Journal of Mathematics Research; Vol. 4, No. 4; 2012
ISSN 1916-9795  E-ISSN 1916-9809
Published by Canadian Center of Science and Education

A Seasonal Box-Jenkins Model for Nigerian Inflation Rate Series

Ette Harrison Etuk', Atto Asuquo' & Isaac Didi Essi'

! Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Nigeria

Correspondence: Ette Harrison Etuk, Department of Mathematics/Computer Science, Rivers State University of
Science and Technology, Nigeria. Tel: 234-813-694-8161. E-mail: ettetuk@yahoo.com

Received: January 28, 2012 Accepted: February 16,2012  Online Published: July 20, 2012
doi:10.5539/jmr.v4n4p107 URL: http://dx.doi.org/10.5539/jmr.v4ndp107

Abstract

Time series analysis of Nigerian Inflation rate series is done. A seasonal difference and then a non-seasonal one
were obtained. The correlogram of the differenced series revealed a seasonal nature. It also revealed a seasonal
moving average component and a non-seasonal autoregressive component. A(5,1,0) x (0, 1, 1), seasonal model
was fitted and shown to be adequate.
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1. Introduction

A time series is defined as a set of data collected sequentially in time. It has the property that neighbouring values
are correlated. This tendency is called autocorrelation. A time series is said to be stationary if it has a constant
mean and variance. Moreover the autocorrelation is a function of the lag separating the correlated values and called
the autocorrelation function (ACF).

A stationary time series {X;} is said to follow an autoregressive moving average model of orders p and g (designated
ARMA(p,q) if it satisfies the following difference

X[ + 1Xf71 + 2X172 + ...+ pthp =& +ﬂ18t*1 +ﬁ281*2 +ﬁq8[7q (l)
or
AD)X, = B(L)& (2)
where {&;} is a sequence of uncorrelated random variables with zero mean and constant variance, called a white
noise process, and the o} s and ,B;s constants;
AL =1+aL+arl* + ... + a,L?
and
B(L) =1+ L+ BL* + ...+ B,L
and L is the backward shift operator defined by L*X, = X,_;.

If p = 0, model (1) becomes a moving average model of order q (designated MA(q)). If, however, ¢ = 0 it
becomes an autoregressive process of order p (designated AR(p)). An AR(p) model of order p may be defined
as a model whereby a current value of the time series X; depends on the immediate past p values: X,_;, X,—, ...,
X;_p. On the other hand an MA(q) model of order g is such that the current value X, is a linear combination of the
immediate past values of the white noise process: &1, &-2, ..., &—4. Apart from stationarity, invertibility is another
important requirement for a time series. It refers to the property whereby the covariance structure of the series is
unique (Priestley, 1981). Moreover it allows for meaningful association of current events with the past history of
the series (Box & Jenkins, 1976).

An AR(p) model may be more specifically written as
X, + (Y,,]X,_l + Q'ple_z + ...+ CquX,_q =&

Then the sequence of the last coefficients {a;;} is called the partial autocorrelation function (PACF) of {X;}. The
ACF of an MA(q) cuts off after lag ¢ whereas that of an AR(p) model is a combination of sinusoidals dying off
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slowly. On the other hand the PACF of an MA(q) model dies off slowly whereas that of an AR(p) model cuts off
after lag p. AR and MA models are known to have some duality properties. These include:

1) A finite order AR model is equivalent to an infinite order MA model.

2) A finite order MA model is equivalent to an infinite order AR model.

3) The ACF of an AR model exhibits the same behaviour as the PACF of an MA model.

4) The PACF of an AR model exhibits the same behaviour as the ACF of an MA model.

5) An AR model is always invertible but is stationary if A(L) = 0 has roots outside the unit circle.
6) An MA model is always stationary but is invertible if B(L) = 0 has roots outside the unit circle.

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to either the pure
AR of the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) are that the equations A(L) = 0
and B(L) = 0 should have roots outside the unit circle respectively.

Often in practice a time series is non-stationary. Box and Jenkins (1976) proposed that differencing of an ap-
propriate order could render a non-stationary series {X;} stationary. Let the degree of differencing necessary for
stationarity be d. Such a series {X;} may be modelled as

(1 +a1L+ ar? + ... + @, L")VIX, = B(L), 3)
where V = 1 — L and in which case

AL) = (1+a1L+ @ L* + ...+ a,LP)V! = 0
shall have unit roots d times. Then differencing to degree d renders the series stationary. The model (3) is said to
be an autoregressive integrated moving average model of orders p, d and g and designated ARIMA(p,d,q).

1.1 Seasonal ARIMA Models

A time series is said to be seasonal of order d if there exists a tendency for the series to exhibit periodic behaviour
after every time interval d. Traditional time series methods involve the identification, unscrambling and estimation
of the traditional components: secular trend, seasonal component, cyclical component and the irregular movement.
For forecasting purpose, they are reintegrated. Such techniques could be quite misleading.

The time series {X;} is said to follow a multiplicative (p,d, q) X (P, D, Q) seasonal ARIMA model if
A(L)D(L)VIV DX, = B(L)O(L")e; 4)
where ® and ® are polynomials of order P and Q respectively. That is,
OL) =1+ ¢ L + ...+ ppL** (5)

OL’) =1+ 6L+ ...+ 0yLyg (6)

where the ¢; and 6; are constants such that the roots of the equations (5) and (6) are all outside the unit circle for sta-
tionarity and invertibility respectively. Equation (5) represents the autoregressive operator whereas (6) represents
the moving average operator.

Existence of a seasonal nature is often evident from the time plot. Moreover for a seasonal series the ACF or
correlogram exhibits a spike at the seasonal lag. Box and Jenkins (1976) and Madsen (2008) are a few authors that
have written extensively on such models. A knowledge of the theoretical properties of the models provides basis
for their identification and estimation. The purpose of this paper is to fit a seasonal ARIMA model to Nigerian
Inflation Rate Series (NINFR). Earlier works on Nigerian inflation include Abidemi and Maliq (2010), Olatunji et
al. (2010) and Chiakwelu (2012). Whereas Abidemi and Maliq think that Nigerian inflation rates are stationary
Olatunji et al. are of a contrary opinion. The graph of the inflation rates from 1990 to 2010 given by Chiakwelu
corroborates the opinion of Olatunji et al. There is, perhaps, no known earlier attempt to model Nigerian inflation
rates by a seasonal ARIMA model.
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2. Materials and Methods

The data for this work are monthly composite price index series (NCPI) from March 1963 to December 2003
obtainable from the Abstracts of the National Bureau of Statistics of Nigeria. The inflation rate was calculated by

NINFR(t) = [NCPT(t) - NCPI(t — 1)]/NCPI(t — 1)

2.1 Determination of the Orders d, D, p, P, g and Q

Seasonal differencing is necessary to remove the seasonal trend. If there is secular trend non-seasonal differencing
will be necessary. To avoid undue complexity it has been advised that orders of differencing d and D should add
up to at most 2 (i.e. d + D < 3). If the ACF of the differenced series has a positive spike at the seasonal lag then a
seasonal AR component is suggestive; if it has a negative spike then a seasonal MA term is suggestive. As already
mentioned above, an AR(p) model has a PACF that truncates at lag p and an MA(q) has an ACF that truncates at
lag g. In practice +2/ 4/n where n is the sample size are the non-significance limits for both functions.

2.2 Model Estimation

The involvement of the white noise terms in an ARIMA model entails a nonlinear iterative process in the estimation
of the parameters. An optimization criterion like least error sun of squares, maximum likelihood or maximum
entropy is used. An initial estimate is usually used. Each iteration is expected to be an improvement on the last one
until the estimate converges to an optimal one. However, for pure AR and a pure MA models linear optimization
techniques exist (See for example, Box & Jenkins, 1976; Oyetunji, 1985). There are attempts to adopt linear
methods to estimate ARMA models (See for example, Etuk, 1987; 1998). We shall use Eviews software which
employs the least squares approach involving nonlinear iterative techniques.

2.3 Diagnostic Checking

The model that is fitted to the data should be tested for goodness-of-fit. We shall do some analysis of the residuals
of the model. If the model is correct, the residuals would be uncorrelated and would follow a normal distribution
with mean zero and constant variance. The autocorrelations of the residuals should not be significantly different
from zero.

3. Results and Discussion

The time plot of the original series in Figure 1 does not show any secular trend. Because of the so many spikes
involved seasonality is not obvious. Seasonal (i.e. 12-month) differencing of the series produces a series SDNINFR
with no trend and no noticeable seasonality still. See Figure 2 for this time plot. Non-seasonal differencing yields
a series DSDNINFR with no trend and no clear seasonality (see Figure 3). Its ACF in Figure 4 has a negative spike
at lag 12 revealing a seasonality of lag 12 and a seasonal MA component to the model. The PACF cuts off at lag
5 suggesting the involvement of a non-seasonal AR(5) component. We therefore propose a (5,1,0) x (0,1, 1),
seasonal model. That means
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Figure 1. NINFR

109



www.ccsenet.org/jmr Journal of Mathematics Research Vol. 4, No. 4; 2012

0.3

0.2
0.1
0.0 mf | Nl
-0.14

027

03 L

65 70 75 80 85 90 95 00

Figure 2. SDNINFR
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Figure 3. DSDNINFR

Autocorrelation  Partial Correlation AC  PAC Q-Stat Prob

1-0.582 -0.582 161.99 0.000
2 0.084 -0.385 165.35 0.000
3 -0.046 -0.360 166.38 0.000
4 0.081 -0.234 169.57 0.000
5-0.037 -0.171 170.22 0.000
6 0.047 -0.034 171.26 0.000
7 -0.061 -0.016 173.05 0.000
8 -0.007 -0.075 173.07 0.000
9 0.019 -0.103 173.25 0.000
10 -0.038 -0.217 173.94 0.000
11 0.286 0.344 214.03 0.000
12 -0.481 -0.077 327.29 0.000
13 0.257 -0.167 359.76 0.000
14 -0.006 -0.114 359.77 0.000
15 0.013 -0.115 359.85 0.000
16 -0.071 -0.119 362.31 0.000
17 0.066 -0.066 364.45 0.000
18 -0.063 -0.033 366.44 0.000
19 0.079 0033 36951 0.000
20 -0.041 0.008 37035 0.000
21 -0.004 -0.040 370.36 0.000
22 0.000 -0.125 370.36 0.000
23 0.015 0.229 370.47 0.000
24 -0.025 -0.057 370.79 0.000
25 0.030 -0.122 371.24 0.000
26 -0.031 -0.088 371.73 0.000
27 0.004 -0.105 371.74 0.000
28 0031-0.085 37223 0.000
29 -0.028 -0.051 372.65 0.000
30 0.004 -0.065 372.65 0.000
31-0.011 -0.032 372.71 0.000
32 0.027 -0.006 373.10 0.000
33 -0.003 -0.016 373.10 0.000
34 -0.006 -0.067 373.12 0.000
35 0.008 0.258 373.15 0.000
36 -0.038 -0.059 373.91 0.000

Figure 4. Correlogram of DSDNINFR
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Xi+ a1 Xp + X0 + a3 X3 + @ Xog + asXis = Brogn + & )

where X represents DSDNINFR. The estimation of the model summarized in Table 1 yields the model
X, +1.0162X,_; + 0.8235X,_» + 0.6157X,_3 + 0.3357X,_4 + 0.1435X,_s + 0.9348¢,_1» = &

(+0.0458)(+0.0639)(0.0688)(+£0.0638)(£0.0459)(+0.0174)

Table 1. Model estimation dependent variable: DSDNINFR

Method: Least Squares

Date: 01/17/12 Time: 13:08

Sample(adjusted): 1964:10 2003:12

Included observations: 471 after adjusting endpoints
Convergence achieved after 7 iterations

Backcast: OFF (Roots of MA process too large for backcast)

Variable Coefficient  Std. Error  t-Statistic  Prob.
AR(1) -1.016220  0.045839 -22.16910  0.0000
AR(2) -0.823456  0.063870 -12.89264  0.0000
AR(3) -0.615654  0.068778 -8.951339  0.0000
AR(4) -0.335682  0.063797 -5.261719  0.0000
AR(5) -0.143493  0.045897 -3.126411  0.0019
MA(12) -0.934773  0.017405 -53.70707  0.0000
R-squared 0.750042 Mean dependent var 4 4TE-05
Adjusted R-squared 0.747355 S.D. dependent var 0.065535
S.E. of regression 0.032940 Akaike info criterion -3.975574
Sum squared resid 0.504559  Schwarz criterion -3.922646
Log likelihood 9422478 F-statistic 279.0632
Durbin-Watson stat 2.017964 Prob(F-statistic) 0.000000
Inverted AR Roots 214671 21-6Ti -.36 -.53i -.36+.53i

-7

Inverted MA Roots 99 .86+.50i .86 -.50i _50+.86i

50-86i .00+.99  -00-99  -50+.86i
-50-86i -86+50i -86-50i -.99

The estimation involved 7 iterations. We note that all coefficients are significantly different from zero, each being
larger than twice its standard error. The fact that R?> = 0.75 implies that as much as 75% of the variations in
DSDNINFR has been accounted for by the model. There is considerable agreement between the actual and the
fitted models as shown in Figure 5. The histogram of the residuals in Figure 6 shows a normal distribution with
zero mean. The correlogram of the residuals in Figure 7 further depicts the adequacy of the model since virtually
all the autocorrelations are not significantly different from zero.
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Figure 5. Residual
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200
Series: Residuals
Sample 1964:10 2003:12
Observations 471
150
Mean -0.000472
Median -0.001645
100 | Maximum 0.300079
Minimum -0.219677
Std. Dev. 0.032761
Skewness 1.737196
50 Kurtosis 24.84018
Jarque-Bera  9597.902
Probability 0.000000
o
-02 -01 0.0 01 02 03

Figure 6. Histogram of the residuals

Partial C i AC PAC Q-Stat Prob

-0.010 -0.010 0.0439
-0.023 -0.023 0.2863

-0.042 -0.043 11358

-0.068 -0.069 3.3094

-0.094 -0.098 7.5001

-0.109 -0.120 13 212
-0.082 -0.103 16.478 0.000
-0.070 -0.102 18.820 0.000
9-0.023 -0.067 19.065 0.000
10 0.023 0.029 19.327 0.001
11 0.050 -0.004 20532 0.001
12 0.025 0.026 20.846 0.002
13 0.033 -0.012 21.377 0.003
14 0.049 0016 22556 0.004
15 -0.010 -0.029 22,606 0.007
16 -0.013 0.020 22691 0.012
17 0.006 0.009 22709 0.019
18 -0.030 0.021 23156 0.026
19 0.004 0.015 23165 0.040
20 -0.043 -0.037 24.093 0.045
21-0.023 -0.026 24349 0.059
22 0.019 -0.028 24531 0.079
23 -0.012 -0.028 24607 0.104
24 0.041 -0.066 25430 0.114
25 0.025 -0.004 25738 0.138
26 -0.007 -0.038 25765 0.174
27 0.002 -0.036 25767 0.215
28 0.030 -0.005 26235 0242
29 -0.008 -0.038 26264 0289
30 -0.020 -0.052 26.474 0.330
31-0.021 -0.049 26688 0372
32 0.010 -0.017 26.735 0423
33 0.031 0.010 27.238 0451
34 -0.002 -0.015 27.240 0.505
35 -0.003 -0.019 27.246 0.558

1
1
[
1
[
5|
[
1
1
1
1
1
1
1
1
1
1
[
1
[
|
|
1
i
1
1
1
1
1
1
|
1
1
1
1
1 36 -0.031 -0.053 27.730 0.585

|
|
|
|
'
|
|
1
1
|
|
|
|
|
|
|
|
|
|
|
|
|
'
'
1
|
|
|
|
|
|
|
|
|
|
|

Figure 7. Correlogram of the residuals

4. Conclusion

The NINFR series has been shown to be nonstationary and to follow a (5, 1,0) x (0, 1, 1), model. This model has
been shown to be highly adequate.
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