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Abstract—We report on the largest experimental study to date in multimodal

2D+3D face recognition, involving 198 persons in the gallery and either 198 or

670 time-lapse probe images. PCA-based methods are used separately for each

modality and match scores in the separate face spaces are combined for

multimodal recognition. Major conclusions are: 1) 2D and 3D have similar

recognition performance when considered individually, 2) combining 2D and

3D results using a simple weighting scheme outperforms either 2D or 3D alone,

3) combining results from two or more 2D images using a similar weighting scheme

also outperforms a single 2D image, and 4) combined 2D+3D outperforms the

multiimage 2D result. This is the first (so far, only) work to present such an

experimental control to substantiate multimodal performance improvement.

Index Terms—Biometrics, face recognition, three-dimensional face, multimodal,

multisample.
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1 INTRODUCTION

STUDIES of multimodal biometrics commonly report that perfor-
mance improves over that of a single modality. However, such
results typically mix effects of: 1) improvement due to multiple
image samples and 2) improvement due to multiple sensing modes.
However, it is not sufficient for the 2D+3D face recognition to show
improvement over single-sample 2D face recognition. Instead, since
2D+3D recognition uses two image samples to represent a person, it
should show improvement over using two 2D samples to be
considered superior. We evaluate a 2D+3D recognition scheme
using this standard to determine how much of the “multimodal
improvement” comes from combining results from different
sensing modes versus simply from multiple images.

Section 2 briefly summarizes some related work in multimodal
face recognition. Section 3 outlines the experimental methods and
materials used. Section 4 presents the experimental results
obtained by different multibiometrics. Last, Section 5 summarizes
and discusses the results.

2 RELATED STUDIES IN MULTIMODAL FACE
RECOGNITION

Various multimodal 2D+3D face recognition schemes are proposed
in [1], [2], [3], [4] and [5], [6] (for additional survey detail on 2D+3D
and 3D face recognition, see [7]). In all of these 2D+3D studies,
using different data sets and algorithmic approaches, the multi-
modal approaches are shown to outperform either mode alone.
However, the comparison is always made between a multimodal
result and a result obtained from one sample from an individual
mode rather than multiple samples from that mode.

An interesting approach in [8] can be classified as “hybrid

multiple biometrics.” Five samples of face and voice were collected

for each person. Two interesting points can be observed from the

results. As the number of probe samples increases, the accuracy

improves faster for face than for speech, and improvement is more

rapid for multimodal samples than for multiple samples of the
same mode.

3 IMAGE SET, RECOGNITION ALGORITHM, AND
MULTIMODAL FUSION

Two four-week sessions were conducted for data collection, with
approximately a six weeks time lapse between the two. The
“gallery” (enrollment) representation of a person is selected from
the earliest session in which valid images were acquired. A
“probe” representation of a person is taken from a later session to
be matched against the gallery for recognition. In our single probe
study, there are at least six and as many as a 14 weeks time lapse
between the gallery and the probe images. In our multiple probe
study, there are as many as seven probe images corresponding to a
given gallery image and there is at least a one week time lapse
between gallery and probe.

For image acquisition, persons stood approximately 1.5 meters
from the sensors, against a neutral gray background. The 3D images
were acquired using aMinolta Vivid 900,1 with either its “Medium”
or “Tele” lens and with the scanner height adjusted to that of the
person’s face if needed. For the 3D images, one central spotlight was
used to light the face (LT) and subjects were asked to have a normal
facial expression (“FA” in FERET terminology [9]) and to look
directly at the camera. Because 3D image acquisition takes more
time, just one 3D image was acquired for each person at each
acquisition session. The 2D images were acquired with a Canon
PowerShot G21 digital camera. Each subject was asked to have one
normal expression (FA) and one smile expression (FB), once with
three spotlights (LM) and a second time with two side spotlights
(LF). A 640� 480 range image is produced by the 3D scanner and
1; 704� 2; 272 color images are produced by the 2D camera. Thus, at
each image acquisition session, each person had one 3D image
acquired (image condition FALT) and four different 2D images
acquired (conditions FALM, FBLM, FALF, and FBLF). See Fig. 1 for
an example.

A total of 275 different persons participated in one or more
sessions. Of these, 198 had two or more sessions of usable data.
Thus, the single probe study has 198 individuals in the probe set,
the same 198 individuals in the gallery and 77 individuals in the
training set. For the multiple probe study, 472 probes are added to
the single probe data set, yielding 670 in total.

Normalization steps for geometry and brightness are applied
to the 2D images. The 2D images are treated as having pose
variation only around the Z axis, the optical axis. Two control
points (1 and 2) at the centers of the eyes are selected manually
for geometric normalization to correct for rotation, scale, and
position of the face, as shown in Fig. 2a. Finally, median filtering
is applied with a 7� 7 kernel. The face region is interpolated into
a 130� 150 template that masks out the background. This scales
the original image so that the pixel distance between the eye
centers is 80. Histogram equalization is applied to standardize the
intensity distribution. This attempts to minimize the variation
caused by illumination changes between images.

Each point defined in 3D space for a range image has a depth
value along the Z-axis. Only the geometric normalization is needed
to correct the pose variation. Four control points are manually
selected to accomplish the task, as shown in Fig. 2b. We
standardize the pose in a 3D face image as follows: A transforma-
tion matrix is first computed based on the surface normal angle
difference in X (roll) and Y (pitch) between manually selected
landmark points (1, 2, and 3 in Fig. 2b) and predefined reference
points of a standard face pose and location. The outer eye corners
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rather than eye centers are used as landmark points because the

eyeball is an artifact-prone region for the range sensor, whereas the

eye corners marked on the skin are more reliable. The landmark

points for the eye corners and the center of chin are used to place

the raw 3D image in a standard pose. Pose variation around the

Z axis (yaw) is corrected by measuring the angle difference

between the line across the two eye points and a horizontal line. At

the end of the pose normalization, the nose tip (point 4 in Fig. 2b)

of every subject is translated to the same point in 3D relative to the

sensor. The geometric normalization in 2D gives the same pixel

distance between eye locations to all faces. This is necessary

because the absolute scale of the face is unknown in 2D. However,

this is not the case with a 3D face image and, so, the eye locations

may naturally be at different pixel locations in depth images of

different faces. The Minolta sensor produces registered 2D and

3D images. Thus, in principle, it is possible to create a fully pose

corrected 2D image by projecting the color texture from the pose

corrected 3D. However, there are missing data points in the

3D image. In an initial study, we found that missing data problems

with fully pose-corrected 2D outweighed the gains from the

additional pose correction [5] and, so, we use the typical Z-rotation

corrected 2D.
Problems with the 3D data are alleviated to some degree by

preprocessing to fill in holes (a region where there is missing

3D data during sensing) and remove “spikes.” The 640� 480 raw

3D image is converted to a 130� 150 range image by the following

process. The outer eye corners, nose tip, and the center of chin are

marked as landmark points on the 640� 480 raw image, as shown

in Fig. 2b. Then, a 21� 21 region around the marked nose tip is

searched to refine the nose tip location, if needed. The refined nose

tip gives the centerline for cropping a 130� 150 region from the

raw 3D image to create a range image from the depth values. The

next step attempts to remove spike artifacts that can occur in the

3D image. The variance in the Z value of the 3D is computed for an

11� 11 window around each pixel. If the variance is larger than a

threshold value, then the current pixel is considered to be part of a

spike artifact and is eliminated, leaving holes in the data. Last,

these holes and any originally occurring holes are removed by
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Fig. 1. Two different sessions acquired in six weeks apart. Four 2D images (left to right: FALM, FBLM, FALF, and FBLF) and one 3D image (rightmost: FALT) of a person

are acquired in each session.

Fig. 2. Landmark (control) points specified in (a) a 2D image and (b) a 3D image.



linear interpolation of missing values from good values around the

edges of the hole. The process of creating the 130� 150 range
image is fully automated after eye, nose, and chin points are

marked. In this experiment, the Mahalanobis cosine distance

metric was used during the matching process [10]. It is our

experience that the Mahalanobis cosine distance metric consis-

tently outperforms other metrics, such as the L1 and L2 norms, for

both 2D and 3D face recognition. The “face space” is created from a

training set of 2D and 3D images for 77 subjects. Initially,
eigenvectors are dropped starting with the one corresponding to

the largest eigenvalue, then the next largest, and so on, and the

rank-one recognition rate for each modality computed each time,

continuing until the rank-one recognition rate drops. The number

of the “top” eigenvectors dropped is denoted as M. Then, a similar

process is followed to drop eigenvectors starting with the one

corresponding to the smallest eigenvalue, then the second smallest,
and so on. The number of the eigenvectors corresponding to

smallest eigenvalues dropped is denoted N. This tuning step is

done separately for the 2D face space and the 3D face space. When

images from all four acquisition conditions for 2D are used for

training, there are 308 training images. Tuning the face space

resulting from these 308 training images gives M ¼ 26 and N ¼ 62

for the 2D image face space, andM ¼ 3 andN ¼ 6 for the 3D image
face space. Previous researchers have reported dropping fewer

than 26 of the largest eigenvectors in tuning the face space.

However, note that the set of training images used here explicitly

incorporates variation in lighting condition and facial expression.

This naturally leads to an increased number of eigenvectors being

dropped among the largest eigenvalues that represent image

variation, yet irrelevant to subject identity.
The multimodal decision is made by combining the match

scores for each person across the different biometrics and ranking

the subjects based on the combined scores. Scores from each

modality are linearly normalized to a range of [0, 100] before

combining. We explore confidence-weighted versions of the sum,
product, and minimum rules in this work. Among the fusion rules

that we tested, the sum rule with linear score transformation

considering weighting scheme provides the best performance

overall. Both the sum rule and product rule consistently show

good performance across different score normalization methods.

The minimum rule, however, shows lower performance than the

others. For each probe, a “confidence” weight is computed for each
modality’s decision, as follows:

weight ¼ distance2 � distance1
distance3 � distance1

;

where distancei is the ith smallest distance from the probe to one of
the gallery elements in the given modality’s space. If the difference
between the first and second distance metric is large compared to
the typical distance, then this value will be large.

4 EXPERIMENTS

Our “baseline” experiment looks at recognition performance from
a single modality (SM), either 2D alone or 3D alone. For each
modality, a single sample (SS) is used to represent a person, both
for enrollment in the gallery and as a probe into the gallery. There
are four possible single-image-per-subject gallery sets for the
2D images (FALM, FALF, FBLM, and FBLF), and one for 3D
(FALT). The same is true of possible probe image sets acquired in a
later session(s). Thus, there are 16 possible recognition results for
2D and one for 3D, summarized in Table 1. Within this experiment,
we found the highest 2D face recognition performance in the case
of using FALM images in both the gallery and the probe set. We
refer to this as “FALM:FALM” where the labels are interpreted as a
match between “GALLERY” and “PROBE.”

Taking advantage of our image acquisition conditions for 2D,
we explore two options for creating the face space for
2D recognition. The first option is that training for the 2D face
space is done with the same image condition as used in the gallery
set. For instance, when FALF images are used in the gallery,
77 FALF training images can be used to create the face space. The
other option is to use all four image conditions in creating the face
space, for a total of 77� 4 images. The rank-one recognition rates
are generally higher in the case of training with the larger number
of images, and these are the values listed outside the parentheses
in Table 1. The recognition rates for the smaller training set with
the uniform image condition are the ones listed in parentheses.

The main result of the baseline experiment is that similar
recognition performance can be obtained using either 2D or 3D in a
single-modality and single-sample (SMSS) scenario. Not surpris-
ingly, we find that recognition performance with 2D images is
generally higher when the gallery and probe images are matched
for image condition (lighting and expression) than when they are
not. The lighting variation used in our image acquisition does not
cause as large a drop in performance as the facial expression
variation. However, because there is no concept of a “unit
variation” across lighting and expression, this does not support
any general conclusion about the relative difficulty of variation in
the two conditions.

The generally higher performance obtained with the larger

training set may be due in part to the larger number of images and

in part to the variation in lighting and expression in the images.
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TABLE 1
SMSS Rank-One Recognition Rates



The relative importance of these two effects is confounded in our

experiment. However, the results may suggest that face spaces

created from training images of diverse conditions show a more

robust performance, especially when the gallery and probe images

conditions cannot be controlled. In either case, because it results in

higher performance, the face space created by using the larger

(varied image condition) training set is used for the remaining

2D experiments.

4.1 Single-Modality and Multiple-Sample (SMMS)

Recognition performance can be improved by increasing the

number of images used to represent a person [11]. Therefore, this

experiment examines the performance that can be gained by a

single-modality and multiple-sample (SMMS) scheme. This SMMS

approach illustrated in Fig. 3 makes a decision based on four

matches when a subject is represented by two images in the gallery

and the probe. With four image conditions available, there are

ð42Þ ¼ 6 ways of choosing two image conditions to use to represent

a person. Thus, we have six possible two-image representations of

a person to use in a gallery and, similarly, six to use for a probe

representation, for a total of 6� 6 ¼ 36 experiments. In these

experiments, the result for a given two-image probe is created by

matching each of the pair of probe images against each of the pair

of gallery images representing each person. This results in 2� 2 ¼
4 individual match distances for each person in the gallery and the

probe is recognized as the gallery person with the minimum sum

of four match distances.

The results of these 36 SMMS experiments are summarized in

Table 2. For one time-lapse probe (pair of images) per subject, the

rank-one recognition rate ranges from a low of 74 percent to a high

of 96 percent. This compares to a range of 61 percent to 91 percent

for the corresponding set of 16 single-sample experiments in

Table 1. It seems clear that this multiple-sample approach results in

a general and substantial improvement over the single-sample

approach. The improvement can be interpreted as coming from the

fact that an individual is represented more robustly by using a pair

of varying-condition images than by using a single image.

Performance generally continues to increase as more than two

images are used to represent a person. When the analogous set of

16 experiments is performed using three images to represent a

person (ð43Þ ¼ 4 choices for gallery and for probe), the rank-one

recognition rates for the single time-lapse probe version of the

experiments ranges between 92 percent and 96 percent. We can

also perform a single experiment in which we use all four images

to represent a person in the gallery and as a probe. For this

experiment, the rank-one recognition rate is 96 percent. Thus, for

the size and composition of data set that we use, performance

improvement appears to plateau at about the range of using four

images to represent a person.

4.2 Multiple-Modality and Single-Sample (MMSS)

In this experiment, a person is represented by the combination of a

one 2D image and one 3D image. The two images that represent a

given person in the gallery are restricted to come from the same

acquisition session, and the two images that represent a person as a

probe are restricted to come from a later session. The result for a

given two-image probe is created by matching the 2D probe image

against each of the 2D gallery images, matching the 3D probe

image against each of the 3D gallery images, and taking the sum of

two normalized match distances.

The results of these experiments are summarized in Table 3. For

one time-lapse probe per subject, the rank-one recognition rate

ranges between 90 percent and 97 percent. This compares to a
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TABLE 2
SMMS Rank-One Rates in 2-Gallery and 2-Probe Mode

Fig. 3. SMMS decision based on four matches—two subject images for gallery and for probe.



range of 74 percent to 96 percent (see Table 2) when using two

2D image samples to represent a person, and 61 percent to

91 percent (see Table 1) when using a single 2D image. For a more

detailed comparison of SMMS with two 2D images and MMSS

with one 3D image and one 2D image, consider a smaller set of

results with matched image conditions. The four MMSS single-

probe results that have “FA**” in both gallery and probe in MMSS

(Table 3) all achieve 95 percent recognition. This is higher than 23

of the 25 SMMS results listed in Table 2 that have “FA**” in both

the gallery and probe, which range from 86.4 percent to

95.5 percent. Thus, it seems clear that multimodal 2D+3D face

recognition achieves real improvement over 2D face recognition,

even when the comparison is controlled for the number of image

samples used to represent a person. However, it also appears

possible that multisample 2D face recognition using a larger

number of samples could achieve performance essentially equiva-

lent to multimodal single-sample 2D+3D.

4.3 CMC and ROC Curves

The cumulative match characteristic (CMC) curves in Fig. 4a are

created from the results of the one-or-more-time-lapse-probe

versions of the experiments, in order to sample finer differences

in recognition rate. The best rank-one correct identification rate for

the baseline SMMS scheme is 94.4 percent, versus 97.5 percent for

the MMSS scheme. The result of McNemar’s test [12] for

significance of the difference in the rank-one match between the

integrated biometrics (both MMSS and SMMS schemes) and either

the 2D face or the 3D face alone shows that multimodal

performance is significantly greater (� ¼ 0:05). However, we found

no significant difference between 2D alone and 3D alone in SMSS

recognition.
To present the results in the context of a verification scenario,

the False Acceptance Rate (FAR), False Rejection Rate (FRR), and
Equal Error Rate (EER) are summarized in the ROC curve in
Fig. 4b. Similar to what the ROC curves show, the multimodal
approach (0.019) achieves significantly lower EER than either
SMSS approach (0.043 for 2D, 0.045 for 3D) and the multiple-
sample 2D approach (0.048) performed close to single-sample 2D,
but not as good as multimodal in verification mode.

The EER of 3D SMSS shows very similar accuracy to that of
2D SMSS. However, the 2D rank-one match rate is greater than the
3D rank-one match rate, as shown in the CMC curves. It is
important to note that the results presented in EERs should be
carefully analyzed because the EERs represent only one operating
point on the ROC curves for the comparison. The operating points
in the function of FAR and FRR will be changed to meet the
requirements of an application.

5 DISCUSSION

We have presented results from the largest experimental study to
date of 3D and multimodal 2D+3D face recognition, with
198 persons in the gallery. We present results for 1) recognition
with one time-lapse probe per person, for 198 probes, and
2) recognition with as many time-lapse probes as are available
for each person, for 670 total probes. For each image acquisition
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TABLE 3
MMSS Rank-One Recognition Rates

Fig. 4. Baseline CMC and ROC performance of the multiple probe study. (a) Performance rates in CMC. (b) Performance rates in ROC. SMSS result with FALM:FALM,

SMMS result with FALM–FALF:FALM–FALF based on four matches, and MMSS result with FALM–FALT(3D):FALM–FALT(3D) for a multiple probe study are reported.



session, multiple 2D images were acquired under different lighting

and facial expression conditions. Therefore, we are able to consider

2D recognition results over a range of experimental conditions.
Our results support four basic conclusions:

1. Similar recognition performance is obtained using a single

2D image or a single 3D image.
2. Multimodal 2D+3D face recognition performs significantly

better than using either 3D or 2D alone.
3. Combining results from two or more 2D images using a

similar fusion scheme as used in multimodal 2D+3D also

improves performance over using a single 2D image.
4. Even when the comparison is controlled for the same

number of image samples used to represent a person,

multimodal 2D+3D still outperforms multisample 2D,

though not by as much; also, it may be possible to use

more 2D samples to achieve the same performance as

multimodal 2D+3D.

For item 1, about the relative power of 2D and 3D for face

recognition, the conclusion should be interpreted cautiously. Our

results reported here use the same basic recognition engine for

both 2D and 3D. It is possible that some other algorithm that

exploits information in 2D images in some ideal way that cannot be

applied to 3D images would result in 2D face recognition being

more powerful than 3D face recognition, or vice-versa.

Overall, we are led to conclude that improved face recognition

performance will result from 1) the combination of 2D+3D imaging

and also 2) representing a person by multiple images taken under

varied lighting and facial expression. Both of these topics should

be the subject of substantial additional future work. The topic of

3D face recognition has been only lightly explored so far [7]. The

topic of multiimage representations of a person for face recognition

is even less well explored. Also, we should note that the results

reported in this paper are obtained using manually marked eye

locations. Thus, these are in a sense “best possible” results since an

automatic eye-finding procedure is almost certain to introduce

errors. Algorithms for automatically locating landmark points on

the face is another area in which more research is needed.

Currently, 3D scanners do not operate with the same flexibility

of conditions of lighting, depth of field, and timing as normal

2D cameras. Thus, 3D face imaging requires greater cooperation on

the part of the subject. Also, some 3D sensing technologies, such as

the Minolta, are “invasive” in the sense that they project light of

some type onto the subject. Clearly, another important area of

future research in 3D face recognition is the development of better

3D sensing technology.

The image data set used in this research is available for

noncommercial research use. See http://www.nd.edu/~cvrl for

additional information.
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