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Abstract

Standard restructuring compiler tools are based on polyhe�
dral algebra and cannot be used to analyze or restructure
sparse matrix codes� We have recently shown that tools
based on relational algebra can be used to generate an e��
cient sparse matrix program from the corresponding dense
matrix program and a speci�cation of the sparse matrix for�
mat� This work was restricted to DO�ALL loops and loops
with reductions� In this paper� we extend this approach to
loops with dependences� Although our results are restricted
to Compressed Hyperplane Storage formats� they apply to
both perfectly nested loops and imperfectly nested loops�

� INTRODUCTION

Although sparse matrix computations are ubiquitous in
computational science� research in restructuring compilers
has focused almost exclusively on dense matrix programs�
This is because the tools used in restructuring compilers
are based on the algebra of polyhedra� and can be used only
when array subscripts are a�ne functions of loop index vari�
ables� Sparse matrices are represented using compressed for�
mats to avoid storing zeroes� so array subscripts in sparse
matrix programs are often complicated expressions involv�
ing indirection arrays� Therefore� tools based on polyhedral
algebra cannot be used to analyze or to restructure sparse
matrix programs�

One possibility is to express the algorithm as a dense
matrix program� but declare to the compiler that certain
matrices are actually sparse� This approach restores the
compiler�s ability to analyze the program� but it makes the
compiler responsible for choosing the format used to repre�
sent the sparse matrices in the program� and for generating
code in which computations involving zeros are eliminated�
This idea was explored by Bik and Wijsho� in a series of
papers ��	
�� However� the task of choosing a good rep�
resentation for sparse matrices is a somewhat delicate one�
and doing it right requires that careful attention be paid to
the data �ow of the algorithm� the structure of the non�zeros
in sparse matrices� and properties of the target architecture�
Compressed Row
Column Storage is simple and is therefore
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Table �� Classi�cation of sparse matrix codes

used very often in practice� However� the sparse matrices
that arise in PDE solvers often have many rows with the
same non�zero structure� and are best represented as a col�
lection of small dense matrices in which each dense matrix
arises from gathering data from rows with the same non�zero
structure ���� Formats like the jagged�diagonal format are
used when the target architecture is a vector machine �����

We have chosen to make the programmer responsible
for specifying sparse formats� Therefore� our compiler must
solve the problem of generating e�cient sparse code� given a
loop nest containing dense matrix computations and a spec�
i�cation of sparse matrix formats� In an earlier paper� we
used techniques from relational algebra to solve this problem
for the special case of DO�ANY loop nests ���� As Table �
shows� many common programs such as matrix�vector prod�
uct and matrix�matrix product are included in this class� but
other programs of great practical importance such as trian�
gular solve and Cholesky factorization are not in this class�

In this paper� we extend our techniques to the problem
of generating code for loop nests with dependences� restrict�
ing ourselves to the special case of sparse formats which
represent Compressed Hyperplane Storage �of which Com�
pressed Row
Column Storage are special cases�� The rest
of the paper is organized as follows� Section � reviews our
relational approach to sparse matrix program compilation�
Section � describes how these methods can be extended to
handle perfectly nested loops with dependences� Section �
describes how transformations for imperfectly nested loops
are generated� Section � compares our approach with the
access reshaping and guard encapsulation techniques of Bik
and Wijsho�� Section 
 describes the future directions of
our work�



� RELATIONAL APPROACH TO SPARSE MATRIX

CODE COMPILATION

��� AN EXAMPLE

Consider the loop which computes the inner product of two
vectors X and Y�

DO i � �� n
dot � dot�X�i� � Y �i�

We can view the arrays X and Y � and the iteration set of
the loop as relations �or tables��

RX � fhix� vxi j X�i� � vxg ���

RY � fhiy� vyi j Y �i� � vyg ���

RI � fhii j � � i � ng ���

The loop enumerates over the tuples hi� ix� vx� iy� vyi which
satisfy the following query � �

Q � ��i�ix�i�iy��RI�i��RX�ix� vx��RY �iy� vy�� ���

Conceptually� the relations RX and RY store both zero
and non�zero values of the arrays X and Y � When the ar�
rays are sparse� they might actually be stored using some
compressed scheme� In this case� only non�zeroes are stored
explicitly and zeros are implicit� Following the practice in
sparse matrix literature� we assume that only the elements
that are not explicitly stored are zero� We use the predi�
cates NZ�RX�i�� and NZ�RY �i�� to test if an element is
stored and should be assumed to be non�zero� It is impor�
tant to notice that the NZ predicate always evaluates to
true for a dense vector� even though some elements might
be numerically zero�

If the vectors are sparse� then only those iterations need
to be executed for which X�i� �� � � Y �i� �� �� In terms
of our relational query formulation we wish to select only
those i�s for which NZ�RX�i�� �NZ�RY �i�� is true� If we

let P
def
� NZ�RX�i�� � NZ�RY �i��� then the query for the

sparse loop nest becomes�

Qsparse � �PQ �

� �P��i�ix�i�iy��RI�i��RX�ix� vx��RY �iy� vy�� ���

To evaluate this query e�ciently� we push the �i�ix�i�iy
selection into the cross products to obtain equi�joins � �

Qsparse � �P�RI�i� �� RX�i� vx� �� RY �i� vy��

� �P�RX�i� vx� ��i RY �i� vy�� �
�

Once equi�joins in the query are exposed� we can apply
one of three algorithms for computing equi�joins �see �����
for example��

� Enumerate�Search� Walk over the tuples of one relation
and search for the common attribute in the other�

�
� is the relational algebra selection operator� The notation

R�a� b� names the �elds in the relation R for use in the selection
predicates�

�We can eliminate RI from the query since it does not restrict the
result any more than RX and RY do�

� Merge�Join� If both relations are sorted on the join
attribute� then walk over both of them �in step��

� Hash�Join� Scatter the tuples of one of the relations
into a hash table �which can be a dense vector�� then
walk over the other and probe the hash table with the
join attribute�

The best choice for the join algorithm depends on the access
methods available for the relations and their properties� for
example� Merge�Join is competitive only if the join index in
both relations can be enumerated e�ciently in sorted order�
These algorithms can be combined to compute joins of more
than two relations� They can also be generalized to enumer�
ate over the zeros as well as non�zeroes� This is necessary�
for example� in the case of computing a sum of two vectors�
the equi�join is the same as in �
�� but the sparsity predicate

P is di�erent� P
def
� NZ�RX�i�� �NZ�RY �i���

��� GENERAL APPROACH

In the inner product example� it was easy to expose joins in
the query expression� More generally� we perform the follow�
ing steps to expose joins and generate code� the interested
reader can �nd the details in ����

�� Dense loop nests are converted to relational queries as
in ���� Array access functions generate appropriate se�
lection predicates�

�� A sparsity predicate is computed as described in ���
�� and is converted into a selection in terms of the
NZ�� � � � predicates as in ����

�� Equi�joins are discovered by �pushing� selections with
equality predicates �through� cross�products�

�� In general� we might have several equi�joins� and these
are ordered �nested� to minimize expensive searches in
compressed data structures�

�� Implementation algorithms are selected for the equi�
joins and are specialized to enumerate the correct com�
bination of zeros and non�zeros as given by the predi�
cate P�

We discuss Steps � and � in more detail since they have to
modi�ed to accommodate loops with dependences� Suppose
we have a perfectly nested loop with a single statement S
and the sparsity predicate P�

DO i � B
IF P THEN

S � A��F�i� f�� � � � �Ak�Fki� fk� � � �

where i is the vector of loop indices and B represents the
loop bounds� We make the usual assumption that the loop
bounds are polyhedral� and that the arrays Ak� k � � � � �N �
are addressed using a�ne access functions�

To generate the relational query for computing the set
of sparse loop iterations� it is useful to de�ne the following
vectors and matrices�

H �

�
BBB�

I
F�

���
FN

�
CCCA a �

�
BBB�

i
a�
���
aN

�
CCCA f �

�
BBB�
�
f�
���
fN

�
CCCA ���

�



�
BBBBBBBBBBBBBBBBBB�

c� � � �

L�� c� � � � � �

L�� c� �

���
� � �

L�r cr

�
CCCCCCCCCCCCCCCCCCA

Figure �� Permuted Column Echelon Form of Data Access
Matrix

Following ����� the matrix H is called a data access matrix�
Notice that H always has full column rank� It is easy to see
that the following data access equation holds�

a � f �Hi ���

As described in ���� we view the arrays Ak as relations with
the following attributes�

� ak � which stands for the vector of array indices

� vk� which is the value of Ak�ak�

Given all of the above� the sparse loop nest can be thought
of as an enumeration of the tuples that satisfy the following
relational query �RI is the iteration space relation��

�P��a�f�Hi� �RI�i�� � � �� Ak�ak� vk�� � � � � ���

To evaluate this query e�ciently� we discover equi�joins
between di�erent �elds �attributes� ak� as mentioned before�
More precisely� we discover a�ne joins between pairs of at�
tributes that are related by a�ne equalities for all values
of i� In ��� this is done by computing the permuted echelon
form of the data access matrix H�

H
� � PHU ����

where P is the matrix of row permutations and U is the uni�
modular matrix of �zeroing� transformations� The structure
of the matrix H� is shown in Figure � �r is the rank of H��
Each column vector ck is all non�zero�

The point of computing this echelon form is the follow�
ing� If we let b � P�a � f� and j � U��i� the data access
equation ��� can be rewritten as�

b � H
�
j ����

We can now partition vector b into r blocks according to
the partitioning of H� in Figure � and obtain the following
equation for each block m � �� � � � � r�

bm � Lm 	 j����m��� � cm 	 jm ����

In the generated code� jm is themth loop variable� Since the
values j����m��� are enumerated by the outer loops� the a�ne

joins for this loop are de�ned by the following equations for
m � �� � � � � r�

bm � invariant � cm � jm ����

If we let a� � Pa and f � � Pf � we can rewrite ���� as�

a
�

m � f
� � invariant � cm � jm �

� another invariant � cm � jm ����

Therefore� at each level� the permuted attributes are related
by simple a�ne equations �through jm�� That is� each loop
variable jm of the new loop nest enumerates over the results
of an a�ne join� Notice that the matrix U�� from ����
gives us the loop transformation from the original loop nest
to loops that enumerate joined attributes�

How is P in ���� being chosen� This permutation gives
us the nesting order in which di�erent �elds in the rela�
tions �arrays� are being enumerated� Since most sparse ma�
trix formats have a hierarchical structure� P must be chosen
carefully to avoid expensive searches�

We illustrate all of these ideas on an example� Consider
the case of the product of a sparse matrix A and a sparse
vector X� which is being stored into a dense vector Y� As�
sume that the matrix is compressed along the diagonals into
a sparse array A �i�e�� it is stored in the indices s � i � j
and t � j� where s indexes the diagonals and t runs within
each diagonal�� The array A itself is stored in CRS �� To
exploit this hierarchical structure� we must enumerate s in
the outer loop and t in the inner loop� The loop nest �with
sparsity predicate� is�

DO i � �� n
DO j � �� n

IF �A�i� j� j� �� � �X�j� �� ��THEN
Y �i� � Y �i� � A�i� j� j� �X�j�

The relations is this query are� RI�i� j�� RA�s� t� va��
RX�jx� vx� and RY �iy� vy�� If we de�ne the following predi�
cates �

P
def
� NZ�RA�i� j� j�� �NZ�RX�j�� ����

A
def
� s � i� j � t � j � i � iy � j � jx ��
�

then the query is�

Q � �P�A
�
RI�i� j��RA�s� t� va��

� RX�jx� vx��RY �iy� vy�
� ����

The data access equation �with s permuted into the outer�
most position� is�

�
BBBBB�

s
i
j
t
iy
jx

�
CCCCCA

�

�
BBBBB�

� ��
� �
� �
� �
� �
� �

�
CCCCCA
�
i
j

�
����

To get this system into echelon form we need to add the �rst
column of the data access matrix to the second� This can

�Such combination of an index transformation and CRS de�nes an
instance of CHS�

�



DO s � RA

DO ht� va� jx� vxi �Merge�RX �RA�s����
vy � search RY for �s� t�
vy � vy � va � vx

Figure �� Sparse matrix vector product

be done using the column transformation matrix U and the
loop transformation matrix U��� shown below�

U �

�
� �
� �

�
U
�� �

�
� ��
� �

�
����

The data access equation in echelon form is�

�
BBBBB�

s
i
j
t
iy
jx

�
CCCCCA

�

�
BBBBB�

� �
� �
� �
� �
� �
� �

�
CCCCCA
�
u
v

� �
u
v

�
�

�
� ��
� �

��
i
j

�
����

This reveals two nested joins� The outer one simply enumer�
ates across the diagonals s of A� For a �xed value s � s��
the inner loop joins the diagonals with the vectors X and
Y �

iy � s� � t � jx ����

Notice that each inner join has a di�erent starting value for
iy� Suppose that the vector X is sparse and the vector Y
is dense� If the indices of X and the indices t within the
diagonals can be enumerated in sorted order� we obtain the
code shown in Figure �� Each diagonal of A is joined with
X using merge�join and the result is joined with Y using
enumerate�search join�

To summarize� here are the two key matrices and their
roles in the code generation process�

� The permuted echelon form H� � PHU reveals a�ne
joins� these joins can be implemented in several ways�

� The matrix U�� represents the transformation from
the original loop nest to one that enumerates the joined
attributes�

� PERFECTLY NESTED LOOPS

WITH DEPENDENCES

In Section �� we considered only DO�ANY loops� so we did
not worry about the legality of the transformation U��� We
now describe how a legal transformation can be generated�
if at all possible� when the loop nest has dependences�

��� A MOTIVATING EXAMPLE

The loop nest in Figure � computes the solution to a sparse
unit lower triangular system Lx � b �the solution is accu�
mulated in b�� The dense loop nest has two dependences�
which the generated sparse code has to satisfy�

� A �ow dependence from the write into b�i� to the read
from b�j�� It can be expressed as a distance
direction
vector d �

�
�
�

�

DO i � �� n
DO j � �� i� �

IF �L�i� j� �� �� THEN
b�i� � b�i�� L�i� j�b�j�

Figure �� A generic sparse unit lower triangular solver

DO j � �� n
wb � search Rb for j
DO hi� vLi � RL��� j�� i � j

vb � search Rb for i
vb � vb � vL 	wb

Figure �� Sparse column�oriented unit lower triangular
solver

� An output dependence between successive updates to
b�i�� We will ignore this dependence� assuming that the
updates are commutative and associative� as is stan�
dard�

The data access equation for this loop nest is�

a �

�
BBBBB�

i
j
iL
jL
iB
jB

�
CCCCCA

�

�
BBBBB�

� �
� �
� �
� �
� �
� �

�
CCCCCA
�
i
j

�
����

Suppose that L is compressed along the columns� Then the
desired permuted echelon form of the data access equation
is��
BBBBB�

jL
jB
j
iL
iB
i

�
CCCCCA

�

�
BBBBB�

� �
� �
� �
� �
� �
� �

�
CCCCCA
�
u
v

� �
u
v

�
�

�
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� �

�
�

�
i
j

�

����

The column transformation matrix and its inverse are�

U �

�
� �
� �

�
� U

�� ����

If we assume that the vector b is dense� then both joins
can be performed using the Enumerate�Search strategy� be�
cause searches in the dense relations RI and RB are simple
look�ups which are inexpensive� This gives us the code in
Figure ��

We must now verify that the transformed loop does not
violate dependences� The transformation U�� is legal only
if it preserves dependences in the original code� This can be
expressed as follows�

U��d 
 � ����

where 
 corresponds to lexicographic order� In our case�

�
� �
� �

��
�
�

�
�

�
�
�

�

 � ��
�

�



Therefore� the transformation is legal� Notice that the fol�
lowing matrix also gives us an echelon form�

U �U
�� �

�
� ��
�� �

�
����

but the resulting loop nest is illegal because�

�
� ��
�� �

��
�
�

�
�

�
�
�

�
�
 � ����

Therefore� we were lucky to obtain the legal transformation
matrix U�� from ����� The problem therefore is to invent
an algorithm that �nds an echelon form with a legal trans�
formation matrix� if one exists�

��� FINDING A LEGAL TRANSFORMATION

Formally� the problem is as follows�

� Given the data access matrix H and matrix of depen�
dence distance
direction vectors D�

� �nd a row permutation matrix P and a column trans�
formation matrix U such that�

� H� � PHU is in echelon form

� U��D 
 � 	 i�e� the resulting loop transforma�
tion is legal

� P satis�es some pro�tability conditions� We dis�
cuss this point later in Section ���

We start by �nding some transformation matrix U such
that H� � PHU is in echelon form� If this matrix is not
legal� we will update it by using the following fact�

Theorem � Let H be a matrix with M rows and N
columns� Assume H has full column rank� Let H� � PHU�

be a permuted echelon form of H� Let Q be an N�by�N
invertible matrix� Let H�� � H�Q� Then H�� is a permuted
echelon form ofH with the same column permutation matrix

P if and only if Q is a lower triangular matrix�

For lack of space� we omit the proof� This theorem suggests
the following algorithm�

�� Find an echelon form H� � PHU of H as described in
����

�� Find a non�singular lower�triangular matrix M such
that

MU
��
D � � ����

The method for �nding M is a simple modi�cation of
the completion procedure of �����

�� The new transformation is V � UM��� The fact that
H�� � PHV is in echelon form follows from Theorem �
and the fact that the inverse of a lower triangular ma�
trix is also lower triangular� Theorem � tells us that
this way of �nding a new �legal� transformation V is
complete 	 if there is a legal transformation� it is a
product of U�� and a lower triangular matrix�

�� The remaining question is the following� What do we
do if we can not �nd a legal transformation of H into
its echelon form� This problem is addressed below�

If we cannot transform all of H into echelon form legally�
we use a partial transformation that tries to get as many
rows ofH into echelon form �legally� as possible� Intuitively�
the rows of the transformed H that are in echelon form cor�
respond to array dimensions which we can enumerate using
joins� while the rest of the rows correspond to array dimen�
sions which have to be searched� More formally� let

PHU � H
� �

�
H�

� �
H�

� H�
�

�
����

be a �partial� echelon form� Here H�
� has full column rank

and is in echelon form and H� and H� are some matrices�
Let r be the number of rows in H�

�� We will say that H� is
an r�partial echelon form of H�

If the transformation U is not legal� we try to augment
it to a legal one by multiplying it on the right by a suitable
non�singular matrix� It follows from Theorem � that if we
multiply H� on the right by a non�singular matrix B which
has structure�

B �

�
L �
M� M�

�
����

with L being lower triangular and the blocking being the
same as in ����� then the result H�� � H�B is also a partial
echelon form of H with the same structure as H��

It is not hard to see that for B from ����� the inverse
B�� has the same structure� This gives us the following
algorithm for �nding a legal r�partial echelon form of H for
a given r�

�� Find some r�partial echelon form ���� by doing row
permutations and column operations as in ����

�� Find a non�singular matrix B with the structure as in
���� such that�

BU
��
D � �

The method for �nding B to satisfy this equation is
similar to the completion procedure of ����� If such B
exists� then V �UB�� gives us a legal transformation�

��� THE SEARCH PROBLEM

In ���� the problem is to �nd the best permutation P� which
gives the ordering between di�erent joins� Our case is com�
plicated by the fact that di�erent P�s can lead to legal r�
partial echelon forms of di�erent sizes �r�s�� Therefore the
best permutation P from the point of view of ��� might not
lead to the fullest r�partial echelon form�

In general� we might have to explore the space of all
permutations P and all r�partial echelon forms �for each
permutation�� The size of the space is M �M �� where M
is the number of attributes� and for each point in the space
we need to �nd a �partial� echelon form and perform the
completion procedure� Therefore� a brute force enumera�
tion might be prohibitively expensive� We have found the
following strategy to work well�

� Find a permutation P and the corresponding echelon
form as described in ���� In this approach� the at�
tributes are ordered in one step by traversing a directed
graph that represents the hierarchy of the �elds in the
storage formats used to represent the sparse matrices�

� Starting with the full echelon form� try various partial
echelon forms for the permutation found in the previous
step until a legal one is found�

�



DO i � �� n
DO j � �� i� �

IF �L�i� j� �� �� THEN
S� � b�i� � b�i� � L�i� j� � x�j�

ENDIF
ENDDO
S� � x�i� � b�i��L�i� i�

Figure �� Generic sparse lower triangular solution

� IMPERFECTLY NESTED LOOPS

��� AN EXAMPLE

We use an example to illustrate how the ideas of the previous
section can be extended to handle imperfectly nested loops�
Consider the code fragment in Figure � that computes a
solution to a lower triangular system� We assume that x
and b are dense�

According to the abstract syntax tree numbering scheme
of ���� the iteration vectors for the statements are�

iS� �

�
B�
i
�
�
j

�
CA iS� �

�
B�
i
�
�
i

�
CA ����

These iteration vectors encode both iteration numbers and
statement order� There are two dependences�

� from all updates to b�i� in S� to the use of b�i� in S��
and

� from the write to x�i� in S� to the read of x�j� in S��

The dependence matrix is�

D �
�
d� d�

�
�

�
B�

� �
� ��
�� �
� �

�
CA ����

Suppose L is stored by column� Most of the computation
is done in statement S�� For this statement� just as in the
example of Section ���� we would like to interchange the i
and j loops� A full transformation that does this is given by
the matrix�

T �

�
B�
� � � �
� � � �
� � � �
� � � �

�
CA ����

It is easy to verify that this transformation is legal� T 	D 

��

Here the �rst and the last rows of the matrix are the
loop interchange transformation U�� � � � �

� � � extended into
a full transformation matrix for the whole imperfectly nested
loop� The sub�matrix T�� � �� � � �� represents statement
interchange� Without it we would not have a legal transfor�
mation�

Notice that U�� �
�

� ��
�� �

�
is also a good candidate for

the partial transformation� since it brings the data access
matrix for the statement S� into echelon form� But the

DO j � �� n
S� � x�j� � b�j��L�j� j�
DO i � n� j � ����

IF �L�i� j� �� �� THEN
S� � b�i� � b�i�� L�i� j� � x�j�

Figure 
� Transformed generic sparse lower triangular solu�
tion

resulting full transformation

T �

�
B�

� � � ��
� � � �
� � � �
�� � � �

�
CA OR

�
B�

� � � ��
� � � �
� � � �
�� � � �

�
CA

����

is not legal� We can adopt the same strategy as in Section �
to build a legal T� we form T row�by�row� either scaling
the rows that come from U�� �by a non�zero� or adding
previous rows that came from U�� to the current one� In
e�ect� we are multiplying U�� by a lower triangular matrix�
thus keeping the echelon form of the data access matrix�

In our example� we start with the �rst and fourth rows
of T �lled� �

B�
� � � ��
� � � �
� � � �
�� � � �

�
CA ��
�

We need to change the �rst row� since it produces a nega�
tive direction when multiplied by d�� The only option at
this point is to scale this row� Therefore� we negate it� To
form a legal transformation� the next two rows are made to
represent statement reordering� We can leave the last row
unchanged to obtain the following matrix�

T �

�
B�

� � � �
� � � �
� � � �
�� � � �

�
CA ����

It is easy to see that this transformation is legal� The entry
T�� � �� has the e�ect of reversing the inner loop� The
transformed code is shown in Figure 
�

How do we generate sparse code from the transformation
T� The main di�erence with the perfectly nested case is that
the outer loop �j� now participates in joins for � di�erent
statements� The join for S� is

RL�i� j� �� RB�i� �� RX�j� ����

For this statement� the j loop performs the join between
the columns of L and the elements of x� Since L stores all
columns and provides a cheap search for each column� and
x is dense� the outer loop for the S� iterates from � to n�
The join for S� is

RL�j� j� �� RX�j� ����

A run�time error is signaled if RL does not store a particular
diagonal element� Here� again� the only choice is to execute
j from � to n� and search in RL and RX � Overall� the outer
loop runs over the union of these two �equal� intervals� The
i loop only participates in statement S�� The code is shown
in Figure ��






DO j � �� n
vx � search RX for j
vL � search RL��� j� for j
vb � search RB for j
vx � vb�vL
DO hi�wLi � RL��� j�� i � j� in �reverse�

wb � search RB for i
wb � wb� wL � vx

Figure �� Column�oriented sparse lower triangular solution

DO k � �� n
DO j � k� n

DO l � �� k� �
S� � A�j�k� � A�j�k��A�k� l� � A�j� l�

ENDDO
ENDDO
S� � A�k� k� � sqrt�A�k� k��
DO i � k � �� n

S� � A�i� k� � A�i� k��A�k� k�
ENDDO

ENDDO

Figure �� Left�looking Cholesky factorization

��� GENERAL FRAMEWORK

The imperfectly nested loop transformation framework of ���
allows for transformations which are combinations of state�
ment reorderings and linear transformations along disjoint

downward paths of the abstract syntax tree �AST� for the
loop� For example� consider the loop nest in Figure �� that
computes Cholesky factorization of a matrix� The AST for
this loop is shown on the left in Figure ��� ��� allows trans�
formations which would combine �e�g� permute or skew� the
k� j and l loops� but not j and i loops� A transformation into
right�looking code is an example of a valid transformation�
It permutes the k� j and l loops and reorders the children of
the root� The resulting code is shown in Figure �� and the
AST for this loop nest is shown on the right in Figure ���
The dashed line marks the path in the AST along which the
loop variables were combined�

��� provides a completion procedure to build a full legal
transformation out of the �rst few rows� This procedure is
similar to the one used for perfectly nested loops in �����
The main di�erence is the necessity to maintain a special
structure for the transformation matrix� that re�ects the
reordering of the AST� This point is discussed in more detail
in ����

For lack of space� we do not describe our extension of the
completion procedure here� but illustrate its behavior using
the Cholesky factorization example� We start with the loop
nest in Figure �� The dependences for this example are�

D �

�
BBBBBBB�

� � � �
� � � ��
�� � � �
� �� �� �
� � � �
� � � �
� � � �

�
CCCCCCCA

����

The query for the update statement S� is�

RA�j�k� �� RA�j� l� �� RA�k� l� ����

DO l � �� n
S� � A�l� l� � sqrt�A�l� l��
DO i � l � �� n

S� � A�i� l� � A�i� l��A�l� l�
ENDDO
DO k � l � �� n

DO j � k� n
S� � A�j�k� � A�j�k��A�k� l� � A�j� l�

ENDDO
ENDDO

ENDDO

Figure �� Right�looking Cholesky factorization

S1

S2

S3

K

J

L

I S2 I

S1

S3

L

J

K

Figure ��� Transformation of the AST

If the matrix is stored using compressed column scheme�
then the order of the joins should be l � k � j� The corre�
sponding loop transformation for this statement is�

U
�� �

�
�� � �
� � �
� � �

�
A ����

We start with the full transformation being�

�
BBBBBBB�

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
CCCCCCCA

����

The last two rows ofU�� are placed at the end for now� since
we do not know the AST reordering yet� Rows � through
� describe the reordering of the children of the root of the
AST� To maintain a legal transformation� we use the per�

mutation
�
� � �
� � �
� � �

�
� This tells us that the last two rows of

U�� should become the �th and 
th rows of the transfor�
mation� Completing the last row so that the whole matrix
is non�singular� we get the following matrix�

T �

�
BBBBBBB�

� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �
� � � � � � �

�
CCCCCCCA

����

�



DO l � �� n
u � search RA��� l� for l
S� � u � sqrt�u�
DO hi� vi � RA��� l�� i � l

S� � v � v�u
ENDDO
DO hk� vi � RA��� l�� k � l

DO hj�w� ui � RA��� k� �� RA��� l�� j � k
S� � w � w� v � u

ENDDO
ENDDO

ENDDO

Figure ��� Sparse Cholesky factorization

This transformation results in the right�looking Cholesky
factorization shown in Figure �� The sparse computation is
shown in Figure ���

� PREVIOUS WORK

The results of this paper are largely complementary to the
work done by Bik and Wijsho� on determining sparsity
predicates� analyzing coarse�grain structure in sparse ma�
trices and choosing storage orientation ��	
�� However� we
improve on their access reshaping and guard encapsulation
techniques as follows�

The access reshaping method of ��� generates the �nal
loop transformation by composing a sequence of legal trans�
formations for each loop of the original loop nest� This is
more restrictive than our algorithm which uses the echelon
form of the data access matrix to generate a legal trans�
formation directly� since such a transformation might not
decompose into a product of legal transformations� Theo�
rem � tells us that if there is a legal transformation into
an echelon form� then our algorithm will �nd one� No such
guarantee exists for access reshaping�

Another important di�erence is in the way that enumer�
ations over the sparse data structures are incorporated into
the transformed loop nest� If a loop enumerates over multi�
ple sparse data structures �as in the inner product example
of Section ����� we have many choices for implementing this
simultaneous enumeration �that is� join�� Guard encapsula�
tion performs enumeration over exactly one data structure
per loop in a loop nest� and generates searches �possibly
speeded up by access pattern expansion� for the rest of the
data structures� In our framework� this is equivalent to per�
forming a Hash�Join� However� as we have shown in ���� the
Merge�Join algorithm might be a better alternative in some
contexts� but the guard encapsulation technique does not
explore this option�

Finally� Bik and Wijsho� do not have a uni�ed frame�
work for dealing with imperfectly nested loops� In particu�
lar� the loop permutation that our algorithm computes for
Cholesky factorization cannot be derived in their framework�
and can only be represented as a sequence of loop permu�
tations and statement reorderings� It is not clear how such
sequence can be derived automatically�

� CONCLUSIONS AND FUTURE WORK

In this paper� we have shown how the sparse compilation
techniques of ��� can be extended to handle imperfectly

nested loops with dependences by using the loop transforma�
tion framework of ���� Our method is based on the following
observations�

� Two di�erent permuted echelon forms �having the same
row permutation� of a matrix are related by a lower
triangular matrix� This allows us to start with an illegal
transformation and modify it into a legal one�

� The completion procedure of ��� can be extended to
compute a legal transformation that brings the data
access matrix into a desired echelon form�

Currently we only allow compressed hyper�plane storage for�
mats in the compilation of loops with dependences� This is
necessary because satisfying dependences requires relating
the order of enumeration of the sparse arrays to the order of
the loops� While this allows us to generate sparse code auto�
matically for a variety of formats� these simple storage for�
mats are inadequate if we want to exploit special structure
in the matrices as is done� for example� in the BlockSolve
package ���� We are currently exploring ways of extending
our techniques to such data structures�
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