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The starting point for signal detection theory is that nearly all decision making takes
place in the presence of some uncertainty. Signal detection theory provides a precise lan-
guage and graphic notation for analyzing decision making in the presence of uncertainty.

Simple Forced Choice

I begin here with the classic example of detecting brief, dim flashes of light in a dark
room. Imagine that we use a simple forced-choice method in which the light is flashed
on half of the trials (randomly interleaved). On each trial, the subject must respond ”yes”
or ”no” to indicate whether or not they think the light was flased. We assume that the
subjects’ performance is determined by the number of photon absorptions/photopigment
isomerizations on each trial.

There are two kinds of noise factors that limit the subject’s performance: internal noise
and external noise.

External noise. There are many possible sources of external noise. The main source of
external noise to consider here is the quantal nature of light. On average, the light source
is set up to deliver a certain stimulus intensity, say 100 photons. A given trial, however,
there will rarely be exactly 100 photons emitted. Instead, the photon count will vary from
trial to trial following a Poisson distribution.

Internal noise. Internal noise refers to the fact that neural responses would be noisy,
even if the stimulus was exactly the same on each trial. Some of the emitted photons will
be scattered by the cornea, the lens, and the other goopy stuff in the eye. The number
of scattered photons will vary randomly from trial to trial. Of the photons that reach the
photoreceptors, not all of them will be absorbed by the photopigments. There are other
sources of internal (neural) noise as well, but I will ignore those for the time being.
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In practice, of course, it would be impossible to measure the number of photons ab-
sorbed on any given trial because we would have to record simultaneaous from all the
rods in the retina. It is, however, possible to characterize the probability that a certain
number of photons will be absorbed. Each of the relevant factors (number of photons
emitted, number of photons scattered, number of photons absorbed) can be modeled as a
Poisson process. A sequence of Poisson processes behaves altogether like a single Poisson
process with an overall rate constant equal to the products of all of individual rate con-
stants. For example, assume that 100 photons are emitted on average, that 10% of those
photons pass through the eyes’ optics on average, and that 10% of those are absorbed
by photoreceptors on average. Then there will then be 1 photon absorbed on average
for each trial on which the light is flashed, and this number will vary from trial to trial
following a Poisson distribution.

On trials for which no light is flashed, there will still typically be some non-zero level
of response, due to thermal isomerizations of photopigment molecules. Barlow called this
the “dark light” because a spontaneous isomerization will lead to the same neural signal
as if a photon was actually absorbed. The subject will not be able to tell the difference
between real light and dark light.

Internal response probability density functions. Because the task is so hard, there is
always some uncertainty as to what was there or not. Either there was a flash (signal plus
noise) or there was no flash (noise alone). Either the subject saw the flash (they respond
“yes”) or they did not (they respond “no”). There are four possible outcomes: hit (signal
present and subject says “yes”), miss (signal present and subject says “no”), false alarm
(signal absent and subject says “yes”), and correct rejection (signal absent and subject says
“no”). Hits and correct rejections are good. False alarms and misses are bad.

Figure 1 shows a graph of two hypothetical internal response curves. The curve on
the left is for the noise-alone trials, and the curve on the right is for the signal-plus-noise
trials. The height of each curve represents how often that level of internal response will
occur. On noise-alone trials, in this example, there will generally be about 10 units of
internal response (i.e., 10 photopigment isomerizations). However, there will be some
trials with more (or less) internal response because of the internal and external noise.

Notice that we never lose the noise. The internal response for the signal-plus-noise
case is generally greater but there is still a distribution (a spread) of possible responses.
Notice also that the curves overlap, that is, the internal response for a noise-alone trial
may exceed the internal response for a signal-plus-noise trial.

The role of the criterion. There are two main components to the decision-making pro-
cess: stimulus strength and criterion. The stimulus strength affects the probability density
functions in the obvious way: a stronger signal (brighter flash) will shift the signal-plus-
noise curve to the right. More on this later.

The second component of the decision process is quite different. The subject is being
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Figure 1: Internal response probability density functions for noise-alone and for signal-
plus-noise trials.

asked to use their own judgement in making a decision. Different subjects may feel that
the different types of errors are not equal. You might even emphasize to one subject that
they should be careful not to make any false alarms, or you might offer to pay them more
for getting more hits.

Perhaps the simplest strategy that the subject can adopt is to pick a criterion location
along the internal response axis. Whenever the internal response is greater than this cri-
terion they respond “yes”. Whenever the internal response is less than this criterion they
respond “no”.

An example criterion is indicated by the vertical lines in Figure 2. The criterion line
divides the graph into four sections that correspond to: hits, misses, false alarms, and
correct rejections. On both hits and false alarms, the internal response is greater than
the criterion, because the subject is responding “yes”. Hits correspond to signal-plus-
noise trials when the internal response is greater than criterion, as indicated in the figure.
False alarms correspond to noise-alone trials when the internal response is greater than
criterion, as indicated in the figure.

Suppose that the subject chooses a low criterion (Figure 3, top), so that they respond
“yes” to almost everything. Then they will never miss a flash when it is present and
they will therefore have a very high hit rate. On the other hand, saying “yes” to almost
everything will greatly increase the number of false alarms. Thus, there is a clear cost to
increasing the number of hits, and that cost is paid in terms of false alarms. If the subject
chooses a high criterion (Figure 3, bottom) then they respond “no” to almost everything.
They will rarely make a false alarm, but they will also miss many real flashes.

There is no way that the subject can set their criterion to achieve only hits and no false
alarms; it is inevitable that some mistakes will be made. Because of the noise it is simply
a true, undeniable, fact that the internal responses on noise-alone trials may exceed the
internal responses on signal-plus-noise trials, in some instances. Thus the subject cannot
always be right. They can adjust the kind of errors that they make by manipulating their
criterion, the one part of this diagram that is under their control.
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Figure 2: Internal response probability density functions for noise-alone and signal-plus-
noise trials. Since the curves overlap, the internal response for a noise-alone trial may
exceed the internal response for a signal-plus-noise trial. Vertical lines correspond to the
criterion response.

The receiver operating characteristic. We can describe the full range of the subject’s
options in a single curve, called an ROC curve, which stands for receiver-operating char-
acteristic. The receiver-operating characteristic captures, in a single graph, the various
alternatives that are available to the subject as they move their criterion to higher and
lower levels.

ROC curves (Figure 4) are plotted with the false alarm rate on the horizontal axis and
the hit rate on the vertical axis. We already know that if the criterion is high, then both
the false alarm rate and the hit rate will be very low. If we move the criterion lower, then
the hit rate and the false alarm rate both increase. So the full ROC curve has an upward
sloping shape. Notice also that for any reasonable choice of criterion, the hit rate is always
larger than the false alarm rate, so the ROC curve is bowed upward. The subject may set
the criterion anywhere, but any choice that they make will land them with a hit and false
alarm rate somewhere on the ROC curve.

The role of signal strength. If we present a brighter flash (e.g., with 200 photons emitted
per flash on average rather than 100), then the subject’s internal response strength will,
on the average, be stronger. Pictorially, this will have the effect of shifting the probability
density function for signal-plus-noise trials to the right, a bit further away from the noise-
alone probability density.

Figure 4 shows two sets of probability densities and two ROC curves. When the signal
is stronger there is less overlap between the two probability density curves. When this
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Figure 3: Effect of shifting the criterion.

happens the subject’s choices are not so difficult as before. They can pick a criterion to
get nearly a perfect hit rate with almost no false alarms. ROC curves for stronger signals
bow out further than ROC curves for weaker signals.

Varying the noise. There is another aspect of the probability densities that also deter-
mines detectability: the spread of the curves. For example, consider the two sets of proba-
bility densities in Figure 5. The separation between the peaks is the same but the second
set of curves are much skinnier. Clearly, the signal is much more discriminable when
there is less spread (less noise) in the probability densities. So the subject would have an
easier time setting their criterion in order to be right nearly all the time.

In our example, we have assumed Poisson noise so the absorption count variance is
proportional to the mean absorption count. However, one can easily imagine situations
in which the response variance depends on factors that are independent of the mean
response.

Discriminability index (d0). Thus, the discriminability of a signal depends both on the
separation and the spread of the noise-alone and signal-plus-noise curves. To write down
a full description of how discriminable the signal is from no-signal, we want a formula
that captures both the separation and the spread. The most widely used measure is called
d-prime (d0 ), and its formula is simply:

d0 =
separation

spread
;

where the separation corresponds to the difference between the means, and the spread
corresponds to the standard deviation of the probability densities. This number, d0, is
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Figure 4: Internal response probability density functions and ROC curves for different
signal strengths. When the signal is stronger there is less overlap in the probability of
occurrence curves, and the ROC curve becomes more bowed. A: Probability density func-
tions when the signal evokes an average of 2 photon absorptions per trial. B: Probability
density functions when the signal evokes an average of 5 photon absorptions per trial.
C: ROC curves for a series of signal strengths that evoke an average of n = 0; 1; 2; : : : ; 10

photon absorptions per trial. In all cases the dark noise (average number of spontaneous
isomerizations per trial) was 3.

a complete characterization of the detectability of the signal assuming that the noise
follows a normal (Gaussian) distribution with a fixed variance, independent of the sig-
nal strength. This assumption of IID (independent and identically distributed) Gaussian
noise is often reasonable approximations. However, if you have more information about
the noise distribution (e.g., that it follows the Poisson distribution), you might as well use
that information rather than assuming IID Gaussian noise.

The primary virtue of d0, and the reason that it is so widely used, is that its value does
not depend upon the criterion the subject is adopting, but instead it is a true measure of
the internal response.

Comparing neural responses with behavioral performance. Let’s say that we carefully
measure, in a separate experiment, the average number of spontaneous (thermal) isomer-
izations per trial. Then we can compute a series of ROC curves each corresponding to
a different number of photon absorptions. Figure 4 shows such a family of ROC curves.
Exactly how to compute these curves is illustrated in assignment3Tutorial.m.

Now we do our detection experiment in which we ask our subject to run 1000 trials.
On half the trials, the flash is absent (noise-only trials) and on half the trials the light is
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Figure 5: Internal response probability density functions for two different noise levels.
When the noise is greater, the curves are wider (more spread) and there is more overlap.

flashed with a “fixed” intensity (e.g., with 100 photons emitted per flash on average). We
count up the number of hits and false alarms, and that drops us somewhere on one of
the ROC curves in Figure 4. Let’s say it lands us on the ROC curve labelled n=1 (1 pho-
ton absorption per trial, on average). The we might conclude that people are capable of
detecting a single photon of light. To check the assumptions of this analysis, we could
double the intensity of the light so that 200 photons would be emitted per flash on aver-
age. Running the forced-choice experiment and counting the hits and false alarms in this
case should drop us somewhere on the ROC curve labelled n=2. And so on for 300, 400,
etc. emitted photons.

Notice that we need to know both the hit rate and the false alarm rate to get a mea-
sure of performance that is independent of the subject’s criterion.

Although nobody has actually done this experiment in exactly this way, there is quite a
lot of evidence that people are capable of detecting a very dim flash of light for which only
a few (maybe only 1, but probably more are necessary) photons are absorbed (Hecht et
al., 1942; Barlow and Levick, 1969; Barlow et al., 1971; Sackitt, 1972). That is really quite
surprising because it implies that a handful of photon absorptions give rise to a reliable
neural signal that bubbles all the way up through the visual pathways. How do you think
that might be possible, given the noisiness of cortical responses?

Two-Alternative Forced Choice

Another way to measure performance independent of any criterion is to use a a two-
alternative, forced-choice method. We’ll use the Newsome et al.direction discrimination
experiments for an example. Newsome and colleagues (Newsome et al., 1989; Salzman et
al., 1990, 1992; Britten et al., 1992) recorded neural activity of MT neurons in response
to stimuli consisting of a field of coherently moving dots superimposed on a field of ran-
domly moving dots. The strength of the motion signal was controlled by varying the ratio
of coherent to random dots. The coherent dots moved either in the cell’s preferred direc-
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Figure 6: A: Simulated MT cell responses for preferred and null directions, as a function
of motion coherence. B: Simulated response probability density functions for preferred
and null directions, at 6% coherence. C: Simulated neurometric function (percent correct
versus motion coherence).

tion or in the opposite (null) direction. The monkeys were trained to report the direction
of motion by making an eye movement at the end of each trial.

Although Newsome et al.did not do it exactly this way, it will simplify matters if we
have two intervals in each trial. A stimulus moves to the right on one interval (chosen
randomly), and it moves to the left on the other interval. On each trial, the monkey
must choose the interval during which the motion was rightward. Because the stimulus
is optimized for the recorded neuron (covers the receptive field, moves in the preferred
direction, etc.), one might hypothesize that the monkey monitors the response of that one
neuron to make his decision, and chooses the interval that evokes the greater response.
The task is very difficult for low coherence levels (e.g., below 5%), and very easy for high
coherence leves (e.g., above 20%).

Figure 6 illustrates, via a simulatation, how behavioral performance could depend
on the noisy responses of a single MT neuron. Figure 6A plots a simulated example of
how the mean response varies with coherence. For motion in the preferred direction, the
simulated mean firing rate rises linearly with coherence. For motion in the null direction,
the mean firing rate declines linearly with coherence. Figure 6B plot probability density
functions for the responses to preferred and null directions at 6% coherence. In these
simulations, the PDFs are normally distributed. The response variance was set equal
to 1.5 times the mean response, consistent with a number of studies of the variability of
cortical responses (e.g., Dean, 1981; Tolhurst et al., 1983; Bradley et al., 1987; Snowden etal,
1992; Britten etal, 1993; Softky and Koch, 1993). Figure 6C plots a neurometric function
(percent correct versus motion coherence) computed from the responses of this simulated
MT neuron.
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c Stimulus motion coherence
rp(c) Response to preferred direction motion with coherence c.
rn(c) Response to null direction motion.
fp(rjc) Response probability density function for preferred direction motion with coherence c.
fn(rjc) Response probability density function for null direction motion.
Fn(rjc) Cumulative distribution for null direction motion.

Table 1: Table of Mathematical Symbols.

To understand this last step of the simulation, we need to do a simple derivation using
the mathematical notation introduced in Table 1. The probability of being correct on a
given trial is given by:

P (correct) = P [rp(c) > rn(c)];

where rp(c) and rn(c) are random variables that are drawn from the response probability
density functions, f(rp) and f(rn), for preferred and null motion directions, respectively.
In words, the probability of being correct is given by the probability that a preferred direc-
tion stimulus will evoke a bigger response than a null direction stimulus. This probability
depends on the two response probability densities:

P [rp(c) > rn(c)] =

Z
1

0

fp(rjc)
�Z

r

0

fn(r
0jc)dr0

�
dr:

The integral in brackets represents the probability that the null direction response will
be smaller than some criterion response r. This is multiplied by the probability that the
preferred direction stimulus will evoke that criterion response, and the whole thing is
summed/integrated over all possible criterion response levels. This equation can be sim-
plified by noting that the integral in brackets is the cumulative distribution function for
null direction motions. Hence,

P (correct) =

Z
1

0

fp(rjc)Fn(rjc) dr:

The Newsome et al.experiments were actually done with one interval on each trial,
in which the monkey made a forced choice judgement about the direction of motion. To
analyze the data and compute the neurometric function, they assumed that the monkey
monitored the responses of two neurons, the one that they were recording from and a sec-
ond (that the called the “anti-neuron”) that was identical in all respects except that it had
the opposite direction preference. They assumed that the monkey picked the direction on
each trial corresponding to the neuron/anti-neuron that gave the larger response. This is
formally identical to the two-interval forced choise case treated above.
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