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The quotes �

} Science, wisdom, and counting

} Being different – or random

} Surprise, information, and miracles

} Information (and hope)

} H (or S) for Entropy

} Thermodynamics

} Language, and putting things together

} Tools

To topics ←
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Science, wisdom, and
counting �

“Science is organized knowledge. Wisdom is
organized life.”

- Immanuel Kant

“My own suspicion is that the universe is not
only stranger than we suppose, but stranger
than we can suppose.”

- John Haldane

“Not everything that can be counted counts,
and not everything that counts can be
counted.”

- Albert Einstein (1879-1955)

“The laws of probability, so true in general,
so fallacious in particular .”

- Edward Gibbon
4



Measuring complexity ←

• Workers in the field of complexity face a

classic problem: how can we tell that the

system we are looking at is actually a

complex system? (i.e., should we even be

studying this system? :-)

Of course, in practice, we will study the

systems that interest us, for whatever

reasons, so the problem identified above

tends not to be a real problem. On the

other hand, having chosen a system to

study, we might well ask “How complex is

this system?”

In this more general context, we probably

want at least to be able to compare two

systems, and be able to say that system

A is more complex than system B.

Eventually, we probably would like to have

some sort of numerical rating scale.
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• Various approaches to this task have been
proposed, among them:

1. Human observation and (subjective)
rating

2. Number of parts or distinct elements
(what counts as a distinct part?)

3. Dimension (measured how?)

4. Number of parameters controlling the
system

5. Minimal description (in which
language?)

6. Information content (how do we
define/measure information?)

7. Minimal generator/constructor (what
machines/methods can we use?)

8. Minimum energy/time to construct
(how would evolution count?)
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• Most (if not all) of these measures will
actually be measures associated with a
model of a phenomenon. Two observers
(of the same phenomenon?) may develop
or use very different models, and thus
disagree in their assessments of the
complexity. For example, in a very simple
case, counting the number of parts is
likely to depend on the scale at which the
phenomenon is viewed (counting atoms is
different from counting molecules, cells,
organs, etc.).

We shouldn’t expect to be able to come
up with a single universal measure of
complexity. The best we are likely to have
is a measuring system useful by a
particular observer, in a particular
context, for a particular purpose.

My first focus will be on measures related
to how surprising or unexpected an
observation or event is. This approach
has been described as information theory.
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Being different – or
random �

“The man who follows the crowd will usually
get no further than the crowd. The man who
walks alone is likely to find himself in places
no one has ever been before. Creativity in
living is not without its attendant difficulties,
for peculiarity breeds contempt. And the
unfortunate thing about being ahead of your
time is that when people finally realize you
were right, they’ll say it was obvious all along.
You have two choices in life: You can dissolve
into the mainstream, or you can be distinct.
To be distinct is to be different. To be
different, you must strive to be what no one
else but you can be. ”

-Alan Ashley-Pitt

“Anyone who considers arithmetical methods
of producing random digits is, of course, in a
state of sin.”

- John von Neumann (1903-1957)
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Some probability ideas ←
• At various times in what follows, I may

float between two notions of the
probability of an event happening. The
two general notions are:

1. A frequentist version of probability:

In this version, we assume we have a
set of possible events, each of which
we assume occurs some number of
times. Thus, if there are N distinct
possible events (x1, x2, . . . , xN), no two
of which can occur simultaneously, and
the events occur with frequencies
(n1, n2, . . . , nN), we say that the
probability of event xi is given by

P (xi) =
ni∑N
j=1 nj

This definition has the nice property
that

N∑
i=1

P (xi) = 1
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2. An observer relative version of

probability:

In this version, we take a statement of

probability to be an assertion about

the belief that a specific observer has

of the occurrence of a specific event.

Note that in this version of probability,

it is possible that two different

observers may assign different

probabilities to the same event.

Furthermore, the probability of an

event, for me, is likely to change as I

learn more about the event, or the

context of the event.
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3. In some (possibly many) cases, we may

be able to find a reasonable

correspondence between these two

views of probability. In particular, we

may sometimes be able to understand

the observer relative version of the

probability of an event to be an

approximation to the frequentist

version, and to view new knowledge as

providing us a better estimate of the

relative frequencies.
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• I won’t go through much, but some
probability basics, where a and b are
events:
P (not a) = 1− P (a).
P (a or b) = P (a) + P (b)− P (a and b).
We will often denote P (a and b) by
P (a, b). If P (a, b) = 0, we say a and b are
mutually exclusive.

• Conditional probability:

P (a|b) is the probability of a, given that
we know b. The joint probability of both
a and b is given by:

P (a, b) = P (a|b)P (b).

Since P (a, b) = P (b, a), we have Bayes’
Theorem:

P (a|b)P (b) = P (b|a)P (a),

or

P (a|b) =
P (b|a)P (a)

P (b)
.
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• If two events a and b are such that

P (a|b) = P (a),

we say that the events a and b are
independent. Note that from Bayes’
Theorem, we will also have that

P (b|a) = P (b),

and furthermore,

P (a, b) = P (a|b)P (b) = P (a)P (b).

This last equation is often taken as the
definition of independence.

• We have in essence begun here the
development of a mathematized
methodology for drawing inferences about
the world from uncertain knowledge. We
could say that our observation of the coin
showing heads gives us information about
the world. We will develop a formal
mathematical definition of the
information content of an event which
occurs with a certain probability.
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Surprise, information, and
miracles �

“The opposite of a correct statement is a

false statement. The opposite of a profound

truth may well be another profound truth.”

- Niels Bohr (1885-1962)

“I heard someone tried the

monkeys-on-typewriters bit trying for the

plays of W. Shakespeare, but all they got was

the collected works of Francis Bacon.”

- Bill Hirst

“There are only two ways to live your life.

One is as though nothing is a miracle. The

other is as though everything is a miracle.”

- Albert Einstein (1879-1955)
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Basics of information theory

←
• We would like to develop a usable

measure of the information we get from
observing the occurrence of an event
having probability p . Our first reduction
will be to ignore any particular features of
the event, and only observe whether or
not it happened. Thus we will think of an
event as the observance of a symbol
whose probability of occurring is p. We
will thus be defining the information in
terms of the probability p.

The approach we will be taking here is
axiomatic: on the next page is a list of
the four fundamental axioms we will use.
Note that we can apply this axiomatic
system in any context in which we have
available a set of non-negative real
numbers. A specific special case of
interest is probabilities (i.e., real numbers
between 0 and 1), which motivated the
selection of axioms . . .
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• We will want our information measure
I(p) to have several properties (note that
along with the axiom is motivation for
choosing the axiom):

1. Information is a non-negative quantity:
I(p) ≥ 0.

2. If an event has probability 1, we get no
information from the occurrence of the
event: I(1) = 0.

3. If two independent events occur
(whose joint probability is the product
of their individual probabilities), then
the information we get from observing
the events is the sum of the two
informations: I(p1 ∗ p2) = I(p1) + I(p2).
(This is the critical property . . . )

4. We will want our information measure
to be a continuous (and, in fact,
monotonic) function of the probability
(slight changes in probability should
result in slight changes in information).
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• We can therefore derive the following:

1. I(p2) = I(p ∗ p) = I(p) + I(p) = 2 ∗ I(p)

2. Thus, further, I(pn) = n ∗ I(p)

(by induction . . . )

3. I(p) = I((p1/m)m) = m ∗ I(p1/m), so

I(p1/m) = 1
m ∗ I(P ) and thus in general

I(pn/m) =
n

m
∗ I(p)

4. And thus, by continuity, we get, for

0 < p ≤ 1, and a > 0 a real number:

I(pa) = a ∗ I(p)

• From this, we can derive the nice

property:

I(p) = − logb(p) = logb(1/p)

for some base b.
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• Summarizing: from the four properties,

1. I(p) ≥ 0

2. I(p1 ∗ p2) = I(p1) + I(p2)

3. I(p) is monotonic and continuous in p

4. I(1) = 0

we can derive that

I(p) = logb(1/p) = − logb(p),

for some positive constant b. The base b

determines the units we are using.

We can change the units by changing the

base, using the formulas, for b1, b2, x > 0,

x = b
logb1(x)
1

and therefore

logb2(x) = logb2(b
logb1(x)
1 ) = (logb2(b1))(logb1(x)).
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• Thus, using different bases for the

logarithm results in information measures

which are just constant multiples of each

other, corresponding with measurements

in different units:

1. log2 units are bits (from ’binary’)

2. log3 units are trits(from ’trinary’)

3. loge units are nats (from ’natural

logarithm’) (We’ll use ln(x) for loge(x))

4. log10 units are Hartleys, after an early

worker in the field.

• Unless we want to emphasize the units,

we need not bother to specifiy the base

for the logarithm, and will write log(p).

Typically, we will think in terms of log2(p).

19



• For example, flipping a fair coin once will
give us events h and t each with
probability 1/2, and thus a single flip of a
coin gives us − log2(1/2) = 1 bit of
information (whether it comes up h or t).

Flipping a fair coin n times (or,
equivalently, flipping n fair coins) gives us
− log2((1/2)n) = log2(2n) = n ∗ log2(2) =
n bits of information.

We could enumerate a sequence of 25
flips as, for example:

hthhtththhhthttththhhthtt

or, using 1 for h and 0 for t, the 25 bits

1011001011101000101110100.

We thus get the nice fact that n flips of a
fair coin gives us n bits of information,
and takes n binary digits to specify. That
these two are the same reassures us that
we have done a good job in our definition
of our information measure . . .
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Information (and hope)�

“In Cyberspace, the First Amendment is a

local ordinance.”

- John Perry Barlow

“Groundless hope, like unconditional love, is

the only kind worth having.”

- John Perry Barlow

“The most interesting facts are those which

can be used several times, those which have a

chance of recurring. . . . Which, then, are the

facts that have a chance of recurring? In the

first place, simple facts.”

H. Poincare, 1908
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Some entropy theory ←

• Suppose now that we have n symbols

{a1, a2, . . . , an}, and some source is

providing us with a stream of these

symbols. Suppose further that the source

emits the symbols with probabilities

{p1, p2, . . . , pn}, respectively. For now, we

also assume that the symbols are emitted

independently (successive symbols do not

depend in any way on past symbols).

What is the average amount of

information we get from each symbol we

see in the stream?
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• What we really want here is a weighted
average. If we observe the symbol ai, we
will get be getting log(1/pi) information
from that particular observation. In a long
run (say N) of observations, we will see
(approximately) N ∗ pi occurrences of
symbol ai (in the frequentist sense, that’s
what it means to say that the probability
of seeing ai is pi). Thus, in the N
(independent) observations, we will get
total information I of

I =
n∑
i=1

(N ∗ pi) ∗ log(1/pi).

But then, the average information we get
per symbol observed will be

I/N = (1/N)
n∑
i=1

(N ∗ pi) ∗ log(1/pi)

=
n∑
i=1

pi ∗ log(1/pi)

Note that limx→0 x ∗ log(1/x) = 0, so we
can, for our purposes, define pi ∗ log(1/pi)
to be 0 when pi = 0.
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• This brings us to a fundamental

definition. This definition is essentially

due to Shannon in 1948, in the seminal

papers in the field of information theory.

As we have observed, we have defined

information strictly in terms of the

probabilities of events. Therefore, let us

suppose that we have a set of

probabilities (a probability distribution)

P = {p1, p2, . . . , pn}. We define the

entropy of the distribution P by:

H(P ) =
n∑
i=1

pi ∗ log(1/pi).

I’ll mention here the obvious

generalization, if we have a continuous

rather than discrete probability

distribution P (x):

H(P ) =
∫
P (x) ∗ log(1/P (x))dx.
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• Another worthwhile way to think about
this is in terms of expected value. Given a
discrete probability distribution
P = {p1, p2, . . . , pn}, with pi ≥ 0 and∑n
i=1 pi = 1, or a continuous distribution

P (x) with P (x) ≥ 0 and
∫
P (x)dx = 1, we

can define the expected value of an
associated discrete set F = {f1, f2, . . . , fn}
or function F (x) by:

< F >=
n∑
i=1

fipi

or

< F (x) >=
∫
F (x)P (x)dx.

With these definitions, we have that:

H(P ) =< I(p) > .

In other words, the entropy of a
probability distribution is just the
expected value of the information of the
distribution.
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Several questions probably come to mind at

this point:

• What properties does the function H(P )

have? For example, does it have a

maximum, and if so where?

• Is entropy a reasonable name for this? In

particular, the name entropy is already in

use in thermodynamics. How are these

uses of the term related to each other?

• What can we do with this new tool?

• Let me start with an easy one. Why use

the letter H for entropy? What follows is

a slight variation of a footnote, p. 105, in

the book Spikes by Rieke, et al. :-)
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H (or S) for Entropy �

“The enthalpy is [often] written U. V is the
volume, and Z is the partition function. P
and Q are the position and momentum of a
particle. R is the gas constant, and of course
T is temperature. W is the number of ways
of configuring our system (the number of
states), and we have to keep X and Y in case
we need more variables. Going back to the
first half of the alphabet, A, F, and G are all
different kinds of free energies (the last
named for Gibbs). B is a virial coefficient or a
magnetic field. I will be used as a symbol for
information; J and L are angular momenta. K
is Kelvin, which is the proper unit of T. M is
magnetization, and N is a number, possibly
Avogadro’s, and O is too easily confused with
0. This leaves S . . .” and H. In Spikes they
also eliminate H (e.g., as the Hamiltonian). I,
on the other hand, along with Shannon and
others, prefer to honor Hartley. Thus, H for
entropy . . .
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The Gibbs inequality ←

• First, note that the function ln(x) has
derivative 1/x. From this, we find that
the tangent to ln(x) at x = 1 is the line
y = x− 1. Further, since ln(x) is concave
down, we have, for x > 0, that

ln(x) ≤ x− 1,

with equality only when x = 1.

Now, given two probability distributions,
P = {p1, p2, . . . , pn} and
Q = {q1, q2, . . . , qn}, where pi, qi ≥ 0 and∑
i pi =

∑
i qi = 1, we have

n∑
i=1

pi ln

(
qi
pi

)
≤

n∑
i=1

pi

(
qi
pi
− 1

)
=

n∑
i=1

(qi − pi)

=
n∑
i=1

qi −
n∑
i=1

pi = 1− 1 = 0,

with equality only when pi = qi for all i. It
is easy to see that the inequality actually
holds for any base, not just e.
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• We can use the Gibbs inequality to find
the probability distribution which
maximizes the entropy function. Suppose
P = {p1, p2, . . . , pn} is a probability
distribution. We have

H(P )− log(n) =
n∑
i=1

pi log(1/pi)− log(n)

=
n∑
i=1

pi log(1/pi)− log(n)
n∑
i=1

pi

=
n∑
i=1

pi log(1/pi)−
n∑
i=1

pi log(n)

=
n∑
i=1

pi(log(1/pi)− log(n))

=
n∑
i=1

pi(log(1/pi) + log(1/n))

=
n∑
i=1

pi log

(
1/n

pi

)

≤ 0,

with equality only when pi = 1
n for all i.

The last step is the application of the
Gibbs inequality.
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• What this means is that

0 ≤ H(P ) ≤ log(n).

We have H(P ) = 0 when exactly one of

the pi’s is one and all the rest are zero.

We have H(P ) = log(n) only when all of

the events have the same probability 1
n.

That is, the maximum of the entropy

function is the log() of the number of

possible events, and occurs when all the

events are equally likely.

• An example illustrating this result: How

much information can a student get from

a single grade? First, the maximum

information occurs if all grades have equal

probability (e.g., in a pass/fail class, on

average half should pass if we want to

maximize the information given by the

grade).
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The maximum information the student

gets from a grade will be:

Pass/Fail : 1 bit.

A, B, C, D, F : 2.3 bits.

A, A-, B+, . . ., D-, F : 3.6 bits.

Thus, using +/- grading gives the

students about 1.3 more bits of

information per grade than without +/-,

and about 2.6 bits per grade more than

pass/fail.

• If a source provides us with a sequence

chosen from 4 symbols (say A, C, G, T),

then the maximum average information

per symbol is 2 bits. If the source

provides blocks of 3 of these symbols,

then the maximum average information is

6 bits per block (or, to use different units,

4.159 nats per block).
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We ought to note several things.

• First, these definitions of information and

entropy may not match with some other

uses of the terms.

For example, if we know that a source

will, with equal probability, transmit either

the complete text of Hamlet or the

complete text of Macbeth (and nothing

else), then receiving the complete text of

Hamlet provides us with precisely 1 bit of

information.

Suppose a book contains ascii characters.

If the book is to provide us with

information at the maximum rate, then

each ascii character will occur with equal

probability – it will be a random sequence

of characters.

32



• Second, it is important to recognize that

our definitions of information and entropy

depend only on the probability

distribution. In general, it won’t make

sense for us to talk about the information

or the entropy of a source without

specifying the probability distribution.

Beyond that, it can certainly happen that

two different observers of the same data

stream have different models of the

source, and thus associate different

probability distributions to the source.

The two observers will then assign

different values to the information and

entropy associated with the source.

This observation (almost :-) accords with

our intuition: two people listening to the

same lecture can get very different

information from the lecture. For

example, without appropriate background,

one person might not understand
33



anything at all, and therefore have as

probability model a completely random

source, and therefore get much more

information than the listener who

understands quite a bit, and can therefore

anticipate much of what goes on, and

therefore assigns non-equal probabilities

to successive words . . .
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Thermodynamics �

“A theory is the more impressive the greater
the simplicity of its premises is, the more
different kinds of things it relates, and the
more extended its area of applicability.
Therefore the deep impression which classical
thermodynamics made upon me. It is the only
physical theory of universal content which I
am convinced that, within the framework of
the applicability of its basic concepts, it will
never be overthrown (for the special attention
of those who are skeptics on principle).”

- A. Einstein, 1946

“Thermodynamics would hardly exist as a
profitable discipline if it were not that the
natural limit to the size of so many types of
instruments which we now make in the
laboratory falls in the region in which the
measurements are still smooth.”

- P. W. Bridgman, 1941
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A simple physical example

(gases) ←

• Let us work briefly with a simple model

for an idealized gas. Let us assume that

the gas is made up of N point particles,

and that at some time t0 all the particles

are contained within a (cubical) volume

V . Assume that through some

mechanism, we can determine the

location of each particle sufficiently well

as to be able to locate it within a box

with sides 1/100 of the sides of the

containing volume V . There are 106 of

these small boxes within V .

• We can now develop a (frequentist)

probability model for this system. For

each of the 106 small boxes, we can

assign a probability pi of finding any

specific gas particle in that small box by
36



counting the number of particles ni in the

box, and dividing by N . That is, pi = ni
N .

From this probability distribution, we can

calculate an entropy:

H(P ) =
106∑
i=1

pi ∗ log(1/pi)

=
106∑
i=1

ni
N
∗ log(N/ni)

If the particles are evenly distributed

among the 106 boxes, then we will have

that each ni = N/106, and in this case

the entropy will be:

H(evenly) =
106∑
i=1

N/106

N
∗ log

(
N

N/106

)

=
106∑
i=1

1

106
∗ log(106)

= log(106).
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There are several ways to think about this
example.

• First, notice that the calculated entropy
of the system depends in a strong way on
the relative scale of measurement. For
example, if the particles are evenly
distributed, and we increase our accuracy
of measurement by a factor of 10 (i.e., if
each small box is 1/1000 of the side of
V ), then the calculated maximum entropy
will be log(109) instead of log(106).

For physical systems, we know that
quantum limits (e.g., Heisenberg
uncertainty relations) will give us a bound
on the accuracy of our measurements,
and thus a more or less natural scale for
doing entropy calculations. On the other
hand, for macroscopic systems, we are
likely to find that we can only make
relative rather than absolute entropy
calculations.
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• Second, we have simplified our model of

the gas particles to the extent that they

have only one property, their position. If

we want to talk about the state of a

particle, all we can do is specify the small

box the particle is in at time t0. There

are thus Q = 106 possible states for a

particle, and the maximum entropy for the

system is log(Q). This may look familiar

for equilibrium statistical mechanics . . .

• Third, suppose we generalize our model

slightly, and allow the particles to move

about within V . A configuration of the

system is then simply a list of 106

numbers bi with 1 ≤ bi ≤ N (i.e., a list of

the numbers of particles in each of the

boxes). Suppose that the motions of the

particles are such that for each particle,

there is an equal probability that it will

move into any given new small box during
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one (macroscopic) time step. How likely is

it that at some later time we will find the

system in a “high” entropy configuration?

How likely is it that if we start the system

in a “low” entropy configuration, it will

stay in a “low” entropy configuration for

an appreciable length of time? If the

system is not currently in a “maximum”

entropy configuration, how likely is it that

the entropy will increase in succeeding

time steps (rather than stay the same or

decrease)?

Let’s do a few computations using

combinations:(n
m

)
=

n!

m! ∗ (n−m)!
,

and Stirling’s approximation:

n! ≈
√

2π nne−n
√
n.
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Let us start here:

There are 106 configurations with all the

particles sitting in exactly one small box,

and the entropy of each of those

configurations is:

H(all in one) =
106∑
i=1

pi ∗ log(1/pi) = 0,

since exactly one pi is 1 and the rest are

0. These are obviously minimum entropy

configurations.

Now consider pairs of small boxes. The

number of configurations with all the

particles evenly distributed between two

boxes is:(106

2

)
=

106!

(2)!(106 − 2)!

=
106 ∗ (106 − 1)

2
= 5 ∗ 1011,
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which is a (comparatively :-) large

number. The entropy of each of these

configurations is:

H(two boxes) = 1/2∗log(2)+1/2∗log(2) = log(2).

We thus know that there are at least

5 ∗ 1011 + 106 configurations. If we start

the system in a configuration with entropy

0, then the probability that at some later

time it will be in a configuration with

entropy ≥ log(2) will be

≥
5 ∗ 1011

5 ∗ 1011 + 106
= (1−

106

5 ∗ 1011 + 106
)

≥ (1− 10−5).

As an example at the other end, consider

the number of configurations with the

particles distributed almost equally, except

that half the boxes are short by one

particle, and the rest have an extra. The
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number of such configurations is:( 106

106/2

)
=

106!

(106/2)!(106 − 106/2)!

=
106!

((106/2)!)2

≈
√

2π(106)
106

e−106√
106

(
√

2π(106/2)106/2e−(106/2)
√

106/2)2

=

√
2π(106)

106
e−106√

106

2π(106/2)106
e−(106)106/2

=
2106+1

√
106

√
2π
√

106

≈ 2106

= (210)105

≈ 103∗105
.

Each of these configurations has entropy

essentially equal to log(106).

From this, we can conclude that if we

start the system in a configuration with
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entropy 0 (i.e., all particles in one box),

the probability that later it will be in a

higher entropy configuration will be

> (1− 10−3∗105
).

Similar arguments (with similar results in

terms of probabilities) can be made for

starting in any configuration with entropy

appreciably less than log(106) (the

maximum). In other words, it is

overwhelmingly probable that as time

passes, macroscopically, the system will

increase in entropy until it reaches the

maximum.

In many respects, these general

arguments can be thought of as a “proof”

(or at least an explanation) of a version

of the second law of thermodynamics:

Given any macroscopic system which is

free to change configurations, and given

any configuration with entropy less than

the maximum, there will be
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overwhelmingly many more accessible

configurations with higher entropy than

lower entropy, and thus, with probability

indistinguishable from 1, the system will

(in macroscopic time steps) successively

change to configurations with higher

entropy until it reaches the maximum.
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Language, and putting
things together �

“An essential distinction between language

and experience is that language separates out

from the living matrix little bundles and

freezes them; in doing this it produces

something totally unlike experience, but

nevertheless useful.”

- P. W. Bridgman, 1936

“One is led to a new notion of unbroken

wholeness which denies the classical

analyzability of the world into separately and

independently existing parts. The inseparable

quantum interconnectedness of the whole

universe is the fundamental reality.”

- David Bohm
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Shannon’s communication

theory ←

• In his classic 1948 papers, Claude

Shannon laid the foundations for

contemporary information, coding, and

communication theory. He developed a

general model for communication

systems, and a set of theoretical tools for

analyzing such systems.

His basic model consists of three parts: a

sender (or source), a channel, and a

receiver (or sink). His general model also

includes encoding and decoding elements,

and noise within the channel.

Shannon’s communication model
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• In Shannon’s discrete model, it is

assumed that the source provides a

stream of symbols selected from a finite

alphabet A = {a1, a2, . . . , an}, which are

then encoded. The code is sent through

the channel (and possibly disturbed by

noise). At the other end of the channel,

the receiver will decode, and derive

information from the sequence of

symbols.

Let me mention at this point that sending

information from now to then is

equivalent to sending information from

here to there, and thus Shannon’s theory

applies equally as well to information

storage questions as to information

transmission questions.

48



• One important question we can ask is,
how efficiently can we encode information
that we wish to send through the
channel? For the moment, let’s assume
that the channel is noise-free, and that
the receiver can accurately recover the
channel symbols transmitted through the
channel. What we need, then, is an
efficient way to encode the stream of
source symbols for transmission through
the channel, and to be sure that the
encoded stream can be uniquely decoded
at the receiving end.

If the alphabet of the channel (i.e., the
set of symbols that can actually be carried
by the channel) is C = {c1, c2, . . . , cr},
then an encoding of the source alphabet
A is just a function f : A→ C∗ (where C∗

is the set of all possible finite strings of
symbols from C). For future calculations,
let li = |f(ai)|, i = 1,2, . . . , n (i.e., li is the
length of the string encoding the symbol
ai ∈ A).
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• There is a nice inequality concerning the

lengths of code strings for uniquely

decodable (and/or instantaneous) codes,

called the McMillan/Kraft inequality.

There is a uniquely decodable code with

lengths l1, l2, . . . , ln if and only if

K =
n∑
i=1

1

rli
≤ 1.

The necessity of this inequality can be

seen from looking at

Kn =

 n∑
i=1

1

rli

n .
We can rewrite this as

Kn =
nl∑
k=n

Nk
rk

where l is the length of the longest code

and Nk is the number of encodings of

strings having encoded length k.
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Note that Nk cannot be greater than rk

(the total number of strings of length k,

whether they encode anything or not).

From this we can see that

Kn ≤
nl∑
k=n

rk

rk
= nl − n+ 1 ≤ nl.

From this we can conclude that K ≤ 1 (as

desired), since otherwise Kn would exceed

nl for some (possibly large) n.

We can now prove a very important

property of the entropy: the entropy gives

a lower bound for the efficiency of an

encoding scheme (in other words, a lower

bound on the possible compression of a

data stream).

With K defined as above, we can define a

set of numbers Qi (pseudo-probabilities)

by

Qi =
r−li

K
.
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We call these pseudo-probabilities
because we have 0 < Qi ≤ 1 for all i, and

n∑
i=1

Qi = 1.

If pi is the probability of observing ai in
the data stream, then we can apply the
Gibbs inequality to get

n∑
i=1

pi log

(
Qi
pi

)
≤ 0,

or
n∑
i=1

pi log

(
1

pi

)
≤

n∑
i=1

pi log

(
1

Qi

)
.

The left hand side is the entropy of the
source, say H(S). Recalling the definition
of Qi (and that K ≤ 1) we find

H(S) ≤
n∑
i=1

pi
(
log(K)− log

(
r−li

))

= log(K) +
n∑
i=1

pili log(r) ≤ log(r)
n∑
i=1

pili.
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• From this, we can draw an important
conclusion. If we let L =

∑n
i=1 pili, then L

is just the average length of code words
in the encoding. What we have shown is
that

H(S) ≤ L log(r).

In other words, the entropy gives us a
lower bound on average code length for
any uniquely decodable symbol-by-symbol
encoding of our data stream. Note that,
for example, if we calculate entropy in
bits and use binary (r = 2) encoding, then
we have simply

H(S) ≤ L.

Shannon went beyond this, and showed
that the bound (appropriately recast)
holds even if we use extended coding
systems where we group symbols together
(into “words”) before doing our encoding.
The generalized form of this inequality is
called Shannon’s noiseless coding
theorem.
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• In building encoding schemes for data

streams (or, alternatively, in building data

compression schemes), we will want to

use our best understandings of the

structure of the data stream – in other

words, we will want to use our best

probability model of the data stream.

Shannon’s theorem tells us that, since the

entropy gives us a lower bound on our

encoding efficiency, if we want to improve

our schemes, we will have to develop

successively better probability models.

One way to think about a scientific theory

is that a theory is just an efficient way of

encoding (i.e., structuring) our knowledge

about (some aspect of) the world. A

good theory is one which reduces the

(relative) entropy of our (probabilistic)

understanding of the system (i.e., that

decreases our average lack of knowledge

about the system) . . .
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• Shannon went on to generalize to the

(more realistic) situation in which the

channel itself is noisy. In other words, not

only are we unsure about the data stream

we will be transmitting through the

channel, but the channel itself adds an

additional layer of uncertainty/probability

to our transmissions.

Given a source of symbols and a channel

with noise (in particular, given probability

models for the source and the channel

noise), we can talk about the capacity of

the channel. The general model Shannon

worked with involved two sets of symbols,

the input symbols and the output

symbols. Let us say the two sets of

symbols are A = {a1, a2, . . . , an} and

B = {b1, b2, . . . , bm}. Note that we do not

necessarily assume the same number of

symbols in the two sets. Given the noise

in the channel, when symbol bj comes out

of the channel, we can not be certain
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which ai was put in. The channel is
characterized by the set of probabilities
{P (ai|bj)}.

• We can then consider various related
information and entropy measures. First,
we can consider the information we get
from observing a symbol bj. Given a
probability model of the source, we have
an a priori estimate P (ai) that symbol ai
will be sent next. Upon observing bj, we
can revise our estimate to P (ai|bj). The
change in our information (the mutual
information) will be given by:

I(ai; bj) = log

(
1

P (ai)

)
− log

(
1

P (ai|bj)

)

= log

(
P (ai|bj)
P (ai)

)

We have the properties:

I(ai; bj) = I(bj; ai)

I(ai; bj) = log(P (ai|bj)) + I(ai)

I(ai; bj) ≤ I(ai)
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If ai and bj are independent (i.e., if
P (ai, bj) = P (ai) ∗ P (bj)), then
I(ai; bj) = 0.

• What we actually want is to average the
mutual information over all the symbols:

I(A; bj) =
∑
i

P (ai|bj) ∗ I(ai; bj)

=
∑
i

P (ai|bj) ∗ log

(
P (ai|bj)
P (ai)

)

I(ai;B) =
∑
j

P (ai|bj) ∗ log

(
P (bj|ai)
P (bj)

)
,

and from these,

I(A;B) =
∑
i

P (ai) ∗ I(ai;B)

=
∑
i

∑
j

P (ai, bj) ∗ log

(
P (ai, bj)

P (ai)P (bj)

)
= I(B;A).

We have the properties: I(A;B) ≥ 0, and
I(A;B) = 0 if and only if A and B are
independent.

57



• We then have the definitions and

properties:

H(A) =
n∑
i=1

P (ai) ∗ log(1/P (ai))

H(B) =
m∑
j=1

P (bj) ∗ log(1/P (bj))

H(A|B) =
n∑
i=1

m∑
j=1

P (ai|bj) ∗ log(1/P (ai|bj))

H(A,B) =
n∑
i=1

m∑
j=1

P (ai, bj) ∗ log(1/P (ai, bj))

H(A,B) = H(A) +H(B|A)

= H(B) +H(A|B),

and furthermore:

I(A;B) = H(A) +H(B)−H(A,B)

= H(A)−H(A|B)

= H(B)−H(B|A)

≥ 0
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• If we are given a channel, we could ask

what is the maximum possible information

that can be transmitted through the

channel. We could also ask what mix of

the symbols {ai} we should use to achieve

the maximum. In particular, using the

definitions above, we can define the

Channel Capacity C to be:

C = max
P (a)

I(A;B).

• We have the nice property that if we are

using the channel at its capacity, then for

each of the ai,

I(ai;B) = C,

and thus, we can maximize channel use by

maximizing the use for each symbol

independently.
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• We also have Shannon’s main theorem:

For any channel, there exist ways of

encoding input symbols such that we can

simultaneously utilize the channel as

closely as we wish to the capacity, and at

the same time have an error rate as close

to zero as we wish.

• This is actually quite a remarkable

theorem. We might naively guess that in

order to minimize the error rate, we would

have to use more of the channel capacity

for error detection/correction, and less for

actual transmission of information.

Shannon showed that it is possible to

keep error rates low and still use the

channel for information transmission at

(or near) its capacity.
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• Unfortunately, Shannon’s proof has a a
couple of downsides. The first is that the
proof is non-constructive. It doesn’t tell
us how to construct the coding system to
optimize channel use, but only tells us
that such a code exists. The second is
that in order to use the capacity with a
low error rate, we may have to encode
very large blocks of data. This means
that if we are attempting to use the
channel in real-time, there may be time
lags while we are filling buffers. There is
thus still much work possible in the search
for efficient coding schemes.

Among the things we can do is look at
natural coding systems (such as, for
example, the DNA coding system, or
neural systems) and see how they use the
capacity of their channel. It is not
unreasonable to assume that evolution
will have done a pretty good job of
optimizing channel use . . .
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Tools �

“It is a recurring experience of scientific

progress that what was yesterday an object of

study, of interest in its own right, becomes

today something to be taken for granted,

something understood and reliable, something

known and familiar – a tool for further

research and discovery.”

-J. R. Oppenheimer, 1953

“Nature uses only the longest threads to

weave her patterns, so that each small piece

of her fabric reveals the organization of the

entire tapestry.”

- Richard Feynman
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Application to Biology

(analyzing genomes) ←

• Let us apply some of these ideas to the

(general) problem of analyzing genomes.

We can start with an example such as the

comparatively small genome of

Escherichia coli, strain K-12, substrain

MG1655, version M52. This example has

the convenient features:

1. It has been completely sequenced.

2. The sequence is available for

downloading

(http://www.genome.wisc.edu/).

3. Annotated versions are available for

further work.

4. It is large enough to be interesting

(somewhat over 4 mega-bases, or 4
63
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million nucleotides), but not so huge

as to be completely unwieldy.

5. The labels on the printouts tend to

make other people using the printer a

little nervous :-)

6. Here’s the beginning of the file:

>gb|U00096|U00096 Escherichia coli

K-12 MG1655 complete genome

AGCTTTTCATTCTGACTGCAACGGGCAATATGTCT

CTGTGTGGATTAAAAAAAGAGTGTCTGATAGCAGC

TTCTGAACTGGTTACCTGCCGTGAGTAAATTAAAA

TTTTATTGACTTAGGTCACTAAATACTTTAACCAA

TATAGGCATAGCGCACAGACAGATAAAAATTACAG

AGTACACAACATCCATGAAACGCATTAGCACCACC

ATTACCACCACCATCACCATTACCACAGGTAACGG

TGCGGGCTGACGCGTACAGGAAACACAGAAAAAAG

CCCGCACCTGACAGTGCGGGCTTTTTTTTTCGACC

AAAGGTAACGAGGTAACAACCATGCGAGTGTTGAA
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• In this exploratory project, my goal has

been to apply the information and entropy

ideas outlined above to genome analysis.

Some of the results I have so far are

tantalizing. For a while, I’ll just walk you

through some preliminary work. While I

am not an expert in genomes/DNA, I am

hoping that some of what I am doing can

bring fresh eyes to the problems of

analyzing genome sequences, without too

many preconceptions. It is at least

conceivable that my naiveté will be an

advantage . . .

65



• My first step was to generate for myself a

“random genome” of comparable size to

compare things with. In this case, I simply

used the Unix ‘random’ function to

generate a file containing a random

sequence of about 4 million A, C, G, T.

In the actual genome, these letters stand

for the nucleotides adenine, cytosine,

guanine, and thymine.

Other people working in this area have

taken some other approaches to this

process, such as randomly shuffling an

actual genome (thus maintaining the

relative proportions of A, C, G, and T).

Part of the justification for this

methodology is that actual (identified)

coding sections of DNA tend to have a

ratio of C+G to A+T different from one.

I didn’t worry about this issue (for various

reasons).
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• My next step was to start developing a
(variety of) probability model(s) for the
genome. The general idea that I am
working on is to build some automated
tools to locate “interesting” sections of a
genome. Thinking of DNA as a coding
system, we can hope that “important”
stretches of DNA will have entropy
different from other stretches. Of course,
as noted above, the entropy measure
depends in an essential way on the
probability model attributed to the
source. We will want to try to build a
model that catches important aspects of
what we find interesting or significant.
We will want to use our knowledge of the
systems in which DNA is embedded to
guide the development of our models. On
the other hand, we probably don’t want
to constrain the model too much.
Remember that information and entropy
are measures of unexpectedness. If we
constrain our model too much, we won’t
leave any room for the unexpected!
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• We know, for example, that simple
repetitions have low entropy. But if the
code being used is redundant (sometimes
called degenerate), with multiple
encodings for the same symbol (as is the
case for DNA codons), what looks to one
observer to be a random stream may be
recognized by another observer (who
knows the code) to be a simple repetition.

• The first element of my probability
model(s) involves the observation that
coding sequences for peptides and
proteins are encoded via codons, that is,
by sequences of blocks of triples of
nucleotides. Thus, for example, the
codon AGC on mRNA (messenger RNA)
codes for the amino acid serine (or, if we
happen to be reading in the reverse
direction, it might code for alanine). On
DNA, AGC codes for UCG or CGA on the
mRNA, and thus could code for cysteine
or arginine.
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Amino acids specified by each codon
sequence on mRNA.
A = adenine G = guanine C = cytosine
T = thymine U = uracil
Table from
http://www.accessexcellence.org
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Key for the above table:

Ala: Alanine

Arg: Arginine

Asn: Asparagine

Asp: Aspartic acid

Cys: Cysteine

Gln: Glutamine

Glu: Glutamic acid

Gly: Glycine

His: Histidine

Ile: Isoleucine

Leu: Leucine

Lys: Lysine

Met: Methionine

Phe: Phenylalanine

Pro: Proline

Ser: Serine

Thr: Threonine

Trp: Tryptophane

Tyr: Tyrosine

Val: Valine
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• For our first model, we will consider each
three-nucleotide codon to be a distinct
symbol. We can then take a chunk of
genome and estimate the probability of
occurence of each codon by simply
counting and dividing by the length. At
this level, we are assuming we have no
knowledge of where codons start, and so
in this model, we assume that “readout”
could begin at any nucleotide. We thus
use each three adjacent nucleotides.

For example, given the DNA chunk:

AGCTTTTCATTCTGACTGCAACGGGCAATATGTC

we would count:

AAT 1 AAC 1 ACG 1 ACT 1 AGC 1

ATA 1 ATG 1 ATT 1 CAA 2 CAT 1

CGG 1 CTG 2 CTT 1 GAC 1 GCA 2

GCT 1 GGC 1 GGG 1 GTC 1 TAT 1

TCA 1 TCT 1 TGA 1 TGC 1 TGT 1

TTC 2 TTT 2
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• We can then estimate the entropy of the

chunk as:∑
pi ∗ log2(1/pi) = 4.7 bits.

The maximum possible entropy for this

chunk would be:

log2(27) = 4.755 bits.

• We want to find “interesting” sections

(and features) of a genome. As a starting

place, we can slide a “window” over the

genome, and estimate the entropy within

the window. The plot below shows the

entropy estimates for the E. coli genome,

within a window of size 6561 (= 38). The

window is slid in steps of size 81 (= 34).

This results in 57,194 values, one for each

placement of the window. For

comparison, the values for a “random”

genome are also shown.
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Entropy of E. coli and random
window 6561, slide-step 81
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• At this level, we can make the simple

observation that the actual genome

values are quite different from the

comparative random string. The values

for E. coli range from about 5.8 to about

5.96, while the random values are

clustered quite closely above 5.99 (the

maximum possible is log2(64) = 6).

• From here, there are various directions we

could go. With a given window size and

step size (e.g., 6561:81, as in the given

plot), we can look at interesting features

of the entropy estimates. For example,

we could look at regions with high

entropy, or low entropy. We could look at

regions where there are abrupt changes in

entropy, or regions where entropy stays

relatively stable.
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• We could change the window size, and/or

step size. We could work to develop

adaptive algorithms which zoom in on

interesting regions, where “interesting” is

determined by criteria such as the ones

listed above.

• We could take known coding regions of

genomes, and develop entropy

“fingerprints” which we could then try to

match.

• There are various “data massage”

techniques we could use. For example, we

could take the fourier transform of the

entropy estimates, and explore that.

Below is an example of such a fourier

transform. Notice that it has some

interesting “periodic” features which

might be worth exploring. It is also

interesting to note that the fourier
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transform of the entropy of a “random”
genome has the shape of approximately
1/f = 1/f1 (not unexpected . . . ), whereas
the E. coli data are closer to 1/f1.5.

• The discrete Fourier transform of a
sequence (aj)

q−1
j=0 is the sequence (Ak)q−1

k=0
where

Ak =
1
√
q

q−1∑
j=0

aje
2πijk
q

One way to think about this is that
(Ak) = F ((aj)) where the linear
transformation F is given by:

[F ]j,k =
1
√
q
e

2πijk
q

Note that the inverse of F is its conjugate
transpose F † – that is,

[F−1]k,j =
1
√
q
e
−2πijk

q .

The plots that follow are log-log plots of
the norms |Ak| = (AkĀk)1/2 (power
spectra).
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Fourier transform of E. coli
window 6561, slide-step 81
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Fourier transform of random
window 6561, slide-step 81
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Some other measures ←

• There have been various approaches to

expanding on the idea of entropy as a

measure of complexity. One useful

generalization of entropy was developed

by the Hungarian mathematician A.

Rényi. His method involves looking at the

moments of order q of a probability

distribution {pi}:

Sq =
1

q − 1
log

∑
i

p
q
i

If we take the limit as q → 1, we get:

S1 =
∑
i

pi log(1/pi),

the entropy we have previously defined.

We can then think of Sq as a generalized

entropy for any real number q.
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• Expanding on these generalized entropies,

we can then define a generalized

dimension associated with a data set. If

we imagine the data set to be distributed

among bins of diameter r, we can let pi
be the probability that a data item falls in

the i’th bin (estimated by counting the

data elements in the bin, and dividing by

the total number of items). We can then,

for each q, define a dimension:

Dq = lim
r→0

1

q − 1

log
∑
i p
q
i

log(r)
.

• Why do we call this a generalized

dimension?

Consider D0. First, we will adopt the

(analyst’s?) convention that p0
i = 0 when

pi = 0. Also, let Nr be the number of

non-empty bins (i.e., the number of bins

of diameter r it takes to cover the data

set).
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Then we have:

D0 = lim
r→0

log
∑
i p

0
i

log(1/r)
= lim

r→0

log(Nr)

log(1/r)

Thus, D0 is the Hausdorff dimension D,

which is frequently in the literature called

the fractal dimension of the set.

Three examples:

1. Consider the unit interval [0,1]. Let

rk = 1/2k. Then Nrk = 2k, and

D0 = lim
k→∞

log(2k)

log(2k)
= 1.

2. Consider the unit square [0,1]X[0,1].

Again, let rk = 1/2k. Then Nrk = 22k,

and

D0 = lim
k→∞

log(22k)

log(2k)
= 2.
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3. Consider the Cantor set:

The construction of the Cantor set is

suggested by the diagram. The Cantor

set is what remains from the interval

after we have removed middle thirds

countably many times. It is an

uncountable set, with measure

(“length”) 0. For this set we will let

rk = 1/3k. Then Nrk = 2k, and

D0 = lim
k→∞

log(2k)

log(3k)
=

log(2)

log(3)
≈ 0.631.

The Cantor set is a traditional example

of a fractal. It is self similar, and has

D0 ≈ 0.631, which is strictly greater

than its topological dimension (= 0).
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It is an important example since many

nonlinear dynamical systems have

trajectories which are locally the

product of a Cantor set with a

manifold (i.e., Poincaré sections are

generalized Cantor sets).

An interesting example of this

phenomenon occurs with the logistics

equation:

xi+1 = k ∗ xi ∗ (1− xi)

with k > 4. In this case (of which you

rarely see pictures . . . ), most starting

points run off rapidly to −∞, but there

is a strange repellor(!) which is a

Cantor set. It is a repellor since

arbitrarily close to any point on the

trajectory are points which run off to

−∞. One thing this means is that any

finite precision simulation will not

capture the repellor . . .
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• We can make several observations about
Dq:

1. If q1 ≤ q2, then Dq1 ≤ Dq2.

2. If the set is strictly self-similar with
equal probabilities pi = 1/N , then we
do not need to take the limit as r → 0,
and

Dq =
1

q − 1

log(N ∗ (1/N)q)

log(r)

=
log(N)

log(1/r)
= D0

for all q. This is the case, for example,
for the Cantor set.

3. D1 is usually called the information
dimension:

D1 = lim
r→0

∑
i pi ∗ log(1/pi)

log(r)

The numerator is just the entropy of
the probability distribution.
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4. D2 is usually called the correlation

dimension:

D2 = lim
r→0

log
∑
i p

2
i

log(r)

This dimension is related to the

probability of finding two elements of

the set within a distance r of each

other.
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←

Some additional material

What follows are some additional examples,

and expanded discussion of some topics . . .
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Examples using Bayes’

Theorem ←

• A quick example:

Suppose that you are asked by a friend to

help them understand the results of a

genetic screening test they have taken.

They have been told that they have

tested positive, and that the test is 99%

accurate. What is the probability that

they actually have the anomaly?

You do some research, and find out that

the test screens for a genetic anomaly

that is believed to occur in one person

out of 100,000 on average. The lab that

does the tests guarantees that the test is

99% accurate. You push the question,

and find that the lab says that one

percent of the time, the test falsely

reports the absence of the anomaly when

it is there, and one percent of the time
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the test falsely reports the presence of the

anomaly when it is not there. The test

has come back positive for your friend.

How worried should they be? Given this

much information, what can you calculate

as the probability they actually have the

anomaly?

In general, there are four possible

situations for an individual being tested:

1. Test positive (Tp), and have the

anomaly (Ha).

2. Test negative (Tn), and don’t have

the anomaly (Na).

3. Test positive (Tp), and don’t have the

anomaly (Na).

4. Test negative (Tn), and have the

anomaly (Ha).
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We would like to calculate for our friend

the probability they actually have the

anomaly (Ha), given that they have

tested positive (Tp):

P (Ha|Tp).

We can do this using Bayes’ Theorem.

We can calculate:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)
.

We need to figure out the three items on

the right side of the equation. We can do

this by using the information given.
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Suppose the screening test was done on
10,000,000 people. Out of these 107

people, we expect there to be
107/105 = 100 people with the anomaly,
and 9,999,900 people without the
anomaly. According to the lab, we would
expect the test results to be:

– Test positive (Tp), and have the
anomaly (Ha):

0.99 ∗ 100 = 99 people.

– Test negative (Tn), and don’t have
the anomaly (Na):

0.99 ∗ 9,999,900 = 9,899,901 people.

– Test positive (Tp), and don’t have the
anomaly (Na):

0.01 ∗ 9,999,900 = 99,999 people.

– Test negative (Tn), and have the
anomaly (Ha):

0.01 ∗ 100 = 1 person.
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Now let’s put the the pieces together:

P (Ha) =
1

100,000

= 10−5

P (Tp) =
99 + 99,999

107

=
100,098

107

= 0.0100098

P (Tp|Ha) = 0.99
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Thus, our calculated probability that our

friend actually has the anomaly is:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)

=
0.99 ∗ 10−5

0.0100098

=
9.9 ∗ 10−6

1.00098 ∗ 10−2

= 9.890307 ∗ 10−4

< 10−3

In other words, our friend, who has tested

positive, with a test that is 99% correct,

has less that one chance in 1000 of

actually having the anomaly!
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• There are a variety of questions we could

ask now, such as, “For this anomaly, how

accurate would the test have to be for

there to be a greater than 50%

probability that someone who tests

positive actually has the anomaly?”

For this, we need fewer false positives

than true positives. Thus, in the example,

we would need fewer than 100 false

positives out of the 9,999,900 people who

do not have the anomaly. In other words,

the proportion of those without the

anomaly for whom the test would have to

be correct would need to be greater than:

9,999,800

9,999,900
= 99.999%
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• Another question we could ask is, “How

prevalent would an anomaly have to be in

order for a 99% accurate test (1% false

positive and 1% false negative) to give a

greater than 50% probability of actually

having the anomaly when testing

positive?”

Again, we need fewer false positives than

true positives. We would therefore need

the actual occurrence to be greater than

1 in 100 (each false positive would be

matched by at least one true positive, on

average).
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• Note that the current population of the

US is about 280,000,000 and the current

population of the world is about

6,200,000,000. Thus, we could expect an

anomaly that affects 1 person in 100,000

to affect about 2,800 people in the US,

and about 62,000 people worldwide, and

one affecting one person in 100 would

affect 2,800,000 people in the US, and

62,000,000 people worldwide . . .

• Another example: suppose the test were

not so accurate? Suppose the test were

80% accurate (20% false positive and

20% false negative). Suppose that we are

testing for a condition expected to affect

1 person in 100. What would be the

probability that a person testing positive

actually has the condition?
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We can do the same sort of calculations.

Let’s use 1000 people this time. Out of

this sample, we would expect 10 to have

the condition.

– Test positive (Tp), and have the

condition (Ha):

0.80 ∗ 10 = 8 people.

– Test negative (Tn), and don’t have

the condition (Na):

0.80 ∗ 990 = 792 people.

– Test positive (Tp), and don’t have the

condition (Na):

0.20 ∗ 990 = 198 people.

– Test negative (Tn), and have the

condition (Ha):

0.20 ∗ 10 = 2 people.
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Now let’s put the the pieces together:

P (Ha) =
1

100

= 10−2

P (Tp) =
8 + 198

103

=
206

103

= 0.206

P (Tp|Ha) = 0.80
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Thus, our calculated probability that our

friend actually has the anomaly is:

P (Ha|Tp) =
P (Tp|Ha) ∗ P (Ha)

P (Tp)

=
0.80 ∗ 10−2

0.206

=
8 ∗ 10−3

2.06 ∗ 10−1

= 3.883495 ∗ 10−2

< .04

In other words, one who has tested

positive, with a test that is 80% correct,

has less that one chance in 25 of actually

having this condition. (Imagine for a

moment, for example, that this is a drug

test being used on employees of some

corporation . . . )
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• We could ask the same kinds of questions

we asked before:

1. How accurate would the test have to

be to get a better than 50% chance of

actually having the condition when

testing positive?

(99%)

2. For an 80% accurate test, how

frequent would the condition have to

be to get a better than 50% chance?

(1 in 5)
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• Some questions:

1. Are these examples realistic? If not,

why not?

2. What sorts of things could we do to

improve our results?

3. Would it help to repeat the test? For

example, if the probability of a false

positive is 1 in 100, would that mean

that the probability of two false

positives on the same person would be

1 in 10,000 ( 1
100 ∗

1
100)? If not, why

not?

4. In the case of a medical condition such

as a genetic anomaly, it is likely that

the test would not be applied

randomly, but would only be ordered if

there were other symptoms suggesting

the anomaly. How would this affect

the results?
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• Another example:

Suppose that Tom, having had too much

time on his hands while an undergraduate

Philosophy major, through much practice

at prestidigitation, got to the point where

if he flipped a coin, his flips would have

the probabilities:

P (h) = 0.7, P (t) = 0.3.

Now suppose further that you are brought

into a room with 10 people in it, including

Tom, and on a table is a coin showing

heads. You are told further that one of

the 10 people was chosen at random, that

the chosen person flipped the coin and

put it on the table, and that research

shows that the overall average for the 10

people each flipping coins many times is:

P (h) = 0.52, P (t) = 0.48.

What is the probability that it was Tom

who flipped the coin?
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By Bayes’ Theorem, we can calculate:

P (Tom|h) =
P (h|Tom)P (Tom)

P (h)
=

0.7 ∗ 0.1

0.52
= 0.1346.

Note that this estimate revises our a priori

estimate of the probability of Tom being

the flipper up from 0.10.

This process (revising estimated

probability) of course depends in a critical

way on having a priori estimates in the

first place . . .
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Analog channels ←

• The part of Shannon’s work we have

looked at so far deals with discrete (or

digital) signalling systems. There are

related ideas for continuous (or analog)

systems. What follows gives a brief hint

of some of the ideas, without much detail.

• Suppose we have a signalling system using

band-limited signals (i.e., the frequencies

of the transmissions are restricted to lie

within some specified range). Let us call

the bandwidth W . Let us further assume

we are transmitting signals of duration T .

In order to reconstruct a given signal, we

will need 2WT samples of the signal.

Thus, if we are sending continuous

signals, each signal can be represented by

2WT numbers xi, taken at equal intervals.
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We can associate with each signal an

energy, given by:

E =
1

2W

2WT∑
i=1

x2
i .

The distance of the signal (from the

origin) will be

r =
(∑

x2
i

)1/2
= (2WE)1/2

We can define the signal power to be the

average energy:

S =
E

T
.

Then the radius of the sphere of

transmitted signals will be:

r = (2WST )1/2.

Each signal will be disturbed by the noise

in the channel. If we measure the power

of the noise N added by the channel, the

disturbed signal will lie in a sphere around

the original signal of radius (2WNT )1/2.
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Thus the original sphere must be enlarged

to a larger radius to enclose the disturbed

signals. The new radius will be:

r = (2WT (S +N))1/2 .

In order to use the channel effectively and

minimize error (misreading of signals), we

will want to put the signals in the sphere,

and separate them as much as possible

(and have the distance between the

signals at least twice what the noise

contributes . . . ). We thus want to divide

the sphere up into sub-spheres of radius

= (2WNT )1/2. From this, we can get an

upper bound on the number M of possible

messages that we can reliably distinguish.

We can use the formula for the volume of

an n-dimensional sphere:

V (r, n) =
πn/2rn

Γ(n/2 + 1)
.
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We have the bound:

M ≤
πWT (2WT (S +N))WT

Γ(WT + 1)

Γ(WT + 1)

πWT (2WTN)WT

=
(

1 +
S

N

)WT

The information sent is the log of the

number of messages sent (assuming they

are equally likely), and hence:

I = log(M) = WT ∗ log
(

1 +
S

N

)
,

and the rate at which information is sent

will be:

W ∗ log
(

1 +
S

N

)
.

We thus have the usual signal/noise

formula for channel capacity . . .
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• An amusing little side light: “Random”

band-limited natural phenoma typically

display a power spectrum that obeys a

power law of the general form 1
fα. On the

other hand, from what we have seen, if

we want to use a channel optimally, we

should have essentially equal power at all

frequencies in the band. This means that

a possible way to engage in SETI (the

search for extra-terrestrial intelligence)

will be to look for bands in which there is

white noise! White noise is likely to be

the signature of (intelligent) optimal use

of a channel . . .
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A Maximum Entropy

Principle ←

• Suppose we have a system for which we

can measure certain macroscopic

characteristics. Suppose further that the

system is made up of many microscopic

elements, and that the system is free to

vary among various states. Given the

discussion above, let us assume that with

probability essentially equal to 1, the

system will be observed in states with

maximum entropy.

We will then sometimes be able to gain

understanding of the system by applying a

maximum information entropy principle

(MEP), and, using Lagrange multipliers,

derive formulae for aspects of the system.
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• Suppose we have a set of macroscopic

measurable characteristics fk,

k = 1,2, . . . ,M (which we can think of as

constraints on the system), which we

assume are related to microscopic

characteristics via:∑
i

pi ∗ f
(k)
i = fk.

Of course, we also have the constraints:

pi ≥ 0, and∑
i

pi = 1.

We want to maximize the entropy,∑
i pi log(1/pi), subject to these

constraints. Using Lagrange multipliers λk
(one for each constraint), we have the

general solution:

pi = exp

−λ−∑
k

λkf
(k)
i

 .
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If we define Z, called the partition

function, by

Z(λ1, . . . , λM) =
∑
i

exp

−∑
k

λkf
(k)
i

 ,
then we have eλ = Z, or λ = ln(Z).
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Application: Economics I (a

Boltzmann Economy) ←

• Our first example here is a very simple

economy. Suppose there is a fixed

amount of money (M dollars), and a fixed

number of agents (N) in the economy.

Suppose that during each time step, each

agent randomly selects another agent and

transfers one dollar to the selected agent.

An agent having no money doesn’t go in

debt. What will the long term (stable)

distribution of money be?

This is not a very realistic economy –

there is no growth, only a redistribution

of money (by a random process). For the

sake of argument, we can imagine that

every agent starts with approximately the

same amount of money, although in the

long run, the starting distribution

shouldn’t matter.
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• For this example, we are interested in

looking at the distribution of money in

the economy, so we are looking at the

probabilities {pi} that an agent has the

amount of money i. We are hoping to

develop a model for the collection {pi}.

If we let ni be the number of agents who

have i dollars, we have two constraints:∑
i

ni ∗ i = M

and ∑
i

ni = N.

Phrased differently (using pi = ni
N ), this

says ∑
i

pi ∗ i =
M

N

and ∑
i

pi = 1.
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• We now apply Lagrange multipliers:

L =
∑
i

pi ln(1/pi) − λ

∑
i

pi ∗ i−
M

N


− µ

∑
i

pi − 1

 ,
from which we get

∂L

∂pi
= −[1 + ln(pi)]− λi− µ = 0.

We can solve this for pi:

ln(pi) = −λi− (1 + µ)

and so

pi = e−λ0e−λi

(where we have set 1 + µ ≡ λ0).
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• Putting in constraints, we have

1 =
∑
i

pi

=
∑
i

e−λ0e−λi

= e−λ0
M∑
i=0

e−λi,

and
M

N
=

∑
i

pi ∗ i

=
∑
i

e−λ0e−λi ∗ i

= e−λ0
M∑
i=0

e−λi ∗ i.

We can approximate (for large M)

M∑
i=0

e−λi ≈
∫ M

0
e−λxdx ≈

1

λ
,

and

M∑
i=0

e−λi ∗ i ≈
∫ M

0
xe−λxdx ≈

1

λ2
.
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From these we have (approximately)

eλ0 =
1

λ
and

eλ0
M

N
=

1

λ2
.

From this, we get

λ =
N

M
= e−λ0,

and thus (letting T = M
N ) we have:

pi = e−λ0e−λi

=
1

T
e−

i
T .

This is a Boltzmann-Gibbs distribution,
where we can think of T (the average
amount of money per agent) as the
“temperature,” and thus we have a
“Boltzmann economy” . . .

Note: this distribution also solves the
functional equation

p(m1)p(m2) = p(m1 +m2).
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• This example, and related topics, are

discussed in

Statistical mechanics of money

by Adrian Dragulescu and Victor M.

Yakovenko,

http://arxiv.org/abs/cond-mat/0001432

and

Statistical mechanics of money: How

saving propensity affects its distribution

by Anirban Chakraborti and Bikas K.

Chakrabarti

http://arxiv.org/abs/cond-mat/0004256
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Application: Economics II (a

power law) ←

• Suppose that a (simple) economy is made

up of many agents a, each with wealth at

time t in the amount of w(a, t). (I’ll leave

it to you to come up with a reasonable

definition of “wealth” – of course we will

want to make sure that the definition of

“wealth” is applied consistently across all

the agents.) We can also look at the total

wealth in the economy W (t) =
∑
aw(a, t).

For this example, we are interested in

looking at the distribution of wealth in

the economy, so we will assume there is

some collection {wi} of possible values for

the wealth an agent can have, and

associated probabilities {pi} that an agent

has wealth wi. We are hoping to develop

a model for the collection {pi}.
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• In order to apply the maximum entropy

principle, we want to look at global

(aggregate/macro) observables of the

system that reflect (or are made up of)

characteristics of (micro) elements of the

system.

For this example, we can look at the

growth rate of the economy. A reasonable

way to think about this is to let

Ri = wi(t1)/wi(t0) and R = W (t1)/W (t0)

(where t0 and t1 represent time steps of

the economy). The growth rate will then

be ln(R). We then have the two

constraints on the pi:∑
i

pi ∗ ln(Ri) = ln(R)

and ∑
i

pi = 1.
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• We now apply Lagrange multipliers:

L =
∑
i

pi ln(1/pi) − λ

∑
i

pi ln(Ri)− ln(R)


− µ

∑
i

pi − 1

 ,
from which we get

∂L

∂pi
= −[1 + ln(pi)]− λ ln(Ri)− µ = 0.

We can solve this for pi:

pi = e−λ0e−λ ln(Ri) = e−λ0R−λi

(where we have set 1 + µ ≡ λ0).

Solving, we get λ0 = ln(Z(λ)), where

Z(λ) ≡
∑
iR
−λ
i (the partition function)

normalizes the probability distribution to

sum to 1. From this we see the power law

(for λ > 1):

pi =
R−λi
Z(λ)

.
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• We might actually like to calculate

specific values of λ, so we will do the

process again in a continuous version. In

this version, we will let R = w(T )/w(0) be

the relative wealth at time T. We want to

find the probability density function f(R),

that is:

max
{f}

H(f) = −
∫ ∞

1
f(R) ln(f(R))dR,

subject to ∫ ∞
1

f(R)dR = 1,∫ ∞
1

f(R) ln(R)dR = C ln(R),

where C is the average number of

transactions per time step.

We need to apply the calculus of

variations to maximize over a class of

functions.
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When we are solving an extremal problem
of the form∫

F [x, f(x), f ′(x)]dx,

we work to solve

∂F

∂f(x)
−

d

dx

(
∂F

∂f ′(x)

)
= 0.

Our Lagrangian is of the form

L ≡ −
∫ ∞

1
f(R) ln(f(R))dr − µ

(∫ ∞
1

f(R)dR− 1
)

− λ

(∫ ∞
1

f(R) ln(R)dR− C ∗ ln(R)
)
.

Since this does not depend on f ′(x), we
look at:

∂[−f(R) ln f(R)− µ(f(R)− 1)− λ(f(R) lnR−R)]

∂f(R)

= 0

from which we get

f(R) = e−(λ0−λ ln(R)) = R−λe−λ0,

where again λ0 ≡ 1 + µ.
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We can use the first constraint to solve

for eλ0:

eλ0 =
∫ ∞

1
R−λdR =

[
R−λ+1

1− λ

]∞
1

=
1

λ− 1
,

assuming λ > 1. We therefore have a

power law distribution for wealth of the

form:

f(R) = (λ− 1)R−λ.

To solve for λ, we use:

C ∗ ln(R) = (λ− 1)
∫ ∞

1
R−λ ln(R)dR.

Using integration by parts, we get

C ∗ ln(R) = (λ− 1)

[
ln(R)

R1−λ

1− λ

]∞
1

−(λ− 1)
∫ ∞

1

R−λ

1− λ
dR

= (λ− 1)

[
ln(R)

R1−λ

1− λ

]∞
1

+

[
R1−λ

1− λ

]∞
1
.
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By L’Hôpital’s rule, the first term goes to

zero as R→∞, so we are left with

C ∗ ln(R) =

[
R1−λ

1− λ

]∞
1

=
1

λ− 1
,

or, in other terms,

λ− 1 = C ∗ ln(R−1).

For much more discussion of this

example, see the paper A Statistical

Equilibrium Model of Wealth Distribution

by Mishael Milakovic, February, 2001,

available on the web at:

http://astarte.csustan.edu/˜ tom/SFI-

CSSS/Wealth/wealth-Milakovic.pdf
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Application to Physics

(lasers) ←

• We can also apply this maximum entropy

principle to physics examples. Here is how

it looks applied to a single mode laser.

For a laser, we will be interested in the

intensity of the light emitted, and the

coherence property of the light will be

observed in the second moment of the

intensity. The electric field strength of

such a laser will have the form

E(x, t) = E(t) sin(kx),

and E(t) can be decomposed in the form

E(t) = Be−iωt +B∗eiωt.

If we measure the intensity of the light

over time intervals long compared to the

frequency, but small compared to

fluctuations of B(t), the output will be
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proportional to BB∗ and to the loss rate,

2κ, of the laser:

I = 2κBB∗.

The intensity squared will be

I2 = 4κ2B2B∗2.
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• If we assume that B and B∗ are

continuous random variables associated

with a stationary process, then the

information entropy of the system will be:

H =
∫
p(B,B∗) log

(
1

p(B,B∗)

)
d2B.

The two constraints on the system will be

the averages of the intensity and the

square of the intensity:

f1 = < 2κBB∗ >,

f2 = < 4κ2B2B∗2 > .

Then, of course, we will let

f
(1)
B,B∗ = 2κBB∗,

f
(2)
B,B∗ = 4κ2B2B∗2.

We can now use the method outlined

above, finding the maximum entropy

general solution derived via Lagrange

multipliers for this system.
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• Applying the general solution, we get:

p(B,B∗) = exp
[
−λ− λ12κBB∗ − λ24κ2(BB∗)2

]
,

or, in other notation:

p(B,B∗) = N ∗ exp(−α|B|2 − β|B|4).

This function in laser physics is typically

derived by solving the Fokker-Planck

equation belonging to the Langevin

equation for the system.

• For quick reference, the typical generic

Langevin equation looks like:

q̇ = K(q) + F(t)

where q is a state vector, and the

fluctuating forces Fj(t) are typically

assumed to have

< Fj(t) > = 0

< Fj(t)Fj′(t
′) > = Qjδjj′δ(t− t

′).
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• The associated generic Fokker-Planck

equation for the distribution function

f(q, t) then looks like:

∂f

∂t
= −

∑
j

∂

∂qj
(Kjf) +

1

2

∑
jk

Qjk
∂2

∂qj∂qk
f.

The first term is called the drift term, and

the second the diffusion term. This can

typically be solved only for special cases

. . .

• For much more discussion of these topics,

I can recommend the book Information

and Self-organization, A Macroscopic

Approach to Complex Systems by

Hermann Haken, Springer-Verlag Berlin,

New York, 1988.

128



Kullback-Leibler information

measure ←

• Suppose we have a data set, and we

would like to build a (statistical) model

for the data set. How can we tell how

good a job our model does in representing

the statistical properties of the data set?

One approach is to use ideas from

Information Theory (and in particular the

framework of the Gibbs inequality).

So, suppose we have a data set for which

the actual statistical distribution is given

by P = p(x). We propose a model

Q = q(x) for the data set (a traditional

example would be to use a least-squares

line fit for Q). We would like a measure

which can tell us something about how

well our model matches the actual

distribution.
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• One approach is to use the so-called

Kullback-Leibler information measure:

KL(P ;Q) =

〈
log

(
p(x)

q(x)

)〉
P

=
∫ ∞
−∞

log

(
p(x)

q(x)

)
p(x)d(x)

(in other words, the P -expected value of

the difference of the logs). The KL

measure has the nice properties that

KL(P ;Q) >= 0, and

KL(P ;Q) = 0 ⇐⇒ p(x) = q(x) (a.e.)

(I’ll leave it to you to specialize to the

discrete case . . . )

The KL measure is sometimes also called

the relative entropy, although that term

might better be used for −KL(P ;Q), in

which case minimizing the KL measure

would be the same as maximizing relative

entropy. The notation in the literature is

sometimes inconsistent on this point.
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I should probably also mention that the

KL measure is not a true metric (it is not

symmetric in P and Q, nor does it satisfy

the triangle inequality), but it can be a

useful measure of the “distance” between

two distributions.

One approach to understanding the KL

measure is consider things relative to the

entropy of the distribution P . Thinking in

the discrete case, we have

0 <= KL(P ;Q)

=
∑
x
p(x) log

(
p(x)

q(x)

)

=
∑
x
p(x) log

(
1

q(x)

)
−
∑
x
p(x) log

(
1

p(x)

)
= H(P ;Q)−H(P )

(where H(P ;Q) is what is sometimes

called the “cross entropy” between P and

Q). In other words, the entropy of the

“true” distribution P (H(P )) is a lower

bound for the cross entropy. As we saw
131



elsewhere, H(P ) is a lower bound on

efficiency of encoding (a description of)

the data set. The Kullback-Leibler

measure can be thought of as the

(added) inefficiency of encoding the data

with respect to the distribution Q, rather

than the “true” distribution P .

• Now, suppose that our data set is a

sample from the distribution P , and we

would like to estimate P . We can (with

care . . . ) sometimes use the KL measure

to compare various candidate distributions

even without knowing P itself.

Considering the discrete case (i.e., a finite

sample size), we have (as above)

KL(P ;Q) =
∑
x
p(x) log

(
1

q(x)

)
−H(P )

= −
∑
x
p(x) log(q(x))−H(P )
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Thus, we can minimize the KL measure
by maximizing∑

x
p(x) log(q(x)) = 〈log(q(x))〉P

which is often called the expected
log-likelihood.

Now, if we are feeling lucky (or at least
brave :-) we could try maximizing the
expected log-likelihood by maximizing the
estimated log-likelihood – i.e., by
maximizing ∑

x
log(q(x)).

There are a variety of subtleties in this.
Some approaches involve estimating the
bias involved in using the estimated
log-likelihood instead of the expected
log-likelihood. Perhaps another time or
place there can be more discussion of
these issues.

But, just for kicks, let’s look at one
specific example. Suppose we have reason
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to believe that P is actually a normal

distribution with mean m and variance 1.

From a sample, we want to estimate m.

We will want to compare various normal

distributions

Q(µ) = q(x, µ)

=
1√
2π
e

(
−(x−µ)2

2

)
.

The corresponding log-likelihood function

will be

L(µ) = −
N

2
log(2π)−

1

2

N∑
i=1

(xi − µ)2.

In other words, maximizing the

log-likelihood function is the same as

minimizing the least-squares function

ls(µ) =
N∑
i=1

(xi − µ)2.

Oh, well. Enough of this for now . . .
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