
A Relational Approach to the Compilation of

Sparse Matrix Programs �

Vladimir Kotlyar� Keshav Pingali� and Paul Stodghill

Computer Science Department� Cornell University
Ithaca� NY ������ USA

fvladimir�pingali�stodghilg�cs�cornell�edu

Abstract� We present a relational algebra based framework for compil�
ing e�cient sparse matrix code from dense DO�ANY loops and a spec�
i�cation of the representation of the sparse matrix	 We present experi�
mental data that demonstrates that the code generated by our compiler
achieves performance competitive with that of hand�written codes for
important computational kernels	

� Introduction

Sparse matrix computations are ubiquitous in computational science� However�
the development of high�performance software for sparse matrix computations is
a tedious and error�prone task� for two reasons� First� there are no standard ways
of storing sparse matrices� since a variety of formats are used to avoid storing
zeros� and the best choice for the format is dependent on the problem and the
architecture� Second� for most algorithms� it takes a lot of code reorganization
to produce an e�cient sparse program that is tuned to a particular format�
We illustrate these points by describing two formats � a classical format called
Compressed Column Storage �CCS� ��	 and a modern one used in the BlockSolve
library �
	�
CCS format is illustrated in Fig� �� The matrix is compressed along the

columns and is stored using three arrays� COLP� VALS and ROWIND� The array
section VALS�COLP�j� � � � �COLP�j
��� ��� stores the non�zero values of the j�th
column and the array section ROWIND�COLP�j� � � � �COLP�j 
 �� � ��� stores the
row indices of the non�zero elements of the j�th column�
This is a very general and simple format� However� it does not exploit any

application speci�c structure in the matrix� The format used in the BlockSolve
library exploits structure present in sparse matrices that arise in the solution
of PDEs with multiple degrees of freedom� Such matrices often have groups of
rows with identical column structure called i�nodes ��identical nodes��� Non�zero
values for each i�node can be gathered into a dense matrix as shown in Fig� ��
This helps reduce sparse storage overhead and improves performance by making
sparse matrix�vector products �rich� in dense matrix�vector products�
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In both cases� computation has to be reorganized in order to exploit the
bene�ts of each format and to avoid ine�cient searches� CCS format provides
for e�cient access to individual columns� but access to rows requires expensive
searching� When using BlockSolve format� dense computations are exposed in
sparse matrix�vector productsY � A �X by gathering for each i�node the values
ofX into a small dense vector and then scattering the result of the dense product
into Y�

This demonstrates the di�culty of developing libraries of basic algebraic
primitives for sparse matrix computations� Even if we limit ourselves to the
formats shown in Tab� �� we would still have to provide at �� � �� versions
of sparse matrix�matrix product �assuming that the result is stored in a single
format�� The lack of extensibility in such a �sparse BLAS� approach has been
addressed by object�oriented solver libraries� like the PETSC library from Ar�
gonne ��	� These libraries provide templates for a certain class of solvers �for
example� Krylov space iterative solvers� and allow a user to add new formats by
providing hooks for the implementations of some algebraic operations �such as
matrix�vector product�� However� in many cases the implementations of matrix�
vector products themselves are quite tedious �as is the case in the BlockSolve
library�� Also� these libraries are not very useful in developing new algorithms�

One possibility is to give the compiler a dense matrix program� declare that
some matrices are actually sparse� and make the compiler responsible for choos�
ing appropriate storage formats and for generating sparse matrix programs� This
idea has been explored by Bik and Wijsho� ��� �	� but their approach is limited
to simple sparse matrix formats that are not representative of those used in
high�performance codes� Intuitively� they trade the ability to handle a variety of
formats for the ability to compile arbitrary loop nests�

We have taken a di�erent approach� We focus on the problem of generating
e�cient sparse given user�de�ned storage formats� In this paper we solve this
problem for DOALL loops and loops with reductions� Our approach is based
on viewing arrays as relations� and the execution of loop nests as evaluation
of relational queries� Our method of describing storage formats through access
methods is general enough to specify a variety of formats� yet speci�c enough
to allow important optimizations� Since the class of �DOANY� loops covers
not only matrix�vector and matrix�matrix products� but also important ker�
nels within high�performance implementations of direct solvers and incomplete
preconditioners� this allows us to address the needs of a number of important
applications� One can think of our sparse code generator as providing an exten�
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Fig� �� Matrix�vector product Fig� �� Iteration set constraints

sible set of sparse BLAS codes� which can be used to implement a variety of
applications� just like dense BLAS routines�

��� Outline of our approach

Consider the loop nest for matrix�vector product Y � A � X shown in Fig� ��
Suppose that the matrixA and the vectorX are sparse� and that the vectorY is
dense� Moreover� the matrix is stored in the CCS format using the arrays COLP�
ROWIND and VALS� To execute this code e�ciently� it is necessary to perform
only those iterations hi� ji for which A�i� j� and X�j� are not zero� This set of
iterations can be described by the set of constraints shown in Fig� �� The �rst
row represents the loop bounds� The constraints in the second row associate
values with array indices� for example� the predicate A�i� j� a� constraints a to
be the value of A�i� j�� Finally� the constraints in the third row specify which
iterations updateY with non�zero values� Our problem is to compute an e�cient
enumeration of the set of iterations speci�ed by these constraints� For these
iterations� we need e�cient access to the corresponding entries in the matrices
and vectors� Since the constraints are not linear and the sets being computed
are not convex� we cannot use methods based on polyhedral algebra� such as
Fourier�Motzkin elimination ��	� to e�ciently enumerate these sets�
Our approach is based on relational algebra� and models A� X and Y as

relations �tables� that hold tuples of array indices and values� Conceptually�
the relation corresponding to a sparse matrix contains both zero and non�zero
values� We view the iteration space of the loop as a relation I of hi� ji tuples�
To test if elements of sparse arrays A and X are non�zero� we use predicates
NZ�A�i� j�� andNZ�X�j��� Notice that because Y is dense�NZ�Y �i�� evaluates
to true for all array indices � � i � N � If we de�ne the sparsity predicate

P
def
� NZ�A�i� j�� � NZ�X�j��� then the constraints in Fig� � can be rewritten

as the relational query�

Qsparse � �P

�
I�i� j� �� A�i� j� a� �� X�j� x� �� Y �i� y�

�
���

This query is the formalization of the simple statement� �From all the array
indices and values that satisfy the array access functions� select the array values
and indices that satisfy the sparsity predicate ��
We have now reduced the problem of e�ciently enumerating the iterations

that satisfy the system of constraints in Fig� � to the problem of e�ciently
computing a relational query involving selections and joins� This problem in
turn is solved by determining an e�cient order in which the joins in ��� should
be performed and determining how each of the joins should be implemented�
These decisions depend on the storage formats used for the sparse arrays�



In summary� there are four problems that we must address� The �rst problem
is to describe the structure of storage formats to the compiler� We outline this
in Section � �details are in ��	�� The second problem is to formulate relational
queries �Section ����� and discover joins� In our example� this step was easy be�
cause all array subscripts are loop variables� When array subscripts are general
a�ne functions of loop variables� discovering joins requires computing the eche�
lon form of certain matrices �Section ����� The third problem is to determine the
most e�cient join order� exploiting structure wherever possible �Section �����
The �nal problem is to select the implementations of each join �Section ����� To
demonstrate that these techniques are practical� we present experimental results
in Section ��
Our approach has the following advantages�
� Most of the compilation approach is independent of the details of sparse stor�
age formats� The compiler needs to know which access methods are available
and their properties� but not how they are implemented�

� The access method abstraction is general enough to be able to describe a
variety of data structures to the compiler� yet it is speci�c enough to enable
some important optimizations�

� By considering di�erent implementation strategies for the joins� we are able
to explore a wider spectrum of time�space tradeo�s than is possible with
existing techniques�

� Describing data structures to the compiler

Since our compiler does not have a �xed set of formats �hard�wired� into it� it is
necessary to present an abstraction of storage formats to the compiler for use in
query optimization and code generation� We require the user to specify �i� the
hierarchical structure of indices� and �ii� the methods for searching and enumer�
ating these indices� To enable the compiler to choose between alternative code
strategies� the cost of these searches and enumerations must also be speci�ed�
We restrict attention to two�dimensional matrices for simplicity�

��� Hierarchical Structure of Indices

Assume that the dense matrix is a relation with three �elds named I� J and V
where the I �eld corresponds to rows� the J �eld corresponds to columns and the
V �eld is the value� Table � illustrates speci�cation of the hierarchy of indices
for a variety of formats�
In this notation the � operator is used to indicate the nesting of the �elds

within the structure� For example� I � J � V in the Compressed Row Storage
�CRS� format ���	 indicates that we have to access a particular row before we
can enumerate the column indices and values� and that within a row� we can
search on the column index to �nd a particular value� The notation �I� J� in the
speci�cation of the coordinate storage indicates that the matrix is stored as a
��at� collection of tuples�
The � operator indicates that the indices can be enumerated independently�

as in the dense storage format�



Name Type

CRS TCRS � I � J � V

CCS TCRC � J � I � V

COORDINATE Tcoord � 
I� J� � V

DENSE Tdense � I � J � V

INODE Ti�node � INODE ��� 
I � J� � V

ELEMENT TFE � E �� 
I � J� � V

Table �� Hierarchy of indices for various formats

What is the structure of the i�node storage format �Fig� ��� The problem
here is that a new INODE �eld is introduced in addition to the row and column
�elds� Fields like inode number which are not present in the dense array are
called external �elds� An important property that we need to convey is that
inodes partition the matrix into disjoint pieces� We denote it by the �� symbol
subscript in Ti�node� This will di�erentiate the i�node storage format from the
format often used in Finite Element analysis ���	� In this format the matrix is
represented as a sum of element matrices� The element matrices are stored just
like the inodes� and the overall type for this format is TFE in Tab� �� where
E is the �eld of element numbers� Our compiler is able to recognize the cases
when the matrix is used in additive fashion and does not have to be explicitly
constructed�
Some formats can be seen as providing several alternative index hierarchies�

This is denoted by T
S
T rule in the grammar for building speci�cations of index

hierarchies�

T �� V

��� F

��� F �op T

��� F � F � F � � � � � T

��� �F�F� F� � � � � � T

��� T
�

T

���

where the terminal V indicates an array value �eld� and F indicates an array
index �eld�

��� Access Methods

For each level of the index hierarchy �such as I and �J� V � is the case of CRS stor�
age�� access methods for searching and enumerating the indices must be provided
to the compiler� as described in ��	�
This set of access methods does not specify how non�zero elements ��ll� are

inserted� It is relatively easy to come up with insertion schemes for simple formats
like CRS and CCS which insert entries at a very �ne level � for example� for
inserting into a row or column as it is being enumerated �this is the approach
taken by Bik and Wijsho� ��� �	�� More complicated formats� like BlockSolve�
are more di�cult to handle� the BlockSolve library �
	 analyzes and reorders
the whole matrix in order to discover inodes�
At this point� we have taken the following position� each data structure should

provide a method to pack it from a hash table� This is enough for DO�ANY loops�
since we can insert elements into the hash table as they are generated� and pack
them later into the sparse data structure�



� Organization of the Compiler

��� Obtaining relational queries

Suppose we have a perfectly nested loop with a single statement�

DO i � B
S � A��F�i
 f�� � � � � Ak�Fki
 fk�

where i is the vector of loop indices and B are the loop bounds� We make the
usual assumption that the loop bounds are polyhedral� and that the arrays Ak�
k � � � � � N � are addressed using a�ne access functions� A� is the array being
written into� Since we deal only with DO�ALL loops in this paper� we assume
that the iterations of the loop nest can be arbitrarily reordered�
If some of the arrays are sparse� then some of the iterations of the loop

nest will execute �simpler� versions of the original statement S� In most cases�
the simpler version is just a NOP� Bik and Wijsho� ��� �	 describe an attribute
grammar for computing guards� called sparsity predicates� that determine when
non�trivial computationsmust be performed in the loop body� If P is the sparsity
predicate� the resulting program is the following�

DO i � B
IF P THEN

S� � A��F�i
 f�� � � � � Ak�Fki
 fk�

The predicate P is a boolean expression in terms of individual NZ�Ak�Fki

fk�� predicates� where the predicate NZ�Ak�Fki
 fk�� evaluates to true if and
only if the array element in question is explicitly stored�
To generate the relational query for computing the set of sparse loop itera�

tions� it is useful to de�ne the following vectors and matrices�

H �

�
BBB�

I

F�

���
Fn

�
CCCA a �

�
BBB�
i

a�
���
an

�
CCCA f �

�
BBB�
�

f�
���
fn

�
CCCA ���

Following ��	� the matrix H is called a data access matrix� Notice that the fol�
lowing data access equation holds�

a � f 
Hi ���

Furthermore� we view the arrays Ak as relations with the following at�
tributes�
� ak� which stands for the vector of array indices
� vk� which is the value of Ak�ak�
In that case� the sparse loop nest can be thought of as an enumeration of

the tuples that satisfy the following relational query �RI is the iteration space
relation��

�P��a�f�Hi� �RI � � � � �Ak�ak� vk�� � � � � ���



Permutations and linear index transformation are easily incorporated in our
framework� Linear transformations on array indices can be folded into the data
access equation ���� This issue of handling various data structure orientations
has also been previously addressed by Bik and Wijsho�� Matrices that are per�
muted by rows and�or columns can be represented by relational queries� We can
view a permutation as a relation P �i� i��� where i� is the permuted index� Then
P �i� i�� ��i A�i� j� a� represents the matrix A permuted by rows� This expression
can then be used in the query ����

��� Discovering joins

The key to e�cient evaluation of relational queries like ��� is to perform equijoins
rather than cross products followed by selections� Intuitively� this involves �push�
ing� the selections ��a�f�Hi� through the cross�products to expose joins� In the
matrix�vector product example discussed in Section �� the joins were simple
equijoins of the form a � b� More generally� array subscripts are a�ne functions
of loop variables� and we should look for a�ne joins of the form a � �b 
 � for
some constants � and ��
It is useful to look at this in terms of the data access equation� Let aj � fj and

hTj be the j�th element of a� the element of f and the row of H� respectively�
The following result tells us when array dimensions aj and ak are related by an
a�ne equality�

�
	i � aj � �ak 
 �

�



��
fj � �fk 
 �

�
�
�
hj � �hk

��
���

This suggests that we look for rows of H which are multiples of each other�
Consider the variation on matrix�vector product shown in Fig� �� where X and
A are sparse� and Y is dense� The data access equation for this loop is shown
in Fig� 
� In this equation� s and t are the row and column indices for accessing
A� while iy and jx are the indices for accessing X� One equi�join is clear from
this data access equation� i � iy� It seems that we are left with two more joins�
s �a trivial join of one variable� and t � jx � j� However� for any �xed value of
i � i�� we get s � i�� j� This is an a�ne join on s and j� In other words� we can
exploit the order in which variables are bound by joins to join more variables
than is evident in the data access matrix�
To do this systematically� suppose that the data access matrix is in the block

form shown in Fig� �� where all entries in the column vectors c�� c� etc are non�
zero� It is trivial to read o� a�ne joins� there is an a�ne join corresponding to
each column ci of this matrix� The entries in L�i are the coe�cients in the a�ne
joins of variables bound by previous joins�
It is easy to show that we can get a general data access equation into this

form in two steps�
�� Apply column operations to reduce the data access matrix to column echelon
form� This is equivalent to multiplying the matrix H on the right by a
unimodular matrix U� which can be found using standard algorithms ��	�
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�� Apply row permutations as needed� This is equivalent to multiplying the
matrix produced in the previous step by a permutation matrix P�
Formally� we have H� � PHU� If H has rank r� then H� can be partitioned

into blocks Lm for m � �� � � � � r� such that in each block Lm the columns after
m are all zero and the m�th column �cm� is all non�zero�

H� �

�
B�
L�

���
Lr

�
CA Lm �

	
L�m cm �



�
�

De�ne j � U��i and b � P�a� f �� Then the data access equation ��� is trans�
formed into� b � H�j� Now if we partition b according to the partition �
� of
H�� then for each m � �� � � � � r we get� bm � Lmj � L�

mj�� � m� ��
 cm � j�m�
In the generated code� j�m� corresponds to the mth loop variable� Since the

values j�� � m � �� are enumerated by the outer loops� the a�ne joins for this
loop are de�ned by the following equations� bm � invariant 
 cm � j�m��

��� Ordering and Implementing Joins

The �nal permutation of the rows of the data access matrix gives us the nesting
order of the enumeration of the attributes of the arrays� We would like this order
to be consistent with the index hierarchy� Suppose that in our example the matrix
is stored using CRS format� Then we would like the enumeration of s to be nested
before the enumeration of t� One such ordering and the corresponding echelon
form is shown in Fig� �� In the resulting loop nest the loop variable u runs over
the �rst join� which is just the enumeration of s � A� The second variable v joins
the rest of the variables for a �xed u � u�� v � i� u� � j � iy � u� � jx � t�



DO i � �� n
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Fig� ��� MVM for CCS format
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Table �� Hand�written�Compiler�generated 
M�ops�

In general� we build a precedence graph for the nesting order of attributes
out of the speci�cation of the index structure of the arrays� Our compiler heuris�
tically tries to �nd a permutation which would satisfy as many constraints as
possible� Of course� if the precedence graph is cyclic� then searches are unavoid�
able� Figures �� and �� are examples of join orderings produced by this step�
Once we have found the nesting order of the joins� we have to select an

algorithm for performing each of the joins� The basic algorithms for perform�
ing joins can be found in database literature ���� ��	� Our compiler selects an
appropriate algorithm based on the properties of access methods of the joined
relations� It is at this point that the sparsity predicate is �folded� into join im�
plementations in order to produce enumerations over a correct combination of
zeros and non�zeros� This way we can treat disjunctive predicates �as in vector
addition� as well as conjunctive predicates �as in vector inner products�� Also�
the basic algorithms for performing two�relation joins can be easily generalized
to many�relation joins� and to a�ne joins� For lack of space� we omit the details�

� Experiments

��� Di�erent join implementations

We have claimed in the introduction that di�erent implementations of joins have
di�erent time�space tradeo�s� We have compared the performance of hash�join
�scatter� and merge�join implemetations of a dot product of two sparse vectors
with �� non�zeros each� We have run our experiments on a single �thin� node
of an IBM SP��� Merge�join has outperformed hash�join by ����� � However� if
the cost of hashing �scattering� is amortized over many iterations of an enclosing
loop� then hash�join outperforms merge�join by an order of magnitude� These
results suggest that using merge join is advantageous when memory is limited
and when there is no opportunity to hoist hashing outside of an enclosing loop�
Unlike Bik and Wijsho�� we are able to explore this alternative to hash join in
our compiler�

��� BlockSolve

Table � shows the performance of the MVM code from the BlockSolve library
and code generated by our compiler� for �� matrices� Each matrix was stored in
the clique�inode storage format used by the BlockSolve library and was formed



from a �d grid with a �
 point stencil with a varying number of unknowns� or
components� associated with each grid point� The grid sizes are given along the
left�hand side of the table� the number of components is given across the top�
The left number of each pair is the performance of the BlockSolve library� the
right is the performance of the compiler generated code� The computations were
performed on a thin�node of an SP��� These results indicate that the performance
of the compiler�generated code is comparable with the hand�written code� even
for as complex a data structure as BlockSolve storage format�

� Conclusions and future work

We have presented a novel approach to compiling sparse codes� we view sparse
data structures as database relations and the execution of sparse DO�ANY loops
as relational query evaluation� By abstracting the details of sparse formats as
access methods� we are able to generate e�cient sparse code for a variety of data
structures�
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