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Abstract 

Geometric Disks Covering (GDC) is one of the most typical and well studied problems in computational geometry. 

Geometric disks are well known 2-D objects which have surface area with circular boundaries but differ from polygons 

whose surfaces area are bounded by straight line segments. Unlike polygons covering with disks is a rigorous task 

because of the circular boundaries that do not tessellate. In this paper, we investigate an area approximate polygon to 

disks that facilitate tiling as a guide to disks covering with least overlap difference. Our study uses geometry of 

tessellable regular polygons to show that hexagonal tiling is the most efficient way to tessellate the plane in terms of the 

total perimeter per area coverage. 

Keywords: Disks, geometric covering, hexagon, polygons, tiling. 

1. Introduction 

Tiling differs from covering in that the former is a family of sets without overlap whereas the latter covers the entire plane 

with no gaps but with overlaps (Lessard, 2000, p.17) . Triangles, squares and hexagons are known to be the only 

Archimedean tiling’s with lattice polygon (Ding, 2010, p.7). Any regular polygon that can tile has the property of 

covering. It is often useful to consider the single regular polygon whose area approximates that of a circle. This regular 

polygon could be a guide in our geometric disks covering problem. 

2. Related Literature 

Covering has been one of the most fundamental and yet challenging issues in wireless network and found many 

applications such as routing and broad casting (Xu and Whang 2011, pp. 108-118). A natural dual to covering is the 

corresponding tilling. Tiling   is a countable family of closed sets *            + which covers the Euclidean plane 

without any gaps or overlaps, (Keating and King, 1999, pp. 83-91). Here            are known as the tiles of  . When 

the set of polygons has the same shape and size then it is a monohedral tiling. The only edge-to-edge monohedral tiling’s 

by regular polygons are tiling of squares, equilateral triangles and regular hexagons (Lessard, 2000, p. 17). 

Sirbu (1992, pp. 174-178), has shown that plane tiling’s and their properties have applications in medicine, where 

tiling’s are used to describe the fight between the immune system and a pathogen agent.  

Paredes et.al (1998, pp.11990-11995), stated that tiling with squares and triangles are very useful tools to study several 

structural and thermodynamical properties of a wide variety of solids. 

Keating and King (1999, pp. 83-91) investigated a necessary and sufficient condition for a bounded region of the plane 

with rectangles to be tillable with finitely many squares.  

Melissen and Schuur (1996). studied how to cover a bounded fixed square with a small number of circles by expressing 

the relationship between the radius of the circle and the side of the square. But our study focuses on disks covering 

using hexagons and proves that hexagonal tiling is the best approach to our approximate disks covering problem. 

3. Computational Experience 

3.1 Tessellable Regular Polygon 

Among all the tessellable regular polygons viz equilateral triangle, squares, etc hexagon has the closest area to that of a 

disk.  

Theorem 1: The area of a regular hexagon is closer to its circumcircle than to any tessellable regular polygon (like a 
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square, equilateral triangle) to that of its circumcircle. 

Proof 

Consider the circle with radius 𝑅  inscribed in a hexagon, the other by a square and the third by a triangle as shown in 

Figure 1 

Case I: Hexagon 𝐴𝐵𝐶𝐷𝐸𝐹    

 

 

 

 

Figure 1 (a). Hexagon inscribed in a circle 

Each triangle in Figure 1 (a) is equilateral so we have ∠𝐷𝑂𝐶 =
𝜋

 
 . 

                             Area  of Δ𝐷𝑂𝐶 =
 

 
× |𝑂𝐷||𝑂𝐶|𝑠𝑖𝑛

𝜋

 
 

=
𝑅1
2√ 

4
 square units 

∴ Area of all six equilateral triangles = 6 × area of Δ𝐷𝑂𝐶 

                           = 6 × 
𝑅1
2√ 

4
 

    ≅ 2.598𝑅 
  square   units. 

Case II: Square 𝐴𝐵𝐶𝐷  

 

 

 

 

Figure 1 (b). Square inscribed in a circle 

We consider the isosceles right triangle 𝐴𝐵𝐶 and apply Pythagoras theorem: 

(2𝑅 )
 = 𝑠 + 𝑠  

⟹ 𝑠 = 𝑅 √2 units. 

 But area of square 𝐴𝐵𝐶𝐷 = |𝐴𝐵| × |𝐵𝐶| 

= 𝑠 × 𝑠 

              = 2𝑅 
  square   units. 

Case III: Equilateral triangle 𝐴𝐵𝐶 

Consider the equilateral triangle 𝐴𝐵𝐶 inscribed in a circle with centre 𝑂, radius 𝑟 and side 𝑠. 

 

 

 

 



 

 

www.ccsenet.org/jmr                        Journal of Mathematics Research                        Vol. 8, No. 2; 2016 

27 

 

 

 

 

 

(i) Equilateral triangle 𝐴𝐵𝐶          (ii) Isosceles  triangle  𝐴𝐵𝑂 

Figure 1(c). Triangle inscribed in a circle 

Area of ∆𝐴𝐵𝐶 = √𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐)   where 

                          𝑠 =
𝑎+𝑏+𝑐

 
    is the semi-perimeter 

                              =
𝑠+𝑠+𝑠

 
 

                             = 
 𝑠

 
 

             Area of ∆𝐴𝐵𝐶 = √
 𝑠

 
(
 𝑠

 
− 𝑠) (

 𝑠

 
− 𝑠) (

 𝑠

 
− 𝑠) 

                     = √
 𝑠4

 6
 

Area of ∆𝐴𝐵𝐶 = 0.4330𝑠                    

But in Figure 3.1 (𝑐)(𝑖𝑖) we can find 𝑠 = 𝑓(𝑟) 

                     𝑐𝑜𝑠 (
𝜋

6
) =

𝑠
 ⁄

𝑅1
 

                               𝑠 = 𝑅 √3 

     ∴  area of  ∆𝐴𝐵𝐶 = 0.4330 × 𝑅 
 × 3 

                                = 1.299R1
2
  

Case IV: Circle 𝐴𝐵𝐶𝐷𝐸𝐹 

                       Area = 𝜋 × 𝑅 
  

                           ≅ 3.142𝑅 
    to  3 d.p 

The common area of circles based on three polygons and occupying ratio in a circle has been shown in Table.1. 

 

Table 1. Occupying Ratio Comparison of Tessellable Lattice Polygon. 

Shape Triangle Square Hexagon 

Area of polygon (𝐴) 1.299𝑅 
   2𝑅 

  2.598𝑅 
  

Area of circle(𝐵) 3.142𝑅 
  3.142𝑅 

  3.142𝑅 
  

Ratio (𝐴: 𝐵) 41.34% 63.65% 82.69% 

Comparing the areas obtained for the three geometrical shapes we conclude that hexagons approximate circles more 

closely than squares, regular triangles and generally than any other regular tessellable geometrical 2-dimensional 

polygon.  
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Corollary: Hexagons, because they approximate circles more closely are more compact than squares. This fact has direct 

application to any point of set sensors arranged on a plane or similar surface and can be reflected in nature (e.g. most 

animal vision organs have rods and cones arranged in nearly hexagonal tessellations in the eyes fovea), (Raposo , 2011, 

pp. 37). 

3.2 Non –Tessellable Regular Polygon 

Let 𝐴  be the area of the inscribed polygon with 𝑛 sides. As 𝑛 increases, it appears that 𝐴  becomes closer and 

closer to the area of the circle. We say that the area of the circle is the limit of the areas of the inscribed polygons, and 

we write  

𝐴 = lim →∞ 𝐴                      (1) 

Theorem 2: The area of an 𝑛 sided non-tessellable regular polygon inscribed in a circle is closer to its circumcircle as 𝑛 

increases.  

Proof: 

Non-lattice Archimedean non-tillable regular polygon includes pentagon, heptagon, octagon, nonagon, decagon, etc. We 

shall give a proof that as the number of sides of a non-tessellable regular polygon increases its area approximates that of 

it circumcircle than any regular tessellable polygon. We shall give the percentage occupying area proof using geometry 

by considering the following cases. 

Case I: Pentagon 𝐴𝐵𝐶𝐷𝐸 

 

 

 

 

 

 

Figure 2. Pentagon inscribed in a circle 

It is evident that each of the triangle in Figure 2 is isosceles. So we consider ∆𝐷𝑂𝐶 where characteristically ∠𝐷𝑂𝐶 =

𝜋

5
 . 

 Area of Δ𝐷𝑂𝐶 =
 

 
× |𝑂𝐷||𝑂𝐶|𝑠𝑖𝑛 (

𝜋

5
) 

                        = 0.4756𝑅 
  

∴ Area of all five isosceles triangles 

   = 5 × area of  Δ𝐷𝑂𝐶 

= 5 × 0.4756𝑅 
  

                                     ≅ 2.3780𝑅 
  

Case II: Heptagon 𝐴𝐵𝐶𝐷𝐸𝐹𝐺 

 

 

 

 

Figure 3. Heptagon inscribed in a circle 
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 Area  of Δ𝐷𝑂𝐶 =
 

 
× |𝑂𝐷||𝑂𝐶|𝑠𝑖𝑛 (

 𝜋

7
) 

                  =
 

 
× 𝑟 × 𝑟 × 0.7818 

  = 0.3909𝑅 
  

     ∴ Area of all heptagon              = 7 × area of  Δ𝐷𝑂𝐶 

                                             = 7 × 0.3909𝑅 
  

                                   ≅ 2.7363𝑅 
  

Case III: Octagon 𝐴𝐵𝐶𝐷𝐸𝐹𝐺𝐻 

 

 

 

 

 

Figure 4. Octagon inscribed in a circle 

 Area of Δ𝐷𝑂𝐶 =
 

 
× |𝑂𝐷||𝑂𝐶|𝑠𝑖𝑛 (

𝜋

4
) 

                           =
√ 

4
𝑅 
  

                 ∴ Area of all octagon  = 8 × area of Δ𝐷𝑂𝐶 

                                          = 8 ×
√ 

4
𝑅 
  

                                          ≅ 2.8284𝑅 
  

Case IV: 𝑛  sided  polygon 

Generally, area of polygon inscribed in a circle with sides 𝑛 is  

                                          𝐴 = 𝑛 × (area  of  a  single  triangle with origin as one vertex) 

                               = 𝑛 ×
 

 
× 𝑅 × 𝑅 × 𝑠𝑖𝑛 (

 𝜋

 
) 

                           𝐴 =
 𝑅1

2

 
𝑠𝑖𝑛 (

 𝜋

 
)                                    (2) 

Case  V: Circle   

                               Area = 𝜋 × 𝑅 
  

                                              ≅ 3.142𝑅 
 to  3 decimal  places. 

The common area of circles based on some non-tessallable regular polygons and occupying ratio in a circle has been 

shown in Table 2. 
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Table 2. Occupying Ratio Comparison of non-tilling Archimedean shapes. 

Non-tilling Shape Pentagon Heptagon Octagon 𝑛-sided polygon 

Area (𝐴) 2.3780𝑅 
  2.7363𝑅 

  2.8284𝑅 
  𝑛𝑅 

 

2
× 𝑠𝑖𝑛 (

2𝜋

𝑛
) 

Area of circle(𝐵) 3.142𝑅 
  3.142𝑅 

  3.142𝑅 
  3.142𝑟  

Ratio (𝐴: 𝐵) 75.68% 87.71% 90.02%  

 𝜋
× 𝑠𝑖𝑛 (

 𝜋

 
) % 

Table 2 shows the area on an 𝑛 sided non-tessellable regular polygon approaching the area of a circle as n increases. 

We shall state a theorem to that effect and give the first formal analytical proof. 

Theorem 3: Recall 𝐴  as in theorem (2). Then 

lim →∞ 𝐴 = 𝜋𝑅 
 . 

Remark: The above theorem states that the area 𝐴  of an 𝑛 −sided regular non-tessellable polygon inscribed in a circle 

with radius 𝑅  approximates the area 𝜋𝑅 
  of the circle  as 𝑛 becomes large.  

Proof. 

We shall give the first analytical proof. 

From equation (2)    𝐴 =
 𝑅1

2

 
𝑠𝑖𝑛 (

 𝜋

 
) 

                           lim →∞ 𝐴 = lim →∞
 𝑅1

2

 
𝑠𝑖𝑛 (

 𝜋

 
) 

                                        =
𝑅1
2

 
lim
 →∞

𝑛 × 𝑠𝑖𝑛 (
 𝜋

 
) 

                               =
𝑅1
2

 
lim
 →∞

𝑛 × 𝑠𝑖𝑛 (
 𝜋

 
) ×

 𝜋
 ⁄

 𝜋
 ⁄
 

                                       =
𝑅1
2

 
lim
 →∞

𝑛 × 2𝜋 𝑛⁄ ×
𝑠𝑖 (

2𝜋

𝑛
)

 𝜋
 ⁄

 

       =
 𝜋𝑅1

2

 
× lim

 →∞
𝑛 ×

 

 
×

𝑠𝑖 (
2𝜋

𝑛
)

 𝜋
 ⁄

 

          = 𝜋𝑅 
 × lim

 →∞

𝑠𝑖 (
2𝜋

𝑛
)

 𝜋
 ⁄

 

               lim
 →∞

𝐴 = 𝜋𝑅 
   (L' Hopital' s rule, indeterminate    type  

0

0
  case) 

                                = 𝜋𝑅 
 × lim

 →∞

𝐷𝑛*𝑠𝑖 (
2𝜋

𝑛
)+

𝐷𝑛(
2𝜋

𝑛
)
  

                                = 𝜋𝑅 
 × lim

 →∞

(
−2𝜋

𝑛2
)𝑐𝑜𝑠(

2𝜋

𝑛
)

(
−2𝜋

𝑛2
)

 

                                = 𝜋𝑅 
 × lim

 →∞
𝑐𝑜𝑠 (

 𝜋

 
) × 1 

                                  = 𝜋𝑅 
 × 𝑐𝑜𝑠0 × 1 

                  lim
 →∞

 𝐴 = 𝜋𝑅 
               (3) 

This establishes the fact that the area of a regular polygon with sides 𝑛 inscribed in a circle of radius 𝑅  approaches 𝜋𝑅 
  

as 𝑛 becomes large. Table 4 illustrates the percentage occupying ratio of some non-tessellable regular polygon. 

Table 4. Occupying Ratio Comparison of non-tessellable regular polygon. 
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Non-tessellable Shape Pentagon Heptagon Octagon 𝑛-gon → ∞ 

Area of polygon (𝐴) 2.3780𝑅 
  2.7363𝑅 

  2.8284𝑅 
  𝜋𝑅 

  

Area of circle(𝐵) 𝜋𝑅 
  𝜋𝑅 

  𝜋𝑅 
      𝜋𝑅 

  

Ratio (𝐴: 𝐵) 75.68% 87.71% 90.02%         100% 
 

Proposition: For any positive constant 𝑐, the function 𝑥 ↦ 𝐴(𝑥) given by  

𝐴(𝑥) = 𝑐𝑥𝑠𝑖𝑛 (
2𝜋

𝑥
) 

is strictly increasing on ,2 ∞). 

Proof 

Note that 𝐴 is at least twice continuously differentiable on ℝ and  

             𝐴′(𝑥) = 𝑐𝑠𝑖𝑛 (
 𝜋

𝑥
) −

 𝜋𝑐

𝑥2
𝑐𝑜𝑠 (

 𝜋

𝑥
) and 

𝐴′′(𝑥) = −
2𝜋𝑐

𝑥 
𝑐𝑜𝑠 (

2𝜋

𝑥
) +

2𝜋𝑐

𝑥 
𝑐𝑜𝑠 (

2𝜋

𝑥
) −

4𝜋 𝑐

𝑥 
𝑠𝑖𝑛 (

2𝜋

𝑥
) 

                  = −
4𝜋 𝑐

𝑥 
𝑠𝑖𝑛 (

2𝜋

𝑥
) 

Note that      𝐴′(2) = 𝑐 *𝑠𝑖𝑛 (
 𝜋

 
) −

 𝜋

4
𝑐𝑜𝑠 (

 𝜋

 
)+ 

      𝐴′(2) =
𝜋𝑐

 
> 0  for  𝑐 > 0 and  𝐴′′(𝑥) < 0  for  𝑥 ∈ (2 ∞), therefore 𝐴′(𝑥) is strictly decreasing on 

(2 ∞). Furthermore lim𝑥→∞ 𝐴
′(𝑥) = 0. Hence 𝐴′(𝑥) is strictly positive on ,2 ∞)  which implies that 𝐴(𝑥) is strictly 

increasing on ,2 ∞). The strictly increasing function 𝐴 indicates that the area of a regular polygon inscribed in a disk 

increases with respect to the number of sides .i.e 𝐴 < 𝐴4 < ⋯ .𝐴 < 𝐴 + < ⋯. This is shown in Figure 5. 

 

 

Figure 5. Strictly increasing function 𝐴 (𝑥) 

3.3 Geometry of Tessellable Polygons with Disks Covering 

Geometrically, we illustrate a plane tiling with equilateral triangle, squares and hexagon. Hexagon is conveniently 

chosen because it is the only shape that is closest to being circular with the widest area. Figure 6 shows this concepts 

and the percentage overlap of a segment. 

 

 

 

 

 

 

 

 

(a) Hexagonal tiling      (b) Square tiling      (c) Equilateral tiling 

Figure 6. Tessellable regular polygons with percentage segment overlap 

 

 

𝐴  𝐴4 𝐴5 𝐴6 𝐴7 𝐴   
..  . 
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3.4 Overlap for Optimal Disks Covering 

Figure 7(a) illustrates the hexagonal cell layout. The inradius and the circumradius of the hexagonal cell are 𝑟  and 𝑅 , 

respectively. In Figure 7(b), cells are partially overlapped because 𝑅  equals to the hexagon’s circumradius. The model 

considers nodes not belonging to the cell of interest. Algebraically the best positioning of the GSM network is where the 

hexagonal and circular cells overlap to give us a difference of 2(𝑅 − 𝑟 ) as shown in Figure 7(b). 

  

 

 

 

   

   

            (a) Hexagonal cell layout                    (b) Idealized  circular  layout 

Figure 7. Cell Layout Models For Optimal disks covering. 

3.5 Overlap Difference for Optimal Disks Covering 

We deduce formulas for calculating the width of any hexagonal disks covering in terms of the apothem (𝑟 ) or the radius 

of the disks (𝑅 ) or the height of the overlap area (𝐻). Consider two intersecting uniform disks shown in Figure 8. 

             

 

 

                                                                                                     

Figure 8. Overlap width for uniform disks  

Consider triangle 𝑂𝐴𝐵 in Figure 8. 

Case I:     𝑠𝑖𝑛 (
𝜋

6
) =

𝐴𝐵

𝑂𝐴
 

                                
 

 
=

𝐻
 ⁄

𝑅1
          𝐻 = 𝑅                           

                        Width = 2(𝑅 − 𝑟 ) or  

              Width = 2(𝐻 − 𝑟 )                (4) 

Case  II:            𝐶𝑜𝑠 (
𝜋

6
) =

𝑂𝐵

𝑂𝐴
  

                        
√ 

 
=

𝑟1

𝑅1
,   

                 𝑟 =
√ 

 
𝑅     or    𝑟 =

√ 

 
𝐻    

  where  𝐻 = 𝑅 =
 𝑟

√ 
=

 𝑟1√ 

 
                       (5) 

                Width  = 2 (𝑅 −
√ 

 
𝑅 ) 

                                                           = (2 − √3)𝑅    = (2 − √3)𝐻                       (6) 

Case III:              𝑡𝑎𝑛 (
𝜋

6
) =

𝐴𝐵

𝑂𝐵
,   

 

√ 
=

𝐻
 ⁄

𝑟1
 

𝑅  

𝑟  
𝑅  

𝑟  

2(𝑅 − 𝑟 ) 

𝑟  

𝐴 

𝐵 

𝑅  

𝑂 
𝜋 6⁄  

𝐻 = 𝑅  
𝐻 2⁄  
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                   𝐻 =
 𝑟1

√ 
   or  𝐻 = 𝑅 =

 √ 𝑟1

 
 

          Width  = 2(
 √ 𝑟1

 
− 𝑟 ) 

    =
 

 
(2√3 − 3)𝑟                         (7) 

Equation (5), (6) and (7) establishes the formula for calculating the width of a hexagonal disks covering. Table 5 shows 

the overlap difference and their percentage occupying ratio. 

 

Table 5. Occupying overlap difference and ratio for uniform disks. 

Regular Polygon  Hexagon Square Equilateral Triangle 

 

Overlap Difference (𝑨) 

2(𝑅 − 𝑟 ) 2

3
(3𝑅 − √6𝑟 ) 

𝑛𝑜𝑛 

(2 − √3)𝑅  (2 − √2)𝑅  𝑅  

2

3
(2√3 − 3)𝑟  

2

3
(2√3 − √6)𝑟  

2√3

3
𝑟  

Overlap difference : disks(B) 2𝑅  2𝑅  2𝑅  

Ratio(𝐴: 𝐵) 13.397% 29.289% 50% 

Theorem 4. The apothem 𝑟  created by 𝑛 sided tessellable regular polygon inscribed in a disk of radius 𝑅  is 

𝑟 = 𝑅 𝑜𝑠 (
𝜋

 
). 

Proof. 

Consider Figure 9.  

 
Figure 9. Apothem for regular polygon inscribed in disks 

Let the apothem of an 𝑛 sided regular polygon be 𝑟 . 

Case I: Equilateral triangle 𝐾𝐿 . 

Consider ∆𝑄𝑂   in Figure 9. Then 

𝑐𝑜𝑠 (
𝜋

3
) =

𝑟 
𝑅 

 

                 𝑟 = 𝑅 𝑐𝑜𝑠 (
𝜋

 
) 

Case II: Square 𝑋𝑌𝑍𝑈. 

Consider ∆𝐴𝑂𝑋  in Figure 9 then  

𝑐𝑜𝑠 (
𝜋

4
) =

𝑟4
𝑅 
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            𝑟4 = 𝑅 𝑐𝑜𝑠 (
𝜋

4
) 

Case III: Hexagon 𝐵𝐶𝐷𝐸𝐹𝐺 

Consider ∆𝑀𝑂𝐵, in Figure 9. Then   

 

𝑐𝑜𝑠 (
𝜋

6
) =

𝑟6
𝑅 

 

𝑟6 = 𝑅 𝑐𝑜𝑠 (
𝜋

6
) 

Generally for an 𝑛 sided regular polygon, 

𝑟 = 𝑅 𝑐𝑜𝑠 (
𝜋

𝑛
) 

Theorem 5: The total overlap difference created by 𝑛 sided tessellable regular polygon inscribed in a disk for covering with 

radius 𝑅  is 2𝑛𝑅 *1 − 𝑐𝑜𝑠 (
𝜋

 
)+. Each overlap difference is 2𝑅 *1 − 𝑐𝑜𝑠 (

𝜋

 
)+.  

Proof. 

Let 𝑑  denote the overlap difference of an 𝑛 sided tessellable polygon. We shall prove by induction that when 𝑛 ≥ 3 

theorem 5 is true. 

For 𝑛 = 3;                              𝑑 = 2𝑅 *1 − 𝑐𝑜𝑠 (
𝜋

 
)+.  

      𝑑 = 𝑅     as  shown  in  Table  5. 

For  𝑛 = 4;                     

          𝑑4 = 2𝑅 *1 − 𝑐𝑜𝑠 (
𝜋

4
)+.  

         𝑑4 = (2 − √2)𝑅   as  shown  in  Table  5. 

For  𝑛 = 6;                  

                                          𝑑6 = 2𝑅 *1 − 𝑐𝑜𝑠 (
𝜋

6
)+. 

               = 2𝑅 (1 −
√ 

 
) 

           𝑑6 = (2 − √3)𝑅   as  shown  in  Table  5. 

In telecommunication network design the overlap difference 𝑑  help engineers to estimate before hand the overlap cost 

per choice of tessellable regular polygon. As the overlap difference increase with a decrease in the size of the regular 

polygon. 

Theorem 6: The total overlap area created by 𝑛 sided tessellable regular polygon inscribed in a disks for covering of 

radius 𝑅  is *𝜋 − 𝑛𝑠𝑖𝑛 (
 𝜋

 
)+ 𝑅 

 . 

Proof. 

From Figure 3.8, the area of each overlap difference  is 

∆ = area of disks − 2 ×(area of tessellable regular polygon) 

= 𝜋𝑅 
 − 2 ×

𝑛𝑅 
 

2
𝑠𝑖𝑛 (

2𝜋

𝑛
) 

= 𝜋𝑅 
 − 𝑛𝑅 

 𝑠𝑖𝑛 (
2𝜋

𝑛
) 

∆ = [𝜋 − 𝑛𝑠𝑖𝑛 (
2𝜋

𝑛
)] 𝑅 
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4. Analysis of Results 

Table 1 shows that it is only possible to compute the width of a hexagonal disks covering if either the radius of the disks is 

known or the apothem of the inscribed hexagon. It is also an establish fact that 𝑅 > 𝑟  and as 𝑅  increases the overlap 

difference (width - 𝑑) increases. This is due to the fact that the multiplier (2 − √3) is the least as compared to (2 − √2) 

and 1, hence in a regular tessellable polygon the number of sides increases with a decrease in the overlap difference. Thus, 

as 𝑛 → ∞ for regular tessellable polygon, then 𝑑 → 0. Our study also reveals that the area of a non-tessellable regular 

polygon inscribed in a circle can be calculated using the formula 𝐴 =
 𝑅1

2

 
𝑠𝑖𝑛 (

 𝜋

 
) where 𝑛 is the number of sides and 

𝑅  as the radius of the circle. 

5. Discussion  

Geometry of tessellable regular polygon resulted in hexagonal area of 
 √ 

 
𝑅 
  which approximates closely the area of 

circle than any other tessellable regular polygon for disk covering. This is a 17.3% reduction over the disks area of 𝜋𝑅 
 . 

L’ Hopital’s rule was used to established the fact that the area of regular polygon inscribed in a disk limit to the area of a 

circle as n increases. Hexagon has a segment overlap of 8.655% compared to 18.175% for square and 29.33% for 

equi-triangular tilling in disk covering. Hence hexagon has the least overlap area therefore with least material cost for disk 

covering. Hexagonal tiling as a guide to disk covering is proved to have the least overlap difference of (2 − √3)𝑅  

which is 13.4% over the diameter of the disk. This implies that regular hexagon has the minimum width and therefore is 

the best geometric object for optimal disk covering in a plane A formulae for apothem 𝑟 = 𝑅 𝑜𝑠 (
𝜋

 
) and total overlap 

difference 𝑑 = 2𝑛𝑅 *1 − 𝑐𝑜𝑠 (
𝜋

 
)+ for tessellable regular polygon inscribed in disks for covering were put forward. 

That of the area was found to be *𝜋 − 𝑛𝑠𝑖𝑛 (
 𝜋

 
)+ 𝑅 

 .  

6. Conclusions and Recommendations 

The findings in this study suggest that disks covering using hexagonal tessellation offers an optimal covering area of 

82.7% per disks area. We use both geometry and analytical approach to establish the fact that the area of a regular 

polygon approximates the area of a circle as the number of sides increases. The study also shows a formulae for 

computing the overlap difference and the apothem of tessellable regular polygon inscribed in disks for covering. We 

establish formulae for computing the total overlap area for regular tessellable polygon and it is the first study to 

propound these formulae as well as use both geometry and analysis to establish approximation of regular polygon to 

that of a circle. Geometric disk covering which is an important study in computational geometry, geometric topology 

(rubber sheet geometry) as well as optimization of telecommunication network design can best be achieved in least time 

complexity using hexagonal tessellation.. Therefore, Pure and applied Mathematicians, Computer Scientists as well as 

Telecommunication engineers should not lose sight of this important finding when covering with disks. 
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