criteria-List (|isOwnedBy| |busCo|))
                 (:at-least 1 Criteria-List))
  :defaults (:and (:filled-by |isOwnedBy| |I*busCo|))
  :characteristics (:monotonic :open-world))

;** |Car| is both a |RoadVehicle| and a |PetrolVehicle|.
(defconcept |Car|
  :is-primitive (:and |PetrolVehicle| |RoadVehicle|)
  :characteristics :monotonic)

;** Car which hasDriver Person.
(defconcept |Car*G24525|
  :is (:and |Car|
            (:some |hasDriver| |Person|)
            (:all |hasDriver| |Person|)
            (:at-most 1 |hasDriver|))
  :implies (:and (:filled-by Grammatical (|hasDriver| |Person|)

(|isOwnedBy| |CompanyValueType|))
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                 (:at-least 2 Grammatical)
                 (:filled-by Sensible (|isOwnedBy| |CompanyValueType|) (|hasDriver| |Person|))
                 (:at-least 2 Sensible)
                 (:some |hasDriver| |Person|)
                 (:all |hasDriver| |Person|)
                 (:at-most 1 |hasDriver|)
                 (:filled-by Criteria-List (|hasDriver| |Person|))
                 (:at-least 1 Criteria-List))
  :defaults (:and (:filled-by |hasDriver| |I*Person|))
  :characteristics (:monotonic :open-world))
;** Car which hasDriver Man.
(defconcept |Car*G24671|
  :is (:and |Car|
            (:some |hasDriver| |Person*G23868|)
            (:all |hasDriver| |Person*G23868|)
            (:at-most 1 |hasDriver|))
  :implies (:and (:filled-by Sensible (|isOwnedBy| |CompanyValueType|)

(|hasDriver| |Person|))
                 (:at-least 2 Sensible)
                 (:filled-by Grammatical (|hasDriver| |Person|)

(|isOwnedBy| |CompanyValueType|))
                 (:at-least 2 Grammatical)
                 (:some |hasDriver| |Person*G23868|)
                 (:all |hasDriver| |Person*G23868|)
                 (:at-most 1 |hasDriver|)
                 (:filled-by Criteria-List (|hasDriver| |Person|) (|hasDriver| |Person*G23868|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |hasDriver| |I*Person|)
                  (:filled-by |hasDriver| |I*Person*G23868|))
  :characteristics (:monotonic :open-world))

(defconcept |CompanyValueType|
  :is-primitive |SymbolicValueType|
  :implies (:and (:filled-by Grammatical '(|owns| |Vehicle|))
                 (:filled-by Sensible '(|owns| |Vehicle|))
                 (:filled-by Grammatical '(|isPartOf| |CompanyValueType|))
                 (:filled-by Grammatical '(|contains| |CompanyValueType|))
                 (:filled-by Sensible '(|isPartOf| |CompanyValueType|))
                 (:filled-by Sensible '(|contains| |CompanyValueType|)))
  :characteristics (:open-world :monotonic))
(defconcept |DieselVehicle|
  :is-primitive |Vehicle|
  :characteristics :monotonic)
(defconcept |DomainCategory|)
(defconcept |ElectricVehicle|
  :is-primitive |Vehicle|
  :characteristics :monotonic)
(defconcept |IntegerValueType|
  :is-primitive Loom::Built-In-Theory^Thing
  :implies (:and (:filled-by Grammatical '(|isRatingOf| |Person*G24032|))
                 (:filled-by Sensible '(|isRatingOf| |Person*G24032|)))
  :characteristics :open-world)
(defconcept |Person|
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  :is-primitive |TopCategory|
  :implies (:and (:filled-by Grammatical '(|isDriverOf| |Vehicle|))
                 (:filled-by Sensible '(|isDriverOf| |RoadVehicle|))
                 (:filled-by Grammatical '(|hasSex| |SexValueType|))
                 (:filled-by Sensible '(|hasSex| |SexValueType|))
                 (:filled-by Grammatical '(|hasAge| |AgeValueType|))
                 (:filled-by Sensible '(|hasAge| |AgeValueType|)))
  :characteristics (:open-world :monotonic))
;** Person which isDriverOf RoadVehicle.
;    The necessary statement:
;    (Person which isDriverOf RoadVehicle) necessarily hasAge old.
;    has become the assertion:
;    :implies (:and (:some |hasAge| |old|) (:all |hasAge| |old|) (:at-most 1 |hasAge|)).
;    All instances of this concept will be recognised by the A-box as instances of
;    the concept (hasAge:old)."
(defconcept |Person*G23810|
  :is (:and |Person|
            (:some |isDriverOf| |RoadVehicle|))
  :implies (:and (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:some |isDriverOf| |RoadVehicle|)
                 (:filled-by Criteria-List (|isDriverOf| |RoadVehicle|))
                 (:at-least 1 Criteria-List)
                 (:some |hasAge| |old|)
                 (:all |hasAge| |old|)
                 (:at-most 1 |hasAge|)
                 (:filled-by Necessary '(|hasAge| |old|)))
  :defaults (:and (:filled-by |isDriverOf| |I*RoadVehicle|)
                 (:filled-by |hasAge| |I*old|))
  :characteristics (:recursive :monotonic :open-world))

;** Person which hasSex male.
(defconcept |Person*G23853|
  :is (:and |Person|
            (:some |hasSex| |male|)
            (:all |hasSex| |male|)
            (:at-most 1 |hasSex|))
  :implies (:and (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:some |hasSex| |male|)
                 (:all |hasSex| |male|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |male|))
                 (:at-least 1 Criteria-List)
                 (:filled-by Criteria-List '(|hasSex| |male|)))
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  :defaults (:and (:filled-by |hasSex| |I*male|))
  :characteristics (:recursive :monotonic :open-world))
;** ((Person which hasSex male) which hasAge old) name Man.
(defconcept |Person*G23868|
  :is (:and |Person*G23853|
            (:some |hasSex| |male|)
            (:all |hasSex| |male|)
            (:at-most 1 |hasSex|)
            (:some |hasAge| |old|)
            (:all |hasAge| |old|)
            (:at-most 1 |hasAge|))
  :implies (:and (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:some |hasAge| |old|)
                 (:all |hasAge| |old|)
                 (:at-most 1 |hasAge|)
                 (:some |hasSex| |male|)
                 (:all |hasSex| |male|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |male|) (|hasAge| |old|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |hasSex| |I*male|)
                  (:filled-by |hasAge| |I*old|))
  :characteristics (:monotonic :open-world))

;** ((Person which hasSex male) which hasAge young) name Boy.
(defconcept |Person*G23900|
  :is (:and |Person*G23853|
            (:some |hasSex| |male|)
            (:all |hasSex| |male|)
            (:at-most 1 |hasSex|)
            (:some |hasAge| |young|)
            (:all |hasAge| |young|)
            (:at-most 1 |hasAge|))
  :implies (:and (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:some |hasAge| |young|)
                 (:all |hasAge| |young|)
                 (:at-most 1 |hasAge|)
                 (:some |hasSex| |male|)
                 (:all |hasSex| |male|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |male|) (|hasAge| |young|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |hasSex| |I*male|)
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                  (:filled-by |hasAge| |I*young|))
  :characteristics (:monotonic :open-world))
;** Person which hasSex female.
(defconcept |Person*G23927|
  :is (:and |Person|
            (:some |hasSex| |female|)
            (:all |hasSex| |female|)
            (:at-most 1 |hasSex|))
  :implies (:and (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:some |hasSex| |female|)
                 (:all |hasSex| |female|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |female|))
                 (:at-least 1 Criteria-List)
                 (:filled-by Criteria-List '(|hasSex| |female|)))
  :defaults (:and (:filled-by |hasSex| |I*female|))
  :characteristics (:recursive :monotonic :open-world))

;** ((Person which hasSex female) which hasAge old) name Woman.
(defconcept |Person*G23942|
  :is (:and |Person*G23927|
            (:some |hasSex| |female|)
            (:all |hasSex| |female|)
            (:at-most 1 |hasSex|)
            (:some |hasAge| |old|)
            (:all |hasAge| |old|)
            (:at-most 1 |hasAge|))
  :implies (:and (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:some |hasAge| |old|)
                 (:all |hasAge| |old|)
                 (:at-most 1 |hasAge|)
                 (:some |hasSex| |female|)
                 (:all |hasSex| |female|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |female|) (|hasAge| |old|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |hasSex| |I*female|)
                  (:filled-by |hasAge| |I*old|))
  :characteristics (:monotonic :open-world))
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;** ((Person which hasSex female) which hasAge young) name Girl.
(defconcept |Person*G23974|
  :is (:and |Person*G23927|
            (:some |hasSex| |female|)
            (:all |hasSex| |female|)
            (:at-most 1 |hasSex|)
            (:some |hasAge| |young|)
            (:all |hasAge| |young|)
            (:at-most 1 |hasAge|))
  :implies (:and (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:some |hasAge| |young|)
                 (:all |hasAge| |young|)
                 (:at-most 1 |hasAge|)
                 (:some |hasSex| |female|)
                 (:all |hasSex| |female|)
                 (:at-most 1 |hasSex|)
                 (:filled-by Criteria-List (|hasSex| |female|) (|hasAge| |young|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |hasSex| |I*female|)
                  (:filled-by |hasAge| |I*young|))
  :characteristics (:monotonic :open-world))

;** Person which isDriverOf Car.
(defconcept |Person*G24001|
  :is (:and |Person|
            (:some |isDriverOf| |Car|))
  :implies (:and (:filled-by Necessary (|hasAge| |old|))
                 (:at-least 1 Necessary)
                 (:some |hasAge| |old|)
                 (:all |hasAge| |old|)
                 (:at-most 1 |hasAge|)
                 (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:some |isDriverOf| |Car|)
                 (:filled-by Criteria-List (|isDriverOf| |RoadVehicle|) (|isDriverOf| |Car|))
                 (:at-least 2 Criteria-List))
  :defaults (:and (:filled-by |isDriverOf| |I*RoadVehicle|)
                  (:filled-by |isDriverOf| |I*Car|) (:filled-by |hasAge| |I*old|))
  :characteristics (:monotonic :open-world))
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;** Person whichG isDriverOf Vehicle.
(defconcept |Person*G24032|
  :is (:and |Person|
            (:some |isDriverOf| |Vehicle|))
  :implies (:and (:filled-by Sensible (|isDriverOf| |RoadVehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Sensible)
                 (:filled-by Grammatical (|isDriverOf| |Vehicle|) (|hasSex| |SexValueType|)

(|hasAge| |AgeValueType|))
                 (:at-least 3 Grammatical)
                 (:some |isDriverOf| |Vehicle|)
                 (:filled-by Criteria-List (|isDriverOf| |Vehicle|))
                 (:at-least 1 Criteria-List)
                 (:filled-by Grammatical '(|hasInsuranceRating| |IntegerValueType|))
                 (:filled-by Sensible '(|hasInsuranceRating| |IntegerValueType|)))
  :defaults (:and (:filled-by |isDriverOf| |I*Vehicle|))
  :characteristics (:recursive :monotonic :open-world))

(defconcept |PetrolVehicle|
  :is-primitive |Vehicle|
  :characteristics :monotonic)
(defconcept |RailVehicle|
  :is-primitive |Vehicle|
  :characteristics :monotonic)
(defconcept |RoadVehicle|
  :is-primitive |Vehicle|
  :implies (:and (:filled-by Sensible '(|hasDriver| |Person|)))
  :characteristics (:open-world :monotonic))
(defconcept |SexValueType|
  :is-primitive |SymbolicValueType|
  :implies (:and (:filled-by Grammatical '(|isSexOf| |Person|))
                 (:filled-by Sensible '(|isSexOf| |Person|)))
  :characteristics (:open-world :monotonic))
(defconcept |SymbolicValueType|)
(defconcept |TopCategory|)
(defconcept |Train|
  :is-primitive |RailVehicle|
  :characteristics :monotonic)

;** |Tram| is both a |RailVehicle| and an |ElectricVehicle|.
(defconcept |Tram|
  :is-primitive (:and |ElectricVehicle| |RailVehicle|)
  :characteristics :monotonic)

(defconcept |TransportCategory|
  :is-primitive |TopCategory|
  :characteristics :monotonic)
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(defconcept |Vehicle|
  :is-primitive |TransportCategory|
  :implies (:and (:filled-by Grammatical '(|hasDriver| |Person|))
                 (:filled-by Grammatical '(|isOwnedBy| |CompanyValueType|))
                 (:filled-by Sensible '(|isOwnedBy| |CompanyValueType|)))
  :characteristics (:open-world :monotonic))
(defconcept |britRail|
  :is-primitive |CompanyValueType|
  :characteristics :monotonic)

;** Instances of this concept – such as |I*busCo| – would also be recognised by the
;    A-box as instances of the concept (∃ isPartOf:enormousMultiNational).
(defconcept |busCo|
  :is-primitive |CompanyValueType|
  :implies (:and (:some |isPartOf| |megaCorp|)
                 (:filled-by Necessary '(|isPartOf| |megaCorp|)))
  :defaults (:and (:filled-by |isPartOf| |I*megaCorp|))
  :characteristics (:open-world :monotonic))

(defconcept |enormousMultiNational|
  :is-primitive |CompanyValueType|
  :implies (:and (:some |contains| |megaCorp|)
                 (:filled-by Necessary '(|contains| |megaCorp|)))
  :defaults (:and (:filled-by |contains| |I*megaCorp|))
  :characteristics (:open-world :monotonic))
(defconcept |female|
  :is-primitive |SexValueType|
  :characteristics :monotonic)
(defconcept |gmBuses|
  :is-primitive |CompanyValueType|
  :characteristics :monotonic)
(defconcept |male|
  :is-primitive |SexValueType|
  :characteristics :monotonic)
(defconcept |megaCorp|
  :is-primitive |CompanyValueType|
  :implies (:and (:some |contains| |busCo|)
                 (:filled-by Necessary '(|contains| |busCo|))
                 (:some |isPartOf| |enormousMultiNational|)
                 (:filled-by Necessary '(|isPartOf| |enormousMultiNational|)))
  :defaults (:and (:filled-by |contains| |I*busCo|)
                 (:filled-by |isPartOf| |I*enormousMultiNational|))
  :characteristics (:open-world :monotonic))
(defconcept |old|
  :is-primitive |AgeValueType|
  :implies (:and (:some |isAgeOf| |Person*G23810|)
                 (:filled-by Necessary '(|isAgeOf| |Person*G23810|)))
  :defaults (:and (:filled-by |isAgeOf| |I*Person*G23810|))
  :characteristics (:open-world :monotonic))
(defconcept |young|
  :is-primitive |AgeValueType|
  :characteristics :monotonic)
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;** Instantiate all concepts
(CREATE '|I*Bus| '|Bus|)
(CREATE '|I*Car*G24671| '|Car*G24671|)
(CREATE '|I*Person*G23810| '|Person*G23810|)
(CREATE '|I*Person*G23868| '|Person*G23868|)
(CREATE '|I*Person*G23974| '|Person*G23974|)
(CREATE '|I*Person| '|Person|)

;** Inherited default implications ⇒  |I*Bus*G24158| |isOwnedBy| |I*busCo|
;    and |I*busCo| |isPartOf| |I*megaCorp|. From the definition of the |isOwnedBy|
;    relation the A-box is therefore able to infer |I*Bus*G24158| |isOwnedBy| |I*megaCorp|.
(CREATE '|I*Bus*G24158| '|Bus*G24158|)

(CREATE '|I*Car| '|Car|)
(CREATE '|I*britRail| '|britRail|)
(CREATE '|I*female| '|female|)
(CREATE '|I*RailVehicle| '|RailVehicle|)
(CREATE '|I*AgeValueType| '|AgeValueType|)
(CREATE '|I*TransportCategory| '|TransportCategory|)
(CREATE '|I*enormousMultiNational| '|enormousMultiNational|)
(CREATE '|I*Person*G24001| '|Person*G24001|)
(CREATE '|I*CompanyValueType| '|CompanyValueType|)
(CREATE '|I*young| '|young|)
(CREATE '|I*Car*G24525| '|Car*G24525|)
(CREATE '|I*RoadVehicle| '|RoadVehicle|)
(CREATE '|I*old| '|old|)
(CREATE '|I*DieselVehicle| '|DieselVehicle|)
(CREATE '|I*Tram| '|Tram|)
(CREATE '|I*Person*G23853| '|Person*G23853|)
(CREATE '|I*male| '|male|)
(CREATE '|I*Person*G23900| '|Person*G23900|)

;** Inherited default implications ⇒  |I*busCo| |isPartOf| |I*megaCorp| and
;    |I*megaCorp| |isPartOf| |I*enormousMultiNational|. From the definition of the
;    |isPartOf| relation the A-box is therefore able to infer
;    |I*busCo| |isPartOf| |I*enormousMultiNational|.
(CREATE '|I*busCo| '|busCo|)

(CREATE '|I*gmBuses| '|gmBuses|)
(CREATE '|I*Vehicle| '|Vehicle|)
(CREATE '|I*PetrolVehicle| '|PetrolVehicle|)
(CREATE '|I*SexValueType| '|SexValueType|)
(CREATE '|I*Train| '|Train|)
(CREATE '|I*Person*G23927| '|Person*G23927|)
(CREATE '|I*Person*G24032| '|Person*G24032|)
(CREATE '|I*ElectricVehicle| '|ElectricVehicle|)
(CREATE '|I*Person*G23942| '|Person*G23942|)
(CREATE '|I*megaCorp| '|megaCorp|)


