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Abstract  A significant efforts have been done by scientists and researchers in the last few years to develop many 
non-destructive techniques for damage recognition in a beam like dynamic structures. In this paper, theoretical, 
numerical, fuzzy logic methods employed for diagnosis of damage in the form of cracks of the cantilever composite 
beam with an aim to detect, quantify, and determine its intensity and locations. The Glass fiber reinforced epoxy 
composite engaged in the analysis due to high strength and stiffness-to-weight ratios. The theoretical analysis is 
performed to get the relationship between change in natural frequencies and mode shapes for the cracked and non-
cracked composite beam. The Numerical analysis is performed on the cracked composite beam to get the vibration 
parameters such as natural frequency and mode shape, which is used to design fuzzy logic, based smart artificial 
intelligent technique for predicting crack severity and its intensity. Online fuzzy based smart technique has been 
developed, first three natural frequencies and mode shapes used as input parameters, Gaussian membership 
functions is considered to detect cracks location and depth. The results of theoretical and numerical analysis are 
compared with experimental results having good agreement with the results predicted by the fuzzy inference system. 
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1. Introduction 
The demand for composite materials is increasing, 

especially in the aerospace, civil and automobile industries, 
due to its unique characteristics such as high stiffness and 
strength to weight ratio, higher fatigue and wear resistance 
and higher damage tolerance capability. Sometimes composite 
and isotropic structures subjected to dynamic loading, 
which is one of the causes of damage mostly, cracks and 
delamination. The presence of the cracks on the dynamic 
structures introduces a local flexibility, which changes the 
dynamic behavior of the structures. 

For the last few years, several methodologies have been 
explored for monitoring and detection of the damage in 
the composite materials. Kisa [1] has developed a new 
numerical method for free vibration analysis of cracked 
cantilever composite beam having multiple transverse 
cracks. The proposed method integrates the fracture 
mechanics and the joint interface mechanics to couple 
substructures. Kisa et al. [2] are presented a new 
numerical methodology for free vibration analysis of 
circular cross sectional beams containing multiple non-
propagating open cracks. In the proposed methodology the 
component mode synthesis technique is combined with 
the finite element method. Krawczuk et al. [3] are 
presented two models to calculate Eigen frequencies of 
cracked graphite fiber reinforced polyimide composite 

beam. In the first model the crack is exhibited by a mass-
less substitute spring. The fracture mechanics and the 
Castigliano theorem are used to calculate the flexibility of 
the spring. The finite element method is utilized in the 
second model. Hoffman et al. [4] are presents three neural 
classification methodologies were calculated from their 
performance on a fault diagnosis problem needful for the 
multiple fault identification. Adams et al. [5] propose a 
non-destructive method for evaluating the integrity of 
structures. Crack location and crack depth identified by 
proposed theoretical method and justified by experimental 
investigation. Sekhar [6] is determined dynamic 
characteristics of cracked rotor containing two cracks 
through finite element analysis and the influence of one 
crack over the other for natural frequencies, mode shapes 
and for threshold speed limits has been observed. Pawar et 
al. [7] are developed online damage detection method for 
composite rotor blade. Finite element method used to 
obtain system parameters such as blade response, loads 
and strains of the damage and un-damage rotor blade, 
these parameters used as input to genetic fuzzy systems 
for identification of damage in the rotor blade. Katunin [8] 
is presented discrete wavelet transform method for 
identification of multiple cracks on polymeric laminate 
beam. The natural mode shapes of non-cracked and 
cracked beams were estimated experimentally using laser 
Doppler vibrometry for estimation of the crack locations 
in laminated beams. Saravanan et al. [9] have proposed a 
method based on the vibration signatures acquired from 
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the machines to effectively identify the conditions of 
remote moving parts of the machine. The proposed 
method has been designed using fuzzy controller and 
decision trees to produce the rules automatically from the 
feature set. The developed fuzzy controller has been tested 
with characteristic data and the results are found to be 
inspiring. Das et al. [10] are presented finite element, 
theoretical, experimental and fuzzy logic methodologies 
for forecasting the crack severity and its intensity on beam. 
Finite element analysis is being executed on the cracked 
beam structure to measure the vibration parameters, which 
is subsequently used in the fuzzy logic controller for 
prediction of crack depths and locations. Results from 
experimental analysis are very close to the results 
predicted by the theoretical, finite element and fuzzy 
analysis. Parhi [11] has developed a fuzzy based 
navigational control system for multiple mobile robots 
working in a cluttered environment. He has been designed 
to navigate in cluttered environment without hitting any 
obstacles along with other robots. Mohammed et al. [12] 
are proposed a neuro-fuzzy system for identification of 
multiple damage in pre-stressed square membrane 
structure. The neuro-fuzzy system receives the wavelet-
based damage feature index vector as the input and gives 
the damage status of the structure as the output. 
In the present work, the artificial intelligent technique has 
been adopted for the identification of cracks. Theoretical 
and numerical have been performed to find the dynamic 

response of a cracked cantilever composite. The 
theoretical and numerical results have been compared. An 
inverse method has been designed based on fuzzy 
technique with Gaussian membership function and used to 
forecast the damage severity and its intensity. The 
experiment results are compared with the various analysis 
results. A close agreement observed between the results. 

2. Theoretical Analysis of Cracked 
Composite Beam 

2.1. Stiffness and Mass Matrices for 
Composite Beam Element 

The method suggested by Krawczuk [3] can be used to 
find the stiffness and mass matrices of the composite beam 
element and assume to three nodes in an element, one 
node in the middle and two at the extreme end of an 
element, and three degrees of freedom at each node is, δ = 
{u, v, θ} shown in fig , the applied system forces F= {F1, 
S1, M1, F2, S2, M2, F3, S3, M3} and corresponding 
displacements δ = {u1, v1, θ1, u2, v2, θ2, u3, v3, θ3}are 
shown in Figure 2. The stiffness matrix for a three-node 
composite beam element with three degrees of freedom at 
each node, for case of bending in x-y plane, given as 
follows [3]. 

 

Figure 1. Nodal displacement in element coordinate system 

 

Figure 2. Applied forces on beam element 

 el ij (9 9)
K q

×
 =    (1) 

Where qij(i, j=1… 9) are shown in Appendix A. 
The mass matrix of the composite beam element can be 

given as [3] 

 
( )el ij 9 9 ,

M M
×

 =    (2) 

Where Mij(i, j=1… 9) are shown in Appendix B. 

2.2. The Determination of Stiffness Matrix for 
the Cracked Composite Beam Element 

According to the St. Venant’s principle, the stress field 
is influenced only in the vicinity of the crack. The 
additional strain energy generates due to crack, which 
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change flexibility coefficients expressed by stress intensity 
factors, can be derived by Castigliano’s theorem in the 
linear elastic range. In this study, the bending-stretching 
effect due to mid-plane asymmetry encouraged by the 
cracks is neglected. The coefficients of compliance Cij are 
derived from the strain energy release rate (J), which 
induced by cracks developed by Griffith–Irwin theory [16]. 
J can be expressed as 

 ( ),iU P A
j

A
∂

=
∂

 (3) 

Where A = area of the crack section, Pi= corresponding 
loads, U = strain energy of the beam due to presence of 
crack and can be written as [15] 
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Where: KI, KII and KIII are the stress intensity factors for 
fracture modes of opening, sliding and tearing type of 
crack. D1, D12, D2 and D3 are the coefficients depending 
on the material parameters [13] 
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The coefficients s1, s2 and dij are given in Appendix C. 
The stress intensity factors, KI, KII and KIII expressed as [14]: 

 ji i j jiK σ πaY (ξ)F (a/H),=  (6) 

Where σi = stress for the corresponding fracture mode, 
Fji (a/H) = correction factor for the finite specimen size; 

( )jY ξ , =correction factor for the anisotropic material [13], 
a = crack depth and H= element height. Additional 
displacement due to crack, according to the Castigliano’s 
theorem [17], in the direction of the load Pi, is 

 i,
i

i

U(P A)
u .

P
∂

=
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 (7) 

Substituting the Eq. (3) into Eq. (7), displacement and 
strain energy release rate J can be related as follows: 

 i i
i A

u J(P ,A)dA,
P
∂

=
∂ ∫  (8) 

 

Figure 3. a Relative Amplitude vs. Relative distance from fixed end (1st mode of vibration), b Magnified view at the first crack location (β1=0.25), c 
Magnified view at the second crack location (β1=0.5) 

The flexibility coefficients, which are highly depend on 
the stress intensity factors and the shape and size of crack 
and, can be written as [16]: 
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The compliance coefficient matrix, can be derived from 
the above equation, can be assumed according to the 
displacement vector { }δ u,v,θ=  as 

 ij (6 6)
C c

×
 =    (10) 

Where cij (i, j=1 to 6) are derived by using eqs. (3)- (9). 
The matrix of transformation [T] is calculated by using 

the equation of overall equilibrium of elemental forces (Fi 
= 1, 9) and (Si = 1, 6). The final matrix of transformation 
is 

 [ ]t
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Figure 4. a Relative Amplitude vs. Relative distance from fixed end (2ndmode of vibration), b Magnified view at the first crack location (β1=0.25), c 
Magnified view at the second crack location (β1=0.5) 

Hence the stiffness matrix of a cracked beam element 
can be obtained as 

 1 t
CrackK TC T−=  (12) 

Natural frequencies are calculated by following 
equation [21] 

 
1/2
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ρAL

 
=   

 
 (13) 

Where α2 is the co-efficient, which value is catalogued by 
Warburton, Young and Felgar. 

The theoretical analysis results for the first three mode 
shapes for non-cracked and cracked composite beam are 
shown in Figure 3, Figure 4, and Figure 5 and the 
orientation of the cracks are β1=0.25, β2=0.5, ψ1=0.1667 
and ψ2=0.5. Magnified view at the vicinity of the first and 

second crack for first three mode of vibration are shown in 
Figure 3b, Figure 3c, Figure 4b, Figure 4c, Figure5b and 
Figure 5c. A sudden jump has been observed in relative 
amplitudes; these changes in amplitudes will be helpful in 
the prediction of crack location and its intensity. 

3. Numerical Analysis of Cracked 
Composite Beam 

The numerical analysis is brought out for the cracked 
cantilever composite beam shown in Figure 6, to find the 
vibration signatures, e.g. natural frequencies and mode 
shapes of transverse vibration at different crack depth and 
crack location. The individual material properties of fiber 
and matrix listed in Table 1. The cracked beams of the 
current research have the following dimensions. 
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Figure 5. a Relative Amplitude vs. Relative distance from fixed end (3rdmode of vibration), b Magnified view at the first crack location (β1=0.25), c 
Magnified view at the second crack location (β1=0.5) 

 

Figure 6. Geometry Cracked Cantilever beam 

 

Figure 7. Geometry of Structural Solid Shell (SOLSH190) element 

Table 1. Properties of Glass fiber- reinforced epoxy composite 
 Fiber (Glass) Matrix (Epoxy) 

Elastic Modulus (Gpa) Ef = 72.4 Em = 3.45 

Rigidity Modulus (Gpa) Gf = 29.67 Gm = 1.277 

Poisson’s Ratio υf = 0.22 υm = 0.35 

Mass Density (gm-cm-3) ρf = 2.6 ρm = 1.2 

Length of the Beam (L) = 800mm; Width of the beam 
(W) = 50mm; Thickness of the Beam (H) = 6mm 

1. Relative first crack depth (ψ1=a1/H) varies from 
0.0833 to 0.5;  

2. Relative second crack depth (ψ2=a2/H) varies from 
0.0833 to 0.5; 

3. Relative first crack location (β1=L1/L) varies from 
0.0625 to 0.875; 

4. Relative second crack location (β2=L2/L) varies from 
0.125 to 0.9375; 
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Figure 8. Meshing at the vicinity of crack 

Numerical modal analysis based on the finite element 
modeling is performed for studying the dynamic response 
of a dynamic structure. The natural frequencies and mode 
shapes are most important modal parameters in designing 
a structure under complex loading conditions. The 
numerical analysis is accepted by using the finite element 
software ANSYS in the frequency domain and obtain 
natural frequencies, and mode shapes. 

 
Figure 9. Layers Stacking in ANSYS 

A higher order 3-D, 8-node element (Specified as 
SOLSH190 in ANSYS) having three degrees of freedom 
at each node: translations in the nodal x, y, and z 
directions is selected and used throughout the analysis 
shown in Figure 7. Each node has three degrees of 
freedom, making a total twenty four degrees of freedom 
per element. The hexagonal meshing at the vicinity of 
crack is shown in Figure 8. The layers, stacking of 
composite beam is in the ANSYS shown in Figure 9. 

 

Figure 10. a Relative Amplitude vs. Relative distance from fixed end (1st mode of vibration), b Relative Amplitude vs. Relative 
distance from fixed end (2nd mode of vibration), c Relative Amplitude vs. Relative distance from fixed end (3rd mode of vibration) 
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The results of numerical analysis for the first three 
mode shapes for cracked composite beam plotted along 
with theoretical analysis results for cracked and non-
cracked beam, orientation of cracks (β1=0.25, β2=0.5, 
ψ1=0.1667 and ψ2=0.5) is shown in the Figure 10. 

4. Fuzzy Logic Analysis for Identification 
of Cracks 

The fuzzy controller has developed having six input 
parameters and two output parameters as shown in Figure 11. 
The linguistic term used for the inputs are as follows; 
Relative first natural frequency = “rfnf”; Relative second 
natural frequency = “rsnf”; Relative third natural 
frequency = “rtnf”; Relative first mode shape difference = 
“rfmd”; Relative second mode shape difference = “rsmd”; 
Relative third mode shape difference = “rtmd.  

The linguistic term used for the outputs are as follows; 
Relative first crack location = “rfcl” Relative second crack 

location = “rscl” Relative first crack depth = “rfcd” 
Relative second crack depth = “rscd”. 

 

Figure 11. Gaussian fuzzy model 

The membership functions for linguistic terms, used in 
fuzzy inference system shown in Figure 13 and described 
in Table 2. 

 

Figure 12. Fuzzy inference system 

4.1. Fuzzy Tools for Identification of Crack 
The rules for fuzzy mechanism can be defined, based 

on above fuzzy linguistic terms as follow: 

 

a b

c e

f g

abcefg abcefg

abcefg abcef

rfnf is rfnf  and rsnf is rsnf
if and rtnf is rtnf rfmd is rfmd

and rsmd is rsmd  and rtmd is rtmd

then rfcl is rfcl  and rfcd is rfcd  

and rscl is rscl  and rscd is rscd

 
 
 
 
 

g

where a, b, c, e, f, g 1 to 12=

 (14) 

According to fuzzy methodology a factor, Wabcefg is 
defined in the rules as follows [11] 

( ) ( )
( ) ( )
( ) ( )

W  rfnf  freq  rsnf  freqabcefg a a a b

      rtnf  freq  rfmd  modshdif  a c e e

      rsmd  modshdif  rtmd  modshdiff f g g

µ µ

µ µ

µ µ

= ∧

∧ ∧

∧ ∧

(15) 

Where  cfreq and bfreq ,afreq are the first, second and 
third relative natural frequencies of the cracked cantilever 
composite beam respectively;  modshdif ,e  

 modshdif  f  
and  modshdifg  

average relative mode shape differences 

of the cracked cantilever composite beam. The 
membership values of the relative crack location and 
relative crack depth, (location)rcliand (depth) rcdi (i= 1, 2) 
by applying the composition rule of inference can be 
written as [11]; 

 

rcliabcefg

abcefg length

rcdiabcefg

abcefg depth

(location)

w  (location)   rcli

(depth)

w  (depth)          rcdi

rcliabcefg

rcdiabcefg

µ

µ

µ

µ

= ∧ ∀ ∈

= ∧ ∀ ∈

(16) 

The outputs of all the fuzzy set rules combined to 
achieve the inclusive conclusions can be written as 
follows; 
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The crisp values of the relative crack location and 
relative crack depth can be written with the help Centre of 
gravity method as [11]: 
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Figure 13. Fuzzy membership functions for (1, 2, 3) relative natural frequency of first three bending mode of vibration, (4, 5, 6) relative mode shape 
difference of first three bending mode of vibration, (7, 8) first and second crack depth and (9, 10) first and second crack location 
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Table 2. Description of fuzzy linguistic terms. 
Membership Functions  Linguistic Terms Description of the Linguistic terms 

L1NF1, L2NF1, L3NF1, L4NF1, L5NF1 rfnf1- 5 
Low ranges of relative natural frequency of the first mode of vibration in 
descending order respectively  

M1NF1, M2NF1 rfnf6, 7 
Medium ranges of relative natural frequency of the first mode of vibration in 
ascending order respectively 

H1NF1, H2NF1, H3NF1, H4NF1, H5NF1 rfnf8-12 
Higher ranges of relative natural frequency of the first mode of vibration in 
ascending order respectively 

L1NF2, L2NF2, L3NF2, L4NF2, L5NF2 rsnf1-5 
Low ranges of relative natural frequency of the second mode of vibration in 
descending order respectively 

M1NF2, M2NF2 rsnf6, 7 
Medium ranges of relative natural frequency of the second mode of vibration 
in ascending order respectively 

H1NF2, H2NF2, H3NF2, H4NF2, H5NF2 rsnf8-12 
Higher ranges of relative natural frequencies of the second mode of vibration 
in ascending order respectively 

L1NF3, L2NF3, L3NF3, L4NF3, L5NF3 rtnf1-5 
Low ranges of relative natural frequencies of the third mode of vibration in 
descending order respectively 

M1NF3, M2NF3 rtnf6, 7 
Medium ranges of relative natural frequencies of the third mode of vibration 
in ascending order respectively 

H1NF3, H2NF3, H3NF3, H4NF3, H5NF3 rtnf8-12 
Higher ranges of relative natural frequencies of the third mode of vibration in 
ascending order respectively 

S1MS1, S2MS1, S3MS1, S4MS1, S5MS1 rfmd1-5 
Small ranges of first relative mode shape difference in descending order 
respectively 

M1MS1, M2MS1 rfmd6, 7 
medium ranges of first relative mode shape difference in ascending order 
respectively 

H1MS1, H2MS1, H3MS1, H4MS1, H5MS1 rfmd8-12 
Higher ranges of first relative mode shape difference in ascending order 
respectively 

S1MS2, S2MS2, S3MS2, S4MS2, S5MS2 rsmd1-5 
Small ranges of second relative mode shape difference in descending order 
respectively 

M1MS2, M2MS2 rsmd6, 7 
medium ranges of second relative mode shape difference in ascending order 
respectively 

H1MS2, H2MS2, H3MS2, H4MS2, H5MS2 rsmd8-12 
Higher ranges of second relative mode shape difference in ascending order 
respectively 

S1MS3, S2MS3, S3MS3, S4MS3, S5MS3 rtmd1-5 
Small ranges of third relative mode shape difference in descending order 
respectively 

M1MS3, M2MS3 rtmd6, 7 
medium ranges of third relative mode shape difference in ascending order 
respectively 

H1MS3, H2MS3, H3MS3, H4MS3, H5MS3 rtmd8-12 
Higher ranges of third relative mode shape difference in ascending order 
respectively 

S1CL1, S2CL1……S23CL1 rfcl1-23 Small ranges of relative first crack location in descending order respectively 

M1CL1, M2CL1, M3CL1 rfcl24-26 Medium ranges of relative first crack location in ascending order respectively 

B1CL1, B2CL1…….B23CL1 rfcl27-49 Bigger ranges of relative first crack location in ascending order respectively 

S1CD1, S2CD1……S10CD1 rfcd1-10 Small ranges of relative first crack depth in descending order respectively 

MCD1 rfcd11 Medium relative first crack depth  

L1CD1, L2CD1……L10CD1 rfcd12-21 Larger ranges of relative second crack depth in ascending order respectively 

S1CL2, S2CL2……S23CL2 rscl1-23 
Small ranges of relative second crack location in descending order 
respectively 

M1CL2, M2CL2, M3CL2 rscl24-26 
Medium ranges of relative second crack location in ascending order 
respectively 

B1CL2, B2CL2…….B23CL2 rscl27-49 
Bigger ranges of relative second crack location in ascending order 
respectively 

S1CD2, S2CD2……S10CD2 rscd1-10 Small ranges of relative second crack depth in descending order respectively 

MCD2 rscd11 Medium relative second crack depth 

L1CD2, L2CD2……L10CD2 rscd12-21 Larger ranges of relative second crack depth in ascending order respectively 

4.2. Fuzzy Controller for Detecting Crack 
Location and Crack Depth 

Relative first natural frequency; relative second natural 
frequency; relative third natural frequency; average 
relative first mode shape difference; average relative 
second mode shape difference and average relative third 

mode shape difference are the input parameters for fuzzy 
controller. Relative first crack location; relative first crack 
depth; relative second crack location and relative second 
crack depth are the outputs from fuzzy controller. Twenty 
four numbers of fuzzy rules among several hundred rules 
are listed in Table 2. Figure 8 represents the fuzzy 
controller results when rule 6 and rule 16 are activated 
from Table 2. 
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5. Experimental Analyses 
An experiment has been performed on cracked 

composite beam shown in Figure 11. Ten cracked 
composite beam specimens have been taken in 
experimental analysis with different crack location and 
depth. The composite beam was clamped on a vibrating 
table one by one. The cracked composite beams have been 
vibrated with the help of an exciter and a function 
generator. The vibration signatures such as natural 

frequencies and mode shapes of the composite beams 
correspond to 1st, 2nd and 3rd mode of vibration have been 
recorded by placing the accelerometer along the length of 
the beams and displayed on the vibration indicator. These 
results for first three mode shapes are plotted in Figure 12. 
Corresponding theoretical and numerical results for the 
cracked beam are also printed in the same graph for 
judgment. The name and description of instruments used 
in the analysis are listed in Table 3. 

 

Figure 14. Resultant values of relative crack depths and relative crack locations when Rules 6 and 16 of Table 5.2 are activated 
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Table 3. Examples of twenty five fuzzy rules out of several hundred fuzzy rules 
Sl. No. Some rules for fuzzy controller 

1 If rfnf is M1NF1,rsnf is L2NF2,rtnf is L1NF3,rfmd is M2MS1,rsmd is M2MS2,rtmd is H1MS3, then rfcd is S1CD1,and rfcl is 
S6CL1 and  rscd is S4CD2,and rscl is B5CL2 

2 If rfnf is M1NF1,rsnf is M1NF2,rtnf is M1NF3,rfmd is H3MS1,rsmd is H3MS2,rtmd is H4MS3, then rfcd is S6CD1,and rfcl is 
S18CL1 and  rscd is S5CD2,and rscl is M2CL2 

3 If rfnf is M1NF1,rsnf is L1NF2,rtnf is L1F3,rfmd is H3MS1,rsmd is H2MS2,rtmd is H3MS3, then rcd1 is S4CD1,and rfcl is S17CL1 
and  rscd is S6CD2,and rscl is S6CL2 

4 If rfnf is M2NF1,rsnf is M1NF2,rtnf is M1NF3,rfmd is M1MS1,rsmd is H1MS2,rtmd is H2MS3, then rfcd is S4CD1,and rfcl is 
S11CL1 and  rscd is S4CD2,and rscl is M2CL2 

5 If rfnf is M1NF1,rsnf is L2NF2,rtnf is L3NF3,rfmd is H1MS1,rsmd is H1MS2,rtmd is H2MS3, then rfcd is S4CD1,and rfcl is 
S11CL1 and  rscd is S1CD2,and rscl is B13CL2 

6 If rfnf is L1NF4,rsnf is L2NF3,rtnf is M3NF2,rfmd is H2MS1,rsmd is H3MS2,rtmd is L1MS3, then rfcd is S3CD1,and rfcl is 
S16CL1 and  rscd is S8CD2,and rscl is B3CL2 

7 If rfnf is L4NF1,rsnf is L4NF2,rtnf is L4NF3,rfmd is M2MS1,rsmd is H1MS2,rtmd is H1MS3, then rfcd is L1CD1,and rfcl is 
S11CL1 and  rscd is S4CD2,and rscl is B10CL2 

8 If rfnf is H1NF1,rsnf is M2NF2,rtnf is M1NF3,rfmd is H2MS1,rsmd is H2MS2,rtmd is H2MS3, then rfcd is S6CD1,and rfcl is 
S6CL1 and  rscd is S4CD2,and rscl is B5CL2 

9 If rfnf is L1NF1,rsnf is L4NF2,rtnf is L4NF3,rfmd is M1MS1,rsmd is M1MS2,rtmd is M2MS3, then rfcd is S2CD1,and rfcl is 
S6CL1 and  rscd is L1CD2,and rscl is B5CL2 

10 If rfnf is H2NF1,rsnf is H1NF2,rtnf is H1NF3,rfmd is H4MS1,rsmd is H1MS2,rtmd is H1MS3, then rfcd is S7CD1,and rfcl is 
S17CL1 and  rscd is S6CD2,and rscl is B16CL2 

11 If rfnf is M1NF1,rsnf is L1NF2,rtnf is L2NF3,rfmd is S1MS1,rsmd is S2MS2,rtmd is H1MS3, then rfcd is S2CD1,and rfcl is 
S11CL1 and  rscd is S6CD2,and rscl is B10CL2 

12 If rfnf is L4NF1,rsnf is L4NF2,rtnf is L4NF3,rfmd is H2MS1,rsmd is S1MS2,rtmd is H2MS3, then rfcd is L1CD1,and rfcl is 
S17CL1 and  rscd is S5CD2,and rscl is M2CL2 

13 If rfnf is M1NF1,rsnf is L3NF2,rtnf is L1NF3,rfmd is S2MS1,rsmd is M1MS2,rtmd is S1MS3, then rfcd is S6D1,and rfcl is S12CL1 
and  rscd is MCD2,and rscl is M1CL2 

14 If rfnf is L2NF1,rsnf is L1NF2,rtnf is L1NF3,rfmd is H2MS1,rsmd is H2MS2,rtmd is H2MS3, then rfcd is S2CD1,and rfcl is 
S12CL1 and  rscd is S4CD2,and rscl is B13CL12 

15 If rfnf is H2NF1,rsnf is H1NF2,rtnf is H1NF3,rfmd is S2MS1,rsmd is H3MS2,rtmd is H1MS3, then rfcd is S4CD1,and rfcl is S5CL1 
and  rscd is S6CD2,and rscl is B6CL2 

16 If rfnf is L3NF1,rsnf is L1NF2,rtnf is H1NF3,rfmd is S2MS1,rsmd is M1MS2,rtmd is L3MS3, then rfcd is L5CD1,and rfcl is 
M2CL1 and  rscd is L3CD2,and rscl is S10CL2 

17 If rfnf is H1NF1,rsnf is M2NF2,rtnf is M1NF3,rfmd is H2MS1,rsmd is H4MS2,rtmd is H3MS3, then rfcd is S6CD1,and rfcl is 
S17CL1 and  rscd is S4CD2,and rscl is S6CL2 

18 If rfnf is L4NF1,rsnf is L4NF2,rtnf is L4NF3,rfmd is H1MS1,rsmd is H1MS2,rtmd is H2MS3, then rfcd is S2CD1,and the rifle is 
S17CL1 and  rescued is S1CD2,and rscl is M2CL2 

19 If rfnf is L3NF1,rsnf is L4NF2,rtnf is L4NF3,rfmd is M2MS1,rsmd is H2MS2,rtmd is H3MS3, then rfcd is MCD1,and rfcl is 
S17CL1 and  rscd is S2CD2,and rscl is B19CL2 

20 If rfnf is H2NF1,rsnf is H1NF2,rtnf is H1NF3,rfmd is H3MS1,rsmd is H4MS2,rtmd is H4MS3, then rfcd is S6CD1,and rfcl is 
S11CL1 and  rscd is S4CD2,and rscl is M2CL2 

21 If rfnf is H3NF1,rsnf is L2NF2,rtnf is M2NF3,rfmd is L2MS1,rsmd is H2MS2,rtmd is H1M3, then rfcd is S9CD1,and rfcl is S18CL1 
and  rscd is S11CD2,and rscl is S8CL2 

22 If rfnf is M1NF1,rsnf is L3NF2,rtnf is H4NF3,rfmd is H2MS1,rsmd is S4MS2,rtmd is H3MS3, then rfcd is S12CD1,and rfcl is 
S18CL1 and  rscd is S3CD2,and rscl is B10CL2 

23 If rfnf is H3NF1,rsnf is M1NF2,rtnf is L1NF3,rfmd is M2MS1,rsmd is H3MS2,rtmd is H4MS3, then rfcd is MCD1,and rfcl is 
S14CL1 and  rscd is S4CD2,and rscl is B14CL2 

24 If rfnf is H4F1,rsnf is M1F2,rtnf is L4F3,rfmd is S4M1,rsmd is H1M2,rtmd is H4M3, then rfcd is S16CD1,and rfcl is B11L1 and  
rscd is M2CD2,and rscl is B2CL2 

25 If rfnf is L3NF1,rsnf is L4NF5,rtnf is H2NF3,rfmd is S3MS4,rsmd is M1MS2,rtmd is H1MS3, then rfcd is L1CD3,and rfcl is S5CL1 
and  rscd is S2CD2,and rscl is B5CL2 

 
Figure 15. Schematic block diagram of experimental set-up 

1. Delta tron Accelerometer; 2. Vibration analyzer; 3. Vibration indicator embedded with Pulse Lab shop software; 4. Power Distribution; 5. Function 
generator; 6. Power amplifier; 7. Vibration exciter; 8. Cracked Cantilever Composite beam 
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Figure 16. a Relative Amplitude vs. Relative distance from fixed end (1st mode of vibration); b Relative Amplitude vs. Relative distance from fixed end 
(2nd mode of vibration); c Relative Amplitude vs. Relative distance from fixed end (3rd mode of vibration) 

6. Discussions 
In this section a brief summary of the present work, 

different parameters and various methodologies used for 
cracks identification of composite beam are depicted 
below. 

In this section a discussion over the results, obtained 
from the various methodologies used for cracks 
identification of composite beam are depicted below. 

The nodal displacement in an element of composite 
beam with the orientation of the fibers and its cross 
sectional view is shown in Figure 1. Three nodes 
considered in an element, two nodes at the extreme end 
and one node at the middle of the element, assumed to be 
a node of the element having three degrees of freedom, 
two translations and one rotation about three mutually 
perpendicular axes. Two tensile loads and one moment 
acting on a node of the element are demonstrated in Figure 2. 
The relative amplitude of crack and non-crack cantilever 
beam for 1st, 2nd and the 3rd mode of vibration, obtained 
from theoretical analysis, plotted against relative distance 
from fixed end of cantilever beam shown in Figure 3, 
Figure 4 and Figure 5. The relative amplitude of the crack 
beam is slightly higher than non-crack, because of cracks, 
reducing mass and stiffness of the beam. It is observed 
through the magnified views at the crack locations (with 
=0.125 and =0.25) that there are reasonable changes in 
mode shapes due to the presence of crack with higher 

intensity of the beam (Figure 3, Figure 4 and Figure 5). 
Moreover, these changes in mode shapes are more 
prominent at the second crack position and for the higher 
mode of vibration. The geometry of the cantilever 
composite beam with cracks is shown in Figure 6. The 
Geometry of Structural Solid Shell (SOLSH190) element, 
the meshing at the vicinity of the crack and the layers, 
stacking of composite beam are shown in Figure 7, Figure 8 
and Figure 9 respectively. The numerical analysis results 
of cracked beam and theoretical analysis results of cracked 
and intact, presented in Figure 10, for comparison purpose. 
The individual material properties of fiber and matrix are 
listed in Table 1. The fuzzy linguistic terms and twenty 
five fuzzy rules out of several hundred are presented in 
Table 2 and Table 3 respectively. The fuzzy Gaussian 
membership function and fuzzy inference system with six 
input parameter e.g. three relative natural frequencies and 
three relative mode shape difference and four outputs e.g. 
two relative crack locations and two relative crack depths 
shown in Figure 11 and Figure 12. The outputs from a 
fuzzy inference system by activating the rule 6 and rule 16 
of the Table 2 using center of gravity method are 
presented in Figure 14. The authentication of various 
analysis results, an experimental setup is fabricated shown 
in Figure 15. Experimental analysis results with various 
analysis results are presented in figure 16. A comparison 
of theoretical, numerical, fuzzy and experimental analysis 
results for cracked composite beam is in Table 4. To the 
different set of first three relative natural frequencies and 
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first three mode shapes, relative first and second crack 
locations and depths are compared together which 
outcome of various proposed methods. It is observed that 

the fuzzy results are more close to experimental results. 
The detail description of Instruments used in experimental 
analysis is listed in Table 5. 

Table 4. Comparison of the results between Fuzzy controller, Theoretical, Numerical and Experimental analysis 
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Fuzzy controller relative 
1st crack location “rfcl” 
1st crack depth    “rfcd” 
2nd crack location “rscl” 
2nd crack depth      “rscd” 

Theoretical relative 
1st crack location “rfcl” 
1st crack depth    “rfcd” 
2nd crack location “rscl” 
2nd crack depth    “rscd” 

rfcl rfcd rscl rscd rfcl rfcd rscl rscd 
0.99607 0.99700 0.99829 0.000131 0.002025 0.002401 0.186 0.167 0.438 0.251 0.190 0.169 0.440 0.253 
0.98098 0.99557 0.99892 0.002745 0.004556 0.010636 0.126 0.415 0.881 0.335 0.129 0.419 0.882 0.336 
0.99651 0.99425 0.99796 0.000786 0.002644 0.001004 0.316 0.166 0.511 0.251 0.320 0.169 0.513 0.254 
0.99001 0.99318 0.98710 0.001452 0.005709 0.005084 0.253 0.416 0.561 0.165 0.255 0.419 0.566 0.169 
0.98809 0.98584 0.98255 0.002876 0.012103 0.013515 0.381 0.511 0.750 0.251 0.381 0.515 0.754 0.255 
0.99672 0.98724 0.99719 0.001761 0.003319 0.005937 0.435 0.250 0.568 0.334 0.441 0.252 0.566 0.337 
0.99788 0.97843 0.97519 0.002839 0.012215 0.023485 0.565 0.336 0.678 0.505 0.565 0.338 0.689 0.509 
0.99874 0.99877 0.99628 0.000262 0.004753 0.015194 0.627 0.083 0.870 0.414 0.631 0.086 0.871 0.419 
0.99114 0.99799 0.99803 0.000103 0.001659 0.001829 0.185 0.251 0.311 0.252 0.189 0.254 0.315 0.254 
0.99701 0.98999 0.99803 0.001527 0.004641 0.002392 0.434 0.332 0.565 0.166 0.442 0.338 0.569 0.169 
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Numerical relative 
1st crack location “rfcl” 
1st crack depth    “rfcd” 
2nd crack location “rscl” 
2nd crack depth    “rscd” 

Experimental relative 
1st crack location “rfcl” 
1st crack depth    “rfcd” 
2nd crack location “rscl” 
2nd crack depth    “rscd” 

rfcl rfcd rscl rscd rfcl rfcd rscl rscd 
0.99607 0.99700 0.99829 0.000131 0.002025 0.002401 0.189 0.165 0.438 0.251 0.1875 0.1667 0.4375 0.250 
0.98098 0.99557 0.99892 0.002745 0.004556 0.010636 0.126 0.417 0.879 0.334 0.125 0.4167 0.8750 0.333 
0.99651 0.99425 0.99796 0.000786 0.002644 0.001004 0.313 0.168 0.511 0.251 0.3125 0.1667 0.5000 0.250 
0.99001 0.99318 0.98710 0.001452 0.005709 0.005084 0.253 0.417 0.563 0.167 0.250 0.4167 0.5625 0.1667 
0.98809 0.98584 0.98255 0.002876 0.012103 0.013515 0.376 0.510 0.752 0.253 0.375 0.5000 0.750 0.250 
0.99672 0.98724 0.99719 0.001761 0.003319 0.005937 0.438 0.249 0.564 0.334 0.4375 0.2500 0.5625 0.333 
0.99788 0.97843 0.97519 0.002839 0.012215 0.023485 0.563 0.335 0.688 0.503 0.5625 0.333 0.6875 0.500 
0.99874 0.99877 0.99628 0.000262 0.004753 0.015194 0.628 0.084 0.869 0.417 0.625 0.0833 0.875 0.4167 
0.99114 0.99799 0.99803 0.000103 0.001659 0.001829 0.188 0.251 0.311 0.252 0.1875 0.250 0.3125 0.250 
0.99701 0.98999 0.99803 0.001527 0.004641 0.002392 0.438 0.335 0.564 0.168 0.4375 0.333 0.5625 0.1667 

Table 5. Decription of Instruments used in experimental analysis 
S No Name of the Instrument Description of Instruments 

 
1 
 

 
Vibration Analyzer 
 

Product Name :Pocket front end 
Product Type :3560L 
Manufacturer Bruel & kjaer 
Frequency Range :7 Hz to 20 Khz 
Channels  :2 Inputs, 2 Tachometer 
Input Type :Direct/CCLD 

2 
 
Delta Tron Accelerometer 
 

Manufacture Bruel & kjaer 
Product Type : 4513-001 
Sensitivity  :10mv/g-500mv/g 
Frequency Range :1Hz-10KHz 
Supply voltage : 24volts 
Operating temperature 
Range  : -500C to +1000c 

3 Vibration indicator PULSE LabShop Software Version 12 
Manufacture :Bruel & kjaer 

4 Vibration Exciter 

Product Type :4808 
Permanent Magnetic Vibration Exciter 
Force rating 112N (25 lbf) sine peak 
(187 N (42 lbf) with cooling) 
Manufacture :Bruel & kjaer 
Frequency Range : 5Hz to 10 kHz 
First axial 
resonance  : 10 kHz 
Maximum bare table 
Acceleration :700 m/s2 (71 g) 

5 Power Amplifier 
ProductType : 2719 
Manufacture :Bruel & kjaer 
Power Amplifier :180VA 

6 Test specimen Double crack cantilever composite beam with dimension 800mmx50mmx6mm 
7 Power Distribution 220V power supply, 50Hz 

8 Function Generator 

Product Model :FG200K 
Manufacturer : Aplab 
Frequency Rang :0.2Hz to 200 KHz 
VCG IN connector for Sweep Generation 
Sine, Triangle, Square, TTL outputs 
Output Level  15Vp-p into 600 ohms 
Rise/Fall Time : <300nSec: 
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7. Conclusions 
The following conclusions derived from the various 

studies as mentioned above are described below 
1. In the present work, theoretical, numerical, 

experimental and fuzzy logic technique has been 
adopted for the identification of cracks of the beam 
like dynamic structure. 

2. Online fuzzy controller is developed based on 
Gaussian membership function, relative first three 
natural frequencies and relative first three mode 
shape difference used as input parameters and 
outputs are relative crack location and relative crack 
depth.  

3. Theoretical and numerical analysis is performed to 
get modal parameters such as natural frequencies and 
mode shapes of cracked and non-cracked cantilever 
composite beam.  

4. An experimental setup is established to validate the 
results, obtained from various discussed methods. 
Results of experimental analysis for faulty dynamic 
beam structures are in good agreement with 
theoretical, numerical and fuzzy analysis results. It is 
observed that fuzzy results are more closed to 
experimental results. 

5. This online fuzzy inverse technique can be used for 
health monitoring of structures and mechanical 
system, which reduced computational and damage 
detection time. 
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Appendix A 
Where qij (i, j=1… 9) are given as 

11 77 11 e

12 21 78 87 13 e

13 31 79 97 13 e

47 74 14 41 11 e

15 51 42 24 48 84 57 75 13 e

16 61 34 43 49 94 67 76 13

1

q q 7BHQ /3L ,

q q q q 7BHQ /3L ,

q q q q BHQ /2 ,

q q q q 8BHQ /3L ,

q q q q q q q q 8BHQ /3L ,

q q q q q q q q 2BHQ /3,

q

= =

= = − = − =

= = − = − =

= = − = − =

= − = − = = − = − = − = − =

= = − = − = = = − = − =

7 71 11 e

18 81 27 72 13 e

73 37 19 91 13

22 88 11 e

23 32 89 98 13

25 52 58 85 33 e

26 62 59 95 53 35 86 68 33

q BHQ /3L

q q q q BHQ /3L

q q q q BHQ /6,

q q 7BHQ /3L

q q q q BHQ /2,

q q q q 8BHQ /3L ,

q q q q q q q q 2BHQ /3,

= =

= = = =

= = − = − =

= =

= = − = − =

= = − = − = −

= = = = − = = − = − =
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28 82 33 e

38 83 29 92 33

45 54 13 e

44 11 e

55 33 e
2

33 99 11 e e 33
2

36 63 69 96 11 e e 33
2

39 93 11 e e 33

q q BHQ /3L ,

q q q q BHQ /6,

q q 16BHQ /3L ,

q 16BHQ /3L ,

q 16BHQ /3L ,

q q BH(7H Q /36L L Q /9),

q q q q BH( 2H Q /9L L Q /9),

q q BH(H Q /36L L Q /18),

= =

= = − = − =

= =

=

=

= = +

= = = = − +

= = −
2

66 11 e e 33

46 56

q BH(4H Q /9L 4L Q /9),  
q q 0,

= +

= =

 

Where B, H, Le are the geometrical parameters of the composite beam element, 11 13Q ,  Q  and 33Q  are stress-stress 
constants and given as [18] 

4 2 2 4
11 11 12 33 22

3 3
13 11 12 33 12 22 33

2 2 4 4
33 11 12 22 33 33

Q C m 2(C 2C )m n C n ,

Q (C C 4C )m n C C 2C mn

Q (C 2C C 2C )m n C (m n ),

= + + +

= − − + − −

= − + − + +

 

Where m=cosα, n=sinα and Cij terms are determined from the relation [15] 
E11C ,11 2(1 v E /E )23 22 11

C C E /E ,22 11 22 11
C v C ,   S G12 12 22 33 12

=
−

=

= =

 

Where E11, E22, G12, G23, υ12, υ23 and ρ are the mechanical properties of the composite and calculated using the 
following formulae [18]: 

11 f m

f m f m
22 m

f m f m

12 f m

m 12 m 11
23 f m 2

m m 12 m 11

f m f m
12 m

f m f m

f m

22
23

23

E E E (1 ),

E E (E E )
E E ,

E E (E E )
v v v (1 ),

1 v v E E
v v v (1 ) ,

1 v v v E E

G G (G G )
G G ,

G G (G G )
ρ ρ ρ (1 ),

E
G ,

2(1 v )

ϕ ϕ

ϕ
ϕ

ϕ ϕ

ϕ ϕ

ϕ
ϕ

ϕ ϕ

= + −

 + + −
=  + − − 
= + −

 + −
= + −  

− +  
 + + −

=  + − − 
= + −

=
+

 

Where, m and f denote matrix and fiber, respectively. E, G, v and ρ are the modulus of elasticity, the modulus of 
rigidity, the Poisson’s ratio and the mass density respectively. 

Appendix B 
Where Mij (i, j=1… 9) are given as 

11 22 77 88 14 41 e

17 71 28 82 e
2

23 32 38 83 89 98 e
2

68 86 26 62 e
2 2

33 99 e e
2 2

66 e e

m m m m m m 2ρBHL 15,
m m m m ρBHL 30,

m m m m m m ρBHL 180,

m m m m ρBHL 90,

m m ρBHL (L 1890 H 90),

m 2ρBHL (L 1890 H 90),

= = = = = =

= = = = −

= = − = − = − = − =

= = − = − =

= = +

= +
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2 2
36 63 69 96 e e

2 2
39 93 e e

44 55 e

12 21 13 31 15 51 16 61 18 81 19 91

24 42 27 72 34 43 35 53 37 73 45 54

46 64 48 84 49 9

m m m m ρBHL ( L 945 H 180),

m m ρBHL (L 1890 H 90),
m m 8ρBHL 15,
m m m m m m m m m m m m

m m m m m m m m m m m m
m m m m m m

= = = = − +

= = −

= =

= = = = = = = = = = =

= = = = = = = = = = = =

= = = = = = 4 56 65 57 75 59 95

67 76 78 87 79 97

m m m m m m
m m m m m m 0

= = = = = =

= = = = = = =

 

Where ρ is the mass density of the element, B is the width of the element, H is the height of the element and Le denotes 
the length of the element. 

Appendix C 
The roots of the follow characteristic equation give the complex constants s1 and s2 [18]: 

4 3 2
11 16 12 66 26 22d s 2d s (2d d )s 2d s d 0,− + + − + =  

Where ijd  constants are 
4 2 2 4

11 11 12 66 22
4 2 2 4

22 11 12 66 22
2 2 4 4

12 11 22 66 12
3 3

16 11 12 66 22 12 66
3 3

26 11 12 66 22 12 66

66 11 12 22

d d m (2d d )m n d n ,

d d n (2d d )m n d m ,

b (d d d )m n d (m n ),

d ( 2d 2d d )m n (d 2d d )mn ,

d ( 2d 2d d )mn (d 2d d )m n,

d 2(2d 4d 2d

= + + +

= + + +

= + − + +

= − + + + − −

= − + + + − −

= − + − 2 2 4 4
66 66d )n m d (m n ),+ +

 

Where m cosα n sinα= =  and ijd  are compliance constants of the campsite along the principal axes. ijd  can be 
related to the mechanical constants of the material by 

2 222 12
11 12 22 23 12 23 66 12 44 23 55 66

11 11 22 11

E v1 1d (1 v ),d (1 v ),d (1 v ),d 1 G ,d 1 G ,d d .
E E E E

−
= − = − = + = = =  


