
International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-3, Issue-5, November 2013

36

Run Time Evaluation by using Object Oriented
Debugging Tool

Ashvini A. Patil, Swapnil V. Suryawanshi

Abstract: In the process of Software Development and

evolution, Developer has to answer multiple questions about how
the code or software behaves at runtime and already many
options available for debugging.

Debugging is an essential part of programming language and
what sets great programmers apart from average ones. Beginners
are often pleased if a bug/virus that was seen earlier inexplicably
disappears. Inexperienced programmers have a tendency to shy
away from error messages or be frightened by observable errors,
whereas skilled programmers rely heavily on error messages and
he is aware about fixing of bugs by using different debugging
tool. And programmer can easily detect and remove it at run
time. The traditional or classical debugger while debugging gives
developer bunch of breakpoints in the source code.

Object based debugging offer, interruption when a given or a
particular object is accessed or modified. Programmers, who try
to find violations in such source code, need new tool that allows
them to explore objects in the system effectively. The
implementation of the proposed debugging described here offers
programmers an effective tool which will allows searching of
objects even for programs that have huge number of objects.
Therefore Successful debugging tool involve efficient exploratory
ability and a proper understanding of troubleshooting in
programming code.

I. INTRODUCTION

As stated from traditional tools that, the complication of
object oriented system increases, as the number of different
objects in programs increases debugging becomes relatively
difficult. Developer needs a dedicated user interface for
object oriented programming.
Object based debugging tool able to detect and analyse the
relationship in between the objects during the runtime. So
the key behind this is to focus on a particular object instead
of the execution stack. Traditional debuggers are focused on
the execution stack which may create chance of bug
availability as well as time consuming process because
programmer has to spot the different object parts in code as
per their views and interest. We have to fix multiple
breakpoints accordingly. The software then runs until a
breakpoint is reached, and the developer can then inspect
and interact with the code and entities in the scope of the
breakpoint. Unfortunately developer may not be fix
breakpoints properly at run time. As a result, identifying the
right place to set breakpoints in the source code requires a
deep understanding of what happens during the execution.
Second, debugging operations are focused on the execution
stack, rather than on the objects. There exists therefore a
considerable conceptual gap between the interface offered
by the debugger and the questions of interest by the
developer [20] [21].

Manuscript received November, 2013.

Ashvini A. Patil\, ME computer Engg. VBCOE, Ahmednagar, India.
Swapnil V. Suryawanshi, BE IT. VBCOE, Ahmednagar, India.

Object based debugging offer, interruption when a given or
a particular object is accessed or modified. Programmers,
who try to find violations in such source code, need new
tool that allows them to explore objects in the system
effectively. The implementation of the proposed debugging
actually offers programmers an effective tool which will
allows searching of objects even for programs that have
huge number of objects.
Object based debugging tool looks forward to analyse the
relationship in between the objects during the runtime. This
allows functioning operations directly on objects rather than
on the execution stack. Our tool can provide an interface to
programmer which will make easy different operations,
which going to perform on a particular object. Object based
operations directly act on objects by intercepting access to
runtime state; thus monitoring how objects interact and
Support interactions.
There exists therefore conceptual gap between the interface
offered by the debugger and the need of the developer,
hence to overcome or fill the gap; there is a need for object
based debugging tool which is helpful to have previous
object states and object reference flow information at hand
during debugging.
Our debugging tool is able to capture object state at runtime.
It also monitors object specific interactions and it support
live interaction that is at run time. For this we keep track the
relevant data that is it store object history information
together with the regular objects in the application memory.

II. RELATED WORKS [21]

For developing proposed work, we have gone through
different existing system to become better approach for
object oriented debugging tool. Following literature is study
about existing systems working and critically evaluated on
some evaluation method to find shortcomings from them.
In Query Based debugging approach user defines a query in
a higher-level language that is then applied to the data
Queries can test complex object interrelationships and
sequences of related events.
Trace oriented Debugger: it is collected of a well-organized
instrumentation for incident making, a specific database for
scalable storage space, and support for partial traces to
reduce trace volume [2].
While this method has the advantage that nowhere data is
lost, its drawback is that it requires large hardware power,
which is not available for many developers today [6].
The why line debugging interface approach.
Why line tool which facilitate developer to ask, “Why did”
and “Why did not” questions regarding their program’s
output Why line tries to facilitate developer by applying
static as well as dynamic analyses and after that answer
Some of the developer questions [7].
In Back-in-time debuggers approach; these are extremely
useful tools for identifying the causes of bugs. Compare to

Run Time Evaluation by using Object Oriented Debugging Tool

37

the “omniscient” approaches that try to remember all
previous states are impractical because they consume too
much space or they are too slow. So many approaches to
limit these penalties, but they ultimately end up giving out
too much relevant information. In this paper a practical
approach that attempts to keep track of only the relevant
data. In contrast to other approaches, it keeps object history
information together with the regular objects in the
application memory. This method has the effect that data not
reachable from current application objects that’s why not
useful further.
This approach, present idea which explains that memory
utilization stays in practical limits. Furthermore, the
performance penalty is significantly less than with other
approaches [1].
Back-in-Time Debugging:
Back-in-Time Debuggers are useful tool for identifying the
cause of errors, not the omniscient debugger which always
remembers all previous states.
To overcome this drawback of omniscient debugger back in
time debugger is developed. Omniscient Debugging: also
known as back-in-time debugging or reversible debugging.
These debuggers store the total history and execution trace
of a debugged program. Developers can explore the history
by simulating step-by-step execution both forward and
backward [1] [6].
In Auto Flow an automatic debugging approach; Aspect-
oriented programming (AOP) is gaining popularity with
adoption of languages such as AspectJ.
During AspectJ software evolution, when tests fail, it may
be lengthy or difficult for programmers to find out the
failure minimising changes by manually inspecting all code
editing.
To beat the costly attempt spent on debugging developed
AutoFlow, an automatic debugging approach for AspectJ
system. AutoFlow meets the potential of delta debugging
algorithm with the benefit of change impact analysis to slow
down the search for imperfect changes. It primary uses
change collision analysis to identify a subset of responsible
changes for a failed test, after this ranks these changes
according to proposed heuristic (indicating the likelihood
that they may have contributed to the failure), finally this
improved delta debugging algorithm to determine a minimal
set of faulty changes.
The important advantage of AutoFlow is that it can
automatically reduce a big portion of irrelevant change in an
early stage, eventually then locate not fixed changes
effectively [8].
NUDA a Non-Uniform Debugging approach.
This paper is proposed a novel non-uniform debugging
architecture (NUDA). This makes hardware-assisted
debugging both feasible and scalable for many-core
processing scenarios. Here, theme is to distribute the
debugging support structures across a set of hierarchical
clusters while avoiding address overlap. It allows the
address space to be monitored using non-uniform protocols
and propose approach to lockset-based race detection
supported by the NUDA. Here, page-based monitoring
cache in every NUDA node to keep track of footprints. The
union of all the caches know how to take in account as a
race detection probe without violating execution ordering.
[10].
 How helpful are automated debugging tools :
The Area of automated debugging, which is with the
automation of identifying and correcting a failure's root

cause, made tremendous advancements in the past years.
However, some of the reported progress may be due to
unrealistic assumptions that with the evaluation of
automated debugging tools.
These unrealistic assumptions concern the work process of
developers and their ability to detect wrong code without
explanatory context, or the size and arrangement of fixes.
Instead of trying to locate the fault, this proposes to help the
developer understand it, thus enabling her to decide which
fix they deems most appropriate.
This came to know the need to employ a completely
different evaluation scheme that bases on feedback from
actual users of the tools in realistic usage scenarios [9].
 “A Review of reverse debugging”
Reverse debugging is defined as of a debugger to stop after
a failure in a program has been observed and go back into
the history of the execution to find reason for the failure.
Reverse execution has become a practical technique
available in a number of free and commercial tools. This
article review the history and techniques of reverse
debugging, as researched, implemented, and used until
today [11].
There is a need to find or steer in area where programmers
actually face problems during debugging scenario [12].
This strategy works well, trying to understand the general
performance for objects. When addressing polymorphism or
delegation the performance of objects of same class changes
on their composition. In these scenarios need an object-
specified analysis and simple breakpoint strategy is not the
best option. In application development when programmers
require interrupting the execution of the application when a
particular code is evaluated, requires breakpoint strategy.
The programmer wants to locate the particular object he is
concerned. The programmer specifies a suitable condition to
recognize the particular object previously found, without
interacting with it. This approach may be practicable, if exist
few objects to analyze in given code [13].

2.1 Related work shortcoming

Studding and analysing different literature survey following
are the outcomes.
• Back in time debugging debugger have to remember

history of all previous states.
• There is pretty need of a useful and dedicated user

interface for debugging scenario.
• Developer comfortable with using object oriented

dedicated user interface for debug situations.
• Trace oriented debugger requires more hardware power,

which is practically not possible. Omniscient debugger
depend on more memory because, to store history of
last stages. Reverse debugging is to stop after a failure
in a program has been observed and go back into the
history of the execution to uncover the reason for the
failure.

• AutoFlow can automatically reduce a large portion of
irrelevant change in an early phase, eventually then
locate faulty changes effectively.

• After going through literature survey came to know
that developer faced some kind of problems while doing
debugging. Major problem is that developer cannot
answers about objects. And after taking view on
problems faced by developer they do not get answer to
their question regarding object.

International Journal of Soft Computing and Engineering (IJSCE)
ISSN: 2231-2307, Volume-3, Issue-5, November 2013

38

When complex object oriented system taken in account then
traditional debuggers fails to act on object related operations
and relationship between different objects. To eliminate
these problems new tool should be developed on object
based approach and useful dedicated user interface for it
[20].

III. MOTIVATION SCENARIOS:

The motivation for doing this project was primarily an
interest in undertaking a challenging project in an interesting
area of debugging. This gives opportunity to learn about
new area of software engineering. This area is possibly an
area that I might study at postgraduate level. As the
debugging area taken into account developer came across
different problems, which are faced by developer. The
traditional debugging technique used by programmer is
concentrated on stack orientation so developer face
problems regarding objects in the code given.
The debuggers not designed to answer many of the
questions that developer typically uses to ask after analysing
different papers related to approaches of debugging, found
that one can develop a debugging tool which is based on
objects, and possesses following some points to understand
runtime behaviour of the system. It will be helpful to
continue interacting with the runtime, applying operations
directly to objects without working with static representation
of the system. This is useful in to monitor communications
with entity objects without taking stepwise breakpoints [20]
[21].
So it is required to develop object based debugging tool that
facilitated with user interface which fulfil needs of
developer such as, different interruption related to objects or
keep watch on object interactions and do operations related
to objects using user interface telling suggestions.
3.1 System Description
Looking on problems faced by user or developer they do not
get answer to their question regarding object. When
complex object oriented system taken in account then
traditional debuggers fails to act on object related operations
and relationship between different objects. To overcome this
object based debugging tool is very helpful in this scenario.
In this tool Brifost reflection framework is being used. The
tool of object based debugging is built on top of the Bifrost
reflection framework. Bifrost offers fine grained
unanticipated dynamic structural and reflection through
meta-objects. Instead of providing different reflective
capabilities as an external mechanism integrate all deeply
into the environment. Explicit meta objects providing a
range of features, thereby evolving both application models
and the host language. Meta-objects provide a sound basis
for different coexisting meta-level architectures by giving
traditional object-oriented techniques to the meta-level. Our
proposed system answers to different users requirements
like;
• If user wants to find out when method is called during

the execution of code.
• If user wants to find out where the instances of this

class created at runtime they can easily track it.
• In code, user defines different variables and wants to

trace these variable flows in program and wants to
know at different break point where these variables are
accessed.

• User can trace at different stages or at different break
point what is the values of the argument at runtime.

• User can easily trace out how data is passed to the
different object at different break point.

• User can easily trace out the relationship between
objects.

Figure: 1 system description of automatic object based

debugging

3.1.1 System Overview

The source code when debug using object based debugging
tool, particular object required by developer is searched and
made available to developer. Developer further acting on
object do the specified operation by using user interface
concentrated on objects. The code file taken into proposed
tool, then code parsing done for all particular objects. After
going through execution and isolates the points needed by
developer needs.
The parser extracted all objects from provided code file then
supplied or given to execution module. This parser also
converted it into intermediate forms which give response to
object related errors or bugs. In code generating module
there is code which gives object related error findings [20].
Finally execution step it operates on the code parsed taking
objects in consideration using a dedicated useful interface
for it. The stepwise execution is stated in system workflow.

Figure: 2 overview for object based debugging system

Run Time Evaluation by using Object Oriented Debugging Tool

39

3.2 System Workflow:

System workflow of object based debugging have following
steps in the system workflow.
Step1: Input source code into object based debugging tool.
Step2: It finds out appropriate required object from given

input code.
Step3: It finds relationship like dependency, inheritance

between different objects.
Step4: Developer now acts on object.
Step5: Using user interface user do different operation on

object.
Step6: Trace out how data is passed to the different object

at different break point.
Step7: Trace at different break point what is the values of

the variables and different argument at runtime
Step8: Apply this procedure repetitively on whole Source

Code document for desired objects.
Step9: Object related operations performed.
Step10: Make changes in objects.
Step11: Prevent problems and so improve performance

[21].

IV. EXPECTED RESULT:

Understanding and debugging software systems is difficult.
Most used debuggers offer only a limited low-level view of
the program state. For the exploration of large data
structures, provided a system that allows programmers to
ask the program state, helping to check object relationships
in large object-oriented programs. This debugger combines
several original features.
A new approach to debugging is instead of exploring a
single object at a time, an object based debugger allows the
programmer to quickly get a set of interesting objects from a
potentially very large number of objects, or to check a
certain property cause for errors from a large number of
objects.
 A flexible tool conceptually, evaluates expression for all
members of the complex objects. This is simple to
understand and to learn, yet it allows a large range of
complexity of objects to be formulated concisely.
Debugging easier for programmers and facilitating the
development of more robust object-oriented systems [20].

• It performs object based debugging and it check for the

errors in code also.
• It finds relation between objects.
• It interacts with objects.
• It performs different operations related to objects.

V. CONCLUSION

In this paper we have presented new better approach
towards debugging, which is based particularly on objects.
Traditional debuggers focused on instances of class and
general code file. Developer face problems during
interrogating with object oriented arising questions. In this
paper Object based debugging tool have dedicated user
interface which having object specific dependent operations,
this are helpful in dealing with object related errors. In this
paper modified traditional debugging tool have stack
oriented state but there previous function are not violated,
and dedicated user interface is very helpful interacting with
the objects. Stack based debugging tool work on entire code
by pointed line by line, while object based debugging tool

works on desired objects doing operations directly on them.
When source code having huge number of objects in case of
problems related to objects this approach is useful. This
approach is helpful improving the performance of object
oriented software’s.

VI. ACKNOWLEDGMENTS

I am very thankful to the people those who have provided
me continuous encouragement and support to all the stages
and ideas visualize. I am very much thankful to the complete
VBCOE, Ahmednagar for open handed me all facilities and
work environment which enable me to complete my task. I
express my sincere thanks to HOD and PG Coordinator,
VBCOE, Ahmednagar who gave me their valuable and rich
guidance and help in presentation of this research paper.

REFERENCES
[1] Adrian lienhard, tudor Girba and Oscar Nierstrasz ”Practical Object

Oriented Back-In-Time Debugging”LNCS 5142, pp 592-615.
[2] Raimondas Lencevicius, Urs Holzle And Ambuj K. Singh, “Query-

based Debugging of Object-Oriented Programs” OOPSLA 97
Atlanta, USA.

[3] Mark Minas “Cyclic Debugging For pSather, a Parallel Object-
Oriented Programming Language” Jan 31 2002

[4] Tanja Mayerhofer,”Testing and Debugging UML Models Based On
Fuml” ICSE 2012.

[5] G. Pothier, E. Tanter, and J. Piquer, “Scalable omniscient
Debugging, “Proceedings of the 22nd Annual SCM SIGPLAN
Conference on Object-Oriented Programming Systems, Languages
And Applications (OOPSLA’07), vol. 42, no. 10, pp.535–552,
2007.

[6] C. Hofer,M. Denker, and S. Ducasse, “Design and implementation
of a backward-in-time debugger,” in Proceedings of NODE’06, ser.
Lecture Notes in Informatics, vol. P-88 (GI), Sep 2006, pp. 17-32.

[7] J. KO and B. A. Myers, “Designing the whyline: a debugging
interface for asking questions about program behaviour,” in
Proceedings of the 2004 conference on Human factors in computing
systems. ACM Press, 2004, pp. 151–158.

[8] Sai Zhang; Zhongxian Gu; Yu Lin; Jianjun Zhao “AutoFlow: An
automatic debugging tool for AspectJ software” ICSM 2008. IEEE
International Conference on 2008, pp. 470 – 471.

[9] Rossler, J. “How helpful are automated debugging tools?” User
Evaluation for Software Engineering Researchers (USER), 2012
IEEE Conference Publications, pp. 13 – 16.

[10] Chi-Neng Wen;shu-hsuan Chou;chih Chen ;tien-fu chen. ”NUDA: A
Non-Uniform Debugging Architecture and Nonintrusive Race
Detection For Many core system” IEEE transaction, vol.61, 2012,
pages.199-212.

[11] Engblom, J. ”A Review of Reverse debugging” System, Software,
SC and Silicon Debug Conference (S4D), 2012, pp. 1 – 6.

[12] Chris parnin and alessandro orso, “Are automated debugging
techniques actually helping programmers” ISSTA’ July 2011

[13] Jorge ressia, Alexandre Bergel and Oscar Nierstrasz “object centric
debugging” ICSE 2012

[14] Renee McCauley, Sue Fitzgerald, Gary Lewandowski, Laurie
Murphy, Beth Simon, Lynda Thomas and Carol Zander
“Debugging: a review of the literature from an educational
perspective” June 2008

[15] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul, V. Orgovan, G.
Nichols, D. Grant, G. Loihle, and G. Hunt, “Debugging in the large:
ten years of implementation and experience,” Proc. SOSP, 2009, pp.
103-116.

[17] Noor Fazlida Mohd Sani, Noor Afiza Mohd Arifin and Rodziah
Atan “Design of object-oriented debugger model using unified
modeling language” JCSSP 2013, pp 15-18.

[18] Potanin, A., Noble, J., Biddle, R.: Snapshot query-based debugging.
In: Proceedings of the 2004 Australian Software Engineering
Conference (ASWEC’04), Washington, DC, USA, IEEE Computer
Society (2004) 251

[19] P. Iyenghar, C. Westerkamp, J. Wuebbelmann, E. Pulvermueller, A
Model Based Approach for Debugging Embedded Systems in Real-
time, in 10th

[20] Jorge Ressia, Alexandre Bergel, Oscar Nierstrasz “Object-Centric
Debugging” ICSE 2012, IEEE, Zurich, Switzerland.

[21] D.M.Thakore, Tanveer S Beg “An Automatic Debugging Tool
Extension for Object Oriented Software” IJSCE.

