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ABSTRACT 
We report our recent work on noise-robust large-vocabulary 
speech recognition. Three key innovations are developed and 
evaluated in this work: 1) a new model learning paradigm that 
comprises a noise-insertion process followed by noise 
reduction; 2) a noise adaptive training algorithm that integrates 
noise reduction into probabilistic multi-style system training; 
and 3) a new algorithm (SPLICE) for noise reduction that 
makes no assumptions about noise stationarity. Evaluation on a 
large-vocabulary speech recognition task demonstrates 
significant and consistent error rate reduction using these 
techniques. The resulting error rate is shown to be lower than 
that achieved by the matched-noisy condition for both 
stationary and nonstationary natural, as well as simulated, 
noises. 

1. INTRODUCTION 

State-of-the-art techniques for environment-robust speech 
recognition can be classified into two main families [5]: (1) 
noise reduction in the feature space; and (2) construction of 
models to match noisy test speech. Examples of approach (1) 
above include spectral subtraction and CDCN, which have the 
well-known problem of creating undesirable noise residuals. 
This causes mismatches with the HMMs trained from clean 
speech. Examples of approach (2) above include PMC, MLLR, 
VTS, and MAP, which either require unreasonable amounts of 
enrollment data or incur formidable computational costs. 
Moreover, they do not intend to recover any phonetic 
discriminative information masked by the noise.  In this paper, 
we present a new approach --- noise reduction on “matched” 
noisy training data --- which combines the above two traditional 
approaches while overcoming their respective weaknesses. 

The new approach first adds various amounts and types of 
noises to the clean training data. Then, noise reduction 
techniques are applied to these noisy data and the resulting 
"pseudo-clean" data are used to construct the HMMs. The same 
noise reduction technique is applied to unknown noisy test data 
that are scored by the HMMs constructed above. This approach 
effectively models the residual noise due to the necessarily 
imperfect nature of any noise-reduction technique. To make this 
approach practical over a wide range of noise environments, we 
perform the HMM training on the noise-reduced speech data 
over a range of noise types and levels. This is called "Noisy 
Adaptive Training"  (NAT) and is an extension of the earlier 
"Speaker Adaptive Training" [1] to noise-robustness. The 
proposed NAT is a combination of noise reduction (speech 
enhancement on both training and test data) and probabilistic 

multi-style training, improving upon the traditional multi-style 
training that did not embed speech enhancement. 

In the remaining of this paper, we describe the two types of 
noise reduction algorithms developed and used in the 
experiments, some detail of the residual-noise modeling strategy 
and of the NAT algorithm, and the large-vocabulary speech 
recognition experimental results. 

2. NOISE-REDUCTION ALGORITHMS 

2.1 Spectral Subtraction 

We have implemented a version of the spectral subtraction (SS) 
algorithm [4] that incorporates smoothing over time. This SS 
algorithm consists of two stages of operation: 
1. Temporal smoothing of the SNR estimate: 
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where the noise power spectral density function 2ˆ| ( ) |N f  
is estimated, by thresholding, from a generally bimodal 
histogram on the power spectral density collected over the 
span of a full utterance. 

2. Applying (on a frame-by-frame basis) a nonlinear 
digital filter whose “transfer function”, H, depends on 
the smoothly estimated SNR and on a floor level A: 

   ˆ ( ) ( ) ( , , )X f Y f H f SNR A=  (2) 
where 

   1( , , ) [ ,1 ( , )]H f SNR A max A SNR f t−= −  (3) 

The temporal smoothing parameterτ and the floor parameter A 
in the SS algorithm implemented in this work are empirically 
optimized. The optimized values are 0.5τ =  and 0.1A =  

2.2 The SPLICE Algorithm 

One major limitation of all SS techniques is its assumption of 
noise stationarity. When this assumption is violated, poor noise 
estimates are obtained, giving rise to poor SS performance (This 
will be shown in Section 5.2). Further, SS techniques are unable 
to exploit correlations among the frequency components, and 
they do not have knowledge about what clean speech looks like. 

We have developed and implemented a new algorithm of noise 
reduction that overcomes the limitations of the SS techniques. 
In particular, it does not make the assumption of noise 
stationarity1. We call this algorithm SPLICE, which stands for 
                                                           
1 But that requires stereo clean/noisy speech data 



Stereo-based Piecewise LInear Compensation for 
Environments. In SPLICE, the noisy speech data (in the form of 
cepstral vectors as has been implemented), y, is modeled by a 
mixture of Gaussians, and the a posteriori probability of clean 
speech vector x given the noisy speech y and given the mixture 
component (k) is modeled using an additive correction vector 

kr : 

 ( | , ) ( ; , )k kp k N= +x y x y r Γ  (4) 

where kΓ is the covariance matrix of the mixture component 
dependent posterior distribution. The dependence of the 
additive (linear) correction vector on the mixture component 
gives rise to a piecewise linear relationship between the noisy 
speech observation and the conditional mean of the clean 
speech, hence the name of SPLICE. 

The essence of the SPICE algorithm is the application of the 
MAP principle to deriving the optimal estimate for the noise-
reduced speech. This gives: 
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This approximate MAP estimate (approximation made on the 
third line above2) can be obtained in two steps: First, finding the 
optimal mixture component: 

 ( ; , )ˆ arg max k k k
k

c Nk = y µ Σ  (6) 

Second, given this optimal mixture component, the term within 
the brace is independent of x, and thus the optimal estimate of 
clean speech is the one that optimizes the second Gaussian pdf 
in the last line of Eq. (5), which gives: 
 ˆˆ

k
= +x y r  (7) 

The correction vectors, kr , are trained using the stereo 
recordings for both the clean and noisy speech data based on the 
maximum likelihood principle. The estimation formula can be 
easily derived, which is given by 
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The SPLICE algorithm outlined above is a modification and 
extension of the FCDCN algorithm described in [3]. 

We note that a fundamental assumption made on the above 
SPLICE algorithm that the conditional mean of the a posteriori 
probability ( | )p x y  is a shifted version of the noisy data y is 
used for implementation simplicity only. In reality, when x and 
                                                           
2 This approximation drastically simplifies the algorithm and it appears 
reasonable. This is similar to approximating the Baum-Welch algorithm 
by the Viterbi algorithm. 

y are Gaussians (given k), a rotation on y is needed in general 
for the conditional mean [6]: 

 1{ | } ( )E −= + − = +x xy y yx y µ Σ Σ y µ Cy r  (9) 

where 1−= xy yC Σ Σ . This suggests that for a better performance 
than what we have achieved, MLLR-type transformations are 
needed in the framework of the SPLICE described here. 

3. MODELING RESIDUAL NOISE 

All the noise-reduction techniques, as applied to noisy speech 
recognition to date, assume implicitly that the residual noises 
are sufficiently small so that no quantitative modeling for them 
is needed. In our experiments with noise reduction techniques of 
SS and SPLICE described in the preceding section, we 
empirically observed systematic deviations of the distributions 
of the enhanced speech from those of the corresponding clean 
speech. This suggests the need to model the residual noise so 
that the subsequently trained HMMs can closely match the 
noise-reduced test data.  

At the current stage of the implementation, we have not jointly 
optimized the noise reduction algorithm and the HMM system 
as it is difficult to provide a parametric model for the residual 
noise. We have taken a simplest approach to solving the 
problem by re-training the entire HMM system using the noise-
reduced training data (i.e., pseudo-clean speech). Section 5 of 
this paper shows that this brute-force approach has dramatically 
improved the system performance.  

4. NOISE ADAPTIVE TRAINING (NAT) 

While it is impractical to re-train a large-vocabulary HMM 
system after applying a noise-reduction algorithm based on the 
on-line estimate of the noise level and type, the idea of multi-
style training can be used to pre-train the HMMs using many 
types and levels of noises. We called this combined strategy of 
noise reduction and multi-style training the Noisy Adaptive 
Training (NAT). The noise reduction serves the role of 
adapting the noisy speech for each noise type and level into a 
version of the pseudo-clean speech, whereby drastically 
reducing the overall acoustic variation across the range of noise 
types and levels. 

This NAT algorithm has been motivated by the earlier work of 
"Speaker Adaptive Training" [1], where the MLLR algorithm 
(analogous to the noise-reduction algorithm in NAT) is used to 
adapt each speaker (analogous to each noise level and type in 
NAT) into one single compact, variation-reduced representation. 
The related idea of exploiting pre-selected noise types and pre-
trained noise models in the NAT algorithm was also 
demonstrated to be effective in some earlier speech 
enhancement applications (r.f. [8]). 

The formal NAT-style training treats the noise type (n), and 
noise level (l) for each type as hidden variables, whose joint 
prior distribution is denoted by ( , ).p n l Then, the log likelihood 
function for the entire training data set can be written as: 
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where ( , )n lX  denotes the entire noise-reduced training data set 
specific for noise type n and for noise level l. 
Using Eq. (10), we derive the auxiliary function (conditional 
expectation) in the EM algorithm to be 
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Setting 0,sQ∂ ∂ =µ we obtain the re-estimation formula for the 
HMM mean parameter (senone s): 
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The re-estimation formulas for other parameters can be derived 
in a similar way.  

5. EXPERIMENTAL EVALUATION 

We have conducted comprehensive speech recognition 
experiments to evaluate the new noise-robust strategy discussed 
above. The baseline system against which the evaluation 
experiments were carried out uses a version of the Microsoft 
continuous-density HMMs (Whisper). The system uses 6000 
tied HMM states (senones), 20 Gaussians per state, Mel-
cepstrum, delta cepstrum, and delta-delta cepstrum. The 
recognition task is 5000-word vocabulary, continuous speech 
recognition from Wall Street Journal data sources. A fixed, 
bigram language model is used in all the experiments. For all 
the experiments reported in this paper, the training set consists 
of a total of 16,000 some female sentences, and the test set of 
167 female sentences. 

5.1 Results for White Noise 

Table 1 lists the word error rates (percent accuracy WER) of 
eight systems compared. The system labeled Mismatched is the 
baseline system trained with clean speech data and tested on the 
corrupted speech with white noise added at the various SNR 
levels. The baseline error rate under the clean acoustic 
environment is as low as 4.87%. 

 5 dB 10 dB 15 dB 20dB Clean 
Mismatched 87.11 55.06 19.76 10.02 4.87

Noisy multistyle 28.91 14.84 10.45 7.53 6.09

Noisy matched 25.41 14.03 8.94 7.05 4.87

SS test-only 75.30 33.79 13.29 8.05 4.65

SS-SS 21.94 11.74 8.60 6.76 5.02

NAT (SS) 20.90 12.22 8.86 7.35 6.57
SPLICE-SPLICE  20.27 11.15 8.16 6.76 4.87

NAT (SPLICE) 20.64 11.37 7.83 6.50 5.61

Table 1: Word Error Rate (percentage accuracy) as a 
function of the test-data SNR with additive white noise. 
The eight systems listed are described in the text. 

With an increasing amount of additive white noise, ranging 
from 20db to 5db SNR, the baseline error rate quickly increases 

to 87%. Use of conventional multi-style training incorporating 
all levels of noise (labeled Noisy multistyle) substantially 
reduces the WERs for all noise levels tested at the expense of 
increased WER for clean test speech.  When the noise level and 
type is matched between training and test data (Noisy matched), 
further WER reduction is obtained. The conventional wisdom 
says that this noisy-match condition sets the upper bound for the 
performance of the system. 

When the SS algorithm is applied in a traditional way to only 
the test data (labeled SS test-only in Table 1), the WERs fall in 
between the mis-matched and the noisy-matched conditions as 
expected. When the residual noise from SS is modeled by 
retraining the HMM using the SS-processed training data (i.e., 
SS applied to both training and test data, or SS-SS), a dramatic 
WER reduction is observed that beats the limit set by the 
conventional wisdom. The results of NAT (SS), which, unlike 
SS-SS, does not assume knowledge of the noise level, show 
very little degradation of the system performance. In some 
cases, this cross-level NAT does somewhat better than the fixed-
level SS-SS. 
The last two rows of Table 1 show the WERs for the use of the 
approximate MAP algorithm in place of the SS. Given the noise 
level in retraining the HMM using the noise-reduced data 
(SPLICE-SPLICE), the WERs are in general lower than those 
of the SS-SS counterpart. Again, the use of NAT gives similarly 
low WERs. 

5.2 Results for Babble Noise 

Table 2 shows the WER results for realistic, nonstationary 
babble noise, rather than the artificially generated stationary 
white noise. One most noted difference in the performance is 
that SS-SS gives consistently higher WERs than those of Noisy 
matched. This is expected since the SS algorithm assumes 
stationarity in the additive noise, and it necessarily estimates a 
wrong noise level for subtraction in the current case of babble 
noise. However, as we expected, the SPLICE-SPLICE 
algorithm makes no assumption about the nature of noise and it 
outperforms the Noisy-matched condition. This appears to be 
the first time one demonstrates an effective strategy for 
nonstationary noise without invoking extremely expensive 3-D 
Viterbi search in the recognizer decoding. 

5 dB 10 dB 15 dB 20dB 
Mismatched 58.42 31.09 18.28 9.68 

Noisy matched 13.88 8.57 6.65 5.69 

SS test-only 48.71 27.36 14.51 7.68 

SS-SS 17.71 10.49 7.31 6.57 
SPLICE-SPLICE 13.07 8.38 6.46 5.35 

NAT (SPLICE) 15.84 8.83 7.35 6.17 

Table 2: WERs for babble noise We noted, however, that the 
NAT algorithm, while effective and approaching the noisy-
matched condition in WER, has not achieved the high level of 
success of the white noise case. 

5.3 Results for Office Noise 

Another type of natural noise, which is recorded in an office 
environment, is used with the WER results shown in Table 3. It 



contains mostly low-frequency energies (computer fan), and we 
need to raise its level by a relatively large amount in order to 
induce large errors in the recognizer. This office noise exhibits a 
low degree of nonstationarity (assessed via inspections of its 
spectral contents over time). 

The results in Table 3 show that both SS and SPLICE methods 
are effective, and the latter is more so, when the HMM 
retraining is performed. These WERs are generally lower than 
those of the matched noised condition, and are uniformly lower 
than those of the Vector-Taylor Series approach reported in [1]. 

 -10 dB -5 dB 0 dB 
Mismatched 55.06 20.16 12.92 

Noisy matched 10.64 7.27 6.43 

SS test-only 35.16 14.25 10.64 

SS-SS 10.34 7.05 6.65 
SPLICE-SPLICE  8.64 6.91 6.61 

NAT (SPLICE) 9.05 7.13 6.87 

Table 3. WERs for office noise at various SNR levels. 

5.4 Some More Types of Natural Noise 

For the roller-coaster noise 3(Coaster in Table 4) that manifests 
a greatest degree of nonstationarity, the WER reduction is 
shown to be particularly strong with the use of the SPLICE 
algorithm. The advantage of the SS-SS paradigm for stationary 
noise, and that of the SPLICE-SPLICE for both stationary and 
nonstationary noises have been consistent across the several 
types of noises we have experimented on. 

 
Coaster 

SNR 5 dB 
Cockpit

5 dB 
Desk 
5 dB 

Babble 
5 dB 

Office
-5 dB 

Noisy matched 14.59 11.89 13.00 13.88 7.27 

SS-SS 16.29 10.19 15.95 17.71 7.05 
SPLICE-SPLICE 6.09 10.08 10.16 13.07 6.91 

Table 4. WERs for a range of noise types. 

5.5 Preliminary Results on Cross-Noise NAT 

The positive NAT results presented so far in this section have 
been across the noise levels only and have been confined within 
known types of noises. To make the NAT truly useful, it should 
work well cross noise types also. We are beginning to conduct 
such experiments, and in Table 5 we present some preliminary 
results obtained so far. In these experiments, we added each of 
ten types of noise (including Roller Coaster, Cockpit, etc.; see 
footnote 4), with 20-dB, 15-dB, 10-dB, 5-dB, and 0-dB SNR, 
respectively, to the full set of the WSJ training data. These 50 
sets of noisy training data were then processed by the SS 
algorithm. The resulting data were combined to train a single set 
of HMMs via the NAT algorithm. The test set was obtained by 
adding two new types of noise, at the fixed 10-dB SNR, to the 
WSJ test set. This is followed by the same SS processing as 
applied to the training set. 

                                                           
3 Excised from the database of Speech Under Simulated and Actual 
Stress (SUSAS, John Hansen et al), released through LCD, 2000. 

Restaurant 
SNR=10 dB 

Airplane Cabinet
SNR=10 dB 

Mismatched 31.31 12.22 

Noisy matched 10.56 7.75 

Fixed-noise SS-SS 9.53 7.57 
Cross-noise NAT (SS) 17.02 8.16 

Table 5. WERs for cross-noise-type NAT. 

The results of Table 5 show that for one of the two types of 
noise, the cross-noise-type NAT works very well, approaching 
the performance of the noisy-match condition. For the other 
type of noise tested, the WER obtained via the cross-noise NAT 
is substantially higher than that of the noisy-match condition. 
More experiments are currently under way. 

6. CONCLUSIONS 
In summary, we have achieved significant error rate reduction 
by the proposed NAT algorithm, based on the new strategy for 
modeling the residuals of noise reduction, on a large-
vocabulary task. The error rate has been observed to be lower 
than that of the matched noisy condition, suggesting that as 
long as minimal or no additional mismatch between training 
and testing conditions is created by signal processing, speech 
enhancement is capable of recovering, at least partially, useful 
phonetic discriminative information hidden by the additive 
noise prior to the enhancement. The algorithms described in 
this paper are currently being integrated to MiPad, a next-
generation PDA prototype. 

In this work, we have gained rich empirical experiences on the 
way in which the noise and noise reduction affect the MFCC 
distributions across different phonetic classes. Based on such 
experience, one promising direction is to extend the 
discriminative strategy [7] for joint optimization of the HMM 
and preprocessor parameters to include also the parameters that 
characterize noise reduction algorithms. 
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