
Journal of Mathematics Research; Vol. 4, No. 4; 2012

ISSN 1916-9795 E-ISSN 1916-9809

Published by Canadian Center of Science and Education

A Seasonal Box-Jenkins Model for Nigerian Inflation Rate Series

Ette Harrison Etuk1, Atto Asuquo1 & Isaac Didi Essi1

1 Department of Mathematics/Computer Science, Rivers State University of Science and Technology, Nigeria

Correspondence: Ette Harrison Etuk, Department of Mathematics/Computer Science, Rivers State University of

Science and Technology, Nigeria. Tel: 234-813-694-8161. E-mail: ettetuk@yahoo.com

Received: January 28, 2012 Accepted: February 16, 2012 Online Published: July 20, 2012

doi:10.5539/jmr.v4n4p107 URL: http://dx.doi.org/10.5539/jmr.v4n4p107

Abstract

Time series analysis of Nigerian Inflation rate series is done. A seasonal difference and then a non-seasonal one

were obtained. The correlogram of the differenced series revealed a seasonal nature. It also revealed a seasonal

moving average component and a non-seasonal autoregressive component. A(5, 1, 0) × (0, 1, 1)12 seasonal model

was fitted and shown to be adequate.
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1. Introduction

A time series is defined as a set of data collected sequentially in time. It has the property that neighbouring values

are correlated. This tendency is called autocorrelation. A time series is said to be stationary if it has a constant

mean and variance. Moreover the autocorrelation is a function of the lag separating the correlated values and called

the autocorrelation function (ACF).

A stationary time series {Xt} is said to follow an autoregressive moving average model of orders p and q (designated

ARMA(p,q) if it satisfies the following difference

Xt + 1Xt−1 + 2Xt−2 + ... + pXt−p = εt + β1εt−1 + β2εt−2 + βqεt−q (1)

or

A(L)Xt = B(L)εt (2)

where {εt} is a sequence of uncorrelated random variables with zero mean and constant variance, called a white

noise process, and the α′i s and β′j s constants;

A(L) = 1 + α1L + α2L2 + ... + αpLp

and

B(L) = 1 + β1L + β2L2 + ... + βqLq

and L is the backward shift operator defined by LkXt = Xt−k.

If p = 0, model (1) becomes a moving average model of order q (designated MA(q)). If, however, q = 0 it

becomes an autoregressive process of order p (designated AR(p)). An AR(p) model of order p may be defined

as a model whereby a current value of the time series Xt depends on the immediate past p values: Xt−1, Xt−2, ...,

Xt−p. On the other hand an MA(q) model of order q is such that the current value Xt is a linear combination of the

immediate past values of the white noise process: εt−1, εt−2, ..., εt−q. Apart from stationarity, invertibility is another

important requirement for a time series. It refers to the property whereby the covariance structure of the series is

unique (Priestley, 1981). Moreover it allows for meaningful association of current events with the past history of

the series (Box & Jenkins, 1976).

An AR(p) model may be more specifically written as

Xt + αp1Xt−1 + αp2Xt−2 + ... + αpqXt−q = εt

Then the sequence of the last coefficients {αii} is called the partial autocorrelation function (PACF) of {Xt}. The

ACF of an MA(q) cuts off after lag q whereas that of an AR(p) model is a combination of sinusoidals dying off
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slowly. On the other hand the PACF of an MA(q) model dies off slowly whereas that of an AR(p) model cuts off

after lag p. AR and MA models are known to have some duality properties. These include:

1) A finite order AR model is equivalent to an infinite order MA model.

2) A finite order MA model is equivalent to an infinite order AR model.

3) The ACF of an AR model exhibits the same behaviour as the PACF of an MA model.

4) The PACF of an AR model exhibits the same behaviour as the ACF of an MA model.

5) An AR model is always invertible but is stationary if A(L) = 0 has roots outside the unit circle.

6) An MA model is always stationary but is invertible if B(L) = 0 has roots outside the unit circle.

Parametric parsimony consideration in model building entails preference for the mixed ARMA fit to either the pure

AR of the pure MA fit. Stationarity and invertibility conditions for model (1) or (2) are that the equations A(L) = 0

and B(L) = 0 should have roots outside the unit circle respectively.

Often in practice a time series is non-stationary. Box and Jenkins (1976) proposed that differencing of an ap-

propriate order could render a non-stationary series {Xt} stationary. Let the degree of differencing necessary for

stationarity be d. Such a series {Xt} may be modelled as

(1 + α1L + α2L2 + ... + αpLp)∇dXt = B(L)εt (3)

where ∇ = 1 − L and in which case

A(L) = (1 + α1L + α2L2 + ... + αpLp)∇d = 0

shall have unit roots d times. Then differencing to degree d renders the series stationary. The model (3) is said to

be an autoregressive integrated moving average model of orders p, d and q and designated ARIMA(p,d,q).

1.1 Seasonal ARIMA Models

A time series is said to be seasonal of order d if there exists a tendency for the series to exhibit periodic behaviour

after every time interval d. Traditional time series methods involve the identification, unscrambling and estimation

of the traditional components: secular trend, seasonal component, cyclical component and the irregular movement.

For forecasting purpose, they are reintegrated. Such techniques could be quite misleading.

The time series {Xt} is said to follow a multiplicative (p, d, q) × (P,D,Q)s seasonal ARIMA model if

A(L)Φ(Ls)∇d∇sDXt = B(L)Θ(Ls)εt (4)

where Φ and Θ are polynomials of order P and Q respectively. That is,

Φ(Ls) = 1 + φ1Ls + ... + φPLsP (5)

Θ(Ls) = 1 + θ1L + ... + θQLsQ (6)

where the φi and θ j are constants such that the roots of the equations (5) and (6) are all outside the unit circle for sta-

tionarity and invertibility respectively. Equation (5) represents the autoregressive operator whereas (6) represents

the moving average operator.

Existence of a seasonal nature is often evident from the time plot. Moreover for a seasonal series the ACF or

correlogram exhibits a spike at the seasonal lag. Box and Jenkins (1976) and Madsen (2008) are a few authors that

have written extensively on such models. A knowledge of the theoretical properties of the models provides basis

for their identification and estimation. The purpose of this paper is to fit a seasonal ARIMA model to Nigerian

Inflation Rate Series (NINFR). Earlier works on Nigerian inflation include Abidemi and Maliq (2010), Olatunji et

al. (2010) and Chiakwelu (2012). Whereas Abidemi and Maliq think that Nigerian inflation rates are stationary

Olatunji et al. are of a contrary opinion. The graph of the inflation rates from 1990 to 2010 given by Chiakwelu

corroborates the opinion of Olatunji et al. There is, perhaps, no known earlier attempt to model Nigerian inflation

rates by a seasonal ARIMA model.
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2. Materials and Methods

The data for this work are monthly composite price index series (NCPI) from March 1963 to December 2003

obtainable from the Abstracts of the National Bureau of Statistics of Nigeria. The inflation rate was calculated by

NINFR(t) = [NCPT (t) − NCPI(t − 1)]/NCPI(t − 1)

2.1 Determination of the Orders d, D, p, P, q and Q

Seasonal differencing is necessary to remove the seasonal trend. If there is secular trend non-seasonal differencing

will be necessary. To avoid undue complexity it has been advised that orders of differencing d and D should add

up to at most 2 (i.e. d + D < 3). If the ACF of the differenced series has a positive spike at the seasonal lag then a

seasonal AR component is suggestive; if it has a negative spike then a seasonal MA term is suggestive. As already

mentioned above, an AR(p) model has a PACF that truncates at lag p and an MA(q) has an ACF that truncates at

lag q. In practice ±2/
√

n where n is the sample size are the non-significance limits for both functions.

2.2 Model Estimation

The involvement of the white noise terms in an ARIMA model entails a nonlinear iterative process in the estimation

of the parameters. An optimization criterion like least error sun of squares, maximum likelihood or maximum

entropy is used. An initial estimate is usually used. Each iteration is expected to be an improvement on the last one

until the estimate converges to an optimal one. However, for pure AR and a pure MA models linear optimization

techniques exist (See for example, Box & Jenkins, 1976; Oyetunji, 1985). There are attempts to adopt linear

methods to estimate ARMA models (See for example, Etuk, 1987; 1998). We shall use Eviews software which

employs the least squares approach involving nonlinear iterative techniques.

2.3 Diagnostic Checking

The model that is fitted to the data should be tested for goodness-of-fit. We shall do some analysis of the residuals

of the model. If the model is correct, the residuals would be uncorrelated and would follow a normal distribution

with mean zero and constant variance. The autocorrelations of the residuals should not be significantly different

from zero.

3. Results and Discussion

The time plot of the original series in Figure 1 does not show any secular trend. Because of the so many spikes

involved seasonality is not obvious. Seasonal (i.e. 12-month) differencing of the series produces a series SDNINFR

with no trend and no noticeable seasonality still. See Figure 2 for this time plot. Non-seasonal differencing yields

a series DSDNINFR with no trend and no clear seasonality (see Figure 3). Its ACF in Figure 4 has a negative spike

at lag 12 revealing a seasonality of lag 12 and a seasonal MA component to the model. The PACF cuts off at lag

5 suggesting the involvement of a non-seasonal AR(5) component. We therefore propose a (5, 1, 0) × (0, 1, 1)12

seasonal model. That means

Figure 1. NINFR
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Figure 2. SDNINFR

Figure 3. DSDNINFR

Figure 4. Correlogram of DSDNINFR
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Xt + α1Xt−1 + α2Xt−2 + α3Xt−3 + α4Xt−4 + α5Xt−5 = β12εt−12 + εt (7)

where X represents DSDNINFR. The estimation of the model summarized in Table 1 yields the model

Xt + 1.0162Xt−1 + 0.8235Xt−2 + 0.6157Xt−3 + 0.3357Xt−4 + 0.1435Xt−5 + 0.9348εt−12 = εt

(±0.0458)(±0.0639)(±0.0688)(±0.0638)(±0.0459)(±0.0174)

Table 1. Model estimation dependent variable: DSDNINFR

The estimation involved 7 iterations. We note that all coefficients are significantly different from zero, each being

larger than twice its standard error. The fact that R2 = 0.75 implies that as much as 75% of the variations in

DSDNINFR has been accounted for by the model. There is considerable agreement between the actual and the

fitted models as shown in Figure 5. The histogram of the residuals in Figure 6 shows a normal distribution with

zero mean. The correlogram of the residuals in Figure 7 further depicts the adequacy of the model since virtually

all the autocorrelations are not significantly different from zero.

Figure 5. Residual
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Figure 6. Histogram of the residuals

Figure 7. Correlogram of the residuals

4. Conclusion

The NINFR series has been shown to be nonstationary and to follow a (5, 1, 0) × (0, 1, 1)12 model. This model has

been shown to be highly adequate.
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