
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Using fuzzy logic for robust event detection in wireless sensor networks

Krasimira Kapitanova a,⇑, Sang H. Son a, Kyoung-Don Kang b

a University of Virginia, Charlottesville, VA, USA
b Binghamton University, Binghamton, NY, USA

a r t i c l e i n f o

Article history:
Received 9 March 2011
Received in revised form 16 May 2011
Accepted 20 June 2011
Available online 26 June 2011

Keywords:
Wireless sensor networks
Fuzzy logic
Event description
Event detection accuracy

a b s t r a c t

Event detection is a central component in numerous wireless sensor network (WSN) appli-
cations. Nevertheless, the area of event description has not received enough attention. The
majority of current event description and detection approaches rely on using precise values
to specify event thresholds. However, we believe that crisp values cannot adequately han-
dle the often imprecise sensor readings. In this paper we demonstrate that using fuzzy val-
ues instead of crisp ones significantly improves the accuracy of event detection. We also
show that our fuzzy logic approach provides higher event detection accuracy than two
well-established classification algorithms.

A disadvantage of using fuzzy logic is the exponentially growing size of the fuzzy logic
rule-base. As sensor nodes have limited memory, storing large rule-bases could be a chal-
lenge. To address this issue, we have developed a number of techniques that help reduce
the size of the rule-base by more than 70%, while preserving the event detection accuracy.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

Event detection is one of the main components in
numerous wireless sensor networks (WSNs). WSNs for
military application are deployed to detect the invasion
of enemy forces, health monitoring sensor networks are
deployed to detect abnormal patient behavior, fire detec-
tion sensor networks are deployed to set an alarm if a fire
starts somewhere in the monitored area. Regardless of the
specific application, the network should be able to detect if
particular events of interest, such as fire, have occurred or
are about to. However, similar to many other human-
recognizable events, the phenomenon fire has no real
meaning to a sensor node. Therefore, we need suitable
techniques that would allow us to describe events in ways
that sensor nodes would be able to ‘‘understand’’. The area
of event description and detection in WSNs, however, has
not been explored much.

Most previous work on event description in WSNs uses
precise, also called crisp, values to specify the parameters

that characterize an event. For example, we might want
to know if the temperature drops below 5 �C or the humid-
ity goes above 46%. However, sensor readings are not al-
ways precise. In addition, different sensors, even if
located close to each other, often vary in the values they
register. Consider an example scenario where we want
the air conditioning in a room to be turned on if the tem-
perature goes above 5 �C. Two sensors, A and B, measure
the temperature in the room. The average of their values
is used to determine if an action should be taken. At some
point, sensor A reports 5.1 �C and sensor B reports 4.8 �C.
The average, 4.95 �C, is below our predefined threshold
and the cooling remains off. However, if sensor B’s mea-
surement is inaccurate and, therefore, lower than the ac-
tual temperature, we have made the wrong decision. The
situation becomes even more complex when more than
two sensor measurements are involved. This makes deter-
mining the precise event thresholds an extremely hard
task which has led us to believe that using crisp values to
describe WSN events is not the most suitable approach.
Fuzzy logic, on the other hand, might be able to address
these challenges better than crisp logic.

Fuzzy logic has a number of properties that make it
suitable for describing WSN events:
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� It can tolerate unreliable and imprecise sensor readings.
� It is much closer to our way of thinking than crisp logic.

For example, we think of fire as an event described by
high temperature and smoke rather than an event char-
acterized by temperature above 55 �C and smoke
obscuration level above 15%.
� Compared to other classification algorithms based on

probability theory, fuzzy logic is much more intuitive
and easier to use.

A disadvantage of using fuzzy logic is that storing the
rule-base might require a significant amount of memory.
The number of rules grows exponentially to the number
of variables. With n variables each of which can take m val-
ues, the number of rules in the rule-base is mn. Adding spa-
tial and temporal semantics to the decision process further
increases the number of rules. Since sensor nodes have
limited memory, storing a complete rule-base on every
node might not be reasonable. In addition, constantly tra-
versing a large rule-base might considerably slow down
the event detection. To address this problem, we have de-
signed a number of techniques that reduce the size of the
rule-base. A key property of these techniques is that they
do not decrease the event detection accuracy of the
system.

This paper has three main contributions. First, we show
that using fuzzy logic results in more accurate event detec-
tion than when either crisp values or well established clas-
sification algorithms, such as Naive Bayes classifiers or
decision trees, are used. Second, we incorporate event
semantics into the fuzzy logic rule-base to further improve
the accuracy of event detection. Third, we have designed
techniques that can be used to prevent the exponential
growth of the rule-base without compromising the accu-
racy of event detection.

The rest of the paper is organized as follows: We discuss
the related work in Section 2. Section 3 introduces a brief
overview of fuzzy logic and fuzzy systems. Section 4 dis-
cusses the spatial and temporal semantics of wireless sen-
sor network events. Section 5 describes the reduction
techniques we use to decrease the size of the rule-base.
We evaluate and analyze how using fuzzy logic affects
the accuracy and timeliness of event detection in Sections
6 and 7 concludes the paper.

2. Related work

2.1. Event detection

Relatively little research has focused on providing
methods for event description and detection in WSNs that
can support data dependency and collaborative decision
making. The prevailing approach is to use SQL-like primi-
tives [1–4]. The papers that employ this method vary in
semantics. In [1,2], the authors use general SQL primitives
to define events in sensor networks. The limitation of this
approach is that the events can only be defined by predi-
cates on sensor readings with very simple temporal and
spatial constraints connected by AND and OR operators.
Madden et al. have extended the SQL primitives by incor-

porating streaming support where a desired sample rate
can be included [3]. Li et al. define events using a sub-event
list and confidence functions in SQL [4]. However, SQL is
not very appropriate for describing WSN events. Some of
its drawbacks include that it: (i) cannot capture data
dependencies and interactions among different events or
sensor types; (ii) does not explicitly support probability
models; (iii) is awkward in describing complex temporal
constraints and data dependencies; (iv) lacks the ability
to support collaborative decision making and triggers [5];
(v) does not facilitate any analysis of the event system.

Another approach to formally describe events in WSNs
has been the use of extended Petri nets. This was initially
proposed by Jiao et al. [6]. The authors design a Sensor Net-
work Event Description Language (SNEDL) which can be
used to specify event logic for WSN applications. Petri nets
were also used in MEDAL [7], an extension of SNEDL that
supports the description of additional WSN specific fea-
tures such as communication, actuation, and feedback con-
trol. Both SNEDL and MEDAL, however, use crisp values in
the definitions of their Petri nets.

2.2. Stochastic methods

There is a long history of using stochastic formalisms in
different WSN applications. Bayesian classifiers and hidden
Markov models have been extensively used in activity
recognition [8,9] and decision fusion [10,11]. Dempster–
Shafer evidence theory has been applied to intrusion
detection [12], sensor fusion [13,14], and assisted living
applications [15]. Probabilistic context free grammars have
been used to solve problems such as inferring behaviors
[16] as well as movement and activity monitoring [17,18].

2.3. Fuzzy logic

Fuzzy sets and logic were introduced by L. Zadeh in
1965. Numerous fields have taken advantage of their prop-
erties since then. In WSNs, fuzzy logic has been used to im-
prove decision-making, reduce resource consumption, and
increase performance. Some of the areas it has been ap-
plied to are cluster-head election [19,20], security
[21,22], data aggregation [23], routing [24,25], MAC proto-
cols [26], and QoS [27,28]. However, not much work has
been done on using fuzzy logic for event description and
detection. Liang and Wang [29] propose to use fuzzy logic
in combination with double sliding window detection, to
improve the accuracy of event detection. However, they
do not study the effect of fuzzy logic alone or the influence
of spatial or temporal properties of the data on the classi-
fication accuracy.

In D-FLER [30] fuzzy logic is used to combine personal
and neighbors’ observations and determine if an event
has occurred. Their results show that fuzzy logic improves
the accuracy of event detection. The use of fuzzy values al-
lows D-FLER to distinguish between real fire data and
nuisance tests. However, the approach used in D-FLER does
not incorporate any temporal semantics. In addition, since
all of the experiments last only 60 s after the fire ignition,
the authors do not analyze the number of false alarms
raised by D-FLER.
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3. Overview of fuzzy logic

Fig. 1 shows the structure of a general fuzzy logic sys-
tem (FLS). The fuzzifier converts the crisp input variables
x 2 X, where X is the set of possible input variables, to fuzzy
linguistic variables by applying the corresponding member-
ship functions. Zadeh defines linguistic variables as ‘‘vari-
ables whose values are not numbers but words or
sentences in a natural or artificial language’’ [31]. An input
variable can be associated with one or more fuzzy sets
depending on the calculated membership degrees. For
example, a temperature value can be classified as both
Low and Medium.

The fuzzified values are processed by if–then statements
according to a set of predefined rules derived from domain
knowledge provided by experts. In this stage the inference
scheme maps input fuzzy sets to output fuzzy sets. Finally,
the defuzzifier computes a crisp result from the fuzzy sets
output by the rules. The crisp output value represents the
control actions that should be taken. The above three steps
are called fuzzification, decision making, and defuzzifica-
tion, respectively. We describe each of them in more detail
in the following subsections.

3.1. Fuzzification

The fuzzifier converts a crisp value into degrees of
membership by applying the corresponding membership
functions. A membership function determines the cer-
tainty with which a crisp value is associated with a specific
linguistic value. Fig. 2 shows an example of a temperature
membership function. According to this membership func-
tion, a temperature value of �2 �C is classified as 20%
Freezing and 80% Cold. The membership functions can
have different shapes. Some of the most frequently used
shapes include triangular, trapezoidal, and Gaussian-
shaped. Membership functions are defined by either rely-
ing on domain knowledge or through the application of
different learning techniques, such as neural networks
[32,33] and genetic algorithms [34].

3.2. Decision making

A rule-base consists of a set of linguistic statements,
called rules. These rules are of the form IF premise, THEN
consequent where the premise is composed of fuzzy input
variables connected by logical functions (e.g. AND, OR, NOT)
and the consequent is a fuzzy output variable. The rule-base
is usually generated as an exhaustive set of all possible va-
lue-combinations for the input linguistic variables that

constitute the premise. Similarly to how membership func-
tions are defined, the rule-base is derived either based on
domain knowledge, or through using machine learning
techniques. Consider a t-input 1-output FLS with rules of
the form:

Ri : IF x1 is Si
1 and x2 is Si

2 and � � � and xt is Si
t THEN y is Ai

When input x0 ¼ x01; x
0
2; . . . ; x0t

� �
is applied, the degree of

firing of some rule Ri can be computed as:

lSi
1

x01
� �

� lSi
2

x02
� �

� � � � � lSi
t

x0t
� �
¼ Tt

l¼1lSi
l

x0l
� �

Here l represents the membership function and both ⁄ and
T indicate the chosen triangular norm. A triangular norm is
a binary operation such as AND or OR applied to the fuzzy
sets provided by the membership functions [35].

3.3. Defuzzification

Executing the rules in the rule-base generates multiple
shapes representing the modified membership functions.
For example, a set of rules designed to decide the probabil-
ity that there is a fire may produce the following result:
Low (56%), Medium (31%), and High (13%). Defuzzification
is the transformation of this set of percentages into a single
crisp value. Based on how they perform this transforma-
tion, defuzzifiers are divided into a number of categories.
The most commonly used defuzzifiers are center of gravity,
center of singleton, and maximum methods [35]:

� The center of gravity approach finds the centroid of the
shape obtained by superimposing the shapes resulting
from applying the rules. The output of the defuzzifier
is the x-coordinate of this centroid.
� The defuzzification process can be significantly simpli-

fied if the center of singleton method is used. With this
method, the membership functions for each rule are
defuzzified separately. Each membership function is
reduced to a singleton which represents the function’s
center of gravity. The simplification consists in that
the singletons can be determined during the design of
the system. The center of singleton method is an
approximation of the center of gravity method.
Although experiments have shown that there are slight
differences between these two approaches, in most
cases the differences can be neglected [36].
� The class of maximum methods determines the output

by selecting the membership function with the maxi-
mum value. If the maximum is a range, either the lower,
upper, or the middle value is taken for the output value
depending on the method. Using these methods, the

Fig. 1. The structure of a fuzzy logic system.
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rule with the maximum activity always determines the
output value. Applying this approach to the aforemen-
tioned fire detection example will produce a decision
that there is a Low probability of fire and the other
fuzzy values will be automatically ignored. Since the
class of maximum methods shows discontinuous out-
put on continuous input, these methods are not consid-
ered to be very suitable for use in controllers.

4. Event semantics

Sensors are generally believed to be unreliable and
imprecise. Therefore, to increase our confidence in the
presence of an event somewhere in the monitored area,
we often need readings from multiple sensors and/or read-
ings over some period of time. This could be achieved by
instrumenting the event description logic with temporal
and spatial semantics. We believe that this can signifi-
cantly decrease the number of false positives. It will also
allow us to describe and detect more complex events. To
the best of our knowledge, no previous work on applying
fuzzy logic to event detection has considered the effects
of temporal and spatial semantics on the accuracy of event
detection.

Consider, for example, a fire detecting scenario. A sensor
network is deployed to monitor a building and trigger an
alarm if a fire starts. There are a number of temperature
and smoke sensors in each room, as well as in the hallways.
The floors in the building are monitored separately, and
there is a master node on each floor. The rest of the sensor
nodes send their readings to the master node on their floor.
Based on these readings, the master node determines if
there is a fire or not. The fire detection is based not only on
the temperature and smoke obscuration readings for a par-
ticular moment in time, but also on the rate of change of
both the temperature and smoke levels. Therefore, our fire
detection logic takes four linguistic variables as input – tem-
perature (T), temperature change (DT), smoke obscuration
(S), and smoke obscuration change (DS). The linguistic val-
ues for all four variables can be classified as Low (L), Medium
(M), and High (H). The accuracy of event detection might be
higher if linguistic variables with higher granularity are
used, i.e. instead of only holding Low, Medium, or High val-
ues, they can also hold values such as Very Low, Low–
Medium, Medium–High, and Very High. However, the

designer of a WSN-based event detection system should
use the smallest number of membership sets that can pro-
vide high event detection accuracy, while minimizing the
size of the rule-base and the corresponding memory
consumption.

In order to increase the accuracy of the fire detection
scheme, we require that at least two temperature readings
and one smoke reading are used to make a decision.
Table 1 shows an example rule-base for this fire detection
scenario. This rule-base, however, introduces a number of
concerns which we address in the rest of this section.

4.1. Spatial semantics

One of the main goals when designing an event detec-
tion system is that the system is accurate and the number
of false alarms is small. A way to achieve this is to include
readings from multiple sensors in the decision process. For
instance, we would be more confident that there is an ac-
tual fire if more than one node reports high temperature
and smoke readings. If, for example, three sensors from
the same room send reports indicating fire, the probability
that there is an actual fire in that room is very high. In gen-
eral, there is a negative correlation between the distance
among the sensors reporting fire and the probability of this
report being true. Therefore, we include the concept of
location in the event detection logic. We achieve this by
augmenting the rules in the rule-base with a linguistic var-
iable that serves as a spatial guard. This variable expresses
the application requirements about the distance between
the reporting sensors. In our fire detection scenario, we
can name this variable distance and classify it as Close

Fig. 2. Temperature membership function.

Table 1
An example fire detection rule-base.

Rule # T1 DT1 T2 DT2 S DS Confidence

1 L L L L L L L
2 L L L L L M L
3 L L L L L H L
4 L L L L M L L
5 L L L L M M L

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
.

728 H H H H H M H
729 H H H H H H H
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(C), Distant (D), and Far (F), for example. Incorporating this
distance variable into the rule-base, however, changes the
format of the rules and adds an extra column to the rule-
base. Now the format of the rules in Table 1 changes to:

IF T1 is H and DT1 is H and T2 is H and DT2 is H and S
is H and DS is H and distance is F; THEN Fire is M:

4.2. Temporal semantics

To further decrease the number of false alarms, we also
need to take into account the temporal properties of the
monitored events. The event detection confidence is higher
if the sensor readings indicating that a particular event has
occurred have been generated within a short period of
time of each other. We call the length of this time period
temporal distance of the readings. The event detection con-
fidence decreases as the temporal distance between the
sensor readings increases.

Temporal semantics are especially important for WSNs
because of the inherent nature of sensor communication. It
is very likely for messages in a WSN to be delayed because
of network congestions or routing problems. Consequently,
a reliable event detection rule-base should take into con-
sideration the generation times of the sensor readings. To
accommodate this, we include another linguistic variable
that serves as a temporal guard. This variable, time, repre-
sents the difference in the generation times of the sensor
readings. For example, in our fire detection scenario, time
could have three semantic values: Short (S), Medium (M),
and Long (L). In this way, the information about the time
interval within which the sensor readings have been gen-
erated is included in the decision process.

5. Decreasing the size of the rule-base

Augmenting the rule-base with temporal and spatial
variables increases the number of rules. As mentioned ear-
lier, the size of the rule-base grows exponentially to the
number of linguistic variables. In our fire monitoring
example, where the only sensor readings we consider are
temperature and smoke, the full rule-base has 6561 rules.
In more complicated scenarios that require more than two
types of sensors, the number of rules in the fuzzy rule-base
could be much higher. Storing such rule-bases might be a
challenge for memory constrained sensor nodes. In addi-
tion, traversing the full rule-base every time there are
new sensor readings will slow down the event detection.
To address these concerns, we have designed three tech-
niques to help reduce the number of rules. We demon-
strate how these techniques are applied on a relatively
small rule-base with a few linguistic variables that can
take three values – Low, Medium, and High. However,
these techniques can be applied in the same fashion to lar-
ger rule-bases that contain more linguistic variables char-
acterized by more complex membership functions.

Although the rule-base reduction techniques alleviate
both the storage problem and the rule traversal process,
they might have a negative effect on the event detection
accuracy. Therefore, maintaining high event detection

accuracy was a primary goal when designing the reduction
techniques described in this section. We achieve this by
carefully modifying the rule-base through merging impor-
tant rules and removing the rules that do not affect the
detection accuracy of the events of interest.

5.1. Separating the rule-base

The first technique we use to reduce the size of the rule-
base is to separate the rules on a ‘‘need to know’’ basis.
Each node stores only the rules corresponding to the types
of sensors it has. If, for example, some of the nodes in our
fire detection scenario are only equipped with temperature
sensors, they do not need to store the whole rule-base. In-
stead, they store a smaller modified rule-base similar to
the one shown in Table 2. This rule-base contains only
rules with premise linguistic variables based on the values
from the temperature sensors. In this way, the event detec-
tion logic on each node considers only the rules that are
relevant to the node’s sensor readings. This separation sim-
plifies the decision process and makes the rule-base tra-
versal faster. The rule-base for the smoke sensors can be
constructed in a similar way.

5.2. Combining rules with similar outcomes

Rules 1 and 2 in Table 2 have the same outcome and
only differ in the values of DT. This observation is also valid
for rules 8 and 9. Combining these rule couples could help
us further decrease the size of the rule-base. For the rule-
base in Table 2 applying such an optimization leaves us
with seven rules. The rules, however, have a slightly differ-
ent syntax. Instead of:

Ri : IF x1 is Si
1 and x2 is Si

2 and . . . and xt is Si
t THEN y is Ai

some of the rules have the following different form:

Ri : IF x1 is 6 Si
1 and x2 is Si

2 and . . . and xt is

P Si
t THEN y is Ai

In the modified rules 6 stands for ‘‘in this fuzzy set or in
fuzzy sets smaller than it’’ and P stands for ‘‘in this fuzzy
set or in fuzzy sets greater than it’’. Table 3 shows the re-
sult of applying this reduction technique on the rule-base
in Table 2.

Table 2
Rule-base for a temperature sensor.

Rule # T DT Confidence

1 L L L
2 L M L
3 L H M
4 M L L
5 M M M
6 M H H
7 H L M
8 H M H
9 H H H
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5.3. Incomplete rule-base

A rule-base is considered complete if there are rules for
every possible combination of the input variables. How-
ever, only some of these combinations have outcomes that
are important to the event detection system. For example,
rules containing variables which do not satisfy the tempo-
ral and spatial constraints cannot trigger an alarm. There-
fore, the rules with distance variable Distant or Far can be
removed from the rule-base. This step leaves us with just
a third of the original number of rules in the rule-base.
Similarly, applying the same approach to the time variable
and removing the rules with values Medium and Long de-
creases the rule-base by yet another two thirds.

In addition, if we exclude the rules with consequents
that are of no interest to the event detection system, such
as rules indicating that the possibility that a fire has oc-
curred is Low, we reduce the size of the rule-base even
more. As a result, by lowering the level of completeness
of the rule-base, we significantly decrease the number of
rules that need to be stored on the sensor nodes. This
‘‘trimming’’ process, however, should be performed very
carefully in order to prevent the removal of important con-
sequents. To make sure that the system knows how to pro-
ceed if none of the rules in the rule-base has been satisfied,
we introduce a default rule that is triggered if no other rule
has been satisfied.

6. Evaluation

We use the FuzzyJ Toolkit for Java [37] to implement
the necessary fuzzy logic functionality. To avoid the dan-
ger, cost, and non-repeatability of creating fires, we per-
form trace-based simulations using real fire data
publicly available on the National Institute of Standards
and Technology (NIST) website [38]. The study they con-
duct provides sensor measurements from a number of
different real fires as well as nuisance scenarios. We have
used three of the available real fire scenarios: fire caused
by a burning mattress, fire caused by a burning chair, and
cooking oil fire. The purpose of the nuisance tests is to
study common household nuisance alarm scenarios. We
have used two of these tests in our experiments: frying
margarine and broiling hamburgers.

6.1. Experiments using real fire data

The membership functions for the smoke and tempera-
ture input linguistic variables used in the experiments are

shown in Fig. 3. In addition to the temperature and smoke
obscuration variables, we also take into consideration the
temperature and smoke obscuration difference between
two consecutive readings. These two additional variables
give us a notion of how fast the temperature and smoke
obscuration are changing. Fig. 4 shows the membership
function for the output fire confidence. This linguistic var-
iable represents the system’s confidence in the presence of
fire. For example, if the fire confidence value is higher than
80, we are more than 80% certain that there is a fire. If the
fire confidence is smaller than 50, it is more likely that
there is no fire.

In the system model we use for our simulations every
node decides locally if a fire event has occurred. If it decides
that a fire is present, a node forwards its decision to the mas-
ter node for the house. An alternative system model, where
the nodes send a subset of their readings to the master node,
and the master node makes a decision, is also possible. In
this model, the base node has the aggregated information
from all sensors, and might be able to make more accurate
decisions. However, because of the increased amount of
communication, the lifetime of the network might decrease.
Therefore, which model is appropriate depends on the nat-
ure of the application and the lifetime requirements of the
network.

To provide a baseline for our results, we performed
crisp-value experiments with the burning mattress, burn-
ing chair, and cooking oil data. The temperature and smoke
obscuration thresholds used in the crisp logic experiments
are threshold values used in commercial smoke and heat
detectors, 55 �C and 0.15 m�1, respectively [39,40]. The
membership functions in Fig. 3 were also built according
to these threshold values. We used the commercial crisp
thresholds as the border between Low and High, which
in our scenario is classified as 0% Low, 100% Medium, and
0% High for all four linguistic variables. We relied on do-
main knowledge to determine the remaining details of
the membership functions.

The results from the crisp-value experiment are shown
in Figs. 5a, 6a, and 7a. In these and all following figures, the
origin of the graph represents the time of fire ignition. As
we can see from the three figures, using crisp values re-
sulted in a very large number of false fire detections. In
the burning mattress scenario in particular, there were
40 false fire detections in the period prior to the fire igni-
tion, which constitutes about 1.3% of the measurements.
This considerable number or false positives significantly
affects the efficiency and fidelity of an event detection sys-
tem. Admittedly, part of these false positives can be attrib-
uted to the aggressive crisp value thresholds. However, if
the thresholds are set higher, this could lead to failures
in detecting actual fires. In a real fire detection system it
is more important to decrease the number of false nega-
tives than that of false positives. Therefore, we have kept
the threshold values in compliance with the commercial
standards.

What we wanted to investigate with our next set of
experiments was whether fuzzy logic can do better in terms
of false positives, while still reporting promptly the pres-
ence of a fire when one actually occurs. In the first set of fuz-
zy logic experiments, a node decides if there is a fire based

Table 3
Reduced rule-base for a temperature sensor.

Rule # T DT Confidence

1 L 6M L
2 L H M
3 M L L
4 M M M
5 M H H
6 H L M
7 H PM H
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only on its own readings. The readings of neighboring sensor
nodes are not considered as inputs to the decision process.

The values of the linguistic variables used in the decision
process can be classified as Low (L), Medium (M), and High

Fig. 3. Membership functions for the input linguistic variables.

Fig. 4. Fire confidence membership function.

Fig. 5. Burning mattress simulation: (a) crisp value detection and (b) fuzzy value detection.

K. Kapitanova et al. / Ad Hoc Networks 10 (2012) 709–722 715
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(H), as shown by Figs. 3 and 4. We have used heuristics to
build the rule-base for our fire detection experiments. In
cases where this is not possible, for example, when more
complex events are to be detected, domain experts could
be consulted for the definition of the rule-bases. The rule-
base for these experiments is shown in Table 4. Because of
space limitations, instead of showing the complete rule-
base, which has 81 rules, we show the rule-base after our
second reduction technique has been applied.

The results from our first set of fuzzy logic experiments,
a burning mattress, a burning chair, and cooking oil fire, are
presented in Figs. 5b, 6b, and 7b, respectively. As we can
see, the fuzzy logic event detection mechanism performs
very well. It detects the presence of a fire shortly after the
ignition. In addition, unlike the crisp-value fire detection,
there are no false positives. All three graphs show fire con-
fidence around 0 before the ignition, except for a number of
small peaks when the confidence increases to 54, which is
close to 100% Medium. At the same times when the fuz-
zy-value peaks occur, we can also notice crisp-value peaks
but with much higher confidence. The raw sensor data re-
vealed that the peaks were caused by a number of one-sec-
ond-long reports of increased smoke values. This proves
our hypothesis that fuzzy logic is able to accommodate
the often imprecise sensor readings. Even in the cases when
the nodes erroneously report the presence of smoke, the
fuzzy logic mechanism keeps the fire confidence low en-
ough so that a false alarm is not triggered.

We also evaluate how including neighbor node values
in the decision process affects the detection accuracy.

The average of the neighbor values is represented with
an additional linguistic variable that we include in the
decision rules. In addition, in order to meet the spatial
and temporal requirements of the application, we only
consider readings (i) received from neighbor nodes that
are located close to the current node and (i) that have been
generated within 1 s from the current reading of the node.
The results in Figs. 8–10 show that fire is detected almost
as quickly as when the decision process is only based on
own sensor readings. Although the peak areas are still pres-
ent, the corresponding fire confidence values are lower
when the neighbor readings are included in the decision
process. This shows that including the readings of neighbor
nodes in the decision process positively affects the detec-
tion accuracy.

Fig. 10 allows us to make an important observation. In
the burning oil scenario, when the fire detection is based
on the readings of a single sensor, the system reaches fire
confidence of 100 around 23 min after the stove has been
turned on. However, when the readings of neighbor sen-
sors are considered in the detection process, the maximum
fire confidence never exceeds 71, which is approximately
60% Medium and 40% High. This is due to the fact that
the neighbor sensors are located further away from the fire
and, therefore, their temperature readings have lower val-
ues. These results come to show that sensor network
designers should be careful when determining the size
and radius of a sensor’s neighborhood. Although including
readings from neighbor sensors improves the event detec-
tion accuracy of the system, when these neighbor sensors

Fig. 6. Burning chair simulation: (a) crisp value detection and (b) fuzzy value detection.

Fig. 7. Burning oil simulation: (a) crisp value detection and (b) fuzzy value detection.
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are located too far from where the event has occurred, this
might have a negative effect on the detection accuracy.

6.2. Experiments using nuisance fire data

The goal of these experiments is to study the behavior
of our fuzzy-value fire detection mechanism when it is pre-
sented with a nuisance scenario. The Smoke Detector

Operability Survey: Report on Finding [41] conducted by
the US Consumer Products Safety Commission reported
that about 50% of the 1012 participants indicated that they
had experienced nuisance alarms, with 80% of those
attributed to cooking activities, and an additional 6% citing
steam from bathrooms. Dust and tobacco smoke are also
mentioned sources. The survey also reported that for the
alarms with missing or disconnected batteries, or

Table 4
Fire detection rule-base for the scenario where a node decides if there is a fire based only on its own sensor readings. The temperature,
temperature difference, smoke, and smoke difference variables take Low (L), Medium (M), and High (H) values.

Rule Temperature D Temperature Smoke D Smoke Confidence

1 L L 6M PL L
2 L L H 6M L
3 L L H H M
4 L PM L L L
5 L H L M L
6 M L L PL L
7 M L M L L
8 H L L L L
9 L M L PM M

10 L M M PL M
11 L M H 6M M
12 L H L H M
13 L H PM L M
14 L H M M M
15 M L M PM M
16 M L H 6M M
17 M M 6M 6M M
18 M M H L M
19 M H 6M L M
20 H 6M L M M
21 H PM L L M
22 L M H H H
23 L H M H H
24 L H H PM H
25 M L H H H
26 M M PL H H
27 M M H M H
28 M H PL PM H
29 M H H L H
30 H PL L H H
31 H PL PM PL H
32 H H L M H

Fig. 8. Simulating a burning mattress: including neighbor readings in the decision. The results when only own values are used are plotted on the first y-axis.
Including the neighbor values is plotted on the second y-axis.
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disconnected AC power, more than one third of respon-
dents indicated that power was removed due to nuisance
alarms.

The NIST data provided for the nuisance scenarios dif-
fers from that for the actual fires in that the smoke obscu-
ration measurements are not provided. Therefore, we have
substituted the two input linguistic variables based on
smoke obscuration with two new variables based on
aerosol mass concentration. Similarly to the smoke obscu-
ration, the aerosol mass concentration allows us to
determine the amount of aerosol particles in the air. The
thresholds for the mass concentration and mass concentra-
tion difference linguistic variables were chosen based on
previous mass concentration alarm research [42]. Fig. 11
shows the membership functions for the two new linguis-
tic variables.

As with the real fire scenarios, we use crisp-value
detection as a baseline. Fig. 12 shows the results from
the crisp-value experiments of frying margarine and grill-
ing hamburgers, respectively. In both scenarios no actual
fire occurred. However, as we can see from the figure, the
number of false fire detections is high: 172 (34% of all read-
ings) for the frying margarine scenario and 248 (16% of all
readings) in the broiling hamburgers scenario.

The results from the fuzzy-value experiments are shown
in Fig. 13. For both scenarios the fire detection confidence
follows the same pattern as in the crisp-value experiments.
The peaks that are present in Fig. 13a and 13b are also pres-
ent in Fig. 12a and 12b, respectively. Similarly to the real fire
experiments, the difference between the peaks is that in the
fuzzy-value scenarios the peaks never reach high confi-
dence. This means that, unlike the cases when crisp values
are used, an alarm will not be triggered.

An interesting observation is that in Fig. 13a some of the
fire confidence peaks reach levels as high as 50%. All of
these peaks are grouped around the fifth minute of the
experiment. At that time, the aerosol mass concentration
increases above 100 mg/m3 with maximum 214 mg/m3.
This is the time when the frying caused the highest level
of smoke. However, despite these high mass concentration
values, the fuzzy logic system manages to determine that
no fire is currently present.

6.3. Analysis

6.3.1. Why does fuzzy logic perform better?
An interesting question is why fuzzy logic is more pre-

cise than crisp-value logic. From the considerable decrease

Fig. 9. Simulating a burning chair: including neighbor readings in the decision. The results when only own values are used are plotted on the first y-axis.
Including the neighbor values is plotted on the second y-axis.

Fig. 10. Simulating burning oil: including neighbor readings in the decision. The results when only own values are used are plotted on the first y-axis.
Including the neighbor values is plotted on the second y-axis.
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in the number of false positives, it appears that fuzzy logic
handles the fluctuating sensor readings much better. To
understand why this happens we take a closer look at
the first false fire detection reported by the crisp-value lo-
gic. In the burning mattress scenario this occurs approxi-
mately 12 min into the experiment. The values that cause
the false alarm are: T = 25.21 �C, DT = 0 �C, S = 0.203%, and
DS = 0.109%. Since the smoke level (S) and the smoke
change level (DS) are both classified as High, the crisp logic
concludes that there must be a fire.

What does the fuzzy logic event detection do differ-
ently? According to the membership functions in Fig. 3,
temperature value of 25.21 �C is classified as 100% Low;
temperature change of 0 �C is classified as 100% Low;
smoke obscuration level of 0.203% is classified as 33% Med-
ium and 66% High; and smoke obscuration change of
0.119% is classified as 100% High. The decision making pro-

cess checks which rules from the rule-base are satisfied.
These are rules 1 and 3 from the rule-base in Table 4. Based
on those rules, the defuzzifier reports a fire confidence va-
lue of 39.4. This value maps to fire confidence which is 20%
Low and 80% Medium. Such level of confidence, however,
is not enough to cause the system to report a fire.

This example illustrates why a fuzzy logic event detec-
tion system tends to perform better than a crisp one in the
presence of short-lasting inaccurate sensor readings, which
often occur in WSNs. Fuzzy logic takes into account the
certainty with which an event occurs, instead of making
binary decisions based on crisp values and fixed thresh-
olds, which improves the accuracy of event detection.

6.3.2. Decreasing the rule-base
We applied our reduction techniques to the full version

of the rule-base shown in Table 4. All nodes in the

Fig. 11. Membership functions for the mass concentration input linguistic variables.

Fig. 12. Crisp value simulation: (a) frying margarine and (b) broiling hamburgers.

Fig. 13. Fuzzy value simulation: (a) frying margarine and (b) broiling hamburgers.
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simulation are equipped with both a smoke and a temper-
ature sensor which makes the first technique not applica-
ble. Therefore, we only used the second and third
reduction techniques. The rule-base initially has 81 rules.
Combining the rules with similar outcomes reduces the
number of rules to 32, as shown in Table 4. This evaluates
to a decrease of 60%. In general, when there are more than
two input linguistic variables, applying the second method
decreases the rule-base by approximately two thirds.
Excluding the rules that result in Low fire confidence addi-
tionally reduces the size of the rule-base to 25, which is
31% of the original rule-base.

We have compared the behavior of the fire detection sys-
tem when the full and the reduced rule-bases are used.
Fig. 14 shows the results for the burning chair scenario.
The fire confidence is consistently higher when the
reduced rule-base is used. However, since this confidence
remains Low, this does not cause false fire detections. For fu-
ture work, we plan to perform more detailed analysis of the
memory requirements associated with using fuzzy logic.

6.3.3. Detection accuracy
To further understand the behavior of our fuzzy logic

approach, we have compared it to two well established

classification algorithms: a naive Bayes classifier [43] and
a J48 decision tree which is an open source implementa-
tion of the C4.5 algorithm [44]. Fuzzy logic is more suitable
than these two algorithms for WSN event description
since, unlike Bayes classifiers and decision trees where val-
ues are considered to be discrete, it works with continuous
values, which is exactly what the sensor readings are. In
addition, specifying the membership functions is simpler
and computationally more efficient than building a proba-
bility model.

We ran this set of experiments using the Weka data
mining tool [45]. The input values to the classification
algorithms were the same as the ones used in the fuzzy lo-
gic experiments – temperature, temperature difference,
smoke obscuration, and smoke obscuration difference.
We performed a 10-fold cross validation for both classifica-
tion algorithms. Table 5 shows the number of incorrectly
classified instances for the first two fire scenarios, burning
mattress and burning chair, as well as what percentage of
the total instances was incorrectly classified. Both algo-
rithms produce a number of inaccurate classifications.
Although the percentage of the erroneously classified
instances is low, it is higher than the number of misclassi-
fications introduced by fuzzy logic.

Fig. 14. Simulating a burning chair with a reduced rule-base. The results when the full rule-base is used are plotted on the first y-axis. Using the reduced
rule-base is plotted on the second y-axis.

Table 5
Number of incorrect classifications by a Naive Bayes classifier and a J48 tree.

Naive Bayes J48 decision tree Fuzzy logic

Number Percent (%) Number Percent (%) Number Percent

Burning chair 105 1.56 7 0.13 0 0
Burning mattress 89 2.35 5 0.13 0 0

Table 6
Fire detection delay in seconds.

Scenario Crisp values Fuzzy values Plus neighbor readings Reduced readings

Burning chair 236 236 248 236
Burning mattress 103 97 117 97
Cooking oil fire 1431 1431 1443 1431
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6.3.4. Fire detection delay
Table 6 shows the delay incurred by the different fire

detection mechanisms. Fire is detected just as fast, and in
the burning mattress scenario even faster, when fuzzy val-
ues are used. In addition, decreasing the size of the rule-
base does not delay the fire detection. We also notice that
including the readings of neighbor sensors in the decision
process slightly slows down the detection. This is not sur-
prising since not all sensors are located at the same dis-
tance from the fire, and, therefore, they start registering
abnormal values at different times. Consequently, if a sen-
sor is waiting for its neighbors to also detect the fire, and
those neighbors are located further away from the fire
source, the detection might be slightly delayed.

7. Conclusions and future work

A disadvantage of the current event detection ap-
proaches used in WSNs is that they cannot properly handle
the often imprecise sensor readings. In this paper we show
that fuzzy logic is a powerful and accurate mechanism
which can successfully be applied not only to fire detection
but to any event detection sensor network application.
Compared to using crisp values, fuzzy logic maintains a
high accuracy level despite fluctuations in the sensor val-
ues. This helps decrease the number of false positives,
while still providing fast and accurate event detection.
Our experiments support the hypothesis that incorporat-
ing the readings of neighbor nodes in the decision process
further improves the event detection accuracy.

The evaluation also shows that the rule-base reduction
techniques we have developed are efficient and preserve
both the correctness and the timeliness of event detection.
Using two of these techniques, namely, combining rules with
similar outcomes and incomplete rule-base, reduces the size
of our experimental rule-base by more than 70%. Further,
compared to two well-established classification algo-
rithms, fuzzy logic provides more accurate event detection.

For future work we plan to perform experiments on a
sensor testbed. This will allow us to better evaluate how
using fuzzy logic influences the accuracy and speed of event
detection when the decision logic is run on sensor nodes. In
addition, it will help us study the effect of applying tempo-
ral constraints on the accuracy of event detection.
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