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Abstract
Color values in an image are related to image irradiance by
a nonlinear function called radiometric response function.
Since this function depends on the aperture and the shut-
ter speed, image intensity of a same object may vary during
the acquisition of an image sequence due to auto exposure
feature of the camera. While this is desirable to make opti-
mal use of the limited dynamic range of most cameras, this
causes problems for a number of applications in computer
vision. In this paper, we propose a method for estimating
the radiometric response function and apply it to radiomet-
rically align images so that the color values are consistent
for all images of a sequence. Our approach computes the
response function, exposure and white balance changes be-
tween images (up to some ambiguity) for a moving camera
without any prior knowledge about exposures. We show the
performance of our algorithm by estimating the response
function from synthetic images and also from real world
data, using it to radiometrically align the images.

1 Introduction
Even with the important progress in the area of digital cam-
eras and camcorders, cameras still can only capture limited
dynamic range of a scene. Most cameras compress the dy-
namic range of the scene, introducing nonlinearity between
recorded brightness intensity and the scene radiance. This
mapping is called the radiometric response function. This
nonlinearity of the radiometric response function may cause
problems in many computer vision algorithms where ob-
served intensity values are assumed to directly reflect the
scene radiance. Recovering the radiometric response func-
tion is important especially to those algorithms that explic-
itly use scene radiance measurements such as color con-
stancy, construction of high dynamic range images, pho-
tometric stereo, shape from shading, and estimation of re-
flectance and illumination from shape and brightness [5].
It is also a requirement to be able to apply texture images
recorded with different exposures on a 3D model.

1.1 Previous Works

A number of algorithms for estimating the radiometric re-
sponse function have been introduced [3, 4, 5, 8, 9, 10, 11].
Mann and Picard [9] estimated the response curve assuming
that the response is a gamma curve and they know the expo-
sure ratios between images. Debevec and Malik [3] intro-
duced a non-parametric method for the recovery by impos-
ing smoothness constraint. The exact exposure values with
which the pictures are taken are necessary for their method.
Mitsunaga and Nayar [10] assumed the response curve to
be a polynomial and estimated it iteratively with rough ex-
posure ratio estimates. All these methods require a number
of differently exposed images of static scene taken with a
fixed camera.

Grossberg and Nayar [4] explained ambiguities asso-
ciated with the problem and introduced a response curve
estimation method by recovering brightness transfer func-
tion from histograms. While their method does not re-
quire a fully static scene, a fixed camera is still neces-
sary. Tsin, Ramesh, and Kanade [11] introduced a non-
parametric method which estimates both the response and
exposure with a statistical model of the measurement errors.
Mann [8] proposed another algorithm which also estimates
both the response and exposures by iterative method.

Even though majority of mentioned methods work fine
in most cases, there are common disadvantages in most of
these algorithms. One is that they require prior knowledge
of exposure ratios which is not easy to know beforehand.
The other is that images have to be taken with a fixed cam-
era. Mann [8] addressed the problem of estimating the re-
sponse with non-static camera, but it covers only pure ro-
tation and zoom. Table 1 shows the summary of various
radiometric response function recovery methods.

1.2 Goal of the paper

In this paper, we propose a radiometric response function
estimation algorithm that does not require prior knowledge
of exposures and allows free movement of camera. Our pri-
mary interest of application is in radiometric alignment of
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Method Model Exposures Camera Scene

[9] P R Fixed Static

[3] NP R Fixed Static

[10] P R Fixed Static

[4] P R Fixed Non-Static

[11] NP NR Fixed Static

[8] NP NR Rotation Allowed Static

Our Method P NR Free Movement Non-static

Table 1: Comparison of various methods (P:Parametric,
NP:Non-parametric, R:Required, NR:Not Required)

image sequences. For example, assume there is a scene
where brightly lit area and a dim area coexist. Since the
dynamic range of the scene exceeds that of a camera, we
have to expose the camera according to the area of inter-
est. If such a scene was recorded with a video camera, there
would be intensity variation between images of the same
object due to the auto exposure function of the camera. We
would like to correct these intensity variations due to differ-
ent exposures so that we can take advantage of the auto ex-
posure functionality of cameras. Auto exposure allows us to
capture global high dynamic range from local low dynamic
range and gives flexibility as to not having to worry about
finding the right 8-bit range (Fig.1). Our approach is essen-
tially different from other texture correction methods such
as the method in [1] where color transform was adapted for
correcting color discontinuity and the method in [2] where
a common lighting between textures were derived to relight
textures.

To estimate the response function, we propose a series
of methods to estimate brightness transfer function between
images so that input images for our method does not have
to be static. With the information of brightness transfer be-
tween images, we estimate response function by modify-
ing the Empirical Model of Response (EMoR) introduced
in [5]. For the purpose of radiometric alignment in which
the response function can be estimated up to exponential
ambiguity, our method does not require any prior knowl-
edge of exposure values with which the images were taken.
Even if the response function has to be found without the
ambiguity, our method requires far less prior information
than other methods.

2 Our Algorithm
We first start with defining the behavior of the radiometric
response function.

Basic relationship between the image irradiance and the
image intensity can be stated as follows :

Ipq = f(EpKq) (1)
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Figure 1: Advantage of Auto Exposure : Synthetic high
dynamic range signal observed by 1D moving camera with
(left) and without(right) auto exposure. (Top) Signal and the
actual dynamic range (Bottom) Resulting mosaic images

where Ep is the image irradiance for a specific pixel, Kq

is the exposure with which the picture was taken, Ipq is the
observed image intensity, and the f is the radiometric re-
sponse function. Because increasing irradiance will result
in increasing (or constant) image intensity for cameras, the
response function is (semi-)monotonic and can be inverted.
Taking the inverse and the logarithm, Eq. (1) can be rewrit-
ten as follows:

ln f−1(Ipq) = ln Ep + ln Kq

or, with g(I) = ln f−1(I) and kq = ln Kq ,

g(Ipq) = ln Ep + kq (2)

Assume that we have two images of the same scene taken
with different exposure (K1,K2). Then the following rela-
tionship between the image intensities is obtained:

g(Ip2)− g(Ip1)− (k2 − k1) = 0 (3)

Note that this equation is not only valid for a static camera,
but also for a moving camera as long as the pixels in Eq. (3)
are corresponding pixels and the observed surface patch is
lambertian.

2.1 Correspondence
One of the more challenging problems we have to deal with
is the computation of correspondences. Ideally, only a lim-
ited number of points are required to estimate the radiomet-
ric response curve and the exposure ratio. However, because
of a certain number of limitations, it is best to estimate cor-
respondences for a larger number of points. First, we want
corresponding points to cover as much intensity values as
possible (and this for each R, G and B channel separately).
Then, because we want to deal with a moving camera, we
have to deal with the fact that not all pixels correspond
to Lambertian surfaces so that we can not always expect



Figure 2: For every pixel in the left image, the same pixel
in the right image contains the color value found at the cor-
responding pixel in another image of the sequence.

the radiance to be constant over varying viewing directions
(which was not a problem for static or purely rotating cam-
eras). In addition, matching between images recorded with
different exposure settings will in itself be hard and we have
to expect a significant number of wrong matches. There-
fore, it is important to obtain as much redundancy as possi-
ble so that a robust approach can later be used to estimate
the desired camera properties. The approach we follow in
this paper consists of first estimating the epipolar geometry
for each pair of consecutive images (for video, keyframes
would be selected so that the estimation of the epipolar ge-
ometry would be stable) using tracked or matched features,
followed by stereo matching. To avoid problems with in-
tensity changes it is important to use zero-mean normalized
cross-correlation. A possible alternative might consists of
using optical flow, although this is also complicated by in-
tensity variations. While we do not explicitly deal with in-
dependent motions in the scene, our stereo algorithm com-
bined with our robust joint histogram estimation approach
will handle those as outliers. In Fig. 2, an example of the
correspondences is shown that can be obtained automati-
cally.

2.2 Joint Histogram and Brightness Transfer
Function

For a pair of images, all the information relevant to our
problem is contained in the pair of intensity values of cor-
responding points. As suggested by Mann [8], these can all
be collected in a two-variable joint histogram which he calls
comparagram. For a pair of intensity values (Ip1, Ip2), the
corresponding value in the joint histogram J(Ip1, Ip2) indi-
cates how many pixels the intensity value changes from Ip1

to Ip2.
As noted in [4], a function should ideally relate the in-

tensity values between the two images. From Eq. (3), one
immediately obtains

Ip2 = T (Ip1) := g−1(g(Ip1) + ∆k)) . (4)

with ∆k = k2 − k1. The function T is called the bright-
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Figure 3: An example of a joint histogram with estimated
BTF overlaid on it.

ness transfer function (BTF). It was shown in [4] that under
reasonable assumptions for g, T is monotonically increas-
ing, T (0) = 0 and if ∆k > 0, then I ≤ T (I). Inversely,
if ∆k < 0 then I ≥ T (I). Ideally, making abstraction of
noise and discretisation, if Ip2 6= T (Ip1), then we should
have J(Ip1, Ip2) = 0. However, real joint histograms
are quite different due to image noise, mismatches, view-
dependent effect and a non-uniform histogram (Fig. 3). In
the presence of large number of outliers, least square so-
lutions for response function as have been used by others
are not viable. We propose to use the following function
as an approximation for the likelihood of the BTF passing
through a pixel of the joint histogram.

P (T (I1) = I2|J̄) = (G(0, σ) ∗ J̄)(I1, I2) + Po (5)

where G(0, σ)∗ represent the convolution with a zero-mean
Gaussian with standard deviation σ to take image noise into
account and P0 is a term that represents the probability for
T (I1) = I2 independent of the joint histogram. This term
is necessary to be able to deal with the possibility of having
the BTF pass through zeros in the joint histogram which
could be necessary if for some intensity values no correct
correspondence was obtained. Based on these assumptions
the most probable solution is the BTF that maximizes

ln P (T |J̄) =
∫∫

JT (I1, I2)lnP (I1 = T (I2)|J̄)dI1dI2

(6)
with JT (I1, I2) being a function that is one where I2 =
T (I1) and zero otherwise. Using dynamic programming it
is possible to compute the BTF that maximizes Eq. (6) un-
der the constraints discussed above, i.e. semi-monotonicity,
T (0) = 0, T (255) = 255 and T (I) ≥ I or T (I) ≤ I for all
I .

2.3 Empirical Model of Response
With computed BTFs, we now estimate the radiometric
response function by using the low parameter Empirical
Model of Response(EMoR) introduced by Grossberg and
Nayar in [5]. They combined theoretical space of response
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Figure 4: (Left) First four basis of DoRF(log space), (Right)
Cumulative energy occupied by first 15 basis

function and database of real world camera response func-
tions (DoRF) to create the EMoR which is a Mth order ap-
proximation :

f(E) = f0(E) +
M∑

n=1

cnhn(E), (7)

where hn’s are basis functions found by using PCA to
DoRF and f0 is the mean function.

In this paper, we are interested in log space to separate
the exposure term from the irradiance(Eq. (2)). Eq. (7) be-
comes :

g(I) = g0(I) +
M∑

n=1

cnh′n(I), (8)

where g(I) = ln f−1(I) and h′n’s are basis functions for
log inverse response function of the database. The h′n’s are
found by applying PCA to the log space of DoRF. One thing
to notice is that elements of the first column and the first
row of the covariance matrix of DoRF in log space are -∞
since data are normalized form zero to one. So, we remove
the first column and the first row from the matrix for PCA.
Therefore, intensity range of basis functions(h′n) are 1 to
255 instead of starting from 0. Fig. 4 shows first four ba-
sis functions of the log space of DoRF and the cumulative
energy occupied by first 15 basis. First three eigenvalues ex-
plain more than 99.6%, which suggest that the EMoR model
represents the log space of response functions very well.

2.4 Radiometric Response Function Estima-
tion

We estimate the response function and log exposure dif-
ferences between images by using the computed BTFs and
combining Eq. (3) and Eq. (8).

g0(Tij(I))−g0(I)+
M∑

n=1

cn(h′n(Tij(I))−h′n(I))−kji = 0

(9)
where kji = kj − ki and Tij() is the brightness transfer
function from an image at log exposure ki to an image at
log exposure kj .

Adopting the simplifying assumption that the effect of
white-balance corresponds to changing the exposure inde-
pendently for each color band, the unknowns of the equa-
tions are coefficients cn’s and exposure differences kji’s for
each different color channels(R,G,B).

For each image pair (1 ≤ i ≤ N − 1, N : number of
images) and each color channel(l ∈ {R,G, B} or {1, 2, 3}),
we build following matrices Al

i(255×(M +3×(N − 1)))
and bl

i(255×1) (Eq. (10)(11)).

Al
i(y, x) =





hx(T l
i,i+1(y))− hx(y); 1≤y≤255,1≤x≤M

−1; 1≤y≤255, x=M+(N−1)×(l−1)+i

0; elsewhere
(10)

bl
i(y) = g0(y)− g0(T l

i,i+1(y)); 1 ≤ y ≤ 255 (11)

Since the response function will typically have a steep
slope near Imax and Imin, we should expect that the re-
sponse function will be less smooth and will fit the data
more poorly near these extremes [3]. To reflect this to our
algorithm, each column of Al

i and bl
i are weighted with a

Gaussian mask with the mean of 128 and the standard devi-
ation of 2.5.

To deal with discretization problem, we also compute
BTFs in the opposite direction(i+1 to i), build matrices Al′

i

and bl′
i which is similar to Al

i and bl
i except that Ti,i+1

is changed to Ti+1,i and Ai(y, x) = −1 is changed to
Ai(y, x) = 1 in (Eq. (10)).

After all the matrices are built, we solve for the coeffi-
cients of the model and the exposure differences(x) at once
in least squares sense(Ax = b) by combining all the matri-
ces to form A and b as in Eq. (12) where each Al and bl are
formed by combining Al

i and bl
i for all image pairs.

A =




AR

AR′

AG

AG′

AB

AB′




b =




bR

bR′

bG

bG

bB

bB′




(12)

x =
[
c1, . . . , cM , kR

12, . . . , k
G
12, . . . , k

B
12, . . . , k

B
n−1n

]T

(13)
The least square solution x of Ax = b at this point will

suffer from the exponential ambiguity. Exponential ambi-
guity means that if g and k are solution to the Eq. (3) then
so are αg and αk. Simply put, there can be many response
functions and exposure differences that satisfy Ax = b as
long as they have the same scale factor. As stated in [4], it
is impossible to recover g and k simultaneously from BTF
alone, without making assumptions on g or k.



To resolve the problem of this ambiguity, we gave con-
straints to the equation by setting the value of initial expo-
sure differences kR

12, kG
12, and kB

12. This serves as fixing the
scale of the log inverse response function. For many appli-
cations including high dynamic range image construction
and the texture alignment application which is the primary
interest of this paper, choice of three values is not critical
which is an advantage over many other methods which re-
quire exact or rough estimate exposure values. In our case,
initial values were chosen so that g(128) = ln(0.5). If we
needed the accurate response function, we would need to
know three exposure differences but it is still far less than
other methods.

3 Experiments

3.1 Static Camera - Synthetic Data
Even though our algorithm has been developed for appli-
cation to moving cameras, we first experimented with static
data to validate the performance of our method in estimating
the response function. Also in this case, our modification
should provide additional robustness. We constructed syn-
thetic images given an image, a log inverse response func-
tion from the DoRF, and exposures with Eq. (3)(Fig. 5). A
total of 20 sets of images were generated from 20 different
response function.

Response functions were then estimated from these sets.
An example of an inverse response function used (gamma
curve,γ = 2.2) and its estimate are shown in Fig. 6. Note the
effect of different initial exposure values on the estimation.
Since we know the exposure values in this case, we can
extract the response curve without exponential ambiguity
as can be seen from the figure.

Another experiment for evaluating our algorithm was to
compute the average intensity difference between aligned
images. We can align images in the same set in regards
to intensity with the estimated response function by using
Eq. (3) (Fig. 5). The intensity difference between these
aligned images was calculated to evaluate the algorithm.
Our algorithm resulted in RMS intensity difference(ε) of
0.77 per pixel in our 20 image sets :

ε =

√√√√ 1
nx × ny

nx∑
x

ny∑
y

3∑
c

(Iorg(x, y, c)− Iest(x, y, c))2

3.2 Moving Camera - Real Data
To test the algorithm with non-static images, a sequence
of images of a tree was taken with a digital camera (Sony
DSC-F717). Total of 19 images were taken, with the first

Figure 5: (Top) Examples of synthetic images (Bottom) Im-
ages aligned to the last image using the estimated response
function
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Figure 6: (Top) An Inverse response function(ln(f−1)(left)
and f−1(right)) (Bottom) Effect of initial K value on
estimation(ln(f−1)(left) and f−1(right)). If initial K value
is known(0.65 in this case), we can estimate the response
function without ambiguity

image having the highest exposure since it is in a dark re-
gion. The first row of Fig. 8 shows few images of the se-
quence and the color discrepancy is easily seen. As men-
tioned in Sect. 2.2, joint histogram in our case may be quite
noisy as shown in Fig. 3 which is one of the joint histograms
in this tree sequence. Estimation of response function with
the original EMoR method [5] in this case failed because
there were many outliers among the correspondences. We
also expect that most of the previous response function re-
covery methods using least squares will fail to recover the
response function due to outliers. However by using our
method, we were able to get a good estimate of the response
function of this scene as shown in Fig. 7.

Next, we aligned the textures of images in the sequence
with the computed response and exposures. The second
through the third row of Fig. 8 show examples where im-
ages in the set are radiometrically aligned to the first and the
last image respectively. We can easily see improved color
constancy from the example.
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Figure 7: Estimated log inverse response function from the
tree sequence(left) and the face sequence(right)

Finally we applied our method to normalize texture im-
ages recorded with different exposure on a 3D model (Sony
TRV 900, Fig. 9). Note the difference in the color of the face
due to exposure changes. The 3D model which is texture
mapped with these images shows color discrepancy as can
be seen in Fig. 9. We computed response function (Fig. 7)
from this sequence which contained a total of 12 images
and normalized each image in the sequence to the brightest
image. The resulting textured 3D model is shown on the
bottom right in Fig. 9. Some of the remaining discrepan-
cies (mostly visible on the nose) are due to view-dependent
highlights which are not compensated for by our approach.

4 Conclusion

In this paper, we have proposed a novel method for estimat-
ing the camera response function. The key advantage of our
estimation method over previous methods is that a moving
camera can be used. We compute the response function up
to exponential ambiguity where prior knowledge of expo-
sures are not required, which is another advantage of our
method. Even if we compute the function without the am-
biguity, we only need one exposure difference of an image
pair out of the whole sequence which is far less than most
algorithms require.

Our response function estimation was proven accurate
which was shown by experiments with static images. If
the initial exposure difference is known, we can estimate
the function without the exponential ambiguity. We also
showed response function estimation from non-static im-
ages and normalized images with the estimated response
function which was the primary application of interest of
the paper. Normalized tree sequence and the normalized
face model showed much improvement in color constancy.

In this paper, color changes were described by the re-
sponse function and exposure changes in each channel in-
dependently. In the future, we would like to extend our
method to allow for cross-talk between the channels to deal
with the correlation between color channels( [1]). We also
want to find out the effect of vignetting on the images and

adopt our method to it accordingly. Finally, we also plan to
further explore high dynamic range texture and video gen-
erations( [3], [7], [6]).
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Figure 8: (First Row) Few sample images of the sequence, (Second) Images aligned to the brightest image, (Third Row)
Images aligned to the darkest image.

Figure 9: (Top) Few sample images from the sequence (Bottom) 3D model with texture before(left) and after(right) normal-
ization




