A Prover for Gemneral Inequalities

by
W.W. Bledsoe, Peter Bruell,
*
and Robert Shostak

February 1979 ATP-40A

This work was supported by National Science Foundation Grant/MSC 77-20701

*
SRI International, Menlo Park, Californias

A Prover for General Inequalities

by
W.W. Bledsoe, Peter Bruell
and Robert Shostak

Abstract: A variation of the prover described in ATP-17; is used to prove

theorems about gemeral inequalities, i.e., first order logic with equality
where the only predicate symbols are <, <, and =, and wvhere function

symbols are admitted. Transcripts of several proofs are givem im the paper.

1.

2.

3.

4,

Abstract

Introduction

° s 5 0 8 8

The Principal Parts

IMPLY

Data Base ,.......

AND-C

9 8 @ 0 0000 o oa

BACKTRACKING ..

PROVE-LE
LESS=

@ o 06006 040

® 0 a8 809006500

RESTRICTION-LE ...

PROVE-LE-GROUND-CASE

CONTRADICTION
TYPELIST
MATCH=-IN-TYPELIST

MATCH-LE
CHOOSE
NOTL

Examples ...
Remarks

References

69 00+ 2000

Table of Contents

.

Pote

pobe

[

fowod
.

1. Imtroduction

The purpose of this paper is to describe a prover which we have used to
prove a number of theorems about general inequalities.

In these theorems the only predicates symbols that can appear are <, <,
and =, and the logical commectives A, V, >, ~. Since we allow function
symbols, this class of theorems is indeed all of those of first order logic, be-
cause if P 1is an n-ary predicate symbol then the expression ?(xl,.,,,xﬂ} can
be replaced by am equivalent expression f(xl,...,xn)==0, where £ 4is an n-ary
function symbol. 8o this appears to be yet another prover for the first order
logic. And indeed it is.

However, it is not our intent to prove, by these methods, theorems that have
been concocted artificially to the general inequality form, but rather those that
arise "naturally”.

Furthermore, we have tried to make use of techniques already in use
which lend themselves well to inequalities. Indeed, if we considered only ground
theorems, theorems in which there are no variables to be instamtiated {i.e., in
which all variables are universaliy’quanﬁifieé), then the recently developed
techniques for Presburger Arithmetic [2, 6~8 | would apply very well.

4

We use one

of these [2] as a subroutine for attempting proois of ground formulas. We also
use the "Restriction Variable" techniques of {1, Sec. 4.2], and combime these two
methods with other methods from [3].

This prover is a variation of our natural deductionm prover described in {31.
As explained below, some additions and changes have been made.

It should be emphasized that this prover is cdmyletely automatic (i.e., not

& man-machine prover), and all the examples were proved as indicated by the

machine alone.

pomd
[
»

We describe in Section 2 the principal parts of the prover, including the
function 1IMPLY andits auxiliary subroutines. And in Section 3 we give tran-

scripts of proofs of several examples.

We believe the best way for the reader to proceed is Lo read the description
of IMPLY and Data-Base carefully, skim the descriptions of the auxiliary functions,

and then go right to the examples in Section 3; each of the auxiliary algorithms

can then be studied as it is encountered in the examples.

o

2. The Principal Parts

(IMPLY DB H C TL LT PV)

This is the main routine of the Prover.

DB, the data base (which is described below), is a 1ist

(A-UNIT RESTRICTION-LIST TYPELIST)

H is a WFF, the Hypothesis of the theorem being proved
C is a WFF, the Conclusion of the theorem being proved
TL is the theorem label

LT is a control parameter

PV is a list of variables ("protected" variables) (see Section 3)

We will suppress TL and LT in the following description, though the

theorem label TL is used and explained in the examples.

P! ¥

=[S

JAACH I~ ALITVOOANT

dLONOYd~ dSdIATE

HLOWOUd

LITdS-¥0

LITdS~ NV

a20Nady
$ANTIVL TV0OENS ¥IHOIH

ATSNOIATYd q3IA0¥d

TWVN

1IN A5714

((9® >) 6H 69a ATdWI)

((H v d@) 9 ® HSOOHD) = :9 Ing (49 #£®) =0
(> q e g1-1p0ud) (qe>)=2>
(> q® ¥1-7/04d) (a®>) =09
(v 11ow) ((4 "TLON) V H) 94 KTdWD) AS14
] TIN # 0
(4 (V VH) 94 XTdWI) = :9 ang (d<«v) =0
((2 <« (V TLON)) H 90 XIINL) 9NV =D
(3a0'I0XA D D-~aNY) aVys=)D
TIN TN = D
(TIN 1) IL=0D
(Fonaxy)
TIN (0 H 9a TVoOENS-WIAHOTH)
(1IN 1) (0 H 94 AISNOIATEd- AFAOHd)
NOILIOV 1o/pue NMNITA Eid

(Ad O H 490 ATdWI) WHIINOOTY

¢’

1°¢

The algorithm above lists only a few of the rules of the IDMPLY used in our

other provers [4,3], but these are the only ones needed for ocur General Inequality

Prover.

We repeat this limited description of IMPLY here so the reader will not have
to refer to earlier papers. Also, the earlier papers do not adequately describe the
workings of the data base (see below) and have no mention of some of the inequality
routines ’?RQVE-LE, MATCH-LE, etc. (although the concepts for these routines are
described in [2,3,41).

A theorem (H + C), is first skolemized and then entered into the prover by a

call to TMPLY
(MPLY NIL NIL (d » C) NIL NIL WIL).
If H#NIL, a call to IMPLY Rule 3 converts it immediately to
(IMPLY NIL H C (P+) NIL NIL).

The production-like rules of IMPLY are applied to obtain 2 substitution 6 which
"satisfies' the theorem. If indeed such a © is obtained by IMPLY, we can be
asgured that (H > C) is a theovem, whereas if IMPLY fails, this formula may or

may not be true. That is to say, IMPLY is sound but not complete.

MPLY, and most of the subsidiary functions, return a doubleton
(& (A-UNIT RL TY))
where the @ is the subgitution discussed in the preceeding paragraph, and
(A-UNIT RL TY)

are results for the data base that have been obtained from the current run of

IMPLY. (See Data Base below.)

IMPLY returns NIL for failure. The substitution 6 has the value " T"
(for true) if no substitution is needed (as in a ground proof). Otherwise, it

consists of a list of substitution units
(t1/x1 t2/x2 ...tn/xn)

where the X; are variables which are to be replaced by the terme ¢

2

If there is no data base component then IMPLY obtains
(& NIL)

Thus the "most true" result from IMPLY is (T NIL).

IMPLY first (in Step 1) looks at its list of proved goals to see if ¢ has
been previocusly proved (with the same or weaker hypotheses). It them looks on the
"stack" to see if’ C 1is a subgoal of itself; if so it returns NIL. This is called
a "higher subgoal failure".

In step 3 it calls REDUCE which applies a set of rewrite rules te X and
C (see [5]). For example, (x < x) is converted to "T", and (x<x) is
converted to NIL. Also if n and m are actual numbers with n less than m
then {(n < m) converts to T ate,

Step 4 is the "and-split" which divides a conjunction into two subgoals. See
AND-C below.

In Step 5 IMPLY merely converts a disjunction (AVB) into an implication
(~A > B). This is dome in order to take advantage of several things done in Step
6, "PROMOTE". The function NOTL, which is exaplined below, is used to push the
negation sign, ~, to the inside of a formula.

In Step 6 it "promotes", i.e., an expression

(> & > 3B))

is converted to the eguivalent form
HA A >3B)

If this fails to produce a proof thenm in Step 6.1 it "reverse promotes" by converting

to the form
(EA~B +~A)

In both cases when the formula A (or ~B) 1is brought over and made part of the
hypothesis H, any ground conjunct of A of the form ¢ <ab) or (< ab) is
ingerted into the TYPELIST of the data base, and the routine CONTRADICTION is
called to see if TYPELIST then holds a contradiction. f so the proof is success-
fully terminated. (See descriptions Data Base and CONTRADICTION below.) (See
Example 5 for an example of reverse promotion.)

In Steps 7 and 7.1 the inequality prover PROVE-LE 1is called. See the des-
criptions of it and other inequality routines below.

Step 8 is a mechanism for substituting equals. A more extensive one is used
in SUB=LE and PROVE-LE-GROUND-CASE. 1In Step 8 we use the fact that (a4B) in
the conclusion C, 1is the same as (a=b) in the hypothesis H. The routine
CHOOSE 1is called to select one of a or b to substitute for the other in DB

b

and H. A call is then made to IMPLY
(IMPLY DB® HS (< a b))

which will (through CONTRADICTION) check for a contradictionm in DBO. The reason

that (<a b) 1is used here is so that control will be passed back to PROVE-LE

through Step 7.1.

Data Base
The data base, DB, like the other arguments of IMPLY is "dynamic" or

"contextual, inthat it may change as the proof progresses. It has three part8’

A-UNIT, RESTRICTION-LIST (or RL), and TYPELIST (or TY).
A-UNIT 1is the place where information about set variables (see {1]) is

stored. An entry of the form
(L (‘set' A Z P(2))

in A-UNIT, means that the set variable A (which iz to be instantiated, or

bound to a value) has not yet been given a definite value but has been restricted

to be a subset of the set

{z: (2} .

If later, A 1is bound to a particular value C, then C must satisfy the con-

dition that
cc{z: P(Z)} .

RESTRICTION-LIST (or RL) 1is the place where restrictions on variebles are
recorded. See below the description of the function RESTRICTION-LE, and Section

4.2 of [1]. If, for example, an entry
(2) ("int' x (<a) (<b))

is present in RL, it means that the variable x (which is to be instantiated,

or bound to a value) has not yet been given a definite value but has been restricted

to reside in the interval

if later, = 1is bound to a particular value ¢, then ¢ must satisfy this same

constraing,

a<c<b

Other restrictions like, a Sx<b, a<x<b, ete., are possible.
TYPELIST (or TY) 1is the place where ground inequality information is stored.

See below the description of the functions PROVE-LE-GROUND-CASE and CONTRADICTION,

and also {2]. If an entry
&) (int’ x (< a) (< BY)

is present in TY it means that one of our hypotheses is

Notice the fundamental difference between this and the (2) of RL. 1Im RL, x 1s a
variable to be instantiated, whereas in (3) it is a constant. RL zepresents
knowledge about the "solution" to their variables (i.e., the bindings for the vari-
ables), whereas TY represents given knowledge or hypothesis knowledge, that can
be used to obtain the solutiom. Getting a contradiction in TV is desirable in
that it completes the proof of the current theorem, whereas a contradiction in RL
is undesirable in that it indicates a failure to find an acceptable solution
(binding) for x. An entry like (2) represents a whole interval of acceptable
solutions for =x (provided that it can be proved that g < b}.

On the other hand we notice the great similarity between RL and A-UNIT,

because in each case a variable (x for RL, and A for A-UNIT) which is to be

later bound to a value, has baen restricted.

(AND-C C EXCLUDE)

Called by IMPLY.

EXCLUDE 1is a list of bindings a/x, bly, etc., which are

forbidden to be used by UNIFY. (It is originally

set to NIL.)
C=AAB 1is from IMPLY

DB and ' H are from IMPLY

ALGORITHM: (AND-C C EXCLUDE)

IF RETURN and/or ACTION
Put 9: = (IMPLY DB H A PV')"
@ = NIL NIL
ELSE Put Al = (IMPLY (DB-A ¢ DB) H B@ PV')
A # NIL 60N
ELSE Put o¢: = (IMPLY DB H B PV')
o = NIL NIL
ELSE Put EXCLUDE': = EXCLUDE U (CONFLICT & o)

(AND-C C EXCLUDE ')

* PV' and PV need not concern us here. (See Section 3.) PV' = (PVUCY),

where PV is the current list of "protected variables', and CV is the
list of variables common to both A and B.

ok : '

If © and A conflict on a variable occurring in PV then NIL is returned
instead of ©o°A. Thus a conflicting substitution is never returned by
IMPLY.

AND-C Thandles the case when € 1is a conjunction A A B. If & and B have
no variable in common there is a clean split with no difficulty. But if they have

one or more variables in common then the substitution & obtained from
(L (IMPLY DB H A)

must be applied to B, as BB, and to DB, by (DB-A © DB), before IMPLY is

called on B. That is, the second call is
{2y {(mMPLY (DBR-A @ DB) H BG)

BACKTRACK ING

For (2) to fail means that either
(3) (IMPLY DB H B)

has no solution, (in which case we fail) or its solution A has a conflict with

8. For example if @ is a/x and A is b/x, with a#b, then there is such

a conflict. In such a case the function
{CONFLICT & N

ig called to select a conflicting entry (binding) from 6 (or from A). This con-

flicting entry is added to the list EXCLUDE, and a new call is made to
{AND-C EXCLUDE) .

Now in UNIFY the conflicting binding will be avoided at both steps (1) and (2),
and any subgoals of them. Of course, other conflicts may arise and they too can
be added to EXCLUDE. This backtracking procedure, with the use of EXCLUDE, has

been used in many proofs and is exhibited in the examples below. (See the note at

the end of Example 5, and the remark on backtracking at the end of Example 7.)

(PROVE-LE A B S) Abbreviation: PLE

Called by 1IMPLY

A and B are terms (arithmetic)
S 1is either ° <' or ‘<!
H 1is the hypothesis from IMPLY

C = (S AB) 1is the conclusion from IMPLY

ALGORITHM: (PROVE-LE A B S)

]

RETURN the result obtained if not NIL, ELSE try the next.
(LESS= (S A) (s B))
(RESTRICTION-LE A B §)

(UNIFY A B)

If (GROUND C), (PROVE-LE-GROUND-CASE)
If Not (GROUND C), (MATCH-IN-TYPELIST)
(MATCH-LE H C NIL)

NIL

i1.

(LESS= A B)

Called by PROVE-LE

A has the form (< a), (< a),

(max .«é.j,?~ . Az), or {(min A1 R Az)

B has the form (< b), (< b),

(max B, > 32)> or (min B, , BQ)

If A=(< a), B={(< b), this routine tries to decide whether s < b by

computing b-a and comparing it with 0. Similar for (< a), (< ®). It

e

first handles the cases whem a or b 1is either +w or -« by requiring
a<®, -»<b, etc. It treates the case A=(< a), B=(min (< ‘blj (< bz)),
by requiring (LESS= (< a) (< b)) and (LESS= (< a) (< b,)); and similarly
for other cases involving "max" and ‘'"min®.

It is not necessary for & and b to be numbers. For example, it can handle

the theorem (x+3 < x+5) by subtracting the right side from the left and detecting

that the difference (-2) 1is < 0.

i3.

(RESTRICTION-LE A B S) Abbreviation: RLE

Called from PROVE-LE

A and B are terms,
S is '<' or '< ',

If A 1is an atom, and therefore a variable to be instantiated, and if A does

A

not occur in the term B, then an "interval®,
(1) ("int' A - (S B))

is placed in the restriction list, RL, of the data base. (This means that the vari-
able A 1lies in the interval (-», B] if s = '<', and (-w, B) if § = <))

If A 1is already represented in the data base by an entry
2) ('int' A a b) ,
then the two 'intervals' (1) and (2) are intersected to get a resulting entry
(3) ('int' A a (min b (S B)Y)) .

(In some cases the expressions like (min b (S B)) are reduced to simpler ones. TFor
example, if b=(<5), (SB)=(<7), then (min b (8 B)) 1is changed to (< 5).
Similarly for (max a b).) |

If the resulting interval is empty then NIL is returned for RESTRICTION-LE.
Thus it is necessary to check (by a call to IMPLY) that (a<B) (or a<B if
S='<") to insure that (3) is not empty.

Also if B is an atom (variable) and B does not occur in A, we insert the

"interval",

()

7

('int' B (S A) «)

'

into the data base. If both A and B are atcms then both intervals (1) and
{4) are inserted into the data base.

If later the variable A in (3) is instantiated with a value ¢,
then a check must be made (by a call to IMPLY) to verify that ¢ 1lies in the
interval, a < ¢ < b (see examples 4, 6, and 7 below). This call to IMPLY is
made with the same hypotheses that obtained when the original restriction on

x was made. See Section 4.2 of {lj for a further explanation of this concept.

(PROVE -LE -GROUND -CASE) Abbreviation: GLE

Called by PROVE-LE

A and B are terms from PROVE-LE s

S is either '< ' or '< ', from PROVE-LE s

15.

Z, obtained from CONTRADICTION, is either NIL, 'HSF', or has

the form (TY, EQ).

ALGORITHM: (PROVE-LE ~GROUND-CASE) GLE

IF RETURN or ACTION

%*
Put Z: = (CONTRADICTION (TY DB) (S A B))
Z="'T"' (T NIL) (SUCCESS)

Z = "HSF' NIL (Higher subgoal failure)

(2 now has the form (TY EQ))

(TY is the updated TYPELIST)
Place TY into the Data Base

EQ = NIL NIL (failure; but the TYPELIST has
been altered)

ELSE (SUB=LE EQ)

(CONTRADICTION (TY DB) NIL)

%
(TY DB) is the TYPELIST portion of the data base, DB;
3rd member.

i.e., it is its

16.

This voutine, which is called when A and B are ground terms, tries to

prove the inequality (S A B) (i.e., A< B or AJB) by placing its negation

in the TYPELIST and searching for a contradiction. Since TYPELIST is main-
tained as a set of ground inequalities, the contradiction (or lack of it) is ob-
tained by standard Presburger Methods. (See [2,3,6,7].)

1f CONTRADICTION returms " T"Y, the proof is complete; if‘it returns

' HSF ' the proof fails by a higher subgoal failure, (see CONIRADICTION); other-

wige it returns a doubletom
z = (TY, EQ)

where TY is the updated typelist and EQ is either NIL or a set of equality
units., TY 1is now placed in the data base as a replacement for TYPELIST. If
EQ=NIL then NIL is returned and the ground proof fails, but nevertheless, the
altered form of TYPELIST remains in the data base for use when other proof methods
are called from PROVE-LE. But if EQ#NIL, then the voutine, SUB=LE, is invoked

which causes this set of equality units to be applied to H,C, and the data base,

and CONTRADICTION is again called to see if a new contradiction has now appeared

in the TYPELIST. (See Examples 2,3.)

i7.

(CONTRADICTION TY C)

Called from PROVE-LE-GROUND-CASE

TY 1is a typelist, i.e., an encoded list of ground
inequality intervals. (See [3] and the section

on Data Base in this paper.)

Cb a ground atomic expression of the form
(<ab) or (< ab)

See [2,3] for reference.

This routine takes ~ C, the negation of C, (i.e., (< b 8) 1if
C=(< ab), or (<ba) if C=(< a b)), and inserts it into the TYPELIST
(if C=NIL this step is omitted), and then checks for a contradiction in

TYPELIST.
TYPELIST is a list of ground "intervals",
(L) ' ("int' x A B)

where A and B have the form (< a), (< a), (max A1 AZ), or (min A1 s A2>’
and where A1 and A2 can again have the form (< a), etc. There is only
one such "interval" for a given x.

These intervals represent hypotheses for the theorem being proved. For

example,
(2) ("int" x (< 3) (< 7Y
would represent the hypothesis

B<x<

¥

Suppose that ~ C is

(< b a)

The way it is inserted in the TYPELIST 1is as follows. Two new "intervals"

Gy (int’ b (<-w) (< a))
and
&) ' ("int' a (< B) (<))

aye created, and if TYPELIST has no entry of the form
) ("int' b A B)

then (3) is simply placed in TYPELIST. But if it already had an entry (5)
then the intersectiom of (3) and (5) is placed in TYPELIST. Similarly for
the placement of (4&).

After the insertion of ~ C, CONTRADICTION looks for a contradiction in
TYPELIST. If ome is found the proof is complete, and " T" ig returned.

If TYPELIST experienced no change by the insertion of ~ C, this means
(TYPELIST + ~ C)
ig true, and hence that
(TYPELIST + C)

is not, so the routine returns 'HSF' to indicate this failure.
If, on the other hand, TYPELIST is changed by the insertion of ~ C, this
changed value is returned as TY, the first entry of Z=(TY, EQ). EQ, the

other value of Z, 1is the set of equality units, 1f any, that can be inferred

from TYPELIST.

19.

(MATCH-IN-TYPELIST CC TY) Abbreviation: MTY

Called from PROVE-LE

CC 1is of the form (< ab) or (< ab), and is not ground

TY is a typelist, i.e., an encoded list of ground inequality
intervals.

This routine tries to find a match for CC from the unencoded entries

of TY, and returns a substitution o for such a match if one is found.

Y

20.

(MATCH-LE A C D) Abbreviation: MLE

Called by PROVE-LE

A

The result is a substitution o or NIL

is a WFF, whose only predicates are < and <. The initisal
value of A 1is the hypothesis H from IMPLY. A
the form (A}‘ A Az), (A1 \Y% Az), (A1 » Az),
(< a; a).

can have

(< a, a,), or

is an atomic formula of the form (< ¢y cz) or (< ¢

1 ©9)-
Its initial value is the conclusion C from IMPLY.

is also a WFF. It starts as NIL.

if failure.

21.

ALGORITHM: (MATCH-LE A C D)

IF RETURN and/or ACTION
1. A = ATOM NIL
2. A=(A AAY (MATCH-LE A; C D), if not NIL,
2.1 ELSE (MATCH-LE A2 C D)

%
3. A= (A1 AV A2) (MATCH-LE (~Al > AZ) cD .
4, A= (A1 > AZ) (MATCH-LE A2 C (A1 A D)), if not NIL,
4.1 ELSE (MATCH-LE ~A1 C (~A2 A D)),
5. A= (S-al a2) PUT ¢: (UNIFY (a1 az) (c1 cz)).
or AE(<ala2) where CE(sc1 cz) or CE(<<:1 cz).

6 o = NIL NIL
6.1 C=(g.cl c2) (Append ¢ (IMPLY H Do))
6.2 C=(< ¢y cz) PUT D: = (D A (clc # czc)), (Append ¢ (IMPLY H D)).

*
In every case the "not" symbol

(1]

LY

11

is pushed to the inside by the routine NOTL.

22,

=

This routine tries to prove the implication (& > Cy by matching 4, or a
part of A, against (.

If A has the form (A1 > £,) then the routine "backchains" by trying to
prove C from A2 and storing Al in D to be proved later by IDMPLY. If
that faiis it trys again with ('~A2 %-'vél).

Backchaining also takes place when A has the form éAl vV AZ), in which case

g A2)'

(A1 \% Az) is treated like (val

The process of backchaining is repeated in cases such as when A has the

form (Ai > (A21 > A Then A is used to prove C, and (AE A AZI) is

22)>° 22

stored in D to be proved later, etec.

In Step 5, when two expressions are unified, any binding of a variable ® must
be checked against a possible restriction om x 1in the Restriction 1ist, RL, of
the data base. (See Data Base.) TFor example, if UNIFY selects the binding c¢/x

and if RL has an entry
(Fint' = (< a) (< b))
then before the binding c¢fx is allowed, it must first check that
a<c<b,

This is done by a call to IMPLY. (See Examples 4,6,7 below.)

If A heas the form (< a, az) or { < a 32)3 then the routine attempts
to unify (a1 az) and (c1 cz), obtaining a substitution ¢. But if € has the
form (< <y cz) and A has the form (< a, az), (i.e., it is trying to prove

an implication of the form

23.

(al <a, > ¢y < c2) s
then the routine stores in D the inequality (clcr#c

20) to be proved later by

Rule 8 of IMPLY. (This will have the effect of reproving of the theorem H=+0C)

with the additional hypothesis (c10= czc).)

