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PREFACE
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versity of Texas at Dallas.” It must include a comprehensive abstract, a full introduction
and literature review and a final overall conclusion. Additional material (procedural and
design data as well as descriptions of equipment) must be provided in sufficient detail
to allow a clear and precise judgment to be made of the importance and originality of

the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of
papers already published, provided these meet type size, margin and legibility require-
ments. In such cases, connecting texts which provide logical bridges between different
manuscripts are mandatory. Where the student is not the sole author of a manuscript,
the student is required to make an explicit statement in the introductory material to
that manuscript describing the student’s contribution to the work and acknowledging the
contribution of the other author. The signatures of the Supervising Committee which

precede all other material in the dissertation attest to the accuracy of this statement.
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Opportunistic methods solve dynamic resource allocation problems by choosing only
one (or a few) out of many allocation options at each point in time, thus solving the
problem in sub-optimal, but efficient ways. This work explores several opportunistic
methods in wireless communications and provides an analytic framework for such prob-
lems under limited feedback. An instance of opportunistic communication is antenna
selection, a low-cost, low-complexity MIMO (multiple-input multiple-output) method
that uses, at each point in time, the best of available antennas. We consider capacity-
maximizing antenna selection algorithms, and explore their asymptotic performance at
high- and low-SNR, as well as scaling laws with the number of antennas. We propose
fast algorithms for joint transmit-receive antenna selection. We analyze the capacity
and diversity of antenna selection algorithms under the so-called keyhole condition. In
a multi-user network, opportunistic scheduling effectively captures multi-user diversity
in the downlink, however, existing techniques require substantial channel state informa-
tion, per user, at the base station. We propose a simple scheduling algorithm to achieve
the multiuser diversity advantage with only minimal feedback requirement and prove its

desirable properties in terms of the sum-rate capacity. Using this novel approach, we
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propose a beamforming scheme with limited-rate feedback in multiuser MIMO systems
and show its superior performance over the known methods. Finally we extend our
scheduling method to multiuser OFDM networks where reduction of feedback overhead

is a crucial issue.
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CHAPTER 1
INTRODUCTION

Opportunistic techniques are greedy approaches to solve resource allocation problems
in wireless networks. In these methods, resource allocation is based on the best one or
a few opportunities among all possibilities. In this thesis, we investigate opportunistic

methods for individual wireless links as well as multiuser networks.

1.1 Opportunistic Methods for the MIMO wireless Link

At the wireless link level, when there are multiple antennas at both transmit and re-
ceive side, antenna selection is a well-known opportunistic method to exploit the spatial
diversity of MIMO at lower cost and complexity [1]. In antenna selection, from among
all RF paths between the transmitter and the receiver, a few good ones are selected and
communication is carried over the selected channel. The optimal solution to antennas

selection problem is obtained by exhaustive search among all possibilities.

Eshaustive search has high complexity and might not be affordable at a hand-
held device. One simple solution to the antenna selection is selecting antennas based on
the norm of the channel vectors associated with the antennas. This is called norm-based
selection and it has low computational complexity. Norm based selection may not be
optimal especially in high signal-to-noise ratio (SNR). Nevertheless norm-based selection

may be used because of its low computational complexity and known statistics [2, 3].

In an attempt to achieve near-optimal selection, Gorokhov [4] suggested a decre-
mental selection algorithm where, starting from the full channel matrix, the rows of

the channel matrix are discarded one by one so that at each step the capacity loss



is minimized. Further work [5, 6] showed that an incremental algorithm (instead of
a decremental one) leads to less complexity and almost the same capacity as optimal

selection.

Our contribution is to explore the information theoretic limits of transmit antenna
selection in the asymptote of large number of antennas for both high and low values of
signal to noise ratio (SNR) [7, 8, 9]. We introduce the concept of capacity gain which
can be used to evaluate the capacity of partially informed systems (such as transmit
antenna selection) in the asymptote of high SNR [7]. We develop mathematical tools
that can be utilized for asymptotic capacity analysis. Also we propose a fast algorithm
for joint transmit-receive antenna selection whose complexity grows only linearly with

the number of antennas and its performance is close to the optimal selection [10].

1.2 Opportunistic Methods for Multiuser Networks

In the downlink of a wireless network, where higher data rates are on demand, oppor-
tunistic scheduling is suggested as a practical way of exploiting the multiuser diversity
[11]. In the opportunistic downlink scheduling, mobile users report the quality of their
channel states to the base-station and the base-station chooses the user with the best
channel quality for data transmission [12]. In a SISO system, it is known that choosing
the user with the highest channel gain maximizes the sum-rate capacity [13]. However
this scheme suffers from long delays incurred by the slow-fading environment; it may
take a long time for a user to become the best user thus the fairness in this scheduling
method is a problem. The method of opportunistic beamforming with dumb antennas
proposed in [14] provides a solution to delay and fairness problems mentioned above.
However, this method only exploits multiuser diversity gain and does not enjoy the

advantage of array gain. The idea of phase randomization was further generalized for

MIMO broadcast channel by Sharif and Hassibi [15].



In broadband networks there are abundant degrees of freedom in space, time and
frequency. Thus the amount of channel state information for each user might be so
large that it cannot be thoroughly fed back to the base-station. Furthermore error free
transmission of the channel state information back to the base-station requires extra

channel coding in the feedback channel.

These constraints motivate our research. We propose a scheduling algorithm for
the flat fading case based on one bit quantization of channel gain of each user. In the
proposed scheme, each mobile user compares his channel gain with the threshold value
set by the base-station if it was above the threshold, the user reports a “1”, otherwise
it reports a “0” to the base station. The base-station from among all eligible users
(those who are above the threshold) picks one at random and transmits to that user!.
In our proposed scheme the base-station instead of collecting all the information and

then making a decisions, shifts part of the decision-making process to the users, in other

words our scheme can be considered as an instance of distributed decision-making.

When the quantization threshold is optimally set by the base-station, we prove
that the sum-rate capacity growth of our scheduling scheme is the same as scheduling
with full channel state information (CSI) [16]. Furthermore we show that the capacity
gap between the two methods are insignificant when there exists a large number of users

in the network.

We use this approach to devise a scheduling strategy for beamforming in a mul-
tiuser MIMO system. Despite having minimal feedback requirement, we show that our

beamforming and scheduling scheme has superior performance over the known methods.

We also extend our method to broadband OFDM networks. We propose a dy-

namic sub-channel allocation for downlink transmission and show that with minimal

1The base-station can also perform round robin scheduling among all eligible users which has better
fairness in small time scales.



feedback, this scheduling scheme leads to the same throughput scaling as scheduling
with full CSI.

1.3  Outline of the Dissertation

In Chapter 2 we provide background material and theoretical results that will later be

used for analysis.

In Chapter 3 we study antenna selection algorithms. We provide asymptotic
capacity analysis for successive antenna selection algorithms. We also propose efficient
low-complexity algorithms for joint transmit-receive antenna selection. We also study

antenna selection over the keyhole channel.

Chapter 4 presents a novel method for exploiting multiuser diversity with lim-
ited feedback. We propose a simple scheduling scheme based on one-bit channel state
information (CSI) feedback from each user. Furthermore we analyze this algorithm and

show its desirable properties in terms of sum-rate capacity scaling.

In Chapter 5 we extend our approach for beamforming over a multiuser MIMO
network. We prove the optimal capacity scaling of our algorithm and show that with
minimal CSI feedback requirement, our method outperforms the opportunistic beam-

forming proposed in [14].

The objective of Chapter 6 is to show the effectiveness of our approach in reducing
feedback overhead in a multiuser OFDM network. We propose a dynamic sub-channel
allocation scheme for OFDM users that requires only one-bit feedback per cluster of
sub-channels. We prove the optimal capacity scaling of our method. We show that our

method can perform reasonably well even with correlated sub-channels.

Finally, Chapter 7 presents conclusions and discusses possible avenues for future

work in this area.



CHAPTER 2
THEORETICAL BACKGROUND

This chapter is dedicated to the review of background material that is used throughout
this thesis. In Section 2.1, we review the channel capacity formulation and the concept
of outage probability as two important metrics that set the fundamental limits on the

performance of communications systems.

In opportunistic resource allocation, we allocate resources based on best oppor-
tunities among all possibilities. When there is randomness in the system, the statistics
of the best options determine the performance of the system. Therefore, order statistics
are a natural tool for analysis and performance evaluation of opportunistic schemes. In
Section 2.2, we review the basic theory of order statistics and present essential results

that will be used in the proceeding chapters.

In many instances, asymptotic analysis provides insights into properties and
trends that are not easily obtained otherwise. Furthermore, in many cases, the di-
mensionality of the problem is sufficiently large to justify asymptotic analysis. The
behavior of order statistics in the asymptote of large samples is known to obey certain
central limit laws. This topic is often referred to as Fxtreme Value Theory (EVT) and
is treated in Section 2.3. We use these results for asymptotic analysis of the capacity of

opportunistic systems.

2.1 Channel capacity and Outage Probability

Channel capacity was first introduced by Shannon in a landmark paper [17] as a quantity

that sets limits on amount of data rate that can be reliably transmitted over a noisy



channel. In the case where both the transmitter and the receiver on a wireless channel are
equipped with multiple antennas (the MIMO channel), Telatar calculated the channel
capacity [18]. The MIMO channel with M transmit and N receive antennas can be

expressed with the following linear time invariant narrow band model
y=H-x+n

where the ij** element of H represents the channel gain between transmit antenna i
and receive antenna j. Assuming that the channel matrix H is known at the receiver,
Telatar gives the following formula for the capacity of the MIMO channel [18]

C(H,p) = sup log,det(Iy + HQHT) (2.1)

tr(Q)< p

where E[xx’] = Q is the input covariance matrix and p is the signal-to-noise ratio (SNR)
at the receiver. When no channel state information (CSI) is available at the transmitter,
it was shown in [18] that the best input covariance to maximize the mutual information

is Q = {7In. Hence the capacity formula for this case is

C(H, p) = log, det(Iy + %HHT) (2.2)

2.1.1  Ergodic Capacity

When the channel is ergodie, i.e., reliable communications is possible by using infinitely
long codewords [19]. Assuming the receiver knows the channel coefficients, the maximum

achievable rate can be calculated by taking the expected value of Equation 2.1

Coergodic(p) = Ea[C(p, H)]

2.1.2  Outage Capacity and Outage Probability

When the transmitter encodes the code-word over one channel realization, there is always

a non-zero probability that the channel is too poor for correct reception and decoding



of the transmitted signal. In this case, reliable communication is not possible, hence the

Shannon capacily is zero. For a given rate R, the probability of outage is defined as

Pou = Pr[C(p,H) < R]

The outage probability is an important performance metric in wireless systems

as a lower bound on the frame-error rate for any coding scheme [19].

The outage capacity or e-capacity denoted by C is a rate below which, the outage

probability does not exceed ¢, i.e.
Pr[C(p,H) < C| =¢

In the language of statistics, the outage capacity is in fact the e-percent quantile value

of the random variable C'(p, H).

2.2 Order Statistics

Suppose {X,} is a sequence of random variables, the corresponding order statistics are
the Xi’s arranged in decreasing order. We denote the smallest one by X(;) and the
largest one by X(,).

Xy s Xg s = X
If X,,’s are i.i.d. random variables with the CDF F(z) and pdf f(z) then the distribution

of the 7" order statistics is [20]

n! i—1 n—1i
fol#) = i G F@) (1= F @) (23)

and the CDF is
o) =Y () (F()) (1 — Fa))™ (2.4

r

r=t

in particular the CDF of Xy (the minimum) and X(,) (the maximum) is

Foy(e) =1 = (1= F(z))" , Flz)=(F))" (2.5)



There is a rich literature on order statistics and their properties; a detailed treat-

ment of the subject can be found in [20, 21].

In general X(;’s are jointly dependent random variables. However, when the
parent distribution is the standard exponential distribution F'(z) = 1 — e™*, then the
order statistics can be represented by a linear combination of independent exponential

random variables.

Theorem 1 Let X1y < X(g) < -+ < X() be the order slalistics from the standard
exponential family Fx,(x) =1 —e™", then
7
X = —
@) Z n—r-+1

r=1

where Z,’s are i.i.d. random variables with exponential distribution Fz (z)=1—e %,

Proof: See [20] (Section 4.6).

Theorem 1 says that the exponential order statistics form a additive Markov
chain, as noted by Rényi [22]. Using Theorem 1 one can easily calculate the moments
of order statistics for the exponential family, in particular the mean and the variance of

the order statistics of the exponential family are

7

iy = E[X@] = Z 1 (2.6)
r=1
2 : 1
oty = varlXol = 3 o (2.7)
r=1

For the general case, if F~! denotes the inverse function of the parent CDF F'(z),
then the i** order statistics can be represented in the following way

Xu = Ft (1 — exp (— Z W—Zﬁ)) (2.8)

r=1

where Z,;’s are defined as in Theorem 1 This is known as the Rény: Representation of

order statistics [22].



2.3 Extreme Value Theory (EVT)

It is well-known that the distribution of the sum of n i.i.d. random variables, normalized
by the sample mean and variance, approaches the Gaussian distribution with zero mean
and unit variance. This is known as the Central Limit Theorem. In this Section we show
that maximum and minimum of n i.i.d. random variables also have a limit property as n
goes to infinity. However, unlike the central limit theorem, neither the limit distribution
nor the normalization constants are unique. The underlying theory is known as the
Fxtreme Value Theory (EVT) and has been very well studies during the past decades
(23, 20, 21]. In this Section we present some of the results from extreme value theory

that will be used in later chapters.

Definition 1 A CDF F is said lo belong to the domain of mazimal atiraction of a

non-degenerate cdf U if there exist sequences {a,} and {b, > 0} such that

lim F"(a, + byz) = U(x) (2.9)

n—oo

at all continuity points of U(zx).

Theorem 2 Let X,y be the mazimum of n i.i.d. random variables {X;}7_,, each with

CDF F. If F belongs to the domain of mazximal attraction of U, then:

Xn — Un
%LW (2.10)

where W is a random variable whose CDF, U, can only be one of the following three
distributions:
Ui(z) =exp(—e™) —oo<z< o0,

exp(—z®) x>0,aa>0
UQ(.’E) — p( ) ,

0 <0

1 x>0

exp(—(—z)*) z<0,a>0"



these distributions are also known as Gumbel, Fréchet and Weilbull distributions, re-

spectively.

The proof of the above theorem can be found in [23]. As mentioned earlier,
Theorem 2 is analogous to the central limit theorem which was for the normalized sum
of 1.i.d. random variables. Although, unlike the central limit theorem, the normalization

constants a,, and b,, are not necessarily unique. One way to find the constant a,, is given

below [20]:
1
o= 1 - =
‘ (-1
1 1
b, = F'1——)-F'1—-—
(-1l

where F'~! is the inverse function of the parent CDF.

Example 1 For the exponential family with CDF F(xz) =1 — e™*, if we choose a, =

logn and b, =1 we have

Xn — Unp . n —T\ " —z
Pr [7()6 a <$}:(1—6_(I+l°g”)) :(1—6 ) —s e °

asn — o0.

Example 2 If X, is distributed according to x3, with the CDF F(z) =1 — ¢ey(x)-e™7,

where e,(x) = Zi;é fc—lf Then we can calculate a, from the following equation:

1
an = F7' (1 - =)

n

but F'=' can not be explicitly calculated, thus we calculale a, in the following recursive

manner.

1 1
Fla,)=1—— = e¢yla)e’™ =— = a,—log(eya,)) =logn

10



11

hence a, =logn + «, where o, = o(logn). Therefore we have

o log )P~
a, —log (ey(an)) =logn = a, =log(e,(logn + ay)) = log <7( og ") )

(p— 1!
(logn)P~!
(p—1)!

one can show that b, =1+ o(1) therefore, the following choice of a,, and b, leads to the

hence a,, = logn + log ( ) + Bn. 1t can be easily seen that 5, = o(1). Similarly

desired result.

p—1
a, = logn + log (logn)™ , b,=1 (2.11)
(p—1)!



CHAPTER 3
OPPORTUNISTIC METHODS IN THE MIMO WIRELESS LINK

In a rich scattering environment, multiple antennas at transmit and receive sides can
significantly improve the spectral efficiency. It has been known that the capacity of
the system scales linearly with the minimum number of transmit and receive anten-
nas [24, 18], and this has spurred a great flurry of research in recent years. However,
this extended capacity is obtained using complex signal processing techniques at both
ends. Furthermore, multiple antennas require multiple RF chains which are quite costly.
Therefore cost and complexity are two major factors that may limit the use of multiple

antennas in future communication systems.

On the other hand, not all antennas may be equally useful because in each real-
ization of the channel, some of the antennas (either at the transmit side or the receive
side) may be in deep fade. With increasing number of antennas, the probability increases
that at least some of them are experiencing deep fading. Thus, a natural and practical
solution offers itself: to choose a few good RF paths from among all RF paths from the
transmitter to the receiver, namely, select a subset of the available antennas so that (a)
the effective size of the channel matrix is reduced, thus the processing requirements are
simplified, and (b) the number of RF chains, which is often the main driver of the unit

cost, is also reduced [1].

At the receive side, antenna subset selection reduces the complexity. At the
transmit side, antenna subset selection not only reduces the complexity, but also im-
proves the capacity of the MIMO system [25, 26, 7, 8] at the cost of a minimal amount
of feedback. Fast and efficient algorithms have been devised to determine the selected

antenna subsets [4, 6, 5]. However, despite the practical importance of antenna selection,

12



the information theoretic properties of the resulting channels remains a mostly unex-
plored territory. A few notable exceptions exist [27, 2], however, to date closed form
expressions for capacity have not been available. We undertake the analysis of antenna

selection using these algorithms.

Our motivation in taking this approach is two-fold. First, finding the optimal
subset of antennas requires an exhaustive search, which is usually computationally un-
affordable. Second, optimal antenna selection induces channel distributions that do not
lead to a tractable formulation. Thankfully there exist antenna selection algorithms that
deliver capacities almost indistinguishable from optimal selection [6, 7], which we use

for our analysis.

In Section 3.3 we analyze the capacity of the antenna selection channel in the high-
SNR and low-SNR regimes. In the high-SNR regime, we define the notion of capacity
gain as the constant term in the high-SNR expansion of the capacity expression, and
demonstrate that it is directly related to transmit-side channel state information. This
concept was first introduced in [7, 8] and is closely related to a similar concept that was
independently proposed by Lozano et al. [28]. We are able to draw conclusions about
the behavior of the system in the asymptote of large number of transmit antennas, and

draw comparisons between the antenna selection capacity and water-filling capacity.

Our results have interesting implications in the design and analysis of all MIMO
systems (not just antenna selection). The waterfilling capacity (C,f) has the same
growth rate as the capacity of the uninformed transmitter (C') [29], but nevertheless
Cyws > C with non-vanishing difference at high SNR'. The difference is an ezcess rate
that is due to channel state feedback. The excess rate is not limited to waterfilling; when

partial CSI is available at the transmitter the excess rate is still there, but is smaller.

1We assume there are more transmit than receive antennas.

13



Examples of partial CSI include transmit antenna selection and channel covariance feed-
back. The growth of this excess rate with the number of transmit antennas is a measure

of how effectively CSI is being used by a given method.

In Section 3.3.4 we employ a similar methodology for the low-SNR regime. In
particular, we look at the power series expansion of the capacity around SNR=0, where
the coefficient of the first-order term is called channel gain?, a quantity that is related to
the channel state information. Using this notion, we show that at low SNR, the optimal
selection strategy at the transmitter is to select exactly one transmit antenna, regardless
of other parameters. This is a new result that is reminiscent of, but distinct from, the

well-known water-filling result at low SNR.

In Section 3.4, motivated by the symmetry inherent in the problem, we analyze

the receive side antenna selection in a manner similar to transmit selection. Receive
. . . 3

antenna selection always incurs a loss of receive power due to de-selected antennas,

thus, unlike transmit selection which may increase capacity (under conditions mentioned

earlier), receive selection always incurs a capacity loss.

In Section 3.5, we propose fast algorithms for joint transmit-receive selection.
We show that with a computational complexity that is only linear with respect to the
number of available antennas, our proposed algorithm performs almost as well as the

optimal antenna selection that has a higher complexity.

Finally in Section 3.6 we study antenna selection in keyhole channels. We show
that, due to intrinsic redundancies in the keyhole channel, antenna selection can capture
most of the capacity of the keyhole channel. Furthermore, we prove that the keyhole

channel with antenna selection attains the same diversity order as the full system with

2Terminology due to Verdu [30]
3Receive antenna selection may also result in a loss of multiplexing gain, if the degrees of freedom
of the channel are limited by the receiver.
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no selection.

We use the following notation. E[ ] refers to expected value of a random variable,
Iy denotes the N x N identity matrix, (z)* = max{z,0}, and v &~ 0.57721566 is
the FEuler-Mascheroni constant. We use a, = b, to denote the asymptotic equivalence
of a, and b, defined as: lim,_ ., ’;—: = 1. We use the natural logarithm throughout
this chapter so unless otherwise stated, the capacity unit is in Nats/Sec/Hz. The chi-

square distribution with 2p degrees of freedom is shown by X%pa and the maximum of n

2

5pne With an abuse of notation, we show

independent X%p distributions is denoted by Y

2

random variables following the latter distribution also with X3, ..

3.1 System Model

We assume a frequency non-selective (flat) linear time invariant fading channel between

M transmit and N receive antennas. The signal model is:
y(t) = H-x(1) + (1) (3.1)

where y(t) represents the N x 1 received vector sampled at time ¢, and x(¢) represents
the M x 1 vector transmitted by the antennas with power constrain E[x'x] < p, where
p is the average SNR (per channel use), n(t) is the N x 1 additive circularly symmetric
complex Gaussian noise vector with zero mean and covariance matrix equal to Iy (the
N x N identity matrix) and H is the N x M channel matrix, whose ij-th element is the
scalar channel between the i-th receive and j-th transmit antenna. We assume that the
elements of H are independent and have complex Gaussian distribution with zero mean
and unit variance. We also assume that H is perfectly known at the receiver but it is
not necessarily known at the transmitter. For antenna selection, we assume there is a
rate-limited feedback channel from receiver to transmitter so that a subset of transmit
antennas can be selected by the receiver and furthermore we assume that the feedback

channel is without error or delay.
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Input: p, L,H

1. Let C; = {all columns of H} and f’l =1Iy.
2. choose Hl = arg max nec, ||h|2 , ﬁl = Hl.
3. fore=2: L
(a) Ci =Ci- 1\{h2 1} _ N
(b) P;=1-H;,(:I+H! H,_,)"'H
(c) hZ gmaxhec h”P;h
d) H; = [H,_, hy]

~—~

4. H:HL

Oulput: H = ISSA(p, L, H)

Figure 3.1. Incremental successive selection algorithm (ISSA)

3.2 Antenna Selection Algorithms

The complexity of MIMO transceiver algorithms increases exponentially with the number
of transmit and/or receive antennas. This requires powerful signal processors at both
sides which is costly especially at the mobile unit. Also in order to use all antennas at
both sides, multiple RF chains are required and this requirement immensely increases
the cost of the mobile unit. It is a well-known [1] that antenna selection provides
a solution to the cost and complexity problem in MIMO systems. However, finding
the optimal set of transmit and receive antennas requires an exhaustive search over
all the possibilities, which has very high computational complexity. Successive selection
algorithms [7, 8, 5, 6, 27] provide a solution to this problem, in particular the incremental
successive selection algorithm (ISSA) [8, 5] seems very attractive when the number of

selected antennas are much less than the total number of antennas.
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Figure 3.2. Diagram of a MIMO system with transmit antenna selection

3.2.1 Incremental Successive Selection Algorithm (ISSA)

The input of the algorithm consists of the channel realization H, SNR per transmit
antenna p, number of selected antennas L . The algorithm determines the selection,
which are indices of the channel matrix. This is equivalent to knowing the selected

channel sub-matrix H.

Note that the algorithm depicted in Figure 3.1 selects the columns of H, in such
a way that each step guarantees the minimal loss in the capacity due to selection. The
complexity of this algorithm is O(max{N;, N} N;L) [5]. The same algorithm can be
used for row selection (receive antenna selection) but instead of H, H” is input to the

algorithm.

3.3 Transmit Antenna Selection

We consider a transmit antenna selection scheme where a subset of transmit antennas
are used for transmission with equal power (Figure 3.2). For this purpose, we assume
there is a rate-limited feedback channel from receiver to transmitter so that a subset of
transmit antennas can be selected by the receiver and furthermore we assume that the

feedback channel is without error or delay.

Optimal transmit antenna selection via exhaustive search among all <L> com-

17



binations has complexity O(M"), which is impractical for large number of transmit
antennas. One may reduce this complexity by employing a successive selection scheme,
i.e., a greedy algorithm that at each step maximizes the capacity of the selected sub-
channel. A very similar methodology was mentioned in [4] for receive antenna selection.
In this work, starting from the original channel matrix, the algorithm removes antennas
one after another in a way that the capacity loss is minimized. Gharavi-Alkhansari and
Greshman [5] showed that an incremental successive selection leads to less computa-
tional complexity. Simulation results show that this successive selection captures almost
all the capacity of optimal antenna selection in a wide range of SNRs. Therefore, we

adopt the latter algorithm for our analysis.

The input of the algorithm consists of p (the given SNR), L (the desired number
of transmit antennas to be selected) and H (the original channel matrix). The output
of the algorithm is H (the channel matrix associated with selected transmit antennas).

This algorithm, shown in Figure 3.1, is the basis for the following analysis.

3.3.1 A Framework for High SNR Analysis

Using the Sherman-Morisson formula for determinants [31], for the selected channel H

we have:
L

det(Iy + %ﬁﬁT) - [[1(1 + %H?f)iﬁi) (3.2)
As p = oo, P, - P;, where, P; = Iy — ﬁi_l(ﬁ?_lﬁi_l)_lﬁi_l is a projection ma-
trix of rank N — ¢+ 1. When M is also large, at each selection step, the distribution
of the remaining channel vectors can still be well approximated by a circularly sym-

metric Gaussian distribution. Our simulations verify that for large M the Gaussianity

assumption provides a good approximation for the actual distribution of the remaining
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columns.* Using this assumption we can approximate the statistics of the right side of
(3.2). We know that for an uncorrelated complex Gaussian vector x and a projection
matrix P, x'Px has yx? distribution with rank(P) degrees of freedom. Hence for large

p and large M, we have:

L
S _
det(HH") ~ HX%(N—Z'H),M—Z'H (3.3)
=1
where X3, , stands for a random variable which is the maximum of n independent x3,

random variables. The pdf of this random variable can be computed in closed form [20]:

2,.(T) = meﬂ(l — e ey(x))" (3.4)

where e,(z) = Zi;é W

3.3.2  Capacity gain of MIMO systems

We introduce here the concept of capacity gain as a measure of effectiveness of channel
state information at the transmitter. We start with the capacity expression for a general
MIMO system. Under the flat fading assumption, given a general channel matrix, the

ergodic capacity of the MIMO channel is calculated as follows [18]:

C= E[trr(r(lga;?plog(det(ljv + HQH"))] (3.5)

where Q = E[xx”] is the covariance of the transmitted vector x.

We consider three different cases: First, uninformed transmission in which CSI
is perfectly known at receiver, but not at transmitter. Second, informed transmission in
which CSI is perfectly known both at transmitter and receiver. Third, transmission using
an optimal subset of transmit antennas selected by the receiver. The only information
available at the transmitter is the indices of the selected transmit antennas. Figure 3.3

shows the ergodic capacity and the capacity gain for the above three cases.

*Deriving the exact multivariate distribution of channel gains subject to selection remains an open
problem.
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Ergodic Capacity: M=8, N=L=2
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Spectral efficiency Bits/sec/Hz
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Figure 3.3. Capacity of transmit antenna selection: M=8 N=[.=2

Uninformed transmitter: As shown in [18], when CSI is available only at the receiver,
the covariance matrix that maximizes the capacity is of the form Q = ﬁIN, hence, the

ergodic capacity is:

€ = wllog(det(Ty + LHET))] = = li log (1 + %A»]

where where Ay, ..., \,, are ordered nonzero eigenvalues of the Wishart matrix HHT [18],

and

m = rank(H) = min{M, N}

is the degrees of freedom of the MIMO channel, assuming the channel is full-rank. As
shown in [24], C =mlogp+ O(1) . So the ergodic capacity grows linearly with m. In
the asymptotic expansion of (' there is a constant term that does not vanish as p — oc.

Thus we define the capacity gain as follows:

G 2 lim (C'—mlogp) (3.6)

p—>00
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For uninformed transmission we have:

oy ; 20l -
G = pli)n& (E [Zlog(l—l—M/\Z)] mlogp)

1N
= pILTOE [Z log(— ; M)

=1

= E [zm: log /\i] —mlog M (3.7)

=1

In the last step, the exchange of expectation and limit is allowed by the monotone

convergence theorem.

Informed transmitter (water-filling capacity): In this case the channel state infor-
mation is available at the transmitter. The water-filling capacity of the MIMO channel
s [18]:

zm: (log(pA:))

=1

wf =E (38)

where u should satisfy p = >0 (1 — A7) T. In large SNR scenario, all the eigen modes

S DR Ai_l
m

of the channel are used by the beamformer, hence p = and the water-filling

capacity is equal to:

Cus

. [i(logw»)]

=1

= mE [log(p + Z AT

=1

+E

Z log /\i] —mlogm (3.9)

i=1
For large p we have: (', ~ mlogp. In other words, availability of CSI at transmitter
side has no impact on the logarithmic growth rate of the ergodic capacity, because the
growth rate only depends on the rank of the channel matrix. Now we similarly calculate
the capacity gain for informed transmission:
Gus =E [Z log /\i] —mlogm (3.10)
i=1

AG = Gy — G =mlog(M/m) (3.11)
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In the asymptote of large SNR, this is the mazimum amount of excess rate obtain-
able by providing channel state information at the transmitter. We note that if M < N
then AG = 0, thus channel state information at the transmitter cannot provide any
excess rate, asymptotically. This result agrees with one’s intuition that beamforming
is effective only when the number of transmit antennas is large. In the sequel, we only
consider the interesting case of M > N. In particular, we are interested to understand
the behavior of the capacity gain when M > N. In these cases, Equation (3.11) suggests
that at high SNR, the capacity gain can be used as an information-theoretic metric to

evaluate any method that uses channel state information at the transmitter.

Antenna selection: In the high SNR regime, one is interested in the case L > N, to
maintain the degrees of freedom of the channel and prevent excessive rate loss. Suppose
we have selected L (L > N) out of M transmit antennas (M > N). Then, if the selected

channel is ﬁ, the capacity gain is:

G = IlmE

p—>00

log (det(IN + %II-VIITIT)H — Nlogp
= limE

1 .

- E [1og (det(ﬁf{T)ﬂ — NlogL (3.12)

3.3.3 Asymptotic Behavior of Capacity Gain

We now explore the behavior of capacity gain, for large M, in the case of informed,

uninformed, and antenna selection transmitter.

Uninformed transmitter: in the case M > N, Equation (3.7) can be rewritten as:

G = E [log det(HH")] — Nlog M (3.13)
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It is known [24] that det(HHT) ~ [[Y, Xg(M—i+1) therefore [32]:

G=N " (¢(M—i+1)—log M) (3.14)

=1

where ¢(n) = —y 4+ 5] = is the di-gamma function. We have [24]:

lim G =0 (3.15)

M—oo
Informed transmitter: Using Equations (3.11) and (3.15) for large M we have:
0 M.
Gus = Nlog(ﬁ) = Nlog M (3.16)

Antenna selection: Using the results of Section 3.3.1, we can evaluate the capacity

gain for antenna selection. Using (3.12):

G = E|logdet(HH")| — Nlog L
L
= ZEUO@(%(N—Z'H),M—Z'H)] — Nlog L (3.17)

i=1
Equation (3.17) suggests that for large M, selecting more than N antennas does
not provide any further gain. In the previous section we argued that I cannot be less
than N, hence for large M the optimal value for L is N. Henceforth we assume L = N.
To evaluate the asymptotic behavior of (N;, we only need to evaluate E[log X], where
X ~X2,.
Using the developments provided in Appendix A, we first prove the following

result which is useful for our asymptotic analysis:

Theorem 3 Let {X;}", be sequence of positive random variables with finite mean p,
, finite vartance o, such that p, — oo and Z—“ — 0, we also assume that for all n the

logarithmic moment of X, exits then

log(E[X,])
E[log X, ]
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Proof: From Theorem 10 for p = % > 0 we have

Ellog(c + X,)]

lim =1 3.18
n—voo  log(€+ puz) (318)
since log x is continuous on (0, c0), we have
1 n
lim Tim 08+ An) (3.19)

e—0 n—o0 log /,Ln

Also from the monotone convergence theorem we can conclude that

=1 (3.20)

from (3.18), (3.19) and (3.20) we can draw the desired conclusion.

Theorem 3 suggests that in order to asymptotically evaluate the logarithmic
moment of a random variable satisfying the conditions of this theorem, it is sufficient
to only calculate the logarithm of its mean value. In Section 2.3 we showed that the
extreme value of a sequence of random variables has a limit behavior in distribution.
Theorem 2 established this result in exact terms. For X%p,n in Chapter 2.3, Example 2

we calculated the constants a,, and b,

_ (logn)*”! _
an—logn—klog(W 5 bn—l

using these values we can show that

Xy = n 4
by,

where W is distributed according to Gumbel distribution (c.f. Theorem 2) with CDF
Pr[W < z] = exp(—e™®).

It is known that when the limiting distribution is of the first kind (Gumbel

distribution) then Theorem 2 can also be used to evaluate the moments of Xn) (in
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fact for this case, convergence in distribution implies convergence in moments [23]). In

particular we have

Xn — Un
E %} s E[W] =~ (3.21)
Xn - Un 2 2
E [<u> ] s E[WY = (3.22)
b, 6
where v = lim,, o logn — > 7_, % ~ 0.577 is the Fuler-Mascheroni constant. thus we
have
lim E[X(,] = lim a, = o0
and
X Z=bn
lim 7\/&1‘( (n)) — lim —Y& 0.

Hence the conditions of Theorem 3 is satisfied. Using this theorem the asymptotic
growth of the logarithmic moment of the extreme order statistics of chi-square random

variables is given by

Ellog(X(m))] = log(E[X(n)])

= log (log n + log(log( (pni_i)! )+ 7)

= log(logn) (3.23)

Now we can evaluate the behavior of G in (3.17):

N
G = ZEUO%()N(%(N—Z'H),M_Z'H)] — Nlog N

=1
N log(M —i+1) + log(log(%)) +7

v (3.24)

[le

—

)
02

Hence

G < Nlog(log M)
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Figure 3.4. Capacity gain of antenna selection (N=2 and SNR=30 dB)

Thus the capacity gain for transmit antenna selection behaves like O (log(log M)) .
Also, for large number of transmit antennas Equation 3.24 can be used as an approximate

formula for ergodic capacity of transmit antenna selection at high SNR, in fact

C~ Nlogp+ G (3.25)

Figure 3.4 compares our result with computer simulations. We run the simula-
tion for SNR = 30 dB and N = 2. For each point on the plot, the capacity gain is
calculated by averaging over 5000 different channel realizations and compared to the
results obtained from equation (3.24). Simulations match our analysis very well, thus
the asymptotic formula proves to be a useful tool for the evaluating of the capacity of

transmit antenna selection.
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3.3.4 Low SNR Analysis

For low SNR case, we use the concept of channel gain, introduced by Verdu [30], which

is essentially the slope of the linear term in the Taylor expansion of the ergodic capacity,

namely,
acC
pa 9C) (3.26)
dp =0
since C = T' p+ O(p?), T can be considered as an information theoretic metric for
evaluating the spectral efficiency at low SNR [30].
Uninformed transmitter: In this case the channel gain [30] is:
[H]I%
I'=E =N 3.27
= (3.27)

We notice that in this case the channel gain does not depend on M, so increasing the

number of transmit antenna will not affect the capacity.

Informed transmitter: When CSI is fully provided at the transmitter, at low SNR,
the beamformer only uses the eigen mode of the channel associated with the largest

eigen value of HHY, hence the channel gain is [30]:
Lo = E[Amax(HHT)] (3.28)

It was first shown in [33] that Apax = (VM + \/ﬁ)2 when M or N are large. Thus for
the case M > N, we have I'y; = M .

Antenna selection: Suppose we are selecting L transmit antennas with equal power

splitting among them. In low SNR scenario, the channel gain is:

~ Lo~
F_ o (HIE | _ ERSi [1hill2]
L L
where H is the selected channel, and Hl, ceey h;, are the L columns of H. Thus antenna

selection in low SNR leads to selecting I antennas with highest norm. This is also
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consistent with the successive antenna selection algorithm presented in Figure 3.1 for
p ~ 0. Moreover, the channel gain is maximized when I = 1, because

L 112 "

This suggests that the optimal transmit antenna selection strategy, in the low SNR
regime, is to select only one transmit antenna whose channel vector is of the highest
norm. In other words H = h; where ||h;|| = max{|/h4]|,...,|[ham]|}. For channel gain
of antenna selection in the low-SNR regime, we need to evaluate E[HITIH%] The random
variable Hﬁ”% is distributed according to )?QMM defined in Section 3.3.1. For M > N,
using Theorem 2 we have:

N-1

ffopt é log M + log(log(m))

+ v =log M (3.29)

3.4 Receive Antenna Selection

Up to this point, the emphasis has been on the transmitter side. However, it is not
difficult to see that due to the reciprocity of electromagnetic propagation, the problem
is highly symmetric, therefore the framework developed thus far also applies to receive

antenna selection.

In particular, consider the following setup: A MIMO system with M transmit and
N receive antennas, such that N > M. We wish to choose L out of N receive antennas
in a way to maximize the retained capacity. The algorithm depicted in Figure 3.1 will
perform the antenna selection, with the notable difference that we now must select rows
and not columns of H. As before, we call the selected channel H. Assuming receive

antenna selection with . = M and no CSI at transmitter, the capacity of the system is:

C = log det (I, + %ﬁﬁT)
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Similarly to the previous case, we can write:

M
P Fta P~
log det (7 + MHHT) ~ log [J(1+ MX%(M—H—I),N—H—I)
=1

M
~ Mlogp— Mlog M + Zlog gg(M—i-}-l),N—i-}-l

=1

= Mlogp—l—é

~ . i : . .
where Xo(M—i41),N—it1 1S aS earlier defined, the maximum of N —¢+1 chi-square random

variables with M — ¢ 4+ 1 degrees of freedom.

Recall that in transmit selection the SNR scales by the factor p/L in Equa-
tion (3.2), i.e., the fewer the selected antennas, the more power can be sent through
each antenna. The result was that the capacity actually increases through transmit

5 an increase that was characterized by G.

antenna selection,

In receive selection, selecting fewer antennas will result in smaller receive power,
but antennas that are selected enjoy better channel distributions than the original MIMO
channel. However, the loss of power cannot be made up by the improvement in the
channel distributions. Therefore the capacity of the receive antenna selection is less than
the capacity of the full-scale system. Unlike transmit selection, no additional capacity is
obtained by selecting down to the best antennas, a result that is not surprising because
information is being lost by receive selection. The above results are demonstrated on a

2 x 8 system in Figure 3.5.

In the low-SNR regime, we once again use the concept of channel gain, which for
the receive antenna selection leads to:

= [ i I3
=g = | &=
[ M M

5 Assuming the multiplexing gain of the system is unaffected by selection, which we ensured via our
transmit-selection assumption of N > L > M
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Figure 3.5. Receive antenna selection in a 2 x 8 system

It is evident that, unlike the transmit-selection case, there is no penalty for selecting
more antennas, in fact the more antennas selected, the higher the capacity. Calculating

this value using Theorem 2 we have

I 7 log N (3.30)

3.5 Joint Transmit-Receive Selection

In this section, we consider the problem of joint transmit and receive selection in MIMO
channels. We propose and study two methods. We first study a natural extension of
greedy selection algorithms that have been studied in [6, 5] for receive side and in [7, 8]
for transmit side. We first select the receive antennas via a greedy algorithm, and then
transmit antennas selection is performed on the sub-channel resulting from receive an-
tenna selection. The cost function of this algorithm is capacity, therefore it is assumed

that signaling and outer coding will be designed to take advantage of the selected an-
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Figure 3.6. Joint transmit/receive antenna selection

tennas.® This algorithm has quadratic complexity in the number of antennas.

Motivated to reduce the computational complexity further, we also investigate a
second approach. First, receive selection is done via a simple norm-based ranking, and
then the usual incremental successive selection is performed on the reduced channel gain
matrix to select the transmit antennas. Since successive selection is used only once, this
algorithm has only linear computational complexity (in the number of antennas) with a

performance that is very close to the previous algorithm.

Optimal joint transmit-receive selection involves an exhaustive search among

M\ (N )

<L> (L ) possible subsets where L; and L, are the number selected antennas at
t r

transmit and receive side, respectively. Hence the complexity of optimal joint selection

is O(M™t N which is too much for practical applications. Therefore we would like to

devise low-complexity sub-optimal subset selection algorithms.

In the following, we compare two sub-optimal algorithms for jointly selecting the
transmit and receive antennas. We assume that L, = L; = L. The rationale behind this

assumption is as follows. To have the maximum spatial multiplexing gain for a given

L,, we should have L; > L,. Let h; be an arbitrary column of H then H = [ﬁl h,].

SCapacity achieving coding and signaling may be non-trivial, since the selected channel is no longer
Gaussian.
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For high SNR we can approximate the capacity as follows [7, §]:

C(H) ~ L, logy(p/L:) + logy(det(HH))]
= L, log,(p/L+) + log,(det(HH{ + hih{))]
= L,log,p— L.log, L;
+ log,(det(H;HT))
+log,(1 + hT(H;HT) 'hy) (3.31)
On the other hand
C(HL) ~ L logy(-") + Ellogy(det(H,H]))

thus we have

AC

2
p
=
|
=
e

+ log,(1 +hT(HHT) 'hy) (3.32)

The negative term in Equation (3.32) corresponds to the increase in power per antenna
due to antenna selection, and the positive term corresponds to the fact that there are
more paths for signal transmission when we use [; antennas instead of L; — 1. But
when there are enough degrees of freedom (large L), then h; can be chosen such that
the logarithmic gain is dominated by the negative term in Equation (3.32). This means
that there is something to gain by judiciously discarding one of the columns of H. By
an inductive argument we deduce that L, = L; is a near optimal assumption. Moreover,
this assumption is convenient for many conventional space-time signaling schemes such

as orthogonal space-time codes, linear receivers and VBLAST.
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Input: p, L., Ly, H
1. H1 = ISSAA(p/Lt7 Lt, H)
2. Hy = 1SSA(p/ Ly, L,, H,)

Qutput: H = H,”

Figure 3.7. Separable Tx-Rx antenna selection algorithm

3.5.1 Separable Transmit/Receive Successive Selection

An intuitive way for joint transmit/receive selection is through separating the transmit
and receive selection problems. In this approach we use the ISSA algorithm introduced in
Section 3.2.1 for first selecting the best L; transmit antennas, and then selecting the best
L, receive antennas. Recall that ISSA(p, L, H) is the algorithm defined in Section 3.2
which takes SNR per antenna, number of selected antennas, and the channel realization,
and returns the selected channel sub-matrix. We use this algorithm in a two-step process

(Figure 3.7).

Note that the order of transmit and receive selection can be interchanged, but
when L, = L, = L and M ~ N > L, this has little impact on the average performance

of the system. The complexity of this algorithm is O(max{M?*, N?}L).

3.5.2  Successive Joint Transmit/Receive Selection

The previous algorithm has a computational complexity that grows as a quadratic func-
tion of the number of antennas. In this section we explore options for reducing this
computational complexity. In particular we propose the following sub-optimal algorithm

whose complexity is linear in the maximum number of transmit and receive antennas.

We first select the maximum modulus element in the channel gain realization,

H, call it element h;, j,. Then order all elements in column j; according to their mod-
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Qutput: H

Figure 3.8. Successive joint transmit-receive selection

ulus, and pick the top L elements in that column. The row indices of these elements
are denoted 1,19,...,1;. We form a sub-matrix using these rows, effectively selecting
L receive antennas. In this sub-matrix, run the ISSA algorithm to pick the selected

transmit antennas. The flow of the algorithm is depicted in Figure 3.5.2.

The key idea of the new algorithm and its difference with the previous one can be
explained as follows: The previous algorithm attempted to make best (greedy) choices
both in rows as well as columns of H, thus the previous algorithm was condemned to
a quadratic complexity. The new algorithm tries to make easier (yet attractive) choices
in one dimension in a way that reduces computational complexity order, and yet does

not have a significant impact on performance. The computational complexity of this

algorithm is O(max{N, M }L?) which is only linear in max{N, M}.

Note that in the second step, one could sort along the i; row, and form G
by removing unwanted columns. But the two approaches lead to the same average

performance.
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3.5.3 Simulation Results

For comparing the performance of the proposed algorithms, we assume a system with

M=N=8and L, = L; =2.

To compare the two algorithms, we performed a Monte-Carlo simulation using
2000 channel realizations. Figure 3.9 depicts the ergodic capacity of selected channel
for optimal selection and the two sub-optimal algorithms. Algorithm I performs slightly
better than Algorithm II, but its computational complexity is quadratic whereas that
of Algorithm T is only linear in N. It is also observed that the selected 2 x 2 system
obtained from any of these algorithms has a much higher capacity than a 2 x 2 Rayleigh

fading channel with no selection.

Figure 3.10 shows the outage probability of the optimal selection and the two
sub-optimal algorithms. In low SNR Algorithm I and II perform almost the same and
they are only slightly worse than the optimal selection in. But as the SNR increases the
difference between optimal and sub-optimal selection becomes more noticeable, although

the two sub-optimal algorithms still perform very close to each other.

3.6 Antenna Selection in Keyhole Channels

The performance of MIMO channel may severely be degraded due to a condition known
as keyhole or pinhole effect [34, 35]. Under keyhole condition the capacity scaling of
the MIMO channel (with respect to SNR, the signal-to-noise ratio) is no better than a
SISO channel. Even when the antennas are all uncorrelated, the keyhole condition may
exist [34]. In such a case the channel loses its spatial degrees of freedom and the channel

matrix becomes rank deficient.

When the MIMO channel is in the keyhole condition, MIMO techniques do not

lead to higher capacities. In such a case, antenna selection at both ends can be employed
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to capture the intrinsic redundancy of the keyhole channel. This is also attractive
from a practical point of view because of the reduction in cost and complexity of data
transmission [1]. Although for transmit antenna selection a low rate feedback from the
receiver to the transmit is required. In this section we study antenna selection in keyhole
channels. We wish to find a subset of antennas, both at the transmitter and the receiver,
such that the selected sub-channel captures most of the capacity of the original keyhole

channel.

In the keyhole channel, the channel matrix H has rank 1 thus it has only one

nonzero eigenvalue. A general model for the keyhole channel is
H = h,h} (3.33)

where h; € CM and h, € CV are column vectors and each consisting of i.i.d. elements
distributed as CA(0,1). Furthermore h, and h; are assumed to be independent. The
received signal to noise is denoted by p. We also assume a low-rate but reliable feedback
path from the receiver to the transmitter is available. Assuming equal power splitting

among antennas, the capacity of the keyhole channel is:
€' = log, det(Iy + +-H"H) = log,(1 + +-|Ihell3 |Ib [3) (3.34)

thus the instantaneous SNR, normalized by the received SNR can be defined as

o I
M

b, 13 (3.35)
and the capacity (conditioned on H) can be obtained as

C = logy(1+ pv) (3.36)

In order to maximize the capacity it is only sufficient to maximize v. We notice

that random variables ||h;||3 and |h,||3 are distributed as x3,, and x35 respectively.

Thus the average normalized SNR for the keyhole channel is

E[y] =N (3.37)
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An important consequence of Equation (3.35) is that joint transmit and receive
antenna selection in the keyhole channel decouples into MISO and SIMO antenna se-
lection problems, i.e., the selected (sub)channel can be represented as ITILxK = HTH?,
where Et e ck and Er € C" are the channel vectors of selected antennas at the transmit

and receive side. The normalized instantaneous SNR for the selected channel is

~_ Ih]?

7= oL (3.35)

The average per-element energy of a vector is less than the energy of the largest vector

element, that is:

I, .
2L < max (i) (3.39)

[

Therefore the best strategy is to select only one antenna at the transmitter; the one with

the highest channel gain.” Transmit antenna selection is possible with a small feedback

of [log M| bits. For K =1 and L = N it can be easily shown that

E[] = Nzl (3.40)

The above harmonic sum, when compared with Eq. (3.37), characterizes the gain of

transmit antenna selection over the full channel without CSI.

We now proceed to receive-side selection. The diversity obtained by selecting
L out of N antennas is a known as generalized selection diversity [36] and has been
extensively studied in the literature. Using results from [36] we can calculate the average

normalized SNR for antenna selection with K = 1 and arbitrary L:

E[] = % <L+le 1) (3.41)

= g(L) (3.42)

“With complete CSI at transmitter it is possible to do even better via beamforming. However that
requires significant feedback rate as well as a more complex transmitter.
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Table 3.1. Number of selected receive antennas to match a baseline system. In all cases
only one transmit antenna is selected.

#of Rx Ant. [2 3[4 |5 |67 [8]9|10

# of Tx Ant.
2 Ty1rj11212(2(213] 3
3 L1111 1212(212] 2
4 ) A I O 0
5 ) T A
6 ] O A A A O A R |
7 | O O A A O A R |

As mentioned earlier, we wish to find the minimum number of selected receive
antennas such that the equivalent SNR is no less than F[y]. Considering that g(L) above

is a monotonic function, the number of selected antennas will be

L= min ¢~ '(%)
subject to 4 > E[~]

Table 3.1 shows the calculated values of L for various systems. It is interesting
to observe that across a large group of systems, a small number of selected antennas is
sufficient to match the capacity of a baseline system with no transmit CSI, but with full
hardware at both sides. Antenna selection requires a small amount of feedback, but has

considerably smaller hardware requirements.

Figure 3.11 shows the ergodic capacity of the keyhole channel for )M = N =5
and 2) M =5, N = 10 with and without antenna selection. The Monte-Carlo simulation
is performed over 5000 independent channel realizations. The simulation results show
that at the cost of a few bits of feedback, a keyhole channel can be reduced to a low

order SIMO channel without a considerable loss in capacity.
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Figure 3.11. Ergodic capacity of the keyhole channel vs. SNR
3.6.1 Diversity Order

It has already been stated [37] and proved [38] that the diversity order of the keyhole
channel is min(M, N). In this section we prove that antenna selection has no impact
on the diversity order of the keyhole channel. The outage probability for the keyhole

channel is:

Po: = Pr[Z <R]= Prllog(1+py)<R]

2R 1 2f 1
= Pr|y< } =F < > 3.43
[ p "\ oy (3.43)
where F,(-) is the CDF of the random variable 4. The diversity order is defined as:
d = lim —log Pout (3.44)
p=oo logp

therefore Equation (3.43) suggests that the diversity order is equal to the exponent of

the lowest order term in the asymptotic expansion of the F,(a) for small enough a where

A 9R_4

, e F5(a) = a® + o(ad).
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Theorem 4 The diversity order of the keyhole channel with antenna selection is min(M, N).
In particular, the outage probability with antenna selection has the following asymptotic

behavior:

In order to prove Theorem 4 we need the following lemma.

Lemma 1 In the asymptote of small a we have

I'(v)

T v>0
0 e_(I+E) °
/0 e dr = — loga vr=20 (3.45)
I'(-v) v<0
Proof: We have:
0 e=(=+3) 2
/ —dx = —,,Kl,(Q\/E) (3.46)

where K, (-) is the modified Bessel function of the second kind [39]. For small z, the

following asymptotic formulae hold ([39] page 375, Equation 9.6.6., 9.6.8 and 9.6.9.):

dWE)™ v>0

[lo

K,(z)

Il
o

—log 2 v

(3.47)

2T(=v)(
Now let z = 2y/a, combining Equation (3.46) and Equation (3.47) we arrive at Equation
(3.45).

)Y vr<o0

[Nl RN]

Proof of Theorem 4: We have

max{[h, (i)} < k[l < b3 (3.48)



hence
log, (1 4 p7) < logy(1 + p7) <logy(1 + pv)
where
¥ = max{[h(i)["} max{fh,(i)|*}
7 = mgx{|ht(i)|2}!\ﬁr!\§
v = [hllh 3

This means that for all a > 0.

F5(a) < F5(a) < F(a)

(3.49)

(3.50)

It was shown in [38] that the diversity order of the keyhole channel (that corresponds

toy)is min(M, N). We only need to prove similar results for the lower bound 7. Note

that 4 corresponds to antenna selection with K = L = 1. In other words, it suffices

to prove that for the keyhole channel, selecting the best antennas at both the transmit

and the receive sides provides full diversity. 7 is the product of two independent random

variables 41 = max;{|h;(7)|?} and 52 = max;{|h,(i)|*} each of which is the extreme value

of exponentially distributed independent random variables. Hence the pdf of 4; and 7,

(denoted by fi(-) and fi(+), respectively) are given by

fi(z) = Me™(1 — e ™)M~!

falz) = Newo(1 — eVt
The pdf of 5 can be calculated as follows:

sy = [TR@RGE

- [ @nT

Case I, M > N : In this case we use Equation (3.53)

f5(a) = MN/ el — e )M (] — )N 12
0 T

dz

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

42



Using the Taylor series expansion, we expand the exponentials:

= N 1gMN <1+ > cjkafa;k) (3.56)

Because the right hand side of Equation (3.56) is less than one, the dominated conver-
gence theorem allows us to calculate Equation (3.55) via term by term integration of the

left hand side of Equation (3.56). Hence

fola) = (a) + Dy(a) (3.57)
where
o0 e_(l‘-l'%)
[1(&) = MN CLN_I/ mdlE (358)
0
and,
o0 —(z+42)
s [ x
Ia)= MN 3 cjpa* 1/0 i (3.59)
720,k<;

From Lemma 1, I;(a) = a1 also each term in the sum in Equation 3.59 is O(aV*P~1)

for some p € {0,1,2,---}. Since I,(a) converges, we conclude that Iy(a) = aV~' thus
f5(a) = aV-'. On the other hand, using the L’Hospital’s rule we know that in the

asymptote of small a

o

F5(a) = afs(a) (3.60)
Thus when M > N, we have F5(a) = aV, i.e. the diversity order is N = min(M, N).

Case II, N > M : In this case we use Equation (3.54). Considering the sym-

metry of the equation with respect to M and N, the problem is reduced to Case I with
M and N interchanged, thus the diversity order again is M = min(M, N).
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Figure 3.12. Symbol error rate (SER) vs. SNR for BPSK

Case III, N = M : Using Lemma 1 and an argument similar to Case I, we have
f(a) = aN—! log(%). Thus Fy(a) = a™N ™! 10g(§).

ay N<M
F5(a) ={ oM N>M
aVlog(t) N=M

But this is exactly the same as the asymptotic behavior of F,(-) for a general keyhole
channel [38]. In order words Fs(a) = F.(a). Thus Equation (3.50) necessitates that

F5(a) also have the same asymptotic behavior and this proves the theorem.

Notice that when M = N, then the diversity behavior can not be described by an
integer. For such a case, the keyhole channel behaves better than a channel of diversity
order N — 1, but its performance is not as good as a channel with diversity N. This is

exactly the same result obtained in [38].

To demonstrate the diversity order of the antenna selection channel, we refer

the reader to Figure 3.12, which depicts the symbols error rate of an uncoded keyhole
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channel with 2 transmit and 2 receive antennas (M = N = 2). We show the performance
of Alamouti code using 2 x 2 antennas, vs. antenna selection system that at each point
in time selects down to a SISO system (1 x 1). Both have diversity two, but we also
see the the logarithmic penalty predicted by [38] and Theroem 4. Antenna selection
provides 2 dB gain over Alamouti. Antenna selection requires a feedback of log M =1
bits per fading state, to select the best transmit antenna. Since the fading states vary

much slower than the symbol transmission rate, the equivalent feedback rate is small.
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CHAPTER 4
OPPORTUNISTIC METHODS IN MULTIUSER NETWORKS

The usual forms of diversity in single-user channels include time, frequency, and space
diversity. In a multi-user environment with multiple independent wireless links, it is
highly probable that at any given point in time, at least one of those links has high
quality. This advantage is called multiuser diversity. Obviously, multi-user diversity
requires the base station to know the channel coefficients for all users, which is usually

estimated at the mobiles and fed back to the base station.

The notion of multiuser diversity was raised by Knopp and Humblet [12] for the
uplink, where they mentioned that the best strategy is to always transmit to the user
with the best channel. Tse [40] provided similar result for the downlink. Bender et
al. [11] examined practical aspects of downlink multi-user diversity in the context of
[S-95 CDMA standard. Viswanath, Tse and Laroia [14] examined this problem for the
downlink and presented a method of opportunistic beamforming via phase randomiza-
tion. Hochwald, Marzetta and Tarokh [41] investigate the problem of scheduling and
rate feedback in the case of MIMO channels. Sharif and Hassibi [15] generalized the op-

portunistic beamforming of [14] to the case where mobiles also have multiple antennas.

Some of these works consider the question of the required feedback rate, but
to our knowledge, only [41] and [42] explicitly consider the question of quantifying the
required feedback. However, they do not consider capacity growth rates, nor optimize the
quantization to minimize capacity loss. In this chapter we present, effectively, a one-bit
quantization strategy and the associated scheduling algorithm that guarantees optimal
capacity growth rate. The idea of exploiting multiuser gain by limited feedback was

first proposed in [15]. In [42, 43] the idea of thresholding for reducing the feedback load
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required to exploit multiuser diversity has been proposed, however, as will be discussed
in Section 4.2, their scheduling scheme and the amount of information fed back to the
base station are different from our scheme. In particular, our method guarantees optimal
growth rate with number of users via one-bit fixed-rate feedback, while[42, 43] requires
a variable-rate feedback of real-valued numbers and, to our understanding, it has not

been proved to guarantee optimal growth rates.

4.1  System Model

We consider a multi-user cellular network with n users who receive data from the base
station. We assume the block fading model for each user’s channel. The channel state
information of each user is assumed to be fully known to that user, and it is constant
over a coherence interval of length 7. We assume a SISO case in which all users and
also the base station are each equipped with only one antenna. Under the block-fading

assumption, we have the following model for received signal for each user:

yi(t) = /pihisi(t) + zi(t) (4.1)

In the above model, we assume that s;(¢) € CT is the vector of transmitted symbols
of the i"* user at time ¢ with power constraint E[||s;(¢)||*] = 7', and y;(t) € C7 is the
received signal of the i'* user at time ¢, z;(t) ~ CN(0, I7) is the i.i.d. complex Gaussian
noise, h; is the channel gain of the :'* user, which is assumed to be zero mean circularly
symmetric complex Gaussian random variable with unit variance per dimension. We
also assume that users have mutually independent channel gains. Moreover we assume a
homogeneous network in which all users have the same SNR, i.e. p; = p. We also assume
that for each user there exits a low-rate but reliable and delay-free feedback channel to

the base-station.
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4.2 Scheduling via Single-bit Feedback

The base-station sets a threshold « for all users. Each user compares the absolute value
of their channel gain to this threshold. Whenever the channel gain exceeds the threshold,
a “1” will be transmitted to the base station; otherwise a “0” will be transmitted. !
The base station receives feedback from all users and then randomly picks a user whose

feedback bit was set to one for data transmission.? If all the feedback bits received by

the base-station are zero, then no signal is transmitted in that interval.?

Our work is distinct from that of Gesbert and Alouini [42, 43] in the follow-
ing manner. Even though the idea of thresholding the users’ channel SNR’s has been
mentioned by Gesbert and Alouini, the requirements for their scheduling scheme are
considerably different from ours. In particular, their method requires the users that
have channel gains above a certain threshold to report those channel gains to the base
station. This requires a feedback channel of variable-rate, but more importantly, a feed-
back channel that must still accommodate the transmission of real-valued variables back
to the base station. So even though in their scheme, fewer parameters than before are
transmitted, still the rate is considerable. In comparison, we are interested in a strictly

limited-rate feedback scenario.

4.3 The Sum-Rate Capacity

Upon receipt of each set of feedback bit, the base-station only transmits to users whose
channel gain is above the threshold a. Let p = Pr[|h;]* > o] = e since the channel

gains are all mutually independent, the probability of having k feedback bits equal to

Tn this case, the user can simply stay silent.

?The scheduling to users with favorable channels may also be implemented via round robin. In the
long run, both these strategies have the same average throughput per user. However, the round-robin
version may be more appealing from a fairness point of view.

3In this case the base station can also randomly pick a user for data transmission, although for large
number of users this has vanishing advantage over no transmission.
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one obeys a binomial law, i.e.

pr = (Z)p’“(l —p)" (4.2)

The ergodic capacity upon receiving k ones by the base-station is:

k
Cr = Z Prlthe i"" best user is selected] C;

1=

1
1 k
— EZC" (4.3)
=1

where C; = ["log(1 + px)dFi(x) and F(z) is the CDF of the i highest absolute value
of all channel gains. In other words if {X1,..., X,,} is a permutation of {|h|%, ..., |h,|*}
such that 0 < X,, < --- < Xy, then Fi(z) = Pr[X; < z]. When the channel gains are

i.1.d., from Equation 2.4 we have:

i—1

R =Y () (F@r 0 - r) (4.4

=0
where F(z) =1 — e * is the CDF of |h;|? for i = 1,...,n. Thus the sum-rate capacity

of the network with one-bit feedback can be formulated as:

Chpie = szfk (4.5)

k=1

4.4 The Optimal Threshold

The sum-rate capacity is a function of p, p and n. On the other hand the threshold « is

uniquely determined by p from the following formula,
a=F(1-p) (4.6)
For Rayleigh fading channel, the channel magnitude squared obeys an exponential law

a=—logp (4.7)
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In order to find the optimal threshold we choose p such that the sum-rate capacity
C1it is maximized. The cost function C14:(p) is a weighted sum of functions of the
form p*(1 — p)"=* which are all concave over the interval [0, 1], hence C 4 is a concave

function of p and it has a unique maximum over the interval [0,1]. To calculate the

90 _bit(p)

5 =10 for p, 1.e.,

value of p that maximizes the sum-rate capacity, we must solve

n

Z(k —np)prCy = 0 (4.8)

k=1
A closed form solution to this equation is in general not tractable. However, a numerical

solution is possible with O(n) complexity.

4.5 Asymptotic Analysis

In this section we explore the asymptotic behavior of the sum-rate capacity. We use
Theorem 10 (Chapter 2), which states that if the probability measure associated with
the random variable X, is well concentrated around its mean value for large n, then
Jensen’s inequality for the Shannon function log(1 + px) is asymptotically tight. Note

that X,, can be either a discrete or a continuous random variable.

When channel state information is fully available at the base station, the base
station only transmits to the user with the best channel, hence the ergodic sum-rate

capacity of the network can be calculated by the following formula:

Cracst = Ch :/ log(1 + pz)dFy
0
= n/ log(1 + px)e (1 — e )" 'dx
0

Let pu; = fooo xdFy and o = fooo(;z; — p1)*dFy, then it is known (Equation 2.6 and

Equation2.7) that: py = > + and of = Y., &, therefore y; — oo and = 0 as

=1 2
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n — 0o. From Theorem 10, it follows that:

Crarost = log(1 + pu)
= log(log n) + log p. (4.9)
where = indicates asymptotic equivalence, as defined earlier.

We are interested to investigate the behavior of the sum-rate capacity of the 1-bit
feedback scheduling proposed in Section 4.2 in the asymptote of large number of users.

This is accomplished via the following result.

Theorem 5 The sum-rate capacity of a wireless network with 1-bit feedback and optimal
choice of threshold, behaves aslog(logn)+log p, exactly the same as the sum-rale capacity

of a fully informed network.

Proof: Equation (4.8) can be re-written as:

Cipie = o Z kprCh (4.10)

= -n (izn:pk) CZ (4.11)
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Notice that m; = % YoreiPk, 1 =1,...,n isavalid p.m.f. because > m =1, hence:

Ciie = » mC;
i=1
Zm/ log(1 4 pz)dF;
P 0

= /0 log(1 + pz)d (Zw )

= / log(1 + px)dF; (4.12)
0

where F, = > " mF; is a mixture probability measure of all order statistics of the

exponential family. Now we show that F} satisfies the required condition for Theorem 5.

e = Y Tl (4.13)
i=1

where p; = fooo zdF;(x) is the mean of the i"* order statistics of the exponential family,

and

= [ -

— [ dare) - p
0

= Zm/ 22 dFi(x) —
=1 0
= Y milo? +pl) —

i=1
= zn: mo] + Xn: Tipt; = iy (4.14)
=1 =1

where 0?7 = fooo(;r; — pi)*dF; is the variance of the i'" order statistics of the exponen-

tial family. It is a known fact (e.g. [20] Section 4.6) that for exponential distribution
F(z)=1— e we have
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i=i

B
where H) = 2j=t j k>0 and also,
0 k=0

where

We have to show that Z—” -0

n

fr = Zm,ui = ZWZ(Hn —H;_y)
=1

=1

= H,— Y mHiy < H,=pm (4.15)
=1
it is known [44] that for all &£ > 1,
loghk +~ + ! < Hy <logk + +1 (4.16)

using Jensen’s inequality we have
Hr = Hn - Z ﬂ-iHi—l
i=1
> H, — Z m H;
i=1
-

n 1 n
> Hn—’y—Zﬁilogi—§ —
=1 =1

k3
1
n

> H, —~—log (sz) —%;m

=1

> H,—~— % — log (Z im) (4.17)

=1



on the other hand

EZ:I kak —I_ EZ:I kpk
2np

= Py (4.18)
from (4.15), (4.17) and (4.18) we get:
H, —log (np+2 —p) — v —log(2\e) < u. < H, (4.19)

by inspecting Equation (4.8) we also notice that p,, = O (%), because in order to have
equality, the number of positive and negative terms in Equation (4.8) should be of the
same order in the asymptote of large n. Equivalently, the optimal threshold « scales
logarithmically in the asymptote of large n (this fact can also be seen in Figure 4.1 in

which the X-axis is in logarithmic scale). Therefore, (4.19) suggests that
H, — pr = 0O(1) (4.20)
or
e = g = logn (4.21)

as n — o0o. On the other hand:

ot = w3
=1 =1
< op A+ pi -
= o]+ (1 + pn) (1 — pir)
< Uf+2ﬁb1(,tb1—,tbw)

(4.22)
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we also notice that S,, < S., = % < 2 (here m = 3.1416 ... ) thus:

o7 <2+ 2 — pir) (4.23)

hence from (4.20), (4.21) and (4.23) we have:

S
0§<U—”> <—2+2<&> <&—1>%0 (4.24)
M Hr 2 Hr

as n — oo. Thus Equation (4.21) implies = = 0asn — oo Now we can apply

Theorem 10 and Equation (4.21) to show that:

Cipie = / log(1 + pz)dF;
0
= log(1 + ppix)

= log(logn) + log p (4.25)

4.6 Simulation Results

Figure 4.2 shows the sum-rate capacity of a SISO network. As it can be seen in the figure,
our proposed scheduling, with only 1-bit feedback, has the same double logarithmic
growth rate as the fully informed network. The capacity loss is minimal. Scheduling
with 1-bit feedback also captures most of the capacity of the fully informed network
for a wide range of SNR, thus the scaling law proved in Theorem 5 is verified by the
simulation. Figure 4.1 shows the optimal threshold for various of SNR values. It can be
seen that the optimal threshold scales logarithmically with number of users (in Figure 4.1

the x-axis is in logarithmic scale).
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Figure 4.1. Optimal threshold vs. number of users for different SNR values

Sum-rate capacity
7 T T T

EN
T
1

Spectral efficiency (Nats/bits/Hz)

Full CSI, SNR=20 dR
1-bit , SNR=20 dB
Full CSI, SNR=10 dB
1-bit , SNR=10 dB
Full CSI, SNR=0 dB
‘ ‘ ‘ ‘ ‘ ‘ 1-bit_, SNR=0dB

0 100 200 300 400 500 600 700 800 900 1000

Number of users

Fhtotd

Figure 4.2. Comparison of sum-rate capacity for 1-bit and full CSI scheduling for different
values of SNR

56



CHAPTER 5
OPPORTUNISTIC BEAMFORMING WITH LIMITED FEEDBACK

In the downlink of a multiuser MIMO system, if the base-station perfectly knows the
channel states of all the users, then the so-called dirty paper coding is known to be the
best strategy for maximizing the sum-rate capacity [45]. In a frequency division duplex
(FDD) system the channel states are only available at the receiver, therefore in order to
perform dirty paper coding, all users must feedback their complex-valued channel state

matrices to the base-station, and this can impose a huge overhead on the system.

Sub-optimal schemes that exploit partial channel knowledge for downlink trans-
mission are interesting from a practical point of view. The scheduling mechanism em-
ployed in downlink transmission can vary from time-sharing (transmitting to only one
user at a time, e.g., [14, 41]) to mullicasting , i.e., transmitting to several users at
the same time [15]. It has been shown [46] that the sum-rate capacity of time-sharing
scheduling is sub-optimal. However, these schemes are still of practical interest because

of the simplicity of implementation.

Perhaps one of the more ingenious ways of using CSI is opportunistic beamform-
ing [14] of Viswanath et al. This method applies to a multiuser system, where the users
estimate and feedback their instantaneous downlink SNR to the base station. Then the
base station will transmit to the best user. Because the channels between users and the
base station is variable, loosely speaking, each user receives data when their channel
peaks. In order for users to have reasonable delay, they must not be made to wait too
long. To improve the delay profile [14] proposes an i.i.d. random phase on one of the

two transmit antennas, thus creating an artificial fast fading.
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There is also another way of using channel state information in a multi-antenna
transmitter, namely (deterministic) beamforming. For example, one may use a conven-
tional round robin scheduling between users, and when each user’s turn comes, transmit
along the eigen-direction of the channel to that user (either with adaptive power control
or with adaptive rate control). It has been suggested [13] (Exercises) that in certain
scenarios, in terms of overall network throughput, deterministic beamforming is inferior

to opportunistic (random) beamforming.

Each of these methods nominally require unlimited reliable feedback. In Chap-
ter 4 (also in [16]) we addressed the question of opportunistic scheduling with limited
feedback, showing that only one bit of feedback per user is sufficient to capture most of
the gain of multi-user diversity. Also, there exists a good amount of work on quantized

beamforming (a nice summary of work in quantized beamforming is presented in [47]).

In this chapter we show how multiuser diversity and transmit diversity can co-
exits together in a practical scenario of limited feedback. In other words, we ask the
following question: in the presence of limited feedback, what combination of the two
methods (opportunistic multi-user vs. deterministic beamforming) should we use, how
can this combination be accomplished, and how well does it perform. At this point we
should also address the notion of channel hardening with increasing number of transmit
antennas [41]. First, the channel hardens only in the asymptote of large number of an-
tennas. Second, it has recently been shown [48] that channel hardening due to multiple
antennas is not always detrimental to multi-user diversity, which is also confirmed by

our research.

5.1 System Model

We consider a network of n users each having N antenna for receiving data from the

base-station. The base station has M antennas. For k' user we assume the linear time
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invariant flat fading model:

yk(t) = Hk : Xk(t) + nk(t)

cM*1 is the transmitted signal for

where yi(t) € cVN is the received signal and () €
user k at time ¢. The transmit power is limited by p, i.e. E[||x]|*] < p, ng(¢) is a i.i.d.
circularly symmetric complex Gaussian noise distributed according to ng(¢) ~ CN (0, Iy)
and Hj is a an N x M channel matrix whose i*" element, H,; ;. represents the channel

th

gain between ¢'* transmit antenna at the base-station and the j** receive antenna of the

k" user.

We assume the antennas at the base-station are not correlated, also we assume
channel matrices across different users are independent. We assume that for & user
the channel matrix Hy is perfectly known at the receiver but not necessarily known at
the base-station and for each user there exits a feedback channel with limited rate to

securely convey the channel state information to the base-station.

5.2 Scheduling with Limited Feedback of CSI

In Chapter 4, for the case where the base station has one antenna (M = N = 1), we
propose an algorithm for downlink scheduling that only requires one bit of feedback from
each user to the base-station. Furthermore, we proved that subject to judicious choice
of the threshold, the above scheduling algorithm leads to the same sum-rate capacity

growth as that of a scheduling with full knowledge of CSI at the base-station.

In a slow-fading environment, scheduling with full CSI (always choosing the user
with the maximum channel gain) leads to excessive delays. The 1-bit scheduling scheme
has a much better delay and fairness profile simply because in each time interval the
base-station can choose from a pool of eligible users (those above the threshold) thus

the base-station can prioritize the eligible users based on their previous utilization and
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on average this leads to better fairness.

Figure 4.2 compares the sum-rate capacity of the 1-bit scheduling and full CSI
scheduling schemes for different values of SNR. The closeness of the curves in Figure 4.2
suggests that when the available rate in the feedback channel is more than one bit, using
the extra feedback bits for quantizing the channel gains does not lead to a significant
capacity improvement. Therefore it is reasonable to use any extra feedback, over and
above one bit, for other purposes. Aside from multiuser diversity, there are other ways
of using transmit-side channel state information, perhaps the most obvious being beam-
forming (array gain). We propose that any excess channel state information, over and

above one bit, can be used to exploit beamforming gain.

There exists prior work on beamforming with limited feedback of channel knowl-
edge. Reference [47] provides a comprehensive survey of feedback methods. When there
are multiple antennas at the base-station, we suggest to combine our 1-bit opportunis-
tic scheduling [16] and beamforming with limited feedback [49, 50]. We suggest that
a combination of our 1-bit method and the limited feedback beamforming enjoys both
the multiuser diversity and the transmit diversity and it has better performance over

opportunistic (random) beamforming, assuming the same rate feedback is available for

both methods.

When there are multiple antennas at the base-station and the rate of the feedback
channel is limited to be L bits per channel realization, we can use the limited feedback
methods for exploiting the beamforming gain [47]. A beamforming codebook U =
{uy, -+ ,uye} (uy, -+ ,uye are the beamforming vectors) is shared by all users and the

bate-station. The k" user finds the beamformer U that leads to the highest gain, i.e.
U;, = arg max |[Hyul|?
ueld

then it compares the corresponding channel gain n; = |HiUx||? to the threshold value
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« advertised by the base-station. If the channel gain was above the threshold, The user
sends its L-bit feedback information to the base-station, otherwise it does not transmit
any feedback information. Thus the reception of L bits from user k by the base-station

indicates that

1. The user k is eligible for transmission

2. The base-station should use the beamforming vector U, € U for transmission to

user k.

For scheduling, the base-station randomly selects one of the eligible users. When there

is no eligible user in the network, it does not transmit to any user. !

5.3  Opportunistic Transmit Antenna Selection

When the beamforming vector is of size M (hence L = log, M) then the best choice the

code-book is to take u;’s as columns of identity matrix M.

1 0
U= T :
0 1
In this case, beamforming is equivalent to antenna selection in the base-station (since

only one antenna at a time is active). Let h;; denote the it" column of the channel

matrix Hi. The user k£ finds the column of its channel matrix with the maximum norm
o 2
1p = arg max |[h; ||
1<e<M

and then compares ||h; |I? with the threshold value a advertised by the base station. If

Hh;thQ > a, then the feedback bits biby - - - by (the binary digits of 2) are transmitted to

1The scheduling to users with favorable channels may also be implemented via round robin. In long
run, both these strategies have the same average throughput per user. However, the round-robin version
may be more appealing from a fairness point of view.
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the base station, otherwise, no feedback is sent. Note that i indicated the best transmit
antenna for downlink transmission to the user k. Upon receipt of this information from
eligible users, the base station randomly chooses one user for transmission from among
all users whose feedback information has been successfully received. If the feedback bits
for selected user, are byby - - - bys, the base station uses its 1 ™ antenna for transmission,

where 1 = biby--- by

5.3.1 Sum-Rate Capacity

The equivalent channel gain for the user j is

n; = max i

Under Rayleigh fading assumption, each channel gain |h;.||? is x? distributed with N

degrees of freedom, thus the CDF of n; is
F(z) = (1= en(x)e)", (5.1)

where ey(z) = E;V:_ol J]‘;—}: Let p = Pr[nx > a]. Since the channel gains are all mutually
independent, the probability of having k feedback bits equal to one obeys a binomial

law, i.e.
N AN n—k
PE = <k>p (1-p) (5.2)

The ergodic capacity upon having k user above the threshold is:

k
Cr = Z Prlthe i"" best user is selected] C;

=1
1 k
=1

where C; = ["log(1 + px)dFi(z) and Fi(z) is the CDF of the i"* highest equivalent

channel gain. In other words if {Xi,..., X} is a permutation of {n;,...,n,} such that
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0 < X, < ... < Xy, then Fi(z) = Pr[X; < z]. When the channel gains are i.i.d.,
it can be shown that [20]:

i—1

F =Y () (P 1 - Fo) (5.4

(=0

Thus the sum-rate capacity of the network with limited feedback can be formulated as:

CLF = Zpkak (5'5>

k=1

According to Equation (4.12), Cr can be explained as follows

Crr = / log(1 + pz)dF; (5.6)
0

where F, = Z?:l m;F; 1s a mixture probability measure of all order statistics of the

family with parent CDF F(.) and {7}/ is a discrete probability measure defines as

1 n
m = — E Pk, izl,...,[&f 5.7
np k=1 ( )

5.3.2  Optimal Threshold

The sum-rate capacity is a function of p, p and n. As explained in Section 4.6, the

relation between the threshold « and the probability p is given by
a=F11-p) (5.8)

The inverse function of the CDF given by (5.1) in general can not be explicitly calculated.

When users have only one receive antenna (N = 1), however,
a = —log (1 —(1— p)ﬁ> (5.9)

In order to find the optimal threshold we choose p such that the sum-rate capacity

Crr is maximized. The cost function Cprp(p) is a weighted sum of functions of the form
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p*(1—p)"~* which are all concave over the interval [0, 1], hence Crr is a concave function

of p. Therefore it has a unique maximum over the interval [0, 1]. To calculate the value

ACLr(p)
ap

of p that maximizes the sum-rate capacity, we must solve = 0 for p, i.e.,

n

Z(k —np)prCr = 0 (5.10)

k=1
A closed form solution to this equation is in general not tractable. However, a numerical

solution is possible with O(n) complexity.

5.3.3 Asymptotic Analysis

In this section we show the proposed opportunistic scheme has the same capacity growth
of coherent opportunistic beamforming with full CSIwhere the base-station has full chan-
nel knowledge of all users and the users with the highest channel norm is selected for
transmission. The sum-rate capacity of this scheme provides an upper bound on the all
opportunistic beamforming methods that user partial knowledge of the channel. For the
simplicity of analysis we first assume that users have only one antenna (N = 1). For

this scheduling scheme, the sum-rate capacity is obtain as follows:
u = E[log(1 h;|? A1
Cruicsr [log(1 +p hRx b %)) (5.11)

where h;, is the 1 x M channel vector of user k.

Theorem 6 The sum-rate capacity of coherent opportunistic beamforming with full CSI

available at the base-station scales as

Crurcsr = loglogn + log p

Proof: The random variable Y}, = ||hg||? is distributed according to x3,,. Using classical

results in extreme value theory, it is shown in [8, 9] that the mean and the variance of
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7k = maX;<k<r Y} have the following asymptotic behavior

tn = E[Z,] =logn +log ((Z\Zi—_ll)d + (5.12)
ot = E[(Z—EZ)] 2 (5.13)

where v & 0.577 is the Euler-Mascheroni constant. Therefore y,, — oo and o2 — 0 as

n — oo thus Z; satisfies the condition in Theorem 10 and we have

Cruics: = Ellog(l + pZ,)]
= log(1 + pE[Z,])

. pM-1
= log (1 + p(logn + log (m) + ’y))
= loglogn + log p. (5.14)

The next theorem explains that the sum-rate capacity for our proposed scheme

(Equation 5.6) also has the same capacity growth as the scheduling with full CSI.

Theorem 7 The sum-rate capacity of opportunistic transmil antenna selection scales

the same as scheduling with full CSI (coherent beamforming), i.e.

. Crr
hm —_— = 1
n—o0 Cpyi_csT

Proof: From Equation (5.6) we have Cpp = fooo log(1 + pz)dF, where

1!77r = En:ﬂ'an
k=1

and F}’s are the probability measures associated with order statistics with the parent
distribution F(z) = (1 — e ™). if X is a random variable distributed according to

F(-), we define the function g(-) such that X = ¢g(Y") where Y is an exponential random

variable. We have

F(z)=Pr[X < 2] =Pr[g(Y) <] =Pr[Y <g7'(z)] =1 —¢* )
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thus

y=g '(z) = —log(l — F(x)) (5.15)

We have y = 11‘%2) > 0 thus g~'(z) and hence g(z) are strictly increasing function
which means they preserve order. Therefore if 0 < X, < ... < X; are the order
statistics with parent distribution, F'(-), 0 <Y, < --- < Y] with Y, = g7'(X}) are the
order statistics of the exponential distribution.

Crr = Z mrEllog(1 + pXi)] = ZwkE[log(l + pg(Yi)]

This can be written as

Cue = [ Tog(1-+ pg(a) dvr ()

where v, = > ,_, vk is the mixture probability distribution of all order statistics of the

exponential distribution. v4(z) is the CDF of Y} and can be calculated as follows

k-1

vi(z) = <7;>e-l”(1 — eyl

(=0

In the proof of Theorem 5, we showed that ;:;EZ)) and Z”EZ; — 0, as n — oo where

) = [T = e =Y el) = [ adin(a) = 3wty
and
i) = [ i) =Y o2 = [ ) (o)

Now we show that the function g(-) belongs to G (defined in the appendix A, Defini-
tion 3), thus we can apply Theorem 13 to show that Cpr scales the same as Cryu csi.
Recall g(-) is strictly increasing and ¢~*(0) = —log(1 — F(0)) = 0 hence g(0) = 0. To
show that g(-) is concave, we show y = g7!(z) = —log(l — (1 — e=*)M) is convex, we

have 1 —e™¥ = (1 — e_I)M hence

ye V= Me (1 — )Mt
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"

Y

eV — (y/)Qe_y = Me™(1 —e M2 (Me™ - 1)

after some algebra we get

The latter inequality means that y" > 0 for all z > 0, hence ¢~

1"

y—,e_y(l —e™) = M —(1—(1—e"))

Yy

M—1
= Me™®—¢e" Z(l —e )
=0
M—1
= e °* (I1—(1—=e™)")>0
=0

l'is convex, therefore

g7 (=) _ 1

g € G. Further more, we prove lim,._,, =

lim

Tr—r0o0

g ()

xr

o _ —xz\M
L log(1 - (1 - )M

=00 :C
I; log (1 — (1= Me™+ (J\g)e_?f 4t (_1)M6—Mg_~))
im —

r—00 x

] lo
Iim 1 +

T—00 Z

1

We also have lim, ., ¢~ (2) = limyo g(z) = +00, let y = g(z)

lim M = lim Y
=00 X Y—>00 g_l(y)

=1

therefore g(-) satisfies all the conditions of Theorem 13, hence

Cir = / log(1 + pz)dF,(x)
0

- /Ooolog(l + pg(z))dvs(z)
log(1 + pg(px(v)))

= log(1 4 ppx(v))

= og(1 4 pu(v))

= log(1+ plogn)

= loglogn + log p
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Thus from Theorem 6 we conclude

o
C’LF = Ofull_CSI

5.4  Quantized Opportunistic (Random) Beamforming

Recall that the main premise of our proposed method is a balance/tradeoff between two
main methods of using transmit CSI, in the limited feedback regime. One of them is de-
terministic beamforming, and the other is the opportunistic beamforming of Viswanath
et al [14]. There exists some work on the quantization of feedback for deterministic
beamforming, but to our knowledge, little work exists in the public-domain literature
on the quantization effects in opportunistic beamforming. As a baseline for comparing
our algorithms, in this section we develop a limited-feedback (quantized) version of the

opportunistic beamforming.

In opportunistic beamforming, each user sends back to the base station its in-
stantaneous receive SNR. For the quantized opportunistic beamforming, only a discrete
index can be transmitted. The calculation of optimal quantization for this purpose is
intractable due to the complicated error function involved, however, precise quantiza-
tion is not critical because the boundaries of the quantization bins are important only
to the extent that they give the same ordering of the users as given by optimal quan-
tization. Therefore a reasonable but approximate quantization performs well with high

probability.

The approximate quantization that we developed for our simulations and com-
parison purposes is chosen so that the quantization index takes all possible values with

equal probability. Denote the CDF of SNR as F,(z). We consider L quantization bits,
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Figure 5.1. Comparison of the throughput of various methods at SNR=10dB

thus 2 quantization levels. The quantization bins are defined by
l C+1

5.5 Comparisons

5.5.1 Throughput

Figure 5.1 shows a comparison of the throughput of various methods considered in this
chapter. The best performance is that of coherent opportunistic beamforming (CO),
where the multiple-antenna transmitter has full knowledge of the (vector) channel of
all users, and in each time interval beamforms towards the best user. Although this
strategy has the best overall throughput, it suffers in two ways: first, it requires the
highest amount of feedback compared with other methods, especially compared with
the proposed limited-feedback methods. Second, in terms of fairness it is one of the

worst techniques, as shown in the next subsection.
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Figure 5.2. Normalized fairness

With a slight loss of throughput, one may use opportunistic antenna selection,
where everything is like the previous case, except instead of full beamforming, the trans-
mitter selects one of the antennas. In other words, with the knowledge of user (vector)
channels, the transmitter picks the best transmit antenna and user among all possible

such pairs.

Opportunistic beamforming (OB) as suggested by Viswanath et al [14] has per-

formance below that of opportunistic antenna selection.

Finally, each of the last two cases can be quantized, as explained elsewhere, each
resulting in some loss of throughput. The quantized versions shown in Figure 5.1 are
done with only one bit per user, that selects the best antenna for that user. We note
that using this one bit as antenna selection is only due to the fact that we have used

two transmit antennas. The more general case is explained below.



5.5.2 Fairness

The simplest form of scheduling in a multi-user system is a deterministic round robin,
which in fact has the best delay profile: every user is guaranteed a slot within a finite
time. When there is flexibility on delay, for example in data communication, other modes
of scheduling can be used that result in higher throughput, for example opportunistic
beamforming. Even in the case of a winner-take-all strategy, however, one does not want
to lose sight of the delay of users who do not “win” the competition for the channel,
and this has been addressed for example in [14]. In this section, we define a metric for
fairness and compare the methods of interest (in the limited feedback regime) according

to this metric.

Assume that we apply opportunistic beamforming Ny times to a group of users.
In traditional opportunistic beamforming, when the exact SNR of all users is known at
the base station, only one user (with the highest SNR) is eligible for transmission. In
the limited-feedback versions, more than one user may be eligible for reception, among
eligible users one may choose randomly or according to other algorithms (e.g., whoever

has been waiting the longest, etc.)

For our metric, in each realization of the channel, we note the ineligible users. In
a sense these are our underprivileged users. Since the decision of privileged /unprivileged
is a binary decision, we can model it with a 0-1 Bernoulli random variable. After N,
transmissions, we look at the most under-privileged user (the one who was eligible the
least number of times) and calculate the expected value of the number of times it has
been eligible.? This is a measure of the utilization of the worst user. We then normalize
the utilization factor above by the utilization of round robin scheduling, to remove the

effects of Ny and the number of users. We show a comparison of the fairness of various

?This is an order statistic which is difficult to calculate in closed form, because the random variables
corresponding to different users are dependent, but it can be calculated numerically.
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methods in Figure 5.2.

The four methods compared here are opportunistic beamforming with unlimited
feedback (OB), quantized opportunistic beamforming (QO), our limited feedback scheme
(QS), and coherent opportunistic beamforming (CO) where the base station knows all the
(vector) channel gains of all users, and at each time interval deterministically beamforms

towards the best user.

As observed in Figure 5.2, in terms of fairness alone, OB and its quantized version
QO perform quite well, as well as our method QS. Deterministic beamforming does not
do as well, especially when the number of users is high. The small variations between
OB and QO, we believe, are due to the finite window effect and possibly also to the

sample size of the simulation.
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CHAPTER 6
OPPORTUNISTIC METHODS IN MULTIUSER BROADBAND NETWORKS

There is ever-increasing demand for higher data rates in the next generation wireless
systems. In a multiuser environment, where a large number of users share the same me-
dia for communication, efficient broadband transmission techniques that provide higher
spectral efficiency have been the subject of intense research in the past few years. Or-
thogonal frequency devision multiplexing (OFDM) is one of the well known multi-carrier

techniques to combat ISI and is now an integral part of wireless standards such as 802.11a

and HIPERLAN/2.

In a network of wireless users, multi-user diversity can be exploited to provide
higher spectral efficiency and quality of service [12]. One way to exploit multiuser diver-
sity gain is through opportunistic scheduling [12][14]. Previous work on opportunistic
scheduling has been more focused on the frequency flat fading model [12][14][15]. How-
ever, in a network of OFDM users, only a few works have utilized opportunistic schemes

to increase the capacity of the system.

One of the major problems in employing an opportunistic scheme in OFDM
network is the large amount of feedback required to pass to the base-station. For example
in 802.11a each user has 64 subchannels and a network of 100 users requires the base
station to collect 6400 real numbers from all the users. Furthermore, this information
should be received error free and with no delay. To address this issue, [51] proposed an
opportunistic scheme in which adjacent subchannels are clustered into groups and then
only the average SNR value of each cluster is fed back to the base station. But this
still requires feeding back several real numbers to the base-station which may not be

affordable, especially in ultra wide-band and/or fast-fading scenarios.
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In this chapter we propose a simple subchannel allocation scheme in which only
one bit per subchannel (or cluster) is fed back to the base station. Thus when each
user has N subchannels, only N feedback bits per user are required. We show that even
this limited feedback can increase the capacity to more than twice the capacity obtained
by TDMA. Using analytical techniques developed in Chapters 2 and 4, we show that
the growth rate of network capacity is identical to optimal opportunistic subchannel
allocation with full channel information at the base station. Furthermore we investigate
the effect of correlation among channel taps to show that even when there is correlation,

significant gain in terms of sum-rate capacity can be achieved by our proposed scheme.

The organization of the chapter is as follows, in Section 6.1 we introduce the
system model. Section 6.2 talks about the sum-rate capacity and its formulation in
OFDM networks. In Section 6.3 our proposed limited feedback dynamic subchannel
allocation algorithm is discussed. Section 6.4 contains the results about the sum-rate
capacity growth in the asymptote of large number of users. In Section 6.5 we investigate
the performance of our algorithm when there is temporal correlation between each user’s

channel taps.

6.1 System Model

For each user in the network, we consider a frequency selective linear time invariant

model

Ytk = Z hi ke + wig (6.1)

1=0

where z; 1, and y; ; are the input and the output for the k™ user (k € {1,..., K}) at time
t respectively, w is the additive white complex Gaussian noise and uncorrelated among

the users with zero mean and variance o2

2 hiy is the i channel tap for user k and

is distributed as CA(0,1) which is assumed to be uncorrelated among different users,

although for each user, channel taps may or may not be correlated. v is the memory
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of the channel and it is assumed to be the same for all users. We assume that the

base-station uses OFDM for data transmission to each user. By applying cyclic prefix

and IDFT, user k’s channel is divided into N different sub-channels H,, j such that:

nk—\/—zhtke L (6.2)

We also assume that the total transmission power in the network is limited by Ppax.

6.2 Sum-rate Capacity

When all users share the same bandwidth, and the base-station has full information
about every user’s subchannels, then in order to maximize the sum-rate capacity of the
network, the problem of subcarrier and power allocation to different users in the network
must be solved jointly. However, this imposes a huge computational complexity at the
base station. Especially if the wireless channel varies quickly, then then base-station
requires an enormous computational power to rapidly compute the optimal solution for
power and subchannel allocation among the users. Moreover the optimal dynamic joint
power and subchannel allocation requires fast and reliable feed-forward and feedback
channels for exchanging information between the users and the base station. Especially
with large number of users in the network, sending this information back and forth
between the users and the base station causes a huge overhead for the network. This

motivates a low-complexity sub-optimum algorithm.

One may achieve economy of computation and communication through separa-
tion of subchannel and power allocation. It is possible to first select subchannels and
then perform water-filling among all selected subchannels, but this again requires the
base station to send back the optimal power allocation vector to all the users, together
with the indices of their selected subchannels. Yet another suboptimal scheme is to
equally allocated the total power among all subchannels and then perform the subchan-

nel allocation among all users [52]. We adopt the latter approach in this paper.
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Assuming full channel knowledge at the base station, maximizing the sum-rate
capacity of the network reduces to allocating subchannel to users that have the best
channel conditions. In order to avoid inter-carrier interference we allocate each frequency
bin to a single user. Under this condition, maximum sum-rate capacity with equal power
splitting among the subchannels is achieved when for each frequency bin we choose the
user whose corresponding subchannel gain is maximum within that frequency band. The

sum rate capacity in this case is given by

N
Cruicsr = Zlog(l + SNR - max | Hy ]?) (6.3)

n=1

where SNR = % is the SNR per subchannel. This subchannel selection scheme is in

fact a generalization of the opportunistic scheduling in flat-fading multiuser networks

[12] over N different flat fading subchannels provided by OFDM.

6.3 Subchannel Allocation with Limited Feedback

The opportunistic scheme mentioned in the previous section and most of the similar
subchannel allocation schemes [52] require full knowledge of the subchannel information
to be available at the transmitter. However, from a practical point of view this is
not affordable because a sum total of K'N positive real numbers should be reliably
transmitted to the base-station which is not affordable in practice . Svedman et. al [51]
propose an alternative where, instead of feeding back the gain of each subchannel, each
user’s subchannels are divided into clusters and in each cluster the maximum value of
the cluster is fed back to the base-station. This reduces the number of real values to
K L assuming that there are L clusters. But this still requires feeding back several real
numbers to the base station without any error and delay which is still not attractive

from an implementation point of view.
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We propose a simple scheme where, instead of feeding back the full information
of the subchannels, only one-bit of information per subchannel (or cluster) is fed back to
the base station for subchannel allocation. For user k, the n'® subchannel gain |H, x|*
is compared to a threshold «,,, if the subchannel gain is above the threshold a “17 is
transmitted back to the base station otherwise a “0” is transmitted. ' So only N bits
per user is required in feedback.? Upon receipt of all feedback bits from the users, the
bases station allocates each subchannel to one of the users whose corresponding feedback
bit is “1”7. This assignment can be done via random selection or round robin scheduling
among eligible users. Our claim is that by judicious choice of the threshold levels {o, }
most of the multiuser capacity gain is preserved. The choice of a,’s for each sub-channel

can be done according to Section 4.4.

6.4 Capacity Scaling

When channel taps are uncorrelated, i.e. E[h;3h},] = d:—,, we can use the analytical
framework developed in Chapter 4 for determining the optimal threshold value and the
evaluation of the sum-rate capacity. We notice that under the assumption of uncorrelated
channel taps, the subchannel gains {|H, |*} are i.i.d. random variables with exponential

distribution. Hence the ergodic sum-rate capacity with full CSI at the base station is:
Cfu”_OSI = NE[log(l + SNR m]?X |Hn7k|2)] (64)

when subchannels are uncorrelated, similar to Theorem 5 we can show that

Theorem 8 The sum-rate capacity of scheduling with one-bit per sub-channel scales the

same as the capacity of opportunistic scheduling with full CSI.

'When the feedback channel is contention-based and shared among all users, then in case a sub-
channel is below the threshold level, no feedback data for that subchanel is transmitted, this leads to a
better utilization of the available bandwidth on the feedback channel.

20ne can also use the idea of clustering the subchannels to reduce the amount of feedback to L bits
per user.

77



Normalized sum-rate capacity, SNR=10 dB
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Figure 6.1. Sum-rate capacity (normalized by N) vs. number of users

Proof: Since the sub-channels are uncorrelated, for each sub-channel we can apply

Theorem 5 to show that
. Ch it
lim ————
K=o Cryuosr

= 1.

6.5 Subchannel Correlation

In this Section we assume that for each user the channel taps are correlated, but there is
no dependence between different users’ channels. The correlation model that we consider

is an exponential decaying model described by
Elhsihy ] = Pl (6.5)

This model well describes the correlation caused by a pulse-shaping filter that exits in

many practical communications standards such as GSM.

Let 0, be the power of the n'* subchannel of the k£ user which can be calculated
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as:

Mg = E[[Hux|]
1 r/N-1 N-1 *
. - _]27‘rtn ]271' n
= NE htke N ) (Z h&ke N ) ]
L t=0 s=0
| [VoiN-n ,
2mw(t—s)n
= NE hirhype™ W ]
L {=0 s=0
| NoiN-
- [t—s| —j%T"(t—s)
N pe
t=0 s=0
by change of summing index to u =1 — s we get
N-1 lul
_;2mn,
e = (1= e
u=—(N-1)

— R{B} -1 (6.6)

-2mn

where 3, = \/l—ﬁ Zﬁ; be™? % ™ is the discrete Fourier transform (DFT) of the sequence
by, = (VN — \;”—N)pm Assuming pV < 1, after some algebra we obtain the following

expression for n, ;:

N 1 — p? 2p cos 0, + 4p* + 2p® cos 0, (6.7)
ok 7= 1 4 2pcosb, + p? N(1 4 2pcosb, + p?)? '
where 6§, = %T” Notice that for a given n, {H,}’s are i.i.d. across different users,

hence 7, does not depend on k. Thus correlation between taps leads to subchannels
with different qualities. On the other hand exact calculation of the optimal threshold
for this case is not mathematically tractable. So we propose a suboptimal solution
for quantizing the subchannels with one bit. For the n'* frequency bin, we divide the
subchannel gains by 7, ; and then compare the normalized channel gain by the optimal
threshold calculated in Section 4.4, if

| H | >
nn,k

n

the feedback bit is set to “17, otherwise it is set to “0”.
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Figure 6.1 is the simulation result based on the proposed algorithm for SNR=10
dB. As can be seen in the figure for both uncorrelated and correlated cases, the sum-rate
capacity growth of our scheme is the same as the opportunistic subchannel selection with
full information available at the base station. Moreover the capacity achieved by our
scheme is much higher than TDMA scheduling and only slightly lower than the full CSI

sum-rate capacity.
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CHAPTER 7
CONCLUSION AND FUTURE WORK

In this final chapter we summerize the contributions of this dissertation and discuss

several avenues for future research in the area of opportunistic communications.

7.1 Contributions

o Capacity analysis of antenna selection: In Section 3.3 we study the behavior of
the capacity of both transmit and receive antenna selection in the asymptote of
large number of antennas. In high SNR scenario, the concept of capacity gain
is developed. We evaluate the capacity gain for the uninformed transmitter (no
CSI at the transmit side), fully informed (water-filling) and partially informed
transmitter (antenna selection). We perform the same analysis fot these three

cases using the concept of channel gain in the low-SNR scenario.

o Fuast algorithms for joint transmit-receive selection: In Section 3.5 we propose two
algorithms for joint transmit-receive antennal selection with quadratic and linear
complexities (in number of antennas) that perform almost as well as the high

complexity selection through exhaustive search.

o Performance of antenna selection in keyhole channels: In Section 3.6, we explore
the performance of antenna selection in keyhole channels. We show that under the
keyhole condition, selecting only one antenna at transmit side and a few antennas
at receive side leads to an equivalent low-order SIMO system that has almost the
capacity of the high order keyhole channel with no selection. Moreover we proove

that the diversity of the system antenna selection is the same the baseline system.
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o Scheduling with 1-bit CSI feedback in multiuser SISO networks: In Chapter 4 we
propose a simple scheduling algorithm that only requires one-bit of information
sent by the users to the base-station. We also prove that subject to a judicious
choice of threshold, our method has the same sum-rate capacity growth as of

scheduling with full CSI information.

Opportunistic beamforming with limited CSI feedback: In Chapter 5, we extend
the scheduling method proposed in Chapter 4 to the case where the base-station
and/or the users are equipped with multiple antennas. We propose an oppor-
tunistic beamforming with limited CSI feedback that exploits both the multiuser
diversity gain and the array gain of multiple antenna to improve the overall ca-
pacity. We prove the optimality of the capacity growth of our scheme and show

its superior performance over conventional beamforming methods.

Opportunistic sub-channel allocation with limited CSI feedback for OFDM net-
works: In Chapter 6 we extend the scheduling scheme proposed in Chapter 4 for
OFDM networks. We propose a scheduling algorithm for dynamic sub-channel
allocation with minimal feedback requirement and prove that most of multiuser

diversity gain can be captured by this method.

A novel mathematical framework for asypmtotic capacily analysis of opportunistic
systems: In Appendix A, we prove theorems on the tightness of Jensen’s inequality
for a large class of functions. Throughout this thesis we frequently use these
techniques for asymptotic analysis of the capacity of systems. The domain of the

application of these results includes a large spectrum of problems.
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7.2 Future Work

There are a variety of research directions for future work on opportunistic communica-

tions at both the link lavel and the network level.

o Antenna Selection.

There are many unsolved problems in the area of antenna selection. Channel esti-
mation for antenna selection is an important subject for future research. Analysis
and code design for antenna selection still requires more investigation. Perfor-
mance evaluation of antenna selection algorithms when the channel matrix is not
perfectly known at the receiver is a seemingly important yet relatively unexplored
problem. Combination of antenna selection with space-time signaling schemes has
been noted by several investigators, but much work remains in this area and it is

a worthy subject of future research.

o Opportunistic Scheduling with Limited CSI

It is instructive to analyze the delay-throughput trade-off for our propsed scheme.
A interesting research direction is to extend our method for multicast scheduling.
Cross layer problems related to our proposed scheme can certainly be a fruitful
area for research; the one-bit CSI feedback can not only improve the physical layer,

but also can be used in transport layer for congestion control.
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APPENDIX A
ASYMPTOTIC TIGHTNESS OF JENSEN’S INEQUALITY

In this appendix we prove results that are used in asymptotic capacity analysis. Jensen’s
inequality is a useful tool in the analysis of the capacity in communications system; Let

g : R — R be a measurable concave function and let X be a random variable, then
Elg(X)] < g(E[X])

The proof of Jensen’s inequality can be found in standard textbooks on probability
theory e.g. [53]. The equality holds if and only if the function g(+) is an affine function

or the probability measure associated with the random variable X is a concentrated at

o
n=1"?

a single point, i.e. Fx(z)= d(x —x0). For a family of random variables {X,, } we are
interested to see when Jensen’s inequality becomes tight. Heuristically, if the function
g(+) is slowly varying (hence locally linear)and the probability measure Fy, () is well
concentrated around the mean value in the asymptote of large n, then we expect to have
a tight bound by Jensen’s inequality. In order to investigate the asymptotic tightness of

Jensen’s inequality we need some preliminary results:

Lemma 2 For all z,y > 0 we have:

| Tog(1 + p) —log(1 + py)| < log(1 + plz — yl)

Proof: Since g(z) = log(1 4 px) is an increasing function, without loss of generality

we can assume x > y > 0. Therefore we have p?y(z — y) > 0 this inequality can be

1+px

oy S 1+ p(x — y) by taking the logarithm from both sides we arrive at

re-written as

the desired inequality. [
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Definition 2 The family of random variables { X, } is said to be uniformly integrable if

lim limsup/ z dFix, () =0

C— 00 n

Uniform integrability is the sufficient condition for convergence in mean.

Theorem 9 [If X,, is a uniformly integrable random variable and E[X] < oo, then con-

vergence in distribution, implies convergence in mean, i.e., if X, —= X then E[X,] —

E[X].

Proof: See [54]. |
The following lemma provides an alternative way to prove the uniform integra-

bility.

Lemma 3 [fE[|X,]|] < oo for all n, then the random variable X, is uniformly integrable
if
lim lim sup/ Pr[|X,| > t]ldt =0

C— 00 n

Proof: For every n and ¢ > 0 we have

(1= Firy (@) < [ o dFix, () S BEIX) < o0
hence lim,_.. (1 — Fix, (c)) = 0. Using integration by-part we have
0< [Tadbin(0) = —al = Fxg@) [+ [ Pl > o] do
= (1 - Fix(c) + [O Pr|X,| > 2] da
< /Oo Pr|X,| > ] da

and this proves the lemma. [



Lemma 4 If X, i> 0 and a, — 0, then, a,- X, i> 0

Proof: For every ¢, 01,5 > 0, there exits Ny such that for all for all n > N; we have
|an| < 61. Also there exits Ny such that for all n > Ny, Pr[|X,| > 5] < d,, thus for all

n > N = min{ Ny, N2},

—] < PrlXa|> 1< 4,

1

Pr(la,X,| > ¢ = Pr[|X,| >

||

thus a, X, i> 0. [ |

Now we prove the following theorems for asymptotic tightness of Jensen’s in-

equality,

Theorem 10 Lel { X, } be a family of positive i.i.d. random variable with finite mean

2

Hn and variance T,

also ji, — 00 and 7% — 0 as n — oo, then for all p >0 we have

Ellog(1 + pX;)]
log(1 + pE[X,])

— 1. (A1)

Proof: Using the Chebyshev’s inequality for all € > 0 we have:

Pr HL_ >6] — pr{iﬂ
L+ ppin L/p+ pin

E[(Xn — pn)’]
e(1/p + pn)?

2
€2 Hn
14pX, &P

T — L. Using the continuous mapping theorem, we have

1 Xo\ i
log (L) i g
L+ pptn

On the other hand p,, — oo, hence

1

2

hence

—L1 5 0 and we can invoke Lemma 4 to
log(1+ppn)

conclude

149Xy
log <1+pwn) _ log(1+pXy)

= — 1250
log(1 + ppn)  log(1 + ppin)
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Thus
log(1 X,) ip.
og(l +pXn) in, |
log(1 + ppin)

We show that the random variable Z, = 'e80+eXn)l ¢ 3 uniformly integrable.

log(1+ppn)
I = / Pr

Pr

log(1 + pX,)
| log(1 + ppin)
[[log(1 + pX,) —log(1 + plog pin)|
log(1 + ppin)

/"o [log (1 + [Xn — )

—1

>t} dt

>t} dt

Pr > t} dt using Lemma 2
log(1 + ppin)

= / Pr[p| X, — pa| > AL — 1] dt

where A, =14 pu,. Using Chebyshev’s inequality we have

t 2 2
We use change of variable u = Af, — 1, dl = m, a, = AC —1
1 e du
[ < 2 2
= P n0g(4,) / E(u 1)
o L[
log(An) Ja, u?
— (&)2 A2
pin ) log(An)(An —1)
Since p, — 0o, A, — oo thus for all ¢ > 2 W — 0. Also Z—: — 0, hence I — 0

and 7, = % — 1 is uniformly integrable. Therefore from Theorem 9 we conclude

Ellog(1 + pX,)]
log(1 + ppin)

as n — oo. [ |

The Shannon function g(z) = log(1 4+ pz) is not the only function for which
Jensen’s inequality is asymptotically tight. We introduce a larger class of function that

have this property.



Definition 3 We define G as the set of measurable functions g : BT — RT thal are both

increasing and concave with g(0) = 0.

G={g:R* = R"V2>0, g(z) >0, g (x) <0, g(0) =0}
In the following theorem we explore the properties of function in G.
Theorem 11 G has the following properties

1. G is closed under function composition.
2. for every g € G, %j—r) is a decreasing function

3. g € G is a sub-additive function, hence
Va,y>0, |g(z) —g(y)l <g(lz —yl)

Proof: For part 1 we note that if g, f € G then go f(z) = g(f(z)) is defined in R*. Also
(go f)(z)=f(2)g' (f(z)) >0 and (go f)'(z) = [ (2)g (f(x)) + (f (2))*9"(f(z)) <0
therefore go f € G. For proving part 2, we use the concavity of ¢g(-). For all z,y > 0

and a € (0,1),

ag(z) + (1 —a)gly) < glaz + (1 — a)y)

let y = 0, then ag(z) < g(ax). This can be written as g(r—?) < 222) which means that

ar

g(+) is a decreasing function. In part 3, we first prove that g(-) is sub-additive. Using

g(z+y) < g(x)

pory e hence.

part 2, for all z,y > 0 we have

g9(z +y) <g(z)
Tty
similarly we get
Y
Tty

glz +y) <gly)
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By adding these two inequalities, we arrive at g(z + y) < g(x) + ¢(y), which means
g(+) is a sub-additive function. Without loss of generality we assume z > y > 0,
therefore g(z) = g(y + (v — y)) < g(y) + g(x — y) hence g(z) — g(y) < g(x —y). But

lg(z) — g(y)| = g(x) — g(y) because g(-) is increasing. Thus

l9(z) — g(y)| < g(|z —yl).
[ |

The following theorem establishes the conditions under which Jensen’s inequality

for any function g € G is asymptotically tight.

Theorem 12 Lel { X, } be a family of positive i.i.d. random variable with finite mean

fn and variance o2, so that p, — oo and Z—Z — 0 as n — oo, then for every g € G

satisfying the condition lim,_ . g(I—Z) = K > 0, we have

Elg(Xn)]

gi(E[Xn]) — 1. (A.2)

Proof: As shown in the proof of Theorem 10, Z—: — 0 implies % — 1. Using the

Chebyshev inequality and Theorem 3 (part 3) for every a > 0 we have

- - e
< po [IUE )
< Pr [[XZ 9_(/:;)| > gl(Jg(/én))}
< () Grsn)

We have p, — oo as n — oo. Also the condition lim,_,, g(I_r.) = K > 0, implies that

1

g(z) = oo as * — co. ¢~ ! is an increasing continuous function therefore g7 (ag(u,)) —

oo, thus

-1 e
b M9l (ag(p)) K

. ag(un) o ag{agln)  a
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(Xn)

) i> 1. We need to show that the

Since Z—” — 0 from A.3 we can conclude that 5;

random variable 7, = i]((f")) — 1 is uniformly integrable. Using Lemma 3 and A.3 we
have
1, = / Png n)—l >a} da
‘ 9(n)

on [ pida
< %/ (o (agln)))

We use the change of variable uv = g~ '(ag(p,)), da =

g (u)
9(pn)

duv ap — g_l(Cg(ILLn)), ELlSO

we note that ¢'(+) is a decreasing function thus for u € (a,, c0) we have ¢'(u) < ¢'(ay),

hence
I, < <0—>2'/~L721/009/(3) o
fin on U g(tn)
<an>2 i (o) [
< [2£) - —
[n 9(pn) S, u
_ (a_) 429 (an) /“d_u
fin 9(ptn)  Ja, u?
2
Un 1 n gan !
RN EARR A N,
[, ¢ glpn) oy

By L’Hospital’s rule, lim, . ¢'(2) = lim,_e g(w—lﬂ') = K. Also p,, = oo implies o, — o0,

therefore lim,,_ g(‘;—"n) . % -g/(an) = K, hence lim, ., I, = 0 which means 7, =
% — 1 is uniformly integrable thus E[Z,] — 0

Note: In the above theorem, if lim sup o,, < oo then the condition lim,_ g(x—z) =

K > 0 can be weakened to lim,_. g(z) = +oo.

The following theorem combines the results from Theorem 10 and Theorem 12:

Theorem 13 Under the assumptions of Theorem 12 we have

E[log(1 + pg(X,))]
log(1 + pg(E[X.])




Proof: The proof is straightforward and very similar to the proof of Theorem 10.
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