Curve Tailoring with
Interactive Computer Graphics

by
J.E. Dennis, Jr.!
and
Daniel J. Woods?

Technical Report TR84-4 , November 1984.
Revised April 1987.

"Mathematical Science Department, Rice University, Houston, Texas, 77251. Research sponsored
by DOE DE-AS05-82ER13016, ARO DAAG-79-C-0124, NSF MCS81-16779.

2IMSL, Inc., 2500 ParkWest Tower One, 2500 CityWest Blvd., Houston, Texas, 77042. Research
sponsored by NSF grant MCS-81-21884.






Abstract

We are exploring ways to use the increasingly common graphics worksta-
tions (we use a SUN) to make numerical computation more convenient. The
particular experiment reported on here involves the use of the mouse to obtain
input from the user that he usually supplies as a subroutine. Specifically, the
user specifies a set of one-dimensional data and a model whose parameters are
to be chosen to best fit the data. He does not specify what optimality crite-
rion is to be used to pick the parameters. Instead, he is asked to point out
his preference from displayed prospective fits. This information is used by the
Nelder-Mead simplex algorithm to improve the fit during the exploratory data
analysis phase. The information is also used to determine a fitting criterion that
is consistent with the selections made during the process. It is then possible to
determine a final set of parameters that are optimal for this criterion.






1 Introduction.

This paper reports on an experiment into the use of interactive computer graphics
as an integral part of the formulation and solution of optimization problems which
require multi-criterion objective functions. In this experiment, we are interested
in curve fitting on a SUN3 workstation. We have a system to help a user with a
parametric model and data of varying relevance to find an appropriate weighted
fitting criterion and the corresponding optimal values of the parameters.

Our prototype is for the user who has 1-dimensional data and a model involving
8 or fewer parameters. We assume in this note that the user would be content
with parameters that minimize a weighted sum-of-squares of the residuals at the
data points but weighted [; and weighted [, are also available. It is important
that we do not require the user to specify the weights. We will explain in Section 2
how we deduce weights from information provided by the user. The system obtains
information from the user by displaying a graphical representation of the problem
and a pair of parameter vectors and then asking the user to indicate which parameter
vector is preferable. This quantitative information is recorded for later use.

2 The Problem.

We assume the user is interested in finding an z* which minimizes

n
o(w',2) = ) _w! [y(=,t:) - wl’, (1)
=1
where w* = (w},w},...,w:)T is a nonnegative weight vector, and the user provides

the n pieces of data (t;,y:),s = 1,2,...,n and a model y(z,t), where z € R? is
the vector of p-parameters. If w* is known, then the user’s problem is a nonlinear
least squares problem for which efficient techniques and software are available. Our
system is designed for the situation where w* is not known and cannot be easily
determined from the data. However, our system also provides a simple interface to
efficient software for nonlinear least squares as well as providing graphical facilities
for displaying the problem and solution.

The major requirement on w* is that the corresponding values of ®(w*,z) be
consistent with the order information indicated by the user for various values of z.
Specifically, if the user has indicated the qualitative information that for some m
parameter pairs (zj,zy,), | = 1,2,...,m, he prefers the fit provided by z;, to the
fit provided by zy,, then we say the weight vector w is ® — consistent if

O(w,z;) > P(w,z,), 1=1,2,...,m. (2)
We also add the n nonnegativity constraints
w; >0, i=1,2,...,n, (3)

as well as the normalizing constraint

Zw; =n. (4)



By (1), it is clear that (4) is consistent with (2) and (3). It will be useful to let W
denote the set of all w € IR™ that satisfy all of (2), (3), and (4). We will call any
w €W feasible .

The constraints (3) and (4) ensure that any feasible w would be reasonable. We
will resolve the remaining lack of specificity by asking that each w; differ as little
from some prescribed value ; as possible. (Currently, the prescribed values are all
set to 1 so that the w;’s will differ as little from equality as possible.) For example,
we might choose w* by the [, criterion,

i O: — W 5
oo e, 1o vl ©)

or the /; criterion

n
i b: — W 6
mip 3| — wi, ©

or the I; criterion
n
min g(w; - w), (7)

The I, and I; criteria require solving linear programming problems and the I3 cri-
terion requires solving a quadratic program. We are currently using the [; criterion
given by (7).

3 The Solution.

It would be conceivable to generate some random parameter values, ask the user
to rank the corresponding fits, solve for weights w* using one of the criteria of the
last section, and then apply some library optimizer to find an z* that minimizes
®(w*,z). We favor another scheme which asks for user rankings that are used to
improve the current parameter estimates. We believe that our scheme will be more
efficient and will find better weights because it bases ®-consistency on comparisons
more interesting to the user.

We generate successive parameter values using the Nelder-Mead [NelM] simplex
algorithm. This algorithm is known to be efficient for p < 5 and it is extremely
tolerant of inaccuracy in the objective function values. We will not give details
of the algorithm here (see [NelM] or [Wood]), but it is useful to point out that
the algorithm is iterative and that each iterate is not a point but is a p-simplex
of parameters characterized by its p + 1 vertices. Also, the amount of work per
iteration is usually O(n).

At each iteration, objective function values at the vertices are used only to label
the best, the worst and the next-worst vertices. Since w* is not known, we can not
evaluate @(w*, z) at the vertices to obtain this information, so we get it directly by
asking the user to rank the fits corresponding to the vertices of the simplex applied
to the user’s model.

Of course, we could identify the optimal parameters independent of any assumed
form for @ by this scheme alone. We allow the user this option, but we also provide



a library subroutine to minimize ®. If the user wishes to minimize ®, we check to
make sure w* is up-to-date and minimize ®(w*,z). If the weights are not up-to-
date we solve the subproblem to find w* and then invoke the library optimizer. It
is possible for the user to make inconsistent choices. In the current version of the
software, we handle inconsistencies in the rankings only by telling the user that his
choices have been inconsistent. We could add the capability of adjusting or removing
inconsistent constraints. This is discussed in greater detail by Woods [Wood].

4 Current Work.

There are several reasons why we want to proceed to the stage of assuming a form
like (1) and then to finding weights. We think it would be an interesting part of
the data analysis for the user to have weights arrived at adaptively as a part of the
analysis rather than by a priori assignment or by ranking plots that were chosen
artificially. Once he has weights w*, then similar data can be analyzed directly
using our system in automatic mode to interface to a library optimization routine
without redoing the interactive Nelder-Mead portion which we call user mode, or
else user mode could be entered at an advanced stage. In fact, the user will be able
to enter user mode with his a priori estimates of the weights. Our favorite reason
to find weights adaptively is that we believe that comparisons at the Nelder-Mead
vertex points are likely to point up inconsistencies in improperly assigned weights
and lead to a redefining of the weights so that they are feasible. We expect one of
three results if the Nelder-Mead process goes on long enough:

1. The user is satisfied with the fit and the session ends with parameters corre-
sponding to the fit and a set of feasible weights.

2. The user selects automatic mode and is satisfied with the fit. The user obtains
a set of optimal parameters and the associated weights.

3. The user makes inconsistent choices. In this case, we inform the user of his
inconsistent choices and have no facility for resolving this problem. However,
the user may continue via the Nelder-Mead process.

There are many other features that we intend to add. These options include
such items as:

e Allowing the user to adjust the graphical display of the data and plots. We
intend to add numerous graphical capabilities to the system.

e Letting the user decide which norm to use in defining ® in (1) and in deter-
mining the ‘optimal’ weights.

e We would like to slowly take over for the user. We will put the mouse where
we expect he will rank the next plot. This would enable us to build up the
user’s confidence in the weights and in our procedure.



e Add efficient solution methods for solving the subproblem to determine the
weights. These techniques are discussed in Woods [Wood]. Also, this provides

immediate recognition of an inconsistent choice by a user (since no feasible
weights will exist).

o Inconsistent choices by a user should be handled gracefully by the system as
described in [Wood].

e Letting a user specify the prescribed weights @ that are used to determine w*

in (5), (6), and (7).
REFERENCES

[NelIM]| Nelder, J.A. and R. Mead, ” A simplex method for function minimization”,
Computer Journal 7, pp.308-318.

[Wood] Woods, Daniel, J., An Interactive Approach for Solving Multi-Objective
Optimization Problems, Mathematical Science Technical Report 85-5, May
1985, Rice University, Houston, Texas, 77251.



