Sparse code generation for imperfectly nested loops with dependences

Vladimir Kotlyar

Keshav Pingali

Department of Computer Science
Cornell University, [thaca, NY 14853
{vladimir,pingali} @cs.cornell.edu

Abstract

Standard restructuring compiler tools are based on polyhe-
dral algebra and cannot be used to analyze or restructure
sparse matrix codes. We have recently shown that tools
based on relational algebra can be used to generate an effi-
cient sparse matrix program from the corresponding dense
matrix program and a specification of the sparse matrix for-
mat. This work was restricted to DO-ALL loops and loops
with reductions. In this paper, we extend this approach to
loops with dependences. Although our results are restricted
to Compressed Hyperplane Storage formats, they apply to
both perfectly nested loops and imperfectly nested loops.

1 INTRODUCTION

Although sparse matrix computations are ubiquitous in
computational science, research in restructuring compilers
has focused almost exclusively on dense matrix programs.
This is because the tools used in restructuring compilers
are based on the algebra of polyhedra, and can be used only
when array subscripts are affine functions of loop index vari-
ables. Sparse matrices are represented using compressed for-
mats to avoid storing zeroes, so array subscripts in sparse
matrix programs are often complicated expressions involv-
ing indirection arrays. Therefore, tools based on polyhedral
algebra cannot be used to analyze or to restructure sparse
matrix programs.

One possibility is to express the algorithm as a dense
matrix program, but declare to the compiler that certain
matrices are actually sparse. This approach restores the
compiler’s ability to analyze the program, but it makes the
compiler responsible for choosing the format used to repre-
sent the sparse matrices in the program, and for generating
code in which computations involving zeros are eliminated.
This idea was explored by Bik and Wijshoff in a series of
papers [1-6]. However, the task of choosing a good rep-
resentation for sparse matrices is a somewhat delicate one,
and doing it right requires that careful attention be paid to
the data flow of the algorithm, the structure of the non-zeros
in sparse matrices, and properties of the target architecture.
Compressed Row/Column Storage is simple and is therefore

In ACM SIGARCH International Conference on Super-
computing, July 7-11, 1997, Vienna, Austria

| | No dependences | Dependences |

No MVM, MMM with | Solution of triangular
fill dense or preallocated | systems

left-hand side
Fill MVM, MMM with | Matrix factorizations
sparse left-hand side

Table 1: Classification of sparse matrix codes

used very often in practice. However, the sparse matrices
that arise in PDE solvers often have many rows with the
same non-zero structure, and are best represented as a col-
lection of small dense matrices in which each dense matrix
arises from gathering data from rows with the same non-zero
structure [7]. Formats like the jagged-diagonal format are
used when the target architecture is a vector machine [11].

We have chosen to make the programmer responsible
for specifying sparse formats. Therefore, our compiler must
solve the problem of generating efficient sparse code, given a
loop nest containing dense matrix computations and a spec-
ification of sparse matrix formats. In an earlier paper, we
used techniques from relational algebra to solve this problem
for the special case of DO-ANY loop nests [9]. As Table 1
shows, many common programs such as matrix-vector prod-
uct and matrix-matrix product are included in this class, but
other programs of great practical importance such as trian-
gular solve and Cholesky factorization are not in this class.

In this paper, we extend our techniques to the problem
of generating code for loop nests with dependences, restrict-
ing ourselves to the special case of sparse formats which
represent Compressed Hyperplane Storage (of which Com-
pressed Row/Column Storage are special cases). The rest
of the paper is organized as follows. Section 2 reviews our
relational approach to sparse matrix program compilation.
Section 3 describes how these methods can be extended to
handle perfectly nested loops with dependences. Section 4
describes how transformations for imperfectly nested loops
are generated. Section 5 compares our approach with the
access reshaping and guard encapsulation techniques of Bik
and Wijshoff. Section 6 describes the future directions of
our work.

2 RELATIONAL APPROACH TO SPARSE MATRIX
CODE COMPILATION

2.1 AN EXAMPLE

Consider the loop which computes the inner product of two
vectors X and Y:

DOi=1,n
dot = dot + X (i) * Y (i)

We can view the arrays X and Y, and the iteration set of
the loop as relations (or tables):

Rx = {{tz,va) | X(1) = 02} (1)
Ry = {{iy,vy) | Y{i) = vy} (2)
Ri = {i)1<i<n) 3)

The loop enumerates over the tuples (i, 1, va, 1y, v,) which
satisfy the following query ' :

Q = O-(i:ix/\i:iy)(RI(i) X Rx(im, Um) X Ry(iy, Uy)) (4)

Conceptually, the relations Rx and Ry store both zero
and non-zero values of the arrays X and Y. When the ar-
rays are sparse, they might actually be stored using some
compressed scheme. In this case, only non-zeroes are stored
explicitly and zeros are implicit. Following the practice in
sparse matrix literature, we assume that only the elements
that are not explicitly stored are zero. We use the predi-
cates NZ(Rx(i)) and NZ(Ry(i)) to test if an element is
stored and should be assumed to be non-zero. It is impor-
tant to notice that the NZ predicate always evaluates to
true for a dense vector, even though some elements might
be numerically zero.

If the vectors are sparse, then only those iterations need
to be executed for which X (i) # 0 AY (i) # 0. In terms
of our relational query formulation we wish to select only

those ¢’s for which NZ(Rx(i)) A NZ(Ry(i)) is true. If we

def

let P = NZ(Rx(i)) AN NZ(Ry(i)), then the query for the
sparse loop nest becomes:

Qsparse = O-PQ =

= 0p0 (i=iy ni=iy) (R1(2) X Rx (12, v2) X Ry (1y,vy)) (5)

To evaluate this query efficiently, we push the 0= ri=,
selection into the cross products to obtain equi-joins 2

Qsparse = O-P(RI(l) > RX(L Ug:) >]"jLY(l'7 Uy))
= 0 (Rx(iy0a) v R(irv,) (6)

Once equi-joins in the query are exposed, we can apply
one of three algorithms for computing equi-joins (see [12],
for example):

o Enumerate-Search: Walk over the tuples of one relation
and search for the common attribute in the other.

L0 is the relational algebra selection operator. The notation
R(a,b) names the fields in the relation R for use in the selection
predicates.

?We can eliminate Ry from the query since it does not restrict the
result any more than Rx and Ry do.

e Merge-Join: If both relations are sorted on the join
attribute, then walk over both of them “in step”.

o Hash-Join: Scatter the tuples of one of the relations
into a hash table (which can be a dense vector), then
walk over the other and probe the hash table with the
join attribute.

The best choice for the join algorithm depends on the access
methods available for the relations and their properties: for
example, Merge-Join is competitive only if the join index in
both relations can be enumerated efficiently in sorted order.
These algorithms can be combined to compute joins of more
than two relations. They can also be generalized to enumer-
ate over the zeros as well as non-zeroes. This is necessary,
for example, in the case of computing a sum of two vectors:

the equi-join is the same as in (6), but the sparsity predicate
def

P is different: P = NZ(Rx(i)) V NZ(Ry(i)).

2.2 GENERAL APPROACH

In the inner product example, it was easy to expose joins in
the query expression. More generally, we perform the follow-
ing steps to expose joins and generate code; the interested
reader can find the details in [9].

1. Dense loop nests are converted to relational queries as
in (4). Array access functions generate appropriate se-
lection predicates.

2. A sparsity predicate is computed as described in [1,
5] and is converted into a selection in terms of the
NZ(...) predicates as in (5).

3. Equi-joins are discovered by “pushing” selections with
equality predicates “through” cross-products.

4. In general, we might have several equi-joins, and these
are ordered (nested) to minimize expensive searches in
compressed data structures.

5. Implementation algorithms are selected for the equi-
joins and are specialized to enumerate the correct com-
bination of zeros and non-zeros as given by the predi-
cate P.

We discuss Steps 3 and 4 in more detail since they have to
modified to accommodate loops with dependences. Suppose
we have a perfectly nested loop with a single statement S
and the sparsity predicate P:

DOieB
IF P THEN
S:Al(Fli—i—fl) = Ak(Fkl—l—fk)

where 1 is the vector of loop indices and B represents the
loop bounds. We make the usual assumption that the loop
bounds are polyhedral, and that the arrays Ax, k=1... N,
are addressed using affine access functions.

To generate the relational query for computing the set
of sparse loop iterations, it is useful to define the following
vectors and matrices:

I i 0
F, ay f;
H= . a= . f=1. (7)

FN anN fN

ct |0 O 0
Lé C2 0 0
Lfo) C3 0
Ll Cr

Figure 1: Permuted Column Echelon Form of Data Access
Matrix

Following [10], the matrix H is called a data access matriz.
Notice that H always has full column rank. It is easy to see
that the following data access equation holds:

a="f+ Hi (8)

As described in [9], we view the arrays Ag as relations with
the following attributes:

e a;, which stands for the vector of array indices
o vy, which is the value of Ax(ax)

Given all of the above, the sparse loop nest can be thought
of as an enumeration of the tuples that satisfy the following
relational query (R is the iteration space relation):

UpO'(a:f+Hi) (R](l) X ... X Ak(ak,vk) X ..) (9)

To evaluate this query efficiently, we discover equi-joins
between different fields (attributes) ay, as mentioned before.
More precisely, we discover affine joins between pairs of at-
tributes that are related by affine equalities for all values
of i. In [9] this is done by computing the permuted echelon
form of the data access matrix H:

H = PHU (10)

where P is the matrix of row permutations and U is the uni-
modular matrix of “zeroing” transformations. The structure
of the matrix H' is shown in Figure 1 (r is the rank of H).
Fach column vector ¢j is all non-zero.

The point of computing this echelon form is the follow-
ing. If welet b = P(a —f) and j = U™'i, the data access
equation (8) can be rewritten as:

b = H'j (11)
We can now partition vector b into r blocks according to

the partitioning of H' in Figure 1 and obtain the following
equation for each block m =1,...,r:

bm =Ln 'jl..(m—l) +Cm jm (12)

In the generated code, jy, is the mth loop variable. Since the
values ji. (m—1) are enumerated by the outer loops, the affine

joins for this loop are defined by the following equations for
m=1,...,r:

b,, = invariant + ¢ * jm (13)
If we let a’ = Pa and ' = Pf, we can rewrite (13) as:

; P . .
a,, = f" 4 invariant + ¢ * j;m =

= another_invariant + ¢y, * j;m (14)

Therefore, at each level, the permuted attributes are related
by simple affine equations (through j.,). That is, each loop
variable j.,, of the new loop nest enumerates over the results
of an affine join. Notice that the matrix U™ from (10)
gives us the loop transformation from the original loop nest
to loops that enumerate joined attributes.

How is P in (10) being chosen? This permutation gives
us the nesting order in which different fields in the rela-
tions (arrays) are being enumerated. Since most sparse ma-
trix formats have a hierarchical structure, P must be chosen
carefully to avoid expensive searches.

We illustrate all of these ideas on an example. Consider
the case of the product of a sparse matrix A and a sparse
vector X, which is being stored into a dense vector Y. As-
sume that the matrix is compressed along the diagonals into
a sparse array A (i.e., it is stored in the indices s = i — j
and ¢t = j, where s indexes the diagonals and ¢ runs within
each diagonal). The array A itself is stored in CRS ®. To
exploit this hierarchical structure, we must enumerate s in
the outer loop and ¢ in the inner loop. The loop nest (with
sparsity predicate) is:

DOi=1,n
DO j=1,n
IF (A(1 = j,7) #0 A X(j) # 0)THEN
V(1) =Y (i) + A(i - 5,7) * X(5)

The relations is this query are: Ri(i,j), Ra(s,t, va),
Rx(Jz,vz) and Ry (iy,vy). If we define the following predi-
cates :

P Y NZ(Rali—j,) ANZ(Rx(j)) (15)
A Y s jat=gri=igAj=4. (16)
then the query is:

Q:apaA(RI(i,j) x Ra(s,t,va) % o
1
% Rx (Ju, va) X Ry(z’y,vy))

The data access equation (with s permuted into the outer-
most position) is:

8 1 -1

i 1 0

il o 1]

= 1o 1 < j> (18)
i 1 0
ja 0 1

To get this system into echelon form we need to add the first
column of the data access matrix to the second. This can

3Such combination of an index transformation and CRS defines an
instance of CHS.

DO s € R4
DO (¢, vq, jz,vs) € Merge(Rx, Ra(s, *))
vy = search Ry for (s +¢)
Uy = Uy + Vg * Uz

Figure 2: Sparse matrix vector product

be done using the column transformation matrix U and the
loop transformation matrix U™!, shown below:

v=(1) v'=()

The data access equation in echelon form is:

s 1 0

] 1 1

71 _10o 1 u uy (1 -1]

t |10 1 <U> <U>_<0 1 7 (20)
iy 11

o 0 1

This reveals two nested joins. The outer one simply enumer-
ates across the diagonals s of A. For a fixed value s = sq,
the inner loop joins the diagonals with the vectors X and

Y:
iy—SOZt:jm (21)

Notice that each inner join has a different starting value for
1y. Suppose that the vector X is sparse and the vector Y
is dense. If the indices of X and the indices ¢ within the
diagonals can be enumerated in sorted order, we obtain the
code shown in Figure 2. Each diagonal of A is joined with
X using merge-join and the result is joined with Y using
enumerate-search join.

To summarize, here are the two key matrices and their
roles in the code generation process:

o The permuted echelon form H' = PHU reveals affine
joins; these joins can be implemented in several ways.

e The matrix U™! represents the transformation from
the original loop nest to one that enumerates the joined
attributes.

3 PERFECTLY NESTED LOOPS
WITH DEPENDENCES

In Section 2, we considered only DO-ANY loops, so we did
not worry about the legality of the transformation U™, We
now describe how a legal transformation can be generated,
if at all possible, when the loop nest has dependences.

3.1 A MOTIVATING EXAMPLE

The loop nest in Figure 3 computes the solution to a sparse
unit lower triangular system Lx = b (the solution is accu-
mulated in b). The dense loop nest has two dependences,
which the generated sparse code has to satisfy:

o A flow dependence from the write into b(¢) to the read
from b(j). It can be expressed as a distance/direction
vector d = (i)

DOi=1,n
DOj=1,i—1
IF (L(1,5) # 0) THEN
b(i) = b(i) — L(i, §)b(4)

Figure 3: A generic sparse unit lower triangular solver

DO j=1,n
wp = search Ry for j
DO {(i,vr) € Rp(*,5),i > j
vy = search Ry for i
Up = Up — UL - Wy

Figure 4: Sparse column-oriented unit lower triangular
solver

e An output dependence between successive updates to
b(7). We will ignore this dependence, assuming that the
updates are commutative and associative, as i1s stan-

dard.

The data access equation for this loop nest is:

1 0
j 01
| | o]
A= [T o1 <J> (22)
1B 1 0
s 01

Suppose that L is compressed along the columns. Then the
desired permuted echelon form of the data access equation
is:

JL
JB
J
L
iB
7

[oNeNeN -

(23)

The column transformation matrix and its inverse are:
01 —1
o (0 1) o

If we assume that the vector b is dense, then both joins
can be performed using the Enumerate-Search strategy, be-
cause searches in the dense relations Ry and Rp are simple
look-ups which are inexpensive. This gives us the code in
Figure 4.

We must now verify that the transformed loop does not
violate dependences. The transformation U~ is legal only
if it preserves dependences in the original code. This can be
expressed as follows:

U'd»o0 (25)

where > corresponds to lexicographic order. In our case:

LY@ =

Therefore, the transformation is legal. Notice that the fol-
lowing matrix also gives us an echelon form:

U=U"'= <_01 _01> (27)

but the resulting loop nest is illegal because:

6 DE-Ox

Therefore, we were lucky to obtain the legal transformation
matrix U™! from (24). The problem therefore is to invent
an algorithm that finds an echelon form with a legal trans-
formation matrix, if one exists.

3.2 FINDING A LEGAL TRANSFORMATION
Formally, the problem is as follows.

e Given the data access matrix H and matrix of depen-
dence distance/direction vectors D,

e find a row permutation matrix P and a column trans-
formation matrix U such that:

— H’ = PHU is in echelon form

— U™'D > 0 - i.e. the resulting loop transforma-
tion is legal

— P satisfies some profitability conditions. We dis-
cuss this point later in Section 3.3

We start by finding some transformation matrix U such
that H' = PHU is in echelon form. If this matrix is not
legal, we will update it by using the following fact:

Theorem 1 Let H be a matriz with M rows and N
columns. Assume H has full column rank. Let H = PHU’
be a permuted echelon form of H. Let Q be an N-by-N
invertible matriz. Let H' = H'Q. Then H" is a permuted
echelon form of H with the same column permutation matrix
P if and only if Q is a lower triangular matrix.

For lack of space, we omit the proof. This theorem suggests
the following algorithm:

1. Find an echelon form H' = PHU of H as described in
[9].

2. Find a non-singular lower-triangular matrix M such
that

MU™'D >0 (29)

The method for finding M is a simple modification of
the completion procedure of [10].

3. The new transformation is V.= UM™!. The fact that
H"” = PHYV is in echelon form follows from Theorem 1
and the fact that the inverse of a lower triangular ma-
trix is also lower triangular. Theorem 1 tells us that
this way of finding a new (legal) transformation V is
complete — if there is a legal transformation, it is a
product of U™! and a lower triangular matrix.

4. The remaining question is the following: What do we
do if we can not find a legal transformation of H into
its echelon form? This problem is addressed below.

If we cannot transform all of H into echelon form legally,
we use a partial transformation that tries to get as many
rows of H into echelon form (legally) as possible. Intuitively,
the rows of the transformed H that are in echelon form cor-
respond to array dimensions which we can enumerate using
joins, while the rest of the rows correspond to array dimen-
sions which have to be searched. More formally, let

!
PHU=H' = <gi I%) (30)
be a “partial” echelon form. Here Hj has full column rank
and is in echelon form and H- and Hs are some matrices.
Let r be the number of rows in Hi. We will say that H’ is
an r-partial echelon form of H.

If the transformation U is not legal, we try to augment
it to a legal one by multiplying it on the right by a suitable
non-singular matrix. It follows from Theorem 1 that if we
multiply H’ on the right by a non-singular matrix B which
has structure:

B = <1\I/fl 1\22> (31)

with L being lower triangular and the blocking being the
same as in (30), then the result H” = H'B is also a partial
echelon form of H with the same structure as H’.

It is not hard to see that for B from (31), the inverse
B! has the same structure. This gives us the following
algorithm for finding a legal r-partial echelon form of H for
a given r:

1. Find some r-partial echelon form (30) by doing row
permutations and column operations as in [9].

2. Find a non-singular matrix B with the structure as in
(31) such that:

BU™'D 0

The method for finding B to satisfy this equation is
similar to the completion procedure of [10]. If such B
exists, then V. = UB™' gives us a legal transformation.

3.3 THE SEARCH PROBLEM

In [9], the problem is to find the best permutation P, which
gives the ordering between different joins. Our case is com-
plicated by the fact that different P’s can lead to legal r-
partial echelon forms of different sizes (r’s). Therefore the
best permutation P from the point of view of [9] might not
lead to the fullest r-partial echelon form.

In general, we might have to explore the space of all
permutations P and all r-partial echelon forms (for each
permutation). The size of the space is M * M!, where M
is the number of attributes, and for each point in the space
we need to find a (partial) echelon form and perform the
completion procedure. Therefore, a brute force enumera-
tion might be prohibitively expensive. We have found the
following strategy to work well:

e Find a permutation P and the corresponding echelon
form as described in [9]. In this approach, the at-
tributes are ordered in one step by traversing a directed
graph that represents the hierarchy of the fields in the
storage formats used to represent the sparse matrices.

e Starting with the full echelon form, try various partial
echelon forms for the permutation found in the previous
step until a legal one is found.

((z,]) ;f 0) THEN

51 :b(i) =b(2) — L(1,5) * 5(5)
ENDIF
ENDDO
52 ¢ w(i) = b(i)/ L4, i)

Figure 5: Generic sparse lower triangular solution
4 IMPERFECTLY NESTED LOOPS
4.1 AN EXAMPLE

We use an example to illustrate how the ideas of the previous
section can be extended to handle imperfectly nested loops.
Consider the code fragment in Figure 5 that computes a
solution to a lower triangular system. We assume that x
and b are dense.

According to the abstract syntax tree numbering scheme
of [8], the iteration vectors for the statements are:

(32)

. O = =

1

. 0 .

191 = 1 152 =
J

These iteration vectors encode both iteration numbers and
statement order. There are two dependences:

e from all updates to b(z) in S1 to the use of b(:) in S2,
and

o from the write to () in 52 to the read of z(j) in S1.

The dependence matrix is:

0o+
D=(d d)=|" 7 (33)
—+ 0

Suppose L is stored by column. Most of the computation
is done in statement S1. For this statement, just as in the
example of Section 3.1, we would like to interchange the ¢
and j loops. A full transformation that does this is given by
the matrix:

(34)

— o oo
o= o0
oo~
oo o=

It is easy to verify that this transformation is legal: T -D »
0.

Here the first and the last rows of the matrix are the
loop interchange transformation U™! = (91} estended into
a full transformation matrix for the whole imperfectly nested
loop. The sub-matrix T(2 : 3,2 : 3) represents statement
interchange. Without it we would not have a legal transfor-
mation.

Notice that U™! = (_01 _01) is also a good candidate for
the partial transformation, since it brings the data access
matrix for the statement S1 into echelon form. But the

DO j=1,n
52 :x(5) = b(5)/L(5,7)
DOi=n,3+1,-1

IF (L(i,J) # 0) THEN
51 :b(i) =b(2) — L(1,5) * 5(5)

Figure 6: Transformed generic sparse lower triangular solu-
tion

resulting full transformation

0 0 0 -1 0 0 0 -1
0 1 0 0 0 01 O
T= 0 01 O OR 0 1 0 O
-1 0 0 O -1 0 0 O
(35)

is not legal. We can adopt the same strategy as in Section 3
to build a legal T: we form T row-by-row, either scaling
the rows that come from U™!' (by a non-zero) or adding
previous rows that came from U~' to the current one. In
effect, we are multiplying U~ by a lower triangular matrix,
thus keeping the echelon form of the data access matrix.

In our example, we start with the first and fourth rows

of T filled:

0 0 0 —1
? 7 7 2
? 7 2 9 (36)
100 0

We need to change the first row, since it produces a nega-
tive direction when multiplied by d;. The only option at
this point is to scale this row. Therefore, we negate it. To
form a legal transformation, the next two rows are made to
represent statement reordering. We can leave the last row
unchanged to obtain the following matrix:

0 0 0 1
0 0 1 O

T=10 1 0 0 (37)
-1 0 0 O

It is easy to see that this transformation is legal. The entry
T4 = —1 has the effect of reversing the inner loop. The
transformed code is shown in Figure 6.

How do we generate sparse code from the transformation
T? The main difference with the perfectly nested case is that
the outer loop (7) now participates in joins for 2 different
statements. The join for S1 is

Ri(t,7) pa Rp (1) b4 Rx(5) (38)

For this statement, the 7 loop performs the join between
the columns of L and the elements of x. Since L stores all
columns and provides a cheap search for each column, and
x is dense, the outer loop for the S1 iterates from 1 to n.
The join for S2 is

Ri(3,3) =0 Rx(3) (39)

A run-time error is signaled if R; does not store a particular
diagonal element. Here, again, the only choice is to execute
7 from 1 to n, and search in R; and Rx. Overall, the outer
loop runs over the union of these two (equal) intervals. The
t loop only participates in statement S1. The code is shown
in Figure 7.

DO j=1,n

vy = search Rx for j

vy = search Ry (%,j) for j

vy = search Rp for j

ve = vp/uL

DO (i,wr) € Rr(*,7),i > 7,in “reverse”
wyp = search Ry for
Wp = Wp — WL *x Uy

Figure 7: Column-oriented sparse lower triangular solution

DO k=1,n
DO j =k, n
DOl=1k-1
S1: A(j, k) = A(5, k) — Ak, 1) * A(4,1)
ENDDO
ENDDO

52 : A(k, k) = sqrt(A(k, k))
DOi=Fk+1,n
S3: A(i, k) = A(i, k) /A(k, k)
ENDDO
ENDDO

Figure 8: Left-looking Cholesky factorization

4.2 GENERAL FRAMEWORK

The imperfectly nested loop transformation framework of [8]
allows for transformations which are combinations of state-
ment reorderings and linear transformations along disjoint
downward paths of the abstract syntax tree (AST) for the
loop. For example, consider the loop nest in Figure 8, that
computes Cholesky factorization of a matrix. The AST for
this loop is shown on the left in Figure 10. [8] allows trans-
formations which would combine (e.g. permute or skew) the
k, 7 and [loops, but not 7 and ¢ loops. A transformation into
right-looking code is an example of a valid transformation.
It permutes the k, 7 and [loops and reorders the children of
the root. The resulting code is shown in Figure 9, and the
AST for this loop nest is shown on the right in Figure 10.
The dashed line marks the path in the AST along which the
loop variables were combined.

[8] provides a completion procedure to build a full legal
transformation out of the first few rows. This procedure is
similar to the one used for perfectly nested loops in [10].
The main difference is the necessity to maintain a special
structure for the transformation matrix, that reflects the
reordering of the AST. This point is discussed in more detail
in [8].

For lack of space, we do not describe our extension of the
completion procedure here, but illustrate its behavior using
the Cholesky factorization example. We start with the loop
nest in Figure 8. The dependences for this example are:

0 0 0 1
1 0 1 -1
-1 1 0 o0

D=|0 -1 -1 1 (40)
+ 0 + +
0 0 - +
0 + + o0

The query for the update statement S1 is:
Ra(j,k)a Ra(g,1) et Ra(k,1) (41)

DOl=1n

S2: A(lL 1) = sqri(A(LLD)
DOi=141,n
S3: A(i,1) = A(i,1) /AL D)
ENDDO
DOk=1+1,n
DO j =k,n
ST AGK) = AGL k) — AK, D) * A1)
ENDDO
ENDDO
ENDDO

Figure 9: Right-looking Cholesky factorization

s
s

Figure 10: Transformation of the AST

If the matrix is stored using compressed column scheme,
then the order of the joins should be ! - k - 5. The corre-
sponding loop transformation for this statement is:

0 0 1
U'=[100 (42)
01 0
We start with the full transformation being:
(43)

[I I N =)
[N = I =]
OO 0w O
[N = I =]
OO 0w O
—= O Y Yy O
OO 0D 0

The last two rows of U™! are placed at the end for now, since
we do not know the AST reordering yet. Rows 2 through
4 describe the reordering of the children of the root of the
AST. To maintain a legal transformation, we use the per-

mutation (g % é) . This tells us that the last two rows of

U~! should become the 5th and 6th rows of the transfor-
mation. Completing the last row so that the whole matrix
is non-singular, we get the following matrix:

0

(44)

)

I
OO OOOO
[oNeNeBol e N
OO OO OO
[oNeNeNoNol o)
_HOoOOoOOoOOoOOo
(el N eloNoNoNol
[=NeNeloloNol

DOl=1,n
u = search Ra(%,1) for I
52 :u = sqrt(u)
DO (i,v) € Ra(x,1),i>1
S3:v=uv/u
ENDDO
DO (k,v) € Ra(x,1),k >1
DO (j,w,u) € Ra(*,k) a1 Ra(x,1),5 >k
Sl:w=w—v*u
ENDDO
ENDDO
ENDDO

Figure 11: Sparse Cholesky factorization

This transformation results in the right-looking Cholesky
factorization shown in Figure 9. The sparse computation is
shown in Figure 11.

5 PREVIOUS WORK

The results of this paper are largely complementary to the
work done by Bik and Wijshoff on determining sparsity
predicates, analyzing coarse-grain structure in sparse ma-
trices and choosing storage orientation [1-6]. However, we
improve on their access reshaping and guard encapsulation
techniques as follows.

The access reshaping method of [2] generates the final
loop transformation by composing a sequence of legal trans-
formations for each loop of the original loop nest. This is
more restrictive than our algorithm which uses the echelon
form of the data access matrix to generate a legal trans-
formation directly, since such a transformation might not
decompose into a product of legal transformations. Theo-
rem 1 tells us that if there is a legal transformation into
an echelon form, then our algorithm will find one. No such
guarantee exists for access reshaping.

Another important difference is in the way that enumer-
ations over the sparse data structures are incorporated into
the transformed loop nest. If a loop enumerates over multi-
ple sparse data structures (as in the inner product example
of Section 2.1), we have many choices for implementing this
simultaneous enumeration (that is, join). Guard encapsula-
tion performs enumeration over exactly one data structure
per loop in a loop nest, and generates searches (possibly
speeded up by access pattern expansion) for the rest of the
data structures. In our framework, this is equivalent to per-
forming a Hash-Join. However, as we have shown in [9], the
Merge-Join algorithm might be a better alternative in some
contexts, but the guard encapsulation technique does not
explore this option.

Finally, Bik and Wijshoff do not have a unified frame-
work for dealing with imperfectly nested loops. In particu-
lar, the loop permutation that our algorithm computes for
Cholesky factorization cannot be derived in their framework,
and can only be represented as a sequence of loop permu-
tations and statement reorderings. It is not clear how such
sequence can be derived automatically.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we have shown how the sparse compilation
techniques of [9] can be extended to handle imperfectly

nested loops with dependences by using the loop transforma-
tion framework of [8]. Our method is based on the following
observations:

o Two different permuted echelon forms (having the same
row permutation) of a matrix are related by a lower
triangular matrix. This allows us to start with an illegal
transformation and modify it into a legal one.

e The completion procedure of [8] can be extended to
compute a legal transformation that brings the data
access matrix into a desired echelon form.

Currently we only allow compressed hyper-plane storage for-
mats in the compilation of loops with dependences. This is
necessary because satisfying dependences requires relating
the order of enumeration of the sparse arrays to the order of
the loops. While this allows us to generate sparse code auto-
matically for a variety of formats, these simple storage for-
mats are inadequate if we want to exploit special structure
in the matrices as is done, for example, in the BlockSolve
package [7]. We are currently exploring ways of extending
our techniques to such data structures.

References

[1] Bik, A. Compiler Support for Sparse Matriz Computations.
PhD thesis, Leiden University, The Netherlands, May 1996.

[2] Bk, A. J., KNUNENBURG, P. M., aND WusHOFF, H. A.
Reshaping access patterns for generating sparse codes. In
Seventh Annual Workshop on Languages and Compilers for
Parallel Computing (Aug. 1994).

[3] Bik, A. J., AND WisHOFF, H. A. Non-zero structure analy-
sis. In International Conference on Supercomputing (1994),
Pp. 226 — 235.

[4] Bik, A. J., aAND WisHOFF, H. A. Advanced compiler opti-
mizations for sparse computations. Journal of Parallel and
Distributed Computing 81 (1995), 14-24.

[5] Bik, A. J., AND WisHOFF, H. A. Automatic data struc-
ture selection and transformation for sparse matrix compu-
tations. IEEFE Transactions on Parallel and Distributed Sys-
tems 7, 2 (1996), 109 — 126.

[6] Bik, A. J., aND WusHOFF, H. A. The use of iteration
sparse partitioning to construct representative simple sec-
tions. Journal of Parallel and Distributed Computing 34
(1996), 95 — 110.

[7] Jongs, M. T., aAND PrassMaNN, P. E. BlockSolve95 users
manual: Scalable library software for the parallel solution
of sparse linear systems. Tech. Rep. ANL-95/48, Argonne
National Laboratory, Dec. 1995.

[8] Kobukura, 1., anD PinGaLl, K. Transformations for im-
perfectly nested loops. In Supercomputing (Nov. 1996),
ACM SIGARCH and IEEE Computer Society, ACM Press.
(http://www.supercomp.org).

[9] KoTLyaRr, V., PINGALI, K., AND STODGHILL, P. A relational
approach to sparse matrix compilation. Submitted to Eu-
roPar (1997). Also available as Cornell Computer Science
Tech. Report 97-1627 (http://cs-tr.cs.cornell.edu).

[10] L1, W., anD PinGaLl, K. Access Normalization: Loop re-
structuring for NUMA compilers. ACM Transactions on
Computer Systems 11, 4 (Nov. 1993), 353-375.

[11] SaaDp, Y. Krylov subspace methods on supercomputers.
SIAM Journal on Scientific and Statistical Computing 10,
6 (NOV. 1989)7 1200-1232.

[12] UrLMmAN, J. D. Principles of Database and Knowledge-Base
Systems, v. I and II. Computer Science Press, 1988.

