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ABSTRACT

A review of constitutive models for the finite deformation response of rubbery materials is given. Several recent
and classic statistical mechanics and continuum mechanics models of incompressible rubber elasticity are discussed and
compared to experimental data. A hybrid of the Flory—Erman model for low stretch deformation and the Arruda-Boyce
model for large stretch deformation is shown to give an accurate, predictive description of Treloar’s classical data over the
entire stretch range for all deformation states. The modeling of compressibility is also addressed.
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I. INTRODUCTION

The macromolecular network structure of elastomeric materials enables these materials to un-
dergo large strain, nonlinear elastic deformations. The underlying structure is essentially one of
randomly oriented, long chain molecules in a network arrangement due to sparse cross-linking
between the long molecules; furthermore, the intermolecular interactions are weak. The nature
of this structure results in a stress—strain behavior that is primarily governed by changes in con-
figurational entropy as the randomly-oriented molecular network becomes preferentially-oriented
with stretching. The basic features of the stress—strain behavior have been well-modeled by sta-
tistical mechanics treatments of rubber elasticity (for example, see Treloar! for a review) as well
as by invariant-based and/or stretch-based continuum mechanics theories. In the last ten years,
developments in computational mechanics, specifically in finite element analysis, have enabled
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three-dimensional, large strain analysis of complex elastomeric products to be an integral com-
ponent of the design process. These developments have fueled the more critical assessment and
further development of constitutive models of rubber elasticity since the need for predictive, three-
dimensional models of the stress—strain behavior is a critical aspect in any numerical simulation
of complex deformations. In this paper, we provide a review of constitutive models of rubber elas-
ticity where both statistical mechanics and continuum mechanics approaches are discussed. The
stress—strain responses as predicted by the various models are then compared to data as well as to
one another.

I1. STATISTICAL MECHANICS TREATMENTS
An excellent review of the development of statisical mechanics treatments of rubber elasticity
is given in Treloar'; therefore, only basic aspects are provided here. The statistical mechanics ap-
proach begins by assuming a structure of randomly-oriented long molecular chains. In the Gaussian
treatment2-3 the distribution of the end-to-end length, r, of a chain is given by P(r):

Pry =dn (= g - i
=4 gmaiz) P\ 22 M

where 7 is the number of links in the chain and [ is the length of each link. The average initial chain
length, L,, is given by the root mean-square value ofr:

1
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When deformation is applied, the chain structure stretches and its confi gurational entropy de-
creases. If one considers the deformation of an assembly of N chains by a principal stretch state
(M, A2, A3) and the deformation is such that the chain length r does not approach its fully extended
length nl (r <« nl), then the elastic strain energy function, Wg, can be derived from the change in
configurational entropy and is found to be:

1
W = iNkQ(A:f +33+15-3) )

where k is Boltzmann’s constant and  is absolute temperature. The stress—stretch relationship is
then found by differentiating the strain energy function with respect to the stretch (see Appendix).

The derivation of Equation (3) relies on r remaining significantly less than the fully extended
length, nl, during the entire deformation. Atlarge deformations, the observed stress—stretch behavior
departs significantly from that predicted by the Gaussian model. At deformations where r begins
to approach nl, the non-Gaussian nature of the chain stretch must be taken into account. These
effects begin to be apparent at approximately r/nl = .40. Kuhn and Griin* accounted for the finite
extensibility of chain stretch using Langevin chain statistics which account for the effect of the
relative chain length, r/nl, on the configurations available to the chain. The resulting non-Gaussian
force—extension relationship for a chain is given by:

KO r N KO (A
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where the inverse Langevin function, £~ (ﬁ), is defined as follows:
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To incorporate these more accurate individual chain statistics into a constitutive framework, it
is necessary to have a model that relates the chain stretch of individual chains to the applied
deformation,; this is accomplished by assuming a representative network structure.

Four network models are shown in Figure 1. The unit cell used in each of these models is taken
to deform in principal stretch space. The models differ in how the deformation of the chains is
related to the deformation of the unit cell. We further note that the cell deformation is usually
approximated to be incompressible since the bulk modulus of an elastomer is orders of magnitude
larger than the shear modulus; the effects of compressibility will be discussed separately later.

In the “3-chain” model,’ the chains are located along the axes of the initially cubic cell. The
chain deforms affinely with the cell and the stretch on each chain will then correspond to a principal
stretch value. The resulting strain energy function is given by:

L
s
G

FIG. 1. ~— Schematic of (a) 3-chain network model, (b) 4-chain network model, (c) 8-chain network model, and (d)
full network model. Each model is depicted in its undeformed state, in uniaxial tension, and in equi-biaxial tension.
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where g; = £ (—%) fori =1,2,3.

In the four chain tetrahedral model,®7 four chains are linked together at the center of a right
regular tetrahedron. The tetrahedron deforms according to the imposed deformation and the chains
deform accordingly with the interior junction point displacing in a non-affine manner such that
equilibrium is satisified. This network structure provides a more cooperative network deformation
than the 3-chain network as the chains stretch and rotate with tetrahedron deformation. Due to
the non-affine displacement of the interior junction point, the relationship between the stretches of
individual chains in the network to the applied stretch is a function of stretch and obtained iteratively
in order to satisfy equilibrium. Therefore, a simple expression for the strain energy function in terms
of applied stretches is not provided here.

In the “8-chain’” model of Arruda and Boyce,&g the chains are located along the diagonals of the
unit cell and deform with the cell. Due to the symmetry of the chain structure, the interior junction
point remains centrally located throughout the deformation and the stretch on each chain in the
structure is found to be the root mean-square of the applied stretches:

i |
i 2
Achain = (g(xf + 23+ x%)) (8)

This results in a very simple expression for the strain energy function:
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In the 8-chain representation, the chains undergo tensile stretching for all imposed deformations
and also rotate towards the principal axis(es) of stretch mimicking in an average sense what would
be expected in the cooperative deformation of a real network.

In the full-network or total assembly of chains model,!%!! the chains are assumed to be ran-
domly distributed in space and to deform in an affine manner. The strain energy function is found
by integrating over the stress-stretch response of all chains r in Figure 1. This integration is com-
putationally intensive; Wu and van der Giessen have found the integration over all chains to be well
approximated by a weighted average of the 3-chain and 8-chain models.

The Gaussian model and the non-Gaussian 3-chain and 8-chain network models are compared
to the data of Treloar in Figures 2 through 4, respectively. The Treloar data provides the nominal
stress_stretch behavior for an elastomer in uniaxial tension, pure shear, and equibiaxial tension.
These data clearly show the state-of-deformation dependence of the stress—stretch behavior. All
models are fit to uniaxial extension data and their predictive capability is then assessed on the shear
and biaxial data. The Gaussian statistics model is found in Figure 2 to provide a reasonable model
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FIG. 2. — Comparison of the nominal stress—stretch FiG. 3. — Comparison of the nominal stress—stretch
behavior of the Gaussian statistics model to Treloar data behavior of the 3-chain network model to Treloar data
in uniaxial tension, pure shear, and equibiaxial extension; in uniaxial tension, pure shear, and equibiaxial tension;
Nk = 32 MPa, Nké = .27 MPa, n = 82.

of the stress—stretch behavior up to moderate stretches where the non-Gaussian behavior of the real
material becomes evident and the model then departs significantly from the data.

The non-Gaussian 3-chain network model results are shown in Figure 3.2 The model is found
to capture the non-Gaussian nature of the stress—stretch behavior in uniaxial tension. However,
although the model captures a small state-of-deformation dependence of the behavior at small
stretches, it predicts nearly identical stress—stretch behavior for all deformation states at large
stretches thus failing to predict the data. The 3-chain model predictions are dominated by the
contribution of the chain(s) which lie along the maximum principal stretch direction(s). Therefore
it does not effectively sample the network response of the underlying structure, but only the response
of the chain lying along the maximum stretch direction. The 4-chain network model was found to
perform better than the 3-chain model (see Arruda and Boyce?) since the chains deform in a more
cooperative manner; however, it still fails to predict the biaxial data. '

Results for the non-Gaussian 8-chain model are shown in Figure 4.° The 8-chain model is found
to predict the significant differences between equibiaxial tension and uniaxial tension. The chains
in the 8-chain network deform in a cooperative manner where the chains are found to extend with
any imposed deformation and rotate toward the maximum principal stretch axis(es). The chain
extensions are found to be equal to the root mean-square of the macroscopic principal stretches.
This model appears to capture the effective behavior of a complicated network response in a very
simple way (see Bergstrom and Boyce!2). ' :

The behaviors of the 3-chain, 8-chain and full-network models have been compared to uniaxial
extension and biaxial extension data of James and Guth!? in Wu and van der Giessen.” Each
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FIG. 4. — Comparison of the nominal stress—stretch behavior of the 8-chain network model to Treloar data in uniaxial
tension, pure shear, and equibiaxial tension; NkO = 27 MPa, n = 26.5.

model was fit to the uniaxial data and its predictive capability assessed on the biaxial data. The
3-chain model behaves in the same manner as found in the Arruda and Boyce” study, failing to
predict the biaxial data. The 8-chain model was found to be predictive of the biaxial data and,
indeed, to provide a better prediction than the full network model. The full network model predicts
a biaxial stress—stretch response that falls between that predicted by the 8-chain and that predicted
by the 3-chain model. The somewhat surprising lack of success of the full network model lies in its
assumption of affine deformation of all chains in the non-Gaussian regime. In areal network, chains
which lie along the maximum principal stretch direction would begin to stretch less with continuing
deformation once they begin to approach their limiting extensibility; at that point, other chains in
the network will stretch more than that predicted by affine deformation in order to accommodate the
total applied stretch. Therefore, the affineness of chain deformation will be lost. The full network
model assumes affine deformation of all chains and therefore, at large stretches, the contribution
to the stress—stretch behavior from chains along the principal stretch direction is overestimated.
We note that the 8-chain model does not assume affine deformation of all chains, but captures an
effective network response. v

While the models based on non-Gaussian statistics capture the effects of the limiting exten-
sibility of the chain stretch on the stress—stretch behavior at large stretches, they do not account
for discrepancies between data and Gaussian statistical mechanics models at small to moderate
deformation (i.e., discrepancies when r/nl < 1.0). The departure from Gaussian theory at small
to moderate stretches was first clearly highlighted in Mooney plots of data as will be discussed in
more detail in the next section. There have been several modeling attempts to capture the departure
of real data from the Gaussian statistics predictions at small stretches by augmenting the Gaussian
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statistics model. One illustrative attempt is the constrained network model of Flory and Erman.'#
Flory and Erman'# consider a network in which the chain junction points are constrained from a
phantom characteristic via interactions with other chains. The elastic strain energy of the network
is found from the sum of phantom and constraint contributions:

Weg = Wy + W, (11

where W, of phantom Gaussian chains is

1
W = Eskew + A2+ 232 = 3) (12)

Note that Equation (12) differs from the Gaussian model, Equation (3), by the parameter £ where

g:(l-—%)N (13)

The parameter N is the chain density and ¢ is the number of chains meeting at a junction. When ¢
=4 the junction is tetrafunctional and the strain energy of the phantom network in Equation (12) is
one-half of the Gaussian strain energy in Equation (3). The contribution of constraints to the strain
energy is given as:

1
We = > Nko Y [Bi+Di — In (B +1) — In (D; + 1] (14)
2L
where
B =12} — D(A2 4 )2 ; (15)
D; = A%7B; (16)

and where « is a measure of the strengths of the constraints which depends on the relative sizes of
free (phantom) fluctuations and actual constrained fluctuations. This constrained network model
depends on the parameters N, ¢, and «. In it k — oo for completely: constrained junctions and
k => 0 in the phantom chain limit; N can take on any large positive value and ¢ must be greater
than two.

The Flory and Erman model is compared to Treloar’s data in Figure 5. For the Flory and Erman
model the network is assumed to be tetrafunctional and ¢ = 4is used. If the Flory and Erman model
were to be simulated with the same value of N as was used in the Gaussian simulations of Figure 2
the response would approach one-half of the Gaussian response as k. — 0. Here the best overall fit
tothe data is sought in the small stretch regime to illustrate the utility of the Flory and Erman model
in capturing the precise shape of the initial nominal stress versus stretch response, Figure 5(a). The
parameters chosen for uniaxial tension are used in the prediction of the equibiaxial response. The
Flory and Erman model predicts the small stretch response in equibiaxial extension quite well. In
Figure 5(b) we see that at large stretches the Flory and Erman model deviates markedly from the
actual response as the Gaussian statistics reach the limit of their applicability, thereby highlighting
the need for non-Gaussian terms in the strain energy function. Indeed, the combination of the highly
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FIG. 5. — Comparison of the nominal stress—stretch behavior of the Flory—Erman constrained chain model to the

Treloar data. Flory-Erman: Nk = .68 MPa, ¢ = 4, « = .55.

tailorable Flory and Erman model for small stretches with the eight chain model for the large stretch
response and deformation state dependence would be expected to describe the data over the entire
extensibility range in a more precise manner than any of the models presented. Figure 6 examines
the result of replacing the phantom strain energy in Equation (11) with the non-Gaussian eight
chain strain energy of Equation (9). The equibiaxial prediction is improved especially in the small

stretch region.

III. INVARIANT-BASED CONTINUUM MECHANICS TREATMENTS

Most continuum mechanics treatments of rubber elasticity begin with the fundamental basis of
continuum mechanics for an isotropic, hyperelastic material which is that the strain energy density

must depend on stretch via one or more of the three invariants, f;, of the stretch tensor:

L= 243+

L o= A% 42325 + AT
27252

I = AA3A5

a7

As indicated earlier, the elastomer is often approximated to be incompressible; thus /3 is taken
tobe constant and equal to 1.0 and does not contribute to the strain energy. As proposed by Rivl in,1
one general representation of W is given by,
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FIG. 6. — Comparison of the nominal stress—stretch behavior of the combined Flory and Erman constraints and the
eight chain model to the Treloar data.

o] .
We = D Cyj(li —3)' () = 3)] (18)
i, j=0

where C;; are material parameters. When only the first term is retained, one obtains,

WnNn = Cio(I; - 3) (19)

which is often called the neo-Hookean model. Note that Equation (19) is the continuum mechanics
equivalent to the Gaussian model presented in Equation (3) where Cjg = %N k6.

- By keeping the second term of the Rivlin expression, the equation first derived by Mooney!© is
obtained: : :

WMmr = Cio(l1 —3) + Co1 (I — » (20)

This model is often referred to as the Mooney-Rivlin model and has been extensively utilized in
studies of elastomer deformation. Mooney arrived at Equation (20) by determining an expression for
the strain energy that would provide a constant modulus in shear (a modulus that did not depend on
the shear strain). The popularity of the Mooney-Rivlin model is perhaps due to its apparent success
in capturing deviations from the Gaussian/neo-Hookean model in uniaxial tension as demonstrated
in Mooney plots. : '
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A Mooney plot is an alternative method for plotting the nominal stress—stretch behavior. For
uniaxial loading (tension or compression) the nominal stress (f)—stretch (1) behavior for the neo-
Hookean/Gaussian model is given by:

£ =2C100. - %) @)

and, for the Mooney—Rivlin model, is given by:

1

Coy
=2(C _— S
f=2(Cpo+ A)(k v

) (22)
A Mooney plot graphs the quantity of reduced stress f/(A — ;‘«,) as a function of (1/A). A material
obeying Gaussian statistics would appear as a straight line of zero slope on a Mooney plot. Several
investigators have shown that plotting uniaxial tension data on a Mooney plot yields a straight
line of non-zero slope in the small to moderate stretch range thus supporting the Mooney-Rivlin
model.} 151718 (1t is also interesting to note that the slope of the linear regime decreases with
swelling. This decrease suggests that the deviation from Gaussian behavior is due to interactions or
constraints of neighboring chains, consistent with the Flory~Erman introduction of a strain energy
term associated with network constraint. Also, the stretch at which the Mooney plot becomes
nonlinear [i.e., exhibits an upturn] is found to decrease with swelling, consistent with the non-
Gaussian aspect of chain stretch.) Figure 7 depicts the Mooney plot for the uniaxial tension data
of several rubber materials showing the linear behavior at small to moderate tensile stretches
(5 < % < 1) and the “up-turn” at larger stretches (% < .5) indicating the non-Gaussian regime.
The rubber materials in Figure 7 include (1) Mullins’ data'® on five rubbers (a—e) with varying
crosslink density where each shows the linear behavior followed by the up-turn and illustrate that
the up-turn occurs earlier for the more highly crosslinked materials; (2) the Treloar tension data
(f) presented in the earlier stress—stretch plots which also show the nearly linear behavior at small
stretches and the up-turn in the Mooney plot at large stretches; and (3) Rivlin and Saunders data
(g)?'0 for a rubber in tension as well as in compression. We note that the Rivlin and Saunders data
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FiG. 7. — Mooney plot of uniaxial tension force extension data of ﬁvg e!astomers of increasing crosslink density from
(a)to (e).19 Curve (f) data are from Treolar® and curve (g) data are from Rivlin and Saunders,20 Reprinted from L. Mullins,
J. Appl. Polym. Sci. 2,257 (1959) by permission of John Wiley & Sons, Inc.
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show that the linear behavior observed in the Mooney plot tensile data is not sustained as one
goes from tension to compression. More recently, it has been shown (see, for example, Arruda and
Boyce®?) that the Mooney-Rivlin model can potentially grossly overestimate stresses at moderate
to large deformations in different deformation states, further highlighting the deficiences of this
model.

Figure 8 depicts the stress-stretch behavior of the Mooney-Rivlin model compared to the Treloar
data. A best fit to the uniaxial tension data results in a far too stiff prediction of the biaxial data
even with a Coy coefficient one-order of magnitude lower than the C1q coefficient as is typical in
Mooney—Rivlin fits. The gross errors arise due to the high values of I in biaxial stretching states
(such as occur in biaxial tension or uniaxial compression). Indeed, Rivlin and Saunders2? suggested
that Cy; should not be constant, but should be dependent on /5, decreasing with increasing /5.

Working within the continuum mechanics framework for the strain energy function as proposed
by Rivlin, Equation (18), several investigators have used higher order terms in /1 and, in some
cases, [, to account for the departure from neo-Hookean/Gaussian behavior at large stretches. One
model of this type is the Yeoh model?':

Wy = Cio(J; = 3) + Coo (11 — 3) + Cy(1; — 3)° (23)

Using the higher order [; terms in the strain energy function has been shown to work well in
capturing different deformation states at moderate to large deformations. An alternate high order
I} model has recently been proposed by Gent?? and takes the form:
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FiG. 8. — Comparison of the nominal stress—stretch FIG. 9. — The Gent model and the Arruda-Boyce 8-chain

pchavior of the Mooney-Riviin model to the Treloardatamodel compared to one another and to Treloar data in uniaxial
in uniaxial tension, simple shear, and equi-biaxial ten-. . tension and equi-biaxial tension; Gent: E = .81 MPa, Jy,. =
sion; Cg = .16 MPa, C; = 0.015 MPa. ) 101.



MODELS OF RUBBER ELASTICITY 515

E ,
WGent = “"6‘]1'1 [l - H{L] (24)

where J; = (I} — 3), E is the small strain tensile modulus, and Jy denotes a maximum vahie
for J1 where as J; approaches Jy the material approaches limiting extensibility. As discussed in
Boyce,?? the natural logarithm term in the Gent model can be expanded to yield the following
expression for the strain energy:

Weent = %[([1”3)+ ‘fjl;;(ll —3)? -3—1—1;’7([1 —3)3 4

1
g (=3 (25)

which is a form of the Rivlin expression, Equation (18), with all coefficients, Cio, now related to
the two properties E and Jy,.

Indeed, as discussed in Arruda and Boyce,&9 it is interesting to observe that the strain en-
ergy expression for the 8-chain model, Equation (9), is /;-based since it is a function of chain
stretch, Achain, Which is equivalent to /1 /3. Equation (9) can be expanded to polynomial form to
give:

Ween = NKO [%(11 =3+ 55 U7 =D+ ez U — 27

04 51945
+ 5500, (T — 8D + grzsga ([T — 243) + - - } 26)

which can be re-written in a general invariant-based form as:

W=Y Ci(l{=3) 27

i=1

where the C; are all determined a priori as functions of the material properties n and N. Boyce?
showed how the Gent model, Equations (24) and (25), is essentially equivalent to the 8-chain model.
Figure 9 depicts the predictions of the Arruda-Boyce and the Gent models compared to Treloar
data; both models were fit to the uniaxial tension data and the biaxial tension model results are
predictions. The Treloar data and model predictions are presented at smatl and moderate stretches
to highlight the model similarities. The models are shown to provide similar results and both are
found to be predictive.

Therefore, the success of the higher order /; continuum mechanics models is due to their
mimicking the physics of successful non-Gaussian statistics models thus providing the connection
between the higher order continuum models and the statistical mechanics models (similar to the
neo-Hookean model being equivalent to the Gaussian model).

One caution regarding the use of phenomenological higher order 7, continuum mechanics mod-
els is that the constants chosen must result in physically realistic and stable constitutive responses
in all deformation states. The Drucker stability criterion requires that the tangential stiffness matrix
(or Hessian) be positive definite.”* The Hessian may be written in terms of the strain energy density
as:

2w
38,’j38k[

Hiju = (28)
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where ¢;; is the strain. One judicious choice for stable model constants would be to choose all
coefficients to be positive-valued. Johnson et al.2* showed that for a third-order Rivlin polynomial
strain energy function the coefficients must be positive-valued for Drucker stability to be achieved.
Such a choice may be overly restrictive in some continuum mechanics models. Przybylo and
Arruda?® recently demonstrated that restricting coefficients to be stable in higher order I; models
reduces the quality of the fit to experimental data. The constants in the statistical mechanics models
and the model of Gent are unconditionally stable.

IV. STRETCH-BASED CONTINUUM MECHANICS TREATMENTS

Strain energy density functions based on the principal stretches as opposed to the stretch in-
variants have also been proposed by several investigators. Valanis and Landel?’ proposed a model
whereby the strain energy is a separable function of the principal stretches:

3
Wye =) w() (29)

i=1

The three functions w(2;) are all of the same form although a specific analytic expression for the
form of the w(2;) was not given. The model did not contain adjustable parameters per se. The
functions w(A;) are experimentally obtained. Biaxial tests in which one stretch is held constant
while another is varied are used to experimentally characterize the data as (Ai, w(A;)) pairs for A;
=constant, j # i.

Following a similar approach, Ogden®® proposed a specific form for the strain energy function
in terms of principal stretches: '

W(} — Z !’.L_Zl_ ()"?” + )\‘gn + }L(’;n . 3) (3())

Ay

in which the y, and &, are constants and may have any value including non-integer values. The
degree of the sum may be adjusted as needed to fit the data at hand. The model easily lends
itself to be tailored in this manner; reasonable fits to data have been achieved by Ogden?® for
n = 3 in which case the minimum number of independently adjustable parameters is. six. Twizell
and Ogden?® consider stability of Equation (30) which leads to u,c, > O for all n. They use a
Levenberg-Marquardt non-linear least squares optimization algorithm to find stable constants for
n = 3 and n = 4 and find improved fits to data as n increases. Przybylo and Arruda®® show for
n = 1 and n = 2 the quality of fit to experimental data is reduced when the constants are restricted
by stability considerations.

V. EFFECTS OF COMPRESSIBILITY

Although rubber elastic materials are generally considered to be incompressible, in reality they
are only nearly incompressible, and the most accurate constitutive models will include compress-
ibility. A practical application for rubber elastic constitutive models is their implementation into
finite element codes to simulate complex deformations. A compressible material model helps to
avoid the numerical problems inherent in incompressible formulations. There are also numerous
elastomeric products that perform under confined conditions where the bulk response is important.

Compressible forms of the strain energy function W have traditionally been developed in one
of two ways (see, for example, Ogden,*® Fried and Johnson,?' and, more recently, Anand.32)
Both begin by removing the incompressibility restriction that J = 1 where J is the volume ratio,
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F1G. 10. — Uniaxial stress versus stretch and volume change versus stretch data from Penn,? and corresponding fit
using Equations (33) and (34) with n = 40, Nk6 = 47 MPa, B = 1.0 x 10° MPa, and o = 4.

J = 4/I5. One approach assumes the strain energy is a separable function of a deviatoric strain
energy and a hydrostatic strain energy.

W =Wp (I, b)+ Wgu(J) (31)

where I} and I are invariants of the deviatoric stretch tensor, [y = J =231, I, = J=%/3[,. Other
compressible formulations append a bulk strain energy term to an existing strain energy form,

W=W,(, L J)+ Wp(J) (32)

In this formulation both terms on the right side of the equation contain contributions due to the
volume change. The second term of both Equation (31) and (32) is considered to arise due to
changes in internal energy whereas the first term arises from changes in configurational entropy.
It is the second term in Equation (32) that captures the very stiff nature of the bulk modulus when
compared to the shear modulus.

Penn?3 argued that a compressible strain energy function of the form Equation (31) cannot
qualitatively capture experimental data from both hydrostatic and uniaxial tension experiments,
even at small deformations. Recently Ehlers and Eipper** echoed Penn’s conclusion by examining
the transverse deformations predicted by models of the type, Equation (31), and finding them to
be unphysical at large deformations. Compressible model development would benefit from data
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exploring the volume changes on deformation, however, very little experimental data exist in the
literature.

Dilatometer tests were used by Penn®> to measure volume change during uniaxial extension.
These data are available for relatively small deformations and are reproduced in Figure 10 as stress
and volume change versus stretch. The volume change is observed to increase at a decreasing rate
with continued uniaxial deformation.

Pressure versus volume data during hydrostatic compression tests have been obtained by Adams
and Gibson,* and by Bridgman.*® Both groups obtained these data by placing specimens in a fluid
bath inside a cylinder and piston apparatus and pressurizing the cylinder by displacing the piston.
The experimental results appear in Figure 11. For relatively large hydrostatic deformations (J = .8),
the pressure versus volume change response of elastomers is seen to be highly non-linear indicating
that a Wy (J) type term in an equation of the form of Equation (32) would be nonlinear in J.

Recently Bischoff et al.’” proposed a compressible model based on the 8-chain strain energy
function that follows the form of Equation (32),

W = NKO/R | Betuinenain + v/ In (-f—“——- L (-1—)] FWo()  (33)
sinh Benain 3 J

where B, = L1 {1 /n } Bischoff et al.3’ show that additional restrictions owing to stability and
physically realistic volume changes (see Ogden® for a discussion of these) result in a complicated
form for Wy (J). They examine the form

B
Wp(J) = — {cosh[a(J — )] - 1} : (34)
a
which satisfies all restrictions on the compressibility and gives a bulk modulus at A 1-=1of
B+2 N{fﬁ Thus B must be much larger than the rubbery modulus, N#. The constant « is adjusted
to fit data of the type in Figures 10 and 11.
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FIG. 11. — Hydrostatic compression data for materials Koroseal®and Goodrich D-402 reproduced from Bridgman30
and rubber “A” reproduced from Adams and Gibson.>> Equation (33): 2 = 20 and Nk6 =411 kPa for all three materials.
Equation (34): rubber “A”, B = 7.2 GPa, a = 14; Goodrich, B = 5.3 GPa; « = 14; and Koroseal, B = 4.3 GPa, o = 13.
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This model is compared to the experimental volume versus deformation data in Figures 10
and 11. In Figure 10 stress and volume are plotted versus uniaxial stretch with model predictions
using stress derived from Equations (33) and (34) (see Appendix). In Figure 11 the hydrostatic
stress versus volume ratio simulations are plotted for three materials along with the data of Adams
and Gibson>® and of Bridgman.3® The model is capable of accurate description of the entire non-
linear pressure versus volume response of rubber materials in hydrostatic compression as well as
the volume change and stress during uniaxial tension. The Bischoff et al.3’ non-linear energetic
compressibility function model is compared in Figure 12 to a linear energetic compressibility
function

Wy (J) = gu —1)? (35)

that contributes B(J — 1) to the pressure in a hydrostatic test. Both energetic compressibility
functions are shown against the hydrostatic Goodrich D-402 data from F igure 11. Nonlinearity in
the compressibility is clearly needed at finite volume changes which the Bischoff et al.3” model
provides.

In the Gaussian range Equation (33) reduces to

Nko
2
which is the Gaussian strain energy of Equation (3) plus additional compressibility terms from
entropy considerations (Nk6 In(1/J)) and internal energy considerations (Wp(J)). It is shown in
Bischoff et al.3” that the Nk6 ln} term is entropic in origin and may be derived by including
volume changes in the classical Gaussian treatment. As discussed earlier, volume changes have
been traditionally neglected in the configurational entropy calculation leading to Equation (3) (see,
for example, Treloar!), although Wall and Flory*® and Flory*%#! have previously reported a similar

entropic term.

1
W = M2+ 222+ 232 = 3) £ NkfIn (7) + Wy (J) (36)

®  Goodrich D-402 Data
non-linear theory
2.5 4
«= =~ — - linear theory
24
=
G 1s
A
1 N
0.5 A
0 Y -
0.75 08 0.85 0.9 0.95 1

J

FIG. 12. — Hydrostati¢ compression data for Goodrich D-402 reproduced from Bridgman3® versus non-linear and
linear energetic compressibility functions. The non-linear model constants used above are the same as those used previously
in Figure 11. Linear: B = 5.3 GPa. :
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VI. CONCLUSIONS

The constitutive modeling of the stress—strain behavior of rubber elastic materials has been
reviewed. It has been found that developments in statistical mechanics approaches have enabled
predictive modeling of the three-dimensional stress—stretch response of elastomers. Statistical me-
chanics models which account for the non-Gaussian nature of the molecular chain stretch together
with an effective or representative network structure such as the Arruda—Boyce 8-chain model
appear to provide the most predictive model of the larger strain behavior under different states
of deformation, Furthermore, the physically based foundation of the non-Gaussian statistical me-
chanics network models provides a constitutive law that requires only two material properties—the
network chain density, N, which is determined from the small strain behavior, and the limiting
chain extensibility, /7, which is determined from the behavior at large strain. Inclusion of network
constraint effects as proposed in the Flory—Erman model provides further improvements to model
predictions at small strains.

The continuum mechanics invariant-based constitutive models were found to be equivalent
phenomenological representations of the microstructurally based statistical mechanics models. In
particular, the role of the first and second invariants of the stretch tensor were detailed. The first
invariant, /1, is found to correlate with the average chain stretch in the network model. Strain energy
expressions which contain a polynomial series in /| including higher order /; terms are, in effect,
capturing the non-Gaussian nature of the network stretch behavior. Strain energy expressions which
contain the second invariant of stretch, I, should be used with caution; forms such as the Mooney-
Rivlin model are found to be overly stiff in certain types of deformation. Generalized polynomial
strain energy models containing higher order I} and I terms are popular in commercial finite
element codes for example because they offer the option of automatic data fitting. Caution is
advised whenever a phenomenological model is fit to data because the best fits may be achieved
with unstable constants. Precise fits are indeed possible with some of the continuum mechanics
constitutive models but such precision comes at the expense of increased model complexity viz.
the many constants and data sets required.

Statistical mechanics models offer predictive capabilities with a minimal number of material
parameters that have a physical connection to the molecular microstructure. The stability of these
constants is never an issue in data fitting. The success of the microstructurally-based statistical
mechanics models has provided a foundation for extending these models to predict other complex
phenomena. For instance the optical properties of elastomers have been examined by incorporat-
ing the additional physics associated with the optical anisotropy or birefringence of an elastomer
with the molecular polarizability anisotropy (see Treloar,! Arruda and Przybylo,*? Wu and van der
Giessen,* and von Lockette and Arruda**). Arruda and Przybylo*? recently developed a network
polarizability tensor for the 8-chain model geometry and used it to predict elastomeric network
birefringence. von Lockette and Arruda** computed the Raman tensor for the 8-chain model and
demonstrated its ability to predict optical anisotropy using either retardation or Raman scattering
data during homogeneous and inhomogeneous deformations. The current technologically impor-
tant problem of hysteresis in elastomeric systems has recently been modeled by Bergstrom and
Boyce*#® using statistical mechanics models of loose and network chains in an 8-chain model
geometry. Effects of filler particles such as carbon black have also been incorporated into statistical
mechanics models.*0—48

The network models from statistical mechanics can adequately describe the deformation re-
sponse of random elastomers by effectively averaging the actual microstructural response via sim-
plifying assumptions. The validity of these assumptions for idealized elastomer microstructures
has recently been examined using molecular level simulations.'>*° Results of these simulations
have been used in turn to refine the statistical mechanics models of idealized networks.’® Molecular
simulations of unimodal'?#® and bimodal’® networks via Monte Carlo techniques show the initial
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chain lengths in crosslinked networks to be very near the root mean-square length assumed in
Gaussian and non-Gaussian statistical mechanics models. Bergstrom and Boyce'? show that upon
deformation of a unimodal network the mean chain stretch and angle follow the 8-chain model
prediction, Equation (8). Molecular crosslinking simulations of bimodal networks by von Lockette
and Arruda® demonstrate that the short chains in bimodal networks are initially below their root
mean-square length. This result has led to a new network model for bimodal elastomers that is
predictive of the stress and optical response changes with bimodal network composition.?

Finally, the effects of compressibility are important in certain applications and can be modeled
by appropriate extension of the strain energy expression. Volumetric deformation is found to have
a modest effect on the entropic contribution to the strain energy density and, more importantly, to
add internal energy contributions to the strain energy density. Although data are scarce, the data
that do exist show there to be a nonlinear relationship between pressure and volumetric strain. This
effect has been well-modeled by Bischoff et al.’” by including a nonlinear volumetric term in the
strain energy function.
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IX. APPENDIX

When the constitutive relationship is expressed in terms of the strain energy density function,
W, the stress—stretch behavior is found by differentation with respect to the stretch. For the case of
incompressibility, the principal Cauchy (true) stresses, o; are found by differentiating with respect
to the principal stretches, A;:

oW )
0; = Aj—— -+ p (no sum on i) (Al)
X
where p is the pressure determined by satisfying boundary conditions. If W = W, I>), this may
be written as:
awaon, oWl
i = i | L LT T2
S YA VPR V2 P Y
The corresponding nominal stress is given by:

]+p (no sum on i) (A2)

1 :

fi= X—Gi (no sum on £) (A3)

i

For the case of the compressible material, the bulk behavior must also be considered. For
W = W(I, I, J) we have,

A [OW oL 8W<’)12+8W aJ
0 = — [ — — Tt
"TJ oL on | aL an; o A Oa

] (no sum on ) (A4)




MODELS OF RUBBER ELASTICITY 523

or

g‘—)_”i. OW oL | oW ok +8W (no sum on i) AS
T lon ok dbor ] aJ Ay

The corresponding nominal stress (force per unit original area) is given by:

J
fi = -0 (no sum on i) (A6)
2
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