
Digital Signal Processing
and Applications with the
TMS320C6713 and
TMS320C6416 DSK
SECOND EDITION

Rulph Chassaing

Worcester Polytechnic Institute

Donald Reay

Heriot-Watt University

A JOHN WILEY & SONS, INC., PUBLICATION

Digital Signal Processing
and Applications with the
TMS320C6713 and
TMS320C6416 DSK

TOPICS IN DIGITAL SIGNAL PROCESSING

C. S. BURRUS and T. W. PARKS: DFT/FFT AND CONVOLUTION
ALGORITHMS: THEORY AND IMPLEMENTATION
JOHN R. TREICHLER, C. RICHARD JOHNSON, JR., and MICHAEL G.
LARIMORE: THEORY AND DESIGN OF ADAPTIVE FILTERS
T. W. PARKS and C. S. BURRUS: DIGITAL FILTER DESIGN
RULPH CHASSAING and DARRELL W. HORNING: DIGITAL SIGNAL
PROCESSING WITH THE TMS320C25
RULPH CHASSAING: DIGITAL SIGNAL PROCESSING WITH C AND THE
TMS320C30
RULPH CHASSAING: DIGITAL SIGNAL PROCESSING LABORATORY
EXPERIMENTS USING C AND THE TMS320C31 DSK
RULPH CHASSAING: DSP APPLICATIONS USING C AND THE TMS320C6x
DSK
RULPH CHASSAING and DONALD REAY: DIGITAL SIGNAL PROCESSING
AND APPLICATIONS WITH THE TMS320C6713 AND TMS320C6416 DSK,
Second Edition

Digital Signal Processing
and Applications with the
TMS320C6713 and
TMS320C6416 DSK
SECOND EDITION

Rulph Chassaing

Worcester Polytechnic Institute

Donald Reay

Heriot-Watt University

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2008 by John Wiley & Sons, Inc. All right reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey
Published simultaneously in Canada

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as
permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through payment of the appropriate per-copy fee
to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400, fax
978-750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should
be addressed to the Permissions Departments, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, 201-748-6011, fax 201-748-6008, or online at http://www.wiley.com/go/permission.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts
in preparing this book, they make no representations or warranties with respect to the accuracy or
completeness of the contents of this book and specifi cally disclaim any implied warranties of
merchantability or fi tness for a particular purpose. No warranty may be created or extended by sales
representatives or written sales materials. The advice and strategies contained herein may not be
suitable for your situation. You should consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profi t or any other commercial damages, including
but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services or for technical support, please contact
our Customer Care Department within the United States at 877-762-2974, outside the United States
at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print
may not be available in electronic formats. For more information about Wiley products, visit our
web site at www.wiley.com.

Library of Congress Cataloging-in-Publication Data:

Chassaing, Rulph.
 Digital signal processing and applications with the TMS320C6713 and TMS320C6416 DSK /
Rulph Chassaing, Donald Reay.—2nd ed.
 p. cm.
 ISBN 978-0-470-13866-3 (cloth/CD)
 1. Signal processing–Digital techniques. 2. Texas Instruments TMS320
series microprocessors–Programming. I. Reay, Donald. II. Title.
 TK5102.9.C47422 2008
 621.382′2—dc22

20070290065

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

To Reiko
And to the memory of Rulph and of Jay

Contents

Preface xv

Preface to the First Edition xvii

List of Examples xxi

Programs/Files on Accompanying CD xxvii

 1 DSP Development System 1

1.1 Introduction 1
1.2 DSK Support Tools 3

1.2.1 C6713 and C6416 DSK Boards 4
1.2.2 TMS320C6713 Digital Signal Processor 4
1.2.3 TMS320C6416 Digital Signal Processor 5

1.3 Code Composer Studio 6
1.3.1 CCS Version 3.1 Installation and Support 6
1.3.2 Installation of Files Supplied with This Book 7
1.3.3 File Types 7

1.4 Quick Tests of the DSK (On Power On and Using CCS) 7
1.5 Programming Examples to Test the DSK Tools 9
1.6 Support Files 30

1.6.1 Initialization/Communication File (c6713dskinit.c) 30
1.6.2 Header File (c6713dskinit.h) 33
1.6.3 Vector Files (vectors_intr.asm,

vectors_poll.asm) 34
1.6.4 Linker Command File (c6713dsk.cmd) 34

1.7 Assignments 38
 References 41

vii

viii Contents

 2 Input and Output with the DSK 45

2.1 Introduction 45
2.2 TLV320AIC23 (AIC23) Onboard Stereo Codec for Input

and Output 46
2.3 Programming Examples Using C Code 48

2.3.1 Real-Time Sine Wave Generation 60
2.4 Assignments 101
 References 101

 3 Architecture and Instruction Set of the C6x Processor 102

3.1 Introduction 102
3.2 TMS320C6x Architecture 104
3.3 Functional Units 105
3.4 Fetch and Execute Packets 106
3.5 Pipelining 108
3.6 Registers 110
3.7 Linear and Circular Addressing Modes 110

3.7.1 Indirect Addressing 110
3.7.2 Circular Addressing 111

3.8 TMS320C6x Instruction Set 112
3.8.1 Assembly Code Format 112
3.8.2 Types of Instructions 113

3.9 Assembler Directives 115
3.10 Linear Assembly 116
3.11 ASM Statement Within C 117
3.12 C-Callable Assembly Function 117
3.13 Timers 118
3.14 Interrupts 118

3.14.1 Interrupt Control Registers 118
3.14.2 Interrupt Acknowledgment 120

3.15 Multichannel Buffered Serial Ports 121
3.16 Direct Memory Access 122
3.17 Memory Considerations 122

3.17.1 Data Allocation 122
3.17.2 Data Alignment 123
3.17.3 Pragma Directives 123
3.17.4 Memory Models 124

3.18 Fixed- and Floating-Point Format 124
3.18.1 Data Types 124
3.18.2 Floating-Point Format 125
3.18.3 Division 126

3.19 Code Improvement 126
3.19.1 Intrinsics 126
3.19.2 Trip Directive for Loop Count 127

Contents ix

3.19.3 Cross-Paths 127
3.19.4 Software Pipelining 127

3.20 Constraints 128
3.20.1 Memory Constraints 128
3.20.2 Cross-Path Constraints 128
3.20.3 Load/Store Constraints 129
3.20.4 Pipelining Effects with More Than One EP

Within an FP 129
3.21 Programming Examples Using C, Assembly, and Linear

Assembly 130
3.22 Assignments 142
 References 145

 4 Finite Impulse Response Filters 146

4.1 Introduction to the z-Transform 146
4.1.1 Mapping from s-Plane to z-Plane 149
4.1.2 Difference Equations 150

4.2 Discrete Signals 151
4.3 FIR Filters 152
4.4 FIR Lattice Structure 154
4.5 FIR Implementation Using Fourier Series 158
4.6 Window Functions 162

4.6.1 Hamming Window 163
4.6.2 Hanning Window 163
4.6.3 Blackman Window 164
4.6.4 Kaiser Window 164
4.6.5 Computer-Aided Approximation 164

4.7 Programming Examples Using C and ASM Code 165
4.8 Assignments 207
 References 207

 5 Infi nite Impulse Response Filters 210

5.1 Introduction 210
5.2 IIR Filter Structures 211

5.2.1 Direct Form I Structure 212
5.2.2 Direct Form II Structure 212
5.2.3 Direct Form II Transpose 214
5.2.4 Cascade Structure 215
5.2.5 Parallel Form Structure 216

5.3 Bilinear Transformation 217
5.3.1 BLT Design Procedure 219

5.4 Programming Examples Using C and ASM Code 220
5.5 Assignments 252
 References 253

x Contents

 6 Fast Fourier Transform 255

6.1 Introduction 255
6.2 Development of the FFT Algorithm with Radix-2 256
6.3 Decimation-in-Frequency FFT Algorithm with Radix-2 257
6.4 Decimation-in-Time FFT Algorithm with Radix-2 263
6.5 Bit Reversal for Unscrambling 268
6.6 Development of the FFT Algorithm with Radix-4 269
6.7 Inverse Fast Fourier Transform 272
6.8 Programming Examples 273

6.8.1 Frame-Based Processing 280
6.8.2 Fast Convolution 297

 References 318

 7 Adaptive Filters 319

7.1 Introduction 319
7.2 Adaptive Structures 321
7.3 Adaptive Linear Combiner 324
7.4 Performance Function 327
7.5 Searching for the Minimum 329
7.6 Programming Examples for Noise Cancellation and System

Identifi cation 332
 References 352

 8 Code Optimization 354

8.1 Introduction 354
8.2 Optimization Steps 355

8.2.1 Compiler Options 355
8.2.2 Intrinsic C Functions 356

8.3 Procedure for Code Optimization 356
8.4 Programming Examples Using Code Optimization Techniques 356
8.5 Software Pipelining for Code Optimization 363

8.5.1 Procedure for Hand-Coded Software Pipelining 363
8.5.2 Dependency Graph 364
8.5.3 Scheduling Table 365

8.6 Execution Cycles for Different Optimization Schemes 372
 References 373

 9 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic,
and LabVIEW 374

9.1 Introduction to DSP/BIOS 374
9.1.1 Periodic Functions 376
9.1.2 Hardware Interrupts 378

Contents xi

9.1.3 Real-Time Analysis with DSP/BIOS 382
9.1.4 Software Interrupts 382

9.2 RTDX Using MATLAB to Provide Interface Between
PC and DSK 386

9.3 RTDX Using Visual C++ to Interface with DSK 400
9.4 RTDX Using Visual Basic to Provide Interface Between

PC and DSK 411
9.5 RTDX Using LabVIEW to Provide Interface Between

PC and DSK 415
 Acknowledgments 421
 References 421

10 DSP Applications and Student Projects 422

10.1 DTMF Signal Detection Using Correlation, FFT, and
Goertzel Algorithm 422
10.1.1 Using a Correlation Scheme and Onboard LEDs

for Verifying Detection 424
10.1.2 Using RTDX with Visual C++ to Display Detected

DTMF Signals on the PC 427
10.1.3 Using FFT and Onboard LEDs for Verifying

Detection 429
10.1.4 Using Goertzel Algorithm 429

10.2 Beat Detection Using Onboard LEDs 429
10.3 FIR with RTDX Using Visual C++ for Transfer of Filter

Coeffi cients 434
10.4 Radix-4 FFT with RTDX Using Visual C++ and MATLAB

for Plotting 435
10.5 Spectrum Display Through EMIF Using a Bank of 32 LEDs 438
10.6 Spectrum Display Through EMIF Using LCDs 440
10.7 Time–Frequency Analysis of Signals with Spectrogram 445

10.7.1 Simulation Using MATLAB 446
10.7.2 Spectrogram with RTDX Using MATLAB 446
10.7.3 Spectrogram with RTDX Using Visual C++ 450

10.8 Audio Effects (Echo and Reverb, Harmonics, and Distortion) 451
10.9 Voice Detection and Reverse Playback 453
10.10 Phase Shift Keying—BPSK Encoding and Decoding with PLL 454

10.10.1 BPSK Single-Board Transmitter/Receiver
Simulation 455

10.10.2 BPSK Transmitter/Voice Encoder with Real-Time
Input 459

10.10.3 Phase-Locked Loop 460
10.10.4 BPSK Transmitter and Receiver with PLL 465

10.11 Binary Phase Shift Keying 468

xii Contents

10.12 Modulation Schemes—PAM and PSK 470
10.12.1 Pulse Amplitude Modulation 470
10.12.2 Phase Shift Keying 474

10.13 Selectable IIR Filter and Scrambling Scheme Using Onboard
Switches 479

10.14 Convolutional Encoding and Viterbi Decoding 482
10.15 Speech Synthesis Using Linear Prediction of Speech Signals 493
10.16 Automatic Speaker Recognition 496
10.17 µ-Law for Speech Companding 500
10.18 SB-ADPCM Encoder/Decoder: Implementation of G.722

Audio Coding 501
10.19 Encryption Using the Data Encryption Standard Algorithm 503
10.20 Phase-Locked Loop 506
10.21 Miscellaneous Projects 508

10.21.1 Multirate Filter 508
10.21.2 Acoustic Direction Tracker 513
10.21.3 Neural Network for Signal Recognition 515
10.21.4 Adaptive Temporal Attenuator 519
10.21.5 FSK Modem 521
10.21.6 Image Processing 521
10.21.7 Filter Design and Implementation Using a Modifi ed

Prony’s Method 521
10.21.8 PID Controller 522
10.21.9 Four-Channel Multiplexer for Fast Data Acquisition 522
10.21.10 Video Line Rate Analysis 522

 Acknowledgments 522
 References 523

Appendix A TMS320C6x Instruction Set 528

A.1 Instructions for Fixed- and Floating-Point Operations 528
A.2 Instructions for Floating-Point Operations 528
References 528

Appendix B Registers for Circular Addressing and Interrupts 530

Reference 530

Appendix C Fixed-Point Considerations 533

C.1 Binary and Two’s-Complement Representation 533
C.2 Fractional Fixed-Point Representation 536
C.3 Multiplication 536
Reference 539

Contents xiii

Appendix D MATLAB and Goldwave Support Tools 540

D.1 fdatool for FIR Filter Design 540
D.2 fdatool for IIR Filter Design 542
D.3 MATLAB for FIR Filter Design Using the Student Version 544
D.4 MATLAB for IIR Filter Design Using the Student Version 546
D.5 Using the Goldwave Shareware Utility as a Virtual Instrument 548
References 549

Appendix E Fast Hartley Transform 550

References 556

Appendix F Goertzel Algorithm 557

F.1 Design Considerations 557
References 560

Appendix G TMS320C6416 DSK 561

G.1 TMS320C64x Processor 561
G.2 Programming Examples Using the C6416 DSK 562
References 566

Index 567

Preface

xv

 Since the publication of the fi rst edition of this book in 2005, Texas Instruments has
released a new version of Code Composer Studio (CCS). Consequently, although
nearly all of the program examples presented in the fi rst edition will work with the
DSK, some of the detailed instructions for using CCS described in the fi rst edition
are no longer accurate. Every effort has been made to ensure that this edition is
compatible with Version 3 of Code Composer Studio. Slight changes have been
made to the program examples to the extent that the examples provided with this
edition should not be mixed with the earlier versions.

 Sadly, Rulph Chassaing passed away in 2005. I had the privilege and the pleasure
of being able to work with Rulph after attending his workshop at the TI developer
conference in 1999. We corresponded regularly while he was writing his book on
the C6711 DSK and Rulph kindly included some of the program examples I had
developed. I helped Rulph to present a workshop at the TI developer conference
in 2002, and we maintained contact while he wrote the fi rst edition of this book.
I have used Rulph ’ s books, on the C31, C6711, and C6713 processors, for teaching
both at Heriot - Watt (UK) and at Zhejiang (PRC) universities.

 Rulph ’ s books are an extensive and valuable resource for teaching DSP hands - on
in a laboratory setting. They contain a wealth of practical examples — programs that
run on TI DSKs (nearly all in real - time) and illustrate vividly many key concepts
in digital signal processing. It would have been a great shame if the continued use
of this text had been compromised by incompatibilities with the latest version of
CCS.

 While thoroughly checking the fi rst edition and attempting to ensure the compat-
ibility (with CCS) and integrity of the example programs, I have taken the oppor-
tunity to develop and to add more (particularly in Chapters 2 , 5 , 6 , and 9) and to
evolve a slightly more narrative structure (particularly in Chapters 2 , 4 , 5 , and 6).

A small amount of material from the fi rst edition has been dropped. Due to their
natures, Chapters 3 , 8 , and 10 have been left very much unchanged.

 While it contains a degree of introductory DSP theory, some details of the archi-
tecture of the C6713 and C6416 processors, an introduction to assembly language
programming for those processors, and no little instruction on the use of Code
Composer Studio, the emphasis of this book is on illustrating DSP concepts hands -
 on in a laboratory environment using real audio frequency signals.

 The strength of this book lies, I believe, in the number (and utility) of program
examples. I hope that professors and instructors will be able to pick material from
the book in order to hold their own hands - on laboratory classes.

 I am thankful to Robert Owen of the Texas Instruments University Program in
Europe for support of the DSP teaching facilities at Heriot - Watt University and
to Cathy Wicks of the Texas Instruments University Program in North America for
the initial suggestion of updating the book and for her continued support. Walter
J. Gomes III (Jay) and I mapped out the update to this book before he passed away
last year. The thought of his enthusiasm for the project has been a constant
motivation.

 I thank my colleague at Heriot - Watt University, Dr. Keith Brown, for his help in
testing program examples and for his suggestions. But above all, I thank Rulph for
inspiring me to get involved in teaching hands - on DSP.

 D onald R eay
 Heriot - Watt University

 Edinburgh, United Kingdom
 January 2008

xvi Preface

 Digital signal processors, such as the TMS320 family of processors, are used in a
wide range of applications, such as in communications, controls, speech processing,
and so on. They are used in cellular phones, digital cameras, high - defi nition televi-
sion (HDTV), radio, fax transmission, modems, and other devices. These devices
have also found their way into the university classroom, where they provide an
economical way to introduce real - time digital signal processing (DSP) to the
student.

 Texas Instruments introduced the TM320C6x processor, based on the very - long -
 instruction - word (VLIW) architecture. This new architecture supports features that
facilitate the development of effi cient high - level language compilers. Throughout
the book we refer to the C/C++ language simply as C. Although TMS320C6x/assem-
bly language can produce fast code, problems with documentation and maintenance
may exist. With the available C compiler, the programmer must “ let the tools do the
work. ” After that, if the programmer is not satisfi ed, Chapters 3 and 8 and the last
few examples in Chapter 4 can be very useful.

 This book is intended primarily for senior undergraduate and fi rst - year graduate
students in electrical and computer engineering and as a tutorial for the practicing
engineer. It is written with the conviction that the principles of DSP can best be
learned through interaction in a laboratory setting, where students can appreciate
the concepts of DSP through real - time implementation of experiments and projects.
The background assumed is a course in linear systems and some knowledge of C.

 Most chapters begin with a theoretical discussion, followed by representative
examples that provide the necessary background to perform the concluding experi-
ments. There are a total of 105 programming examples, most using C code, with a
few in assembly and linear assembly code. A list of these examples appears on page
xvii. A total of 22 students ’ projects are also discussed. These projects cover a wide

Preface to the First Edition

xvii

xviii Preface to the First Edition

range of applications in fi ltering, spectrum analysis, modulation techniques, speech
processing, and so on.

 Programming examples are included throughout the text. This can be useful to
the reader who is familiar with both DSP and C programming but who is not nec-
essarily an expert in both. Many assignments are included at the end of Chapters
 1 – 6 .

 This book can be used in the following ways:

1. For a DSP course with a laboratory component, using parts of Chapters 1 – 9 .
If needed, the book can be supplemented with some additional theoretical
materials, since its emphasis is on the practical aspects of DSP. It is possible
to cover Chapter 7 on adaptive fi ltering following Chapter 4 on fi nite impulse
response (FIR) fi ltering (since there is only one example in Chapter 7 that
uses materials from Chapter 5). It is my conviction that adaptive fi ltering
should be incorporated into an undergraduate course in DSP.

2. For a laboratory course using many of the examples and experiments from
Chapters 1 – 7 and Chapter 9 . The beginning of the semester can be devoted
to short programming examples and experiments and the remainder of the
semester for a fi nal project. The wide range of sample projects (for both
undergraduate and graduate students) discussed in Chapter 10 can be very
valuable.

3. For a senior undergraduate or fi rst - year graduate design project course using
selected materials from Chapters 1 – 10 .

4. For the practicing engineer as a tutorial and reference, and for workshops and
seminars, using selected materials throughout the book.

 In Chapter 1 we introduce the tools through three programming examples.
These tools include the powerful Code Composer Studio (CCS) provided with
the TMS320C6713 DSP starter kit (DSK). It is essential to perform these examples
before proceeding to subsequent chapters. They illustrate the capabilities of CCS
for debugging, plotting in both the time and frequency domains, and other matters.
Appendix H contains several programming examples using the TMS320C6416
DSK.

 In Chapter 2 we illustrate input and output (I/O) with the AIC23 stereo codec
on the DSK board through many programming examples. Chapter 3 covers the
architecture and the instructions available for the TMS320C6x processor. Special
instructions and assembler directives that are useful in DSP are discussed. Pro-
gramming examples using both assembly and linear assembly are included in this
chapter.

 In Chapter 4 we introduce the z - transform and discuss FIR fi lters and the effect
of window functions on these fi lters. Chapter 5 covers infi nite impulse response
(IIR) fi lters. Programming examples to implement real - time FIR and IIR fi lters are
included. Appendix D illustrates MATLAB for the design of FIR and IIR fi lters.

 Preface to the First Edition xix

 Chapter 6 covers the development of the fast Fourier transform (FFT). Program-
ming examples on FFT are included using both radix - 2 and radix - 4 FFT. In Chapter
 7 we demonstrate the usefulness of the adaptive fi lter for a number of applications
with least mean squares (LMS). Programming examples are included to illustrate
the gradual cancellation of noise or system identifi cation. Students have been very
receptive to applications in adaptive fi ltering. Chapter 8 illustrates techniques for
code optimization.

 In Chapter 9 we introduce DSP/BIOS and discuss a number of schemes (Visual
C++, MATLAB, etc.) for real - time data transfer (RTDX) and communication
between the PC and the DSK.

 Chapter 10 discusses a total of 22 projects implemented by undergraduate and
graduate students. They cover a wide range of DSP applications in fi ltering, spec-
trum analysis, modulation schemes, speech processing, and so on.

 A CD is included with this book and contains all the programs discussed. See
page xxi for a list of the folders that contain the support fi les for the examples and
projects.

 Over the last 10 years, faculty members from over 200 institutions have taken my
workshops on “ DSP and Applications. ” Many of these workshops were supported
by grants from the National Science Foundation (NSF) and, subsequently, by Texas
Instruments. I am thankful to NSF, Texas Instruments, and the participating faculty
members for their encouragement and feedback. I am grateful to Dr. Donald Reay
of Heriot - Watt University, who contributed several examples during his review of
my previous book based on the TMS320C6711 DSK. I appreciate the many sugges-
tions made by Dr. Mounir Boukadoum of the University of Quebec, Dr. Subrama-
niam Ganesan from Oakland University, and Dr. David Kozel from Purdue
University at Calumet. I also thank Dr. Darrell Horning of the University of New
Haven, with whom I coauthored my fi rst book, Digital Signal Processing with the
TMS320C25 , for introducing me to “ book writing. ” I thank all the students at Roger
Williams University, the University of Massachusetts at Dartmouth, and Worcester
Polytechnic Institute (WPI) who have taken my real - time DSP and senior design
project courses, based on the TMS320 processors, over the last 20 years. The contri-
bution of Aghogho Obi, from WPI, is very much appreciated.

 The continued support of many people from Texas Instruments is also very much
appreciated: Cathy Wicks and Christina Peterson, in particular, have been very sup-
portive of this book.

 Special appreciation: The laboratory assistance of Walter J. Gomes III in several
workshops and during the development of many examples has been invaluable. His
contribution is appreciated.

 R ulph C hassaing

List of Examples

1.1 Sine Wave Generation Using Eight Points with DIP Switch Control
(sine8_LED) 9

1.2 Generation of Sinusoid and Plotting with CCS (sine8_buf) 21

1.3 Dot Product of Two Arrays (dotp4) 23

2.1 Basic Input and Output Using Polling (loop_poll) 48

2.2 Basic Input and Output Using Interrupts (loop_intr) 51

2.3 Modifying Program loop_intr.c to Create a Delay (delay) 53

2.4 Modifying Program loop_intr.c to Create an Echo (echo) 53

2.5 Echo with GEL Slider Control of Delay and Feedback
(echo_control) 54

2.6 Loop Program with Input Data Stored in a Buffer (loop_buf) 57

2.7 Sine Wave Generation Using a Lookup Table (sine8_intr) 60

2.8 Sine Wave Generation Using sin() Function Call (sine_intr) 61

2.9 Sine Wave Generation with Stereo Output (sine_stereo) 62

2.10 Sine Wave Generation with Two Sliders for Amplitude and
Frequency Control (sine2sliders) 63

2.11 Sweep Sinusoid Using Table with 8000 Points (sweep8000) 65

2.12 Generation of DTMF Tones Using a Lookup Table
(sineDTMF_intr) 66

2.13 Sine Wave Generation with Table Values Generated Within
Program (sinegen_table) 69

2.14 Sine Wave Generation with Table Created by MATLAB
(sin1500MATL) 70

xxi

xxii List of Examples

2.15 Sine Wave Generation with DIP Switch Control (sine_led_ctrl) 72

2.16 Signal Reconstruction, Aliasing, and the Properties of the
AIC23 Codec 74

2.17 Square Wave Generation Using Lookup Table (squarewave) 75

2.18 Step and Impulse Responses of the DAC Reconstruction Filter
(dimpulse) 78

2.19 Frequency Response of the DAC Reconstruction Filter Using
Pseudorandom Noise (prandom) 78

2.20 Step Response of the AIC23 Codec Antialiasing Filter (loop_buf) 82

2.21 Demonstration of Aliasing (aliasing) 82

2.22 Identifi cation of AIC23 Codec Bandwidth Using an Adaptive Filter
(sysid) 85

2.23 Identifi cation of AIC23 Codec Bandwidth Using Adaptive Filter
(sysid16) 85

2.24 Ramp Generation (ramp) 92

2.25 Amplitude Modulation (am) 92

2.26 Use of External Memory to Record Voice (record) 95

2.27 Use of Flash Memory to Run an Application on Power Up
(flash_sine) 95

3.1 Sum of n + (n − 1) + (n − 2) + · · · + 1, Using C Calling an
Assembly Function (sum) 131

3.2 Factorial of a Number Using C Calling an Assembly Function
(factorial) 132

3.3 32-bit Pseudorandom Noise Generation Using C Calling an
Assembly Function (Noisegen_casm) 133

3.4 Code Detection Using C Calling an ASM Function (code_casm) 135

3.5 Dot Product Using Assembly Program Calling an Assembly
Function (dotp4a) 135

3.6 Dot Product Using C Function Calling a Linear Assembly
Function (dotp4clasm) 139

3.7 Factorial Using C Calling a Linear Assembly Function (factclasm) 141

4.1 Moving Average Filter (average) 165

4.2 Moving Average Filter with Internally Generated Pseudorandom
Noise as Input (averagen) 168

4.3 Identifi cation of Moving Average Filter Frequency Response
Using a Second DSK (sysid) 168

4.4 FIR Filter with Moving Average, Bandstop, and Bandpass
Characteristics (fir) 175

4.5 FIR Implementation with a Pseudorandom Noise Sequence as
Input to a Filter (firprn) 178

 List of Examples xxiii

4.6 FIR Filter with Internally Generated Pseudorandom Noise as
Input to a Filter and Output Stored in Memory (firprnbuf) 182

4.7 Effects on Voice or Music Using Three FIR Lowpass Filters
(FIR3LP) 186

4.8 Implementation of Four Different Filters: Lowpass, Highpass,
Bandpass, and Bandstop (fir4types) 188

4.9 Two Notch Filters to Recover a Corrupted Speech Recording
(notch2) 191

4.10 FIR Implementation Using Two Different Methods (fir2ways) 193

4.11 Voice Scrambling Using Filtering and Modulation (scrambler) 193

4.12 FIR Implementation Using C Calling an ASM Function (FIRcasm) 197

4.13 FIR Implementation Using C Calling a Faster ASM Function
(FIRcasmfast) 200

4.14 FIR Implementation Using C Calling an ASM Function with a
Circular Buffer (FIRcirc) 201

4.15 FIR Implementation Using C Calling an ASM Function Using a
Circular Buffer in External Memory (FIRcirc_ext) 206

5.1 Implementation of IIR Filter Using Cascaded Second Order
Direct Form II Sections (iirsos) 223

5.2 Implementation of IIR Filter Using Cascaded Second Order
Transposed Direct Form II Sections (iirsostr) 225

5.3 Estimating the Frequency Response of an IIR Filter Using
Pseudorandom Noise as Input (iirsosprn) 225

5.4 Estimating the Frequency Response of an IIR Filter Using a
Sequence of Impulses as Input (iirsosdelta) 228

5.5 Fourth Order Elliptical Lowpass IIR Filter Designed Using
fdatool 237

5.6 Bandpass Filter Designed Using fdatool 241

5.7 Fixed-Point Implementation of IIR Filter (iir) 243

5.8 Generation of a Sine Wave Using a Difference Equation
(sinegenDE) 244

5.9 Generation of DTMF Signal Using Difference Equations
(sinegenDTMF) 247

5.10 Generation of a Swept Sinusoid Using a Difference Equation
(sweepDE) 248

5.11 Sine Wave Generation Using a Difference Equation with C
Calling an ASM Function (sinegencasm) 251

6.1 DFT of a Sequence of Real Numbers with Output in the
CCS Graphical Display Window (dft) 273

6.2 Estimating Execution Times for DFT and FFT Functions (fft) 279

xxiv List of Examples

6.3 Frame-Based Processing (frames) 283

6.4 DFT of a Signal in Real-Time Using a DFT Function with
Precalculated Twiddle Factors (dft128c) 285

6.5 FFT of a Real-Time Input Signal Using an FFT Function in C
(fft128c.c) 290

6.6 FFT of a Sinusoidal Signal from a Table Using TI’s C Callable
Optimized FFT Function (FFTsinetable) 290

6.7 FFT of Real-Time Input Using TI’s C Callable Optimized Radix-2
FFT Function (FFTr2) 295

6.8 Radix-4 FFT of Real-Time Input Using TI’s C Callable Optimized
FFT Function (FFTr4) 297

6.9 Frame-Based Implementation of FIR Filters Using Time-Domain
Convolution (timeconvdemo) 299

6.10 Real-Time Frame-Based Implementation of FIR Filters Using
Time-Domain Convolution (timeconv) 306

6.11 Frame-Based Implementation of FIR Filters Using Frequency-
Domain Convolution (fastconvdemo) 306

6.12 Real-Time Frame-Based Fast Convolution (fastconv) 308

6.13 Graphic Equalizer (graphicEQ) 312

7.1 Adaptive Filter Using C Code (adaptc) 332

7.2 Adaptive Filter for Sinusoidal Noise Cancellation (adaptnoise) 335

7.3 Adaptive FIR Filter for Noise Cancellation Using External Inputs
(adaptnoise_2IN) 335

7.4 Adaptive FIR Filter for System ID of a Fixed FIR as an Unknown
System (adaptIDFIR) 339

7.5 Adaptive FIR for System ID of a Fixed FIR as an Unknown
System with Weights of an Adaptive Filter Initialized as an
FIR Bandpass (adaptIDFIRw) 343

7.6 Adaptive FIR for System ID of Fixed IIR as an Unknown System
(iirsosadapt) 343

7.7 Adaptive FIR Filter for System Identifi cation of System External
to DSK (sysid) 345

8.1 Sum of Products with Word-Wide Data Access for Fixed-Point
Implementation Using C Code (twosum) 357

8.2 Separate Sum of Products with C Intrinsic Functions Using
C Code (dotpintrinsic) 358

8.3 Sum of Products with Word-Wide Access for Fixed-Point
Implementation Using Linear ASM Code (twosumlasmfix.sa) 358

8.4 Sum of Products with Double-Word Load for Floating-Point
Implementation Using Linear ASM Code (twosumlasmfloat) 359

List of Examples xxv

8.5 Dot Product with No Parallel Instructions for Fixed-Point
Implementation Using ASM Code (dotpnp) 359

8.6 Dot Product with Parallel Instructions for Fixed-Point
Implementation Using ASM Code (dotpp) 360

8.7 Two Sums of Products with Word-Wide (32-bit) Data for
Fixed-Point Implementation Using ASM Code (twosumfix) 360

8.8 Dot Product with No Parallel Instructions for Floating-Point
Implementation Using ASM Code (dotpnpfloat) 361

8.9 Dot Product with Parallel Instructions for Floating-Point
Implementation Using ASM Code (dotppfloat) 362

8.10 Two Sums of Products with Double-Word-Wide (64-bit) Data for
Floating-Point Implementation Using ASM Code (twosumfloat) 362

8.11 Dot Product Using Software Pipelining for a Fixed-Point
Implementation 367

8.12 Dot Product Using Software Pipelining for a Floating-Point
Implementation 367

9.1 Blinking of LEDs at Different Rates Using DSP/BIOS PRDs
(bios_LED) 376

9.2 Sine Wave Generation Using DSP/BIOS Hardware Interrupts
(HWIs) (bios_sine8_intr) 379

9.3 Using LOG_printf() Within a Sine Wave Generation Program
(bios_sine8_intr_LOG) 382

9.4 FIR Filter Using DSP/BIOS Hardware Interrupts (HWIs) and
Software Interrupts (SWIs) (bios_fir_SWI) 383

9.5 fft128c.c Using SWI Object for Buffer Processing
(bios_fft128c_SWI) 385

9.6 fastconv.c Using TSK Object for Buffer Processing
(bios_fastconv_TSK) 386

9.7 MATLAB–DSK Interface Using RTDX (rtdx_matlab_sim) 388

9.8 MATLAB–DSK Interface Using RTDX, with MATLAB for
FFT and Plotting (rtdx_matlabFFT) 393

9.9 MATLAB–DSK Interface Using RTDX for FIR Filter
Implementation (rtdx_matlabFIR) 396

9.10 Visual C++–DSK Interface Using RTDX for Amplitude Control of
the Sine Wave (rtdx_vc_sine) 400

9.11 Visual C++–DSK Interface Using RTDX, with MATLAB Functions
for FFT and Plotting (rtdx_vc_FFTmatlab) 406

9.12 Visual Basic–DSK Interface Using RTDX for Amplitude Control of
a Sine Wave (rtdx_vbsine) 411

9.13 Visual Basic–DSK Interface Using RTDX for Amplitude Control of
Output in a Loop Program (rtdx_vbloop) 413

xxvi List of Examples

9.14 LabVIEW–DSK Interface Using RTDX for FIR Filtering
(rtdx_lv_filter) 415

9.15 LabVIEW–DSK Interface Using RTDX for Controlling the
Gain of a Generated Sinusoid (rtdx_lv_gain) 417

9.16 LabVIEW–DSK Interface Using RTDX for Controlling the
Amplitude of a Generated Sinusoid with Real-Time Output from
the DSK (rtdx_lv_sine) 420

D.1 Design of FIR Bandstop Filter Using fdatool and dsk_fir67() 541

D.2 Design of IIR Bandstop Filter Using fdatool and dsk_sos_iir67() 542

D.3 Design of FIR Filters Using the Student Version of MATLAB 544

D.4 Multiband FIR Filter Design Using the Student Version of
MATLAB 546

D.5 Design of IIR Bandstop Filter Using the Bilinear Transform in
MATLAB 546

G.1 Sine Wave Generation with DIP Switch Control (sine8_LED) 562

G.2 Loop Program Using the C6416 DSK (loop_intr) 564

G.3 Estimating Execution Times for DFT and FFT Functions 564

Programs/Files on Accompanying CD

xxvii

xxviii Programs/Files on Accompanying CD

DSP Development System

1

 • Installing and testing Code Composer Studio Version 3.1
 • Use of the TMS320C6713 or TMS320C6416 DSK
 • Programming examples

 This chapter describes how to install and test Texas Instruments ’ integrated develop-
ment environment (IDE), Code Composer Studio (CCS), for either the TMS320C6713
or the TMS320C6416 Digital Signal Processing Starter Kit (DSK). Three example
programs that demonstrate hardware and software features of the DSK and CCS
are presented. It is recommended strongly that you review these examples before
proceeding to subsequent chapters. The detailed instructions contained in this
chapter are specifi c to CCS Version 3.1.

1.1 INTRODUCTION

 The Texas Instruments TMS320C6713 and TMS320C6416 Digital Signal Processing
Starter Kits are low cost development platforms for real - time digital signal pro-
cessing applications. Each comprises a small circuit board containing either a
TMS320C6713 fl oating - point digital signal processor or a TMS320C6416 fi xed - point
digital signal processor and a TLV320AIC23 analog interface circuit (codec) and
connects to a host PC via a USB port. PC software in the form of Code Composer
Studio (CCS) is provided in order to enable software written in C or assembly

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

1

2 DSP Development System

language to be compiled and/or assembled, linked, and downloaded to run on the
DSK. Details of the TMS320C6713, TMS320C6416, TLV320AIC23, DSK, and CCS
can be found in their associated datasheets [36 – 38] . The purpose of this chapter is
to introduce the installation and use of either DSK.

 A digital signal processor (DSP) is a specialized form of microprocessor. The
architecture and instruction set of a DSP are optimized for real - time digital signal
processing. Typical optimizations include hardware multiply - accumulate (MAC)
provision, hardware circular and bit - reversed addressing capabilities (for effi cient
implementation of data buffers and fast Fourier transform computation), and
Harvard architecture (independent program and data memory systems). In many
cases, DSPs resemble microcontrollers insofar as they provide single chip computer
solutions incorporating onboard volatile and nonvolatile memory and a range of
peripheral interfaces and have a small footprint, making them ideal for embedded
applications. In addition, DSPs tend to have low power consumption requirements.
This attribute has been extremely important in establishing the use of DSPs in cel-
lular handsets. As may be apparent from the foregoing, the distinctions between
DSPs and other, more general purpose, microprocessors are blurred. No strict defi -
nition of a DSP exists. Semiconductor manufacturers bestow the name DSP on
products exhibiting some, but not necessarily all, of the above characteristics as they
see fi t.

 The C6x notation is used to designate a member of the Texas Instruments (TI)
TMS320C6000 family of digital signal processors. The architecture of the C6x digital
signal processor is very well suited to numerically intensive calculations. Based on
a very - long - instruction - word (VLIW) architecture, the C6x is considered to be TI ’ s
most powerful processor family.

 Digital signal processors are used for a wide range of applications, from com-
munications and control to speech and image processing. They are found in cellular
phones, fax/modems, disk drives, radios, printers, hearing aids, MP3 players, HDTV,
digital cameras, and so on. Specialized (particularly in terms of their onboard
peripherals) DSPs are used in electric motor drives and a range of associated
automotive and industrial applications. Overall, DSPs are concerned primarily with
real - time signal processing. Real - time processing means that the processing must
keep pace with some external event; whereas nonreal - time processing has no
such timing constraint. The external event to keep pace with is usually the analog
input. While analog - based systems with discrete electronic components including
resistors and capacitors are sensitive to temperature changes, DSP - based systems
are less affected by environmental conditions such as temperature. DSPs enjoy
the major advantages of microprocessors. They are easy to use, fl exible, and
economical.

 A number of books and articles have been published that address the importance
of digital signal processors for a number of applications [1 – 22] . Various technologies
have been used for real - time processing, from fi ber optics for very high frequency
applications to DSPs suitable for the audio frequency range. Common applications
using these processors have been for frequencies from 0 to 96 kHz. It is standard

within telecommunications systems to sample speech at 8 kHz (one sample every
0.125 ms). Audio systems commonly use sample rates of 44.1 kHz (compact disk) or
48 kHz. Analog/digital (A/D) - based data - logging boards in the megahertz sampling
rate range are currently available.

1.2 DSK SUPPORT TOOLS

 Most of the work presented in this book involves the development and testing of
short programs to demonstrate DSP concepts. To perform the experiments described
in the book, the following tools are used:

1. A Texas Instruments DSP starter kit (DSK) . The DSK package includes:

 (a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

(b) A circuit board (the TMS320C6713 DSK is shown in Figure 1.1) contain-
ing a digital signal processor and a 16 - bit stereo codec for analog signal
input and output.

 (c) A universal synchronous bus (USB) cable that connects the DSK board
to a PC.

(d) A +5 V universal power supply for the DSK board.

2. A PC . The DSK board connects to the USB port of the PC through the USB
cable included with the DSK package.

3. An oscilloscope, spectrum analyzer, signal generator, headphones, microphone,
and speakers . The experiments presented in subsequent chapters of this
book are intended to demonstrate digital signal processing concepts in real -
 time, using audio frequency analog input and output signals. In order to
appreciate those concepts and to get the greatest benefi t from the experi-
ments, some forms of signal source and sink are required. As a bare minimum,
a microphone and either headphones or speakers are required. A far greater
benefi t will be acquired if a signal generator is used to generate sinusoidal,
and other, test signals and an oscilloscope and spectrum analyzer are used to
display, measure, and analyze input and output signals. Many modern digital
oscilloscopes incorporate FFT functions, allowing the frequency content of
signals to be displayed. Alternatively, a number of software packages that
use a PC equipped with a soundcard to implement virtual instruments are
available.

 All the fi les and programs listed and discussed in this book (apart from some
of the student project fi les in Chapter 10) are included on the accompanying CD.
A list of all the examples is given on pages xxi – xxvi.

DSK Support Tools 3

4 DSP Development System

1.2.1 C6713 and C6416 DSK Boards

 The DSK packages are powerful, yet relatively inexpensive, with the necessary
hardware and software support tools for real - time signal processing [23 – 43] . They
are complete DSP systems. The DSK boards, which measure approximately 5 × 8
inches, include either a 225 - MHz C6713 fl oating - point digital signal processor or
a 1 - GHz C6416 fi xed - point digital signal processor and a 16 - bit stereo codec
TLV320AIC23 (AIC23) for analog input and output.

 The onboard codec AIC23 [38] uses sigma – delta technology that provides analog -
 to - digital conversion (ADC) and digital - to - analog conversion (DAC) functions. It
uses a 12 - MHz system clock and its sampling rate can be selected from a range of
alternative settings from 8 to 96 kHz.

 A daughter card expansion facility is also provided on the DSK boards.
Two 80 - pin connectors provide for external peripheral and external memory
interfaces.

 The DSK boards each include 16 MB (megabytes) of synchronous dynamic RAM
(SDRAM) and 512 kB (kilobytes) of fl ash memory. Four connectors on the boards
provide analog input and output: MIC IN for microphone input, LINE IN for line
input, LINE OUT for line output, and HEADPHONE for a headphone output
(multiplexed with line output). The status of four user DIP switches on the DSK
board can be read from within a program running on the DSP and provide the user
with a feedback control interface. The states of four LEDs on the DSK board can
be controlled from within a program running on the DSP. Also onboard the DSKs
are voltage regulators that provide 1.26 V for the DSP cores and 3.3 V for their
memory and peripherals.

1.2.2 TMS320C6713 Digital Signal Processor

 The TMS320C6713 (C6713) is based on the very - long - instruction - word (VLIW)
architecture, which is very well suited for numerically intensive algorithms. The
internal program memory is structured so that a total of eight instructions can be
fetched every cycle. For example, with a clock rate of 225 MHz, the C6713 is capable
of fetching eight 32 - bit instructions every 1/(225 MHz) or 4.44 ns.

 Features of the C6713 include 264 kB of internal memory (8 kB as L1P and L1D
Cache and 256 kB as L2 memory shared between program and data space), eight
functional or execution units composed of six ALUs and two multiplier units, a 32 -
 bit address bus to address 4 GB (gigabytes), and two sets of 32 - bit general - purpose
registers.

 The C67xx processors (such as the C6701, C6711, and C6713) belong to the family
of the C6x fl oating - point processors; whereas the C62xx and C64xx belong to the
family of the C6x fi xed - point processors. The C6713 is capable of both fi xed - and
fl oating - point processing. The architecture and instruction set of the C6713 are dis-
cussed in Chapter 3 .

 1.2.3 TMS 320 C 6416 Digital Signal Processor

 The TMS320C6416 (C6416) is based on the VELOCITI advanced very - long -
instruction - word (VLIW) architecture, which is very well suited for numerically
intensive algorithms. The internal program memory is structured so that a total of
eight instructions can be fetched every cycle. For example, with a clock rate of 1 GHz,
the C6416 is capable of fetching eight 32 - bit instructions every 1/(1 GHz) or 1.0 ns.

(a)

(b)

 FIGURE 1.1. TMS3206713 - based DSK board: (a) board and (b) block diagram.
(Courtesy of Texas Instruments .)

 DSK Support Tools 5

6 DSP Development System

 Features of the C6416 include 1056 kB of internal memory (32 kB as L1P and
L1D cache and 1024 kB as L2 memory shared between program and data space),
eight functional or execution units composed of six ALUs and two multiplier units,
a 32 - bit address bus to address 4 GB (gigabytes), and two sets of 32 - bit general -
 purpose registers.

1.3 CODE COMPOSER STUDIO

 Code Composer Studio (CCS) provides an integrated development environment
(IDE) for real - time digital signal processing applications based on the C program-
ming language. It incorporates a C compiler, an assembler, and a linker. It has
graphical capabilities and supports real - time debugging.

 The C compiler compiles a C source program with extension .c to produce an
assembly source fi le with extension .asm . The assembler assembles an .asm source
fi le to produce a machine language object fi le with extension .obj . The linker com-
bines object fi les and object libraries as input to produce an executable fi le with
extension .out . This executable fi le represents a linked common object fi le format
(COFF), popular in Unix - based systems and adopted by several makers of digital
signal processors [44] . This executable fi le can be loaded and run directly on the
digital signal processor. Chapter 3 introduces the linear assembly source fi le with
extension .sa , which is a “ cross ” between C and assembly code. A linear optimizer
optimizes this source fi le to create an assembly fi le with extension .asm (similar to
the task of the C compiler).

 A Code Composer Studio project comprises all of the fi les (or links to all of the
fi les) required in order to generate an executable fi le. A variety of options enabling
fi les of different types to be added to or removed from a project are provided. In
addition, a Code Composer Studio project contains information about exactly how
fi les are to be used in order to generate an executable fi le. Compiler/linker options
can be specifi ed. A number of debugging features are available, including setting
breakpoints and watching variables, viewing memory, registers, and mixed C and
assembly code, graphing results, and monitoring execution time. One can step
through a program in different ways (step into, or over, or out).

 Real - time analysis can be performed using CCS ’ s real - time data exchange
(RTDX) facility. This allows for data exchange between the host PC and the target
DSK as well as analysis in real - time without halting the target. The use of RTDX
is illustrated in Chapter 9 .

1.3.1 CCS Version 3.1 Installation and Support

 Instructions for installation of CCS Version 3.1 are supplied with the DSKs. The
default location for CCS fi les is c:\CCStudio_v3.1 and the following instructions
assume that that you have used this default. An icon with the label 6713 DSK
CCStudio v3.1 (or 6416 DSK CCStudio v3.1) should appear on the desktop.

 CCS Version 3.1 provides extensive help facilities and a number of examples
and tutorials are included with the DSK package. Further information (e.g.,
data sheets and application notes) are available on the Texas Instruments website
http://www.ti.com.

1.3.2 Installation of Files Supplied with This Book

 The great majority of the examples described in this book will run on either the
C6713 or the C6416 DSK. However, there are differences, particularly concerning
the library fi les used by the different processors, and for that reason a complete set
of fi les is provided on the CD for each DSK. Depending on whether you are using
a C6713 or a C6416 DSK, copy all of the subfolders, and their contents, supplied
on the CD accompanying this book in folders C6416 or C6713 into the folder
c:\CCStudio_v3.1\MyProjects so that, for example, the source fi le sine8_LED.c
will be located at c:\CCStudio_v3.1\MyProjects\sine8_LED\sine8_LED.c.

 Change the properties of all the fi les copied so that they are not read - only (all
the folders can be highlighted to change the properties of their contents at once).

1.3.3 File Types

 You will be working with a number of fi les with different extensions. They include:

 1. file.pjt : to create and build a project named fi le.

 2. file.c : C source program.

 3. file.asm : assembly source program created by the user, by the C compiler,
or by the linear optimizer.

 4. file.sa : linear assembly source program. The linear optimizer uses file.sa
as input to produce an assembly program file.asm .

 5. file.h : header support fi le.

 6. file.lib : library fi le, such as the run - time support library fi le rts6700.lib .

 7. file.cmd : linker command fi le that maps sections to memory.

 8. file.obj : object fi le created by the assembler.

 9. file.out : executable fi le created by the linker to be loaded and run on the
C6713 or C6416 processor.

10. file.cdb : confi guration fi le when using DSP/BIOS.

1.4 QUICK TESTS OF THE DSK (ON POWER ON AND USING CCS)

1. On power on, a power on self - test (POST) program, stored by default in the
onboard fl ash memory, uses routines from the board support library (BSL) to
test the DSK. The source fi le for this program, post.c , is stored in folder

 Quick Tests of the DSK (On Power On and Using CCS) 7

8 DSP Development System

 c: \ CCStudio_v3.1 \ examples \ dsk6713 \ bsl \ post . It tests the internal, exter-
nal, and fl ash memory, the two multichannel buffered serial ports (McBSP),
DMA, the onboard codec, and the LEDs. If all tests are successful, all four
LEDs blink three times and stop (with all LEDs on). During the testing of
the codec, a 1 - kHz tone is generated for 1 second.

 2. Launch CCS from the icon on the desktop. A USB enumeration process will
take place and the Code Composer Studio window will open.

 3. Click on Debug → Connect and you should see the message “ The target is now
connected ” appear (for a few seconds) in the bottom left - hand corner of the
CCS window.

 4. Click on GEL → Check DSK → QuickTest . The Quick Test can be used for
confi rmation of correct operation and installation. A message of the following
form should then be displayed in a new window within CCS:

 Switches Board Revision CPLD Revision: : :15 2 2

 The value displayed following the label Switches refl ects the state of the four
DIP switches on the edge of the DSK circuit board. A value of 15 corresponds to
all four switches in the up position. Change the switches to (1110) 2 , that is, the fi rst
three switches (0,1,2) up and the fourth switch (3) down. Click again on GEL →
 Check DSK → QuickTest and verify that the value displayed is now 7 (“ Switches: 7 ”).
You can set the value represented by the four user switches from 0 to 15. Programs
running on the DSK can test the state of the DIP switches and react accordingly.
The values displayed following the labels Board Revision and CPLD Revision
depend on the type and revision of the DSK circuit board.

 Alternative Quick Test of DSK Using Code Supplied with This Book
 1. Open/launch CCS from the icon on the desktop if not done already.

 2. Select Debug → Connect and check that the symbol in the bottom left - hand
corner of the CCS window indicates connection to the DSK.

 3. Select File → Load Program and load the fi le c: \ CCStudio_v3.1 \ MyProjects \
 sine8_LED \ Debug \ sine8_LED.out . This loads the executable fi le sine8_
LED.out into the digital signal processor. (This assumes that you have
already copied all the folders on the accompanying CD into the folder:
 c: \ CCStudio_v3.1 \ MyProjects .)

 4. Select Debug → Run .

 Check that the DSP is running. The word RUNNING should be displayed in the
bottom left - hand corner of the CCS window.

 Press DIP switch #0 down. LED #0 should light and a 1 - kHz tone should be
generated by the codec. Connect the LINE OUT (or the HEADPHONE) socket
on the DSK board to a speaker, an oscilloscope, or headphones and verify the gen-
eration of the 1 - kHz tone. The four connectors on the DSK board for input and

 Programming Examples to Test the DSK Tools 9

output (MIC, LINE IN, LINE OUT, and HEADPHONE) each use a 3.5 - mm jack
audio cable. halt execution of program sine8_LED.out by selecting Debug → Halt .

 1.5 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS

 Three programming examples are introduced to illustrate some of the features of
CCS and the DSK board. The aim of these examples is to enable the reader to
become familiar with both the software and hardware tools that will be used
throughout this book. It is strongly suggested that you complete these three exam-
ples before proceeding to subsequent chapters. The examples will be described
assuming that a C6713 DSK is being used.

 Example 1.1: Sine Wave Generation Using Eight Points with DIP Switch
Control (sine8_LED)

 This example generates a sinusoidal analog output waveform using a table - lookup
method. More importantly, it illustrates some of the features of CCS for editing
source fi les, building a project, accessing the code generation tools, and running a
program on the C6713 processor. The C source fi le sine8_LED.c listed in Figure
 1.2 is included in the folder sine8_LED .

 Program Description
 The operation of program sine8_LED.c is as follows. An array, sine_table , of
eight 16 - bit signed integers is declared and initialized to contain eight samples of
exactly one cycle of a sinusoid. The value of sine_table[i] is equal to

 1000 2 8 1sin for , 2, 3, . . . , 7(/)πi i =

Within function main() , calls to functions comm_poll() , DSK6713_LED_init() ,
and DSK6713_DIP_init() initialize the DSK, the AIC23 codec onboard the DSK,
and the two multichannel buffered serial ports (McBSPs) on the C6713 processor.
Function comm_poll() is defi ned in the fi le c6713dskinit.c , and functions
 DSK6713_LED_init() and DSK6713_DIP_init() are supplied in the board support
library (BSL) fi le dsk6713bsl.lib .

 The program statement while(1) within the function main() creates an infi nite
loop. Within that loop, the state of DIP switch #0 is tested and if it is pressed down,
LED #0 is switched on and a sample from the lookup table is output. If DIP switch
#0 is not pressed down then LED #0 is switched off. As long as DIP switch #0 is
pressed down, sample values read from the array sine_table will be output and
a sinusoidal analog output waveform will be generated via the left - hand channel
of the AIC23 codec and the LINE OUT and HEADPHONE sockets. Each time
a sample value is read from the array sine_table , multiplied by the value of
the variable gain , and written to the codec, the index, loopindex , into the array

10 DSP Development System

//sine8_LED.c sine generation with DIP switch control

#include "dsk6713_aic23.h" //codec support
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#define LOOPLENGTH 8
short loopindex = 0; //table index
short gain = 10; //gain factor
short sine_table[LOOPLENGTH]=
 {0,707,1000,707,0,-707,-1000,-707}; //sine values

void main()
{
 comm_poll(); //init DSK,codec,McBSP
 DSK6713_LED_init(); //init LED from BSL
 DSK6713_DIP_init(); //init DIP from BSL
 while(1) //infinite loop
 {
 if(DSK6713_DIP_get(0)==0) //if DIP #0 pressed
 {
 DSK6713_LED_on(); //turn LED #0 ON
 output_left_sample(sine_table[loopindex++]*gain); //output
 if (loopindex >= LOOPLENGTH) loopindex = 0; //reset index
 }
 else DSK6713_LED_off(0); //else turn LED #0 OFF
 } //end of while(1)
} //end of main

 FIGURE 1.2. Sine wave generation program using eight points with DIP switch control
(sine8_LED.c).

is incremented and when its value exceeds the allowable range for the array
(LOOPLENGTH - 1), it is reset to zero.

 Each time the function output_left_sample() , defi ned in source fi le
 C6713dskinit.c , is called to output a sample value, it waits until the codec, initial-
ized by the function comm_poll() to output samples at a rate of 8 kHz, is ready for
the next sample. In this way, once DIP switch #0 has been pressed down it will be
tested at a rate of 8 kHz. The sampling rate at which the codec operates is set by
the program statement

 Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;

 One cycle of the sinusoidal analog output waveform corresponds to eight output
samples and hence the frequency of the sinusoidal analog output waveform is equal
to the codec sampling rate (8 kHz) divided by eight, that is, 1 kHz.

 Programming Examples to Test the DSK Tools 11

Creating a Project
 This section illustrates how to create a project, adding the necessary fi les to generate
an executable fi le sine8_LED.out . As supplied on the CD, folder sine8_LED con-
tains a suitable project fi le named sine8_LED.pjt . However, for the purposes of
gaining familiarity with CCS, this section will illustrate how to create that project
fi le from scratch.

 1. Delete the existing project fi le sine8_LED.pjt in folder c:\CCStudio_v3.1\
myprojects\sine8_LED . Do this from outside CCS. Remember, a copy of
the fi le sine8_LED.pjt still exists on the CD.

 2. Launch CCS by double - clicking on its desktop icon.

 3. Create a new project fi le sine8_LED.pjt by selecting Project→ New
and typing sine8_LED as the project name, as shown in Figure 1.3 . Set Target
to TMS320C67XX before clicking on Finish . The new project fi le will be
saved in the folder c:\CCStudio_v3.1\myprojects\sine8_LED . The .pjt
fi le stores project information on build options, source fi lenames, and
dependencies. The names of the fi les used by a project are displayed in the
Project View window, which, by default, appears at the left - hand side of the
Code Composer window.

 4. Add the source fi le sine8_LED.c to the project. sine8_LED.c is the top level
C source fi le containing the defi nition of function main() . This source fi le is
stored in the folder sine8_LED and must be added to the project if it is to
be used to generate the executable fi le sine8_LED.out . Select Project→ Add
Files to Project and look for Files of Type C Source Files (* .c, * .ccc). Open ,

FIGURE 1.3. CCS Project Creation window for project sine8_LED .

12 DSP Development System

or double - click on, sine8_LED.c . It should appear in the Project View window
in the Source folder.

 5. Add the source fi le c6713dskinit.c to the project. c6713dskinit.c con-
tains the function defi nitions for a number of low level routines including
comm._poll() and output_left_sample() . This source fi le is stored in the
folder c:\CCStudio_v3.1\myprojects\Support . Select Project→ Add Files
to Project and look for Files of Type C Source Files (* .c, * .ccc). Open , or
double - click on, c6713dskinit.c . It should appear in the Project View
window in the Source folder.

 6. Add the source fi le vectors__poll.asm to the project. vectors_poll.asm
contains the interrupt service table for the C6713. This source fi le is stored
in the folder c:\CCStudio_v3.1\myprojects\Support . Select Project→ Add
Files to Project and look for Files of Type ASM Source Files (* .a *). Open , or
double - click on, vectors_poll.asm . It should appear in the Project View
window in the Source folder.

 7. Add library support fi les rts6700.lib, dsk6713bsl.lib, and csl6713.lib
to the project. Three more times, select Project→ Add Files to Project and
look for Files of Type Object and Library Files (* .o * , * .l *) The three library
fi les are stored in folders c:\CCStudio_v3.1\c6000\cgtools\lib , c:\
CCStudio_v3.1\c6000\dsk6713\lib , and c:\CCStudio_v3.1\c6000\csl\
lib , respectively. These are the run - time support (for C67x architecture),
board support (for C6713 DSK), and chip support (for C6713 processor)
library fi les.

 8. Add the linker command fi le c6713dsk.cmd to the project. This fi le is stored
in the folder c:\CCStudio_v3.1\myprojects\Support . Select Project→ Add
Files to Project and look for Files of Type Linker Command File (* .cmd; * .
lcf) . Open, or double - click on, c6713dsk.cmd . It should then appear in the
Project View window.

 9. No header fi les will be shown in the Project View window at this stage. Select-
ing Project→ Scan All File Dependencies will rectify this. You should now be
able to see header fi les c6713dskinit.h , dsk6713.h , and dsk6713_aic23.
h , in the Project View window.

10. The Project View window in CCS should look as shown in Figure 1.4. The
GEL fi le dsk6713.gel is added automatically when you create the project.
It initializes the C6713 DSK invoking the board support library to use the
PLL to set the CPU clock to 225 MHz (otherwise the C6713 runs at 50 MHz
by default). Any of the fi les (except the library fi les) listed in the Project
View window can be displayed (and edited) by double - clicking on their
name in the Project View window. You should not add header or include fi les
to the project. They are added to the project automatically when you select
Scan All File Dependencies . (They are also added when you build the
project.)

 Programming Examples to Test the DSK Tools 13

 Verify from the Project View window that the project (.pjt) fi le, the linker
command (.cmd) fi le, the three library (.lib) fi les, the two C source (.c) fi les, and
the assembly (.asm) fi le have been added to the project.

Code Generation and Build Options
 The code generation tools underlying CCS, that is, C compiler, assembler, and linker,
have a number of options associated with each of them. These options must be set
appropriately before attempting to build a project. Once set, these options will be
stored in the project fi le.

Setting Compiler Options
 Select Project→ Build Options and click on the Compiler tab. Set the following
options, as shown in Figures 1.5 , 1.6 , and 1.7 . In the Basic category set Target Version
to C671x (- mv6710) . In the Advanced category set Memory Models to Far (– mem_

FIGURE 1.4. Project View window showing fi les added at step 10.

FIGURE 1.5. CCS Build Options: Basic compiler settings.

FIGURE 1.6. CCS Build Options: Advanced compiler settings.

14

 Programming Examples to Test the DSK Tools 15

FIGURE 1.7. CCS Build Options: Preprocessor compiler settings.

model:data=far) . In the Preprocessor category set Pre - Defi ne Symbol to CHIP_6713
and Include Search Path to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . Compiler
options are described in more detail in Ref. 28 . Click on OK .

Setting Linker Options
 Click on the Linker tab in the Build Options window, as shown in Figure 1.8 . The
Output Filename should default to .\ Debug \ sine8_LED.out based on the name of
the project fi le and the Autoinit Model should default to Run - Time Autoinitializa-
tion . Set the following options (all in the Basic category). Set Library Search Path
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib and set Include Libraries to rts6700.lib;
dsk6713bsl.lib;csl6713.lib . The map fi le can provide useful information for debug-
ging (memory locations of functions, etc.). The –c option is used to initialize vari-
ables at run time, and the –o option is to name the linked executable output fi le
sine8_LED.out . Click on OK .

Building, Downloading, and Running the Project
 The project sine8_LED can now be built, and the executable fi le sine8_LED.out
can be downloaded to the DSK and run.

16 DSP Development System

FIGURE 1.8. CCS Build Options: Basic Linker settings.

1. Build this project as sine8_LED . Select Project→ Rebuild All . Or press the
toolbar button with the three downward arrows. This compiles and assembles
all the C fi les using cl6x and assembles the assembly fi le vectors_poll.asm
using asm6x . The resulting object fi les are then linked with the library fi les
using lnk6x . This creates an executable fi le sine8_LED.out that can be loaded
into the C6713 processor and run. Note that the commands for compiling,
assembling, and linking are performed with the Build option. A log fi le cc_
build_Debug.log is created that shows the fi les that are compiled and assem-
bled, along with the compiler options selected. It also lists the support functions
that are used. The building process causes all the dependent fi les to be included
(in case one forgets to scan for all the fi le dependencies). You should see a
number of diagnostic messages, culminating in the message “ Build Complete,
0 Errors, 0 Warnings, 0 Remarks ” appear in an output window in the bottom
left - hand side of the CCS window. It is possible that a warning about the Stack
Size will have appeared. This can be ignored or can be suppressed by uncheck-
ing the Warn About Output Sections option in the Advanced category of
Linker Build Options . Alternatively, it can be eliminated by setting the Stack

 Programming Examples to Test the DSK Tools 17

Size option in the Advanced category of Linker Build Options to a suitable
value (e.g., 0x1000).

Connect to the DSK . Select Debug→ Connect and check that the symbol in
the bottom left - hand corner of the CCS window indicates connection to the
DSK.

2. Select File→ Load Program in order to load sine8_LED.out . It should be
stored in the folder c:\CCStudio_v3.1\MyProjects\sine8_LED\Debug . Select
Debug→ Run . In order to verify that a sinusoidal output waveform with a fre-
quency of 1 kHz is present at both the LINE OUT and HEADPHONE
sockets on the DSK, when DIP switch #0 is pressed down, use an oscilloscope
connected to the LINE OUT socket and a pair of headphones connected to
the HEADPHONE socket.

Editing Source Files Within CCS
 Carry out the following actions in order to practice editing source fi les.

1. Halt execution of the program (if it is running) by selecting Debug→ Halt .

2. Double - click on the fi le sine8_LED.c in the Project View window. This should
open a new window in CCS within which the source fi le is displayed and may
be edited.

3. Delete the semicolon in the program statement

short gain = 10;

4. Select Debug→ Build to perform an incremental build or use the toolbar
button with the two (not three) downward arrows. The incremental build is
chosen so that only the C source fi le sine8_LED.c is compiled. Using the
Rebuild option (the toolbar button with three downward arrows), fi les com-
piled and/or assembled previously would again go through this unnecessary
process.

5. Two error messages, highlighted in red, stating

“Sine8_LED.c”, Line 11: error: expected a “;”
“Sine8_LED.c”, Line 23: error: identifier “sine_table” is
undefined

should appear in the Build window of CCS (lower left). You may need to
scroll - up the Build window for a better display of these error messages.
Double - click on the fi rst highlighted error message line. This should bring the
cursor to the section of code where the error occurs. Make the appropriate
correction (i.e. replace the semicolon) Build again, Load , and Run the program
and verify your previous results.

18 DSP Development System

 Monitoring the Watch Window
 Ensure that the processor is still running (and that DIP switch #0 is pressed down).
Note the message “ RUNNING ” displayed at the bottom left of CCS. The Watch
window allows you to change the value of a parameter or to monitor a variable:

 1. Select View → Quick Watch . Type gain , then click on Add to Watch . The gain
value of 10 set in the program in Figure 1.2 should appear in the Watch
window.

 2. Change gain from 10 to 30 in the Watch window. Press enter. Verify that the
amplitude of the generated tone has increased (with the processor still running
and DIP switch #0 pressed down). The amplitude of the sine wave should have
increased from approximately 0.9 V p - p to approximately 2.5 V p - p.

 Using a GEL Slider to Control the Gain
 The General Extension Language (GEL) is an interpreted language similar to (a
subset of) C. It allows you to change the value of a variable (e.g., gain) while the
processor is running.

 1. Select File → Load GEL and load the fi le gain.gel (in folder sine8_LED).
Double - click on the fi lename gain.gel in the Project View window to
view it within CCS. The fi le is listed in Figure 1.9 . The format of a slider GEL
function is

 slider param_defi nition(minVal, maxVal, increment,
pageIncrement, paramName)
{
 statements
}

where param_defi nition identifi es the slider and is displayed as the name of
the slider window, minVal is the value assigned to the GEL variable param-
Name when the slider is at its lowest level, maxVal is the value assigned to the

/*gain.gel GEL slider to vary amplitude of sine wave*/
/*generated by program sine8_LED.c*/

menuitem "Sine Gain"

slider Gain(0,30,4,1,gain_parameter) /*incr by 4, up to 30*/
{
 gain = gain_parameter; /*vary gain of sine*/
}

 FIGURE 1.9. Listing of GEL fi le gain.gel .

 Programming Examples to Test the DSK Tools 19

GEL variable paramName when the slider is at its highest level, increment
specifi es the incremental change to the value of the GEL variable paramName
made using the up - or down - arrow keys, and pageIncrement specifi es the
incremental change to the value of the GEL variable paramName made by
clicking in the slider window.

 In the case of gain.gel , the statement

gain = gain_parameter;

assigns the value of the GEL variable gain_parameter to the variable gain
in program sine8_LED . The line

menuitem “Sine Gain ”

sets the text that will appear as an option in the CCS GEL menu when
gain.gel is loaded.

2. Select GEL→ Sine Gain → Gain . This should bring out the slider window shown
in Figure 1.10 , with the minimum value of 0 set for the gain.

3. Press the up - arrow key three times to increase the gain value from 0 to 12.
Verify that the peak - to - peak value of the sine wave generated is approxi-
mately 1.05 V. Press the up - arrow key again to continue increasing the slider,
incrementing by 4 each time. The amplitude of the sine wave should be
about 2.5 V p - p with the value of gain set to 30. Clicking in the Gain slider
window above or below the current position of the slider will increment or
decrement its value by 1. The slider can also be dragged up and down.
Changes to the value of gain made using the slider are refl ected in the
Watch window.

 Figure 1.11 shows several windows within CCS for the project sine8_LED .

FIGURE 1.10. GEL slider used to vary gain in program sine8_LED.c .

20 DSP Development System

Changing the Frequency of the Generated Sinusoid
 There are several different ways in which the frequency of the sinusoid generated
by program sine8_LED.c can be altered.

1. Change the AIC23 codec sampling frequency from 8 kHz to 16 kHz by chang-
ing the line that reads

Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;

to read

Uint32 fs = DSK6713_AIC23_FREQ_16KHZ;

Rebuild (use incremental build) the project, load and run the new executable
fi le, and verify that the frequency of the generated sinusoid is 2 kHz. The

FIGURE 1.11. CCS windows for project sin8_LED , including Watch window and GEL
slider.

 Programming Examples to Test the DSK Tools 21

sampling frequencies supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48,
and 96 kHz.

2. Change the number of samples stored in the lookup table to four. By changing
the lines that read

#define LOOPLENGTH 8
short sine_table[LOOPLENGTH]={0,707,1000,707,0, -707,0,-1000,
-707};

to read

#define LOOPLENGTH 4
short sine_table[LOOPLENGTH]={0,1000,0, -1000};

Verify that the frequency of the sinusoid generated is 2 kHz (assuming an
8 - kHz sampling frequency).

 Remember that the sinusoid is no longer generated if the DIP switch #0 is
not pressed down. A different DIP switch can be used to control whether or
not a sinusoid is generated by changing the value of the parameter passed to
the functions DSK6713_DIP_get(), DSK6713_LED_on(), and DSK6713_

LED_off() . Suitable values are 0, 1, 2, and 3.

 Two sliders can readily be used, one to change the gain and the other to
change the frequency. A different signal frequency can be generated, by changing
the incremental changes applied to the value of loopindex within the C program
(e.g., stepping through every two points in the table). When you exit CCS after you
build a project, all changes made to the project can be saved. You can later return
to the project with the status as you left it before. For example, when returning to
the project, after launching CCS, select Project→ Open to open an existing project
such as sine8_LED.pjt (with all the necessary fi les for the project already
added).

Example 1.2: Generation of Sinusoid and Plotting with CCS (sine8_buf)

 This example generates a sinusoidal analog output signal using eight precalculated
and prestored sample values. However, it differs fundamentally from sine8_LED in
that its operation is based on the use of interrupts. In addition, it uses a buffer to
store the BUFFERLENGTH most recent output samples. It is used to illustrate the
capabilities of CCS for plotting data in both time and frequency domains.

 All the fi les necessary to build and run an executable fi le sine8_BUF.out are
stored in folder sine8_buf . Program fi le sine8_buf.c is listed in Figure 1.12 .
Because a project fi le sine8_buf.pjt is supplied, there is no need to create a new

22 DSP Development System

//sine8_buf.c sine generation with output stored in buffer

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input
#define LOOPLENGTH 8
#define BUFFERLENGTH 256
int loopindex = 0; //table index
int bufindex = 0; //buffer index
short sine_table[LOOPLENGTH]={0,707,1000,707,0,-707,-1000,-707};
int out_buffer[BUFFERLENGTH]; //output buffer
short gain = 10;
interrupt void c_int11() //interrupt service routine
 short out_sample;

 out_sample = sine_table[loopindex++]*gain;
 output_left_sample(out_sample); //output sample value
 out_buffer[bufindex++] = out_sample; //store in buffer
 if (loopindex >= LOOPLENGTH) loopindex = 0; //check end table
 if (bufindex >= BUFFERLENGTH) bufindex = 0; //check end buffer
 return;
} //return from interrupt

void main()
{
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

 FIGURE 1.12. Listing of program sine8_buf.c .

project fi le, add fi les to it, or alter compiler and linker build options. In order to
build, download and run program sine8_buf.c .

 1. Close any open projects in CCS.

 2. Open project sine8_buf.pjt by selecting Project → Open and double - clicking
on fi le sine8_buf.pjt in folder sine8_buf . Because this program uses inter-
rupt - driven input/output rather than polling, the fi le vectors_intr.asm is
used in place of vectors_poll.asm . The interrupt service table specifi ed in
 vectors_intr.asm associates the interrupt service routine c_int11() with
hardware interrupt INT11, which is asserted by the AIC23 codec on the DSK
at each sampling instant.

 Within function main() , function comm_intr() is used in place of comm_poll() .
This function is defi ned in fi le c6713dskinit.c and is described in more detail in
Chapter 2 . Essentially, it initializes the DSK hardware, including the AIC23 codec,

 Programming Examples to Test the DSK Tools 23

such that the codec sampling rate is set according to the value of the variable fs

and the codec interrupts the processor at every sampling instant. The statement
while(1) in function main() creates an infi nite loop, during which the processor
waits for interrupts. On interrupt, execution proceeds to the interrupt service routine
(ISR) c_int11() , which reads a new sample value from the array sine_table and
writes it both to the array out_buffer and to the DAC using function output_
left_sample() . Interrupts are discussed in more detail in Chapter 3 .

 Build this project as sine8_buf . Load and run the executable fi le sine8_buf.
out and verify that a 1 - kHz sinusoid is generated at the LINE OUT and HEAD-
PHONE sockets (as in Example 1.1).

Graphical Displays in CCS
 The array out_buffer is used to store the BUFFERLENGTH most recently output
sample values. Once program execution has been halted, the data stored in out_

buffer can be displayed graphically in CCS.

1. Select View→ Graph → Time/Frequency and set the Graph Property Dialog
properties as shown in Figure 1.13 a. Figure 1.13 b shows the resultant Graphi-
cal Display window.

2. Figure 1.14 a shows the Graph Property Dialog window that corresponds to
the frequency domain representation of the contents of out_buffer shown
in Figure 1.14 b. The spike at 1 kHz represents the frequency of the sinusoid
generated by program sine8_buf.c .

Viewing and Saving Data from Memory into File
 To view the contents of out_buffer , select View→ Memory . Specify out_buffer as
the Address and select 32 - bit Signed Integer as the Format , as shown in Figure 1.15 a.
The resultant Memory window is shown in Figure 1.15 b.

 To save the contents of out_buffer to a fi le, select File→ Data → Save . Save the
fi le as sine8_buf.dat , selecting data type Integer , in the folder sine8_buf . In the
Storing Memory into File window, specify out_buffer as the Address and a Length
of 256. The resulting fi le is a text fi le and you can plot this data using other applica-
tions (e.g., MATLAB). Although the values stored in array sine_table and passed
to function output_left_sample() are 16 - bit signed integers, array out_buffer
is declared as type int (32 - bit signed integer) in program sine8_buf.c to allow
for the fact that there is no 16 - bit Signed Integer data type option in the Save Data
facility in CCS.

Example 1.3: Dot Product of Two Arrays (dotp4)

 This example illustrates the use of breakpoints and single stepping within CCS. In
addition, it illustrates the use of Code Composer ’ s Profi le Clock in order to estimate
the time taken to execute a section of code.

24 DSP Development System

(a)

(b)

 FIGURE 1.13. (a) Graph Property window and (b) Time domain plot of data stored in
 out_buffer .

 Multiply/accumulate is a very important operation in digital signal processing. It
is a fundamental part of digital fi ltering, correlation, and fast Fourier transform
algorithms. Since the multiplication operation is executed so commonly and is
essential for most digital signal processing algorithms, it is important that it executes
in a single instruction cycle. The C6713 and C6416 processors can perform two
multiply/accumulate operations within a single instruction cycle.

 The C source fi le dotp4.c , listed in Figure 1.16 , calculates the dot products of
two arrays of integer values. The fi rst array is initialized using the four values 1, 2,
3, and 4, and the second array using the four values 0, 2, 4, and 6. The dot product
is (1 × 0) + (2 × 2) + (3 × 4) + (4 × 6) = 40.

 Programming Examples to Test the DSK Tools 25

(a)

(b)

 FIGURE 1.14. (a) Graph Property window and (b) Frequency domain plot of data stored
in out_buffer .

 The program can readily be modifi ed to handle larger arrays. No real - time input
or output is used in this example, and so the real - time support fi les c6713dskinit.
c and vectors_intr.asm are not needed.

 Build this project as dotp4 ensuring that the following fi les are included in the
project:

 1. dotp4.c : C source fi le.

 2. 6713dsk.cmd : generic linker command fi le.

 3. rts6700.lib : library fi le.

 The Project View window should appear as shown in Figure 1.17 .

26 DSP Development System

 FIGURE 1.15. (a) Memory window settings and (b) Memory window view of data stored in
 out_buffer .

(a)

(b)

 Implementing a Variable Watch
 1. Select Project → Build Options and verify that the Basic Compiler settings are

as shown in Figure 1.18 . In this example it is important to ensure that the
optimization is disabled (Opt Level None).

 2. Build the project by clicking on the toolbar button with the three downward
arrows (or select Project → Build). Load the executable fi le dotp4.out .

 3. Select View → Quick Watch . Type sum to watch the variable sum , and click on
 Add to Watch . The message “ identifi er not found: sum ” should be displayed in
the Watch window. The variable sum is declared locally in function dotp() and
until that function is called it does not exist.

 4. Set a breakpoint at the line of code

 sum += a[i] * b[i];

by clicking on that line in the source fi le dotp4.c and then either right - clicking
and selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint
toolbar button. A red dot should appear to the left of that line of code.

 Programming Examples to Test the DSK Tools 27

//dotp4.c dot product of two vectors

int dotp(short *a, short *b, int ncount); //function prototype
#include <stdio.h> //for printf
#define count 4 //# of data in each array
short x[count] = {1,2,3,4}; //declaration of 1st array
short y[count] = {0,2,4,6}; //declaration of 2nd array

main()
{
 int result = 0; //result sum of products

 result = dotp(x, y, count); //call dotp function
 printf("result = %d (decimal) \n", result); //print result
}

int dotp(short *a, short *b, int ncount) //dot product function
{
 int i;
 int sum = 0;
 for (i = 0; i < ncount; i++)
 sum += a[i] * b[i]; //sum of products
 return(sum); //return sum as result
}

 FIGURE 1.16. Listing of program dotp4.c .

 FIGURE 1.17. Project View window for project dotp4 .

28 DSP Development System

FIGURE 1.18. Build Options for project dotp4 .

5. Select Debug→ Run (or use the “ running man ” toolbar button). The program
will execute up to, but not including, the line of code at which the breakpoint
has been set. A yellow arrow will appear to the left of that line of code. At
this point, a value of 0 for the variable sum should appear in the Watch window.
sum is a variable that is local to function dotp() . Now that the function is
being executed, the variable exists and its value can be displayed.

6. Continue program execution by selecting Debug→ Step Into , or by using func-
tion key F11. Continue to single - step and watch the variable sum in the Watch
window change in value through 0, 4, 16, and 40 (See Figure 1.19 .).

7. Once the value of the variable sum has reached 40, select Debug→ Run in order
to complete execution of the program, and verify that the value returned by
function dotp() is displayed as

result = 40 (decimal)

in the Stdout window. At this point, the message “ identifi er not found: sum ”
should be displayed in the Watch window again, refl ecting the fact that execu-
tion of function dotp() has ended and that the local variable sum no longer
exists.

 Programming Examples to Test the DSK Tools 29

 The printf() function is useful for debugging but its use should be avoided in
real - time programs since it takes over 6000 instruction cycles to execute.

Animating
1. Select File→ Reload Program to reload the executable fi le dotp4.out (alter-

natively, select Debug→ Restart). After the executable fi le is loaded, or follow-
ing restart, the program counter is set to the address labeled c_int00 . This
can be verifi ed by looking at the Disassembly window.

2. The breakpoint set previously should still be set at the same line of code as
before. Select Debug→ Animate and watch the value of the variable sum dis-
played in the Watch window change. The speed of animation can be controlled
by selecting Option→ Customize → Animate Speed (by default, the maximum
speed setting of 0 seconds is set).

Estimating Execution Time for Function dotp() Using the Profi le Clock
 The time taken to execute function dotp() can be estimated using Code
Composer ’ s Profi le Clock .

FIGURE 1.19. Various windows associated with program dotp4.c .

30 DSP Development System

1. Open project dotp4.pjt .

2. Select Project→ Build Options . In the Compiler tab in the Basic category set
the Opt Level to none .

3. Select Project→ Build and then File→ Load Program in order to create and
load fi le dotp4.out .

4. Open source fi le dotp4.c and clear all breakpoints. Set breakpoints at the
lines

result = dotp(x, y, count);

and

printf(“result = %d (decimal) \n”, result);

5. Select Profi le → Clock → Enable .

6. Select Profi le → Clock View . A small clock icon and the number of processor
instruction cycles that the Profi le Clock has counted should appear in the
bottom right - hand corner of the Code Composer window.

7. Run the program. It should halt at the fi rst breakpoint.

8. Reset the Profi le Clock by double - clicking on its icon in the bottom right - hand
corner of the Code Composer window.

9. Run the program. It should stop at the second breakpoint.

 The number of instruction cycles counted by the Profi le Clock between the two
breakpoints, that is, during execution of function dotp() , should be displayed next
to the icon. On a 225 - MHz C6713 processor, each instruction cycle takes 4.44 ns.
Repeat the experiment having set the compiler optimization level to Function (– o2)
and you should see a reduction in the number of instruction cycles used by function
dotp() by a factor of approximately 2. Using breakpoints and the Profi le Clock can
give an indication of the execution times of sections of program but it does not
always work with higher levels of compiler optimization, for example, File (- o3) .
More detailed profi ling of program execution can be achieved using a simulator.

1.6 SUPPORT FILES

 The support fi les c6713dskinit.c , vectors_intr.asm or vectors_poll.asm ,
and c6713dsk.cmd are used by nearly all of the examples in this book.

1.6.1 Initialization/Communication File (c6713dskinit.c)

 Source fi le c6713dskinit.c , supplied on the CD accompanying this book and listed
in Figure 1.20 , contains the defi nitions of a number of functions used to initialize

 Support Files 31

//c6713dskinit.c
//includes functions from TI in the C6713 CSL and C6713DSK BSL

#include "C6713dskinit.h"
#define using_bios
extern Uint32 fs; //sampling frequency
extern Uint16 inputsource; //input source (MIC or LINE)

void c6713_dsk_init() //initialize DSK
{
 DSK6713_init(); //BSL routine to init DSK

 hAIC23_handle=DSK6713_AIC23_openCodec(0, &config);
 DSK6713_AIC23_setFreq(hAIC23_handle, fs); //set sampling rate
 // choose MIC or LINE IN on AIC23
 DSK6713_AIC23_rset(hAIC23_handle, 0x0004, inputsource);
 MCBSP_config(DSK6713_AIC23_DATAHANDLE,&AIC23CfgData);
 MCBSP_start(DSK6713_AIC23_DATAHANDLE, MCBSP_XMIT_START |
 MCBSP_RCV_START | MCBSP_SRGR_START |
 MCBSP_SRGR_FRAMESYNC, 220); //restart data channel
}

void comm_poll() //for communication using polling
{
 poll=1; //1 if using polling
 c6713_dsk_init(); //init DSP and codec
}

void comm_intr() //for communication using interrupt
{
 poll=0; //0 since not polling
 IRQ_globalDisable(); //globally disable interrupts
 c6713_dsk_init(); //init DSP and codec
 CODECEventId=MCBSP_getXmtEventId(DSK6713_AIC23_codecdatahandle);

#ifndef using_bios //if not using DSP/BIOS
 IRQ_setVecs(vectors); //use interrupt vector table
#endif //set up in vectors_intr.asm

 IRQ_map(CODECEventId, 11); //map McBSP1 Xmit to INT11
 IRQ_reset(CODECEventId); //reset codec INT 11
 IRQ_globalEnable(); //globally enable interrupts
 IRQ_nmiEnable(); //enable NMI interrupt
 IRQ_enable(CODECEventId); //enable CODEC eventXmit INT11

 output_sample(0); //start McBSP by outputting a sample
}

void output_sample(int out_data) //output to both channels
{
 short CHANNEL_data;

 AIC_data.uint=0; //clear data structure

 FIGURE 1.20. Listing of support fi le c6713dskinit.c .

32 DSP Development System

 AIC_data.uint=out_data; //write 32-bit data

//The existing interface defaults to right channel.
//To default instead to the left channel and use
//output_sample(short), left and right channels are swapped.
//In main source program use LEFT 0 and RIGHT 1
//(opposite of what is used here)

 CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
 AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
 AIC_data.channel[LEFT]=CHANNEL_data;
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_left_sample(short out_data) //output to left channel
{
 AIC_data.uint=0; //clear data structure
 AIC_data.channel[LEFT]=out_data; //write 16-bit data
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_right_sample(short out_data)//output to right channel
{
 AIC_data.uint=0; //clear data structure
 AIC_data.channel[RIGHT]=out_data; //write 16-bit data
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

Uint32 input_sample() //input from both channels
{
 short CHANNEL_data;

 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);

 //Swap left and right channels (see comments in output_sample())
 CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
 AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
 AIC_data.channel[LEFT]=CHANNEL_data;
 return(AIC_data.uint);
}

FIGURE 1.20. (Continued)

 Support Files 33

short input_left_sample() //input from left channel
{
 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
 return(AIC_data.channel[LEFT]); //return left channel data
}
short input_right_sample() //input from right channel
{
 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
 return(AIC_data.channel[RIGHT]); //return right channel data
}

FIGURE 1.20. (Continued)

the DSK. Calls are made from these functions to lower level functions provided
with CCS in the board support library (BSL) and chip support library (CSL) fi les
 dsk6713bsl.lib and csl6713.lib .

 Functions comm_intr() and comm_poll() initialize communications between
the C6713 processor and the AIC23 codec for either interrupt - driven or polling -
 based input and output. In the case of interrupt - driven input and output, interrupt
#11 (INT11), generated by the codec via the serial port (McBSP), is confi gured and
enabled (selected). The nonmaskable interrupt bit must be enabled as well as the
global interrupt enable (GIE) bit.

 Functions input_sample() , input_left_sample() , input_right_sample() ,
 output_sample() , output_left_sample() , and input_right_sample() are
used to read and write data to and from the codec. In the case of polling - based
input and output, these functions wait until the next sampling instant (determined
by the codec) before reading or writing, using the lower level functions MCBSP_
read() or MCBSP_write() . They do this by polling (testing) the receive ready
(RRDY) or transmit ready (XRDY) bits of the McBSP control register (SPCR).
In the case of interrupt - driven input and output, the processor is interrupted by
the codec at each sampling instant and when either input_sample() or output_
sample() is called from within the interrupt service routine, reading or writing
proceeds without RRDY or XRDY being tested. Interrupts are discussed further
in Chapter 3 .

 1.6.2 Header File (c6713dskinit.h)

 The corresponding header support fi le c6713dskinit.h contains function proto-
types as well as initial settings for the control registers of the AIC23 codec. Nearly

34 DSP Development System

all of the example programs in this book use the same AIC23 control register set-
tings. However, two codec parameters — namely, sampling frequency and selection
of ADC input (LINE IN or MIC IN) — are changed more often, from one program
example to another, and for that reason the following mechanism has been adopted.
During initialization of the DSK (in function dsk_init() , defi ned in fi le
c6713dskinit.c), the AIC23 codec control registers are initialized using the
DSK6713_AIC23_Config type data structure config defi ned in header fi le
c6713dskinit.h . Immediately following this initialization, two functions DSK6713_
AIC23_setFreq() and DSK6713_AIC23_rset() are called and these set the sam-
pling frequency and select the input source according to the values of the variables
fs and inputsource . These values are set in the fi rst few lines of every top level
source fi le; for example,

Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input source

 In this way, the sampling frequency and input source can be changed without
having to edit either c6713sdkinit.h or c6713dskinit.c . (See Figure 1.21 .)

1.6.3 Vector Files (vectors_intr.asm, vectors_poll.asm)

 To make use of interrupt INT11, a branch instruction (jump) to the interrupt service
routine (ISR) c_int11() defi ned in a C program, for example, sine8_buf.c , must
be placed at the appropriate point in the interrupt service table (IST). Assembly
language fi le vectors_intr.asm , which sets up the IST, is listed in Figure 1.22 .
Note the underscore preceding the name of the routine or function being called.
By convention, this indicates a C function.

 For a polling - based program, fi le vectors_poll.asm is used, in place of vectors_
intr.asm . The main difference between these fi les is that there is no branch to c_
int11() in the IST set up by vectors_poll.asm . Common to both fi les is a branch
to c_int00() , the start of a C program, associated with reset. (See Figure 1.23 .)

1.6.4 Linker Command File (c6713dsk.cmd)

 Linker command fi le C6713dsk.cmd is listed in Figure 1.24 . It specifi es the memory
confi guration of the internal and external memory available on the DSK and the
mapping of sections of code and data to absolute addresses in that memory. For
example, the .text section, produced by the C compiler, is mapped into IRAM,
that is, the internal memory of the C6713 digital signal processor, starting at address
0x00000220 . The section .vectors created by vectors_intr.asm or by vectors_
poll.asm is mapped into IVECS, that is, internal memory starting at address

 Support Files 35

 FIGURE 1.21. Listing of support header fi le c6713dskinit.h .

/*c6713dskinit.h include file for c6713dskinit.c */

#include "dsk6713.h"\
#include "dsk6713_aic23.h"

#define LEFT 1
#define RIGHT 0

union {
 Uint32 uint;
 short channel[2];
 } AIC_data;

extern far void vectors(); //external function

static Uint32 CODECEventId, poll;

// needed to modify the BSL data channel McBSP configuration
MCBSP_Config AIC23CfgData = {
 MCBSP_FMKS(SPCR, FREE, NO) |
 MCBSP_FMKS(SPCR, SOFT, NO) |
 MCBSP_FMKS(SPCR, FRST, YES) |
 MCBSP_FMKS(SPCR, GRST, YES) |
 MCBSP_FMKS(SPCR, XINTM, XRDY) |
 MCBSP_FMKS(SPCR, XSYNCERR, NO) |
 MCBSP_FMKS(SPCR, XRST, YES) |
 MCBSP_FMKS(SPCR, DLB, OFF) |
 MCBSP_FMKS(SPCR, RJUST, RZF) |
 MCBSP_FMKS(SPCR, CLKSTP, DISABLE) |
 MCBSP_FMKS(SPCR, DXENA, OFF) |
 MCBSP_FMKS(SPCR, RINTM, RRDY) |
 MCBSP_FMKS(SPCR, RSYNCERR, NO) |
 MCBSP_FMKS(SPCR, RRST, YES),

 MCBSP_FMKS(RCR, RPHASE, SINGLE) |
 MCBSP_FMKS(RCR, RFRLEN2, DEFAULT) |
 MCBSP_FMKS(RCR, RWDLEN2, DEFAULT) |
 MCBSP_FMKS(RCR, RCOMPAND, MSB) |
 MCBSP_FMKS(RCR, RFIG, NO) |
 MCBSP_FMKS(RCR, RDATDLY, 0BIT) |
 MCBSP_FMKS(RCR, RFRLEN1, OF(0)) |
 MCBSP_FMKS(RCR, RWDLEN1, 32BIT) |
 MCBSP_FMKS(RCR, RWDREVRS, DISABLE),

 MCBSP_FMKS(XCR, XPHASE, SINGLE) |
 MCBSP_FMKS(XCR, XFRLEN2, DEFAULT) |
 MCBSP_FMKS(XCR, XWDLEN2, DEFAULT) |

36 DSP Development System

 MCBSP_FMKS(XCR, XCOMPAND, MSB) |
 MCBSP_FMKS(XCR, XFIG, NO) |
 MCBSP_FMKS(XCR, XDATDLY, 0BIT) |
 MCBSP_FMKS(XCR, XFRLEN1, OF(0)) |
 MCBSP_FMKS(XCR, XWDLEN1, 32BIT) |
 MCBSP_FMKS(XCR, XWDREVRS, DISABLE),

 MCBSP_FMKS(SRGR, GSYNC, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKSP, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKSM, DEFAULT) |
 MCBSP_FMKS(SRGR, FSGM, DEFAULT) |
 MCBSP_FMKS(SRGR, FPER, DEFAULT) |
 MCBSP_FMKS(SRGR, FWID, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKGDV, DEFAULT),

 MCBSP_MCR_DEFAULT,
 MCBSP_RCER_DEFAULT,
 MCBSP_XCER_DEFAULT,

 MCBSP_FMKS(PCR, XIOEN, SP) |
 MCBSP_FMKS(PCR, RIOEN, SP) |
 MCBSP_FMKS(PCR, FSXM, EXTERNAL) |
 MCBSP_FMKS(PCR, FSRM, EXTERNAL) |
 MCBSP_FMKS(PCR, CLKXM, INPUT) |
 MCBSP_FMKS(PCR, CLKRM, INPUT) |
 MCBSP_FMKS(PCR, CLKSSTAT, DEFAULT) |
 MCBSP_FMKS(PCR, DXSTAT, DEFAULT) |
 MCBSP_FMKS(PCR, FSXP, ACTIVEHIGH) |
 MCBSP_FMKS(PCR, FSRP, ACTIVEHIGH) |
 MCBSP_FMKS(PCR, CLKXP, FALLING) |
 MCBSP_FMKS(PCR, CLKRP, RISING)
};

DSK6713_AIC23_Config config = { \
0x0017, /* Set-Up Reg 0 Left line in volume control */ \
 /* LRS 0 simultaneous l/r volume: disabled */\
 /* LIM 0 left line input mute: disabled */ \
 /* XX 00 reserved */ \
 /* LIV 10111 left line input volume: 0 dB */ \
 \
0x0017, /* Set-Up Reg 1 Right line in volume control */ \
 /* RLS 0 simultaneous r/l volume: disabled */\
 /* RIM 0 right line input mute: disabled */ \
 /* XX 00 reserved */ \
 /* RIV 10111 right line input volume: 0 dB */ \
 \

FIGURE 1.21. (Continued)

 Support Files 37

0x01f9, /* Set-Up Reg 2 Left channel headphone volume */ \
 /* LRS 1 simultaneous l/r volume: enabled */ \
 /* LZC 1 zero-cross detect: enabled */ \
 /* LHV 1111001 left headphone volume: 0 dB */ \
 \
0x01f9, /* Set-Up Reg 3 Right channel headphone volume */ \
 /* RLS 1 simultaneous r/l volume: enabled */ \
 /* RZC 1 zero-cross detect: enabled */ \
 /* RHV 1111001 right headphone volume: 0 dB */ \
 \
0x0015, /* Set-Up Reg 4 Analog audio path control */ \
 /* X 0 reserved */ \
 /* STA 00 sidetone attenuation: -6 dB */ \
 /* STE 0 sidetone: disabled */ \
 /* DAC 1 DAC: selected */ \
 /* BYP 0 bypass: off */ \
 /* INSEL 0 input select for ADC: line */ \
 /* MICM 0 microphone mute: disabled */ \
 /* MICB 1 microphone boost: enabled */ \
 \
0x0000, /* Set-Up Reg 5 Digital audio path control */ \
 /* XXXXX 00000 reserved */ \
 /* DACM 0 DAC soft mute: disabled */ \
 /* DEEMP 00 deemphasis control: disabled */ \
 /* ADCHP 0 ADC high-pass filter: disabled */ \
 \
0x0000, /* Set-Up Reg 6 Power down control */ \
 /* X 0 reserved */ \
 /* OFF 0 device power: on (i.e. not off) */ \
 /* CLK 0 clock: on */ \
 /* OSC 0 oscillator: on */ \
 /* OUT 0 outputs: on */ \
 /* DAC 0 DAC: on */ \
 /* ADC 0 ADC: on */ \
 /* MIC 0 microphone: on */ \
 /* LINE 0 line input: on */ \
 \
0x0043, /* Set-Up Reg 7 Digital audio interface format */ \
 /* XX 00 reserved */ \
 /* MS 1 master/slave mode: master */ \
 /* LRSWAP 0 DAC left/right swap: disabled */ \
 /* LRP 0 DAC lrp: MSB on 1st BCLK */ \
 /* IWL 00 input bit length: 16 bit */ \
 /* FOR 11 data format: DSP format */ \
 \
0x0081, /* Set-Up Reg 8 Sample rate control */ \
 /* X 0 reserved */ \
 /* CLKOUT 1 clock output divider: 2 (MCLK/2) */ \

FIGURE 1.21. (Continued)

38 DSP Development System

 /* CLKIN 0 clock input divider: 2 (MCLK/2) */ \
 /* SR,BOSR 00000 sample rate: ADC 48kHz DAC 48kHz */ \
 /* USB/N 1 clock mode select : USB */ \
 \
0x0001 /* Set-Up Reg 9 Digital interface activation */ \
 /* XX..X 00000000 reserved */ \
 /* ACT 1 active */ \
};

DSK6713_AIC23_CodecHandle hAIC23_handle;

void c6713_dsk_init();
void comm_poll();
void comm_intr();
void output_sample(int);
void output_left_sample(short);
void output_right_sample(short);
Uint32 input_sample();
short input_left_sample();
short input_right_sample();

FIGURE 1.21. (Continued)

 0x00000000 (the interrupt service table). Chapter 2 contains an example illustrating
the use of the pragma directive to create a section named EXT_RAM to be mapped
into external memory starting at address 0x80000000 (SDRAM). Chapter 2 also
contains an example to illustrate the use of the non - volatile fl ash memory that starts
at address 0x90000000 (FLASH). In Chapter 4 , we illustrate the implementation
of a digital fi lter in assembly language using external memory. Chapter 10 contains
two projects that utilize the external memory interface (EMIF) 80 - pin connector
on the DSK, which starts at address 0xA0000000, to interface to external LEDs
and LCDs.

 1.7 ASSIGNMENTS

 1. Modify program sine8_buf.c to generate a sine wave with a frequency of
3000 Hz. Verify your result using an oscilloscope connected to the LINE OUT
socket on the DSK as well as using Code Composer to plot the 32 most
recently output samples in both the time and frequency domains.

 2. Write a polling - based program such that when DIP switch #3 is pressed down,
LED #3 turns on and a 500 - Hz cosine wave is generated for 5 seconds.

 3. Write an interrupt - driven program that maintains a buffer containing the 128
most recent input samples read at a sampling frequency of 16 kHz from the
AIC23 codec, using the MIC IN socket on the DSK. Halt the program and
plot the buffer contents using Code Composer.

 FIGURE 1.22. Listing of vector fi le vectors_intr.asm .

*Vectors_intr.asm Vector file for interrupt INT11
 .global _vectors ;global symbols
 .global _c_int00
 .global _vector1
 .global _vector2
 .global _vector3
 .global _vector4
 .global _vector5
 .global _vector6
 .global _vector7
 .global _vector8
 .global _vector9
 .global _vector10
 .global _c_int11 ;for INT11
 .global _vector12
 .global _vector13
 .global _vector14
 .global _vector15

 .ref _c_int00 ;entry address

VEC_ENTRY .macro addr ;macro for ISR
 STW B0,*--B15\
 MVKL addr,B0
 MVKH addr,B0
 B B0
 LDW *B15++,B0
 NOP 2
 NOP
 NOP
 .endm

_vec_dummy:
 B B3
 NOP 5

 .sect ".vectors" ;aligned IST section
 .align 1024
_vectors:
_vector0: VEC_ENTRY _c_int00 ;RESET
_vector1: VEC_ENTRY _vec_dummy ;NMI
_vector2: VEC_ENTRY _vec_dummy ;RSVD
_vector3: VEC_ENTRY _vec_dummy
_vector4: VEC_ENTRY _vec_dummy
_vector5: VEC_ENTRY _vec_dummy
_vector6: VEC_ENTRY _vec_dummy
_vector7: VEC_ENTRY _vec_dummy
_vector8: VEC_ENTRY _vec_dummy
_vector9: VEC_ENTRY _vec_dummy
_vector10: VEC_ENTRY _vec_dummy
_vector11: VEC_ENTRY _c_int11 ;ISR address
_vector12: VEC_ENTRY _vec_dummy
_vector13: VEC_ENTRY _vec_dummy
_vector14: VEC_ENTRY _vec_dummy
_vector15: VEC_ENTRY _vec_dummy

 Assignments 39

40 DSP Development System

*Vectors_poll.asm Vector file for polling
 .global _vectors
 .global _c_int00
 .global _vector1
 .global _vector2
 .global _vector3
 .global _vector4
 .global _vector5
 .global _vector6
 .global _vector7
 .global _vector8
 .global _vector9
 .global _vector10
 .global _vector11
 .global _vector12
 .global _vector13
 .global _vector14
 .global _vector15

 .ref _c_int00 ;entry address

VEC_ENTRY .macro addr
 STW B0,*--B15
 MVKL addr,B0
 MVKH addr,B0
 B B0
 LDW *B15++,B0
 NOP 2
 NOP
 NOP
 .endm

_vec_dummy:
 B B3
 NOP 5

 .sect ".vectors"
 .align 1024

_vectors:
_vector0: VEC_ENTRY _c_int00 ;RESET
_vector1: VEC_ENTRY _vec_dummy ;NMI
_vector2: VEC_ENTRY _vec_dummy ;RSVD
_vector3: VEC_ENTRY _vec_dummy
_vector4: VEC_ENTRY _vec_dummy
_vector5: VEC_ENTRY _vec_dummy
_vector6: VEC_ENTRY _vec_dummy
_vector7: VEC_ENTRY _vec_dummy
_vector8: VEC_ENTRY _vec_dummy
_vector9: VEC_ENTRY _vec_dummy
_vector10: VEC_ENTRY _vec_dummy
_vector11: VEC_ENTRY _vec_dummy
_vector12: VEC_ENTRY _vec_dummy
_vector13: VEC_ENTRY _vec_dummy
_vector14: VEC_ENTRY _vec_dummy
_vector15: VEC_ENTRY _vec_dummy

 FIGURE 1.23. Listing of vector fi le vectors_poll.asm .

 FIGURE 1.24. Listing of linker command fi le c6713dsk.cmd .

/*C6713dsk.cmd Linker command file*/

MEMORY
{
 IVECS: org=0h, len=0x220
 IRAM: org=0x00000220, len=0x0002FDE0 /*internal memory*/
 SDRAM: org=0x80000000, len=0x01000000 /*external memory*/
 FLASH: org=0x90000000, len=0x00020000 /*flash memory*/
}

SECTIONS
{
 .EXT_RAM :> SDRAM
 .vectors :> IVECS /*in vector file*/
 .text :> IRAM /*Created by C Compiler*/
 .bss :> IRAM
 .cinit :> IRAM
 .stack :> IRAM
 .sysmem :> IRAM
 .const :> IRAM
 .switch :> IRAM
 .far :> IRAM
 .cio :> IRAM
 .csldata :> IRAM
}

 4. Write a program that reads input samples from the left - hand channel of the
AIC23 codec ADC at a sampling frequency of 16 kHz using function input_
left_sample() and, just after it has been read, writes each sample value to
the right - hand channel of the AIC23 codec DAC using function output_
right_sample() . Verify the effective connection of the left - hand channel of
the LINE IN socket to the right - hand channel of the LINE OUT socket using
a signal generator and an oscilloscope. Gradually increase the frequency of
the input signal until the amplitude of the output signal is reduced drastically.
This frequency corresponds to the bandwidth of the DSP system (illustrated
in more detail in Chapter 2).

 REFERENCES

 1. R. Chassaing , DSP Applications Using C and the TMS320C6x DSK , Wiley , Hoboken, NJ ,
 2002 .

 2. R. Chassaing , Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK , Wiley , Hoboken, NJ , 1999 .

 References 41

42 DSP Development System

 3. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken NJ ,
 1992 .

 4. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken NJ , 1990 .

 5. N. Kehtarnavaz and M. Keramat , DSP System Design Using the TMS320C6000 , Prentice
Hall , Upper Saddle River, NJ , 2001 .

 6. N. Kehtarnavaz and B. Simsek , C6x - Based Digital Signal Processing , Prentice Hall ,
 Upper Saddle River, NJ , 2000 .

 7. N. Dahnoun , DSP Implementation Using the TMS320C6x Processors , Prentice Hall ,
 Upper Saddle River, NJ , 2000 .

 8. Steven A. Tretter , Communication System Design Using DSP Algorithms With Labora-
tory Experiments for the TMS320C6701 and TMS320C6711 , Kluwer Academic ,
 New York , 2003 .

 9. J. H. McClellan , R. W. Schafer , and M. A. Yoder , DSP First: A Multimedia Approach ,
 Prentice Hall , Upper Saddle River, NJ , 1998 .

 10. C. Marven and G. Ewers , A Simple Approach to Digital Signal Processing , Wiley ,
 Hoboken NJ , 1996 .

 11. J. Chen and H. V. Sorensen , A Digital Signal Processing Laboratory Using the
TMS320C30 , Prentice Hall , Upper Saddle River, NJ , 1997 .

 12. S. A. Tretter , Communication System Design Using DSP Algorithms , Plenum Press ,
 New York , 1995 .

 13. A. Bateman and W. Yates , Digital Signal Processing Design , Computer Science Press ,
 New York , 1991 .

 14. Y. Dote , Servo Motor and Motion Control Using Digital Signal Processors , Prentice Hall ,
 Upper Saddle River, NJ , 1990 .

 15. J. Eyre , The newest breed trade off speed, energy consumption, and cost to vie for an
ever bigger piece of the action, IEEE Spectrum , June 2001 .

 16. J. M. Rabaey , Ed., VLSI design and implementation fuels the signal - processing revolu-
tion, IEEE Signal Processing , Jan. 1998 .

 17. P. Lapsley , J. Bier , A. Shoham , and E. Lee , DSP Processor Fundamentals: Architectures
and Features , Berkeley Design Technology , Berkeley, CA , 1996 .

 18. R. M. Piedra and A. Fritsh , Digital signal processing comes of age, IEEE Spectrum , May
 1996 .

 19. R. Chassaing , The need for a laboratory component in DSP education: a personal
glimpse, Digital Signal Processing , Jan. 1993 .

 20. R. Chassaing , W. Anakwa , and A. Richardson , Real - time digital signal processing in
education , Proceedings of the 1993 International Conference on Acoustics, Speech and
Signal Processing (ICASSP) , Apr. 1993 .

 21. S. H. Leibson , DSP development software, EDN Magazine , Nov. 8, 1990 .

 22. D. W. Horning , An undergraduate digital signal processing laboratory , Proceedings of
the 1987 ASEE Annual Conference , June 1987 .

 23. TMS320C6000 Programmer ’ s Guide , SPRU198G, Texas Instruments, Dallas, TX,
 2002 .

 24. TMS320C6211 Fixed - Point Digital Signal Processor – TMS320C6711 Floating - Point
Digital Signal Processor , SPRS073C, Texas Instruments, Dallas, TX, 2000 .

 25. TMS320C6000 CPU and Instruction Set Reference Guide , SPRU189F, Texas Instruments,
Dallas, TX, 2000 .

 26. TMS320C6000 Assembly Language Tools User ’ s Guide , SPRU186K, Texas Instruments,
Dallas, TX, 2002 .

 27. TMS320C6000 Peripherals Reference Guide , SPRU190D, Texas Instruments, Dallas,
TX, 2001 .

 28. TMS320C6000 Optimizing C Compiler User ’ s Guide , SPRU187K, Texas Instruments,
Dallas, TX, 2002 .

 29. TMS320C6000 Technical Brief , SPRU197D, Texas Instruments, Dallas, TX, 1999 .

 30. TMS320C64x Technical Overview , SPRU395, Texas Instruments, Dallas, TX, 2000 .

 31. TMS320C6x Peripheral Support Library Programmer ’ s Reference , SPRU273B, Texas
Instruments, Dallas, TX, 1998 .

 32. Code Composer Studio User ’ s Guide , SPRU328B, Texas Instruments, Dallas, TX,
 2000 .

 33. Code Composer Studio Getting Started Guide , SPRU509, Texas Instruments, Dallas,
TX, 2001 .

 34. TMS320C6000 Code Composer Studio Tutorial , SPRU301C, Texas Instruments, Dallas,
TX, 2000 .

 35. TLC320AD535C/I Data Manual Dual Channel Voice/Data Codec , SLAS202A, Texas
Instruments, Dallas, TX, 1999 .

 36. TMS320C6713 Floating - Point Digital Signal Processor , SPRS186L, 2005 .

 37. TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed - Point Digital Signal Processors
(Rev. J) , SPRS226J, 2006 .

 38. TLV320AIC23 Stereo Audio Codec, 8 - to 96 - kHz, with Integrated Headphone Amplifi er
Data Manual, SLWS106G, 2003 .

 39. TMS320C6000 DSP Phase - Locked Loop (PLL) Controller Peripheral Reference Guide,
SPRU233.

 40. Migrating from TMS320C6211/C6711 to TMS320C6713 , SPRA851.

References 43

44 DSP Development System

 41. How to Begin Development Today with the TMS320C6713 Floating - Point DSP ,
SPRA809.

 42. TMS320C6000 DSP/BIOS User ’ s Guide, SPRU423, 2002 .

 43. TMS320C6000 Optimizing C Compiler Tutorial, SPRU425A, 2002 .

 44. G. R. Gircys , Understanding and Using COFF , O ’ Reilly & Associates , Newton, MA ,
 1988 .

Input and Output with the DSK

45

 • Input and output with the onboard AIC23 stereo codec
 • Programming examples using C code

2.1 INTRODUCTION

 A basic DSP system, suitable for processing audio frequency signals, comprises a
digital signal processor and analog interfaces as shown in Figure 2.1 . The C6713 and
C6416 DSKs provide just such a system, using either the TMS320C6713 (C6713)
fl oating - point processor or the TMS320C6416 (C6416) fi xed - point processor and the
TLV320AIC23 (AIC23) codec [1] . The term codec refers to the coding of analog
waveforms as digital signals and the decoding of digital signals as analog waveforms.
The AIC23 codec performs both the analog - to - digital conversion (ADC) and digital -
 to - analog conversion (DAC) functions shown in Figure 2.1 .

 Alternatively, I/O daughter cards, plugged into the External Peripheral Interface
80 - pin connector J3 on the DSK board can be used for analog input and output.
However, the programming examples in this book use only the onboard AIC23 codec.

 The programming examples in this chapter will run on either the C6713 or the
C6416 DSK but for the most part only the C6713 DSK will be referred to.

Sampling, Reconstruction, and Aliasing
 Within digital signal processors, signals are represented as sequences of discrete
samples and whenever signals are sampled, the possibility of aliasing arises. Later

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

2

46 Input and Output with the DSK

Digital
Signal

Processor
ADC DAC

analogue
input
signal

analogue
output
signal

 FIGURE 2.1. Basic digital signal processing system.

in this chapter, the phenomenon of aliasing is explored in some detail. Suffi ce it to
say at this stage that aliasing is undesirable and that it may be avoided by the use
of an antialiasing fi lter placed at the input to the system shown in Figure 2.1 and by
suitable design of the DAC. In a baseband system, an effective antialiasing fi lter is
one that allows frequency components below half of the sampling frequency to pass
but which attenuates greatly, or stops, frequency components equal to or greater
than half of the sampling frequency. A suitable DAC for a baseband system essen-
tially comprises a lowpass fi lter having characteristics similar to the aforementioned
antialiasing fi lter. The AIC23 codec contains digital antialiasing and reconstruction
fi lters.

 2.2 TLV 320 AIC 23 (AIC 23) ONBOARD STEREO CODEC FOR INPUT
AND OUTPUT

 Both the C6713 and C6416 DSKs make use of the TLV320AIC23 (AIC23) codec
for analog input and output. The analog - to - digital converter (ADC), or coder, part
of the codec converts an analog input signal into a sequence of sample values (16 - bit
signed integer) to be processed by the digital signal processor. The digital - to - analog
converter (DAC), or decoder, part of the codec reconstructs an analog output signal
from a sequence of sample values (16 - bit signed integer) that have been processed
by the digital signal processor.

 The AIC23 is a stereo audio codec based on sigma – delta technology [1 – 5] . Its
functional block diagram is shown in Figure 2.2 .

 A 12 - MHz crystal supplies the clock to the AIC23 codec (also to the DSP and
the USB interface). Using this 12 - MHz master clock, with oversampling rates of
250 Fs and 272 Fs , exact audio sample rates of 48 kHz (12 MHz/250) and the CD rate
of 44.1 kHz (12 MHz/272) can be obtained. The sampling rate of the AIC23 can be
confi gured to be 8, 16, 24, 32, 44.1, 48, or 96 kHz.

 Communication with the AIC23 codec for input and output uses two multichan-
nel buffered serial ports (McBSPs) on the C6713 or C6416. McBSP0 is used as a
unidirectional channel to send a 16 - bit control word to the AIC23. McBSP1 is used
as a bidirectional channel to send and receive audio data (McBSP1 and McBSP2
are used on the C6416 DSK). The codec can be confi gured for data - transfer word-
lengths of 16, 20, 24, or 32 bits.

 The LINE IN and HEADPHONE OUT signal paths within the codec contain
confi gurable gain elements with ranges of 12 to − 34 dB in steps of 1.5 dB, and 6 to
 − 73 dB in steps of 1 dB, respectively. A diagram of the AIC23 codec interfaced to
the C6713 DSK is shown in 6713_dsk_schem.pdf , included with the CCS package.
With few exceptions, the programming examples in this book confi gure the codec
for a sampling rate of 8 kHz, 32 - bit data transfer, and 0 - dB gain in the LINE IN and
HEADPHONE OUT signal paths.

 The maximum allowable input signal level at the LINE IN inputs to the codec is
1 V rms. However, the C6713 and C6416 DSKs contain a potential divider circuit
with a gain of 0.5 between their LINE IN sockets and the codec itself with the effect
that the maximum allowable input signal level at the LINE IN sockets on the DSKs
is 2 V rms. Above this level, input signals will be distorted. Input and output sockets
on the DSKs are ac coupled to the codec.

AVDD

VMID

AGND

MICBIAS

RLINEIN

MICIN

LLINEIN

HPVDD
HPGND

RHPOUT

LHPOUT

XTI/MCLK

XTO

CLKOUT

NOTE: MCLK, BCLK, and SCLK are all asynchronous to each other.

ROUT

LOUT

50 kΩ
1.0X

VADC

VDAC
DSPcodec

TLV320AIC23

12 to – 34.5 dB,
1.5 dB Steps

Line
Mute

Bypass
Mute

Side Tone
Mute

2:1
MUX

Line
Mute

2:1
MUX

Mute
0 dB, 20dB

VADC

VADC

12 to – 34 dB,
1.5 dB Steps

6 to – 73 dB,
1 dB Steps

6 to – 73 dB,
1 dB Steps

OSC

Headphone
Driver

Headphone
Driver

∑−∆
ADC

∑−∆
DAC

∑−∆
DAC

∑

∑

∑−∆
ADC

Control
Interface

CS
SDIN
SCLK
MODE

DVDD
BVDD
DGND

LRCIN
DIN
LRCOUT
DOUT
BCLK

Digital
Filters

Digital
Audio

Interface

VMID

1.0X

1.0X

1.5X

50 kΩ

50 kΩ

VMID

Bypass
Mute10 kΩ

CLKIN
Divider

(1x, 1/2x)

CLKOUT
Divider

(1x, 1/2x)

 FIGURE 2.2. TLV320AIC23 codec block diagram. (Courtesy of Texas Instruments.)

 TLV320AIC23 (AIC23) Onboard Stereo Codec for Input and Output 47

48 Input and Output with the DSK

 2.3 PROGRAMMING EXAMPLES USING C CODE

 The following examples illustrate analog input and output using the DSK. They are
included in order to introduce both the DSK hardware and the CCS development
environment. The example programs demonstrate some important concepts associ-
ated with analog - to - digital conversion and digital - to - analog conversion, including
sampling, aliasing, and reconstruction. In addition, they illustrate the use of inter-
rupts in order to implement real - time applications using the DSK. Many of the
concepts and techniques described in this chapter are used again in subsequent
chapters.

 Example 2.1: Basic Input and Output Using Polling (loop_poll)

 The C language source fi le for a program, loop_poll.c , that simply copies input
samples read from the AIC23 codec ADC back to the AIC23 codec DAC as output
samples is listed in Figure 2.3 . Effectively, the MIC input socket is connected straight
through to the HEADPHONE OUT socket on the DSK via the AIC23 codec and
the digital signal processor. loop_poll.c uses the same polling technique for real -
 time input and output as program sine8_LED.c , presented in Chapter 1 .

 Input and Output Functions Defi ned in Support File c6713dskinit.c
 The functions input_left_sample() , output_left_sample() , and comm_poll()
are defi ned in the support fi le c6713dskinit.c. This way the C source fi le loop_

 FIGURE 2.3. Loop program using polling (loop_poll.c).

//loop_poll.c loop program using polling

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input

void main()
{
 short sample_data;

 comm_poll(); //init DSK, codec, McBSP
 while(1) //infinite loop
 {
 sample_data = input_left_sample(); //input sample
 output_left_sample(sample_data); //output sample
 }
}

 Programming Examples Using C Code 49

poll.c is kept as small as possible and potentially distracting low level detail is
hidden. The implementation details of these, and other, functions defi ned in
c6713dskinit.c need not be studied in detail in order to carry out the examples
presented in this book but are described here for completeness.

 Further calls are made by input_left_sample() and output_left_sample()
to lower level functions contained in the board support library DSK6713bsl.lib .

 Function comm_poll() initializes the DSK and, in particular, the AIC23 codec
such that its sample rate is set according to the value of the variable fs (assigned
in loop_poll.c), its input source according to the value of the variable input-
source (assigned in loop_poll.c), and polling mode is selected. Other AIC23
confi guration settings are determined by the parameters specifi ed in fi le
c6713dskinit.h . These parameters include the gain settings in the LINE IN and
HEADPHONE out signal paths, the digital audio interface format, and so on.
Similar values for all of these parameters are used by almost all of the program
examples in this book. Only rarely will they be changed and so it is convenient to
hide them out of the way in fi le c6713dskinit.h .

 The two settings, sampling rate and input source, are changed suffi ciently fre-
quently, from one program example to another, that their values are set in each
example program by initializing the values of the variables fs and inputsource .
In function dsk6713_init() in fi le c6713dskinit.c , these values are used by
functions DSK6713_AIC23_setFreq() and DSK6713_AIC23_rset() , respectively.

 In polling mode, function input_left_sample() polls, or tests, the receive ready
bit (RRDY) of the McBSP serial port control register (SPCR) until this indicates that
newly converted data is available to be read using function MCBSP_read() . Function
output_left_sample() polls, or tests, the transmit ready bit (XRDY) of the McBSP
serial port control register (SPCR) until this indicates that the codec is ready to
receive a new output sample. A new output sample is sent to the codec using func-
tion McBSP_write() .

 Although polling is simpler than the interrupt technique used in sine8_buf.c
(and in nearly all the other programs in subsequent chapters of this book), it is less
effi cient since the processor spends nearly all of its time repeatedly testing whether
the codec is ready either to transmit or to receive data.

Running the Program
 Project fi le loop_poll.pjt is stored in folder loop_poll . Open project
loop_poll.pjt and load the executable fi le loop_poll.out . Run the program
and use a microphone and headphones to verify that the program operates as
intended.

 For a closer examination of the characteristics of the program you can use a signal
generator and oscilloscope. Prior to connecting a signal generator to the LINE IN
socket, you will need to Rebuild the program having changed the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC;

50 Input and Output with the DSK

to read

Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

in order to select the LINE IN rather than the MIC socket on the DSK.

Testing the Allowable Input Signal Amplitude
 Input a sinusoidal waveform to the LINE IN connector on the DSK, with an ampli-
tude of approximately 2.0 V p - p and a frequency of approximately 1 kHz. Connect
the output of the DSK, LINE OUT, to an oscilloscope, and verify the presence of
a tone of the same frequency, but attenuated to approximately 1.0 V p - p. This attenu-
ation is due to the potential divider network, comprising two resistors, on the DSK
circuit board between the LINE IN socket and the codec input.

 The full scale range of the ADC and of the DAC in the codec is 1 V rms (2.83 V
p - p). Increase the amplitude of the input sinusoidal waveform (at the LINE IN
socket) beyond 2 V rms (5.66 V p - p) and verify that the output signal becomes
distorted.

Changing the LINE IN Gain of the AIC23 Codec
 The AIC23 codec allows for the gain on left - and right - hand line - in input channels
to be adjusted independently in steps of 1.5 dB by writing different values to the left
and right line input channel volume control registers. The values assigned to these
registers by function comm_poll() are defi ned in the header fi le c6713dskinit.h .
In order to change the values written, that fi le must be modifi ed.

1. Copy the fi les c6713dskinit.h and C6713dskinit.c from the Support
folder into the folder loop_poll so that you don ’ t modify the original header
fi le.

2. Remove these two fi les from the loop_poll project by right - clicking on
c6713dskinit.c in the Project View window and then selecting Project→
 Remove from Project .

3. Add the copy of the fi le c6713dskinit.c in folder loop_poll to the project
by selecting Project → Add Files to Project .

4. Check that you have added the copy of fi le c6713dskinit.c to the project
by right - clicking on it in the Project View window and selecting Properties .

5. Select Project→ Scan all Dependencies in order to replace the fi le
c6713dskinit.h with the copy in folder loop_poll .

6. Edit the copy of fi le c6713dskinit.h included in the project (and stored in
folder loop_poll), changing the line that reads

0x0017 / * Set -Up Reg 0 Left line volume control */

 Programming Examples Using C Code 51

to read

0x001B / * Set -Up Reg 0 Left line volume control */

 This modifi es the value written to the AIC23 left line input channel gain reg-
ister from 0x0017 to 0x001B and this increases the gain from 0 dB to 6 dB.

7. Build the project, making sure that the copy of the fi le c6713dskinit.c
used in the project is the copy in folder loop_poll . The header fi le
c6713dskinit.h that will be included will come from that same folder.

8. Load and run the executable fi le loop_poll.out and verify that the
output signal is not attenuated, but has the same amplitude as the input
signal, that is, 2 V p - p. The changes you have just made are to a copy of
c6713dskinit.h in folder loop_poll and are limited in the scope of their
effect to that project.

Example 2.2: Basic Input and Output Using Interrupts (loop_intr)

 Program loop_intr.c is functionally equivalent to program loop_poll.c but
makes use of interrupts. This simple program is important because many of the other
example programs in this book are based on the same interrupt - driven model.
Instead of simply copying the sequence of samples representing an input signal to
the codec output, a digital fi ltering operation can be performed each time a new
input sample is received. It is worth taking time to ensure that you understand
how program loop_intr.c works. In function main() , the initialization function
comm_intr() is called. comm_intr() is very similar to comm_poll() but in addition
to initializing the DSK, codec, and McBSP, and not selecting polling mode, it sets
up interrupts such that the AIC23 codec will sample the analog input signal and
interrupt the C6713 processor, at the sampling frequency defi ned by the line

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

 It also initiates communication with the codec via the McBSP.
 In this example, a sampling rate of 8 kHz is used and interrupts will occur every

0.125 ms. (Sampling rates of 16, 24, 32, 44.1, 48, and 96 kHz are also possible.)
 Following initialization, function main() enters an endless while loop, doing

nothing but waiting for interrupts. The functions that will act as interrupt service
routines for the various different interrupts are specifi ed in the interrupt service
table contained in fi le vectors_intr.asm . This assembly language fi le differs from
the fi le vectors_poll.asm in that function c_int11() is specifi ed as the interrupt
service routine for interrupt INT11.

 On interrupt, the interrupt service routine (ISR) c_int11() is called and it is
within that routine that the most important program statements are executed.

52 Input and Output with the DSK

Function output_left_sample() is used to output a value read from the codec
using function input_left_sample() .

 Format of Data Transferred to and from AIC 23 Codec
 The AIC23 ADC converts left - and right - hand channel analog input signals into
16 - bit signed integers and the DAC converts 16 - bit signed integers to left - and right -
 hand channel analog output signals. Left - and right - hand channel samples are com-
bined to form 32 - bit values that are communicated via the multichannel buffered
serial port (McBSP) to and from the C6713. Access to the ADC and DAC from a
C program is via the functions Uint32 input_sample() , short input_left_

sample() , short input_right_sample() , void output_sample(int out_data) ,
 void output_left_sample(short out_data) , and void output_right_

sample(short out_data) .
 The 32 - bit unsigned integers (Uint32) returned by input_sample() and passed

to output_sample() contain both left and right channel samples. The statement

 union {
 Uint32 uint;
 Short channel [2];
} AIC_data;

//loop_intr.c loop program using interrupts

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

interrupt void c_int11() //interrupt service routine
{
 short sample_data;

 sample_data = input_left_sample(); //input data
 output_left_sample(sample_data); //output data
 return;
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.4. Loop program using interrupts (loop_intr.c).

 Programming Examples Using C Code 53

in fi le dsk6713init.h declares a variable that may be handled either as one
32 - bit unsigned integer (AIC_data.uint) containing left and right channel sample
values, or as two 16 - bit signed integers (AIC_data.channel[0] and AIC_data.
channel[1]).

 Most of the program examples in this book use only one channel for input and
output and for clarity most use the functions input_left_sample() and output_
left_sample() . These functions are defi ned in the fi le c6713dskinit.c , where the
unpacking and packing of the signed 16 - bit integer left - hand channel sample values
out of and into the 32 - bit words received and transmitted from and to the codec are
carried out.

Running the Program
 Create and build this project as loop_intr ensuring that the support fi les
c6713dskint.c and vectors_intr.asm have been added to the project. Verify the
same results as obtained using program loop_poll .

Example 2.3: Modifying Program loop_intr.c to Create a Delay (delay)

 Some simple, yet striking, effects can by achieved simply by delaying the samples
as they pass from input to output. Program delay.c , listed in Figure 2.5 , demon-
strates this. A delay line is implemented using the array buffer to store samples as
they are read from the codec. Once the array is full, the program overwrites the
oldest stored input sample with the current, or newest, input sample. Just prior to
overwriting the oldest stored input sample in buffer , that sample is retrieved, added
to the current input sample, and output to the codec. Figure 2.6 shows a block
diagram representation of the operation of program delay.c in which the block
labeled T represents a delay of T seconds.

 Build and run the project as delay , using microphone and headphones to verify
its operation.

Example 2.4: Modifying Program loop_intr.c to Create an Echo (echo)

 By feeding back a fraction of the output of the delay line to its input, a fading echo
effect can be realized. Program echo.c , listed in Figure 2.7 , does this. Figure 2.8
shows a block diagram representation of the operation of program echo.c .

 The value of the constant BUF_SIZE determines the number of samples stored
in the array buffer and hence the duration of the delay. The value of the constant
GAIN determines the fraction of the output that is fed back into the delay line and
hence the rate at which the echo effect fades away. Setting the value of GAIN equal
to or greater than unity would cause instability of the loop.

 Build and run this project as echo . Experiment with different values of GAIN
(between 0.0 and 1.0) and BUF_SIZE (between 100 and 8000). Source fi le echo.c
must be edited and the project rebuilt in order to make these changes.

54 Input and Output with the DSK

//delay.c Basic time delay

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define BUF_SIZE 8000
short input,output,delayed;
short buffer[BUF_SIZE];
int i;

interrupt void c_int11() //interrupt service routine
{
 input = input_left_sample(); //read new input sample
 delayed = buffer[i]; //read output of delay line
 output = input + delayed; //output sum of new and delayed
 buffer[i] = input; //replace delayed sample with
 if(++i >= BUF_SIZE) i=0; //new input sample then increment
 output_left_sample(output); //buffer index
 return; //return from ISR
}

void main()
{
 for(i=0 ; i<BUF_SIZE ; i++)
 buffer[i] = 0;
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.5. Delay program using interrupts (delay.c).

 FIGURE 2.6. Block diagram representation of program delay.c .

input output
T

+ +

 Example 2.5: Echo with GEL Slider Control of Delay and Feedback
(echo_control)

 This example extends Example 2.4 to allow real - time adjustment of the gain and
delay parameters of the echo effect. Two GEL sliders, defi ned in fi le echo_control.
gel , are used. Program echo_control.c , listed in Figure 2.9 , differs from program
 echo.c in the following respects.

 Programming Examples Using C Code 55

//echo.c echo with fixed delay and feedback

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define GAIN 0.6 //fraction of output fed back
#define BUF_SIZE 2000 //this sets length of delay
short buffer[BUF_SIZE]; //storage for previous samples
short input,output,delayed;
int i; //index into buffer

interrupt void c_int11() //interrupt service routine
{
 input = input_left_sample(); //read new input sample from ADC
 delayed = buffer[i]; //read delayed value from buffer
 output = input + delayed; //output sum of input and delayed
 output_left_sample(output);
 buffer[i] = input + delayed*GAIN; //store new input and
 //fraction of delayed value
 if(++i >= BUF_SIZE) i=0; //test for end of buffer
 return; //return from ISR
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 for(i=0 ; i<BUF_SIZE ; i++) //clear buffer
 buffer[i] = 0;
 while(1); //infinite loop
}

 FIGURE 2.7. Fading echo program (echo.c).

 FIGURE 2.8. Block diagram representation of program echo.c .

gain

T
+ ++

+

outputinput

56 Input and Output with the DSK

//echo_control.c echo with variable delay and feedback

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define MAX_BUF_SIZE 8000 //set maximum length of delay
float gain = 0.5;
short buflength = 1000;
short buffer[MAX_BUF_SIZE]; //storage for previous samples
short input,output,delayed;
int i = 0; //index into buffer

interrupt void c_int11() //interrupt service routine
{
 input = input_left_sample(); //read new input sample from ADC
 delayed = buffer[i]; //read delayed value from buffer
 output = input + delayed; //output sum of input and delayed
 output_left_sample(output);
 buffer[i] = input + delayed*gain; //store new input and
 //fraction of delayed value
 if(++i >= MAX_BUF_SIZE) //test for end of buffer
 i = MAX_BUF_SIZE - buflength;
 return; //return from ISR
}

void main()
{
 for(i=0 ; i<MAX_BUF_SIZE ; i++) //clear buffer
 buffer[i] = 0;
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.9. Echo program with variable delay and feedback gain (echo_control.c).

 1. Array buffer is declared to be the maximum size required, MAX_BUF_SIZE .

 2. To achieve a variable delay, integer variable bufl ength is used to control the
length of the circular buffer implemented using array buffer . When the value
of the index i , used to access elements of the array buffer , is incremented
beyond the maximum value allowable (MAX_BUF_SIZE) , it is reset not to zero
as in program echo.c but to (MAX_BUF_SIZE – bufl ength).

 Build the project as echo_control . Load and run fi le echo_control.out and
then select File → Load GEL and load echo_control.gel . Select GEL → echo
control to bring up the gain and delay sliders.

 Programming Examples Using C Code 57

//echo_control.gel

menuitem "echo control"

slider gain(0,18,1,1,gain_parameter)
{
 gain = gain_parameter*0.05;
}

slider delay(1,20,1,1,delay_parameter)
{
 buflength = delay_parameter*100;
}

 FIGURE 2.10. GEL fi le (echo_control.gel) for slider control of delay and feedback gain
in program echo_control.c .

//loop_buf.c loop program with storage

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#define BUFSIZE 512

int buffer[BUFSIZE];
int buf_ptr = 0;

interrupt void c_int11() //interrupt service routine
{
 int sample_data;

 sample_data = input_left_sample(); //read input sample
 buffer[buf_ptr] = sample_data; //store in buffer
 if(++buf_ptr >= BUFSIZE) buf_ptr = 0; //update buffer index
 output_left_sample(sample_data); // write output sample
 return;
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.11. Loop program with input data stored in memory (loop_buf.c).

 Example 2.6: Loop Program with Input Data Stored in a Buffer (loop_buf)

 Program loop_buf.c , listed in Figure 2.11 , is an interrupt - based program and is
stored in folder loop_buf . It is similar to program loop_intr.c except that it

58 Input and Output with the DSK

(a)

(b)

 FIGURE 2.12. Input samples corresponding to 550 - Hz sine wave, obtained using program
 loop_buf.c , plotted using Code Composer: (a) time domain and (b) frequency domain.

maintains a circular buffer in array buffer containing the BUF_SIZE most recent
input sample values. Consequently, it is possible to display this data in CCS after
halting the program.

 Build this project as loop_buf . Use a signal generator connected to the
LINE IN socket to input a sinusoidal signal with a frequency between 100 and
3500 Hz. Halt the program after a short time and select View → Graph → Time/Fre-
quency in order to display the contents of array buffer . Figures 2.12 and 2.13 show

 Programming Examples Using C Code 59

(a)

(b)

 FIGURE 2.13. Graph Property Dialog windows showing properties for use with program
 loop_buf.c : (a) time domain and (b) frequency domain.

60 Input and Output with the DSK

examples of time - and frequency - domain representations of that data and the Graph
Properties used in each case. An input frequency of 550 Hz was used. Program
 loop_buf.c is used again later in this chapter.

 2.3.1 Real - Time Sine Wave Generation

 The following examples build on program sine8_buf.c , introduced in Chapter 1 .
By generating a variety of different analog output waveforms, including sinusoids
of different frequencies, the characteristics of the codec DAC are demonstrated and
the concepts of sampling, reconstruction, and aliasing are illustrated.

 In addition, use of the Goldwave shareware application is introduced. This virtual
instrument is a useful alternative to a dedicated spectrum analyzer and is used again
in later chapters.

 Example 2.7: Sine Wave Generation Using a Lookup Table (sine8_intr)

 Program sine8_intr.c , listed in Figure 2.14 , generates a sinusoidal signal using
interrupts and a table lookup method. Its operation is as follows. An eight point

 FIGURE 2.14. Sine wave generation program using lookup table (sine8_intr.c).

//sine8_intr.c Sine generation using lookup table

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define LOOPLENGTH 8 //size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,
 -7071,-10000,-7071};
short loopindex = 0; //look up table index

interrupt void c_int11() //interrupt service routine
{
 output_left_sample(sine_table[loopindex]); //output value
 if (++loopindex >= LOOPLENGTH) loopindex = 0;
 return; //return from interrupt\
}

void main()
{
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

 Programming Examples Using C Code 61

lookup table is initialized in the array sine_table such that the value of sine_
table[i] is equal to

 10 000 2 8 0 1 2 7, / forsin() , , , . . . ,πi i =

 In this example, a sampling rate of 8 kHz is used and interrupts will occur every
0.125 ms. On interrupt, the interrupt service routine (ISR) c_int11() is called and
within that routine the most important program statements are executed. Function
 output_left_sample() is used to output a value read from the array sine_table
to the DAC and the index variable loopindex is incremented to point to the next
value in the array. If the incremented value of loopindex is greater than or equal
to the number of sample values in the table (LOOPLENGTH), it is reset to zero. The
1 - kHz frequency of the sinusoidal output signal corresponds to the eight samples
per cycle output at a rate of 8 kHz.

 The DAC converts the output sample values into a sinusoidal analog output
signal. Build and run the project as sine8_intr and verify a 1 kHz output
waveform.

 Example 2.8: Sine Wave Generation Using sin() Function Call
(sine_intr)

 Different sine wave frequencies can be generated using the table lookup method
used by program sine8_intr.c . For example, a 3 - kHz tone can be generated by
changing the line that reads

 short sine_table[LOOPSIZE] =
 {0, 7071, 10000, 7071, 0, - 7071, - 10000, - 7071};

to read

 short sine_table[LOOPSIZE] =
 {0, 7071, - 10000, 7071, 0, - 7071, 10000, - 7071};

 However, changing the contents and/or size of the lookup table is not a fl exible
way of generating sinusoids of arbitrary frequencies. Program sine_intr.c ,
listed in Figure 2.15 , takes a different approach. At each sampling instant, that is,
within function c_int11() , a new output sample value is calculated using a call to
the math library function sin() . The fl oating - point parameter, theta , passed to that
function is incremented at each sampling instant by the value theta_increment =
2 * PI * frequency/SAMPLING_FREQ and when value of theta exceeds 2 π the value
2 π is subtracted from it.

 While program sine_intr.c has the advantage of fl exibility, it also has the dis-
advantage, relative to program sine8_intr.c , that it requires far greater compu-
tational effort, which is important in real - time applications.

62 Input and Output with the DSK

 Build and run this project as sine_intr and experiment by changing the value
assigned to the variable frequency (within the range 100 – 3800).

 Example 2.9: Sine Wave Generation with Stereo Output (sine_stereo)

 Source fi le sine_stereo.c , stored in the folder sine_stereo , is listed in Figure
 2.16 . It illustrates the use of both left - and right - hand channels of the AIC23 codec.
Build and run this project as sine_stereo . Verify that a 1 - kHz sinusoid is output
through the right - hand channel and a 3 - kHz sinusoid is output through the left - hand
channel.

//sine_intr.c Sine generation using sin() function

#include <math.h>
#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define SAMPLING_FREQ 8000
#define PI 3.14159265358979

float frequency = 1000.0;
float amplitude = 10000.0;
float theta_increment;
float theta = 0.0;

interrupt void c_int11()
{
 theta_increment = 2*PI*frequency/SAMPLING_FREQ;
 theta += theta_increment;
 if (theta > 2*PI) theta -= 2*PI;
 output_left_sample((short)(amplitude*sin(theta)));
 return;
}

void main()
{
 comm_intr();
 while(1);
}

 FIGURE 2.15. Sine wave generation program using call to math function sin()
(sine_intr.c).

 Programming Examples Using C Code 63

//sine_stereo Sine generation to both LEFT and RIGHT channels

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define LEFT 0
#define RIGHT 1
union {Uint32 uint; short channel[2];} AIC23_data;

#define LOOPLENGTH 8 //size of look up table
short sine_table_left[LOOPLENGTH]={0,7071,10000,7071,0,
 -7071,-10000,-7071};
short sine_table_right[LOOPLENGTH]={0,-7071,10000,-7071,
 0,7071,-10000,7071};
short loopindex = 0; //look up table index

interrupt void c_int11() //interrupt service routine
{
 AIC23_data.channel[RIGHT]=sine_table_right[loopindex];
 AIC23_data.channel[LEFT]=sine_table_left[loopindex];

 output_sample(AIC23_data.uint); //output to both channels
 if (++loopindex >= LOOPLENGTH)
 loopindex = 0; //check for end of table
 return;
}

void main()
{
 comm_intr(); //init DSK,codec,McBSP
 while(1) ; //infinite loop
}

 FIGURE 2.16. Program to generate two sinusoids of different frequencies using left - and
right - hand channels (sine_stereo.c).

 Example 2.10: Sine Wave Generation with Two Sliders for
Amplitude and Frequency Control (sine2sliders)

 The polling - based program sine2sliders.c , listed in Figure 2.17 , generates a sine
wave. Two sliders are used to vary both the amplitude (gain) and the frequency of
the sinusoid generated. Using a lookup table containing 32 samples of exactly one
cycle of a sine wave, the frequency of the output waveform is varied by selecting
different numbers of points per cycle. The gain slider scales the volume/amplitude
of the waveform signal. The appropriate GEL fi le sine2sliders.gel is listed in
Figure 2.18 .

64 Input and Output with the DSK

//sine2sliders.c Sine generation with different # of points

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

short loop = 0;
short sine_table[32]={0,195,383,556,707,831,924,981,1000,
 981,924,831,707,556,383,195,0,-195,
 -383,-556,-707,-831,-924,-981,-1000,
 -981,-924,-831,-707,-556,-383,-195};
short gain = 1; //slider gain
short frequency = 2; //slider frequency

void main()
{
 comm_poll(); //init DSK, codec, McBSP
 while(1) //infinite loop
 {
 output_left_sample(sine_table[loop]*gain); //output value
 loop += frequency; //incr frequency index
 loop = loop % 32; //modulo to reset index
 }
}

 FIGURE 2.17. Sinusoid generation with GEL slider controls for gain and frequency
(sine2sliders.c).

/*sine2sliders.gel Two sliders to vary gain and frequency*/

menuitem "Sine Parameters"

slider Gain(1,8,1,1,gain_parameter)
{
 gain = gain_parameter;
}

slider Frequency(2,8,2,2,frequency_parameter)
{
 frequency = frequency_parameter;
}

 FIGURE 2.18. GEL slider controls for gain and frequency (sine2sliders.gel).

 Programming Examples Using C Code 65

 The 32 sine data values in the table or buffer correspond to

 1000 2 32 0 1 2 31sin() , , , . . . ,πi i/ for =

 The frequency slider sets the value of the variable frequency to 2, 4, 6, or 8. This
value is added to the index into the lookup table, loop , at each sampling instant.
The modulo operator is used to test when the end of the lookup table is reached.
When the loop index reaches 32, it is reset to zero. For example, with the frequency
slider at position 2, the loop or frequency index steps through every other value in
the table. This corresponds to 16 data values within one cycle.

 Build this project as sine2sliders , using the appropriate support fi les for a
polling - driven program. The main C source fi le sine2sliders.c is contained in the
folder sine2sliders . Verify that initially the frequency generated is 500 Hz (fre-
quency = 2). Increase the slider position (the use of a slider was introduced in
 Example 1.1) to 4, 6, and 8, and verify that the signal frequencies generated are
1000, 1500, and 2000 Hz, respectively. Note that when the slider is at position 4, the
loop or frequency index steps through the table selecting the eight values (per
cycle) — sin[0], sin[4], sin[8], . . . , sin[28] — that correspond to the data values 0, 707,
1000, 707, 0, − 707, − 1000, and − 707. The resulting frequency generated is then 1 kHz
(as in Example 1.1).

 Example 2.11: Sweep Sinusoid Using Table with 8000 Points (sweep8000)

 Figure 2.19 shows a listing of the program sweep8000.c , which generates a sweep-
ing sinusoidal signal using a table lookup with 8000 points. The header fi le sine8000_
table.h contains the 8000 data points that represent exactly one cycle of a sine
wave. The fi le sine8000_table.h (stored in folder sweep8000) was generated
using the MATLAB command

 x = 1000 * sin(2 * pi * [0:7999]/8000)

 Figure 2.20 shows a partial listing of the fi le sine8000_table.h .
 At each sampling instant, program sweep8000.c reads an output sample value

from the array sine8000 , using the value of fl oat_index , cast as an integer, as an
index, and increments the value of fl oat_index by the value fl oat_incr . With N
points in the lookup table representing one cycle of a sinusoid, the frequency of the
output waveform is equal to SAMPLING_FREQ * fl oat_incr/N .

 A fi xed value of fl oat_incr would result in a fi xed output frequency. In program
 sweep8000.c , the value of fl oat_incr itself is incremented at each sampling instant
by the value DELTA_INCR and hence the frequency of the output waveform increases
gradually from START_FREQ to STOP_FREQ . The output waveform generated by the
program can be altered by changing the values of the constants START_FREQ,
STOP_FREQ , and SWEEPTIME , from which the value of DELTA_INCR is calculated.

66 Input and Output with the DSK

//sweep8000.c sweep sinusoid using table with 8000 points

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include "sine8000_table.h" //one cycle with 8000 points
#define SAMPLING_FREQ 8000.0
#define N 8000
#define START_FREQ 100.0
#define STOP_FREQ 3500.0
#define START_INCR START_FREQ*N/SAMPLING_FREQ
#define STOP_INCR STOP_FREQ*N/SAMPLING_FREQ
#define SWEEPTIME 5.0
#define DELTA_INCR (STOP_INCR - START_INCR)/(N*SWEEPTIME)

short amplitude = 10; //amplitude
float float_index = 0.0;
float float_incr = START_INCR;
short i;

void main()
{
 comm_poll(); //init DSK, codec, McBSP
 while(1) //infinite loop
 {
 float_incr += DELTA_INCR;
 if (float_incr > STOP_INCR) float_incr = START_INCR;
 float_index += float_incr;
 if (float_index > N) float_index -= N;
 i = (short)(float_index);
 output_left_sample(amplitude*sine8000[i]); //output
 }
}

 FIGURE 2.19. Program to generate sweeping sinusoid using table lookup with 8000 points
(sweep8000.c).

 Build and run this project as sweep8000 . Verify the output as a sweeping sinusoid
taking SWEEPTIME seconds to increase in frequency from START_FREQ to STOP_FREQ .
Note that the source program sweep8000.c is polling - driven (use the appropriate
interrupt vector fi le vectors_poll.asm).

 Example 2.12: Generation of DTMF Tones Using a Lookup Table
(sineDTMF_intr)

 Program sineDTMF_intr.c , listed in Figure 2.21 , uses a lookup table containing 512
samples of a single cycle of a sinusoid together with two independent pointers to
generate a dual tone multifrequency (DTMF) waveform. DTMF waveforms are

 Programming Examples Using C Code 67

//sine8000_table.h Sine table with 8000 points generated with MATLAB

short sine8000[8000]=
{0, 1, 2, 2, 3, 4, 5, 5,
6, 7, 8, 9, 9, 10, 11, 12,
13, 13, 14, 15, 16, 16, 17, 18,
19, 20, 20, 21, 22, 23, 24, 24,
25, 26, 27, 27, 28, 29, 30, 31,
31, 32, 33, 34, 35, 35, 36, 37,
38, 38, 39, 40, 41, 42, 42, 43,
44, 45, 46, 46, 47, 48, 49, 49,
50, 51, 52, 53, 53, 54, 55, 56,
57, 57, 58, 59, 60, 60, 61, 62,
63, 64, 64, 65, 66, 67, 67, 68,
69, 70, 71, 71, 72, 73, 74, 75,
75, 76, 77, 78, 78, 79, 80, 81,
 .
 .
 .
-13, -12, -11, -10, -9, -9, -8, -7,
-6, -5, -5, -4, -3, -2, -2, -1};

 FIGURE 2.20. Partial listing of sine with 8000 data points (sine8000_table.h).

used in telephone networks to indicate key presses. A DTMF waveform is the sum
of two sinusoids of different frequencies. A total of 16 different combinations of
frequencies each comprising one of four low frequency components (697, 770, 852,
or 941 Hz) and one of four high frequency components (1209, 1336, 1477, or 1633)
are used. Program sineDTMF_intr.c uses two independent pointers into a single
lookup table, each updated at the same rate (16 kHz) but each stepping through the
values in the table at a different rate.

 A pointer that stepped through every single one of the TABLESIZE samples stored
in the lookup table at a sampling rate of 16 kHz would generate a sinusoidal tone
with a frequency of f = (16000 / TABLESIZE). A pointer that stepped through the
samples stored in the lookup table, incremented by a value STEP , would generate a
sinusoidal tone with a frequency of f = (16000 * STEP / TABLESIZE).

 From this it is possible to calculate the required step size for any desired
frequency f . For example, in order to generate a sinusoid with frequency 770 Hz,
the required step size is STEP = TABLESIZE * 770/16000 = 512 * 770/16000 =
 24.64.

 In other words, at each sampling instant, the pointer into the lookup table should
be incremented by 24.64. The pointer value, or index, into the lookup table must in
practice be an integer value ((short)loopindexlow) but the fl oating - point value
of the pointer, or index, loopindexlow , can be maintained and incremented by
24.64, wrapping around 0.0 when its value exceeds 512.0 using the statements

 loopindexlow += 24.64;
if(loopindexlow > (fl oat)TABLESIZE)loopindexlow - =(fl oat)TABLESIZE;

68 Input and Output with the DSK

//sinedtmf_intr.c DTMF tone generation using lookup table

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#include <math.h>
#define PI 3.14159265358979

#define TABLESIZE 512 // size of look up table
#define SAMPLING_FREQ 16000
#define STEP_770 (float)(770 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1336 (float)(1336 * TABLESIZE)/SAMPLING_FREQ
#define STEP_697 (float)(697 * TABLESIZE)/SAMPLING_FREQ
#define STEP_852 (float)(852 * TABLESIZE)/SAMPLING_FREQ
#define STEP_941 (float)(941 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1209 (float)(1209 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1477 (float)(1477 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1633 (float)(1633 * TABLESIZE)/SAMPLING_FREQ

short sine_table[TABLESIZE];
float loopindexlow = 0.0; // look up table index
float loopindexhigh = 0.0;
short i;

interrupt void c_int11() //interrupt service routine
{
 output_left_sample(sine_table[(short)loopindexlow]
 + sine_table[(short)loopindexhigh]);
 loopindexlow += STEP_697;
 if (loopindexlow > (float)TABLESIZE)
 loopindexlow -= (float)TABLESIZE;
 loopindexhigh += STEP_1477;
 if (loopindexhigh > (float)TABLESIZE)
 loopindexhigh -= (float)TABLESIZE;

 return; //return from interrupt
}

void main()
{
 comm_intr(); // initialise DSK
 for (i=0 ; i< TABLESIZE ; i++)
 sine_table[i] = (short)(10000.0*sin(2*PI*i/TABLESIZE));
 while(1);
}

 FIGURE 2.21. Program to generate DTMF tone using lookup table (sineDTMF_intr.c).

 Programming Examples Using C Code 69

 In program sineDTMF_intr.c , the fl oating - point values by which the table
lookup indices are incremented are predefi ned using, for example, line

 #defi ne STEP_770 (fl oat)(770 * TABLESIZE) / SAMPLING_FREQ

 In order to change the DTMF tone generated, and simulate a different key press,
edit the fi le sineDTMF.c and change the lines that read

 loopindexlow += STEP_697;
loopindexhi += STEP_1477;

to, for example,

 loopindexlow += STEP_770;
loopindexhi += STEP_1209;

 An example of the output generated by program sineDTMF_intr.c is shown in
Figure 2.22 .

 Example 2.13: Sine Wave Generation with Table Values Generated Within
Program (sinegen_table)

 This example creates one period of sine data values for a table. Then these values
are output to generate a sine wave. Figure 2.23 shows a listing of the program
 sinegen_table.c , which implements this project. The frequency generated is

 f FS= = =/ number of points / Hz() 8000 10 800

 FIGURE 2.22. Frequency - domain representation of output signal generated using program
 sineDTMF_intr.c .

70 Input and Output with the DSK

 Build and run this project as sinegen_table . Verify a sine wave generated with
a frequency of 800 Hz. Change the number of points to generate a 400 - Hz sine wave
(only table_size needs to be changed).

 Example 2.14: Sine Wave Generation with Table Created by MATLAB
(sin1500MATL)

 This example illustrates the generation of a sinusoid using a lookup table created
with MATLAB. Figure 2.24 shows a listing of the MATLAB program sin1500.m ,
which generates a fi le with 128 data points with 24 cycles. The sine wave frequency
generated is

 f FS= =()/()number of cycles number of points Hz1500

//sinegen_table.c generates a sinusoid using a look-up table

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in
#include <math.h>
#define table_size (short)10 //set table size
short sine_table[table_size]; //sine table array
int i;

interrupt void c_int11() //interrupt service routine
{
 output_left_sample(sine_table[i]); //output each sine value
 if (i < table_size - 1) ++i; //incr index until end of table
 else i = 0; //reset index if end of table
 return; //return from interrupt
}

void main()
{
 float pi=3.14159;

 for(i = 0; i < table_size; i++)
 sine_table[i]=10000*sin(2.0*pi*i/table_size);
 i = 0;
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.23. Sine wave generation program using table generated within program
 sinegen_table.c .

 Programming Examples Using C Code 71

 Run sin1500.m within MATLAB and verify the creation of header fi le
 sin1500.h with 128 points, as shown in Figure 2.25 . Different numbers of points
representing sinusoidal signals of different frequencies can readily be obtained with
minor changes to the MATLAB program sin1500.m .

 Figure 2.26 shows a listing of the C source fi le sin1500MATL.c , which implements
this project in real time. This program includes the header fi le generated by
MATLAB. See also Example 2.13 , which generates the table within the main C
source program rather than using MATLAB.

 Build and run this project as sin1500MATL . Verify that the output is a 1500 - Hz
sine wave signal. Within CCS, be careful when you view the header fi le sin1500.h
so as not to truncate it.

%sin1500.m Generates 128 points representing sin(1500) Hz
%Creates file sin1500.h
for i=1:128
 sine(i) = round(1000*sin(2*pi*(i-1)*1500/8000)); %sin(1500)
end

fid = fopen('sin1500.h','w'); %open/create file
fprintf(fid,'short sin1500[128]={'); %print array name,"={"
fprintf(fid,'%d, ' ,sine(1:127)); %print 127 points
fprintf(fid,'%d' ,sine(128)); %print 128th point
fprintf(fid,'};\n'); %print closing bracket
fclose(fid); %close file

 FIGURE 2.24. MATLAB program to generate a lookup table for sine wave data
(sin1500.m).

 FIGURE 2.25. Sine table lookup header fi le generated by MATLAB (sin1500.h).

short sin1500[128]=
{0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924};

72 Input and Output with the DSK

//Sin1500MATL.c Generates sine from table created with MATLAB

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "sin1500.h" //created with MATLAB
int i=0;

interrupt void c_int11()
{
 output_sample(sin1500[i]*10); //output each sine value
 if (i < 127) ++i; //incr until end of table
 else i = 0;
 return; //return from interrupt
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.26. Sine generation program using header fi le with sine data values generated
by MATLAB (sin1500MATL.c).

 Example 2.15: Sine Wave Generation with DIP Switch Control
(sine_led_ctrl)

 The program sine_led_ctrl.c , shown in Figure 2.27 , implements sine wave gen-
eration using a DIP switch to control for how long the sine wave is generated. When
DIP switch #0 is pressed and held down, LED #0 toggles and a 1 - kHz sine wave is
generated, for as long as DIP switch #0 is held down or for a duration determined
by the value of the variable on_time . A GEL slider (sine_led_ctrl.gel) can be
used to vary the value of on_time between 1 and 10 seconds. Unlike Example 1.1 ,
after DIP switch #0 is pressed down, a sine wave is generated but only for on_time
seconds.

 Build and run this project as sine_led_ctrl . Press DIP switch #0 and verify
both that LED #0 toggles and that a 1 - kHz sine wave is generated for 1 second
(with on_time set at 1). Load the GEL fi le sine_led_ctrl.gel and select GEL →
 Delay Control to obtain the slider. Increase the slider value to 8. The sine wave
should be generated and LED #0 should toggle for approximately 8 seconds after
DIP switch #0 is pressed.

 Programming Examples Using C Code 73

 FIGURE 2.27. Sine generation with DIP switch control program (sine_led_ctrl.c).

//sine_led_ctrl.c Sine generation with DIP Switch control

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};
short loop=0, gain=10;
short j=0, k = 0; //delay counter
short flag = 0; //for LED on
short const delay = 800; //for delay loop
short on_time = 1; //led is on for on_time secs

void main()
{
 comm_poll(); //init BSL
 DSK6713_LED_init(); //init LEDs
 DSK6713_DIP_init(); //init DIP SWs
 while(1) //infinite loop
 {
 if(DSK6713_DIP_get(0)==0 &&(k<=(on_time*5))) //if SW0 pressed
 {
 if(flag==0) DSK6713_LED_toggle(0); //LED0 toggles
 else DSK6713_LED_off(0); //turn LED0 off
 output_sample(sine_table[loop]*gain); //output with gain
 if(loop < 7) loop++; //increment loop index
 else loop = 0; //reset if end of table
 if (j < delay) ++j; //delay counter
 else
 {
 j = 0; //reset delay counter
 if (flag == 1)
 {
 flag = 0; //if flag=1 toggle LED
 k++;
 }
 else flag = 1; //toggle flag
 }
 }
 else
 {
 DSK6713_LED_off(0); //turn off LED0
 if(DSK6713_DIP_get(0)==1) k=0; //if LED0 off reset counter
 }
 }
}

74 Input and Output with the DSK

 Example 2.16: Signal Reconstruction, Aliasing, and the Properties
of the AIC 23 Codec

 Generating analog output signals using programs such as sine_intr.c (Figure
 2.15) is a useful means of investigating the characteristics of the AIC23 codec.
Change the value of the variable frequency in program sine_intr.c to an arbi-
trary value between 100.0 and 3500.0 and you should fi nd that a sine wave of that
frequency is generated. Change the value of the variable frequency to 7000.0,
however, and you will fi nd that a 1 - kHz sine wave is generated. Verify that the same
is true if the value of frequency is changed to 9000.0 or 15000.0.

 These effects are due to the phenomenon of aliasing. Sequences of samples cal-
culated using function sin() at frequencies 8000 n ± 1000 Hz, where n = 0, ± 1, ± 2,
 ± 3, . . . are identical and all are reconstructed by the codec as a 1 - kHz sine wave.

 A graphical representation of this is shown in Figure 2.28 .

 FIGURE 2.28. Graphical representation of equivalence of signals generated by sampling
1 - kHz and 7 - kHz sine waves at 8 - kHz.

A B C D E

-16 -8 0 8 16

(a) 1-kHz sine wave (b)

(c) 8-kHz impulse sequence (d)

(e) 1-kHz sine wave sampled at 8kHz (f)

(g) 7-kHz sine wave (h)

(i) 7-kHz sine wave sampled at 8 kHz (j)

bandwidth of DAC
reconstruction filter

time domain frequency domain

0 Ts 1ms

kHz

B B C C D D E

B A C B D C E D

A

<=>

<=>

<=>

<=>

<=>

 Programming Examples Using C Code 75

 In the time domain, the sampling process may be represented by multiplication
of the analog input waveform sin(2 * pi * 1000 * t) (Figure 2.28 a) by a sequence of
impulses at intervals of Ts = 0.125 ms (Figure 2.28 c), resulting in a sequence of
weighted impulses (Figure 2.28 e).

 In the frequency domain, the analog input waveform is represented by two
discrete values at ± 1 kHz (Figure 2.28 b) and the sequence of time - domain impulses
by a sequence of impulses in the frequency domain at intervals of 1/ Ts = 8 kHz
(Figure 2.28 d).

 Multiplication in the time domain is equivalent to convolution in the frequency
domain. Convolving the signals of Figures 2.28 b and 2.28 d, the frequency - domain
representation of the sampled sinusoid (Figure 2.28 e) is an infi nitely repeated
sequence of copies of the two impulses at ± 1 kHz centered at 0 Hz, ± 8 kHz,
± 16 kHz, . . . (Figure 2.28 f).

 Next, consider the case of a 7 - kHz sine wave sampled at 8 kHz. Time - and
frequency - domain representations of the analog input signal sin(2 * pi * 7000 * t)
are shown in Figures 2.28 g and 2.28 h.

 Convolving the signal shown in Figure 2.28 h with that shown in Figure 2.28 d
results in the signal shown in Figure 2.28 j. This comprises an infi nitely repeated
sequence of copies of the two impulses at ± 7 kHz centered at 0 Hz, ± 8 kHz,
± 16 kHz, Despite their different derivations, Figures 2.28 f and 2.28 j are identical.
This corresponds to the equivalence of the time - domain sample sequences shown
in Figures 2.28 e and 2.28 i.

 The lowpass characteristic of the DAC can be represented by the attenuation, or
blocking, of frequency components outside the range ± 4 kHz. This results, in this
example, in the lowpass fi ltered or reconstructed versions of the signals in Figures
 2.28 f and 2.28 j being identical to that shown in Figure 2.28 b.

 Since the reconstruction (digital - to - analog conversion) process is one of lowpass
fi ltering, it follows that the bandwidth of signals output by the codec is limited. This
can be demonstrated in a number of different ways.

 For example, run program sine_intr.c with the value of the variable fre-
quency set to 3500.0. Verify that the output waveform generated has a frequency
of 3500 Hz. Next, change the value of the variable frequency to 4500.0. The fre-
quency of the output waveform should again be equal to 3500 Hz. Try any value for
the variable frequency . You should fi nd that it is impossible to generate an output
waveform with a frequency greater than 4000 Hz (assuming a sampling frequency
of 8 kHz).

Example 2.17: Square Wave Generation Using Lookup Table (squarewave)

 Program squarewave.c , listed in Figure 2.29 and stored in folder squarewave ,
differs from program sine8_intr.c only insofar as it uses a lookup table containing
64 samples of one cycle of a square wave of frequency 125 Hz rather than 8 samples
of one cycle of a sine wave. Build and run the program and, using an oscilloscope,

76 Input and Output with the DSK

you should see an output waveform as shown in Figure 2.30 a. This waveform is
equivalent to a square wave (represented by the samples in the lookup table) passed
through a lowpass fi lter (the DAC). The symmetrical “ ringing ” at each edge of the
square wave is indicative of the presence of a digital FIR fi lter, which is exactly how
the DAC implements the lowpass reconstruction fi lter. Figure 2.31 shows the mag-
nitude frequency response of that fi lter as specifi ed in the AIC23 datasheet. The
drooping of the level of the waveform between transients seen in the oscilloscope
trace of Figure 2.30 a is due to the ac coupling of the codec to the LINE OUT
socket.

 The lowpass characteristic of the reconstruction fi lter can further be highlighted
by looking at the frequency content of the output waveform. Only harmonics
below 3.8 kHz are present in the analog output waveform as shown in Figure
 2.30 (b).

 The following examples demonstrate a number of alternative approaches to
observing the lowpass characteristic of the DAC reconstruction fi lter.

//squarewave.c 125 Hz square wave generated using lookup table
#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; // set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#define LOOPLENGTH 64
short square_table[LOOPLENGTH] =
{10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000};
short loopindex = 0;

interrupt void c_int11()
{
 output_sample(square_table[loopindex++]);
 if (loopindex >= LOOPLENGTH)
 loopindex = 0;
 return;
}

void main()
{
 comm_intr();
 while(1);
}

 FIGURE 2.29. Program to generate square wave (squarewave.c).

 Programming Examples Using C Code 77

(a)

(b)

 FIGURE 2.30. Waveform generated using program squarewave.c : (a) time domain and (b)
frequency domain.

 FIGURE 2.31. Magnitude frequency response of AIC23 codec reconstruction fi lter. (Cour-
tesy of Texas Instruments.)

78 Input and Output with the DSK

FIGURE 2.32. Waveform generated using program dimpulse.c . Upper trace shows output
signal in time domain (5 m s/div); lower trace shows output signal in frequency domain
(1 - kHz/div).

Example 2.18: Step and Impulse Responses of the DAC Reconstruction
Filter (dimpulse)

 The frequency of the output waveform generated by program squarewave.c is
suffi ciently low that it may be considered as illustrating the step response of the
reconstruction fi lter in the DAC. The impulse response of the fi lter can be illustrated
by running program dimpulse.c . This program replaces the samples of a square
wave in the lookup table with a discrete impulse sequence. Figure 2.32 shows the
output waveform generated by dimpulse.c and its FFT calculated using an Agilent
54621A oscilloscope.

 Note in all of the time - domain oscilloscope plots that the output waveform is
piecewise constant with a step length of 12.5 m s. This, together with the symmetrical
form of impulse response, is indicative of an oversampling digital lowpass recon-
struction fi lter within the AIC23. The output sample sequence written to the DAC
at a rate of 8 kHz is upsampled to a rate of 80 kHz and passed through a lowpass
digital fi lter and then a zero order hold. For many applications, including the example
programs in this book, there is no need for further analog lowpass fi ltering of the
codec output signal. Figure 2.33 highlights the piecewise constant nature of the
codec output signal.

Example 2.19: Frequency Response of the DAC Reconstruction Filter
Using Pseudorandom Noise (prandom)

 The program prandom.c , listed in Figure 2.34 , generates a pseudorandom noise
sequence. It uses a software - based implementation of a maximal - length sequence

 Programming Examples Using C Code 79

technique for generating a pseudorandom binary sequence. An initial 16 - bit seed is
assigned to a register. Bits b0, b1, b11, and b13 are XORed and the result is placed
into a feedback variable. The register with the initial seed value is then shifted one
bit to the left. The feedback variable is then assigned to bit b0 of the register. A
scaled minimum or maximum is assigned to prnseq , depending on whether the
register ’ s bit b0 is zero or 1. This scaled value corresponds to the noise - level ampli-
tude. The header fi le noise_gen.h defi nes the shift register bits.

 Build and run this project as prandom . Figure 2.35 shows the output waveform
displayed using an oscilloscope and using Goldwave . The output spectrum is rela-
tively fl at until the cutoff frequency of approximately 3800 Hz, which represents the
bandwidth of the reconstruction fi lter on the AIC23 codec.

(a)

(b)

 FIGURE 2.33. Output waveform generated using program sine_intr.c : (a) 1 - kHz sine
wave and (b) detailed view emphasizing piecewise constant nature.

80 Input and Output with the DSK

// prandom.c program to test response of AIC23 codec
// using pseudo-random noise
#include "DSK6713_AIC23.h" // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in

#include "noise_gen.h" //support file for noise
#define NOISELEVEL 8000 //scale for 1 sequence
int fb; //feedback variable
shift_reg sreg; //shift register
float yn; //output sample

int prand(void) //pseudo-random noise
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled -ve noise level
 else
 prnseq = NOISELEVEL; //scaled noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1; //shift register to left
 sreg.bt.b0=fb; //close feedback path
 return prnseq;
}

void resetreg(void) //reset shift register
{
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
}

interrupt void c_int11() //interrupt service routine
{
 yn = (float)(prand()); //get new sample value
 output_left_sample((short)(yn)); //output to codec
 return; //return from interrupt
}

void main()
{
 resetreg(); //reset shift register
 comm_intr(); //initialise McBSP and codec
 while (1); //infinite loop
}

 FIGURE 2.34. Pseudorandom binary sequence generation (prandom.c).

 Programming Examples Using C Code 81

(a)

(b)

 FIGURE 2.35. Waveform generated using program prandom.c : (a) using Goldwave and (b)
using oscilloscope. Upper trace shows output signal in time domain (5 ms/div); lower trace
shows output signal in frequency domain (1 kHz/div).

 Aliasing
 So far we have seen that the AIC23 codec cannot generate signal components
having frequencies greater than 4 kHz. This is true however we produce output
sample sequences. It follows that it is inadvisable to allow analog input signal com-
ponents having frequencies greater than 4 kHz to be sampled at the input to a DSP
system. This can be prevented by passing analog input signals through a lowpass

82 Input and Output with the DSK

FIGURE 2.36. Graph Property settings for use with program loop_buf.c .

antialiasing fi lter prior to sampling. An oversampling digital antialiasing fi lter with
characteristics similar to those of the reconstruction fi lter in the digital - to - analog
converter is built in to the analog - to - digital converter in the AIC23 codec.

Example 2.20: Step Response of the AIC23 Codec Antialiasing Filter
(loop_buf)

 In order to investigate the step response of the antialiasing fi lter on the AIC23,
connect a signal generator to the DSK LINE IN socket. Adjust the signal generator
to give a square wave output of frequency 270 Hz and amplitude 0.2 V. Load and run
program loopbuf.c on the DSK, halting the DSP after a few seconds. You can view
the most recent 64 input sample values by selecting View→ Graph and setting the
Graph Properties as shown in Figure 2.36 . You should see something similar to the
display shown in Figure 2.37 b. Figure 2.37 a shows the square wave input signal that
produced the display of Figure 2.37 b. The ringing on either side of edges of the square
wave and the drooping of the level between transients are due to the antialiasing
fi lter and the ac coupling of the codec to the LINE IN socket on the DSK.

Example 2.21: Demonstration of Aliasing (aliasing)

 The digital antialiasing fi lters in the AIC23 codec cannot be bypassed or disabled.
However, as mentioned previously, aliasing is a potential problem whenever sam-
pling takes place. Program aliasing.c uses a sampling rate of 16 kHz for the codec

 Programming Examples Using C Code 83

but then resamples the sequence of samples produced by the ADC at the lower rate
of 8 kHz (downsampling). The sequence of samples generated at a rate of 16 kHz
by the ADC may contain frequency components at frequencies greater than 4 kHz
and therefore if that sample sequence is downsampled to a rate of 8 kHz simply by
discarding every second sample, aliasing may occur. To avoid aliasing, the 16 - kHz
sample sequence output by the ADC must be passed through a digital antialiasing
fi lter before downsampling. Program aliasing.c uses an FIR fi lter (see Chapter
 4) for this task (Figure 2.38). For the purposes of this example, it is suffi cient to
consider that the program demonstrates the effect of sampling at a frequency of
8 kHz with and without using an antialiasing fi lter.

(a)

(b)

 FIGURE 2.37. Step response of AIC23 codec antialiasing fi lter: (a) square wave input signal
and (b) input samples captured using program loop_buf.c .

84 Input and Output with the DSK

 FIGURE 2.38. C source program to demonstrate aliasing effect (aliasing.c).

//aliasing.c illustration of downsampling, aliasing, upsampling

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#include "lp6545.cof" //filter coefficients

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input

#define DISCARD 0
#define SAMPLE 1

short flag = DISCARD; //toggles for 2x down-sampling
short indly[N],outdly[N]; //antialias, reconstr delay lines
float yn; int i; //filter output, index
short antialiasing = 1; //init for no antialias filter

interrupt void c_int11() //ISR
{
 indly[0]=(float)(input_left_sample()); //new input sample
 yn = 0.0; //initialize downsampled value
 if (flag == DISCARD) flag = SAMPLE; //don't discard
 else
 {
 if (antialiasing == 1) //if antialiasing filter used
 { //compute downsampled value
 for (i = 0 ; i < N ; i++) //using LP filter coeffs
 yn += (h[i]*indly[i]); //filter is uses float
 }
 else //if filter is bypassed
 yn = indly[0]; //downsampled value is input
 flag = DISCARD; //next input will be discarded
 }
 for (i = N-1; i > 0; i--)
 indly[i] = indly[i-1]; //update input buffer

 outdly[0] = (yn); //input to reconstr filter
 yn = 0.0; //8 kHz sample values and zeros
 for (i = 0 ; i < N ; i++) //are filtered at 16 kHz rate
 yn += (h[i]*outdly[i]); //by reconstr lowpass filter

 for (i = N-1; i > 0; i--)
 outdly[i] = outdly[i-1]; //update delay lines

 output_left_sample((short)yn); //16 kHz rate sample
 return; //return from interrupt
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 Programming Examples Using C Code 85

 Build, load, and run program aliasing.c . Connect a signal generator to the
LINE IN input on the DSK and vary the frequency of the input signal between 0
and 8 kHz. Initially, the antialiasing fi lter is enabled and signals with frequencies
greater than 3.8 kHz do not pass from the DSK input (LINE IN) to the DSK output
(LINE OUT and HEADPHONE). Load the GEL slider aliasing.gel and bring
it up by selecting GEL→ Aliasing Control . Using the GEL slider you can disable
the antialiasing fi lter in program aliasing.c and by varying the frequency of the
input signal (with antialiasing disabled) you should be able to verify that signals
with frequencies between 4 kHz and 8 kHz are “ folded back ” into the frequency
range 0 – 4 kHz.

Example 2.22: Identifi cation of AIC23 Codec Bandwidth
Using an Adaptive Filter (sysid)

 Another way of observing the limited bandwidth of the codec is to measure its
magnitude frequency response using program sysid.c (Figure 2.39). This program
uses an adaptive FIR fi lter and is described in more detail in Chapter 7 . However,
you need not understand exactly how program sysid.c works in order to use it.
Effectively, it identifi es the characteristics of the path between its discrete - time
output and its discrete - time input (points A and B in Figure 2.40).

 Connect the analog LINE OUT output on the DSK to its analog LINE IN input
using a 3.5 - mm jack to 3.5 - mm jack cable as shown in Figure 2.40 . The signal path
that will be identifi ed by program sysid.c comprises the series combination of the
digital - to - analog and analog - to - digital converters.

 Run program sysid.c for a few seconds and then halt it and observe the mag-
nitude frequency response that it has identifi ed by selecting View→ Graph and
setting Graph Properties as shown in Figure 2.41 . The roll - off of the frequency
response at very low frequencies is due to the ac coupling of the codec (Figure 2.42).
Figure 2.44 shows the corresponding time - domain impulse response identifi ed by
sysid.c .

Example 2.23: Identifi cation of AIC23 Codec Bandwidth
Using Adaptive Filter (sysid16)

 Program sysid.c can identify frequency response characteristics in the range 0 to
fs/2 (in this case fs = 8 kHz) but the antialiasing and reconstruction fi lters in the
codec have a bandwidth only slightly narrower than this. Hence, in Figure 2.42 only
the passband of those fi lters is displayed. The following example uses two DSKs,
one running program loop_intr.c with a sampling rate of 8 kHz and the other
running program sysid16.c , which is similar to program sysid.c but uses a sam-
pling frequency of 16 kHz, allowing it to identify frequency response characteristics
in the range 0 – 8 kHz and to give a better idea of the passband, stopband, and transi-
tion band of the fi lters.

86 Input and Output with the DSK

 FIGURE 2.39. C source program used to identify characteristics of AIC23 codec antialiasing
and reconstruction fi lters (sysid.c).

//sysid.c
#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "noise_gen.h" //support for noise gen
#define beta 1E-12 //learning rate
#define WLENGTH 256
#define NOISELEVEL 8000

float w[WLENGTH+1]; //coeffs for adaptive FIR
float dly_adapt[WLENGTH+1]; //samples of adaptive FIR
int fb; //feedback variable
shift_reg sreg; //shift register

int prand(void) //gen pseudo-random sequence
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled negative noise level
 else
 prnseq = NOISELEVEL; //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb; //close feedback path
 return prnseq; //return noise value
}

interrupt void c_int11() //interrupt service routine
{
 int i;
 float adaptfir_out = 0.0; //init adaptive filter output
 float fir_out = 0.0;
 float E; //output error

 fir_out = (float)(input_left_sample()); //unknown system output
 dly_adapt[0]=prand(); //pseudo-random noise used as
 output_left_sample((short)(dly_adapt[0])); //input to filter
 //and to unknown system
 for (i = 0; i < WLENGTH; i++)
 adaptfir_out +=(w[i]*dly_adapt[i]); //compute filter output

 E = fir_out - adaptfir_out; //compute output error signal

 Programming Examples Using C Code 87

 for (i = WLENGTH-1; i >= 0; i--)
 {
 w[i] = w[i]+(beta*E*dly_adapt[i]); //update adaptive weights
 dly_adapt[i+1] = dly_adapt[i]; //update adaptive samples
 }
 return;
}

void main()
{
 int i = 0;
 for (i = 0; i <= WLENGTH; i++)
 {
 w[i] = 0.0; //init coeffs for adaptive FIR
 dly_adapt[i] = 0.0; //init buffer for adaptive FIR
 }

 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
 comm_intr(); //init DSK, codec, McBSP
 while (1); //infinite loop
}

FIGURE 2.39. (Continued)

C6713 DSK

LINE IN

LINE OUT

program sysid.c

adaptive
filter

+

-

pseudo-
random
noise

3.5-mm jack
to

3.5-mm jack

A

B

 FIGURE 2.40. Connection diagram for identifi cation of antialiasing and reconstruction fi lter
characteristics using adaptive fi lter (sysid.c).

 Connect two DSKs together as shown in Figure 2.45 . Make sure that program
 loop_intr.c is running on one DSK before running program sysid16.c for a
short time on the other. After running and halting program sysid16.c , use the
 View → Graph facility with parameters set as shown in Figure 2.46 in order to view
the magnitude frequency response of the DSK running program loop_intr.c .
Compare the frequency response shown in Figure 2.47 with that shown in the AIC23
datasheet (Figure 2.31). (See also Figures 2.48 and 2.49).

88 Input and Output with the DSK

FIGURE 2.42. Magnitude frequency response of AIC23 codec reconstruction and antialias-
ing fi lters identifi ed using program sysid.c .

FIGURE 2.41. Graph Property settings (frequency domain) for use with program
sysid.c .

 Programming Examples Using C Code 89

FIGURE 2.43. Graph Property settings (time domain) for use with program sysid.c .

FIGURE 2.44. Impulse response of AIC23 codec reconstruction and antialiasing fi lters
identifi ed using program sysid.c .

90 Input and Output with the DSK

 FIGURE 2.46. Graph Property settings (frequency domain) for use with program
 sysid16.c .

C6713 DSK

LINE IN

LINE OUT

3.5-mm jack
to

3.5-mm jack
program sysid16.c

adaptive
filter

+

-

pseudo-
random
noise

program loop_intr.c

LINE IN

LINE OUT

C6713 DSK

3.5-mm jack
to

3.5-mm jack

 FIGURE 2.45. Connection diagram for identifi cation of antialiasing and reconstruction fi lter
characteristics using adaptive fi lter (sysid16.c).

 Programming Examples Using C Code 91

FIGURE 2.47. Magnitude frequency response of AIC23 codec reconstruction and antialias-
ing fi lters identifi ed using program sysid16.c .

FIGURE 2.48. Graph Property settings (time domain) for use with program sysid16.c .

92 Input and Output with the DSK

Example 2.24: Ramp Generation (ramp)

 Figure 2.50 shows a listing of the program ramp.c , which generates a ramp, or saw-
tooth, output waveform. The value of the output sample is incremented by 2000
every sampling instant until it reaches the value 30,000, at which point it is reset to
the value − 30,000. The range of output sample values is constrained to be less than
the full signed 16 - bit integer range in order to prevent the sharp ringing effect seen
in the output waveform overloading the codec output circuits.

 Build and run this project as ramp . Figure 2.51 shows the output waveform cap-
tured using an oscilloscope.

Example 2.25: Amplitude Modulation (am)

 This example illustrates an amplitude modulation (AM) scheme. Figure 2.52 shows
a listing of the program am.c , which generates an AM signal. The array baseband
holds 20 samples of one cycle of a cosine waveform with a frequency of fs/20 =
 400 Hz. The array carrier holds 20 samples of fi ve cycles of a sinusoidal carrier
signal with a frequency of 5 fs/20 = 2000 Hz. Output sample values are calculated by
multiplying the baseband signal by the carrier signal. In this way, the baseband signal
modulates the carrier signal. The variable amp is used to set the modulation index.
Program am.c uses the polling method for input and output.

 Build this project as am . Verify that the output consists of the 2 - kHz carrier signal
and two sideband signals as shown in Figure 2.53 . The sideband signals are at the
frequency of the carrier signal ± the frequency of the sideband signal, or at 1600
and 2400 Hz.

FIGURE 2.49. Impulse response of AIC23 codec reconstruction and antialiasing fi lters
identifi ed using program sysid16.c .

 Programming Examples Using C Code 93

//ramp.c Generates a ramp

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling freq
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in
short output;

interrupt void c_int11() //interrupt service routine
{
 output_left_sample(output); //output each sample period
 output += 2000; //increment output value
 if (output >= 30000) //if peak is reached
 output = -30000; //reinitialize
 return; //return from interrupt
}

 void main()
{
 output = 0; //init output to zero
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.50. Ramp generation program (ramp.c).

 FIGURE 2.51. Output waveform generated using program ramp.c .

94 Input and Output with the DSK

 FIGURE 2.53. Frequency - domain representation of output waveform generated using
program am.c .

//am.c AM using table for carrier and baseband signals

#include "DSK6713_AIC23.h" // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select mic in

short amp = 1; //modulation index

void main()
{

 short baseband[20]={1000,951,809,587,309,0,
 -309,-587,-809,-951,-1000,
 -951,-809,-587,-309,0,309,
 587,809,951}; //400-Hz baseband
 short carrier[20] ={1000,0,-1000,0,1000,0,-1000,
 0,1000,0,-1000,0,1000,0,-1000,
 0,1000,0,-1000,0}; //2-kHz carrier
 short output[20];
 short k;

 comm_poll(); //init DSK, codec
 while(1) //infinite loop
 {
 for (k=0; k<20; k++)
 {
 output[k]=carrier[k]+((amp*baseband[k]*carrier[k]/10)>>12);
 output_left_sample(20*output[k]); //scale output
 }
 }
}

 FIGURE 2.52. Amplitude modulation program (am.c).

 Programming Examples Using C Code 95

 Load the GEL fi le am.gel , and verify that the modulation index can be con-
trolled using the GEL slider. Projects on modulation are included in Chapter 10 .

Example 2.26: Use of External Memory to Record Voice (record)

 This example illustrates the use of the pragma directive in a C source program to
store data in external memory. The C6713 processor contains a total of 264 kB of
internal memory but the DSK board includes 16 MB of SDRAM external memory.
Figure 2.54 shows the C source program record.c that implements this project
example. It defi nes a buffer size of 2,400,000 allowing approximately 300 seconds
of speech to be recorded and stored in external memory, sampling at 8 kHz.

 The pragma directive, used in the line.

#pragma DATA_SECTION(buffer, ”EXT_RAM”)

specifi es that the array buffer is allocated to a memory section named .EXT_RAM .
Within the linker command fi le, c6713dsk.cmd , that section is mapped into the
external SDRAM on the DSK (starting at address 0x080000000). Without the use
of the pragma directive, array buffer would have been allocated to the memory
section .bss along with the other variables declared in program record.c .

 Build this project as record . Load and run the program. Connect a microphone
to the MIC socket and headphones to the LINE OUT socket.

1. When DIP switch #3 is pressed, and while it remains down, input samples from
the microphone are stored in buffer , starting at buffer[0] . LED #3 should
light, indicating that recording is in progress. Lift DIP switch #3 up to stop
recording.

2. When DIP switch #0 is pressed, and while it remains down, the samples stored
in buffer are replayed. LED #0 should light, indicating that playing is in
progress. Lift DIP switch #0 up to stop replaying.

 The same recording can be replayed as many times as desired, but when DIP
switch #3 is pressed down again, recording will overwrite the existing contents of
buffer .

Example 2.27: Use of Flash Memory to Run an Application on Power Up
(flash_sine)

 By default, the C6713 DSP on the DSK uses external memory interface (EMIF)
boot mode. On power up or reset, the fi rst 1000 bytes of data stored in nonvolatile
fl ash memory, starting at address 0x90000000 , are copied to internal RAM starting
at address 0x00000000 and execution starts from address 0x00000000 (reset vector).
As supplied, the program executed on the DSK at this point is a short power on

96 Input and Output with the DSK

 FIGURE 2.54. C source program to illustrate use of external memory to store samples
(record.c).

//record.c record/play input using external memory

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#define N 2400000 //buffer size 300 secs
long i;
short buffer[N];
#pragma DATA_SECTION(buffer,".EXT_RAM") //buffer in ext memory

void main()
{
 short recording = 0;
 short playing = 0;
 for (i=0 ; i<N ; i++) buffer[i] = 0;
 DSK6713_DIP_init();
 DSK6713_LED_init();
 comm_poll(); //init DSK, codec
 while(1) //infinite loop
 {
 if(DSK6713_DIP_get(3) == 0) //if SW#3 is pressed
 {
 i=0;
 recording = 1; //start recording
 while (recording == 1)
 {
 DSK6713_LED_on(3); //turn on LED#3
 buffer[i++] = input_left_sample(); //input data
 if (i>2000)
 if (DSK6713_DIP_get(3)==1) //if SW#3 lifted
 {
 recording = 0; //stop recording
 DSK6713_LED_off(3); //turn LED#3 off
 }
 }
 }
 if(DSK6713_DIP_get(0)==0) //if SW#0 is pressed
 {
 i=0;
 playing = 1; //start playing
 while (playing == 1)
 {
 DSK6713_LED_on(0); //turn on LED#0
 output_left_sample(buffer[i++]); //output data
 if (i>2000)
 if (DSK6713_DIP_get(0) == 1) //if SW#1 is lifted
 {
 playing = 0; //stop playing
 DSK6713_LED_off(0); //turn LED#0 off
 }
 }
 }
 }
}

 Programming Examples Using C Code 97

self - test (POST) procedure that, among other functions, fl ashes the onboard LEDs,
tests memory, and outputs a burst of 1 - kHz sine wave via the codec. By reprogram-
ming the fl ash memory we can get the processor to run a different program on
power up. In the following example, we will program the fl ash memory so that the
following sequence of events will take place on power up or reset.

1. In EMIF boot mode, the contents of the fi rst 1000 bytes of fl ash memory
(0x90000000 through 0x900003FF) will be copied to internal RAM (0x00000000
through 0x000003FF). Addresses 0x00000000 through 0x000001FF comprise
the interrupt service table. Address 0x00000200 is the start of a small boot
program, or function, boot_start , pointed to by the reset vector.

2. Program execution will start from the reset vector (address 0x00000000) and
branch immediately to the program boot_start . That program will then load
an application program from fl ash memory (starting after the fi rst 1000 bytes,
at address 0x90000400) into internal memory and then execute it.

 In order to get an application to run at power up, in addition to the application
code we must provide the small boot program and an interrupt service table in
which the reset vector points to the small boot program. This can be done by replac-
ing the fi les vectors_intr.asm and c6713dsk.cmd in a Code Composer project.

 Utilities hex6x and FlashBurn are required in order to:

1. Convert an executable application program (.out fi le) from COFF to a hex
fi le format suitable for storage in fl ash memory.

2. Reprogram the fl ash memory.

 The application used for this example is flash_sine.c , which generates a 1 - kHz
sine wave (Figure 2.55).

1. Verify that program flash_sine.c works as intended. Build the executable
fi le flash_sine.out using the standard support fi les c6713dskinit.c and
vectors_intr.asm and linker command fi le c6713dsk.cmd . These fi les are
included in the project flash_sine.pjt in the folder flash_sine . Load and
run the executable fi le flash_sine.out , and verify that a 1 - kHz sine wave is
generated.

2. Remove the fi les vectors_intr.asm and c6713dsk.cmd from the project and
replace them with the fi les vecs_int_flash.asm and c6713dsk_flash.cmd .
vecs_int_flash.asm is a modifi ed version of vectors_intr.asm . In addition
to the vector table it contains the small boot programboot_start , which copies
the code from fl ash to internal memory upon boot up. The address of the code
in fl ash memory (0x90000400) and the code size (0x00003000) are hard - coded
into the fi le vecs_int_flash.asm . c6713dsk_flash.cmd is a new linker
command fi le. It sets up a section called bootload starting at address 0x200
with a length of 0x200 into which program boot_start will be loaded.

98 Input and Output with the DSK

 These two fi les are stored in folder fl ash_sine . Rebuild the project and verify
again that the 1 - kHz tone is generated using the new executable (.out) fi le (also
named sine_fl ash.out).

 This test verifi es that the INT11 vector specifi ed in fi le vecs_int_fl ash.asm is
correct. Neither the reset vector nor the boot_start routine are tested since when
a .out fi le is run from Code Composer, the program counter is loaded with the start
address of the application.

 Creating a .hex File
 In order to be loaded into fl ash memory, the executable fi le fl ash_sine.out must
be converted from a COFF to a hex fi le format. The COFF - to - hex converter fi le
 hex6x.exe is included with Code Composer in the directory c:\CCStudio_
v3.1\ c6000\cgtools\bin . Copy hex6x.exe into the folder fl ash_sine . Access
DOS, and from the folder fl ash_sine , type

 hex6x fl ash_sine_hex.cmd

to create fl ash_sine.hex . Within the fi le fl ash_sine_hex.cmd , the executable fi le
 fl ash_sine.out is specifi ed as input and fl ash_sine.hex as output. A fl ash length
of 0x40000 is specifi ed, which should be at least the length of the actual code (this

//flash_sine.c Sine generation to illustrate use of flash

#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
short loop = 0, gain = 10;
short sine_table[8] = {0,707,1000,707,0,-707,-1000,-707};

interrupt void c_int11() //interrupt service routine
{
 output_sample(sine_table[loop]*gain);
 if (++loop > 7) //if end of buffer
 loop = 0; //reset index
 return;
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 2.55. C source program to illustrate use of fl ash memory to store application
program (fl ash_sine.c).

 Programming Examples Using C Code 99

can be found in the .map fi le). If this length is not great enough, you will be
prompted to increase it.

Confi guring the FlashBurn (.cdd) Utility
 The FlashBurn utility is stored in folder c:\CCStudio_v3.1\bin\utilities\
flashburn . If it has not been installed already, install it using the DSK tools CD. If
a FlashBurn option is not present in CCS, then start FlashBurn directly by double -
 clicking on its icon in Windows Explorer . Within FlashBurn , select File→ New , to
confi gure the FlashBurn utility and create flash_sine.cdd , as shown in Figure 2.56 ,
with the following fi elds:

1. Conversion cmd File :

c:\CCStudio_v3.1\myprojects\flash_sine\flash_sine_hex.cmd

2. File to Burn :

c:\CCStudio_v3.1\myprojects\flash_sine\flash_sine.hex

3. FBTC Program File :

c:\CCStudio_v3.1\bin\utilities\flashburn\c6000\dsk6713\
FBTC6713.out

 Save this fi le as flash_sine.cdd in directory c:\CCStudio_v3.1\myprojects\
flash_sine .

 Select Program→ Download FBTC . This will connect FlashBurn to the DSK. We
now need to erase and reprogram the fl ash memory.

Erasing and Programming the Flash Memory
 Within the FlashBurn utility shown in Figure 2.56 , select Program→ Erase Flash .
This erases any program stored in the fl ash memory. Still within the Flashburn utility,
select Program→ Program Flash . This loads flash_sine.hex into the fl ash memory.
To verify that the sine generation program is stored into the fl ash memory, close the
(.cdd) Flashburn utility, exit CCS, and unplug the power to the DSK. Turn the power
to the DSK back on. The post program no longer runs. Instead, verify that a 1 - kHz
sine wave is now generated continuously.

Recovering the post Program
 Launch CCS and select Debug→ Connect . Launch FlashBurn and open the confi gu-
ration fi le post.cdd , stored in folder c:\CCStudio_v3.1\examples\dsk6713\
bsl\post , by selecting File→ Open . The FlashBurn window should appear as shown
in Figure 2.57 . Select Program → Erase Flash to erase the program flash_sine.hex

100 Input and Output with the DSK

FIGURE 2.57. Flashburn utility during programming of fl ash memory with program
post.c .

FIGURE 2.56. Flashburn utility during programming of fl ash memory with program
flash_sine.c .

currently stored in the fl ash memory. Then select Program→ Program Flash to
download post.hex into the fl ash memory.

2.4 ASSIGNMENTS

1. Implement a suppressed carrier amplitude modulation scheme using an exter-
nal input to modulate a 2 - kHz carrier signal generated using a lookup table.
Use a sampling frequency of 8 kHz. Test your results using a sinusoidal input
signal with an amplitude less than 0.35 V and a frequency less than 2 kHz (a
higher frequency input signal will cause aliasing). Use an oscilloscope with an
FFT function or a spectrum analyzer to display the signal generated.

2. Write a program to generate a sine wave of frequency 666 Hz and turn on
LED #0 while DIP switch #0 is pressed down, generate a sine wave of fre-
quency 1.33 kHz and turn on LED #1 while DIP switch #1 is pressed down,
generate a sine wave of frequency 2 kHz and turn on LED #2 while DIP switch
#2 is pressed down, and generate a sine wave of frequency 2.667 kHz and turn
on LED #3 while DIP switch #3 is pressed down. Use a sampling frequency
of 8 kHz and a 12 - point lookup table to generate the sine waves.

REFERENCES

 1. TLV320AIC23 Stereo Audio Codec, 8 - to 96 - kHz, with Integrated Headphone Amplifi er
Data Manual, SLWS106G, 2003 .

 2. S. Norsworthy , R. Schreier , and G. Temes , Delta – Sigma Data Converters: Theory, Design
and Simulation , IEEE Press , Piscataway, NJ , 1997 .

 3. P. M. Aziz , H. V. Sorensen , and J. Van Der Spiegel , An overview of sigma delta converters ,
IEEE Signal Processing , Jan. 1996 .

 4. J. C. Candy and G. C. Temes , Eds., Oversampling Delta – Sigma Data Converters: Theory,
Design and Simulation , IEEE Press , Piscataway, NJ , 1992 .

 5. C. W. Solomon , Switched - capacitor fi lters , IEEE Spectrum , June 1988 .

References 101

Architecture and Instruction Set
of the C6x Processor

102

 • Architecture and instruction set of the TMS320C6x processor
 • Addressing modes
 • Assembler directives
 • Linear assembler
 • Programming examples using C, assembly, and linear assembly code

3.1 INTRODUCTION

 Texas Instruments introduced the fi rst - generation TMS32010 DSP in 1982, the
TMS320C25 in 1986 [1] , and the TMS320C50 in 1991. Several versions of each of
these processors — C1x, C2x, and C5x — are available with different features, such as
faster execution speed. These 16 - bit processors are all fi xed - point processors and
are code compatible.

 In a von Neumann architecture, program instructions and data are stored in a
single memory space. A processor with a von Neumann architecture can make a
read or a write to memory during each instruction cycle. Typical DSP applications
require several accesses to memory within one instruction cycle. The fi xed - point
processors C1x, C2x, and C5x are based on a modifi ed Harvard architecture with
separate memory spaces for data and instructions that allow concurrent accesses.

 Quantization error or round - off noise from an ADC is a concern with a fi xed -
 point processor. An ADC uses only a best - estimate digital value to represent an

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

3

input. For example, consider an ADC with a word length of 8 bits and an input range
of ± 1.5 V. The steps represented by the ADC are: input range/2 8 = 3/256 = 11.72 mV.
This produces errors that can be up to ± (11.72 mV)/2 = ± 5.86 mV. Only a best esti-
mate can be used by the ADC to represent input values that are not multiples of
11.72 mV. With an 8 - bit ADC, 2 8 or 256 different levels can represent the input signal.
An ADC with a larger word length, such as a 16 - bit ADC (or larger, currently very
common), can reduce the quantization error, yielding a higher resolution. The more
bits an ADC has, the better it can represent an input signal.

 The TMS320C30 fl oating - point processor was introduced in the late 1980s.
The C31, the C32, and the more recent C33 are all members of the C3x family of
fl oating - point processors [2, 3] . The C4x fl oating - point processors, introduced
subsequently, are code compatible with the C3x processors and are based on the
modifi ed Harvard architecture [4] .

 The TMS320C6201 (C62x), announced in 1997, is the fi rst member of the C6x
family of fi xed - point digital signal processors. Unlike the previous fi xed - point pro-
cessors, C1x, C2x, and C5x, the C62x is based on a VLIW architecture, still using
separate memory spaces for instructions and data, as with the Harvard architecture.
The VLIW architecture has simpler instructions, but more are needed for a task
than with a conventional DSP architecture.

 The C62x is not code compatible with the previous generation of fi xed - point
processors. Subsequently, the TMS320C6701 (C67x) fl oating - point processor was
introduced as another member of the C6x family of processors. The instruction set
of the C62x fi xed - point processor is a subset of the instruction set of the C67x pro-
cessor. Appendix A contains a list of instructions available on the C6x processors.
A more recent addition to the family of the C6x fi xed - point processors is the C64x.
The C64x is introduced in Appendix G .

 An application - specifi c integrated circuit (ASIC) has a DSP core with customized
circuitry for a specifi c application. A C6x processor can be used as a standard
general - purpose DSP programmed for a specifi c application. Specifi c - purpose digital
signal processors are the modem, echo canceler, and others.

 A fi xed - point processor is better for devices that use batteries, such as cellular
phones, since it uses less power than does an equivalent fl oating - point processor.
The fi xed - point processors, C1x, C2x, and C5x, are 16 - bit processors with limited
dynamic range and precision. The C6x fi xed - point processor is a 32 - bit processor
with improved dynamic range and precision. In a fi xed - point processor, it is neces-
sary to scale the data. Overfl ow, which occurs when an operation such as the addition
of two numbers produces a result with more bits than can fi t within a processor ’ s
register, becomes a concern.

 A fl oating - point processor is generally more expensive since it has more “ real
estate ” or is a larger chip because of additional circuitry necessary to handle integer
as well as fl oating - point arithmetic. Several factors, such as cost, power consump-
tion, and speed, come into play when choosing a specifi c DSP . The C6x processors
are particularly useful for applications requiring intensive computations. Family
members of the C6x include both fi xed - point (e.g., C62x, C64x) and fl oating - point

Introduction 103

104 Architecture and Instruction Set of the C6x Processor

(e.g., C67x) processors. Other DSPs are also available from companies such as
Motorola and Analog Devices [5] .

 Other architectures include the Super Scalar, which requires special hardware to
determine which instructions are executed in parallel. The burden is then on the
processor more than on the programmer, as in the VLIW architecture. It does not
necessarily execute the same group of instructions, and as a result, it is diffi cult to
time. Thus, it is rarely used in DSPs.

 3.2 TMS 320 C 6 x ARCHITECTURE

 The TMS320C6713 onboard the DSK is a fl oating - point processor based on the
VLIW architecture [6 – 10] . Internal memory includes a two - level cache architecture
with 4 kB of level 1 program cache (L1P), 4 kB of level 1 data cache (L1D), and
256 kB of level 2 memory shared between program and data space. It has a glueless
(direct) interface to both synchronous memories (SDRAM and SBSRAM) and
asynchronous memories (SRAM and EPROM). Synchronous memory requires
clocking but provides a compromise between static SRAM and dynamic DRAM,
with SRAM being faster but more expensive than DRAM.

 On - chip peripherals include two McBSPs, two timers, a host port interface (HPI),
and a 32 - bit EMIF. It requires 3.3 V for I/O and 1.26 V for the core (internal). Internal
buses include a 32 - bit program address bus, a 256 - bit program data bus to accommo-
date eight 32 - bit instructions, two 32 - bit data address buses, two 64 - bit data buses,

 FIGURE 3.1. Functional block diagram of TMS320C6713. (Courtesy of Texas
Instruments .)

Functional Units 105

and two 64 - bit store data buses. With a 32 - bit address bus, the total memory space is
232 = 4 GB, including four external memory spaces: CE0, CE1, CE2, and CE3. Figure
 3.1 shows a functional block diagram of the C6713 processor included with CCS.

 Independent memory banks on the C6x allow for two memory accesses within
one instruction cycle. Two independent memory banks can be accessed using two
independent buses. Since internal memory is organized into memory banks, two
loads or two stores of instructions can be performed in parallel. No confl ict results
if the data accessed are in different memory banks. Separate buses for program,
data, and direct memory access (DMA) allow the C6x to perform concurrent
program fetches, data read and write, and DMA operations. With data and instruc-
tions residing in separate memory spaces, concurrent memory accesses are possible.
The C6x has a byte - addressable memory space. Internal memory is organized as
separate program and data memory spaces, with two 32 - bit internal ports (two 64 - bit
ports with the C64x) to access internal memory.

 The C6713 on the DSK includes 264 kB of internal memory, which starts at
0x00000000 , and 16 MB of external SDRAM, mapped through CE0 starting at
0x80000000 . The DSK also includes 512 kB of Flash memory (256 kB readily avail-
able to the user), mapped through CE1 starting at 0x90000000 . Figure 3.2 shows
the L2 internal memory confi guration, included with CCS [7] . Table 3.1 shows the
memory map, also included with CCS [7] . A schematic diagram of the DSK is
included with CCS (6713dsk_schem.pdf).

 With the DSK operating at 225 MHz, one can ideally achieve two multiplies and
accumulates per cycle, for a total of 450 million multiplies and accumulates (MACs)
per second. With six of the eight functional units in Figure 3.1 (not the .D units
described later) capable of handling fl oating - point operations, it is possible to
perform 1350 million fl oating - point operations per second (MFLOPS). Operating
at 225 MHz, this translates into 1800 million instructions per second (MIPS) with a
4.44 - ns instruction cycle time.

3.3 FUNCTIONAL UNITS

 The CPU consists of eight independent functional units divided into two data paths,
A and B, as shown in Figure 3.1 . Each path has a unit for multiply operations (.M),
for logical and arithmetic operations (.L), for branch, bit manipulation, and
arithmetic operations (.S), and for loading/storing and arithmetic operations (.D).
The .S and .L units are for arithmetic, logical, and branch instructions. All data
transfers make use of the .D units.

 The arithmetic operations, such as subtract or add (SUB or ADD), can be performed
by all the units, except the.M units (one from each data path). The eight functional units
consist of four fl oating/fi xed - point ALUs (two .L and two .S), two fi xed - point ALUs
(.D units), and two fl oating/fi xed - point multipliers (.M units). Each functional unit can
read directly from or write directly to the register fi le within its own path. Each path
includes a set of sixteen 32 - bit registers, A0 through A15 and B0 through B15. Units
ending in 1 write to register fi le A, and units ending in 2 write to register fi le B.

106 Architecture and Instruction Set of the C6x Processor

 FIGURE 3.2. Internal memory confi guration of L2. (Courtesy of Texas Instruments .)

 Two cross - paths (1x and 2x) allow functional units from one data path to access
a 32 - bit operand from the register fi le on the opposite side. There can be a maximum
of two cross - path source reads per cycle. Each functional unit side can access data
from the registers on the opposite side using a cross - path (i.e., the functional units
on one side can access the register set from the other side). There are 32 general -
 purpose registers, but some of them are reserved for specifi c addressing or are used
for conditional instructions.

 3.4 FETCH AND EXECUTE PACKETS

 The architecture VELOCITI, introduced by TI, is derived from the VLIW architec-
ture. An execute packet (EP) consists of a group of instructions that can be executed
in parallel within the same cycle time. The number of EPs within a fetch packet (FP)

TABLE 3.1 Memory Map

Memory Block Description Block Size (Bytes) Hex Address Range

Internal RAM (L2) 192K 0000 0000 –0002 FFFF
Internal RAM/cache 64K 0003 0000 –0003 FFFF
Reserved 24M–256K 0004 0000 –017F FFFF
External memory interface (EMIF) registers 256K 0180 0000 –0183 FFFF
L2 registers 128K 0184 0000 –0185 FFFF
Reserved 128K 0186 0000 –0187 FFFF
HPI registers 256K 0188 0000 –018B FFFF
McBSP 0 registers 256K 018C 0000 –018F FFFF
McBSP 1 registers 256K 0190 0000 –0193 FFFF
Timer 0 registers 256K 0194 0000 –0197 FFFF
Timer 1 registers 256K 0198 0000 –019B FFFF
Interrupt selector registers 512 019C 0000 –019C 01FF
Device confi guration registers 4 019C 0200 –019C 0203
Reserved 256K–516 091C 0204 –019F FFFF
EDMA RAM and EDMA registers 256K 01A0 0000 –01A3 FFFF
Reserved 768K 01A4 0000 –01AF FFFF
GPIO registers 16K 01B0 0000 –01B0 3FFF
Reserved 240K 01B0 4000 –01B3 FFFF
I2C0 registers 16K 01B4 0000 –01B4 3FFF
I2C1 registers 16K 01B4 4000 –01B4 7FFF
Reserved 16K 01B4 8000 –01B4 BFFF
McASP0 registers 16K 01B4 C000 –01B4 FFFF
McASP1 registers 16K 01B5 0000 –01B5 3FFF
Reserved 160K 01B5 4000 –01B7 BFFF
PLL registers 8K 01B7 C000 –01B7 DFFF
Reserved 264K 01B7 E000 –01BB FFFF
Emulation registers 256K 01BC 0000 –01BF FFFF
Reserved 4M 01C0 0000 –01FF FFFF
QDMA registers 52 0200 0000 –0200 0033
Reserved 16M–52 0200 0034 –02FF FFFF
Reserved 720M 0300 0000 –2FFF FFFF
McBSP0 data port 64M 3000 0000 –33FF FFFF
McBSP1 data port 64M 3400 0000 –37FF FFFF
Reserved 64M 3800 0000 –3BFF FFFF
McASP0 data port 1M 3C00 0000 –3C0F FFFF
McASP1 data port 1M 3C10 0000 –3C1F FFFF
Reserved 1G + 62M 3C20 0000 –7FFF FFFF
EMIF CE0 a 256M 8000 0000 –8FFF FFFF
EMIF CE1 a 256M 9000 0000 –9FFF FFFF
EMIF CE2 a 256M A000 0000 –AFFF FFFF
EMIF CE3 a 256M B000 0000 –BFFF FFFF
Reserved 1G C000 0000 –FFFF FFFF

a The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to
128MB per CE space.

Source: Courtesy of Texas Instruments.

 Fetch and Execute Packets 107

108 Architecture and Instruction Set of the C6x Processor

can vary from one (with eight parallel instructions) to eight (with no parallel instruc-
tions). The VLIW architecture was modifi ed to allow more than one EP to be
included within an FP.

 The least signifi cant bit of every 32 - bit instruction is used to determine if the next
or subsequent instruction belongs in the same EP (if 1) or is part of the next EP (if
0). Consider an FP with three EPs: EP1, with two parallel instructions, and EP2 and
EP3, each with three parallel instructions, as follows:

 Instruction A
 || Instruction B

 Instruction C
 || Instruction D
 || Instruction E

 Instruction F
 || Instruction G
 || Instruction H

 EP1 contains the two parallel instructions A and B; EP2 contains the three paral-
lel instructions C, D, and E; and EP3 contains the three parallel instructions F, G,
and H. The FP would be as shown in Figure 3.3 . Bit 0 (LSB) of each 32 - bit instruc-
tion contains a “ p ” bit that signals whether it is in parallel with a subsequent instruc-
tion. For example, the “ p ” bit of instruction B is zero, denoting that it is not within
the same EP as the subsequent instruction C. Similarly, instruction E is not within
the same EP as instruction F.

 3.5 PIPELINING

 Pipelining is a key feature in a DSP to get parallel instructions working properly,
requiring careful timing. There are three stages of pipelining: program fetch, decode,
and execute.

 1. The program fetch stage is composed of four phases:

 (a) PG : program address generate (in the CPU) to fetch an address

 (b) PS : program address send (to memory) to send the address

 (c) PW : program address ready wait (memory read) to wait for data

 (d) PR : program fetch packet receive (at the CPU) to read opcode from
memory

 FIGURE 3.3. One FP with three EPs showing the “ p ” bit of each instruction.

31 0 31 0 31 0 31 0 31 0 31 0 31 0 31 0
 1 0 1 1 0 1 1 0
 A B C D E F G H

2. The decode stage is composed of two phases:

 (a) DP : to dispatch all the instructions within an FP to the appropriate func-
tional units

(b) DC : instruction decode

3. The execute stage is composed of 6 phases (with fi xed point) to 10 phases
(with fl oating point) due to delays (latencies) associated with the following
instructions:

 (a) Multiply instruction, which consists of two phases due to one delay

(b) Load instruction, which consists of fi ve phases due to four delays

 (c) Branch instruction, which consists of six phases due to fi ve delays

 Table 3.2 shows the pipeline phases, and Table 3.3 shows the pipelining effects.
The fi rst row in Table 3.3 represents cycle 1, 2, . . . , 12. Each subsequent row repre-
sents an FP. The rows represented by PG, PS, . . . illustrate the phases associated with
each FP. The program generate (PG) of the fi rst FP starts in cycle 1, and the PG of
the second FP starts in cycle 2, and so on. Each FP takes four phases for program
fetch and two phases for decoding. However, the execution phase can take from 1
to 10 phases (not all execution phases are shown in Table 3.3). We are assuming that
each FP contains one EP.

 For example, at cycle 7, while the instructions in the fi rst FP are in the fi rst execu-
tion phase E1 (which may be the only one), the instructions in the second FP are
in the decoding phase, the instructions in the third FP are in the dispatching phase,
and so on. All seven instructions are proceeding through the various phases. There-
fore, at cycle 7, “ the pipeline is full. ”

 Most instructions have one execute phase. Instructions such as multiply (MPY),
load (LDH/LDW), and branch (B) take two, fi ve, and six phases, respectively. Addi-
tional execute phases are associated with fl oating - point and double - precision types
of instructions, which can take up to 10 phases. For example, the double - precision

TABLE 3.2 Pipeline Phases

Program Fetch Decode Execute

PG PS PW PR DP DC E1–E6 (E1 –E10 for double precision)

TABLE 3.3 Pipelining Effects

Clock Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4
PG PS PW PR DP DC E1 E2 E3

PG PS PW PR DP DC E1 E2
PG PS PW PR DP DC E1

PG PS PW PR DP DC

Pipelining 109

110 Architecture and Instruction Set of the C6x Processor

multiply operation (MPYDP), available on the C67x, has nine delay slots, so that the
execution phase takes a total of 10 phases.

 The functional unit latency , which represents the number of cycles that an instruc-
tion ties up a functional unit, is 1 for all instructions except double - precision instruc-
tions, available with the fl oating - point C67x. Functional unit latency is different from
a delay slot. For example, the instruction MPYDP has four functional unit latencies
but nine delay slots. This implies that no other instruction can use the associated
multiply functional unit for four cycles. A store has no delay slot but fi nishes its
execution in the third execution phase of the pipeline.

 If the outcome of a multiply instruction such as MPY is used by a subsequent
instruction, a NOP (no operation) must be inserted after the MPY instruction for the
pipelining to operate properly. Four or fi ve NOP s are to be inserted in case an instruc-
tion uses the outcome of a load or a branch instruction, respectively.

3.6 REGISTERS

 Two sets of register fi les, each set with 16 registers, are available: register fi le A (A0
through A15) and register fi le B (B0 through B15). Registers A0, A1, B0, B1, and
B2 are used as conditional registers. Registers A4 through A7 and B4 through B7
are used for circular addressing. Registers A0 through A9 and B0 through B9
(except B3) are temporary registers. Any of the registers A10 through A15 and
B10 through B15 used are saved and later restored before returning from a
subroutine.

 A 40 - bit data value can be contained across a register pair. The 32 least signifi cant
bits (LSBs) are stored in the even register (e.g., A2), and the remaining 8 bits are
stored in the 8 LSBs of the next - upper (odd) register (A3). A similar scheme is used
to hold a 64 - bit double - precision value within a pair of registers (even and odd).

 These 32 registers are considered general - purpose registers. Several special -
 purpose registers are also available for control and interrupts: for example, the
address mode register (AMR) used for circular addressing and interrupt control
registers, as shown in Appendix B .

3.7 LINEAR AND CIRCULAR ADDRESSING MODES

 Addressing modes determine how one accesses memory. They specify how data are
accessed, such as retrieving an operand indirectly from a memory location. Both
linear and circular modes of addressing are supported. The most commonly used
mode is the indirect addressing of memory.

3.7.1 Indirect Addressing

 Indirect addressing can be used with or without displacement. Register R represents
one of the 32 registers A0 through A15 and B0 through B15 that can specify or

point to memory addresses. As such, these registers are pointers. Indirect addressing
mode uses a “ * ” in conjunction with one of the 32 registers. To illustrate, consider
R as an address register.

1. * R. Register R contains the address of a memory location where a data value
is stored.

2. * R ++ (d). Register R contains the memory address (location). After the
memory address is used, R is postincremented (modifi ed) such that the new
address is the current address offset by the displacement value d. If d = 1 (by
default), the new address is R + 1, or R is incremented to the next higher
address in memory. A double minus (− −) instead of a double plus would
update or postdecrement the address to R − d.

3. * ++ R(d). The address is preincremented or offset by d, such that the current
address is R + d. A double minus would predecrement the memory address
so that the current address is R − d.

4. * + R(d). The address is preincremented by d, such that the current address is
R + d (as with the preceding case). However, in this case, R preincrements
without modifi cation. Unlike the previous case, R is not updated or modifi ed.

3.7.2 Circular Addressing

 Circular addressing is used to create a circular buffer. This buffer is created in
hardware and is very useful in several DSP algorithms, such as in digital fi ltering or
correlation algorithms where data need to be updated. An example in Chapter 4
illustrates the implementation of a digital fi lter in assembly code using a circular
buffer to update the “ delay ” samples. Implementing a circular buffer using C code
is less effi cient.

 The C6x has dedicated hardware to allow a circular type of addressing. This
addressing mode can be used in conjunction with a circular buffer to update samples
by shifting data without the overhead created by shifting data directly. As a pointer
reaches the end or “ bottom ” location of a circular buffer that contains the last
element in the buffer, and is then incremented, the pointer is automatically wrapped
around or points to the beginning or “ top ” location of the buffer that contains the
fi rst element.

 Two independent circular buffers are available using BK0 and BK1 within the
AMR. The eight registers A4 through A7 and B4 through B7, in conjunction with
the two .D units, can be used as pointers (all registers can be used for linear address-
ing). The following code segment illustrates the use of a circular buffer using register
B2 (only side B can be used) to set the appropriate values within AMR:

MVKL .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer
MVKH .S2 0x0005,B2 ;upper 16 bits to B2. Select BK0, set N = 5
MVC .S2 B2,AMR ;move 32 bits of B2 to AMR

 Linear and Circular Addressing Modes 111

112 Architecture and Instruction Set of the C6x Processor

 The two move instructions MVKL and MVKH (using the .S unit) move 0x0004 into
the 16 LSBs of register B2 and 0x0005 into the 16 most signifi cant bits (MSBs) of
B2. The MVC (move constant) instruction is the only instruction that can access the
AMR and the other control registers (shown in Appendix B) and executes only on
the B side in conjunction with the functional units and registers on side B. A 32 - bit
value is created in B2, which is then transferred to AMR with the instruction MVC

to access AMR [6] .
 The value 0x0004 = (0100) b into the 16 LSBs of AMR sets bit 2 (the third bit)

to 1 and all other bits to 0. This sets the mode to 01 and selects register A5 as the
pointer to a circular buffer using block BK0 (see Figure B.1).

 Table 3.4 shows the modes associated with registers A4 through A7 and B4
through B7. The value 0x0005 = (0101) b into the 16 MSBs of AMR sets bits 16
and 18 to 1 (other bits to 0). This corresponds to the value of N used to select the
size of the buffer as 2 N +1 = 64 bytes using BK0. For example, if a buffer size of 128
is desired using BK0, the upper 16 bits of AMR are set to (0110)b = 0x0006 . If
assembly code is used for the circular buffer, as execution returns to a calling C
function, AMR needs to be reinitialized to the default linear mode. Hence the
pointer ’ s address must be saved.

3.8 TMS320C6x INSTRUCTION SET

3.8.1 Assembly Code Format

 An assembly code format is represented by the fi eld

Label || [] Instruction Unit Operands ;comments

A label, if present, represents a specifi c address or memory location that contains
an instruction or data. The label must be in the fi rst column. The parallel bars (||)
are there if the instruction is being executed in parallel with the previous instruction.
The subsequent fi eld is optional to make the associated instruction conditional. Five
of the registers — A1, A2, B0, B1, and B2 — are available to use as conditional regis-
ters. For example, [A2] specifi es that the associated instruction executes if A2 is not
zero. On the other hand, with [!A2], the associated instruction executes if A2 is zero.
All C6x instructions can be made conditional with the registers A1, A2, B0, B1, and

TABLE 3.4 AMR Mode and Description

Mode Description

0 0 For linear addressing (default on reset)
0 1 For circular addressing using BK0
1 0 For circular addressing using BK1
1 1 Reserved

B2 by determining when the conditional register is zero. The instruction fi eld can
be either an assembler directive or a mnemonic. An assembler directive is a command
for the assembler. For example,

.word value

reserves 32 bits in memory and fi lls with the specifi ed value . A mnemonic is an
actual instruction that executes at run time. The instruction (mnemonic or assembler
directive) cannot start in column 1. The Unit fi eld, which can be one of the eight
CPU functional units is optional. Comments starting in column 1 can begin with
either an asterisk or a semicolon, whereas comments starting in any other columns
must begin with a semicolon.

 Code for the fl oating - point processors C3x/C4x is not compatible with code for
the fi xed - point processors C1x, C2x, and C5x/C54x. However, the code for the fi xed -
 point processors C62x is compatible with the code for the fl oating - point C67x. C62x
code is actually a subset of C67x code. Additional instructions to handle double -
 precision and fl oating - point operations are available only on the C67x processor.
Also, some additional instructions are available only on the fi xed - point C64x
processor.

 Several code segments are presented to illustrate the C6x instruction set.
Assembly code for the C6x processors is very similar to C3x/C4x code. Single -
 task types of instructions available for the C6x make it easier to program than
the previous generation of either fi xed - or fl oating - point processors. This con-
tributes to an effi cient compiler. Additional instructions available on the C64x
(but not on the C62x) resemble the multitask types of instructions for C3x/C4x
processors. It is very instructive to read the comments in the programs discussed
in this book. Appendix A contains a list of the instructions for the C62x/C67x
processors.

3.8.2 Types of Instructions

 The following illustrates some of the syntax of assembly code. It is optional to
specify the eight functional units, although this can be useful during debugging and
for code effi ciency and optimization, discussed in Chapter 8 .

1. Add/Subtract/Multiply

 (a) The instruction

ADD .L1 A3,A7,A7 ;add A3 + A7 → A7 (accum in A7)

adds the values in registers A3 and A7 and places the result in register
A7. The unit .L1 is optional. If the destination or result is in B7, the unit
would be .L2 .

 TMS320C6x Instruction Set 113

114 Architecture and Instruction Set of the C6x Processor

(b) The instruction

SUB .S1 A1,1,A1 ;subtract 1 from A1

subtracts 1 from A1 to decrement it using the .S unit.

 (c) The parallel instructions

MPY .M2 A7,B7,B6
|| MPYH .M1 A7,B7,A6

 ;multiply 16 LSBs of A7, B7 → B6
 ;multiply 16 MSBs of A7, B7 → A6

multiplies the lower or least signifi cant 16 bits (LSBs) of both A7 and B7
and places the product in B6, in parallel (concurrently within the same
execution packet) with a second instruction that multiplies the higher or
most signifi cant 16 bits (MSBs) of A7 and B7 and places the result in A6.
In this fashion, two MAC operations can be executed within a single
instruction cycle. This can be used to decompose a sum of products into
two sets of sum of products: one set using the lower 16 bits to operate on
the fi rst, third, fi fth, . . . number and another set using the higher 16 bits to
operate on the second, fourth, sixth, . . . number. Note that the parallel
symbol is not in column 1.

2. Load/Store

 (a) The instruction

LDH .D2 *B2++,B7
|| LDH .D1 *A2++,A7

 ;load (B2) → B7, increment B2
 ;load (A2) → A7, increment A2

loads into B7 the half - word (16 bits) whose address in memory is speci-
fi ed/pointed to by B2. Then register B2 is incremented (postincremented)
to point at the next higher memory address. In parallel is another indirect
addressing mode instruction to load into A7 the content in memory whose
address is specifi ed by A2. Then A2 is incremented to point at the next
higher memory address.

 The instruction LDW loads a 32 - bit word. Two paths using .D1 and .D2
allow for the loading of data from memory to registers A and B using the
instruction LDW . The double - word load fl oating - point instruction LDDW on
the C6713 can simultaneously load two 32 - bit registers into side A and
two 32 - bit registers into side B.

(b) The instruction

STW .D2 A1,*+A4[20] ;store A1 → (A4) offset by 20

stores the 32 - bit word A1 in memory whose address is specifi ed by A4
offset by 20 words (32 bits) or 80 bytes. The address register A4 is prein-

cremented with offset, but it is not modifi ed (two plus signs are used if
A4 is to be modifi ed).

3. Branch/Move . The following code segment illustrates branching and data
transfer:

Loop

[A1]

MVKL
MVKH
.
.
.
SUB
B
NOP
STW

.S1

.S1

.S1

.S2

.D1

x,A4
x,A4

A1,1,A1
Loop
5
A3,*A7

;move 16 LSBs of x address → A4
 ;move 16 MSBs of x address → A4

 ;decrement A1
 ;branch to Loop if A1 != 0
 ;fi ve no - operation instructions
 ;store A3 into (A7)

The fi rst instruction moves the lower 16 bits (LSBs) of address x into register
A4. The second instruction moves the higher 16 bits (MSBs) of address x into
A4, which now contains the full 32 - bit address of x . One must use the instruc-
tions MVKL/MVKH in order to get a 32 - bit constant into a register.

 Register A1 is used as a loop counter. After it is decremented with the
SUB instruction, it is tested for a conditional branch. Execution branches to
the label or address Loop if A1 is not zero. If A1 = 0, execution continues and
data in register A3 are stored in memory whose address is specifi ed (pointed
to) by A7.

3.9 ASSEMBLER DIRECTIVES

 An assembler directive is a message for the assembler (not the compiler) and is not
an instruction. It is resolved during the assembling process and does not occupy
memory space, as an instruction does. It does not produce executable code. Addresses
of different sections can be specifi ed with assembler directives. For example, the
assembler directive .sect “my_buffer” defi nes a section of code or data named
my_buffer . The directives .text and .data indicate a section for text and data,
respectively. Other assembler directives, such as .ref and .def , are used for
undefi ned and defi ned symbols, respectively. The assembler creates several sections
indicated by directives such as .text for code and .bss for global and static
variables.

 Other commonly used assembler directives are:

1. .short : to initialize a 16 - bit integer.

2. .int : to initialize a 32 - bit integer (also .word or .long). The compiler treats
a long data value as 40 bits, whereas the C6x assembler treats it as 32 bits.

3. .float : to initialize a 32 - bit IEEE single - precision constant.

4. .double : to initialize a 64 - bit IEEE double - precision constant.

 Assembler Directives 115

116 Architecture and Instruction Set of the C6x Processor

 Initialized values are specifi ed by using the assembler directives .byte ,
.short , or .int . Uninitialized variables are specifi ed using the directive .usect ,
which creates an uninitialized section (like the .bss section), whereas the direc-
tive .sect creates an initialized section. For example, .usect “variable”, 128

designates an uninitialized section named variable with a section size of 128 in
bytes.

3.10 LINEAR ASSEMBLY

 An alternative to C, or assembly code, is linear assembly. An assembler optimizer
(in lieu of a C compiler) is used in conjunction with a linear assembly - coded source
program (with extension .sa) to create an assembly source program (with extension
.asm) in much the same way that a C compiler optimizer is used in conjunction with
a C - coded source program. The resulting assembly - coded program produced by the
assembler optimizer is typically more effi cient than one resulting from the C com-
piler optimizer. The assembly - coded program resulting from either a C - coded source
program or a linear assembly source program must be assembled to produce an
object code.

 Linear assembly code programming provides a compromise between coding
effort and coding effi ciency. The assembler optimizer assigns the functional unit and
register to use (optional to be specifi ed by the user), fi nds instructions that can
execute in parallel, and performs software pipelining for optimization (discussed in
Chapter 8). Two programming examples at the end of this chapter illustrate a C
program calling a linear assembly function. Parallel instructions are not valid in a
linear assembly program. Specifying the functional unit is optional in a linear assem-
bly program as well as in an assembly program.

 In recent years, the C compiler optimizer has become more and more effi cient.
Although C code is less effi cient (speed performance) than assembly code, it typi-
cally involves less coding effort than assembly code, which can be hand - optimized
to achieve 100 percent effi ciency but with much greater coding effort.

 It is interesting to note that the C6x assembly code syntax is not as complex
as that of the C2x/C5x or the C3x family of processors. It is actually simpler to
 “ program ” the C6x in assembly. For example, the C3x instruction

DBNZD AR4,LOOP

decrements (due to the fi rst D) a loop counter AR4 and branches (B) conditionally
(if AR4 is nonzero) to the address specifi ed by LOOP , with delay (due to the second
D). The branch instruction with delay effectively allows the branch instruction
to execute in a single cycle (due to pipelining). Such multitask instructions are
not available on the C62x and C67x processors, although they were recently intro-
duced on the C64x processor. In fact, C6x types of instructions are simpler. For
example, separate instructions are available for decrementing a counter (with a SUB

instruction) and branching. The simpler types of instructions are more amenable for
a more effi cient C compiler.

 However, although it is simpler to program in assembly code to perform a desired
task, this does not imply or translate into an effi cient assembly - coded program. It
can be relatively diffi cult to hand - optimize a program to yield a totally effi cient (and
meaningful) assembly - coded program.

 Linear assembly code is a cross between assembly and C. It uses the syntax of
assembly code instructions such as ADD , SUB , and MPY , but with operands/registers as
used in C. In some cases this provides a good compromise between C and assembly.

 Linear assembler directives include

.cproc

.endproc

to specify a C - callable procedure or section of code to be optimized by the assem-
bler optimizer. Another directive, .reg , is used to declare variables and use descrip-
tive names for values that will be stored in registers. Programming examples with
C calling an assembly function or a linear assembly function are illustrated later in
this chapter.

3.11 ASM STATEMENT WITHIN C

 Assembly instructions and directives can be incorporated within a C program using
the asm statement. The asm statement can provide access to hardware features that
cannot be obtained using C code only. The syntax is

asm (“assembly code ”);

The assembly line of code within the set of quotation marks has the same format
as a valid assembly statement. Note that if the instruction has a label, the fi rst char-
acter of the label must start after the fi rst quotation mark so that it is in column 1.
The assembly statement should be valid since the compiler does not check it for
syntax error but copies it directly into the compiled output fi le. If the assembly
statement has a syntax error, the assembler would detect it.

 Avoid using asm statements within a C program, especially within a linear assem-
bly program. This is because the assembler optimizer could rearrange lines of code
near the asm statements that may cause undesirable results.

3.12 C-CALLABLE ASSEMBLY FUNCTION

 Programming examples are included later in this chapter to illustrate a C program
calling an assembly function. Register B3 is preserved and is used to contain the
return address of the calling function.

 C-Callable Assembly Function 117

118 Architecture and Instruction Set of the C6x Processor

 An external declaration of an assembly function called within a C program using
extern is optional. For example,

extern int func();

is optional with the assembly function func returning an integer value.

3.13 TIMERS

 Two 32 - bit timers can be used to time and count events or to interrupt the CPU.
A timer can direct an external ADC to start conversion or the DMA controller
to start a data transfer. A timer includes a time period register, which specifi es
the timer ’ s frequency; a timer counter register, which contains the value of the
incrementing counter; and a timer control register, which monitors the timer ’ s
status.

3.14 INTERRUPTS

 An interrupt can be issued internally or externally. An interrupt stops the current
CPU process so that it can perform a required task initiated by the interrupt. The
program fl ow is redirected to an ISR. The source of the interrupt can be an ADC,
a timer, and so on. On an interrupt, the conditions of the current process must be
saved so that they can be restored after the interrupt task is performed. On inter-
rupt, registers are saved and processing continues to an ISR. Then the registers are
restored.

 There are 16 interrupt sources. They include two timer interrupts, four external
interrupts, four McBSP interrupts, and four DMA interrupts. Twelve CPU interrupts
(INT4 – INT15) are available. An interrupt selector is used to choose among the 12
interrupts.

3.14.1 Interrupt Control Registers

 The interrupt control registers (Appendix B) are as follows:

1. CSR (control status register): contains the global interrupt enable (GIE) bit
and other control/status bits

2. IER (interrupt enable register): enables/disables individual interrupts

3. IFR (interrupt fl ag register): displays the status of interrupts

4. ISR (interrupt set register): sets pending interrupts

5. ICR (interrupt clear register): clears pending interrupts

6. ISTP (interrupt service table pointer): locates an ISR

7. IRP (interrupt return pointer)

8. NRP (nonmaskable interrupt return pointer)

 Interrupts are prioritized, with Reset having the highest priority. The reset inter-
rupt and nonmaskable interrupt (NMI) are external pins that have the fi rst and
second highest priority, respectively. The interrupt enable register (IER) is used to
set a specifi c interrupt and can check if and which interrupt has occurred from the
interrupt fl ag register (IFR).

 NMI is nonmaskable, along with Reset. NMI can be masked (disabled) by
clearing the nonmaskable interrupt enable (NMIE) bit within CSR. It is set to
zero only upon reset or upon a nonmaskable interrupt. If NMIE is set to zero, all
interrupts INT4 through INT15 are disabled. The interrupt registers are shown in
 Appendix B .

 The reset signal is an active - low signal used to halt the CPU, and the NMI signal
alerts the CPU to a potential hardware problem. Twelve CPU interrupts with lower
priorities are available, corresponding to the maskable signals INT4 through INT15.
The priorities of these interrupts are: INT4, INT5, . . . , INT15, with INT4 having the
highest priority and INT15 the lowest priority. For an NMI to occur, the NMIE bit
must be 1 (active high). On reset (or after a previously set NMI), the NMIE bit is
cleared to zero so that a reset interrupt may occur.

 To process a maskable interrupt, the GIE bit within the control status register
(CSR) and the NMIE bit within the IER are set to 1. GIE is set to 1 with bit 0 of
CSR set to 1, and NMIE is set to 1 with bit 1 of IER set to 1. Note that CSR can
be ANDed with − 2 (using 2 ’ s complement, the LSB is 0, while all other bits are 1 ’ s)
to set the GIE bit to 0 and disable maskable interrupts globally.

 The interrupt enable (IE) bit corresponding to the desired maskable interrupt is
also set to 1. When the interrupt occurs, the corresponding IFR bit is set to 1 to
show the interrupt status. To process a maskable interrupt, the following apply:

1. The GIE bit is set to 1.

2. The NMIE bit is set to 1.

3. The appropriate IE bit is set to 1.

4. The corresponding IFR bit is set to 1.

 For an interrupt to occur, the CPU must not be executing a delay slot associated
with a branch instruction.

 The interrupt service table (IST) shown in Table 3.5 is used when an interrupt
begins. Within each location is an FP associated with each interrupt. The table con-
tains 16 FPs, each with eight instructions. The addresses on the right side correspond
to an offset associated with each specifi c interrupt. For example, the FP for interrupt
INT11 is at a base address plus an offset of 160 h. Since each FP contains eight 32 -
 bit instructions (256 bits) or 32 bytes, each offset address in the table is incremented
by 20 h = 32.

Interrupts 119

120 Architecture and Instruction Set of the C6x Processor

 The reset FP must be at address 0. However, the FPs associated with the other
interrupts can be relocated. The relocatable address can be specifi ed by writing this
address to the interrupt service table base (ISTB) register of the interrupt service
table pointer (ISTP) register, shown in Figure B.7 . On reset, ISTB is zero. For relo-
cating the vector table, the ISTP is used; the relocatable address is ISTB plus the
offset.

3.14.2 Interrupt Acknowledgment

 The signals IACK and INUMx (INUM0 through INUM3) are pins on the C6x that
acknowledge that an interrupt has occurred and is being processed. The four INUMx
signals indicate the number of the interrupt being processed. For example,

INUM3 = 1 (MSB), INUM2 = 0, INUM1 = 1, INUM0 = 1 (LSB)

correspond to (1011)b = 11 , indicating that INT11 is being processed.
 The IE11 bit is set to 1 to enable INT11. The IFR can be read to verify that bit

IF11 is set to 1 (INT11 enabled). Writing a 1 to a bit in the interrupt set register
(ISR) causes the corresponding interrupt fl ag to be set in IFR, whereas a 0 to a bit
in the interrupt clear register (ICR) causes the corresponding interrupt to be
cleared.

 All interrupts remain pending while the CPU has a pending branch instruction.
Since a branch instruction has fi ve delay slots, a loop smaller than six cycles is
noninterruptible. Any pending interrupt will be processed as long as there are

TABLE 3.5 Interrupt Service Table

Interrupt Offset

RESET 000h
NMI 020h
Reserved 040h
Reserved 060h
INT4 080h
INT5 0A0h
INT6 0C0h
INT7 0E0h
INT8 100h
INT9 120h
INT10 140h
INT11 160h
INT12 180h
INT13 1A0h
INT14 1C0h
INT15 1E0h

no pending branches to be completed. Additional information can be found in
Ref. 6 .

 3.15 MULTICHANNEL BUFFERED SERIAL PORTS

 Two McBSPs are available. They provide an interface to inexpensive (industry
standard) external peripherals. McBSPs have features such as full - duplex commu-
nication, independent clocking and framing for receiving and transmitting, and
direct interface to AC97 and IIS compliant devices. They allow several data sizes
between 8 and 32 bits. Clocking and framing associated with the McBSPs for input
and output are discussed in Ref. 7 .

 External data communication can occur while data are being moved internally.
Figure 3.4 shows an internal block diagram of a McBSP. The data transmit (DX)
and data receive (DR) pins are used for data communication. Control information
(clocking and frame synchronization) is through CLKX, CLKR, FSX, and FSR.
The CPU or DMA controller reads data from the data receive register (DRR) and
writes data to be transmitted to the data transmit register (DXR). The transmit shift

 FIGURE 3.4. Internal block diagram of McBSP. (Courtesy of Texas Instruments .)

 Multichannel Buffered Serial Ports 121

122 Architecture and Instruction Set of the C6x Processor

register (XSR) shifts these data to DX. The receive shift register (RSR) copies the
data received on DR to the receive buffer register (RBR). The data in RBR are
then copied to DRR to be read by the CPU or the DMA controller.

 Other registers — the serial port control register (SPCR), receive/transmit control
register (RCR/XCR), receive/transmit channel enable register (RCER/XCER),
pin control register (PCR), and sample rate generator register (SRGR) — support
further data communication [7] .

 The two McBSPs are used for input and output through the onboard codec.
McBSP0 is used for control and McBSP1 for transmitting and receiving data.

3.16 DIRECT MEMORY ACCESS

 Direct memory access (DMA) allows for the transfer of data to and from internal
memory or external devices without intervention from the CPU [7] . Sixteen
enhanced DMA channels (EDMA) can be confi gured independently for data trans-
fer. DMA can access on - chip memory and the EMIF, as well as the HPI. Data of
different sizes can be transferred: 8 - bit bytes, 16 - bit half - words, and 32 - bit words.

 A number of DMA registers are used to confi gure the DMA: address (source
and destination), index, count reload, DMA global data, and control registers. The
source and destination addresses can be from internal program memory, internal
data memory, an external memory interface, and an internal peripheral bus. DMA
transfers can be triggered by interrupts from internal peripherals as well as from
external pins.

 For each resource, each DMA channel can be programmed for priorities with
the CPU, with channel 0 having the highest priority. Each DMA channel can be
made to start initiating block transfer of data independently. A block can contain a
number of frames. Within each frame can be many elements. Each element is a single
data value. The DMA count reload register contains the value to specify the frame
count (16 MSBs) and the element count (16 LSBs).

3.17 MEMORY CONSIDERATIONS

3.17.1 Data Allocation

 Blocks of code and data can be allocated in memory within sections specifi ed in the
linker command fi le. These sections can be either initialized or uninitialized. The
initialized sections are:

1. .cinit : for global and static variables

2. .const : for global and static constant variables

3. .switch : contains jump tables for large switch statements

4. .text : for executable code and constants

 The uninitialized sections are:

1. .bss : for global and static variables

2. .far : for global and static variables declared far

3. .stack : allocates memory for the system stack

4. .sysmem : reserves space for dynamic memory allocation used by the malloc ,
calloc , and realloc functions

 The linker can be used to place sections such as text in fast internal memory for
most effi cient operation.

3.17.2 Data Alignment

 The C6x always accesses aligned data that allow it to address bytes, half - words,
and words (32 bits). The data format consists of four byte boundaries, two half -
word boundaries, and one word boundary. For example, to assign a 32 - bit load
with LDW , the address must be aligned with a word boundary so that the lower 2 bits
of the address are zero. Otherwise, incorrect data can be loaded. A double - word
(64 bits) also can be accessed. Both .S1 and .S2 can be used to execute the double -
 word instruction LDDW to load two 64 - bit double words, for a total of 128 bits
per cycle.

3.17.3 Pragma Directives

 The pragma directives tell the compiler to consider certain functions. Pragmas
include DATA_ALIGN, DATA_SECTION , and so on. The DATA_ALIGN pragma has the
syntax

#pragma DATA_ALIGN (symbol,constant);

that aligns symbol to a boundary. The constant is a power of 2. This pragma direc-
tive is used later in several examples (such as in FFT program examples) to align
data in memory.

 The DATA_SECTION pragma has the following syntax:

#pragma DATA_SECTION (symbol, “my_section”);

which allocates space for symbol in the section named my_section . This pragma
directive is useful to allocate a section in external memory. For example,

#pragma DATA_SECTION (buffer, “.extRAM”)

 Memory Considerations 123

124 Architecture and Instruction Set of the C6x Processor

is used to place buffer in the section extRAM . In the linker command fi le, the fol-
lowing is specifi ed within SECTIONS :

.extRAM : > SDRAM

and within MEMORY, the following is specifi ed:

SDRAM: org = 0x80000000, len = 0x01000000

where 0x80000000 is the address in external memory (CE0 space). Another useful
pragma directive,

#pragma MUST_ITERATE (20,20)

tells the compiler that the loop following will execute 20 times (a minimum and
maximum of 20 times).

3.17.4 Memory Models

 The compiler generates a small memory model code by default. Every data object
is handled as if declared near unless it is specifi cally declared far . If the DATA_
SECTION pragma is used, the object is specifi ed as a far variable.

 How run - time support functions are called can be controlled by the option −mr0
with the run - time support data and calls near , or by the option −mr1 with the run -
 time support data and calls far . Using the far method to call functions does not
imply that those functions must reside in off - chip memory.

 Large - memory models can be generated with the linker options −mlx (x = 0 to
4). If no level is specifi ed, data and functions default to near . These models can be
used for calling a function that is more than 1 M words away.

3.18 FIXED- AND FLOATING -POINT FORMAT

 Some fi xed - point considerations are reviewed in Appendix C .

3.18.1 Data Types

 Some data types are:

1. short : of size 16 bits represented as 2 ’ s complement with a range from − 2 15

to (2 15 − 1)

2. int or signed int : of size 32 bits represented as 2 ’ s complement with a range
from − 2 31 to (2 31 − 1)

 3. fl oat : of size 32 bits represented as IEEE 32 - bit with a range from 2 − 126 =
 1.175494 × 10 − 38 to 2 +128 = 3.40282346 × 10 38

 4. double : of size 64 bits represented as IEEE 64 - bit with a range from 2 − 1022 =
 2.22507385 × 10 − 308 to 2 +1024 = 1.79769313 × 10 +308

 Data types such as short for fi xed - point multiplication can be more effi cient (fewer
cycles) than using int . Use of const can also increase code performance. Notations
such as Uint16 and Uint32 are supported for casting 16 - and 32 - bit unsigned
integers, respectively.

 3.18.2 Floating - Point Format

 With a much wider dynamic range in a fl oating - point processor, scaling is not an
issue. A fl oating - point number can be represented using single precision with 32 bits
or double precision with 64 bits, as shown in Figure 3.5 . In single - precision format,
bit 31 represents the sign bit, bits 23 through 30 represent the exponent bits, and
bits 0 through 22 represent the fractional bits, as shown in Figure 3.5 a. Numbers as
small as 10 − 38 and as large as 10 +38 can be represented. In double - precision format,
more exponent and fractional bits are available, as shown in Figure 3.5 b. Since 64
bits are represented, a pair of registers is used. Bits 0 through 31 of the fi rst register
pair represent the fractional bits. Bits 0 through 19 of the second register pair also
represent the fractional bits, with bits 20 through 30 representing the exponent bits
and bit 31 the sign bit. As a result, numbers as small as 10 − 308 and as large as 10 +308
can be represented.

 Instructions ending in either SP or DP represent single and double precision,
respectively. Some of the fl oating - point instructions (available on the C67x fl oating -
 point processor) have more latencies than do fi xed - point instructions. For example,
the fi xed - point multiplication MPY requires one delay or NOP , whereas the single -
 precision MPYSP requires three delays and the double - precision instruction MPYDP
requires nine delays.

 The single - precision fl oating - point instructions ADDSP and MPYSP have three
delay slots and take four cycles to complete execution. The double - precision instruc-
tions ADDDP and MPYDP have six and nine delay slots, respectively. However, the

31 30 23 22 0
s e f

 (a)

31 30 20 19 0 31 0
s e f f

(b)

 FIGURE 3.5. Data format: (a) single precision and (b) double precison.

 Fixed- and Floating-Point Format 125

126 Architecture and Instruction Set of the C6x Processor

fl oating - point double - word load instruction LDDW (with four delay slots, as with the
fi xed - point LDW) can load 64 bits. Two LDDW instructions can execute in parallel
through both units .S1 and .S2 to load a total of 128 bits per cycle.

 A single - precision fl oating - point value can be loaded into a single register,
whereas a double - precision fl oating - point value is a 64 - bit value that can be loaded
into a register pair such as A1 : A0, A3 : A2, . . . , B1 : B0, B3 : B2, The least signifi -
cant 32 bits are loaded into the even register pair, and the most signifi cant 32 bits
are loaded into the odd register pair.

 One may need to weigh the pros and cons of dynamic range and accuracy with
possible degradation in speed when using fl oating - point types of instructions.

3.18.3 Division

 The fl oating - point C6713 processor has a single - precision reciprocal instruction
RCPSP. A division operation can be performed by taking the reciprocal of the
denominator and multiplying the result by the numerator [6] . There are no fi xed -
 point instructions for division. Code is available to perform a division operation by
using the fi xed - point processor to implement a Newton – Raphson equation.

3.19 CODE IMPROVEMENT

 Several code optimization schemes are discussed in Chapter 8 using both fi xed - and
fl oating - point implementations and ASM code.

3.19.1 Intrinsics

 C code can be optimized further by using many of the available intrinsics in the
run - time library support fi le. Intrinsic functions are similar to run - time support
library functions. Intrinsics are available to multiply, to add, to fi nd the reciprocal
of a square root, and so on. For example, in lieu of using the asterisk operator to
multiply, the intrinsic _mpy can be used. Intrinsics are special functions that map
directly to inline C6x instructions. For example,

int _mpy()

is equivalent to the assembly instruction MPY to multiply the 16 LSBs of two numbers.
The intrinsic function

int _mpyh()

is equivalent to the assembly instruction MPYH to multiply the 16 MSBs of two
numbers.

3.19.2 Trip Directive for Loop Count

 The linear assembly directive .trip is used to specify the number of times a loop
iterates. If the exact number is known and used, the linear assembler optimizer can
produce pipelined code (discussed in Chapter 8) and redundant loops are not gener-
ated. This can improve both code size and execution time. A .trip count specifi ca-
tion, even if it is not the exact value, may improve performance: for example, when
the actual number of iterations is a multiple of the specifi ed value. The intrinsic
function _nassert() can be used in a C program in lieu of .trip .

3.19.3 Cross-Paths

 Data and address cross - path instructions are used to increase code effi ciency. The
instruction

MPY .M1x A2,B2,A4

illustrates a data cross - path that multiplies the two sources A2 and B2 from two
different sides, A and B, with the result in A4. If the result is in the B register fi le,
a 2x cross - path is used with the instruction

MPY .M2x A2,B2,B4

with the result in B4. The instruction

LDW .D1T2 *A2,B2

illustrates an address cross - path. It loads the content in register A2 (from a register
fi le A) into register B2 (register fi le B). Only two cross - paths are available on the
C6x, so no more than two instructions using cross - paths are allowed within a
cycle.

3.19.4 Software Pipelining

 Software pipelining uses available resources to obtain effi cient pipelining code. The
aim is to use all eight functional units within one cycle. However, substantial coding
effort can be required when the software pipelining technique is used for more
complex programs. There are three stages to a pipelined code:

1. Prolog

2. Loop kernel (or loop cycle)

3. Epilog

 Code Improvement 127

128 Architecture and Instruction Set of the C6x Processor

 The fi rst stage, prolog, contains instructions to build the second - stage loop cycle, and
the epilog stage (last stage) contains instructions to fi nish all loop iterations. Soft-
ware pipelining is used by the compiler when the optimization option level −o2 or
−o3 is invoked. The most effi cient software pipelined code has loop trip counters
that count down: for example,

for (i = N; i != 0; i ––)

A dot product example with word - wide hand - coded pipelined code results in (N /2)
 + 8 cycles to obtain the sum of two arrays, with N numbers in each array. This trans-
lates to 108 cycles to fi nd the sum of products of 200 numbers, as illustrated in
Chapter 8 . This effi ciency is obtained using instructions such as LDW to load a 32 - bit
word and multiplying the lower and higher 16 - bit numbers separately with the two
instructions mpy and mpyh , respectively.

 Removing the epilog section can also reduce the code size. The available options
−msn (n = 0, 1, 2) direct the compiler to favor code size reduction over performance.
Hand - coded software pipelined code can be produced by fi rst drawing a depen-
dency graph and setting up a scheduling table [8] . In Chapter 8 we discuss software
pipelining in conjunction with code effi ciency.

3.20 CONSTRAINTS

3.20.1 Memory Constraints

 Internal memory is arranged through various banks of memory so that loads and
stores can occur simultaneously. Since each bank of memory is single ported, only
one access to each bank is performed per cycle. Two memory accesses per cycle can
be performed if they do not access the same bank of memory. If multiple accesses
are performed to the same bank of memory (within the same space), the pipeline
will stall. This causes additional cycles for execution to complete.

3.20.2 Cross-Path Constraints

 Since there is one cross - path in each side of the two data paths, there can be at most
two instructions per cycle using cross - paths. The following code segment is valid
since both available cross - paths are used:

 ADD .L1x A1,B1,A0
|| MPY .M2x A2,B2,B3

whereas the following is not valid since one cross - path is used for both instructions:

 ADD .L1x A1,B1,A0
|| MPY .M1x A2,B2,A3

The x associated with the functional unit designates a cross - path.

3.20.3 Load/Store Constraints

 The address register to be used must be on the same side as the .D unit. The fol-
lowing code segment is valid:

 LDW .D1 *A1,A2
|| LDW .D2 *B1,B2

whereas the following is not valid:

 LDW .D1 *A1,A2
|| LDW .D2 *A3,B2

Furthermore, loading and storing cannot be from the same register fi le. A load (or
store) using one register fi le in parallel with another load (or store) must use a dif-
ferent register fi le. For example, the following code segment is valid:

 LDW .D1 *A0,B1
|| STW .D2 A1, *B2

The following is also valid:

 LDW .D1 *A0,B1
|| LDW .D2 *B2,A1

However, the following is not valid:

 LDW .D1 *A0,A1
|| STW .D2 A2, *B2

3.20.4 Pipelining Effects with More Than One EP Within an FP

 Table 3.3 shows a previous pipeline operation representing eight instructions in
parallel within one FP. Table 3.6 shows the pipeline operation when there is more
than one EP within an FP.

 Consider the operation of six FPs (FP1 through FP6) through the pipeline. FP1
contains three execute packets, and FP2, FP3, . . . , FP6 each contains one EP. In
cycles 2 through 5, FP2 through FP5, each FP starts its program fetch phase. When
the CPU detects that FP1 contains more than one EP, it forces the pipeline to stall
so that EP2 and EP3, within FP1, can each start its dispatching (DP) phase in cycles
6 and 7, respectively. Each instruction within an FP has a “ p ” bit to specify whether
that instruction is in parallel with a subsequent instruction (if a 1, as shown in Figure
 3.3). With a 0 in the LSB of an instruction, the chain is broken, and the subsequent
instructions are placed in the next execute packet.

Constraints 129

130 Architecture and Instruction Set of the C6x Processor

 During clock cycles 1 through 4, a program fetch phase occurs. The three EPs
within the same FP cause a stall in the pipeline. This allows the DP phase to start
at cycle 6 (not at cycle 5) for EP2 and at cycle 7 for EP3. The subsequent FP (FP2)
with only one EP (with all eight instructions in parallel) is stalled so that each of
the three EPs in the previous FP (FP1) can go through the DP phase. As a result,
while the fetch phase for FP2 starts at cycle 2, its DP phase does not start until cycle
8. The third FP (FP3), also with only one EP, starts its fetch stage at cycle 3, but its
DP phase does not start until cycle 9, due to the pipeline stall.

 The pipeline then stalls in cycles 6 and 7, as indicated with an “ X. ” Once EP3
(within FP1) continues onto its decoding phase in cycle 8, the pipeline is released.
FP2 can now continue to its DP phase in cycle 8. Since FP3 through FP6 also were
stalled, each can now resume its program fetch phase in cycle 8.

 Hence, with the three EPs within one FP, the pipeline stalls for two cycles. Table
 3.6 illustrates the stalling pipeline effects. A pipeline stall would also take place if
the fi rst FP had four EPs, each with two parallel instructions.

3.21 PROGRAMMING EXAMPLES USING C, ASSEMBLY,
AND LINEAR ASSEMBLY

 Several programming examples are discussed in this section. They illustrate both
assembly code and linear assembly code implementation: a C program calling an
assembly function, a C program calling a linear assembly function, and an assembly -
 coded program calling an assembly - coded function. The focus here is on illustrating
the syntax of both assembly and linear assembly code, and not necessarily on pro-
ducing optimized code. We discuss further optimization techniques in Chapter 8 in
conjunction with code effi ciency and software pipelining.

TABLE 3.6 Pipelining with Stalling Effects

Clock Cycle

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
DP DC E1 E2 E3 E4 E5

DP DC E1 E2 E3 E4
PG PS PW PR X X DP DC E1 E2 E3

PG PS PW X X PR DP DC E1 E2
PG PS X X PW PR DP DC E1

PG X X PS PW PR DP DC
X X PG PS PW PR DP

 Programming Examples Using C, Assembly, and Linear Assembly 131

 Example 3.1: Sum of n + (n - 1) + (n - 2) + · · · + 1,
Using C Calling an Assembly Function (sum)

 This example illustrates a C program calling an assembly function. The C source
program sum.c shown in Figure 3.6 calls the assembly - coded function sumfunc.asm
shown in Figure 3.7 . It implements the sum of n + (n − 1) + (n − 2) + · · · + 1. The
value of n is set in the main C program. It is passed through register A4 (by conven-
tion). For example, the address of more than one value can be passed to the assem-
bly function through A4, B4, A6, B6, and so on. The resulting sum from the assembly
(asm) function is returned to result in the C program, which then prints this result-
ing sum.

 The assembly function ’ s name is preceded by an underscore (by convention).
The value n in register A4 in the asm function is moved to register A1 to set A1 as
a loop counter since only A1, A2, B0, B1, and B2 can be used as conditional registers.
A1 is then decremented. A loop section of code starts with the label or address LOOP
and ends with the fi rst branch statement B. The fi rst addition adds n + (n − 1) with

//Sum.c Finds n+(n-1)+...+1. Calls ASM function sumfunc

#include <stdio.h>

main()
{
 short n=6; //set value
 short result; //result from asm function
 result = sumfunc(n); //call ASM function sumfunc
 printf("sum = %d", result); //print result from asm function
}

 FIGURE 3.6. C program that calls an ASM function to fi nd n + (n − 1) + (n − 2) + · · · + 1
(sum.c) .

;Sumfunc.asm Assembly function to find n + (n-1) + ... + 1

 .def _sumfunc ;function called from C
_sumfunc: MV .L1 A4,A1 ;setup n as loop counter
 SUB .S1 A1,1,A1 ;decrement n
LOOP: ADD .L1 A4,A1,A4 ;accumulate in A4
 SUB .S1 A1,1,A1 ;decrement loop counter
 [A1] B .S2 LOOP ;branch to LOOP if A1#0
 NOP 5 ;five NOPs for delay slots
 B .S2 B3 ;return to calling routine
 NOP 5 ;five NOPs for delay slots
 .end

 FIGURE 3.7. ASM function and called from C in the project sum (sumfunc.asm) .

132 Architecture and Instruction Set of the C6x Processor

the result in A4. A1 is again decremented to (n − 2). The branch statement is con-
ditional based on register A1, and since A1 is not zero, branching takes place and
execution returns to the instruction at the address LOOP , where A4 = n + (n − 1) is
added to A1 = (n − 2). This process continues until register A1 = 0.

 The second branch instruction is to the returning address B3 (by convention) of
the C calling program. The resulting sum is contained or accumulated in A4, which
is passed to result in the C program. The fi ve NOP s (no operation) are used to
account for the fi ve delay slots associated with a branch instruction.

 The functional units .S and .L selected are shown but are not required in the
program. They can be useful for debugging and analyzing which of the functional
units are used in order to improve the effi ciency of the program. Similarly, the two
colons after the label LOOP and the function name are not required.

 Build and run this project as sum . With a value of n set to 6 in the C program,
verify that sum and its value of 21 are printed.

 Example 3.2: Factorial of a Number Using C
Calling an Assembly Function (factorial)

 This example fi nds the factorial of a number n ≤ 7 with n ! = n (n − 1)(n − 2) · · · (1).
It further illustrates the syntax of assembly code. It is very similar to Example 3.1 .
The value of n is set in the C source program factorial.c , shown in Figure 3.8 ,
which calls the assembly function factfunc.asm , shown in Figure 3.9 . It is instruc-
tive to read the comments.

 Register A1 is again set as a loop counter. Within the loop section of code starting
with the address LOOP , the fi rst multiply is n (n − 1) and accumulates in register A4.
The initial value of n is passed to the asm function through A4. The MPY instruction
has one delay slot, which accounts for the NOP following it. Processing continues
within the loop section of code until A1 = 0. Note that the functional units are not
specifi ed in this program. The resulting factorial is returned to the calling C program
through A4.

//Factorial.c Finds factorial of n. Calls function factfunc

#include <stdio.h> //for print statement

void main()
{
 short n = 7; //set value
 short result; //result from asm function
 result = factfunc(n); //call ASM function factfunc
 printf("factorial = %d", result);//print result from asm function
}

 FIGURE 3.8. C program that calls an ASM function to fi nd the factorial of a number
(factorial.c) .

 Programming Examples Using C, Assembly, and Linear Assembly 133

 Build and run this project as factorial . Verify that factorial and its value of
5040 (7!) are printed. Note that the maximum value of n is 7, since result is cast
as a short and 8! is greater than 2 15 .

 Example 3.3: 32 - bit Pseudorandom Noise Generation Using C
Calling an Assembly Function (Noisegen_casm)

 The C source program Noisegen_casm.c in Figure 3.10 calls the function noise-
func located in the fi le Noisegen_casmfunc.asm (Figure 3.11) to generate a 32 - bit
pseudorandom noise sequence using the following scheme:

 1. A 32 - bit seed value such as 0x7E521603 is chosen.

 2. A modulo 2 summation is performed between bits 17, 28, 30, and 31.

 3. The LSB of the resulting summation is selected. This bit is either a 1 or a 0
and is scaled accordingly to a positive or negative value.

 4. The seed value is shifted left by one, and the resulting bit from the previous
step is placed in the LSB position and the process repeated with the new
(shifted by one) seed value.

 The 32 - bit noise generator diagram is shown in Figure 3.12 . Within the asm function,
the seed value is moved from A4 to A1. Shifting this seed value right by 17 places
bit 17 in the LSB position, where the addition is meaningful. The resulting summa-
tion is shifted right by 11 to place bit 28 (already shifted by 17) in the LSB position.
This procedure is repeated, adding bits 17, 28, 30, and 31. The LSB, which is a 1 or
a 0, is then placed into A4, and returned to the C calling function, where it is scaled
as either a positive or a negative value, respectively. On each interrupt, this LSB bit,
1 or 0, represents the noise sample.

;Factfunc.asm Assembly function called from C to find factorial

 .def _factfunc ;ASM function called from C
_factfunc: MV A4,A1 ;setup loop count in A1
 SUB A1,1,A1 ;decrement loop count
LOOP: MPY A4,A1,A4 ;accumulate in A4
 NOP ;for 1 delay slot with MPY
 SUB A1,1,A1 ;decrement for next multiply
 [A1] B LOOP ;branch to LOOP if A1 # 0
 NOP 5 ;five NOPs for delay slots
 B B3 ;return to calling routine
 NOP 5 ;five NOPs for delay slots
 .end

 FIGURE 3.9. ASM function called from C that fi nds the factorial of a number
(factfunc.asm) .

134 Architecture and Instruction Set of the C6x Processor

 FIGURE 3.10. C program that calls an ASM function to generate a 32 - bit noise sequence
(noisegen_casm.c).

//Noisegen_casm.c Pseudorandom noise generation calling ASM function

#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_48KHZ; //set sampling rate
int previous_seed;
short pos = 16000, neg = -16000; //scaling noise level

interrupt void c_int11()
{
 previous_seed = noisefunc(previous_seed); //call ASM function
 if(previous_seed & 0x01) output_left_sample(pos);//positive scaling
 else output_left_sample(neg);//negative scaling
}

void main ()
{
 comm_intr(); //init DSK,codec,McBSP
 previous_seed = noisefunc(0x7E521603); //call ASM function
 while (1); //infinite loop
}

;Noisegen_casmfunc.asm Noise generation C-called function

 .def _noisefunc ;ASM function called from C
_noisefunc ZERO A2 ;init A2 for seed manipulation
 MV A4,A1 ;seed in A1
 SHR A1,17,A1 ;shift right 17->bit 17 to LSB
 ADD A1,A2,A2 ;add A1 to A2 => A2
 SHR A1,11,A1 ;shift right 11->bit 28 to LSB
 ADD A1,A2,A2 ;add again
 SHR A1,2,A1 ;shift right 2->bit 30 to LSB
 ADD A1,A2,A2 ;
 SHR A1,1,A1 ;shift right 1->bit 31 to LSB
 ADD A1,A2,A2 ;
 AND A2,1,A2 ;Mask LSB of A2
 SHL A4,1,A4 ;shift seed left 1
 OR A2,A4,A4 ;Put A2 into LSB of A4
 B B3 ;return to calling function
 NOP 5 ;5 delays for branch

 FIGURE 3.11. ASM function called from C to generate a 32 - bit noise sequence (noise-
gen_casmfunc.asm).

 Programming Examples Using C, Assembly, and Linear Assembly 135

 Build and run this project as Noisegen_casm . Sampling at 48 kHz, verify that the
noise spectrum is fl at, with a bandwidth of approximately 23 kHz. Connect the
output to a speaker to verify the generated noise. Change the scaling values to ± 8000
and verify that the level of the generated noise is reduced.

 Example 3.4: Code Detection Using C Calling an ASM Function
(code_casm)

 This example detects a four - digit code set initially in the main C source program.
Figure 3.13 shows the main C source program code_casm.c that calls the asm func-
tion code_casmfunc.asm , shown in Figure 3.14 . The code is set with code1 , . . . ,
 code4 as 1, 2, 2, 4, respectively. The initial values of digit1, . . . , digit4 set as 1, 1, 1, 1,
respectively, are passed to the asm function to compare these four digit values with
the four code values. Four sliders are used to change the digit values passed to the
 asm function. The C source program, the asm function, and the gel fi le for the sliders
are included in the folder code_casm .

 Build this project example as code_casm . Load and run the executable fi le. Press
switch #0 (SW0) and verify that “ no match ” is continuously being printed (as long
as SW0 is pressed). Load the gel fi le code_casm.gel and set the sliders Digit1 , . . . ,
 Digit4 to positions 1, 2, 2, 4, respectively. Press SW0 and verify that “ correct match ”
is being printed (with SW0 pressed). Change the slider Digit2 from position 2 to
position 3, and again press SW0 to verify that there is no longer a match. The
program is in a continuous loop as long as switch #3 (SW3) is not pressed. Note that
the initial value for the code (code1, . . . , code4) can readily be changed.

 Example 3.5: Dot Product Using Assembly Program
Calling an Assembly Function (dotp4a)

 This example takes the sum of products of two arrays, each array with four numbers.
See also Example 1.3 , which implements it using only C code, and Examples 3.1

 FIGURE 3.12. A 32 - bit noise generator diagram.

136 Architecture and Instruction Set of the C6x Processor

;Code_casmfunc.asm ASM function->if code matches slider values

 .def _codefunc ;ASM function called from C
_codefunc: MV A8, A2 ;correct code
 MV B8, B2
 MV A10, A7
 MV B10, B7
 CMPEQ A2,A4,A1 ;compare 1st digit(A1=1 if A2=A4)
 CMPEQ A1,0,A1 ;otherwise A1=0
 [A1] B DONE ;done if A1=0 since no match
 NOP 5
 MV B2,A2
 CMPEQ A2,B4,A1 ;compare 2nd digit
 CMPEQ A1,0,A1
 [A1] B DONE
 NOP 5
 MV A7,A2
 CMPEQ A2,A6,A1 ;compare 3rd digit
 CMPEQ A1,0,A1
 [A1] B DONE
 NOP 5
 MV B7,A2
 CMPEQ A2,B6,A1 ;compare 4th digit
 CMPEQ A1,0,A1
DONE: MV A1,A4 ;return 1 if complete match
 B B3 ;return to C program
 NOP 5
 .end

 FIGURE 3.13. C program that calls an ASM function to detect a four - digit code
(code_casm.c) .

//Code_casm.c Calls ASM function.If code match slider values

#include <stdio.h>
short digit1=1,digit2=1,digit3=1,digit4=1;//init slider values

main()
{
 short code1=1,code2=2,code3=2,code4=4; //initialize code
 short result;
 DSK6713_init(); //init BSL
 DSK6713_DIP_init(); //init dip switches
 while(DSK6713_DIP_get(3) == 1) //continue til SW #3 pressed
 {
 if(DSK6713_DIP_get(0) == 0) //if DIP SW #0 is pressed
 { //call ASM function
 result=codefunc(digit1,digit2,digit3,digit4,code1,code2,code3,code4);
 if(result==0) printf("correct match\n");//result from ASM function
 else printf("no match\n"); //correct match or no match
 }
 }
}

 FIGURE 3.14. ASM function called from C to detect a four - digit code (code_casmfunc.asm) .

 Programming Examples Using C, Assembly, and Linear Assembly 137

through 3.4 , which introduced the syntax of assembly code. Figure 3.15 shows a
listing of the assembly program dotp4a_init.asm , which initializes the two arrays
of numbers and calls the assembly function dotp4afunc.asm , shown in Figure 3.16 ,
which takes the sum of products of the two arrays. It also sets a return address
through register B3 and the result address to A0. The addresses of the two arrays
and the size of the array are passed to the function dotp4afunc.asm through reg-
isters A4, A6, and B4, respectively. The result from the called function is “ sent back ”
through A4. The resulting sum of the products is stored in memory whose address
is result_addr . The instruction STW stores the resulting sum of the products in A4
(in memory pointed by A0). Register A0 serves as a pointer with the address
 result_addr .

 The instruction MVK moves the 16 LSBs (equivalent to MVKL). If a 32 - bit address
(or result) is required, then the pair of instructions MVKL and MVKH can be used to
move both the lower and upper 16 bits of the address (or result). The starting
address of the calling ASM program is defi ned as init . The vector fi le is modifi ed
and included in the folder dotp4a so that the reference to the entry address is
changed from _c_int00 to the entry address init . An alternative vector fi le
 vectors_dotp4a.asm , as shown in Figure 3.17 , specifi es a branch to that entry
address. The called asm function dotp4afunc.asm calculates the sum of products.
The loop count value was moved to A1 since A6 cannot be used as a conditional
register (only A1, A2, B0, B1, and B2 can be used). The two LDH instructions load

;Dotp4a_init.asm ASM program to init variables.Calls dotp4afunc

 .def init ;starting address
 .ref dotp4afunc ;called ASM function
 .text ;section for code
x_addr .short 1,2,3,4 ;numbers in x array
y_addr .short 0,2,4,6 ;numbers in y array
result_addr .short 0 ;initialize sum of products

init MVK result_addr,A4 ;result addr -->A4
 MVK 0,A3 ;A3=0
 STH A3,*A4 ;init result to 0
 MVK x_addr,A4 ;A4 = address of x
 MVK y_addr,B4 ;B4 = address of y
 MVK 4,A6 ;A6 = size of array
 B dotp4afunc ;B to function dotp4afunc
 MVK ret_addr,b3 ;B3=return addr from dotp4a
 NOP 3 ;3 more delay slots(branch)
ret_addr MVK result_addr,A0 ;A0 = result address
 STW A4,*A0 ;store result
wait B wait ;wait here
 NOP 5 ;delay slots for branch

 FIGURE 3.15. ASM program calling an ASM function to fi nd the sum of products
(dotp4a_init.asm) .

138 Architecture and Instruction Set of the C6x Processor

;Dotp4afunc.asm Multiply two arrays. Called from dotp4a_init.asm
;A4=x address,B4=y address,A6=count(size of array),B3=return address

 .def dotp4afunc ;dot product function
 .text ;text section
dotp4afunc MV A6,A1 ;move loop count -->A1
 ZERO A7 ;init A7 for accumulation
loop LDH *A4++,A2 ;A2=content of x address
 LDH *B4++,B2 ;B2=content of y address
 NOP 4 ;4 delay slots for LDH
 MPY A2,B2,A3 ;A3 = x * y
 NOP ;1 delay slot for MPY
 ADD A3,A7,A7 ;sum of products in A7
 SUB A1,1,A1 ;decrement loop counter
 [A1] B loop ;branch back to loop till A1=0
 NOP 5 ;5 delay slots for branch
 MV A7,A4 ;A4=result
 B B3 ;return from func to addr in B3
 NOP 5 ;5 delay slots for branch

 FIGURE 3.16. ASM function called from an ASM program to fi nd the sum of products
(dotp4afunc.asm) .

;vectors_dotp4a.asm Alternative vector file for dotp4a project

 .ref init ;starting addr in init file
 .sect "vectors" ;in section vectors
rst: mvkl .s2 init,b0 ;init addr 16 LSB -->B0
 mvkh .s2 init,b0 ;init addr 16 MSB -->B0
 b b0 ;branch to addr init
 nop 5

 FIGURE 3.17. Alternative vector fi le that specifi es the entry address in the calling ASM
program for the sum of products (vectors_dotp4a.asm).

(half - word of 16 bits) the addresses of the two arrays starting at x_addr and y_addr
into registers A2 and B2, respectively. For example, the instruction

 LDH * B4++,B2

loads the content in memory (the fi rst value in the second array starting at y_
address) pointed at by B4 (the address of the second array) into B2. Then register
B4, used as a pointer, is postincremented to the next higher address in memory that
contains the second value in the second array. Register A7 is used to accumulate
and move the sum of products to register A4, since the result is passed to the calling
function through A4.

 Programming Examples Using C, Assembly, and Linear Assembly 139

 Support fi les for this project include (no library fi le is necessary):

1. dotp4a_init.asm

2. dotp4afunc.asm

3. vecs_dotp4a.asm

 The vector fi le vecs_dotp4a.asm (modifi ed vector fi le) or the alternative vector
fi le vectors_dotp4a.asm shown in Figure 3.17 are both included in the folder
dotp4a . Build and run this project as dotp4a . Modify the Linker Option (Project
→ Options) to select “ No Autoinitialization. ” Otherwise, the warning “ entry point
symbol _c_int00 undefi ned ” is displayed when this project is built (it can be
ignored). This is because the “ conventional ” entry point is not used in this project,
since there is no main function in ASM.

 Set a breakpoint at the fi rst branch instruction in the program dotp4a_init.
asm :

B dotp4afunc

Select View → Memory, set address to result_addr , and use the 16 - bit signed
integer. Right - click on the Memory window and deselect “ Float in Main Window. ”
This allows you to have a better display of the Memory window while viewing the
source fi le dotp4a_init.asm .

 Select Run. Execution stops at the set breakpoint. The content in memory at
the address result_addr is zero (the called function dotp4afunc.asm is not yet
executed). Run again, then halt, since execution is within the infi nite wait loop
instruction:

wait B wait ;wait here

 Verify that the resulting sum of products is A4 = 0x28 = 40. Note that A0 contains
the result address (result_addr). Select View → Registers → Core Registers and
verify this address (in hex). Figure 3.18 shows a CCS display of this project. Note
from the disassembly fi le that execution was halted at the infi nite wait loop.

Example 3.6: Dot Product Using C Function Calling a
Linear Assembly Function (dotp4clasm)

 Figure 3.19 shows a listing of the C source program dotp4clasm.c , which calls the
linear assembly function dotp4clasmfunc.sa , shown in Figure 3.20 . Example 1.3
introduced the dot product implementation using C code only. The previous fi ve
examples introduced the syntax of assembly - coded programs.

 The section of code invoked by the linear assembler optimizer starts and ends
with the linear assembler directives, .cproc and .endproc , respectively. The name

140 Architecture and Instruction Set of the C6x Processor

 FIGURE 3.18. CCS windows for the sum of products in the project dotp4a .

//Dotp4clasm.c Multiplies two arrays using C calling linear ASM func

short dotp4clasmfunc(short *a,short *b,short ncount); //prototype
#include <stdio.h> //for printing statement
#include "dotp4.h" //arrays of data values
#define count 4 //number of data values
short x[count] = {x_array}; //declare 1st array
short y[count] = {y_array}; //declare 2nd array
volatile int result = 0; //result

main()
{
 result = dotp4clasmfunc(x,y,count); //call linear ASM func
 printf("result = %d decimal \n", result); //print result
}

 FIGURE 3.19. C program calling a linear ASM function to fi nd the sum of products
(dotp4clasm.c) .

 Programming Examples Using C, Assembly, and Linear Assembly 141

of the linear assembly function called is preceded by an underscore since the calling
function is in C. The directive .def defi nes the function.

 Functional units are optional as in an assembly - coded program. Registers a , b ,
 prod , and sum are defi ned by the linear assembler directive .reg . The addresses of
the two arrays x and y and the size of the array (count) are passed to the linear
assembly function through the registers ap , bp , and count . Both ap and bp are
registers used as pointers, as in C code. The instruction fi eld is seen to be as in an
assembly - coded program, and the subsequent fi eld uses a syntax as in C program-
ming. For example, the instruction

 loop: ldh * ap++,a

(the fi rst time through the loop section of code) loads the content in memory,
whose address is specifi ed by register ap , into register a . Then the pointer register
 ap is postincremented to point to the next higher memory address, pointing at the
memory location containing the second value of x within the x array. The value of
the sum of the products is accumulated in sum , which is returned to the C calling
program.

 Build and run this project as dotp4clasm . Verify that the following is printed:
 result = 40 . You may wish to profi le the linear assembly code function and
compare its execution time with that of the C - coded version in Example 1.3 .

 Example 3.7: Factorial Using C Calling a Linear Assembly Function
(factclasm)

 Figure 3.21 shows a listing of the C program factclasm.c , which calls the linear
 asm function factclasmfunc.sa , shown in Figure 3.22 , to calculate the factorial of
a number less than 8. See also Example 3.2 , which fi nds the factorial of a number
using a C program that calls an asm function. Example 3.6 illustrates a C program

 FIGURE 3.20. Linear ASM function called from C to fi nd the sum of products
(dotp4clasmfunc.sa) .

;Dotp4clasmfunc.sa Linear assembly function to multiply two arrays
 .ref _dotp4clasmfunc ;ASM func called from C
_dotp4clasmfunc: .cproc ap,bp,count ;start section linear ASM
 .reg a,b,prod,sum ;asm optimizer directive
 zero sum ;init sum of products
loop: ldh *ap++,a ;pointer to 1st array->a
 ldh *bp++,b ;pointer to 2nd array->b
 mpy a,b,prod ;product = a*b
 add prod,sum,sum ;sum of products -->sum
 sub count,1,count ;decrement counter
 [count] b loop ;loop back if count # 0
 .return sum ;return sum as result
 .endproc ;end linear ASM function

142 Architecture and Instruction Set of the C6x Processor

calling a linear ASM function to fi nd the sum of products and is instructive for this
project. Examples 3.2 and 3.6 cover the essential background for this example.

 Support fi les for this project include factclasm.c , factclasmfunc.sa , rts6700.
lib , and C6713dsk.cmd . Build and run this project as factclasm . Verify that the
result of 7! is printed, or factorial = 5040 .

 3.22 ASSIGNMENTS

 1. Write a C program that calls an assembly function that takes input values a
and b from the C program to calculate the following: [a 2 + (a + 1) 2 + (a + 2) 2
 + · · · + (2 a − 1) 2] − [b 2 + (b + 1) 2 + (b + 2) 2 + · · · + (2 b − 1) 2]. Set a = 3 and
 b = 2 in the C program and verify that the result is printed as 37.

 2. Write a C program that calls an assembly function to obtain the determinant
of a 3 × 3 matrix. Set the matrix values in the C program. The fi rst row values
are {4, 5, 9}; the second row values are {8, 6, 5}, and the third row values are
{2, 1, 2}. Verify that the resulting determinant is printed within CCS as − 38.

;Factclasmfunc.sa Linear ASM function called from C to find factorial

 .ref _factclasmfunc ;Linear ASM func called from C
_factclasmfunc: .cproc number ;start of linear ASM function
 .reg a,b ;asm optimizer directive
 mv number,b ;setup loop count in b
 mv number,a ;move number to a
 sub b,1,b ;decrement loop counter
loop: mpy a,b,a ;n(n-1)
 sub b,1,b ;decrement loop counter
 [b] b loop ;loop back to loop if count #0
 .return a ;result to calling function
 .endproc ;end of linear ASM function

 FIGURE 3.22. Linear ASM function called from C that fi nds the factorial of a number
(factclasmfunc.sa).

//Factclasm.c Factorial of number. Calls linear ASM function

#include <stdio.h> //for print statement
void main()
{
 short number = 7; //set value
 short result; //result of factorial
 result = factclasmfunc(number); //call ASM function factlasmfunc
 printf("factorial = %d", result); //result from linear ASM function
}

 FIGURE 3.21. C program that calls a linear ASM function to fi nd the factorial of a number
(factclasm.c).

 FIGURE 3.23. Partial programs (C and ASM function) to multiply two numbers using the
dip switches.

Partial programs C/ASM function to multiply 2 numbers using switches
..
while(m == 100) //check for first SW pressed
{
 if(DSK6713_DIP_get(0)== 0) //true if SW0 is pressed
 {
 m = 1; //value if SW0 is pressed
 while(DSK6713_DIP_get(0)==0) DSK6713_LED_on(0);//ON until released
 for(delay=0; delay<5000000; delay++){} //debounce of SW0
 }
 else if(DSK6713_DIP_get(1)==0) //true if SW1 is pressed
 {
 m = 2;
 .
 .
 else m = 100;
 .
 .
 while(ii == 0)
 {
 result = values(n, m); //result from ASM function in A4
 led0 = result0(result); //returns a 0 or 1 to led0
 if(led0==1) DSK6713_LED_on(0); //if led0 is 1 turn it on
 .
 .
;ASM function
 ..
_values: MV A4,A5 ;setup n as loop counter
 MV B4,B1
LOOP: ADD A5,A4,A4 ;accumulate in A4
 SUB B1,1,B1 ;decrement loop counter
 [B1] B LOOP ;branch to LOOP if B1#0
 NOP 5 ;five NOPs for delay slots
 SUB A4,A5,A4 ;answer into A4
 B B3 ;return to calling routine
 NOP 5 ;five NOPs for delay slots

_result0: SHL A4,31,A4 ;shift left 31 bits to keep LSB
 SHRU A4,31,A4 ;shift right 31 bits to make A4=0 or 1
 B B3 ;return to calling routine
 NOP 5 ;five NOPs for delay slots

 3. Write a C program multi_casm.c that calls an assembly function multi_
casmfunc.asm to multiply two numbers using the onboard dip switches. The
maximum product is 3 × 4 = 12 or 4 × 3 = 12. Note that 4 × 4 = 16 cannot be
represented with the four dip switches. Use delay loops for debouncing the
switches. A partial program is included in Figure 3.23 . In the main C source

 Assignments 143

144 Architecture and Instruction Set of the C6x Processor

program, the values of m = 100 and n = 100 are to check when the fi rst and
second switches are pressed. SW0 is tested and, if pressed, m = 1, representing
the fi rst value. Similarly, m = 2, 3, 4 if SW1, SW2, or SW3 is pressed, respec-
tively. Then all LEDs are turned off. This process is repeated while n = 100 to
check for the second value (when the second switch is pressed).

 The function values performs the multiplication, adding m (n times) with m
and n passed to the asm function through A4 and B4, respectively. Note that
 led0 is turned on if led0 = 1 (returned from the function result0). Similarly for
 led1 , . . . , led3 . Then, m and n are reset to 100 and ii to 1. The asm function
 multi_casmfunc.asm includes the functions values, result0, . . . , result3 . The
functions result1, result2, result3 are similar to result0 , but A4 must be shifted
fi rst by 1, by 2, and by 3, respectively, in each of these functions. Build and run
this project example as multi_casm . Press SW2, then SW3 to obtain m = 3 and
 n = 4, and verify that LED2 and LED3 turn on to represent the result of 12.

 4. Write a C program that calls a linear assembly or assembly function to gener-
ate a random noise sequence, based on the linear feedback shift register
(LFSR) shown in Figure 3.24 . In lieu of starting with a 16 - bit seed value, 16
integer values are used in an array as the seeds. In this fashion, each 32 - bit
seed is treated as a theoretical bit. The “ tap points ” are chosen as shown (bits
1, 2, 11, 15, and 16) to produce a large string of random numbers [11] . Within
the asm or linear asm function, each integer value is taken as a seed, and
you can use instructions such as LDW/STW , repeated 15 times, to move each
seed “ up. ” XOR bits 1 and 2, the result of which is XORed with bit 11, and so
on, as shown in Figure 3.24 . The resulting seed generated is placed at the
 “ bottom ” of the array, and the process is repeated. The output is a 32 - bit value.

 FIGURE 3.24. Pseudorandom noise generation diagram using LFSR.

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

X
O

R

X
O

R

X
O

R

X
O

R

Seed Array

Sampling at 8 kHz, verify that the generated noise spectrum is fl at until it rolls
off at about 3.8 kHz, which is the cutoff frequency of the reconstruction fi lter
on the codec.

REFERENCES

 1. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken, NJ , 1990 .

 2. R. Chassaing , Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK , Wiley , Hoboken, NJ , 1999 .

 3. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken, NJ ,
 1992 .

 4. R. Chassaing and P. Martin , Parallel processing with the TMS320C40 , Proceedings of the
1995 ASEE Annual Conference , June 1995 .

 5. R. Chassaing and R. Ayers , Digital signal processing with the SHARC , Proceedings of
the 1996 ASEE Annual Conference , June 1996 .

 6. TMS320C6000 CPU and Instruction Set , SPRU189F, Texas Instruments, Dallas, TX,
 2000 .

 7. TMS320C6000 Peripherals , SPRU190D, Texas Instruments, Dallas, TX, 2001 .

 8. TMS320C6000 Programmer ’ s Guide , SPRU198G, Texas Instruments, Dallas, TX, 2002 .

 9. TMS320C6000 Assembly Language Tools User ’ s Guide , SPRU186K, Texas Instruments,
Dallas, TX, 2002 .

 10. TMS320C6000 Optimizing C Compiler User ’ s Guide , SPRU187K, Texas Instruments,
Dallas, TX, 2002 .

 11. Linear Feedback Shift Registers, New Wave Instruments, 2002 ,
www.newwaveinstruments.com/resources .

References 145

 Finite Impulse Response Filters

146

 • Introduction to the z - transform

 • Design and implementation of fi nite impulse response (FIR) fi lters

 • Programming examples using C and TMS320C6x code

 The z - transform is introduced in conjunction with discrete - time signals. Mapping
from the s - plane, associated with the Laplace transform, to the z - plane, associated
with the z - transform, is illustrated. FIR fi lters are designed with the Fourier series
method and implemented by programming a discrete convolution equation. Effects
of window functions on the characteristics of FIR fi lters are covered.

 4.1 INTRODUCTION TO THE z - TRANSFORM

 The z - transform is utilized for the analysis of discrete - time signals, similar to the
Laplace transform for continuous - time signals. We can use the Laplace transform
to solve a differential equation that represents an analog fi lter or the z - transform
to solve a difference equation that represents a digital fi lter. Consider an analog
signal x (t) ideally sampled,

 x t x t t kT
k

s () () ()= −
=

∞
∑ δ

0

 (4.1)

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

4

where d (t − kT) is the impulse (delta) function delayed by kT and T = 1/ F s is the
sampling period. The function x s (t) is zero everywhere except at t = kT . The Laplace
transform of x s (t) is

X s x t e dt

x t t x t t T e dt

s s
st

st

() ()

{ () () () () }

=

= + − + ⋅ ⋅ ⋅

−

−

∞

∞
∫
∫

0

0
δ δ (4.2)

 From the property of the impulse function

 f t t kT dt f kT() () ()δ − =
∞

∫0

 X s (s) in (4.2) becomes

 X s x x T e x T e x nT es
sT sT nsT

n

() () () () ()= + + + ⋅ ⋅ ⋅ =− − −

=

∞
∑0 2 2

0

 (4.3)

 Let z = e sT in (4.3) , which becomes

 X z x nT z n

n

() ()= −

=

∞
∑

0

 (4.4)

 Let the sampling period T be implied; then x (nT) can be written as x (n), and (4.4)
becomes

 X z x n z ZT x nn

n

() () { ()}= =−

=

∞
∑

0

 (4.5)

which represents the z - transform (ZT) of x (n). There is a one - to - one correspon-
dence between x (n) and X (z), making the z - transform a unique transformation.

 Exercise 4.1: ZT of Exponential Function x (n) = e nk

 The ZT of x (n) = e nk , n ≥ 0 and k a constant, is

 X z e z e znk n

n

k n

n

() ()= =−

=

−

=

∞ ∞
∑ ∑

0

1

0

 (4.6)

 Using the geometric series, obtained from a Taylor series approximation

 u
u

un

n

=
−

<
=

∞
∑ 1

1
1

0

 Introduction to the z-Transform 147

148 Finite Impulse Response Filters

 (4.6) becomes

 X z
e z

z

z ek k() =
−

=
−−

1
1 1 (4.7)

for | e k z − 1 | < 1 or | z | > | e k |. If k = 0, the ZT of x (n) = 1 is X (z) = z /(z − 1).

 Exercise 4.2: ZT of Sinusoid x (n) = sin n w T

 A sinusoidal function can be written in terms of complex exponentials. From Euler ’ s
formula e ju = cos u + j sin u ,

sin n T

e e
j

jn T jn T

ω
ω ω

=
− −

2

 Then

 X z
j

e z e zjn T n jn T n

n

() ()= −− − −

=

∞
∑1

2 0

ω ω (4.8)

 Using the geometric series as in Exercise 4.1, one can solve for X (z); or the results
in (4.7) can be used with k = j w T in the fi rst summation of (4.8) and k = − j w T in
the second, to yield

X z
j

z

z e

z

z e

j
z ze z ze

z z e

j T j T

j T j T

j

()

(

=
−

−
−

=
− − +
−

−

−

−

1
2
1
2

2 2

2

ω ω

ω ω

ωω ωT j Te+ +) 1
 (4.9)

=
− +

=
− −

>

z T

z z T
Cz

z Az B
z

sin
cos

ω
ω2

2

2 1

1 (4.10)

where A = 2 cos w T , B = − 1, and C = sin w T . In Chapter 5 we generate a sinusoid
based on this result. We can readily generate sinusoidal waveforms of different fre-
quencies by changing the value of w in (4.9) .

 Similary, using Euler ’ s formula for cos n w T as a sum of two complex exponentials,
one can fi nd the ZT of x (n) = cos n w T = (e jn w T + e − jn w T)/2, as

 X z
z z T

z z T
z()

cos
cos

=
−

− +
>

2

2 2 1
1

ω
ω

 (4.11)

 4.1.1 Mapping from s - Plane to z - Plane

 The Laplace transform can be used to determine the stability of a system. If the
poles of a system are on the left side of the j w axis on the s - plane, a time - decaying
system response will result, yielding a stable system. If the poles are on the right
side of the j w axis, the response will grow in time, making such a system unstable.
Poles located on the j w axis, or purely imaginary poles, will yield a sinusoidal
response. The sinusoidal frequency is represented by the j w axis, and w = 0
represents dc (direct current).

 In a similar fashion, we can determine the stability of a system based on the
location of its poles on the z - plane associated with the z - transform, since we can
fi nd corresponding regions between the s - plane and the z - plane. Since z = e sT and
 s = s + j w ,

 z e eT j T= σ ω (4.12)

 Hence, the magnitude of z is | z | = e s T with a phase of q = w T = 2 p f / F s , where
 F s is the sampling frequency. To illustrate the mapping from the s - plane to the z -
 plane, consider the following regions from Figure 4.1 .

 s < 0
 Poles on the left side of the j w axis (region 2) in the s - plane represent a stable
system, and (4.12) yields a magnitude of | z | < 1, because e s T < 1. As s varies from
 − ∞ to 0 − , | z | will vary from 0 to 1 − . Hence, poles inside the unit circle within region
2 in the z - plane will yield a stable system. The response of such a system will be a
decaying exponential if the poles are real or a decaying sinusoid if the poles are
complex.

 FIGURE 4.1. Mapping from the s - plane to the z - plane.

 Introduction to the z-Transform 149

150 Finite Impulse Response Filters

 s > 0
 Poles on the right side of the j w axis (region 3) in the s - plane represent an unstable
system, and (4.12) yields a magnitude of | z | > 1, because e s T > 1. As s varies from 0 +
to ∞ , | z | will vary from 1 + to ∞ . Hence, poles outside the unit circle within region 3
in the z - plane will yield an unstable system. The response of such a system will be
an increasing exponential if the poles are real or a growing sinusoid if the poles are
complex.

 s = 0
 Poles on the j w axis (region 1) in the s - plane represent a marginally stable
system, and (4.12) yields a magnitude of | z | = 1, which corresponds to region 1.
Hence, poles on the unit circle in region 1 in the z - plane will yield a sinusoid.
In Chapter 5 we implement a sinusoidal signal by programming a difference
equation with its poles on the unit circle. Note that from Exercise 4.2 the poles of
 X (s) = sin n w T in (4.9) or X (s) = cos n w T in (4.11) are the roots of z 2 − 2 z cos w T +
 1, or

p
T T

T T T j T

1 2

2

2

2 4 4
2,

cos cos

cos sin cos sin

= ± −

= ± − = ±

ω ω

ω ω ω ω (4.13)

 The magnitude of each pole is

 p p T T1 2
2 2 1= = + =cos sinω ω (4.14)

 The phase of z is q = w T = 2 p f / F s . As the frequency f varies from zero to ± F s /2, the
phase q will vary from 0 to p .

 4.1.2 Difference Equations

 A digital fi lter is represented by a difference equation in a similar fashion as an
analog fi lter is represented by a differential equation. To solve a difference equation,
we need to fi nd the z - transform of expressions such as x (n − k), which corresponds
to the k th derivative d k x (t)/ dt k of an analog signal x (t). The order of the difference
equation is determined by the largest value of k . For example, k = 2 represents a
second - order derivative. From (4.5)

 X z x n z x x z x zn

n

() () () () ()= = + + + ⋅ ⋅ ⋅−

=

− −
∞
∑

0

1 20 1 2 (4.15)

 Then the z - transform of x (n − 1), which corresponds to a fi rst - order derivative dx / dt ,
is

ZT x n x n z

x x z x z x z

n

n

[()] ()

() () () ()

− = −

= − + + + + ⋅ ⋅

−

=
− − −

∞
∑1 1

1 0 1 2
0

1 2 3 ⋅⋅
= − + + + + ⋅ ⋅ ⋅[]
= − +

− − −

−

x z x x z x z
x z X z
() () () ()
() ()

1 0 1 2
1

1 1 2

1 (4.16)

where we used (4.15) , and x (− 1) represents the initial condition associated with a
fi rst order difference equation. Similarly, the ZT of x (n − 2), equivalent to a second
derivative d 2 x (t)/ dt 2 , is

ZT x n x n z

x x z x z x z

n

n

[()] ()

() () () ()

− = −

= − + − + + + ⋅

−

=
− − −

∞
∑2 2

2 1 0 1
0

1 2 3 ⋅⋅ ⋅
= − + − + + + ⋅ ⋅ ⋅
= − + − +

− − −

− −
x x z z x x z
x x z z
() () [() ()]
() ()

2 1 0 1
2 1

1 2 1

1 22 X z() (4.17)

where x (− 2) and x (− 1) represent the two initial conditions required to solve a second
order difference equation. In general,

 ZT x n k z x m z z X zk m k

m

k

[()] () ()− = − +−

=
∑

1

 (4.18)

 If the initial conditions are all zero, then x (− m) = 0 for m = 1, 2, . . . , k , and (4.18)
reduces to

 ZT x n k z X zk[()] ()− = − (4.19)

 4.2 DISCRETE SIGNALS

 A discrete signal x (n) can be expressed as

 x n x m n m
m

() () ()= −
=−∞

∞
∑ δ (4.20)

where d (n − m) is the impulse sequence d (n) delayed by m , which is equal to 1 for
 n = m and is 0 otherwise. It consists of a sequence of values x (1), x (2), . . . , where n
is the time, and each sample value of the sequence is taken one sample time apart,
determined by the sampling interval or sampling period T = 1/ F s .

 Discrete Signals 151

152 Finite Impulse Response Filters

 The signals and systems that we deal with in this book are linear and time invari-
ant, where both superposition and shift invariance apply. Let an input signal x (n)
yield an output response y (n), or x (n) → y (n). If a 1 x 1 (n) → a 1 y 1 (n) and a 2 x 2 (n) →
 a 2 y 2 (n), then a 1 x 1 (n) + a 2 x 2 (n) → a 1 y 1 (n) + a 2 y 2 (n), where a 1 and a 2 are constants. This
is the superposition property, where an overall output response is the sum of the
individual responses to each input. Shift invariance implies that if the input is
delayed by m samples, the output response will also be delayed by m samples, or
 x (n − m) → y (n − m). If the input is a unit impulse d (n), the resulting output response
is h (n), or d (n) → h (n), and h (n) is designated as the impulse response. A delayed
impulse d (n − m) yields the output response h (n − m) by the shift - invariance
property.

 Furthermore, if this impulse is multiplied by x (m), then x (m) d (n − m) →
 x (m) h (n − m). Using (4.20) , the response becomes

 y n x m h n m
m

() () ()= −
=−∞

∞
∑ (4.21)

which represents a convolution equation. For a causal system, (4.21) becomes

 y n x m h n m
m

() () ()= −
=−∞

∞
∑ (4.22)

 Letting k = n − m in (4.22) yields

 y n h k x n k
k

() () ()= −
=

∞
∑

0
 (4.23)

 4.3 FIR FILTERS

 Filtering is one of the most useful signal processing operations [1 – 47] . DSPs are now
available to implement digital fi lters in real time. The TMS320C6x instruction set
and architecture makes it well suited for such fi ltering operations. An analog fi lter
operates on continuous signals and is typically realized with discrete components
such as operational amplifi ers, resistors, and capacitors. However, a digital fi lter, such
as an FIR fi lter, operates on discrete - time signals and can be implemented with a
DSP such as the TMS320C6x. This involves use of an ADC to capture an external
input signal, processing the input samples, and sending the resulting output through
a DAC.

 Within the last few years, the cost of DSPs has been reduced signifi cantly,
which adds to the numerous advantages that digital fi lters have over their analog
counterparts. These include higher reliability, accuracy, and less sensitivity to tem-
perature and aging. Stringent magnitude and phase characteristics can be achieved
with a digital fi lter. Filter characteristics such as center frequency, bandwidth, and
fi lter type can readily be modifi ed. A number of tools are available to design and

implement within a few minutes an FIR fi lter in real time using the TMS320C6x -
 based DSK. The fi lter design consists of the approximation of a transfer function
with a resulting set of coeffi cients.

 Different techniques are available for the design of FIR fi lters, such as a com-
monly used technique that utilizes the Fourier series, as discussed in Section 4.4.
Computer - aided design techniques such as that of Parks and McClellan are also
used for the design of FIR fi lters [5, 6] .

 The convolution equation (4.23) is very useful for the design of FIR fi lters, since
we can approximate it with a fi nite number of terms, or

 y n h k x n k
k

N

() () ()= −
=

−

∑
0

1

 (4.24)

 If the input is a unit impulse x (n) = d (0), the output impulse response will be
 y (n) = h (n). We will see in Section 4.4 how to design an FIR fi lter with N coeffi cients
 h (0), h (1), . . . , h (N − 1), and N input samples x (n), x (n − 1), . . . , x (n − (N − 1)). The
input sample at time n is x (n), and the delayed input samples are x (n − 1), . . . ,
 x (n − (N − 1)). Equation (4.24) shows that an FIR fi lter can be implemented with
knowledge of the input x (n) at time n and of the delayed inputs x (n − k). It is non-
recursive, and no feedback or past outputs are required. Filters with feedback
(recursive) that require past outputs are discussed in Chapter 5 . Other names used
for FIR fi lters are transversal and tapped - delay fi lters.

 The z - transform of (4.24) with zero initial conditions yields

 Y z h X z h z X z h z X z h N z X zN() () () () () () () () (()= + + + ⋅ ⋅ ⋅ + −− − − −0 1 2 11 2 1)) (4.25)

 Equation (4.24) represents a convolution in time between the coeffi cients
and the input samples, which is equivalent to a multiplication in the frequency
domain, or

 Y z H z X z() () ()= (4.26)

where H (z) = ZT [h (k)] is the transfer function, or

H z h k z h h z h z h N zk N

k

N

() () () () () () ()= = + + + ⋅ ⋅ ⋅ + −− − − − −

=

−

∑ 0 1 2 11 2 1

0

1

== + + + ⋅ ⋅ ⋅ + −− − −

−
h z h z h z h N

z

N N N

N

() () () ()()0 1 2 11 2 3

1
 (4.27)

which shows that there are N − 1 poles, all of which are located at the origin. Hence,
this FIR fi lter is inherently stable, with its poles located only inside the unit circle.
We usually describe an FIR fi lter as a fi lter with “ no poles. ” Figure 4.2 shows an FIR
fi lter structure representing (4.24) and (4.25) .

 FIR Filters 153

154 Finite Impulse Response Filters

 A very useful feature of an FIR fi lter is that it can guarantee linear phase . The
linear phase feature can be very useful in applications such as speech analysis, where
phase distortion can be critical. For example, with linear phase, all input sinusoidal
components are delayed by the same amount. Otherwise, harmonic distortion can
occur. Linear phase fi lters are FIR fi lters; however, not all FIR fi lters have linear
phase.

 The Fourier transform of a delayed input sample x (n − k) is e − j w kT X (j w),
yielding a phase of q = − w kT , which is a linear function in terms of w . Note that
the group delay function, defi ned as the derivative of the phase, is a constant, or
 d q / d w = − kT .

 4.4 FIR LATTICE STRUCTURE

 The lattice structure is commonly used for applications in adaptive fi ltering and
speech processing [48, 49] , such as in a linear predictive coding (LPC) application.
An N th order lattice structure is shown in Figure 4.3 . The coeffi cients k 1 , k 2 , . . . , k N
are commonly referred to as refl ection coeffi cients (or k - parameters). An advantage
of this structure is that the frequency response is not as sensitive as the previous
structure to small changes in the coeffi cients. From the fi rst section in Figure 4.3 ,
with N = 1, we have

 y n x n k x n1 1 1() () ()= + − (4.28)

 e n k x n x n1 1 1() () ()= + − (4.29)

 FIGURE 4.2. FIR fi lter structure showing delays.

 FIGURE 4.3. FIR lattice structure.

 From the second section (cascaded with the fi rst), using (4.28) and (4.29) ,

y n y n k e n
x n k x n k k x n k x n
x

2 1 2 1

1 2 1 2

1
1 1 2

() () ()
() () () ()
(

= + −
= + − + − + −
= nn k k k x n k x n) () () ()+ + − + −1 1 2 21 2 (4.30)

and

e n k y n e n
k x n k k x n k x n x n
k

2 2 1 1

2 2 1 1

2

1
1 1 2

() () ()
() () () ()

= + −
= + − + − + −
= xx n k k k x n x n() () () ()+ + − + −1 1 2 1 2 (4.31)

 For a specifi c section i ,

 y n y n k e ni i i i() () ()= + −− −1 1 1 (4.32)

 e n k y n e ni i i i() () ()= + −− −1 1 1 (4.33)

 It is instructive to see that (4.30) and (4.31) have the same coeffi cients but in
reversed order. It can be shown that this property also holds true for a higher order
structure. In general, for an N th order FIR lattice system, (4.30) and (4.31)
become

 y n a x n iN i
i

N

() ()= −
=
∑

0

 (4.34)

and

 e n a x n iN N i
i

N

() ()= −−
=
∑

0

 (4.35)

with a 0 = 1. If we take the ZT of (4.34) and (4.35) and fi nd their impulse
responses,

 Y z a zN i
i

i

N

() = −

=
∑

0

 (4.36)

 E z a zN N i
i

i

N

() = −
−

=
∑

0

 (4.37)

 It is interesting to note that

 E z z Y zN
N

N() (/)= − 1 (4.38)

 FIR Lattice Structure 155

156 Finite Impulse Response Filters

 Equations (4.36) and (4.37) are referred to as image polynomials. For two sections,
 k 2 = a 2 ; in general,

 k aN N= (4.39)

 For this structure to be useful, it is necessary to fi nd the relationship between the
 k - parameters and the impulse response coeffi cients. The lattice network is highly
structured, as seen in Figure 4.3 and as demonstrated through the previous differ-
ence equations. Starting with k N in (4.39) , we can recursively (with reverse recur-
sion) compute the preceding k - parameters, k N − 1 , . . . , k 1 .

 Consider an intermediate section r and, using (4.36) and (4.37) ,

 Y z Y z k z E zr r r r() () ()= +−
−

−1
1

1 (4.40)

 E z k Y z z E zr r r r() () ()= +−
−

−1
1

1 (4.41)

 Solving for E r − 1 (z) in (4.41) and substituting it into (4.40) , Y r (z) becomes

 Y z Y z k z
E z k Y z

zr r r
r r r() ()
() ()

= +
−

−
− −

−1
1 1

1 (4.42)

 Equation (4.42) now can be solved for Y r − 1 (z) in terms of Y r (z), or

 Y z
Y z k E z

k
kr

r r r

r
r− =

−
−

=1 21
1()

() ()
, (4.43)

 Using (4.38) with N = r , (4.43) becomes

 Y z
Y z k z Y z

kr
r r

r
r

r
−

−

=
−

−1 2

1
1

()
() (/) (4.44)

 Equation (4.44) is an important relationship that shows that by using a reverse
recursion procedure, we can fi nd Y r − 1 from Y r , where 1 ≤ r ≤ N . Consequently, we
can also fi nd the k - parameters starting with k r and proceeding to k 1 . For r sections,
 (4.36) can be written

 Y z a zr ri
i

i

r

() = −

=
∑

0

 (4.45)

 Replacing i by r − i , and z by 1/ z , (4.45) becomes

 Y
z

a zr r r i
r i

i

r1

0

 = −

−

=
∑ () (4.46)

 Using (4.45) and (4.46) , Equation (4.44) becomes

 a z
a z k z a z

kr i
i

r
i i

r
ri

i
r

r
i
r

r r i
r i

r
()

()
−

=

− =
− −

= −
−

∑ ∑∑=
−

−1
0

0 0
21

 (4.47)

 =
−

−
=

−
= −

−∑∑ i
r

ri
i

r i
r

r r i
i

r

a z k a z

k
0 0

21
() (4.48)

from which

 a
a k a

k
i rr i

ri r r r i

r
()

() , , , . . . ,−
−=

−
−

= −1 21
0 1 1 (4.49)

with r = N , N − 1, . . . , 1, | k r | ≠ 1, i = 0, 1, . . . , r − 1, and

 k a r N Nr rr= = −, , , . . . ,1 1 (4.50)

 Exercise 4.3: FIR Lattice Structure

 This exercise illustrates the use of (4.49) and (4.50) to compute the k - parameters.
Given that the impulse response of an FIR fi lter in the frequency domain is

 Y z z z2
1 21 0 2 0 5() . .= + −− −

 Then, from (4.45) , with r = 2,

 Y z a a z a z2 20 21
1

22
2() = + +− −

where a 20 = 1, a 21 = 0.2, and a 22 = − 0.5. Starting with r = 2 in (4.50) ,

 k a2 22 0 5= = − .

 Using (4.49) , for i = 0,

a

a k a

k10
20 2 22

2
2 21

1 0 5 0 5
1 0 5

1=
−
−

=
− − −

− −
=

(.)(.)
(.)

and, for i = 1,

a

a k a

k11
21 2 21

2
2 21

0 2 0 5 0 2
1 0 5

0 4=
−
−

=
− −
− −

=
. (.)(.)

(.)
.

 FIR Lattice Structure 157

158 Finite Impulse Response Filters

 From (4.50) ,

 k a1 11 0 4= = .

 Note that the values for the k - parameters k 2 = − 0.5 and k 1 = 0.4 can be verifi ed using
 (4.30) .

 4.5 FIR IMPLEMENTATION USING FOURIER SERIES

 The design of an FIR fi lter using a Fourier series method is such that the magnitude
response of its transfer function H (z) approximates a desired magnitude response.
The transfer function desired is

 H C e nd n
jn T

n

()ω ω= < ∞
=−∞

∞
∑ (4.51)

where C n are the Fourier series coeffi cients. Using a normalized frequency variable
 � such that � = f / F N , where F N is the Nyquist frequency, or F N = F s /2, the desired
transfer function in (4.51) can be written

 H C ed n
jn

n

()ν πν=
=−∞

∞
∑ (4.52)

where w T = 2 p f / F s = p � and | � | < 1. The coeffi cients C n are defi ned as

C H e d

H n j n d

n d
jn

d

=

= −

−
−

−

∫
∫

1
2 1

1

1
2 1

1

()

()(cos sin)

ν ν

ν πν πν ν

πν

 (4.53)

 Assume that H d (�) is an even function (frequency selective fi lter); then (4.53)
reduces to

 C H n d nn d= ∫ ()cosν πν ν
0

1
0� (4.54)

since H d (�) sin n p � is an odd function and

 H n dd()sinν πν ν =
−∫ 0

1

1

with C n = C − n . The desired transfer function H d (�) in (4.52) is expressed in terms of
an infi nite number of coeffi cients, and to obtain a realizable fi lter, we must truncate
 (4.52) , which yields the approximated transfer function

 H C ea n
jn

n Q

Q

()ν π=
=−
∑ � (4.55)

where Q is positive and fi nite and determines the order of the fi lter. The larger the
value of Q , the higher the order of the FIR fi lter and the better the approximation
in (4.55) of the desired transfer function. The truncation of the infi nite series with
a fi nite number of terms results in ignoring the contribution of the terms outside a
rectangular window function between − Q and + Q . In Section 4.6 we see how the
characteristics of a fi lter can be improved by using window functions other than
rectangular.

 Let z = e j p � ; then (4.55) becomes

 H z C za n
n

n Q

Q

() =
=−
∑ (4.56)

with the impulse response coeffi cients C − Q , C − Q +1 , . . . , C − 1 , C 0 , C 1 , . . . , C Q − 1 , C Q . The
approximated transfer function in (4.56) , with positive powers of z , implies a non-
causal or not realizable fi lter that would produce an output before an input is
applied. To remedy this situation, we introduce a delay of Q samples in (4.56) to
yield

 H z z H z C zQ
a n

n Q

n Q

Q

() ()= =− −

=−
∑ (4.57)

 Let n − Q = − i ; then H (z) in (4.57) becomes

 H z C zQ i
i

i

Q

() = −
−

=
∑

0

2

 (4.58)

 Let h i = C Q − i and N − 1 = 2 Q ; then H (z) becomes

 H z h zi
i

i

N

() = −

=

−

∑
0

1

 (4.59)

where H (z) is expressed in terms of the impulse response coeffi cients h i , and h 0 =
 C Q , h 1 = C Q − 1 , . . . , h Q = C 0 , h Q +1 = C − 1 = C 1 , . . . , h 2 Q = C − Q . The impulse response
coeffi cients are symmetric about h Q , with C n = C − n .

 FIR Implementation Using Fourier Series 159

160 Finite Impulse Response Filters

 The order of the fi lter is N = 2 Q + 1. For example, if Q = 5, the fi lter will have
11 coeffi cients h 0 , h 1 , . . . , h 10 , or

 h h C0 10 5= =

 h h C1 9 4= =

 h h C2 8 3= =

 h h C3 7 2= =

 h h C4 6 1= =

 h C5 0=

 Figure 4.4 shows the desired transfer functions H d (�) ideally represented for the
frequency selective fi lters: lowpass, highpass, bandpass, and bandstop for which the
coeffi cients C n = C − n can be found.

 1. Lowpass: C 0 = � 1

 C H n d
n

nn d= ∫ ()cos
sin

ν πν ν
ν

π0

11ν
=

π
 (4.60)

 FIGURE 4.4. Desired transfer function: (a) lowpass, (b) highpass, (c) bandpass, and
(d) bandstop.

(a)

|Hd(v)|

|Hd(v)|

1

1

v1 v

(c)
v1 v2 v

(b)

|Hd(v)|

|Hd(v)|

1

1

1

1

v1 v

(d)
v1 v2 v

 2. Highpass: C 0 = 1 − � 1

 C H n d
n

nn d=
1

∑ ()cos
sin

ν πν ν
πν

πν

1
1= (4.61)

 3. Bandpass: C 0 = � 2 − � 1

 C H n d
n n

nn d= −
∫ ()cos

sin sin
�

�

�
πν ν ν ν

π1

2 2 1= π π
 (4.62)

 4. Bandstop: C 0 = 1 − (� 2 − � 1)

 C H n d H n d
n n

nn d d= + = −
∫ ∫()cos ()cos

sin sinν πν ν ν πν ν πν πν
π0

1 1 21

2

�

�
 (4.63)

where � 1 and � 2 are the normalized cutoff frequencies shown in Figure 4.4 .

 Several fi lter design packages are currently available for the design of FIR fi lters,
as discussed later. When we implement an FIR fi lter, we develop a generic program
such that the specifi c coeffi cients will determine the fi lter type (e.g., whether lowpass
or bandpass).

 Exercise 4.4: Lowpass FIR Filter

 We will fi nd the impulse response coeffi cients of an FIR fi lter with N = 11, a sampling
frequency of 10 kHz, and a cutoff frequency f c = 1 kHz. From (4.60) ,

C

f

F
c

N
0 1 0 2= = =ν .

where F N = F s /2 is the Nyquist frequency and

 C
n

n
nn = = ± ± ±

sin .
, , . . . ,

0 2
1 2 5

π
π

 (4.64)

 Since the impulse response coeffi cients h i = C Q − i , C n = C − n , and Q = 5, the impulse
response coeffi cients are

h h h h
h h h h
h h h

0 10 3 7

1 9 4 6

2 8 5

0 0 1514
0 0468 0 1872
0 1009

= = = =
= = = =
= =

.
. .
. == 0 2. (4.65)

 FIR Implementation Using Fourier Series 161

162 Finite Impulse Response Filters

 Note the symmetry of these coeffi cients about Q = 5. While N = 11 for an FIR fi lter
is low for a practical design, doubling this number can yield an FIR fi lter with much
better characteristics, such as selectivity. For an FIR fi lter to have linear phase, the
coeffi cients must be symmetric, as in (4.65) .

 4.6 WINDOW FUNCTIONS

 We truncated the infi nite series in the transfer function equation (4.52) to arrive at
 (4.55) . We essentially put a rectangular window function with an amplitude of 1
between − Q and + Q and ignored the coeffi cients outside that window. The wider
this rectangular window, the larger Q is and the more terms we use in (4.55) to get
a better approximation of (4.52) . The rectangular window function can therefore be
defi ned as

 w n
n Q

R() = ≤{1
0

for
otherwise (4.66)

 The transform of the rectangular window function w R (n) yields a sinc function in
the frequency domain. It can be shown that

 W e e e

Q

R
jn

n Q

Q
jQ jn

n

Q

()
sin

ν
πν

πν πν πν= =

 =

+()

=−

−

=
∑ ∑

0

2
2 1

2
/2sin()πν

 (4.67)

which is a sinc function that exhibits high sidelobes or oscillations caused by the
abrupt truncation, specifi cally, near discontinuities.

 A number of window functions are currently available to reduce these high
amplitude oscillations; they provide a more gradual truncation to the infi nite series
expansion. However, while these alternative window functions reduce the amplitude
of the sidelobes, they also have a wider mainlobe, which results in a fi lter with lower
selectivity. A measure of a fi lter ’ s performance is a ripple factor that compares the
peak of the fi rst sidelobe to the peak of the mainlobe (their ratio). A compromise
or trade - off is to select a window function that can reduce the sidelobes while
approaching the selectivity that can be achieved with the rectangular window func-
tion. The width of the mainlobe can be reduced by increasing the width of the
window (order of the fi lter). Later, we will plot the magnitude response of an FIR
fi lter that shows the undesirable sidelobes.

 In general, the Fourier series coeffi cients can be written

 ′ =C C w nn n () (4.68)

where w (n) is the window function. In the case of the rectangular window function,
 ′ =C Cn n . The transfer function in (4.59) can then be written

 ′ = ′
=

−
−∑H z h zi

i

N
i()

0

1

 (4.69)

where

 ′= ′ ≤ ≤−h C i Qi Q i 0 2 (4.70)

 The rectangular window has its highest sidelobe level, down by only − 13 dB from
the peak of its mainlobe, resulting in oscillations with an amplitude of considerable
size. On the other hand, it has the narrowest mainlobe that can provide high selec-
tivity. The following window functions are commonly used in the design of FIR
fi lters [12] .

 4.6.1 Hamming Window

 The Hamming window function [12, 25] is

 w n
n Q n Q

H()
. . cos(/)= + ≤{0 54 0 46

0
π for

otherwise
 (4.71)

which has the highest or fi rst sidelobe level at approximately − 43 dB from the peak
of the main lobe.

 4.6.2 Hanning Window

 The Hanning or raised cosine window function is

 w n
n Q n Q

HA()
. . cos(/)= + ≤{0 5 0 5

0
π for

otherwise
 (4.72)

which has the highest or fi rst sidelobe level at approximately − 31 dB from the peak
of the mainlobe.

 Window Functions 163

164 Finite Impulse Response Filters

 4.6.3 Blackman Window

 The Blackman window function is

 w n
n Q n Q n Q

B()
. . cos(/) . cos(/)= + + ≤{0 42 0 5 0 08 2

0
π π

otherwise
 (4.73)

which has the highest sidelobe level down to approximately − 58 dB from the peak
of the mainlobe. While the Blackman window produces the largest reduction in the
sidelobe compared with the previous window functions, it has the widest mainlobe.
As with the previous windows, the width of the mainlobe can be decreased by
increasing the width of the window.

 4.6.4 Kaiser Window

 The design of FIR fi lters with the Kaiser window has become very popular in recent
years. It has a variable parameter to control the size of the sidelobe with respect to
the mainlobe. The Kaiser window function is

 w n
I b I a n Q

K()
()/ ()= ≤{ 0 0

0 otherwise
 (4.74)

where a is an empirically determined variable, and b = a [1 − (n / Q) 2] 1/2 . I 0 (x) is the
modifi ed Bessel function of the fi rst kind defi ned by

 I x
x x x

n

n

n
0

2

2

2 2

2

2

1
0 25

1
0 25

2
1

2
()

.
(!)

(.)
(!)

(/)
!

= + + + ⋅ ⋅ ⋅ = +

=11

∞
∑ (4.75)

which converges rapidly. A trade - off between the size of the sidelobe and the width
of the mainlobe can be achieved by changing the length of the window and the
parameter a .

 4.6.5 Computer - Aided Approximation

 An effi cient technique is the computer - aided iterative design based on the Remez
exchange algorithm, which produces equiripple approximation of FIR fi lters [5, 6] .
The order of the fi lter and the edges of both passbands and stopbands are fi xed, and
the coeffi cients are varied to provide this equiripple approximation. This minimizes
the ripple in both the passbands and the stopbands. The transition regions are left
unconstrained and are considered “ don ’ t care ” regions, where the solution may fail.
Several commercial fi lter design packages include the Parks – McClellan algorithm
for the design of an FIR fi lter.

 Programming Examples Using C and ASM Code 165

 4.7 PROGRAMMING EXAMPLES USING C AND ASM CODE

 The following examples illustrate the implementation of FIR fi lters. Most of the
programs are written in C. A few examples, using a combination of C and assembly
language, illustrate the use of a circular buffer as a more effi cient way to update
delay samples, with the circular buffer in internal or external memory. Several dif-
ferent methods of displaying the magnitude frequency response of a fi lter are
presented.

 Example 4.1: Moving Average Filter (average)

 The moving average fi lter is widely used in DSP and arguably is the easiest of all
digital fi lters to understand. It is particularly effective at removing (high frequency)
random noise from a signal or at smoothing a signal.

 The moving average fi lter operates by taking the arithmetic mean of a number
of past input samples in order to produce each output sample. This may be repre-
sented by the equation

 y n
N

x n i
i

N

() ()= −
=

−

∑1

0

1

 (4.76)

where x (n) represents the n th sample of an input signal and y (n) the n th sample of
the fi lter output. The moving average fi lter is an example of convolution using a very
simple fi lter kernel or impulse response comprising N coeffi cients each of value 1 /N .
Equation (4.76) may be thought of as a particularly simple case of the more general
convolution sum implemented by a fi nite impulse response fi lter, and introduced in
Section 4.3; that is,

 y n h i x n i
i

N

() () ()= −
=

−

∑
0

1

 (4.77)

where the FIR fi lter coeffi cients h (i) are samples of the fi lter impulse response and
in the case of the moving average fi lter each is equal to 1 /N . As far as implementa-
tion is concerned, at the n th sampling instant we could either:

 1. multiply N past input samples individually by 1 /N and sum the N products,

 2. sum N past input samples and multiply the sum by 1 /N , or

 3. maintain a moving average by adding a new input sample (multiplied by 1/ N)
to and subtracting the (n − N + 1)th input sample (multiplied by 1/ N) from a
running total.

166 Finite Impulse Response Filters

 The third method of implementation is recursive, that is, calculation of the output
 y (n) makes use of a previous output value y (n – 1). The recursive expression

 y n
N

x n
N

x n N y n() () () ()= − − + −
1 1

1 (4.78)

conforms to the general expression for a recursive or infi nite impulse response (IIR)
fi lter:

 y n b x n k a y n lk
k

M

l
l

N

() () ()= − − −
= =

∑ ∑
0 1

 (4.79)

 Program average.c , listed in Figure 4.5 , uses the fi rst of these options, even
though it is not the most computationally effi cient. The value of N defi ned near the
start of the source fi le determines the number of previous input samples to be
averaged.

 Source fi le average.c is stored in folder average , which also contains project
fi le average.pjt . Build the project as average and run the progam.

 Several different methods exist by which the characteristics of the fi ve point
moving average fi lter may be demonstrated. A test fi le mefsin.wav , stored in
folder average , contains a recording of speech corrupted by the addition of a
sinusoidal tone. Listen to this fi le using Goldwave, Windows Media Player , or
similar. Then connect the PC soundcard output to the LINE IN socket on the DSK
and listen to the fi ltered test signal (LINE OUT or HEADPHONE). You should
fi nd that the sinusoidal tone has been blocked and that the voice sounds muffl ed.
Both observations are consistent with the fi lter having a lowpass frequency
response.

 A more rigorous method of assessing the magnitude frequency response of
the fi lter is to use a signal generator and an oscilloscope or spectrum analyzer
to measure its gain at different individual frequencies. By using this method,
it is straightforward to identify the distinct notches in the magnitude frequency
response at 1600 Hz (corresponding to the tone in test fi le mefsin.wav) and at
3200 Hz.

 The theoretical frequency response of the fi lter can be found by taking the
discrete time Fourier transform (DTFT) of its coeffi cients:

 H h n e j n

n

N

ˆ [] ˆω
π

ω() = −

=

−

∑1
2 0

1

 (4.80)

 Evaluated over the frequency range 0 2≤ <ω̂ π ,where ω̂ ω= Ts and T s is the sam-
pling period.

 Programming Examples Using C and ASM Code 167

 In this case,

H e

e

e e e

j n

n

j n

n
j j j

ˆ .

.

.

ˆ

ˆ

ˆ ˆ ˆ

ω ω

ω

ω ω ω

() =

=

= + + +

−

=

−

=−
−

∑

∑

0 2

0 2

0 2 1

0

4

2

2

2 ++()
= + +()

−e j2

0 2 1 2 2 2

ˆ

. cos(ˆ) cos(ˆ)

ω

ω ω

 (4.81)

 Changing the summation limits from 0 ≤ n ≤ 4 to − 2 ≤ n ≤ 2 changes the phase but
not the magnitude of the frequency response of the fi lter. The theoretical magnitude
frequency response of the fi lter is illustrated in Figure 4.6 .

//average.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#define N 5 //no of points averaged
float x[N]; //filter input delay line
float h[N]; //filter coefficients

interrupt void c_int11() //interrupt service routine
{
 short i;
 float yn = 0.0;

 x[0]=(float)(input_left_sample()); //get new input sample
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 output_left_sample((short)(yn)); //output to codec
 return;
}

void main()
{
 short i; //index variable

 for (i=0 ; i<N ; i++) //initialise coefficients
 h[i] = 1.0/N;
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

 FIGURE 4.5. Five point moving average fi lter program (average.c).

168 Finite Impulse Response Filters

 Example 4.2: Moving Average Filter with Internally Generated
Pseudorandom Noise as Input (averagen)

 Another method of assessing the magnitude frequency response of a fi lter is to use
wideband noise as an input signal. Program averagen.c demonstrates this tech-
nique. A pseudorandom binary sequence (PRBS) is generated within the program
(see program prandom.c in Chapter 2) and used as an input to the fi lter in lieu of
samples read from the ADC. The fi ltered noise can be viewed on a spectrum ana-
lyzer and whereas the frequency content of the PRBS input is uniform across all
frequencies, the frequency content of the fi ltered noise will refl ect the frequency
response of the fi lter. Goldwave provides a low cost alternative to using a dedicated
spectrum analyzer. Figure 4.8 shows the output of program averagen.c captured
using the FFT function of an Agilent 54621A oscilloscope and using Goldwave .
Compare these plots with that of Figure 4.6 .

 Example 4.3: Identifi cation of Moving Average Filter
Frequency Response Using a Second DSK (sysid)

 In Chapter 2 , program sysid.c was used to identify the characteristics of the anti-
aliasing and reconstruction fi lters of the AIC23 codec. Here, the same program is
used to identify the characteristics of the moving average fi lter. For this example
you will require two DSKs connected as shown in Figure 4.9 . On one of the DSKs
run program average.c and on the other run program sysid.c . Strictly speaking,
the latter program identifi es the characteristics of the system connected between

 FIGURE 4.6. Theoretical magnitude frequency response of fi ve point moving average fi lter
(sampling rate 8 kHz).

0 500 1000 1500 2000 2500 3000 3500 4000
-60

-50

-40

-30

-20

-10

0

frequency (Hz)

m
ag

ni
tu

de
 (

dB
)

 Programming Examples Using C and ASM Code 169

 FIGURE 4.7. Five point moving average fi lter program with internally generated pseudo-
random noise as input (averagen.c).

//averagen.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "noise_gen.h" //support file for noise
int fb;
shift_reg sreg;
#define NOISELEVEL 8000 //scale factor for noise
#define N 5 //no of points averaged
float x[N]; //filter input delay line
float h[N]; //filter coefficients

int prand(void) //pseudo-random noise
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled -ve noise level
 else
 prnseq = NOISELEVEL; //scaled +ve noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb; //close feedback path
 return prnseq;
}

void resetreg(void) //reset shift register
{
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
}

interrupt void c_int11() //interrupt service routine
{
 short i;
 float yn = 0.0;

 x[0] = (float)(prand()); //get new input sample
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 output_left_sample((short)(yn)); //output to codec
 return;
}

void main()
{
 short i; //index variable
 resetreg();
 for (i=0 ; i<N ; i++) //initialise coefficients
 h[i] = 1.0/N;
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

170 Finite Impulse Response Filters

 FIGURE 4.8. Magnitude frequency response of fi ve point moving average fi lter illustrated
using program averagen.c and displayed (a) using FFT function on oscilloscope and (b)
using GoldWave .

(a)

(b)

points A and B in Figure 4.9 , including the codec DAC between point A and the
LINE OUT socket and the codec ADC between the LINE IN socket and point B.
In broad terms, it identifi es the system connected between LINE OUT and LINE
IN sockets. After program sysid.c has run for a few seconds, halt the program and
select View → Graph . The Graph Property settings required are shown in Figure
 4.10 . You should see something similar to that shown in Figure 4.11 . Figure 4.12
shows the data illustrated in Figure 4.11 (exported from Code Composer as a text

 Programming Examples Using C and ASM Code 171

C6713 DSK

LINE IN

LINE OUT

3.5-mm jack
to

3.5-mm jack
program sysid.c

adaptive
filter

+

-

pseudo-
random
noise

moving
average

filter

LINE IN

LINE OUT

C6713 DSK

3.5-mm jack
to

3.5-mm jack

program average.c

A

B

 FIGURE 4.9. Connection diagram for use of program sysid.c to identify characteristics of
the moving average fi lter.

fi le and imported to MATLAB) plotted on the same axes as the theoretical magni-
tude frequency response of the fi ve point moving average fi lter. Program sysid.c
gives a reasonably accurate indication of the magnitude frequency response of the
fi lter. The discrepancy between theoretical and identifi ed responses at frequencies
greater than 3.5 kHz is due to the characteristics of the antialiasing and reconstruc-
tion fi lters in the AIC23 codec.

 FIGURE 4.10. Graph Property settings for use with program sysid.c to identify character-
istics of the moving average fi lter.

172 Finite Impulse Response Filters

 FIGURE 4.11. Magnitude frequency response of fi ve point moving average fi lter identifi ed
by program sysid.c .

 FIGURE 4.12. Magnitude frequency response identifi ed by program sysid.c plotted on
same axes as theoretical magnitude frequency response (dotted). Experimentally identifi ed
response has been multiplied by 4 to take into account resistor networks on codec inputs.

0 500 1000 1500 2000 2500 3000 3500 4000
-60

-50

-40

-30

-20

-10

0

frequency (Hz)

m
ag

ni
tu

de
 (

dB
)

 Altering the Coeffi cients of the Moving Average Filter
 The frequency response of the moving average fi lter can be changed by altering the
number of previous input samples that are averaged. Modify program averagen.c
so that it implements an eleven point moving average fi lter; that is, change the line
that reads

 #defi ne N 5

 Programming Examples Using C and ASM Code 173

FIGURE 4.13. Magnitude frequency response of eleven point moving average fi lter imple-
mented using program averagen.c and displayed using GoldWave .

to read

#define N 11

 Build and run the project and verify that the frequency response of the fi lter has
changed to that shown in Figure 4.13 .

 The frequency response of the eleven point moving average fi lter has the same
basic form as that of the fi ve point moving average fi lter but the notches in the fre-
quency response occur at integer multiples of (8000/11) Hz, that is, at 727, 1455, 2182,
and 2909 Hz.

 The frequency response of the fi lter can also be changed by altering the values of
the coeffi cients. Modify program averagen.c again, changing the lines that read

#define N 11
float h[N];

to read

#define N 5
float h[N] = {0.0833, 0.2500, 0.3333. 0.2500, 0.0833};

174 Finite Impulse Response Filters

and comment out the following line

 for (i=0 ; i < N ; i++) h[i] = 1.0/N;

 Build and run the project and observe the frequency content of the fi lter output
using either a spectrum analyzer, an oscilloscope with an FFT function, or Goldwave .
You should fi nd that the high frequency components of the input signal (pseudoran-
dom noise) have been attenuated more than before (see Figure 4.14) and also that
the “ notches ” at 1600 and 3200 Hz have disappeared. You have effectively applied a
 Hann window to the coeffi cients of the fi ve point moving average fi lter.

 The N point Hann window is described by the equation

 w n
n

N
n N() . cos= −

−

 ≤ <0 5 1 2

1
0π (4.82)

 And hence for n = 0 and n = N , w (n) = 0. Since there is no point in including two
outlying zero value coeffi cients in the FIR fi ltering operation, in this example the

 FIGURE 4.14. Magnitude frequency response of fi ve point moving average fi lter with Hann
window implemented using program averagen.c and displayed using GoldWave .

 Programming Examples Using C and ASM Code 175

fi ve nonzero values of a seven point Hann window function, rather than the fi ve
values, including two zero values, of a fi ve point Hann window function, have been
used. The magnitude frequency response of the fi lter is found by taking the DTFT
of its coeffi cients:

H e

e e e

j n

n
j j j

ˆ .

. . . .

ˆ

ˆ ˆ ˆ

ω ω

ω ω

() =

= + + +

−

=−
−

∑ 0 2

0 0833 0 25 0 3333 0 25
2

2

2 ωω ω

ω ω
+

= + +

−0 0833
0 3333 0 5 0 1666 2

2.
. . cos(ˆ) . cos(ˆ)

ˆe j

 (4.83)

 Example 4.4: FIR Filter with Moving Average, Bandstop,
and Bandpass Characteristics (fi r)

 The mechanism used by program fi r.c (Figure 4.15) to calculate each output
sample is identical to that employed by program average.c . Function c_int11()
has exactly the same defi nition in both programs. Whereas program average.c
calculated the values of its coeffi cient in function main() , program fi r.c reads the
values of its coeffi cients from a separate fi le.

 Five Point Moving Average (ave5f.cof)
 Coeffi cient fi le ave5f.cof is listed in Figure 4.16 . Using that fi le, program fi r.c
implements the same fi ve point moving average fi lter implemented by program
 average.c in Example 4.1 . The number of fi lter coeffi cients is specifi ed by the value
of the constant N , defi ned in the . cof fi le and the coeffi cients are specifi ed as the
initial values in an N element array, h , of type fl oat.

 Build the project as fi r . Run the program and verify that it implements a fi ve
point moving average fi lter.

 Bandstop, Centered at 2700 Hz (bs2700f.cof)
 Edit fi le fi r.c , changing the line that reads

 #include “ ave5f.cof ”

 To read

 #include “ bs2700f.cof ”

 Build and run this project as fi r . Input a sinusoidal signal and vary the input
frequency slightly below and above 2700 Hz. Verify that the output is a minimum
at 2700 Hz. The values of the coeffi cients for this fi lter were calculated using
MATLAB ’ s fi lter design and analysis tool, fdatool , as shown in Figure 4.17 .

176 Finite Impulse Response Filters

//fir.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "ave5f.cof" //filter coefficient file
float x[N]; //filter delay line

interrupt void c_int11() //interrupt service routine
{
 short i;
 float yn = 0.0;

 x[0]=(float)(input_left_sample()); //get new input sample
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 output_left_sample((short)(yn)); //output to codec
 return;
}

void main()
{
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

 FIGURE 4.15. FIR fi lter program (fi r.c).

 Bandpass, Centered at 1750 Hz (bp1750f.cof)
 Edit program fi r.c again to include the coeffi cient fi le bp1750f.cof in place
of bs2700f.cof . File bp1750f.cof represents an FIR bandpass fi lter (81 coeffi -
cients) centered at 1750 Hz, as shown in Figure 4.18 . Again, this fi lter was designed
using MATLAB ’ s fdatool . Select Project → Build , and the new coeffi cient fi le

 FIGURE 4.16. Coeffi cient fi le ave5f.cof .

// ave5f.cof
// this file was generated automatically using function dsk_fir67.m

#define N 5

float h[N] = {
2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001
};

 Programming Examples Using C and ASM Code 177

FIGURE 4.17. MATLAB fdatool window corresponding to design of FIR bandstop fi lter
centered at 2700 Hz.

bp1750.cof will automatically be included in the project. Run again and verify an
FIR bandpass fi lter centered at 1750 Hz.

Generating Filter Coeffi cient (.cof) Files Using MATLAB
 If the number of fi lter coeffi cients is small, a coeffi cient (.cof) fi le can be edited by
hand. For larger numbers of coeffi cients the MATLAB function dsk_fir67() , sup-
plied on the CD accompanying this book as fi le dsk_fir67.m , can be used. This
function, listed in Figure 4.19 , expects to be passed a MATLAB vector of coeffi cient
values and prompts the user for an output fi lename.

 For example, the coeffi cient fi le ave5f.cof was created by typing the following
at the MATLAB command prompt:

>> x = [0.2, 0.2, 0.2, 0.2, 0.2];
>> dsk_fir67(x)
enter filename for coefficients ave5f.cof

 Note that the coeffi cient fi lename must be entered in full, including the suffi x .cof .

178 Finite Impulse Response Filters

 The MATLAB fi lter design and analysis tool fdatool can be used to calculate
FIR fi lter coeffi cients and export them to the MATLAB workspace. Then function
dsk_fir67() can be used to create a coeffi cient fi le compatible with program
fir.c . It is recommended that the fi lter coeffi cient value passed to function
dsk_fir67().m are normalized such that their sum is unity.

 Also, it is recommended that the fi lenames used end in the character “ f ” in order
to indicate that they contain fl oating - point coeffi cient values. Some of the programs
described later in this chapter read their coeffi cients from a .cof fi le but expect
array h to be of type short.

Example 4.5: FIR Implementation with a Pseudorandom
Noise Sequence as Input to a Filter (firprn)

 The program firprn.c (Figure 4.20) implements an FIR fi lter using an internally
generated pseudorandom noise sequence as input to the fi lter. In all other respects
it is similar to program fir.c . The coeffi cient fi le bs2700f.cof is used initially.

 Build this project as firprn . Run the program and verify that the output signal is
pseudorandom noise fi ltered by an FIR bandpass fi lter centered at 2700 Hz.

FIGURE 4.18. MATLAB fdatool window corresponding to design of FIR bandpass fi lter
centered at 1750 Hz.

 Programming Examples Using C and ASM Code 179

 The output signal is shown using Goldwave and using the FFT function of an
 Agilent 54621A oscilloscope in Figure 4.21 .

 Testing Different FIR Filters
 Halt the program. Edit the C source fi le fi rprn.c to include and test different coef-
fi cient fi les that represent different FIR fi lters. Each of the following coeffi cient fi les
contains 55 coeffi cients (except comb14f.cof).

% DSK_FIR67.M
% MATLAB function to write FIR filter coefficients
% in format suitable for use in C6713 DSK programs
% firnc.c and firprn.c
% written by Donald Reay
%
function dsk_fir67(coeff)
%
coefflen=length(coeff);
fname = input('enter filename for coefficients ','s');
fid = fopen(fname,'wt');
fprintf(fid,'// %s\n',fname);
fprintf(fid,'// this file was generated automatically using function
dsk_fir67.m\n',fname);
fprintf(fid,'\n#define N %d\n',coefflen);
fprintf(fid,'\nfloat h[N] = { \n');
% j is used to count coefficients written to current line
% in output file
j=0;
% i is used to count through coefficients
for i=1:coefflen
% if six coeffs have been written to current line
% then start new line
 if j>5
 j=0;
 fprintf(fid,'\n');
 end
% if this is the last coefficient then simply write
% its value to the current line
% else write coefficient value, followed by comma
 if i==coefflen
 fprintf(fid,'%2.4E',coeff(i));
 else
 fprintf(fid,'%2.4E,',coeff(i));
 j=j+1;
 end
end
fprintf(fid,'\n};\n');
fclose(fid);

 FIGURE 4.19. Listing of MATLAB function dsk_fi r67.m .

180 Finite Impulse Response Filters

 FIGURE 4.20. FIR fi lter with internally generated pseudorandom noise as input (fi rprn.c).

//firprn.c FIR with internally generated input noise sequence

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "bs2700f.cof" //filter coefficient file
#include "noise_gen.h" //support file for noise
int fb; //feedback variable
shift_reg sreg; //shift register
#define NOISELEVEL 8000 //scale factor for noise
float x[N]; //filter delay line

int prand(void) //pseudo-random noise
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled -ve noise level
 else
 prnseq = NOISELEVEL; //scaled +ve noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1; //shift register 1 bit left
 sreg.bt.b0=fb; //close feedback path
 return prnseq;
}

void resetreg(void) //reset shift register
{
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
}

interrupt void c_int11() //interrupt service routine
{
 short i; //declare index variable
 float yn = 0.0;

 x[0] = (float)(prand()); //get new input sample
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 output_left_sample((short)(yn)); //output to codec
 return; //return from interrupt
}

void main()
{
 resetreg(); //reset shift register
 comm_intr(); //initialise DSK
 while (1); //infinite loop
}

 Programming Examples Using C and ASM Code 181

(a)

(b)

 FIGURE 4.21. Output generated using program fi rprn.c and coeffi cient fi le bs2700f.cof
displayed using (a) an oscilloscope and (b) Goldwave .

 1. bp55f.cof: bandpass with center frequency F s /4

 2. bs55f.cof: bandstop with center frequency F s /4

 3. lp55f.cof: lowpass with cutoff frequency F s /4

 4. hp55f.cof: highpass with bandwidth F s /4

 5. pass2bf.cof: with two passbands

 6. pass3bf.cof: with three passbands

 7. pass4bf.cof: with four passbands

 8. comb14f.cof: with multiple notches (comb fi lter)

182 Finite Impulse Response Filters

 These fi lters were designed using MATLAB (see Appendix D). Figure 4.22 a
shows the FFT of the output of an FIR fi lter with two passbands, using the coeffi -
cient fi le pass2bf.cof. Figure 4.22 b shows the FFT of the output of a highpass
FIR fi lter using the coeffi cient fi le hp55f.cof . These plots were obtained using the
FFT function of an Agilent 54621A oscilloscope.

 Example 4.6: FIR Filter with Internally Generated Pseudorandom Noise as
Input to a Filter and Output Stored in Memory (fi rprnbuf)

 This example builds on the previous one that generates a pseudorandom noise
sequence as the input to an FIR fi lter, with the fi lter output also stored in a memory
buffer. Figure 4.23 shows a listing of the program fi rprnbuf.c , which implements
this example.

 FIGURE 4.22. Output generated using program fi rprn.c and coeffi cient fi les (a) pass2bf.
cof and (b) hp55f.cof diplayed using an oscilloscope.

(a)

(b)

 Programming Examples Using C and ASM Code 183

 FIGURE 4.23. FIR fi lter with internally generated pseudorandom noise as input and output
stored in memory (fi rprnbuf.c).

//firprnbuf.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "pass4bf.cof" //filter coefficient file
#include "noise_gen.h" //support file for noise
int fb; //feedback variable
shift_reg sreg; //shift register
#define NOISELEVEL 8000 //scale factor for noise
float x[N]; //filter delay line
#define YNBUFLENGTH 1024
float yn_buffer[YNBUFLENGTH];
short ynbufindex = 0;

int prand(void) //pseudo-random noise
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled -ve noise level
 else
 prnseq = NOISELEVEL; //scaled +ve noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1; //shift register 1 bit left
 sreg.bt.b0=fb; //close feedback path
 return prnseq;
}

void resetreg(void) //reset shift register
{
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
}

interrupt void c_int11() //interrupt service routine
{
 short i; //declare index variable
 float yn = 0.0;

 x[0] = (float)(prand()); //get new input sample
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 output_left_sample((short)(yn)); //output to codec
 yn_buffer[ynbufindex++] = yn;
 if(ynbufindex >= YNBUFLENGTH) ynbufindex = 0;
 return; //return from interrupt
}

void main()
{
 resetreg(); //reset shift register
 comm_intr(); //initialise DSK
 while (1); //infinite loop
}

184 Finite Impulse Response Filters

FIGURE 4.24. Graph Properties for use with program firprnbuf.c .

 The coeffi cient fi le bp41f.cof represents a 41 - coeffi cient FIR bandpass fi lter
centered at 1000 Hz.

 Build and run this project as firprnbuf . Verify that the output signal is band-
limited noise. Then halt the program, select View → Graph , and set the Graph
Properties as shown in Figure 4.24 in order to look at the frequency content of 1024
stored output samples.

 Figure 4.25 shows several Code Composer windows, including plots of the fi lter
coeffi cients in the time and frequency domains and the magnitude FFT of the buffer
contents.

 Edit the program (firprnbuf.c), changing the lines that read

output_left_sample((short)(yn)); //output to codec
yn_buffer[ynbufindex++] = yn;

to read

output_left_sample((short)(x[0])); //output to codec
yn_buffer[ynbufindex++] = x[0];

 This effectively disables the FIR fi lter, passes the pseudorandom binary input signal
directly to the DAC, and stores it in the circular buffer implemented using array
yn_buffer .

 Run the program again and plot the FFT magnitude of the noise sequence; that
is, use the same Graphical Display window as before. It does not appear perfectly
fl at since the resulting plot is not averaged. An example is shown in Figure 4.26 .
With the output to an oscilloscope with FFT function, verify that the noise spectrum

 Programming Examples Using C and ASM Code 185

FIGURE 4.26. Graphical Display of magnitude FFT of PRBS used in program
firprnbuf.c .

FIGURE 4.25. CCS windows showing operation of program firprnbuf.c .

186 Finite Impulse Response Filters

is quite fl at until about 3800 Hz, that is, the bandwidth of the codec reconstruction
fi lter (it looks like a lowpass fi lter with a bandwidth of 3800 Hz). Figure 4.27 shows
the spectrum of this noise sequence.

 Develop a GEL slider to switch the DSK output between either the noise
sequence generated internally, x[0] , or the fi lter output, yn .

Example 4.7: Effects on Voice or Music Using Three FIR Lowpass Filters
(fir3LP)

 Figure 4.28 shows a listing of the program fir3lp.c , which implements three FIR
lowpass fi lters with cutoff frequencies at 600, 1500, and 3000 Hz, respectively. The
three lowpass fi lters were designed using MATLAB.

LP_number selects the desired lowpass fi lter to be implemented. For example, if
LP_number is set to 0, h[0][i] is equal to hlp600[i] (within the for loop in func-
tion main()), which is the address of the fi rst set of coeffi cients. The coeffi cient fi le
LP600.cof represents an 81 - coeffi cient FIR lowpass fi lter with a 600 - Hz cutoff fre-
quency, using the Kaiser window function. Figure 4.29 shows a listing of coeffi cient
fi le LP600.cof . That fi lter is then implemented. Note that the FIR fi lters in this
example are implemented using fi xed - point arithmetic and use 16 - bit integer type
coeffi cients. Coeffi cient fi les LP600.cof , LP1500.cof , and LP3000.cof are incom-
patible with programs fir.c , firprn.c , and firprnbuf.c .

 The value of LP_number can be changed to 1 or 2 to implement the 1500 - or
3000 - Hz lowpass fi lter, respectively. With the GEL fi le fir3lp.gel , the value of
LP_number can be varied while the program is running.

 As supplied, the program uses the MIC input on the DSK and the effect of the
three different lowpass fi lters can be tested while talking into a microphone.
The effect of the fi lters is particularly striking if applied to a musical input. Change
the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select MIC IN

FIGURE 4.27. PRBS noise generated using program firprnbuf.c .

 Programming Examples Using C and ASM Code 187

 FIGURE 4.28. FIR program to implement three different lowpass fi lters using GEL slider
for selection (fi r3lp.c).

//fir3lp.c FIR using 3 lowpass coefficients with different BW

#include "lp600.cof" //coeff file LP @ 600 Hz
#include "lp1500.cof" //coeff file LP @ 1500 Hz
#include "lp3000.cof" //coeff file LP @ 3000 Hz
#include "dsk6713_aic23.h" //codec-dsk support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select MIC IN
short LP_number = 0; //start with 1st LP filter
int yn = 0; //initialize filter output
short dly[N]; //delay samples
short h[3][N]; //filter characteristics

interrupt void c_int11() //ISR
{
 short i;

 dly[0] = input_left_sample(); //newest input
 yn = 0; //initialize filter output
 for (i = 0; i< N; i++)
 yn +=(h[LP_number][i]*dly[i]); //y(n) += h(LP#,i)*x(n-i)
 for (i = N-1; i > 0; i--) //start @ bottom of buffer
 dly[i] = dly[i-1]; //update delays
 output_left_sample(yn >> 15); //output filter
 return; //return from interrupt
}

void main()
{
 short i;

 for (i=0; i<N; i++)
 {
 dly[i] = 0; //init buffer
 h[0][i] = hlp600[i]; //start of LP600 coeffs
 h[1][i] = hlp1500[i]; //start of LP1500 coeffs
 h[2][i] = hlp3000[i]; //start of LP3000 coeffs
 }
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

188 Finite Impulse Response Filters

 FIGURE 4.29. Coeffi cient fi le for FIR lowpass fi lter with 600 - Hz cutoff frequency
(LP600.cof).

//LP600.cof FIR lowpass filter coefficients using Kaiser window

#define N 81 //length of filter

short hlp600[N] = {0,-6,-14,-22,-26,-24,-13,8,34,61,80,83,63,
19,-43,-113,-171,-201,-185,-117,0,146,292,398,428,355,174,-99,
-416,-712,-905,-921,-700,-218,511,1424,2425,3391,4196,4729,
4915,4729,4196,3391,2425,1424,511,-218,-700,-921,-905,-712,
-416,-99,174,355,428,398,292,146,0,-117,-185,-201,-171,-113,
-43,19,63,83,80,61,34,8,-13,-24,-26,-22,-14,-6,0};

to read

 Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select LINE IN

and Rebuild the project. Use a CD or MP3 player as a source connected to the
LINE IN socket on the DSK. With the lower bandwidth of 600 Hz, using the fi rst
set of coeffi cients, the frequency components of the input signal above 600 Hz are
suppressed. Connect the output to a speaker or a spectrum analyzer to verify such
results, and listen to the effect of the different bandwidths of the three FIR lowpass
fi lters. Alternatively, the effects of the fi lters can be illustrated using an oscilloscope
and a signal generator set to input a 200 - Hz square wave to the LINE IN socket.
Figure 4.30 shows a 200 - Hz square wave that has been passed through the three
lowpass fi lters.

 Example 4.8: Implementation of Four Different Filters:
Lowpass, Highpass, Bandpass, and Bandstop (fi r4types)

 This example illustrates the use of a GEL slider to step through four different types
of FIR fi lters (Figure 4.31). Each fi lter has 81 coeffi cients, designed using MATLAB.
The four coeffi cient fi les (on the accompanying CD) are:

 1. lp1500.cof: lowpass with bandwidth of 1500 Hz

 2. hp2200.cof: highpass with bandwidth of 2200 Hz

 3. bp1750.cof: bandpass with center frequency at 1750 Hz

 4. bs790.cof: bandstop with center frequency at 790 Hz

 Program fi r4types.c implements this project. Build and run this project
as fi r4types . Load the GEL fi le fi r4types.gel and select GEL → Filter
Characteristics → Filter to bring up a GEL slider to switch between the four differ-
ent FIR fi lters. This example could readily be expanded to implement more FIR

 Programming Examples Using C and ASM Code 189

(a)

(b)

(c)

 FIGURE 4.30. A 200 - Hz square wave passed through three different lowpass fi lters imple-
mented using program fi r3lp.c .

190 Finite Impulse Response Filters

//fir4types.c Lowpass, Highpass, bandpass, Bandstop FIR filters

#include "DSK6713_AIC23.h"
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "lp1500.cof" //coeff file LP @ 1500 Hz
#include "hp2200.cof" //coeff file HP @ 2200 Hz
#include "bp1750.cof" //coeff file BP @ 1750 Hz
#include "bs790.cof" //coeff file BS @ 790 Hz
short FIR_number = 0; //start with 1st LP filter
int yn = 0; //initialize filter output
short dly[N]; //delay samples
short h[4][N]; //filter characteristics

interrupt void c_int11() //ISR
{
 short i;

 dly[0] = input_left_sample(); //new input @ top of buffer
 yn = 0; //initialize filter output
 for (i = 0; i< N; i++)
 yn +=(h[FIR_number][i]*dly[i]); //y(n) += h(LP#,i)*x(n-i)
 for (i = N-1; i > 0; i--) //start @ bottom of buffer
 dly[i] = dly[i-1]; //update delays
 output_left_sample(yn >> 15); //output filter
 return; //return from interrupt
}

void main()
{
 short i;
 for (i=0; i<N; i++)
 {
 dly[i] = 0; //init buffer
 h[0][i] = hlp[i]; //start of lp1500 coeffs
 h[1][i] = hhp[i]; //start of hp2200 coeffs
 h[2][i] = hbp[i]; //start of bp1750 coeffs
 h[3][i] = hbs[i]; //start of bs790 coeffs
 }
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 4.31. FIR program to implement four different types of fi lter (fi r4types.c).

 Programming Examples Using C and ASM Code 191

FIGURE 4.32. Magnitude frequency response of bandstop fi lter implemented using program
fir4types.c .

fi lters. The effects of the four different fi lters on musical input are particularly strik-
ing. Figure 4.32 shows the magnitude frequency response of the FIR bandstop fi lter
centered at 790 Hz, implemented using the coeffi cient fi le bs790.cof .

Example 4.9: Two Notch Filters to Recover a Corrupted Speech Recording
(notch2)

 This example illustrates the use of two notch (bandstop) FIR fi lters in series to
recover a speech recording corrupted by the addition of two sinusoidal signals at
frequencies of 900 and 2700 Hz. Program notch2.c is listed in Figure 4.33 . Two
coeffi cient fi les, bs900.cof and bs2700.cof , each containing 89 coeffi cients and
designed using MATLAB, are used by the program. They implement two FIR notch
fi lters, centered at 900 and 2700 Hz, respectively. The output of the fi rst notch fi lter,
centered at 900 Hz, is used as the input to the second notch fi lter, centered at
2700 Hz.

 Build this project as notch2 . The fi le corrupt.wav , stored in folder notch2 ,
contains a recording of speech corrupted by the addition of 900 - and 2700 - Hz sinu-
soidal tones. Listen to this fi le using Goldwave, Windows Media Player , or similar.
Then connect the PC soundcard output to the LINE IN socket on the DSK and
listen to the fi ltered test signal (LINE OUT or HEADPHONE).

 A GEL slider (notch2.gel) can be used to select either the output of the two
cascaded notch fi lters (default) or the output of the fi rst notch fi lter.

 Compare the results of this example with those obtained in Example 4.1 , in
which a notch in the magnitude frequency response of a moving average fi lter
was exploited in order to fi lter out an unwanted sinusoidal tone. In this case, the
fi ltered speech sounds brighter because the notch fi lters do not have a lowpass
characteristic.

192 Finite Impulse Response Filters

 FIGURE 4.33. Program implementing two FIR notch fi lters in cascade to remove two
undesired sinusoidal signals (notch2.c).

//notch2.c Two FIR notch filters to remove sinusoidal noise

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "bs900.cof" //BS 900 Hz coefficient file
#include "bs2700.cof" //BS 2700 Hz coefficient file
short dly1[N]={0}; //delay for 1st filter
short dly2[N]={0}; //delay for 2nd filter
int y1out = 0, y2out = 0; //init output of each filter
short out_type = 2; //slider for output type

interrupt void c_int11() //ISR
{
 short i;

 dly1[0] = input_left_sample(); //new input @ top of buffer
 y1out = 0; //init output of 1st filter
 y2out = 0; //init output of 2nd filter
 for (i = 0; i< N; i++)
 y1out += h900[i]*dly1[i]; //y1(n)+=h900(i)*x(n-i)
 dly2[0]=(y1out>>15);
 for (i = 0; i< N; i++)
 y2out += h2700[i]*dly2[i]; //y2(n)+=h2700(i)*x(n-i)
 for (i = N-1; i > 0; i--) //from bottom of buffer
 {
 dly1[i] = dly1[i-1]; //update samples in buffers
 dly2[i] = dly2[i-1];
 }
 if (out_type==1) //if slider is in position 1
 output_left_sample((short)(y2out>>15)); //output of 1st filter
 if (out_type==2)
 output_left_sample((short)(y1out>>15)); //output of 2nd filter
 return; //return from ISR
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1) //infinite loop
}

 Programming Examples Using C and ASM Code 193

 Example 4.10: FIR Implementation Using Two Different Methods
(fi r2ways)

 Figure 4.34 shows a listing of the program fi r2ways.c , which implements an FIR
fi lter using two alternative methods for convolving and updating the delay samples.
This example extends Example 4.3 , in which the fi rst method (method A) is used.
In this fi rst method, using two for loops, the delay samples are stored in the N -
 element array dly with the newest sample at the beginning of the buffer dly[0]
and the oldest sample at the end of the buffer dly[N - 1] . The convolution starts
with the newest sample and the fi rst fi lter coeffi cient using

 y n h x n h x n h N x n N() () () () () () (())= + − + + − − −0 1 1 1 1�

 In a second for loop, each sample value in array dly is shuffl ed such that, for
example, the sample value dly[i] is shifted to become dly[i+1] .

 The second method (method B) uses pointers to implement a circular buffer in
array dly . In this case, the samples stored in the array are not shuffl ed or moved.
Method B performs the convolution using one for loop.

 Build and run this project as fi r2ways . Verify that an FIR bandpass fi lter centered
at 1 kHz is implemented. Change the method used, by editing the line in program
 fi r2ways.c that reads

 #defi ne method ‘ A ’

and verify that the resulting fi lter characteristic is the same as before.

 Example 4.11: Voice Scrambling Using Filtering and Modulation
(scrambler)

 This example illustrates a voice scrambling/descrambling scheme. The approach
makes use of basic algorithms for fi ltering and modulation. Modulation was intro-
duced in the AM example in Chapter 2 .

 With voice as input, the resulting output is scrambled voice. The original descram-
bled voice is recovered when the output of the DSK is used as the input to a second
DSK running the same program.

 The scrambling method used is commonly referred to as frequency inversion. It
takes an audio range, in this case 300 Hz to 3 kHz, and “ folds ” it about a 3.3 - kHz
carrier signal. The frequency inversion is achieved by multiplying (modulating) the
audio input by a carrier signal, causing a shift in the frequency spectrum with upper
and lower sidebands. In the lower sideband that represents the audible speech range,
the low tones are high tones, and vice versa.

 Figure 4.35 is a block diagram of the scrambling scheme. At point A we have an
input signal, bandlimited to 3 kHz. At point B we have a double - sideband signal

194 Finite Impulse Response Filters

//fir2ways.c FIR with alternative ways of storing/updating samples

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "BP41.cof" //BP coeff centered at Fs/8
#define METHOD 'A' //or change to B
int yn = 0; //initialize filter's output
short dly[N]; //delay samples array
#if METHOD == 'B'
short *start_ptr;
short *end_ptr;
short *h_ptr;
short *dly_ptr;
#endif
interrupt void c_int11() //ISR
{
 short i;

 yn = 0; //initialize filter's output

#if METHOD == 'A'
 dly[0] = input_left_sample();
 for (i = 0; i< N; i++) yn += (h[i] * dly[i]);
 for (i = N-1; i > 0; i--) dly[i] = dly[i-1];
#elif METHOD == 'B'
 *dly_ptr = input_left_sample();
 if (++dly_ptr > end_ptr) dly_ptr = start_ptr;
 for (i = 0; i < N ; i++)
 {
 dly_ptr++;
 if (dly_ptr > end_ptr) dly_ptr = start_ptr;
 yn += *(h_ptr + i)* *dly_ptr;
 }
#endif
 output_left_sample((short)(yn>>15));
 return;
}

void main()
{
#if METHOD == 'B'
 dly_ptr = dly;
 start_ptr = dly;
 end_ptr = dly + N - 1;
 h_ptr = h;
#endif
 comm_intr();
 while(1);
}

 FIGURE 4.34. FIR program using two alternative methods for convolution and updating of
delay samples (fi r2ways.c).

 Programming Examples Using C and ASM Code 195

input
multiplier

3.3-kHz
sine

generator

A B C3-kHz
LP filter

3-kHz
LP filter

output

 FIGURE 4.35. Block diagram of scrambler system.

with suppressed carrier. At point C the upper sideband and the section of the lower
sideband between 3 and 3.3 kHz are fi ltered out. The scheme is attractive because
of its simplicity. Only simple DSP algorithms — namely, fi ltering, sine wave genera-
tion, and amplitude modulation — are required for its implementation.

 Figure 4.36 shows a listing of program scrambler.c , which operates at a
sampling rate, fs , of 16 kHz. The input signal is fi rst lowpass fi ltered using an FIR
fi lter with 65 coeffi cients, h , defi ned in the fi le lp3k64.cof . The fi ltering algorithm
used is identical to that used in, for example, program fi r.c . The fi lter delay line is
implemented using array x1 and the output is assigned to variable yn1 . The fi lter
output (at point A in Figure 4.36) is multiplied (modulated) by a 3.3 - kHz sinusoid
stored as 160 samples (exactly 33 cycles) in array sine160 (fi le sine160.h) . Finally,
the modulated signal (at point B) is lowpass fi ltered again, using the same set of
fi lter coeffi cients h (lp3k64.cof) but a different fi lter delay line implemented using
array x2 and the output variable yn2 . The output is a scrambled signal (at point C).
Using this scrambled signal as the input to a second DSK running the same algo-
rithm, the original descrambled input is recovered as the output of the second
DSK.

 Build and run this project as scrambler . First, test the program using a 2 - kHz
sine wave as input. The resulting output is a lower sideband signal at 1.3 kHz. The
upper sideband signal at 5.3 kHz is fi ltered out by the second lowpass fi lter. By
varying the frequency of the sinusoidal input, you should be able to verify that input
frequencies in the range 300 – 3000 Hz appear as output frequencies in the inverted
range 3000 to 300 Hz.

 A second DSK running the same program can be used to recover the original
signal (simulating the receiving end). Use the output of the fi rst DSK as the input
to the second DSK.

 Change the input source used by the program from LINE IN to MIC IN and test
the scrambler and descrambler using speech from a microphone as the input. Run
exactly the same program on each DSK, that is, including the line

 Uint16 inputsource=DSK6713_AIC23_INPUT_MIC

and connect LINE OUT on the fi rst DSK (scrambler) to MIC IN on the second
DSK (descrambler).

196 Finite Impulse Response Filters

 Interception of the speech signal could be made more diffi cult by changing the
modulation frequency dynamically and by including (or omitting) the carrier fre-
quency according to a predefi ned sequence: for example, a code for no modulation,
another for modulating at frequency fc1 , and a third code for modulating at fre-
quency fc2 .

 This project was fi rst implemented using the TMS320C25 [50] and also the
TMS320C31 DSK.

//scrambler.c

#include "DSK6713_AIC23.h" // codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "sine160.h"
#include "lp3k64.cof" //filter coefficient file
float yn1, yn2; //filter outputs
float x1[N],x2[N]; //filter delay lines
int index = 0;

interrupt void c_int11()
{
 short i;
 // first filter input
 x1[0]=(float)(input_left_sample()); //get input into delay line
 yn1 = 0.0; //initialise filter output
 for (i=0 ; i<N ; i++) yn1 += h[i]*x1[i];
 for (i=(N-1) ; i>0 ; i--) x1[i] = x1[i-1];
 // next mix with 3300Hz
 yn1 *= sine160[index++];
 if (index >= NSINE) index = 0;
 // now filter again
 x2[0] = yn1; //get input into delay line
 yn2 = 0.0; //initialise filter output
 for (i=0 ; i<N ; i++) yn2 += h[i]*x2[i];
 for (i=(N-1) ; i>0 ; i--) x2[i] = x2[i-1];
 output_left_sample((short)(yn2)); //output to codec
 return;
}

void main()
{
 comm_intr(); //initialise McBSP, AD535
 while(1); //infinite loop
}

 FIGURE 4.36. Scrambler program scrambler.c .

 Programming Examples Using C and ASM Code 197

 Example 4.12: FIR Implementation Using C Calling an ASM Function
(FIRcasm)

 The C program FIRcasm.c (Figure 4.37) calls the assembly language function
 _fi rcasmfunc defi ned in fi le FIRcasmfunc.asm (Figure 4.38), and which implements
an FIR fi lter.

 Build and run this project as FIRcasm . Verify that the program implements a 1 -
 kHz FIR bandpass fi lter. Two buffers are used by program FIRcasm.c . Array dly
is used to store N previous input samples and array h stores N fi lter coeffi cients. The
value of constant N is defi ned in the fi lter coeffi cient (.cof) fi le. On each interrupt,
a new input sample is acquired and stored at the end (higher memory address) of
the buffer dly . The delay samples and the fi lter coeffi cients are arranged in memory
as shown in Table 4.1 . The delay samples are stored in memory starting with the
oldest sample stored at the lowest memory address. The newest sample is at the end
of the buffer. The coeffi cients are arranged in memory with h (0) at the beginning
of the coeffi cient buffer and h (N − 1) at the end.

 FIGURE 4.37. C program calling an ASM function for FIR implementation
(FIRcasm.c).

//FIRcasm.c FIR C program calling ASM function fircasmfunc.asm

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#include "bp41.cof" //BP @ Fs/8 coefficient file
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select mic in
int yn = 0; //initialize filter's output
short dly[N]; //delay samples

interrupt void c_int11() //ISR
{
 dly[N-1] = input_left_sample(); //newest sample @bottom buffer
 yn = fircasmfunc(dly,h,N); //to ASM func through A4,B4,A6
 output_left_sample((short)(yn>>15)); //filter's output
 return; //return from ISR
}

void main()
{
 short i;

 for (i = 0; i<N; i++)
 dly[i] = 0; //init buffer for delays
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

198 Finite Impulse Response Filters

 The addresses of the delay sample buffer, the fi lter coeffi cient buffer, and the size
of each buffer are passed to the ASM function through registers A4, B4, and A6,
respectively. The size of each buffer through register A6 is doubled since data in
each memory location are stored as bytes. The pointers A4 and B4 are incremented

 FIGURE 4.38. FIR ASM function called from C (FIRcasmfunc.asm).

;FIRcasmfunc.asm ASM function called from C to implement FIR
;A4 = Samples address, B4 = coeff address, A6 = filter order
;Delays organized as:x(n-(N-1))...x(n);coeff as h[0]...h[N-1]

 .def _fircasmfunc
_fircasmfunc: ;ASM function called from C
 MV A6,A1 ;setup loop count
 MPY A6,2,A6 ;since dly buffer data as byte
 ZERO A8 ;init A8 for accumulation
 ADD A6,B4,B4 ;since coeff buffer data as byte
 SUB B4,1,B4 ;B4=bottom coeff array h[N-1]
loop: ;start of FIR loop
 LDH *A4++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1
 LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1
 NOP 4

 NOP
 ADD A6,A8,A8 ;accumlate in A8
 LDH *A4,A7 ;A7=x[(n-(N-1)+i+1]update delays
 NOP 4 ;using data move "up"
 STH A7,*-A4[1] ;-->x[(n-(N-1)+i] update sample

 [A1] B loop ;branch to loop if count # 0
 NOP 5

 MV A8,A4 ;result returned in A4
 B B3 ;return addr to calling routine
 NOP 4

 TABLE 4.1 Memory Organization of Coeffi cients and Samples for FIRcasm

 Coeffi cients

 Samples

 Time n Time n + 1

 h(0) A4 → x(n - (N - 1)) A4 → x(n - (N - 2))
 h(1) x(n - (N - 2)) x(n - (N - 3))
 h(2) x(n - (N - 3)) x(n - (N - 4))
 · · ·
 · · ·
 · · ·
 h(N - 2) x(n - 1) x(n)
 B4 → h (N - 1) x(n) ← newest → x(n + 1)

 Programming Examples Using C and ASM Code 199

or decremented every 2 bytes (two memory locations). The end address of the coef-
fi cients ’ buffer is in B4, which is at 2 N − 1.

 The two 16 - bit load (LDH) instructions load the content in memory pointed to
(whose address is specifi ed) by A4 and the content in memory at the address speci-
fi ed by B4. This loads the oldest sample and last coeffi cient, x (n − (N − 1)) and
 h (N − 1), respectively. A4 is then postincremented to point at x (n − (N − 2)), and
B4 is postdecremented to point at h (N − 2). After the fi rst accumulation, the oldest
sample is updated. The content in memory at the address specifi ed by A4 is loaded
into A7, then stored at the preceding memory location. This is because A4 is post-
decremented without modifi cation to point at the memory location containing the
oldest sample. As a result, the oldest sample, x (n − (N − 1)), is replaced (updated)
by x (n − (N − 2)). The updating of the delay samples is for the next unit of time. As
the output at time n is being calculated, the samples are updated or “ primed ” for
time (n + 1). At time n the fi lter ’ s output is

 y n h N x n N h N x n N h x n() () (()) () (()) () ()= − − − + − − − + +1 1 2 2 0�

 The loop is processed N times. For each time n, n + 1, n + 2, . . . , an output value
is calculated, with each sample updated for the next unit of time. The newest
sample is also updated in this process, with an invalid data value residing at the
memory location beyond the end of the buffer. But this is remedied since for each
unit of time, the newest sample, acquired through the ADC of the codec, over-
writes it. Accumulation is in A8 and the result, for each unit of time, is moved
to A4 to be returned to the calling function. The address of the calling function is
in B3.

 Viewing Update of Samples in Memory
 1. Select View → Memory using a 16 - bit hex format and a Starting Address of

 dly . The delay samples are within 82 (not 41) memory locations, each location
specifi ed with a byte. The coeffi cients also occupy 82 memory locations in the
buffer h . You can verify the content in the coeffi cient buffer stored as a 16 - bit
or half - word value. Right - click on the memory window and deselect Float in
Main Window for a better display with both source program and memory.

 2. Select View → Mixed C/ASM . Place a breakpoint within the function FIR-
casmfunc.asm at the move instruction

 MV A8,A4

 You can either double - click on that line of code or right - mouse - click to Toggle
Breakpoint .

 3. Select Debug → Animate . Execution halts at the set breakpoint for each unit
of time. Observe the end (bottom) memory location of the delay samples ’
buffer. Verify that the newest sample data value is placed at the end of the

200 Finite Impulse Response Filters

buffer. This value is then moved up the buffer to a lower address. Observe
after a while that the samples are being updated, with each value in the buffer
moving up in memory. You can also observe the register (pointer) A4 incre-
menting by 2 (two bytes) and B4 decrementing by 2.

 Example 4.13: FIR Implementation Using C Calling a Faster ASM Function
(FIRcasmfast)

 The same C calling program, FIRcasm.c , is used in this example as in Example 4.12 .
It calls the ASM function _fi rcasmfunc within the fi le FIRcasmfuncfast.asm , as
shown in Figure 4.39 . This ASM function executes faster than the function in the
previous example by having parallel instructions and rearranging the sequence of
instructions. There are two parallel instructions: LDH/LDH and SUB/LDH .

 1. The number of NOP s is reduced from 19 to 11.

 2. The SUB instruction to decrement the loop count is moved up the program.

 3. The sequence of some instructions is changed to fi ll some of the NOP slots. For
example, the conditional branch instruction executes after the ADD instruction

 FIGURE 4.39. FIR ASM function with parallel instructions for faster execution (FIRcasm-
funcfast.asm).

;FIRcasmfuncfast.asm C-called faster function to implement FIR
 .def _fircasmfunc
_fircasmfunc: ;ASM function called from C
 MV A6,A1 ;setup loop count
 MPY A6,2,A6 ;since dly buffer data as byte
 ZERO A8 ;init A8 for accumulation
 ADD A6,B4,B4 ;since coeff buffer data as byte
 SUB B4,1,B4 ;B4=bottom coeff array h[N-1]
loop: ;start of FIR loop
 LDH *A4++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1
 || LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1
 SUB A1,1,A1 ;decrement loop count
 || LDH *A4,A7 ;A7=x[(n-(N-1)+i+1]update delays
 NOP 4
 STH A7,*-A4[1] ;-->x[(n-(N-1)+i] update sample
 [A1] B loop ;branch to loop if count # 0
 NOP 2
 MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1-i]
 NOP
 ADD A6,A8,A8 ;accumlate in A8

 B B3 ;return addr to calling routine
 MV A8,A4 ;result returned in A4
 NOP 4

 Programming Examples Using C and ASM Code 201

to accumulate in A8, since branching has fi ve delay slots. Additional changes
to make it faster would also make it less comprehensible due to further rese-
quencing of the instructions.

 Build this project as FIRcasmfast , so that the linker option names the output
executable fi le FIRcasmfast.out . The resulting output is the same 1 - kHz bandpass
fi lter as in the previous example.

 Example 4.14: FIR Implementation Using C Calling an
ASM Function with a Circular Buffer (FIRcirc)

 The C program FIRcirc.c (Figure 4.40) calls the ASM function FIRcircfunc.asm
(Figure 4.41). This example expands Example 4.12 to implement an FIR fi lter
using a circular buffer. The coeffi cients within the fi le bp1750.cof were designed
with MATLAB using a Kaiser window and represent a 128 - coeffi cient FIR band-
pass fi lter with a center frequency of 1750 Hz. Figure 4.42 shows the characteristics
of this fi lter, obtained using MATLAB ’ s fi lter designer fdatool (described in
 Appendix D).

 FIGURE 4.40. C program calling an ASM function using a circular buffer (FIRcirc.c).

//FIRcirc.c C program calling ASM function using circular buffer

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input source
#include "bp1750.cof" //BP at 1750 Hz coeff file
int yn = 0; //init filter's output

interrupt void c_int11() //ISR
{
 short sample_data;

 sample_data = (input_sample()); //newest input sample data
 yn = fircircfunc(sample_data,h,N); //ASM func passing to A4,B4,A6
 output_sample((short)(yn>>15)); //filter's output
 return; //return to calling function
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

202 Finite Impulse Response Filters

 FIGURE 4.41. FIR ASM function using a circular buffer for updating samples
(FIRcircfunc.asm).

;FIRcircfunc.asm ASM function called from C using circular addressing
;A4=newest sample, B4=coefficient address, A6=filter order
;Delay samples organized: x[n-(N-1)]...x[n]; coeff as h(0)...h[N-1]

 .def _fircircfunc
 .def last_addr
 .def delays
 .sect "circdata" ;circular data section
 .align 256 ;align delay buffer 256-byte boundary
delays .space 256 ;init 256-byte buffer with 0's
last_addr .int last_addr-1 ;point to bottom of delays buffer
 .text ;code section
_fircircfunc: ;FIR function using circ addr
 MV A6,A1 ;setup loop count
 MPY A6,2,A6 ;since dly buffer data as byte
 ZERO A8 ;init A8 for accumulation

 ADD A6,B4,B4 ;since coeff buffer data as bytes
 SUB B4,1,B4 ;B4=bottom coeff array h[N-1]

 MVKL 0x00070040,B6 ;select A7 as pointer and BK0
 MVKH 0x00070040,B6 ;BK0 for 256 bytes (128 shorts)

 MVC B6,AMR ;set address mode register AMR

 MVKL last_addr,A9 ;A9=last circ addr(lower 16 bits)
 MVKH last_addr,A9 ;last circ addr (higher 16 bits)

 LDW *A9,A7 ;A7=last circ addr
 NOP 4
 STH A4,*A7++ ;newest sample-->last address

loop: ;begin FIR loop
 LDH *A7++,A2 ;A2=x[n-(N-1)+i] i=0,1,...,N-1
 || LDH *B4--,B2 ;B2=h[N-1-i] i=0,1,...,N-1
 SUB A1,1,A1 ;decrement count
 [A1] B loop ;branch to loop if count # 0
 NOP 2
 MPY A2,B2,A6 ;A6=x[n-(N-1)+i]*h[N-1+i]
 NOP
 ADD A6,A8,A8 ;accumulate in A8

 STW A7,*A9 ;store last circ addr to last_addr
 B B3 ;return addr to calling routine
 MV A8,A4 ;result returned in A4
 NOP 4

 Programming Examples Using C and ASM Code 203

 In lieu of moving the data to update the delay samples, a pointer is used. The 16
LSBs of the address mode register are set with a value of

0x0040 = 0000 0000 0100 0000

 This selects A7 mode as the circular buffer pointer register. The 16 MSBs of AMR
are set with N = 0x0007 to select the block BK0 as a circular buffer. The buffer
size is 2 N + 1 = 256. A circular buffer is used in this example only for the delay
samples.

 It is also possible to use a second circular buffer for the coeffi cients. For example,
using

0x0140 = 0000 0001 0100 0000

would select two pointers, B4 and A7.

FIGURE 4.42. Frequency characteristics of a 128 - coeffi cient FIR bandpass fi lter centered at
1750 Hz, designed using MATLAB fi lter design and analysis tool fdatool .

204 Finite Impulse Response Filters

 Within a C program, an inline assembly code can be used with the asm statement.
For example,

 asm(“ MVK 0x0040,B6 ”)

 Note the blank space after the fi rst quotation mark so that the instruction does not
start in column 1. The circular mode of addressing eliminates the data move to
update the delay samples, since a pointer can be moved to achieve the same results
and much faster. Initially, the register pointer A7 points to the last address in the
sample buffer. Consider for now the sample buffer only, since it is circular. (Note
that the coeffi cient ’ s buffer is not made to be circular.)

 1. Time n . At time n , A7 points to the end of the buffer, where the newest sample
is stored. It is then postincremented to point to the beginning of the buffer, as
shown in Table 4.2 . Then the section of code within the loop starts and
calculates

 y n h N x n N h N x n N h x n() () (()) () (()) () ()= − − − + − − − + +1 1 2 2 0�

 After the last multiplication, h (0) x (n), A7 is postincremented to point to the
beginning address of the buffer. The resulting fi lter ’ s output at time n is then
returned to the calling function. Before the loop starts for each unit of time,
A7 always contains the address where the newest sample is to be stored. While
the newly acquired sample is passed to the ASM function through A4 at each
unit of time n, n + 1, n + 2, . . . , A4 is stored in A7, which always contains the
 “ last ” address where the subsequent new sample is to be stored.

 2. Time n + 1. At time (n + 1), the newest sample, x (n + 1), is passed to the ASM
function through A4. The 16 - bit store (STH) instruction stores that sample into

 TABLE 4.2 Memory Organization of Coeffi cients and Samples Using a Circular Buffer

 Coeffi cients

 Samples

 Time n Time n + 1 Time n + 2

 h(0) A7 → x(n - (N - 1)) newest → x(n + 1) x(n + 1)
 h(1) x(n - (N - 1)) A7 → x(n - (N - 2)) newest → x(n + 2)
 h(2) x(n - (N - 1)) x(n - (N - 3)) A7 → x(n - (N - 3))
 · · · ·
 · · · ·
 · · · ·
 h(N - 2) x(n - 1) x(n - 1) x(n - 1)
 h(N - 1) newest → x(n) x(n) x(n)

 Programming Examples Using C and ASM Code 205

memory whose address is in A7, which is at the beginning of the buffer. It is
then postincremented to point at the address containing x (n − (N − 2)), as
shown in Table 4.2 . The output is now

y n h N x n N h N x n N

h x n h x
() () (()) () (())

() () () (
+ = − − − + − − − +

+ +
1 1 2 2 3

1 0
�

nn + 1)

 The last multiplication always involves h (0) and the newest sample.

 3. Time n + 2. At time (n + 2), the fi lter ’ s output is

y n h N x n N h N x n N

h x n h
() () (()) () (())

() () ()
+ = − − − + − − − +

+ + +
2 1 3 2 4

1 1 0
�

xx n()+ 2

 Note that for each unit of time, the newly acquired sample overwrites
the oldest sample at the previous unit of time. At each time n, n + 1, . . . , the
fi lter ’ s output is calculated within the ASM function and the result is sent
to the calling C function, where a new sample is acquired at each sample
period.

 The conditional branch instruction was moved up, as in Example 4.13 . Branching
to loop takes effect (due to fi ve delay slots) after the ADD instruction to accumulate
in A8. One can save the content of AMR at the end of processing one buffer and
restore it before using it again with a pair of MVC instructions: MVC AMR,Bx and
 MVC Bx,AMR using a B register.

 Build and run this project as FIRcirc . Verify an FIR bandpass fi lter centered at
1750 Hz. Halt , and Reload the program.

 Place a breakpoint within the ASM function FIRcircfunc.asm at the
branch instruction to return to the calling C function (B B3).View memory at the
address delays and verify that this buffer of size 256 is initialized to zero. Right -
 click on the memory window to toggle Float in Main Window (for a better display).
Run the program. Execution stops at the breakpoint. Verify that the newest sample
(16 bits) is stored at the end (higher address) of the buffer (at 0x31FE and 0x31FF).
Memory location 0x3200 (in A9) contains the address 0x3101 , where the subse-
quent new sample is to be stored. This address represents the starting address of
the buffer.

 View the core registers and verify that A7 contains this address.
 Run the program again and observe the new sample stored at the beginning of

the buffer. This 16 - bit data sample is stored at 0x3100 and 0x3101 . Animate now
and observe where each new sample is being stored in memory. Note that A7 is
incremented to 0x3103 , 0x3105 , The circular method of updating the delays is
more effi cient. It is important that the buffer is aligned on a boundary with a power
of 2. While a buffer may be “ naturally aligned, ” one must make sure that it is (an
address with LSBs as zeros) if such buffer is to be used as circular.

206 Finite Impulse Response Filters

 Example 4.15: FIR Implementation Using C Calling an ASM Function
Using a Circular Buffer in External Memory (FIRcirc_ext)

 This example implements an FIR fi lter using a circular buffer in external memory.
The same C source program FIRcirc.c and ASM function FIRcircfunc.asm as
in the previous example are used, but with a modifi ed linker command fi le. This
linker command fi le FIRcirc_ext.cmd is listed in Figure 4.43 . The section circ-
data designates the memory section buffer_ext , which starts in external memory
at 0x80000000 .

 Build this project as FIRcirc_ext . Load the executable fi le and view the memory
at the address delays. This should display the external memory section that starts at
 0x80000000 . Verify that the circular buffer is in external memory, where all the
delay samples are initialized to zero. Place a breakpoint as in Example 4.14 , run the
program up to the breakpoint, and verify that the newest input sample is stored at
the end of the circular buffer at 0x800000FE and 0x800000FF . Register A9 contains
the last address, and register A7 contains the address where the subsequent 16 - bit
input sample is to be stored (0x80000001). Run the program again (to the set

/*FIRcirc_ext.cmd Linker command file for external memory*/

MEMORY
{
 IVECS: org = 0h, len = 0x220
 IRAM: org = 0x00000220, len = 0x0002FFFF
 SRAM_EXT1: org = 0x80000000, len = 0x00000110
 SRAM_EXT2: org = 0x80000110, len = 0x00100000
 FLASH: org = 0x90000000, len = 0x00020000
}

SECTIONS
{
 circdata :> SRAM_EXT1 /*buffer in external mem*/
 .vecs :> IVECS /*Created in vectors file*/
 .text :> IRAM /*Created by C Compiler*/
 .bss :> IRAM
 .cinit :> IRAM
 .stack :> IRAM
 .sysmem :> IRAM
 .const :> IRAM
 .switch :> IRAM
 .far :> IRAM
 .cio :> IRAM
 .csldata :> IRAM
}

 FIGURE 4.43. Linker command fi le for a circular buffer in external memory
(FIRcirc_ext.cmd).

breakpoint) and verify that the subsequent acquired sample is stored at the begin-
ning of the buffer at the address 0x80000001 . Remove the breakpoint, restart/run,
and verify that the output is the same FIR bandpass fi lter centered at 1750 Hz, as
in Example 4.14 .

4.8 ASSIGNMENTS

1. (a) Design a 65 - coeffi cient FIR lowpass fi lter, using a Hamming window, with
a cut - off frequency of 2500 Hz and a sampling frequency of 8 kHz. Imple-
ment it in real time using program firprnbuf.c .

(b) Compare the characteristics of the fi lter designed using a Hamming
window with those of fi lters designed using Hann and Kaiser windows.

2. The coeffi cient fi le LP1500_256.cof (stored in folder fir) contains the 256
coeffi cients of an FIR lowpass fi lter, with a bandwidth of 1500 Hz when sam-
pling at 48 kHz. Implement this fi lter in real time. The C - coded examples in
this chapter may not be effi cient enough to implement this fi lter at a sampling
rate of 48 kHz. Consider using an ASM - coded FIR function with a circular
buffer.

3. Design and implement an FIR fi lter with two passbands, one centered at 2500
and the other at 3500 Hz. Use a sampling frequency of 16 kHz.

4. Rather than using an internal noise generator coded in C as input to a C - coded
FIR function (see program firprn.c), generate the noise using ASM code (see
program noisegen_casm.asm in Chapter 3).

REFERENCES

 1. W. J. Gomes III and R. Chassaing , Filter design and implementation using the TMS320C6x
interfaced with MATLAB , Proceedings of the 2000 ASEE Annual Conference , 2000 .

 2. A.V. Oppenheim and R. Schafer , Discrete - Time Signal Processing , Prentice Hall , Upper
Saddle River, NJ , 1989 .

 3. B. Gold and C. M. Rader , Digital Signal Processing of Signals , McGraw - Hill , New York ,
 1969 .

 4. L. R. Rabiner and B. Gold , Theory and Application of Digital Signal Processing , Prentice
Hall , Upper Saddle River, NJ , 1975 .

 5. T. W. Parks and J. H. McClellan , Chebychev approximation for nonrecursive digital fi lter
with linear phase , IEEE Transactions on Circuit Theory , Vol. CT - 19 , pp. 189 – 194 , 1972 .

 6. J. H. McClellan and T. W. Parks , A unifi ed approach to the design of optimum linear
phase digital fi lters , IEEE Transactions on Circuit Theory , Vol. CT - 20 , pp. 697 – 701 ,
 1973 .

 7. J. F. Kaiser , Nonrecursive digital fi lter design using the I0 - sinh window function , Proceed-
ings of the IEEE International Symposium on Circuits and Systems , 1974 .

References 207

208 Finite Impulse Response Filters

 8. J. F. Kaiser , Some practical considerations in the realization of linear digital fi lters ,
Proceedings of the 3rd Allerton Conference on Circuit System Theory , Oct. 1965 ,
pp. 621 – 633 .

 9. L. B. Jackson , Digital Filters and Signal Processing , Kluwer Academic , Norwell, MA ,
 1996 .

 10. J. G. Proakis and D. G. Manolakis , Digital Signal Processing: Principles, Algorithms, and
Applications , Prentice Hall , Upper Saddle River, NJ , 1996 .

 11. R. G. Lyons , Understanding Digital Signal Processing , Addison - Wesley , Reading, MA ,
 1997 .

 12. F. J. Harris , On the use of windows for harmonic analysis with the discrete Fourier
transform , Proceedings of the IEEE , Vol. 66 , pp. 51 – 83 , 1978 .

 13. I. F. Progri , W. R. Michalson , and R. Chassaing , Fast and effi cient fi lter design and imple-
mentation on the TMS320C6711 digital signal processor , International Conference on
Acoustics, Speech, and Signal Processing Student Forum , May 2001 .

 14. B. Porat , A Course in Digital Signal Processing , Wiley , Hoboken, NJ , 1997 .

 15. T. W. Parks and C. S. Burrus , Digital Filter Design , Wiley , Hoboken, NJ , 1987 .

 16. S. D. Stearns and R. A. David , Signal Processing In Fortran and C , Prentice Hall ,
 Upper Saddle River, NJ , 1993 .

 17. N. Ahmed and T. Natarajan , Discrete - Time Signals and Systems , Reston Publishing ,
 Reston, VA , 1983 .

 18. S. J. Orfanidis , Introduction to Signal Processing , Prentice Hall , Upper Saddle River, NJ ,
 1996 .

 19. A. Antoniou , Digital Filters: Analysis, Design, and Applications , McGraw - Hill ,
 New York , 1993 .

 20. E. C. Ifeachor and B. W. Jervis , Digital Signal Processing: A Practical Approach ,
 Addison - Wesley , Reading, MA , 1993 .

 21. P. A. Lynn and W. Fuerst , Introductory Digital Signal Processing with Computer
Applications , Wiley , Hoboken, NJ , 1994 .

 22. R. D. Strum and D. E. Kirk , First Principles of Discrete Systems and Digital Signal Pro-
cessing , Addison - Wesley , Reading, MA , 1988 .

 23. D. J. DeFatta , J. G. Lucas , and W. S. Hodgkiss , Digital Signal Processing: A System
Approach , Wiley , Hoboken, NJ , 1988 .

 24. C. S. Williams , Designing Digital Filters , Prentice Hall , Upper Saddle River, NJ , 1986 .

 25. R. W. Hamming , Digital Filters , Prentice Hall , Upper Saddle River, NJ , 1983 .

 26. S. K. Mitra and J. F. Kaiser , Eds., Handbook for Digital Signal Processing , Wiley , Hoboken,
NJ , 1993 .

 27. S. K. Mitra , Digital Signal Processing: A Computer - Based Approach , McGraw - Hill ,
 New York , 2001 .

 28. R. Chassaing , B. Bitler , and D. W. Horning , Real - time digital fi lters in C , Proceedings of
the 1991 ASEE Annual Conference , June 1991 .

 29. R. Chassaing and P. Martin , Digital fi ltering with the fl oating - point TMS320C30 digital
signal processor , Proceedings of the 21st Annual Pittsburgh Conference on Modeling and
Simulation , May 1990 .

 30. S. D. Stearns and R. A. David , Signal Processing In Fortran and C , Prentice Hall , Upper
Saddle River, NJ , 1993 .

 31. R. A. Roberts and C. T. Mullis , Digital Signal Processing , Addison - Wesley , Reading, MA ,
 1987 .

 32. E. P. Cunningham , Digital Filtering: An Introduction , Houghton Miffl in , Boston , 1992 .

 33. N. J. Loy , An Engineer ’ s Guide to FIR Digital Filters , Prentice Hall , Upper Saddle River,
NJ , 1988 .

 34. H. Nuttall , Some windows with very good sidelobe behavior , IEEE Transactions on
Acoustics, Speech, and Signal Processing , Vol. ASSP - 29 , No. 1 , Feb. 1981 .

 35. L. C. Ludemen , Fundamentals of Digital Signal Processing , Harper & Row , New York ,
 1986 .

 36. M. Bellanger , Digital Processing of Signals: Theory and Practice , Wiley , Hoboken, NJ ,
 1989 .

 37. M. G. Bellanger , Digital Filters and Signal Analysis , Prentice Hall , Upper Saddle River,
NJ , 1986 .

 38. F. J. Taylor , Principles of Signals and Systems , McGraw - Hill , New York , 1994 .

 39. F. J. Taylor , Digital Filter Design Handbook , Marcel Dekker , New York , 1983 .

 40. W. D. Stanley , G. R. Dougherty , and R. Dougherty , Digital Signal Processing , Reston
Publishing , Reston, VA , 1984 .

 41. R. Kuc , Introduction to Digital Signal Processing , McGraw - Hill , New York , 1988 .

 42. H. Baher , Analog and Digital Signal Processing , Wiley , Hoboken, NJ , 1990 .

 43. J. R. Johnson , Introduction to Digital Signal Processing , Prentice Hall , Upper Saddle
River, NJ , 1989 .

 44. S. Haykin , Modern Filters , Macmillan , New York , 1989 .

 45. T. Young , Linear Systems and Digital Signal Processing , Prentice Hall , Upper Saddle
River, NJ , 1985 .

 46. A. Ambardar , Analog and Digital Signal Processing , PWS , Boston, MA , 1995 .

 47. A. W. M. van den Enden and N. A. M. Verhoeckx , Discrete - Time Signal Processing ,
 Prentice - Hall International, Hemel Hempstead , Hertfordshire, England , 1989 .

 48. A. H. Gray and J. D. Markel , Digital lattice and ladder fi lter synthesis , IEEE Transactions
on Acoustics, Speech, and Signal Processing , Vol. ASSP - 21 , pp. 491 – 500 , Dec. 1973 .

 49. A. H. Gray and J. D. Markel , A normalized digital fi lter structure , IEEE Transactions on
Acoustics, Speech, and Signal Processing , Vol. ASSP - 23 , pp. 258 – 277 , June 1975 .

 50. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken, NJ , 1990 .

References 209

 Infi nite Impulse Response Filters

210

 • Infi nite impulse response fi lter structures: direct form I, direct form II, cascade
and parallel

 • Bilinear transformation for fi lter design

 • Sinusoidal waveform generation using difference equation

 • Filter design and utility packages

 • Programming examples using TMS320C6X and C code

 The FIR fi lter discussed in Chapter 4 has no analog counterpart. In this chapter we
discuss the infi nite impulse response (IIR) fi lter that makes use of the vast knowl-
edge already acquired with analog fi lters. The design procedure involves the conver-
sion of an analog fi lter to an equivalent discrete fi lter using the bilinear transformation
(BLT) technique. As such, the BLT procedure converts a transfer function of an
analog fi lter in the s - domain into an equivalent discrete - time transfer function in
the z - domain.

 5.1 INTRODUCTION

 Consider a general input – output equation of the form

 y n b x n k a y n l
k

M

k
l

N

l() () ()= − − −
= =

∑ ∑
0 1

 (5.1)

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

5

or equivalently,

 y n b x n b x n b x n b x n M
a y n a y n

M() () () () ()
() ()

= + − + − + + −
− − − −

0 1 2

1 2

1 2
1 2

�
−− − −� a y n NN ()

 (5.2)

 This recursive type of equation represents an IIR fi lter. The output depends on the
inputs as well as past outputs (with feedback). The output y (n), at time n , depends
not only on the current input x (n), at time n , and on past inputs x (n − 1), x (n −
 2), . . . , x (n − M), but also on past outputs y (n − 1), y (n − 2), . . . , y (n − N).

 If we assume all initial conditions to be zero in (5.2) , the z - transform of (5.2)
becomes

 Y z b b z b z b z X z a z a z a z Y zN
N

M
M() () () () (= + + + + − + + +− − − − − −

0 1
1

2
2

1
1

2
2� �)) (5.3)

Let N = M in (5.3) ; then the transfer function H (z) is

 H z
Y z
X z

b b z b z b z
a z a z a z

N
N

N
N

()
()
()

= = + + + +
+ + + +

=
− − −

− − −
0 1

1
2

2

1
1

2
21
�
�

NN z
D z

()
()

 (5.4)

where N (z) and D (z) represent the numerator and denominator polynomial, respec-
tively. Multiplying and dividing by z n , H (z) becomes

 H z
b z b z b z b
z a z a z a

C
zN N N

N
N N N

N i

N

() = + + + +
+ + + +

= −− −

− −
=

∏0 1
1

2
2

1
1

2
2

1

�
�

zz
p p

i

i−
 (5.5)

which is a transfer function with N zeros and N poles. If all the coeffi cients a l in (5.5)
are zero, this transfer function reduces to the transfer function with N poles at the
origin in the z - plane representing the FIR fi lter discussed in Chapter 4 . For a system
to be stable, all the poles must reside inside the unit circle, as discussed in Chapter
 4 . Hence, for an IIR fi lter to be stable, the magnitude of each of its poles must be
less than 1 or:

 1. If | p i | < 1, then h (n) → 0 , as n → ∞ , yielding a stable system.

 2. If | p i | > 1, then h (n) → ∞ , as n → ∞ , yielding an unstable system.

 If | p i | = 1, the system is marginally stable, yielding an oscillatory response. Fur-
thermore, multiple - order poles on the unit circle yield an unstable system. Note
again that with all the coeffi cients a l = 0, the system reduces to a nonrecursive and
stable FIR fi lter.

 5.2 IIR FILTER STRUCTURES

 There are several different structures that may be used to represent an IIR fi lter,
as discussed next.

 IIR Filter Structures 211

212 Infi nite Impulse Response Filters

x(n) y(n)

y(n–1)

y(n–2)

x(n–1)

+

+

+

+

+ +

+ +

b0

z–1 z–1

b1 –a1

–a2b2

z–1 z–1

x(n–2)
+

+

+

+

–aN y(n–N)bNx(n–N)

 5.2.1 Direct Form I Structure

 With the direct form I structure shown in Figure 5.1 , the fi lter in (5.2) can be real-
ized. For an N th order fi lter, this structure has 2 N delay elements, represented by
 z − 1 . For example, a second order fi lter with N = 2 will have four delay elements.

 5.2.2 Direct Form II Structure

 The direct form II structure shown in Figure 5.2 is one of the most commonly used
structures. It requires half as many delay elements as the direct form I. For example,
a second order fi lter requires two delay elements z − 1 , as opposed to four with the
direct form I.

 From the block diagram of Figure 5.2 it can be seen that

 w n x n a w n a w n a w n NN() () () () ()= − − − − − − −1 21 2 � (5.6)

and that

 y n b w n b w n b w n b w n NN() () () () ()= + − + − + + −0 1 21 2 � (5.7)

Taking z - transforms of equations (5.6) and (5.7) , we fi nd

 W z X z a z W z a z W z a z W zN
N() () () () ()= − − − −− − −

1
1

2
2 � (5.8)

 FIGURE 5.1. Direct form I IIR fi lter structure.

and hence

 X z a z a z a z W zN
N() () ()= + + + +− − −1 1

1
2

2 � (5.9)

and

 Y z b b z b z b z W zN
N() () ()= + + + +− − −

0 1
1

2
2 � (5.10)

Thus,

 H z
Y z
X z

b b z b z b z
a z a z a z

N
N

N
N

()
()
()

= = + + + +
+ + + +

− − −

− − −
0 1

1
2

2

1
1

2
21
�
�

 (5.11)

that is, the same as equation (5.4) .
 The direct form II structure can be represented by difference equations (5.6) and

 (5.7) taking the place of equation (5.2) .
 Equations (5.6) and (5.7) are used to program an IIR fi lter. Initially, w (n − 1),

 w (n − 2), . . . are set to zero. At time n , a new sample x (n) is acquired, and (5.6) is
used to solve for w (n); then the output y (n) is calculated using (5.7) .

x(n) y(n)

w(n–1)

w(n–2)

w(n)+

+

+

+

++

+ +

b0

z-1

z-1

b1–a1

–a2 b2

–aN bN

w(n–N)

z-1

 FIGURE 5.2. Direct form II IIR fi lter structure.

 IIR Filter Structures 213

214 Infi nite Impulse Response Filters

x(n) y(n)

w0(n)

wN-1(n)

+

+

+

+

+

+

+

+

b0

z-1

z-1

b1 –a1

–a2b2

–aNbN

z-1

w1(n)

+ +

 5.2.3 Direct Form II Transpose

 The direct form II transpose structure shown in Figure 5.3 is a modifi ed version of
the direct form II and requires the same number of delay elements.

 From inspection of the block diagram, the fi lter output can be computed using

 y n b x n w n() () ()= + −0 0 1 (5.12)

Subsequently, the contents of the delay line can be updated using

 w n b x n w n a y n0 1 1 11() () () ()= + − − (5.13)

 w n b x n w n a y n1 2 2 21() () () ()= + − − (5.14)

and so on until fi nally

 w n b x n a y nN N N− = −1() () () (5.15)

Using equation (5.13) to fi nd w 0 (n − 1),

 w n b x n w n a y n0 1 1 11 1 2 1() () () ()− = − + − − −

 FIGURE 5.3. Direct form II transpose IIR fi lter structure.

equation (5.12) becomes

 y n b x n b x n w n a y n() () [() () ()]= + − + − − −0 1 1 11 2 1

Similarly, using equation (5.14) to fi nd w 1 (n − 2),

 w n b x n w n a y n1 2 2 22 2 3 2() () () ()− = − + − − −

equation (5.12) becomes

 y n b x n b x n b x n w n a y n a y n() () [() [() () ()] ()= + − + − + − − − − −0 1 2 2 2 11 2 3 2 1]] (5.16)

 Continuing this procedure until equation (5.15) has been used, it can be shown that
equation (5.12) is equivalent to equation (5.2) and hence that the block diagram of
Figure 5.3 is equivalent to that of Figures 5.1 and 5.2 . The transposed structure
implements the zeros fi rst and then the poles, whereas the direct form II structure
implements the poles fi rst.

 5.2.4 Cascade Structure

 The transfer function in (5.5) can be factorized as

 H z CH z H z H zr() () () ()= 1 2 � (5.17)

in terms of fi rst or second order transfer functions. The cascade (or series)
structure is shown in Figure 5.4 . An overall transfer function can be represented
with cascaded transfer functions. For each section, the direct form II structure
or its transpose version can be used. Figure 5.5 shows a fourth order IIR struc-
ture in terms of two direct form II second order sections in cascade. The trans-
fer function H (z), in terms of cascaded second order transfer functions, can be
written

 H z
b b z b z

a z a zi

N
i i i

i i

()
/

= + +
+ +=

− −

− −∏
1

2
0 1

1
2

2

1
1

2
21

 (5.18)

y(n)
H1(z) H2(z) H3(z)

x(n)
Hr(z)

 FIGURE 5.4. Cascade form IIR fi lter structure.

 IIR Filter Structures 215

216 Infi nite Impulse Response Filters

 where the constant C in (5.17) is incorporated into the coeffi cients, and each differ-
ent section is represented by i . For example, N = 4 for a fourth order transfer func-
tion, and (5.18) becomes

 H z
b b z b z b b z b z

a z a z
()

()()
(

= + + + +
+ +

− − − −

− −
01 11

1
21

2
02 12

1
22

2

11
1

211 22
12

1
22

21)()+ +− −a z a z
 (5.19)

as can be verifi ed in Figure 5.5 . From a mathematical standpoint, proper ordering
of the numerator and denominator factors does not affect the output result. However,
from a practical standpoint, proper ordering of each second order section can mini-
mize quantization noise [1 – 5] . Note that the output of the fi rst section, y 1 (n), becomes
the input to the second section. With an intermediate output result stored in one of
the registers, a premature truncation of the intermediate output becomes negligible.
A programming example later in this chapter will illustrate the implementation of
an IIR fi lter cascaded into second order direct form II sections.

 5.2.5 Parallel Form Structure

 The transfer function in (5.5) can be represented as

 H z C H z H z H zr() () () ()= + + + +1 2 1� (5.20)

which can be obtained using a partial fraction expansion (PFE) on (5.5) . This paral-
lel form structure is shown in Figure 5.6 . Each of the transfer functions H 1 (z),
 H 2 (z), . . . can be either fi rst or second order functions. As with the cascade structure,
the parallel form can effi ciently be represented in terms of second order direct form
II structure sections. H (z) can be expressed as

 H z C
b b z b z

a z a zi

N
i i i

i i

()
/

= + + +
+ +=

− −

− −∑
1

2
0 1

1
2

2

1
1

2
21

 (5.21)

x(n) y1(n)

w1(n–1)

w1(n–2)

w1(n)+

+

+

+

++

+ +

b01

z-1

z-1

b11–a11

–a21 b21

y(n)

w2(n–1)

w2(n–2)

w2(n)+

+

+

+

++

+ +

b02

z-1

z-1

b12–a12

–a22 b22

 FIGURE 5.5. Fourth order IIR fi lter with two direct form II sections in cascade.

 For example, for a fourth order transfer function, H (z) in (5.21) becomes

 H z C
b b z b z

a z a z
b b z b z

() = + + +
+ +

+ + +− −

− −

− −
01 11

1
21

2

12
1

22
2

02 12
1

22
2

1 1++ +− −a z a z12
1

22
2

 (5.22)

This fourth order parallel structure is represented in terms of two direct form II
sections as shown in Figure 5.7 . From that fi gure, the output y (n) can be expressed
in terms of the output of each section, or

 y n Cx n y n
i

N

i() () ()
/

= +
=
∑

1

2

 (5.23)

 The quantization error associated with the coeffi cients of an IIR fi lter depends on
the amount of shift in the position of its poles and zeros in the complex plane. This
implies that the shift in the position of a particular pole depends on the positions
of all the other poles. To minimize this dependency of poles, an N th order IIR fi lter
is typically implemented as cascaded second order sections.

 5.3 BILINEAR TRANSFORMATION

 The BLT is the most commonly used technique for transforming an analog fi lter
into a discrete fi lter. It provides one - to - one mapping from the analog s - plane to the
digital z - plane, using

x(n) y(n)

+

+

+

+

H1(z)

H2(z)

H3(z)

Hr(z)

C

+

+

+

 FIGURE 5.6. Parallel form IIR fi lter structure.

 Bilinear Transformation 217

218 Infi nite Impulse Response Filters

 s K
z
z

= −
+

()
()

1
1

 (5.24)

 The constant K in (5.24) is commonly chosen as K = 2/ T , where T represents the
sampling period, in seconds, of the digital fi lter. Other values for K can be selected,
as described in Section 5.3.1 .

 This transformation allows the following:

 1. The left region in the s - plane, corresponding to σ < 0, maps inside the unit
circle in the z - plane.

 2. The right region in the s - plane, corresponding to σ > 0, maps outside the unit
circle in the z - plane.

 3. The imaginary j w axis in the s - plane maps on the unit circle in the z - plane.

x(n) y1(n)

w1(n–1)

w1(n–2)

w1(n)+

+

+

+

++

+ +

b01

z-1

z-1

b11–a11

–a21 b21

y2(n)

w2(n–1)

w2(n–2)

w2(n)+

+

+

+

++

+ +

b02

z-1

z-1

b12–a12

–a22 b22

y(n)+ +

+

C

 FIGURE 5.7. Fourth order IIR fi lter with two direct form II sections in parallel.

 Let w A and w D represent analog and digital frequencies, respectively. With s = j w A
and z e j TD= ω , (5.24) becomes

 j K
e
e

K
e e e
e

A

j T

j T

j T j T j T

j T

D

D

D D D

D
ω

ω

ω

ω ω ω

ω= −
+

= − −()
()

()
(

/ / /

/

1
1

2 2 2

2 ee ej T j TD Dω ω/ /)2 2+ − (5.25)

Using Euler ’ s expressions for sine and cosine in terms of complex exponential func-
tions, w A from (5.25) becomes

 ω ω
A

DK
T= ()tan

2
 (5.26)

which relates the analog frequency w A to the digital frequency w D . This relationship
is plotted in Figure 5.8 for positive values of w A . The nonlinear compression of the
entire analog frequency range into the digital frequency range from zero to w s /2 is
referred to as frequency warping (w s = 2 p / T).

 5.3.1 BLT Design Procedure

 The BLT design procedure for transforming an analog fi lter design expressed as a
transfer function H (s) into a z - transfer function H (z) representing a discrete - time
IIR fi lter is described by

 H z H s s z T z() () ()/ ()= = − +2 1 1 (5.27)

 H (s) can be chosen according to well - documented analog fi lter design theory (e.g.,
Butterworth, Chebyshev, Bessel, or elliptic).

0 0.5 1 1.5 2
0.0

0.1

0.2

0.3

0.4

0.5

Normalized analog frequency (ωA/ωs)

N
or

m
al

iz
ed

 d
ig

ita
l f

re
qu

en
cy

 (
ω

D
/ω

s)

 FIGURE 5.8. Relationship between analog and digital frequencies.

 Bilinear Transformation 219

220 Infi nite Impulse Response Filters

 It is common to choose K = 2/ T . Alternatively, it is possible to prewarp the analog
fi lter frequency response in such a way that the bilinear transform maps an analog
frequency w A = w c , in the range 0 to w s /2, to exactly the same digital frequency
 w D = w c . This is achieved by choosing

 K c

c S

=
()

ω
πω ωtan /

 (5.28)

 5.4 PROGRAMMING EXAMPLES USING C AND ASM CODE

 The examples in this section introduce and illustrate the implementation of infi nite
impulse response (IIR) fi ltering. Many different approaches to IIR fi lter design are
possible and most often IIR fi lters are designed with the aid of software tools.
Before using such a design package, and in order to appreciate better what such
design packages do, a simple example will be used to illustrate some of the basic
principles of IIR fi lter design.

 Design of a Simple IIR Lowpass Filter
 Traditionally, IIR fi lter design is based on the concept of transforming a continu-
ous - time, or analog, design into the discrete - time domain. Butterworth, Chebyshev,
Bessel, and elliptical classes of analog fi lter are widely used. For our example we
will choose a second order, type 1 Chebyshev, lowpass fi lter with 2 dB of passband
ripple and a cutoff frequency of 1500 Hz (9425 rad/s).

 The continuous - time transfer function of such a fi lter is

 H s
s s

() =
+ +

58072962
7576 731095272

 (5.29)

and its frequency response is shown in Figure 5.9 .
 This transfer function can be generated by typing

 > > [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’);

at the MATLAB command line.
 Our task is to transform this design into the discrete - time domain. One method

of achieving this is the impulse invariance method.

 Impulse Invariance Method
 This method is based on the concept of mapping each s - plane pole of the continu-
ous - time fi lter to a corresponding z - plane pole using the substitution (1 1− − −e zp tk s)
for (s + p k) in H (s). This can be achieved by several different means. Partial fraction
expansion of H (s) and substitution of (1 1− − −e zp tk s) for (s + p k) can involve a lot of

 Programming Examples Using C and ASM Code 221

algebra. An equivalent method of making the transformation is to use tables of
Laplace and z - transforms as follows.

 In our example, starting with the fi lter transfer function (5.29) , we can make use
of the Laplace transform pair

 L Ae t
A

s s
t{ ()}

()
− =

+ + +
α ω ω

α α ω
sin

2 2 22
 (5.30)

(a)

(b)

 FIGURE 5.9. (a) Magnitude frequency response of fi lter H (s) and (b) phase response of
fi lter H (s).

222 Infi nite Impulse Response Filters

(the fi lter ’ s transfer function is equal to the Laplace transform of its impulse
response) and use the values

 α = =7576 2 3787 9/ .

 ω = − =73109527 3787 9 7665 62. .

 A = =58072962 7665 6 7575 8/ . .

Hence, the impulse response of the fi lter in this example is given by

 h t e tt() . (.)= −7575 8 7665 63788 sin (5.31)

The z - transform pair

 Z Ae t
Ae t z

e t z e
t

t
s

t
s

s

s
{ ()}

()
(())

−
− −

− − −2=
− +

α
α

αω ω
ω

sin
sin

cos

1

11 2 ααts z−2
 (5.32)

yields the following discrete - time transfer function when we substitute for w , A , and
 α and set t s = 0.000125 in equation (5.32) :

 H z
Y z
X z

z
z z

()
()
()

.
. .

= =
− +

−

− −

0 48255
1 0 71624315 0 38791310

1

1 2
 (5.33)

From H (z), the following difference equation may be derived:

 y n x n y n y n() . () . () . ()= − + − − −0 48255 1 0 71624315 1 0 38791310 2 (5.34)

 In terms of equation (5.1) , we can see that a 1 = 0.71624315, a 2 = − 0.38791310,
 b 0 = 0.0000, and b 1 = 0.48255.

 In order to apply the impulse invariant method using MATLAB, type

 > > [bz,az] = impinvar(b,a,8000);

 This discrete - time fi lter has the property that its discrete - time impulse response,
 h (n), is exactly equal to samples of the continuous - time impulse response, h (t), as
shown in Figure 5.10 .

 Although it is evident from Figure 5.10 that the discrete - time impulse response
 h (n) decays almost to zero, this sequence is not fi nite. Whereas the impulse response
of an FIR fi lter is given explicitly by its fi nite set of coeffi cients, the coeffi cients of
an IIR fi lter are used in a recursive equation (5.1) to determine its impulse response
 h (n).

 Programming Examples Using C and ASM Code 223

 Example 5.1: Implementation of IIR Filter Using Cascaded
Second Order Direct Form II Sections (iirsos)

 Program iirsos.c , stored in folder iirsos and listed in Figure 5.11 , implements a
generic IIR fi lter using cascaded direct form II second order stages (sections) and
coeffi cient values stored in a separate fi le. The program uses the following two
expressions:

 w n x n a w n a w n() () () ()= − − − −1 21 2

 y n b w n b w n b y n() () () ()= + − + −0 1 21 2

implemented by the lines

 wn = input - a[section][0] * w[section][0] - [section][1]
 * w[section][1];

yn = b[section][0] * wn + b[section][1] * w[section][0] +
a[section][2] * w[section][1];

 With reference to Figure 5.5 and to equation (5.18) , the coeffi cients a 1 i , a 2 i , b 0 i , b 1 i ,
and b 2 i are stored as

 a[i][0], a[i][1], b[i][0], b[i][1] and b[i][2] respectively.
w[i][0] and w[i][1] correspond to w i (n − 1) and w i (n − 2).

 The impulse invariant fi lter is implemented using program iirsos.c by including
the coeffi cient fi le impinv.cof , listed in Figure 5.12 . The number of cascaded second
order sections is defi ned as NUM_SECTIONS in that fi le.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

x 10
-3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

Time (s)

A
m

pl
itu

de

Impulse Response

 FIGURE 5.10. Impulse responses h (t) and h (n) of continuous - time fi lter and its impulse
invariant digital implementation.

224 Infi nite Impulse Response Filters

//iirsos.c iir filter using cascaded second order sections

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

interrupt void c_int11() //interrupt service routine
{
 int section; //index for section number
 float input; //input to each section
 float wn,yn; //intermediate and output
 //values in each stage

 input = ((float)input_left_sample());

 for (section=0 ; section< NUM_SECTIONS ; section++)
 {
 wn = input - a[section][0]*w[section][0]
 - a[section][1]*w[section][1];
 yn = b[section][0]*wn + b[section][1]*w[section][0]
 + b[section][2]*w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn;
 input = yn; //output of current section
 //will be input to next
 }
 output_left_sample((short)(yn)); //before writing to codec
 return; //return from ISR
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 5.11. IIR fi lter program using second order stages in cascade (iirsos.c).

 Build and run the project as iirsos .
 You can use a signal generator and oscilloscope to measure the magnitude fre-

quency response of the fi lter and you will fi nd that the attenuation of frequencies
above 2500 Hz is not very pronounced. That is due to the low order of the fi lter and
to inherent shortcomings of the impulse invariant transformation method. A number

 Programming Examples Using C and ASM Code 225

// impinv.cof
// second order type 1 Chebyshev LPF with 2dB passband ripple
// and cutoff frequency 1500Hz

#define NUM_SECTIONS 1

float b[NUM_SECTIONS][3]={ {0.0, 0.48255, 0.0} };
float a[NUM_SECTIONS][2]={ {-0.71624, 0.387913} };

 FIGURE 5.12. Listing of coeffi cient fi le impinv.cof .

of alternative methods of assessing the magnitude frequency response of the fi lter
will be described in the next few examples.

 Example 5.2: Implementation of IIR Filter Using Cascaded Second Order
Transposed Direct Form II Sections (iirsostr)

 A transposed direct form II structure can be implemented using program iirsos.
c by replacing the lines that read

 wn = input - a[section][0] * w[section][0] -
a[section][1] * w[section][1];
 yn = b[section][0] * wn + b[section][1] * w[section][0] +
b[section][2] * w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn;

with the following:

 yn = b[section][0] * input + w[section][0]; w[section][0] =
b[section][1] * input + w[section][1] - a[section][0] * yn;
w[section][1] = b[section][2] * input - a[section][1] * yn;

(variable wn is not required in the latter case). This substitution has been made in
program iirsostr.c , stored in folder iirsos . You should not notice any difference
in the fi lter characteristics implemented using program iirsostr.c .

 Example 5.3: Estimating the Frequency Response of an
 IIR Filter Using Pseudorandom Noise as Input (iirsosprn)

 Program iirsosprn.c is closely related to program fi rprn.c , described in Chapter
 4 . In real time, it generates a pseudorandom binary sequence and uses this wideband
noise signal as the input to an IIR fi lter (Figure 5.13). The output of the fi lter is
written to the DAC in the AIC23 codec and the resulting analog signal (fi ltered
noise) can be analyzed using an oscilloscope, spectrum analyzer, Goldwave (Figure

226 Infi nite Impulse Response Filters

// iirsosprn.c iir filter using cascaded second order sections
// input from PRBS generator function, output to line out
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

#include "noise_gen.h" //support file for noise
int fb; //feedback variable
shift_reg sreg; //shift register
#define NOISELEVEL 8000 //scale factor for noise

int prand(void) //pseudo-random noise
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -NOISELEVEL; //scaled -ve noise level
 else
 prnseq = NOISELEVEL; //scaled +ve noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1; //shift register 1 bit left
 sreg.bt.b0=fb; //close feedback path
 return prnseq;
}

void resetreg(void) //reset shift register
{
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feedback value
 return;
}

interrupt void c_int11() //interrupt service routine
{
 int section; //index for section number
 float input; //input to each section
 float wn,yn; //intermediate and output
 //values in each stage
 input = (float)(prand()); //get new input sample

 FIGURE 5.13. IIR fi lter program using second order stages in cascade and internally gener-
ated pseudorandom noise as input (iirsosprn.c).

 Programming Examples Using C and ASM Code 227

 for (section=0 ; section< NUM_SECTIONS ; section++)
 {
 wn = input - a[section][0]*w[section][0]
 - a[section][1]*w[section][1];
 yn = b[section][0]*wn + b[section][1]*w[section][0]
 + b[section][2]*w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn;
 input = yn; //output of current section
 //will be input to next
 }
 output_left_sample((short)(yn)); //before writing to codec
 return; //return from ISR
}

void main()
{
 resetreg();
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

FIGURE 5.13. (Continued)

 5.15), or other instrument. The frequency content of the fi lter output gives an indica-
tion of the fi lter ’ s magnitude frequency response.

 Figure 5.14 shows the output of the example fi lter (using coeffi cient fi le impinv.
cof) displayed using the FFT function of an Agilent 54621A oscilloscope. In Figure
 5.14 the vertical scale is 10 dB per division and the horizontal scale is 500 Hz per divi-
sion. The lowpass characteristics of the example fi lter are evident in the left - hand half

 FIGURE 5.14. Output from program iirsosprn.c , using coeffi cient fi le impinv.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

228 Infi nite Impulse Response Filters

FIGURE 5.15. Output from program iirsosprn.c , using coeffi cient fi le impinv.cof ,
viewed using Goldwave .

of the fi gure between 0 and 2.5 kHz. The steeper roll - off beyond 3.5 kHz, in the right -
 hand third of the fi gure, is due to the reconstruction fi lter in the AIC23 codec.

Example 5.4: Estimating the Frequency Response of an
IIR Filter Using a Sequence of Impulses as Input (iirsosdelta)

 Instead of a pseudorandom binary sequence, program iirsosdelta.c generates a
sequence of discrete - time impulses as the input to an IIR fi lter. The resultant output
is an approximation to a repetitive sequence of fi lter impulse responses. This relies
on the fi lter impulse response decaying practically to zero within the period between
successive input impulses. The fi lter output is written to the DAC in the AIC23 codec
and the resulting analog signal can be analyzed using an oscilloscope, spectrum
analyzer, Goldwave , or other instrument. In addition, program iirsosdelta.c
stores BUFSIZE samples of the fi lter output, y (n), in buffer response and we can
use the View→ Graph facility in Code Composer to view that data in both time and
frequency domains (Figure 5.16).

 Programming Examples Using C and ASM Code 229

// iirsosdelta.c iir filter using cascaded second order sections
// input internally generated delta sequence, output to line out
// and save in buffer
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#define BUFSIZE 256
#define AMPLITUDE 20000
#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

float dimpulse[BUFSIZE];
float response[BUFSIZE];
int index = 0;

float w[NUM_SECTIONS][2] = {0};

interrupt void c_int11() //interrupt service routine
{
 int section; //index for section number
 float input; //input to each section
 float wn,yn; //intermediate and output
 //values in each stage

 input = dimpulse[index]; //input to first section is
 //read from impulse sequence

 for (section=0 ; section< NUM_SECTIONS ; section++)
 {
 wn = input - a[section][0]*w[section][0]
 - a[section][1]*w[section][1];
 yn = b[section][0]*wn + b[section][1]*w[section][0]
 + b[section][2]*w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn;
 input = yn; //output of current section
 //will be input to next
 }
 output_left_sample((short)(yn)); //before writing to codec
 return; //return from ISR
}

void main()
{
 int i;

 for (i=0 ; i< BUFSIZE ; i++) dimpulse[i] = 0.0;
 dimpulse[0] = 1.0;
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 5.16. IIR fi lter program using second order stages in cascade and internally gener-
ated impulses as input (iirsosdelta.c).

230 Infi nite Impulse Response Filters

FIGURE 5.17. Output from program iirsosdelta.c , using coeffi cient fi le impinv.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

 Build and run the project as iirsosdelta . The necessary fi les are stored in folder
iirsosdelta .

 Figure 5.17 shows the analog output signal generated by the program, captured
using an Agilent 54621A oscilloscope. The upper trace shows the time domain
impulse response of the fi lter (2 ms per division) and the lower trace shows the FFT
of that impulse response over a frequency range of 0 – 5 kHz. The output waveform
is shaped both by the IIR fi lter and by the AIC23 codec reconstruction fi lter. In the
frequency domain, the codec reconstruction fi lter is responsible for the steep roll - off
of gain at frequencies above 3500 Hz and the ac coupling of the codec output is
responsible for the steep roll - off of gain at frequencies below 100 Hz. In the time
domain, the characteristics of the codec reconstruction fi lter are evident in the
ringing that precedes the greater part of the impulse response waveform.

 Halt the program and select View→ Graph . Set the Graph Properties as indicated
in Figure 5.18 and you should see something similar to the right - hand graph shown
in Figure 5.19 .

Aliasing in the Impulse Invariant Method
 There are signifi cant differences between the magnitude frequency response of the
analog prototype fi lter used in this example (Figure 5.9) and that of its impulse
invariant digital implementation (Figure 5.19). The gain of the analog prototype has
a magnitude of − 15 dB at 3000 Hz, whereas, according to Figure 5.19 , the gain of the
digital fi lter at that frequency has a magnitude closer to − 11 dB. This difference is
due to aliasing . Whenever a signal is sampled, the problem of aliasing should be
addressed and in order to avoid aliasing, the signal to be sampled should not contain
any frequency components at frequencies greater than or equal to half the sampling
frequency. In this case, the impulse invariant transformation is equivalent to sam-

 Programming Examples Using C and ASM Code 231

pling the continuous - time impulse response of the analog prototype h (t) . However,
this transformation does not in itself consider the frequency content of h (t) . The
impulse invariant method will be completely free of aliasing effects only if the
impulse response h (t) contains no frequency components at frequencies greater
than or equal to half the sampling frequency.

FIGURE 5.18. Graph Property settings for use with program iirsosdelta.c .

FIGURE 5.19. Impulse and magnitude frequency response of example fi lter captured using
Code Composer and program iirsosdelta.c .

232 Infi nite Impulse Response Filters

 In our example, the magnitude frequency response of the analog prototype fi lter
will be folded back on itself about the 4000 - Hz point.

 This can be verifi ed using MATLAB function freqz() , which assesses the fre-
quency response of a digital fi lter. Type

 > > freqz(bz,az);

 An alternative method of transforming an analog fi lter design to a discrete - time
implementation that eliminates this effect is the use of the bilinear transform .

 Bilinear Transform Method of Digital Filter Implementation
 The bilinear transform method of converting an analog fi lter design to discrete time
is relatively straightforward, often involving less algebraic manipulation than the
impulse invariant method. It is achieved by making the substitution

 s
z

T z
= −

+
2 1

1
()
()

 (5.35)

in H (s), where T is the sampling period of the digital fi lter; that is,

 H z H s s z T z() () ()/ ()= = − +2 1 1 (5.36)

Applying the bilinear transform to the example fi lter results in the following
 z - transfer function:

 H z
Y z
X z

z z
()

()
()

. . .
.

= = + +
−

− −0 12895869 0 25791738 0 12895869
1 0 81

1 2

2226498 0 461662491 2z z− −+ .
 (5.37)

From H (z), the following difference equation may be derived:

y n x n x n x n

y n

() . () . () . ()

. () .

= + − + −
+ − −
0 1290 0 2579 1 0 1290 2

0 8123 1 0 46617 2y n()−
 (5.38)

This can be achieved in MATLAB by typing

 > > [bd,ad] = bilinear(b,a,8000);

 The characteristics of the fi lter can be examined by changing the coeffi cient fi le used
by programs iirsos.c , iirsosprn.c , and iirsosdelta.c from impinv.cof to
 bilinear.cof . In each case, change the line that reads

 #include “ impinv.cof ”

 Programming Examples Using C and ASM Code 233

to read

 #include “ bilinear.cof ”

before building, loading, and running the programs.
 Figures 5.20 – 5.23 show results obtained using programs iirsosprn.c and

 iirsosdelta.c with coeffi cient fi le bilinear.cof . The attenuation provided by
this fi lter at high frequencies is much greater than in the impulse invariant case. In
fact, the attenuation at frequencies higher than 2 kHz is signifi cantly greater than
that of the analog prototype fi lter.

 Frequency Warping in the Bilinear Transform
 The concept behind the bilinear transform is that of compressing the frequency
response of an analog fi lter design such that its response over the entire range of
frequencies from zero to infi nity is mapped into the frequency range zero to half
the sampling frequency of the digital fi lter. This may be represented by

 f
f T

T T
T

D
A S

S
D

S

A S= (= ()arctan
or arctan

π
π

ω ω) 2
2

 (5.39a)

and

 f
f T

T T
T

A
D S

S
A

S

D S= = ()tan
or tan

()π
π

ω ω2
2

 (5.39b)

 FIGURE 5.20. Output from program iirsosprn.c , using coeffi cient fi le bilinear.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

234 Infi nite Impulse Response Filters

FIGURE 5.22. Output from program iirsosdelta.c , using coeffi cient fi le bilinear.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

FIGURE 5.21. Output from program iirsosprn.c , using coeffi cient fi le bilinear.cof ,
viewed using Goldwave .

 Programming Examples Using C and ASM Code 235

 FIGURE 5.23. Impulse and magnitude frequency response of example fi lter captured using
Code Composer and program iirsosdelta.c and coeffi cient fi le bilinear.cof .

where w D is the frequency at which the complex gain of the digital fi lter is equal to
the complex gain of the analog fi lter at frequency w A . This relationship between w D
and w A is illustrated in Figure 5.24 . Consequently, there is no problem with aliasing,
as seen in the case of impulse invariant transformation.

 However, as a result of the frequency warping inherent in the bilinear transform,
in this example, the cutoff frequency of the discrete - time fi lter obtained is not
1500 Hz but 1356 Hz. Figure 5.24 also shows that the gain of the analog fi lter at a
frequency of 4500 Hz is equal to the gain of the digital fi lter at a frequency of 2428 Hz
and that the digital frequency 1500 Hz corresponds to an analog frequency of
1702 Hz.

 If we had wished to create a digital fi lter having a cutoff frequency of 1500 Hz,
we could have applied the bilinear transform of equation (5.35) to an analogue
prototype having a cutoff frequency of 1702 Hz.

 This technique is referred to as prewarping the prototype analog design and is
used by default in the MATLAB fi lter design and analysis tool fdatool , described
in the next section. A digital fi lter with a cutoff frequency of 1500 Hz may be
obtained by applying the bilinear transform to the analog fi lter

 H s
s s

() =
+ +

74767106
8596 941262092

 (5.40)

that is,

 H z H s
z

s
z

T z

() ()
. . .

()
()

= = + +
= −

+

−

2 1
1

10 15325778 0 30651556 0 153257788
1 0 66423178 0 43599223

2

1 2

z
z z

−

− −− +. .
 (5.41)

236 Infi nite Impulse Response Filters

0 1000 2000 3000 4000 5000 6000 7000 8000-35

-25

-15

-5

5

0 1000 2000 3000 4000 5000 6000 7000 8000
0

1000

2000

3000

4000

0
10

00
20

00
30

00
40

00
50

00
60

00
70

00
80

00

-3
5

-2
5

-1
5-55

Bilinear transformation of analog
filter H(s) to digital filter H(z)

Analog frequency H(z)

D
ig

ita
l f

re
qu

en
cy

 H
(z

)

Magnitude (dB)

M
ag

ni
tu

de
 (d

B
)

 FIGURE 5.24. Effect of bilinear transform on magnitude frequency response of example
fi lter.

 The analog fi lter represented by equation (5.40) can be produced using the MATLAB
command

 > > [bb, aa] = cheby1(2,2,2 * pi * 1702, ’ s ’);

and the bilinear transformation applied by typing

 > > [bbd, aad] = bilinear(bb,aa,8000);

to yield the result given by equation (5.41) .
 Alternatively, prewarping of the analog fi lter design considered previously can

be combined with application of the bilinear transform by typing

 > > [bbd, aad]=bilinear(b, a, 8000,1500);

at the MATLAB command line.
 Coeffi cient fi le bilinearw.cof , stored in folder iirsos , contains the coeffi cients

obtained as described above.

 Programming Examples Using C and ASM Code 237

Using MATLAB ’s Filter Design and Analysis Tool
 MATLAB provides a fi lter design and analysis tool, fdatool , that makes the design
of IIR fi lter coeffi cients simple. Coeffi cients can be exported in direct form II,
second order section format and a MATLAB function dsk_sos_iir67() , supplied
on the CD as fi le dsk_sos_iir67.m , can be used to generate coeffi cient fi les com-
patible with the programs in this chapter.

Example 5.5 Fourth Order Elliptical Lowpass IIR Filter
Designed Using fdatool

 To invoke the Filter Design and Analysis Tool window, type

>> fdatool

in the MATLAB command window. Enter the parameters for a fourth order ellipti-
cal lowpass IIR fi lter with a cutoff frequency of 800 Hz and 1 dB of ripple in the
passband and 50 dB of stopband attenuation . Click on Design Filter and then look
at the characteristics of the fi lter using options from the Analysis menu (Figure
 5.25).

 This example illustrates the steep transition from passband to stopband possible
even with relatively few fi lter coeffi cients.

 Select Filter Coeffi cients from the Analysis menu. fdatool automatically designs
fi lters as cascaded second order sections. Each section is similar to those shown in
block diagram form in Figure 5.5 and each section is characterised by six parameter
values a0 , a1 , a2 , b0 , b1 , and b2 .

 By default, fdatool uses the bilinear transform method of designing a digital
fi lter starting from an analog prototype. Figure 5.26 shows the use of fdatool to
design the Chebyshev fi lter considered in the preceding examples. Note that the
magnitude frequency response decreases more and more rapidly with frequency,
approaching half the sampling frequency. This is characteristic of fi lters designed
using the bilinear transform. Compare this with Figure 5.23 .

Implementing a Filter Designed Using fdatool on the C6713 DSK
 In order to implement a fi lter designed using fdatool on the C6713 DSK, carry out
the following steps.

1. Design the IIR fi lter using fdatool .

2. Click on Export in the fdatool File menu.

3. Select Workspace, Coeffi cients, SOS , and G and click Export .

4. At the MATLAB command line, type dsk_sos_iir67(SOS,G) and enter a
fi lename (e.g., elliptic.cof).

238 Infi nite Impulse Response Filters

FIGURE 5.25. MATLAB fdatool window showing magnitude frequency response of
fourth order elliptical lowpass fi lter.

 Figure 5.27 shows an example of a coeffi cient fi le produced using dsk_sos_iir67()
(Figure 5.28).

 Program iirsos.c is a generic IIR fi lter program that uses cascaded second
order sections and reads the fi lter coeffi cients from a separate .cof fi le. In order to
implement your fi lter, edit the line in program iirsos.c that reads

#include “bilinear.cof”

to read

#include “elliptic.cof”

and Build, Load Program , and Run .
 Figures 5.29 and 5.30 show results obtained with programs iirsosdelta.c and

iirsosprn.c using coeffi cient fi le elliptic.cof .

 Programming Examples Using C and ASM Code 239

 FIGURE 5.26. MATLAB fdatool window showing magnitude frequency response of a
second order Chebyshev lowpass fi lter.

// elliptic.cof
// this file was generated automatically using function
dsk_sos_iir67.m

#define NUM_SECTIONS 2

float b[NUM_SECTIONS][3] = {
{1.00494714E-002, 7.90748088E-003, 1.00494714E-002},
{1.00000000E+000, -7.76817178E-001, 1.00000000E+000} };

float a[NUM_SECTIONS][2] = {
{-1.52873456E+000, 6.37031997E-001},
{-1.51375640E+000, 8.68676718E-001} };

 FIGURE 5.27. Listing of coeffi cient fi le elliptic.cof .

240 Infi nite Impulse Response Filters

% DSK_SOS_IIR67.M
% MATLAB function to write SOS IIR filter coefficients
% in format suitable for use in C6713 DSK programs
% iirsos.c, iirsosprn.c and iirsosdelta.c
% assumes that coefficients have been exported from
% fdatool as two matrices
% first matrix has format
% [b10 b11 b12 a10 a11 a12
% b20 b21 b22 a20 a21 a22
% ...
%]
% where bij is the bj coefficient in the ith stage
% second matrix contains gains for each stage
%
function dsk_sos_iir67(coeff,gain)
%
num_sections=length(gain)-1;
fname = input('enter filename for coefficients ','s');
fid = fopen(fname,'wt');
fprintf(fid,'// %s\n',fname);
fprintf(fid,'// this file was generated automatically using ');
fprintf(fid,'function dsk_sos_iir67.m\n',fname);
fprintf(fid,'\n#define NUM_SECTIONS %d\n',num_sections);
% first write the numerator coefficients b
% i is used to count through sections
fprintf(fid,'\nfloat b[NUM_SECTIONS][3] = { \n');
for i=1:num_sections
 if i==num_sections
 fprintf(fid,'{%2.8E, %2.8E, %2.8E} };\n',...
 coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
 else
 fprintf(fid,'{%2.8E, %2.8E, %2.8E},\n',...
 coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
 end
end
% then write the denominator coefficients a
% i is used to count through sections
fprintf(fid,'\nfloat a[NUM_SECTIONS][2] = { \n');
for i=1:num_sections
 if i==num_sections
 fprintf(fid,'{%2.8E, %2.8E} };\n',coeff(i,5),coeff(i,6));
 else
 fprintf(fid,'{%2.8E, %2.8E},\n',coeff(i,5),coeff(i,6));
 end
end
fclose(fid);

 FIGURE 5.28. Listing of MATLAB fi le dsk_sos_iir67.m .

 Programming Examples Using C and ASM Code 241

FIGURE 5.29. Impulse and magnitude frequency response of example fi lter captured using
CCS and program iirsosdelta.c and coeffi cient fi le elliptic.cof .

FIGURE 5.30. Output from program iirsosdelta.c , using coeffi cient fi le elliptic.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

Example 5.6: Bandpass Filter Designed Using fdatool

 Figure 5.31 shows fdatool being used to design an 18th order Chebyshev type 2
IIR bandpass fi lter centered at 2 kHz. The fi lter coeffi cient fi le bp2000.cof , stored
in folder iirsosprn , is compatible with programs iirsos.c , iirsosdelta.c , and
iirsosprn.c . Figure 5.32 shows a frequency - domain representation of the output
from program iirsosprn.c using these coeffi cients.

242 Infi nite Impulse Response Filters

FIGURE 5.31. MATLAB fdatool window showing magnitude frequency response of 18th
order bandpass pass fi lter centered on 2000 Hz.

FIGURE 5.32. Output from program iirsosprn.c , using coeffi cient fi le bp2000.cof ,
viewed using the FFT function of an Agilent 54621A oscilloscope.

 Programming Examples Using C and ASM Code 243

 Example 5.7: Fixed - Point Implementation of IIR Filter (iir)

 Program iir.c , listed in Figure 5.33 , implements a generic IIR fi lter using cascaded
second order stages (sections) and fi xed - point (integer) coeffi cients. The program
implements each second order stage as a direct form II structure using the following
two expressions:

 FIGURE 5.33. IIR fi lter program using second order sections in cascade (iir.c).

// iir.c filter using cascaded second order sections
// 16-bit integer coefficients read from .cof file

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "bs1800int.cof"
short w[NUM_SECTIONS][2] = {0};

interrupt void c_int11() //interrupt service routine
{
 short section; //index for section number
 short input; //input to each section
 int wn,yn; //intermediate and output
 //values in each stage
 input = input_left_sample();

 for (section=0 ; section< NUM_SECTIONS ; section++)
 {
 wn = input - ((a[section][0]*w[section][0])>>15)
 - ((a[section][1]*w[section][1])>>15);
 yn = ((b[section][0]*wn)>>15)
 + ((b[section][1]*w[section][0])>>15)
 + ((b[section][2]*w[section][1])>>15);
 w[section][1] = w[section][0];
 w[section][0] = wn;
 input = yn; //output of current section
 //will be input to next
 }

 output_left_sample((short)(yn)); //before writing to codec
 return; //return from ISR
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

244 Infi nite Impulse Response Filters

// bs1800int.cof
// this file was generated automatically using function
dsk_sos_iir67int.m

#define NUM_SECTIONS 3

int b[NUM_SECTIONS][3] = {
{11538, -4052, 11538},
{32768, 599, 32768},
{32768, -22852, 32768} };

int a[NUM_SECTIONS][2] = {
{-5832, 450},
{17837, 26830},
{-35076, 27634} };

 FIGURE 5.34. Coeffi cient fi le for a sixth order IIR bandstop fi lter designed using MATLAB
as described in Appendix D (bs1800int.cof).

 w n x n a w n a w n() () () ()= − − − −1 21 2

 y n b w n b w n b y n() () () ()= + − + −0 1 21 2

implemented by the lines

 wn = input – ((a[section][0] * w[section][0]) > > 15) –
((a[section][1] * w[section][1]) > > 15);
yn = ((b[section][0] * wn) > > 15) + ((b[section][1] * w[section][0])
 > > 15) + ((b[section][2] * w[section][1]) > > 15);

 The values of the coeffi cients in the fi les bs1800int.cof (Figure 5.34) and
 ellipint.cof were calculated using MATLAB ’ s fdatool and function dsk_sos_
iir67int() , an integer version of function dsk_sos_iir67() , which multiplies the
fi lter coeffi cients generated using fdatool by 32768 and casts them as integers.
Build and run this project as iir . Verify that an IIR bandstop fi lter centered at
1800 Hz is implemented if coeffi cient fi le bs1800int.cof is used.

 Example 5.8: Generation of a Sine Wave Using a Difference Equation
(sinegenDE)

 In Chapter 4 it was shown that the z - transform of a sinusoidal sequence y (n) =
 sin(n w T) is given by

 Y z
z T

z T z
()

()
()

=
− +

sin
cos

ω
ω2 2 1

 (5.42)

 Programming Examples Using C and ASM Code 245

 Comparing this with the z - transfer function of the second order fi lter of Example
5.1 ,

 H z
Y z
X z

b z
z a z a

()
()
()

= =
+ +

1
2

1 2

 (5.43)

 It is apparent that by appropriate choice of fi lter coeffi cients we can design that
fi lter to act as a sine wave generator, that is, to have a sinusoidal impulse
response.

 Choosing a 2 = 1.0 and a 1 = – 2cos(w T), the denominator of the transfer function
becomes z 2 − 2cos(w T) z − 1, which corresponds to a pair of complex conjugate poles
located on the unit circle in the z - plane. The fi lter can be set oscillating by applying
an impulse to its input. Rearranging equation (5.43) and setting x (n) = d (n)(X (z) =
 1.0) and b 1 = sin(w T),

 Y z
X z b z

z T z
T z

z T z
()

()
()

)
()

=
− +

=
− +

1
2 22 1 2 1cos

sin(
cosω

ω
ω

 (5.44)

 Equation (5.44) is equivalent to equation (5.42) , implying that the fi lter impulse
response is y (n) = sin(n w T). Equation (5.44) corresponds to the difference
equation

 y n T x n T y n y n() () () () () ()= − + − − −sin cosω ω1 2 1 2 (5.45)

which is illustrated in Figure 5.35 .

y(n)

y(n–1)

y(n–2)

x(n–1)

+

+

+

+

z-1 z-1

b1 –a1

–a2

z-1

x(n) = d(n)

 FIGURE 5.35. Block diagram representation of equation (5.44) .

246 Infi nite Impulse Response Filters

 Since the input, x (n) = d (n), to the fi lter is nonzero only at sampling instant n =
 0, for all other n , the difference equation is

 y n T y n y n() () () ()= − − −2 1 2cos ω (5.46)

and the sine wave generator may be implemented as shown in Figure 5.36 , using no
input signal but using nonzero initial values for y (n − 1) and y (n − 2). The initial
values used determine the amplitude of the sinusoidal output.

 Since the frequency of oscillation, w , is fi xed by the choice of a 1 = – 2cos(w T) and
 a 2 = 1, the initial values chosen for y (n − 1) and y (n − 2) represent two samples of
a sinusoid of frequency w that are one sampling period, or T seconds, apart in time;
that is,

 y n A t() ()− = +1 sin ω φ

 y n A t T() (())− = + +2 sin ω φ

 The initial values of y (n − 1) and y (n − 2) determine the amplitude, A , of the sine
wave generated. Assuming that an output amplitude A = 1 is desired, a simple solu-
tion to the equations implemented in program sinegenDE.c is

 y n()− =1 0

 y n T() ()− =2 sin ω

 Build and run this project as sinegenDE . Verify that the output is a 2 - kHz tone.
Change the value of the constant FREQ ; build and run and verify the generation of
a tone of the frequency selected (Figure 5.37).

 FIGURE 5.36. Block diagram representation of equation (5.45) .

y(n)

y(n–1)

y(n–2)

+

+

z-1

–a1

–a2

z-1

 Programming Examples Using C and ASM Code 247

 FIGURE 5.37. Program to generate a sine wave using a difference equation
(sinegenDE.c).

//sinegenDE.c generates sinusoid using difference equations

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define FREQ 2000
#define SAMPLING_FREQ 8000
#define AMPLITUDE 10000
#define PI 3.14159265358979

float y[3] = {0.0, 0.0, 0.0};
float a1;

interrupt void c_int11() //ISR
{
 y[0] =(y[1]*a1)-y[2];
 y[2] = y[1]; //update y1(n-2)
 y[1] = y[0]; //update y1(n-1)
 output_left_sample((short)(y[0]*AMPLITUDE)); //output result
 return; //return to main
}

void main()
{
 y[1] = sin(2.0*PI*FREQ/SAMPLING_FREQ);
 a1 = 2.0*cos(2.0*PI*FREQ/SAMPLING_FREQ);
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 Example 5.9: Generation of DTMF Signal Using Difference Equations
(sinegenDTMF)

 Program sinegenDTMF.c , listed in Figure 5.39 , uses the same difference equation
method as program sinegenDE.c to generate two sinusoidal signals of different
frequencies, which, added together, form a DTMF tone (see also Example 2.12 ,
which used a table lookup method). Build this example as sinegenDTMF . The DTMF
tone is output via the codec only while DIP switch #0 is pressed down. The program
incorporates a buffer that is used to store the 256 most recent output samples.
Figure 5.38 shows the contents of that buffer in time and frequency domains, plotted
using Code Composer.

248 Infi nite Impulse Response Filters

 FIGURE 5.38. The 256 samples of waveform generated by program sinegenDTMF.c dis-
played using Code Composer.

 Example 5.10: Generation of a Swept Sinusoid Using a
Difference Equation (sweepDE)

 Figure 5.40 shows a listing of the program sweepDE.c , which generates a sinu soidal
signal, sweeping in frequency. The program implements the difference equation

 y n T y n y n() () () ()= − − −2 1 2cos ω

 where A = 2cos(w T) and the initial conditions are y (n − 1) = sin(w T) and y (n − 2)
 = 0. Example 5.8 illustrated the generation of a sine wave using this difference
equation.

 Compared with the lookup table method of Example 2.11 , making step changes
in the frequency of the output signal generated using a difference equation is slightly
more problematic. Each time program sweepDE.c changes its output frequency it
reinitializes the stored values of previous output samples y (n − 1) and y (n − 2). These
values determine the amplitude of the sinusoidal output at the new frequency and
must be chosen appropriately. Using the existing values, left over from the genera-
tion of a sinusoid at the previous frequency, might cause the amplitude of the output
sinusoid to change. In order to avoid discontinuities, or glitches, in the output wave-
form, a further constraint on the parameters of the program must be observed. Since
at each change in frequency the output waveform starts at the same phase in its
cycle, it is necessary to ensure that each different frequency segment is output for
an integer number of cycles. This can be achieved by making the number of samples

 Programming Examples Using C and ASM Code 249

 FIGURE 5.39. Program to generate DTMF tone using difference equations
(sinegenDTMF.cof).

//sinegenDTMF.c generates DTMF tone using difference equations

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define FREQLO 770
#define FREQHI 1336
#define SAMPLING_FREQ 8000
#define AMPLITUDE 5000
#define BUFSIZE 256
#define PI 3.14159265358979

float ylo[3] = {0.0, 0.0, 0.0};
float yhi[3] = {0.0, 0.0, 0.0};
float a1lo, a1hi;
float out_buffer[BUFSIZE];
int bufindex = 0;
float output;
float DIP0pressed = 0;

interrupt void c_int11() //ISR
{
 ylo[0] =(ylo[1]*a1lo)-ylo[2];
 ylo[2] = ylo[1]; //update y1(n-2)
 ylo[1] = ylo[0]; //update y1(n-1)
 yhi[0] =(yhi[1]*a1hi)-yhi[2];
 yhi[2] = yhi[1]; //update y1(n-2)
 yhi[1] = yhi[0]; //update y1(n-1)
 output = (yhi[0]+ylo[0])*AMPLITUDE;
 out_buffer[bufindex++] = output;
 if (bufindex >= BUFSIZE) bufindex = 0;
 if (DIP0pressed) output_left_sample((short)(output));
 else output_left_sample(0); //output result
 return; //return to main
}

void main()
{
 ylo[1] = sin(2.0*PI*FREQLO/SAMPLING_FREQ);
 a1lo = 2.0*cos(2.0*PI*FREQLO/SAMPLING_FREQ);
 yhi[1] = sin(2.0*PI*FREQHI/SAMPLING_FREQ);
 a1hi = 2.0*cos(2.0*PI*FREQHI/SAMPLING_FREQ);
 DSK6713_DIP_init();
 comm_intr(); //init DSK, codec, McBSP
 while(1) //infinite loop
 {
 if (DSK6713_DIP_get(0) == 0) DIP0pressed = 1;
 else DIP0pressed = 0;
 }
}

250 Infi nite Impulse Response Filters

//sweepDE.c generates sweeping sinusoid using difference equations

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define MIN_FREQ 200
#define MAX_FREQ 3800
#define STEP_FREQ 20
#define SWEEP_PERIOD 400
#define SAMPLING_FREQ 8000
#define AMPLITUDE 5000
#define PI 3.14159265358979

float y[3] = {0.0, 0.0, 0.0};
float a1;
float freq = MIN_FREQ;
short sweep_count = 0;

void coeff_gen(float freq)
{
 a1 = 2.0*cos(2.0*PI*freq/SAMPLING_FREQ);
 y[0] = 0.0;
 y[1] = sin(2.0*PI*freq/SAMPLING_FREQ);
 y[2] = 0.0;
 return;
}

interrupt void c_int11() //ISR
{
 sweep_count++;
 if (sweep_count >= SWEEP_PERIOD)
 {
 if (freq >= MAX_FREQ) freq = MIN_FREQ;
 else freq += STEP_FREQ;
 coeff_gen(freq);
 sweep_count = 0;
 }
 y[0] =(y[1]*a1)-y[2];
 y[2] = y[1]; //update y1(n-2)
 y[1] = y[0]; //update y1(n-1)
 output_left_sample((short)(y[0]*AMPLITUDE)); //output result
 return; //return to main
}

void main()
{
 y[1] = sin(2.0*PI*freq/SAMPLING_FREQ);
 a1 = 2.0*cos(2.0*PI*freq/SAMPLING_FREQ);
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 FIGURE 5.40. Program to generate a sweeping sinusoid using a difference equation
(sweepDE.c).

 Programming Examples Using C and ASM Code 251

output between step changes in frequency equal to the sampling frequency divided
by the frequency increment. As listed in Figure 5.40 , the frequency increment is
20 Hz and the sampling frequency is 8000 Hz. Hence, the number of samples output
at each different frequency is equal to 8000/20 = 400. Different choices for the values
of the constants STEP_FREQ and SWEEP_PERIOD are possible.

 Build and run this project as sweepDE . Verify that the output is a swept sinusoidal
signal starting at frequency 200 Hz and taking (SWEEP_PERIOD/SAMPLING_
FREQ) * (MAX_FREQ - MIN_FREQ)/STEP_FREQ seconds to increase in frequency to
3800 Hz. Change the values of MIN_FREQ and MAX_FREQ to 2000 and 3000, respec-
tively. Build the project again, load and run program sweepDE.out , and verify that
the frequency sweep is from 2000 to 3000 Hz.

 Example 5.11: Sine Wave Generation Using a Difference Equation with C
Calling an ASM Function (sinegencasm)

 This example is based on Example 5.8 but uses an assembly language function to
generate a sine wave using a difference equation. Program sinegencasm.c , listed
in Figure 5.41 , calls the assembly language function sinegencasmfunc , defi ned in

 FIGURE 5.41. C source program that calls an ASM function to generate a sine wave using
a difference equation (sinegencasm.c).

//Sinegencasm.c Sine gen using DE with asm function

#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input source

short y[3] = {0, 15137, 11585}; //y(1)=sinwT (f=1.5kHz)
short A = 12540; //A=2*coswT * 2^14
short n = 2;

interrupt void c_int11() //interrupt service routine
{

sinegencasmfunc(&y[0], A); //calls ASM function
output_sample(y[n]);
return;

}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

252 Infi nite Impulse Response Filters

fi le sinegencasmfunc.asm (Figure 5.42). The C source program shows the array
 y[3] , which contains the values y (0), y (1), and y (2) and the coeffi cient A =
 2cos(w T), calculated to generate a 1.5 - kHz sine wave. The address of the array
 y[3] and the value of the coeffi cient A are passed to the ASM function using reg-
isters A4 and B4, respectively. The values in the array y[3] and the coeffi cient A
were scaled by 2 14 to allow for a fi xed - point implementation. As a result, within
the ASM function, A8 initially containing Ay (n − 1) is scaled back (shifted right)
by 2 14 .

 Build this project as sinegencasm . Verify that a 1.5 - kHz sine wave is generated.
Verify that changing the initial contents of the array to y[3] ={0, 16384, 0} and
setting A = 0 yields a 2 - kHz sine wave.

 5.5 ASSIGNMENTS

 1. Design and implement in real time a 12th order Chebyshev type 2 lowpass
IIR fi lter with a cutoff frequency of 1700 Hz, using a sampling frequency of
8 kHz. Compare the characteristics of this fi lter with those of comparable
elliptical and Butterworth designs.

 2. Modify program sweepDE.c to generate a swept sine wave that decreases in
frequency, starting at 3200 Hz and resetting when it reaches 400 Hz.

 FIGURE 5.42. ASM function called from C to generate a sine wave using a difference equa-
tion (sinegencasmfunc.asm).

;Sinegencasmfunc.asm ASM func to generate sine using DE
;A4 = address of y array, B4 = A

 .def _sinegencasmfunc ;ASM function called from C
_sinegencasmfunc:
 LDH *+A4[0], A5 ;y[n-2]-->A5
 LDH *+A4[1], A2 ;y[n-1]-->A2
 LDH *+A4[2], A3 ;y[n]-->A3
 NOP 3 ;NOP due to LDH
 MPY B4, A2, A8 ;A*y[n-1]
 NOP 1 ;NOP due to MPY
 SHR A8, 14, A8 ;shift right by 14
 SUB A8, A5, A8 ;A*y[n-1]-y[n-2]
 STH A8, *+A4[2] ;y[n]=A*y[n-1]-y[n-2]
 STH A2, *+A4[0] ;y[n-2]=y[n-1]
 STH A8, *+A4[1] ;y[n-1] = y[n]
 B B3 ;return addr to call routine
 NOP 5 ;delays to to branching
 .end

3. Three sets of coeffi cients corresponding to fourth, sixth, and eighth order IIR
fi lters implemented as cascaded second order stages are shown below. Use
programs iirsos.c , iirsosprn.c , and iirsosdelta.c (use a sampling
frequency of 8 kHz) in order to determine the characteristics of these three
fi lters.

 Filter (a)

 First Stage Second Stage

 b0 0.894858606 1.00000000
 b1 0.687012957 0.767733531
 b2 0.894858606 1.00000000
 a1 0.626940111 0.823551047
 a2 0.892574561 0.897182915

 Filter (b)

 First Stage Second Stage Third Stage

 b0 4.22434573E – 003 1.00000000 1.00000000
 b1 − 7.40347363E – 003 − 7.51020138E – 001 − 2.42042682E – 001
 b2 4.22434573E – 003 1.00000000 1.00000000
 a1 1.38530785E+000 1.08202283 8.72945011E – 001
 a2 5.49723350E – 001 7.24171197E – 001 9.12022866E – 001

 Filter (c)

 First Stage Second Stage Third Stage Fourth Stage

 b0 0.0799986548 1.00000000 1.00000000 1.00000000
 b1 0.159997310 − 2.00000000 2.00000000 − 2.00000000
 b2 0.0799986548 1.00000000 1.00000000 1.00000000
 a1 0.131667585 − 1.11285289 0.568937617 − 1.56515908
 a2 0.112608874 0.365045225 0.582994098 0.767928609

REFERENCES

 1. L. B. Jackson , Digital Filters and Signal Processing , Kluwer Academic , Norwell, MA ,
 1996 .

 2. L. B. Jackson , Roundoff noise analysis for fi xed - point digital fi lters realized in cascade
or parallel form , IEEE Transactions on Audio and Electroacoustics , Vol. AU - 18 ,
pp. 107 – 122 , June 1970 .

References 253

254 Infi nite Impulse Response Filters

 3. L. B. Jackson , An analysis of limit cycles due to multiplicative rounding in recursive digital
fi lters, Proceedings of the 7th Allerton Conference on Circuit and System Theory , 1969 , pp.
 69 – 78 .

 4. L. B. Lawrence and K. V. Mirna , A new and interesting class of limit cycles in recursive
digital fi lters , Proceedings of the IEEE International Symposium on Circuit and Systems ,
Apr. 1977 , pp. 191 – 194 .

 5. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken, NJ , 1990 .

Fast Fourier Transform

255

 • The fast Fourier transform using radix - 2 and radix - 4
 • Decimation or decomposition in frequency and in time
 • Programming examples

 The fast Fourier transform (FFT) is an effi cient algorithm that is used for converting
a time - domain signal into an equivalent frequency - domain signal, based on the dis-
crete Fourier transform (DFT). Several real - time programming examples on FFT
are included.

6.1 INTRODUCTION

 The DFT converts a time - domain sequence into an equivalent frequency - domain
sequence. The inverse DFT performs the reverse operation and converts a
frequency - domain sequence into an equivalent time - domain sequence. The FFT is
a very effi cient algorithm technique based on the DFT but with fewer computa-
tions required. The FFT is one of the most commonly used operations in digital
signal processing to provide a frequency spectrum analysis [1 – 6] . Two different
procedures are introduced to compute an FFT: the decimation - in - frequency and
the decimation - in - time. Several variants of the FFT have been used, such as the
Winograd transform [7, 8] , the discrete cosine transform (DCT) [9] , and the dis-
crete Hartley transform [10 – 12] . The fast Hartley transform (FHT) is described in
Appendix E . Transform methods such as the DCT have become increasingly

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

6

256 Fast Fourier Transform

popular in recent years, especially for real - time systems. They provide a large com-
pression ratio.

 6.2 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX - 2

 The FFT reduces considerably the computational requirements of the DFT. The
DFT of a discrete - time signal x (nT) is

 X k x n W k Nnk

n

N

() () , , . . . ,= = −
=

−

∑
0

1

0 1 1 (6.1)

where the sampling period T is implied in x (n) and N is the frame length. The
constants W are referred to as twiddle constants or factors , which represent the
phase, or

 W e j N= − 2π/ (6.2)

and are a function of the length N . Equation (6.1) can be written for k = 0, 1, . . . ,
 N − 1, as

 X k x x W x W x N Wk k N k() () () () . . . () ()= + + + + − −0 1 2 12 1 (6.3)

 This represents a matrix of N × N terms, since X (k) needs to be calculated for N
values for k . Since (6.3) is an equation in terms of a complex exponential, for each
specifi c k there are (N − 1) complex additions and N complex multiplications. This
results in a total of (N 2 − N) complex additions and N 2 complex multiplications.
Hence, the computational requirements of the DFT can be very intensive, espe-
cially for large values of N . FFT reduces computational complexity from N 2 to N
log N .

 The FFT algorithm takes advantage of the periodicity and symmetry of the
twiddle constants to reduce the computational requirements of the FFT. From the
periodicity of W ,

 W Wk N k+ = (6.4)

and from the symmetry of W ,

 W Wk N k+ = −/ 2 (6.5)

 Figure 6.1 illustrates the properties of the twiddle constants W for N = 8. For
example, let k = 2, and note that from (6.4) , W 10 = W 2 , and from (6.5) , W 6 = − W 2 .

 For a radix - 2 (base 2), the FFT decomposes an N - point DFT into two (N /2) -
 point or smaller DFTs. Each (N /2) - point DFT is further decomposed into two

 FIGURE 6.1. Periodicity and symmetry of twiddle constant W .

(N /4) - point DFTs, and so on. The last decomposition consists of (N /2) two - point
DFTs. The smallest transform is determined by the radix of the FFT. For a radix - 2
FFT, N must be a power or base of 2, and the smallest transform or the last decom-
position is the two - point DFT. For a radix - 4, the last decomposition is a four - point
DFT.

 6.3 DECIMATION - IN - FREQUENCY FFT ALGORITHM WITH RADIX - 2

 Let a time - domain input sequence x (n) be separated into two halves:

 x x x
N

(), (), . . . ,0 1
2

1−

 (6.6)

and

 x
N

x
N

x N
2 2

1 1

 +

 −, , . . . , () (6.7)

 Taking the DFT of each set of the sequence in (6.6) and (6.7) gives us

 X k x n W x n Wnk

n

N
nk

n N

N

() () ()
(/)

/

= +
=

−

=

−

∑ ∑
0

2 1

2

1

 (6.8)

Let n = n + N /2 in the second summation of (6.8) ; X (k) becomes

 X k x n W W x n
N

Wnk kN

n

N
nk

n

N

() () /
(/) (/)

= + +

=

−

=

−

∑ ∑2

0

2 1

0

2 1

2
 (6.9)

 Development of the FFT Algorithm with Radix-2 257

258 Fast Fourier Transform

where W kN /2 is taken out of the second summation because it is not a function of n .
Using

 W e e jkN jk j k k k/ () (cos sin) ()2 1= = = − = −− −π π π π

in (6.9) , X (k) becomes

 X k x n x n
N

Wk

n

N
nk() () ()

(/)

= + − +

=

−

∑ 1
20

2 1

 (6.10)

 Because (− 1) k = 1 for even k and − 1 for odd k , (6.10) can be separated for even and
odd k , or

 1. For even k :

 X k x n x n
N

W
n

N
nk()

(/)

= () + +

=

−

∑ 20

2 1

 (6.11)

 2. For odd k :

 X k x n x n
N

W
n

N
nk()

(/)

= () − +

=

−

∑ 20

2 1

 (6.12)

 Substituting k = 2 k for even k , and k = 2 k + 1 for odd k , (6.11) and (6.12) can be
written for k = 0, 1, . . . , (N /2) − 1:

 X k x n x n
N

W
n

N
nk() ()

(/)

2
20

2 1
2= + +

=

−

∑ (6.13)

 x k x n x n
N

W W
n

N
n nk() ()

(/)

2 1
20

2 1
2+ = − +

=

−

∑ (6.14)

 Because the twiddle constant W is a function of the length N , it can be represented
as W N . Then WN

2 can be written as W N /2 . Let

 a n x n x n N() () (/)= + + 2 (6.15)

 b n x n x n N() () (/)= − + 2 (6.16)

 Equations (6.13) and (6.14) can be written more clearly as two (N /2) - point
DFTs, or

 X k a n W
n

N

N
nk() ()

(/)

/2
0

2 1

2=
=

−

∑ (6.17)

 X k b n W W
n

N

N
n

N
nk()

(/)

/2 1
0

2 1

2+ = ()
=

−

∑ (6.18)

 Figure 6.2 shows the decomposition of an N - point DFT into two (N /2) - point
DFTs for N = 8. As a result of the decomposition process, the X ’ s in Figure 6.2
are even in the upper half and odd in the lower half. The decomposition process
can now be repeated such that each of the (N /2) - point DFTs is further decom-
posed into two (N /4) - point DFTs, as shown in Figure 6.3 , again using N = 8 to
illustrate.

 The upper section of the output sequence in Figure 6.2 yields the sequence X (0)
and X (4) in Figure 6.3 , ordered as even. X (2) and X (6) from Figure 6.3 represent
the odd values. Similarly, the lower section of the output sequence in Figure 6.2
yields X (1) and X (5), ordered as the even values, and X (3) and X (7) as the odd
values. This scrambling is due to the decomposition process. The fi nal order of the
output sequence X (0), X (4), . . . , in Figure 6.3 is shown to be scrambled. The output
needs to be resequenced or reordered. Programming examples presented later in
this chapter include the appropriate function for resequencing. The output sequence
 X (k) represents the DFT of the time sequence x (n).

 FIGURE 6.2. Decomposition of an N - point DFT into two (N /2) - point DFTs for N = 8.

 Development of the FFT Algorithm with Radix-2 259

260 Fast Fourier Transform

 This is the last decomposition, since we now have a set of (N /2) two - point DFTs,
the lowest decomposition for a radix - 2. For the two - point DFT, X (k) in (6.1) can be
written

 X k x n W knk

n

() () ,= =
=

∑
0

1

0 1 (6.19)

or

 X x W x W x x() () () () ()0 0 1 0 10 0= + = + (6.20)

 X x W x W x x() () () () ()1 0 1 0 10 0= − = − (6.21)

since W 1 = e − j 2 p /2 = − 1. Equations (6.20) and (6.21) can be represented by the
fl ow graph in Figure 6.4 , usually referred to as a butterfl y . The fi nal fl ow graph of an
eight - point FFT algorithm is shown in Figure 6.5 . This algorithm is referred to as
 decimation - in - frequency (DIF) because the output sequence X (k) is decomposed
(decimated) into smaller subsequences, and this process continues through M stages

 FIGURE 6.3. Decomposition of two (N /2) - point DFTs into four (N /4) - point DFTs for
 N = 8.

 FIGURE 6.4. Two - point FFT butterfl y.

or iterations, where N = 2 M . The output X (k) is complex with both real and imaginary
components, and the FFT algorithm can accommodate either complex or real input
values.

 The FFT is not an approximation of the DFT. It yields the same result as the
DFT with fewer computations required. This reduction becomes more and more
important with higher - order FFT.

 There are other FFT structures that have been used to illustrate the FFT. An
alternative fl ow graph to that in Figure 6.5 can be obtained with ordered output and
scrambled input.

 An eight - point FFT is illustrated through the following exercise. We will see that
fl ow graphs for higher order FFT (larger N) can readily be obtained.

 Exercise 6.1: Eight - Point FFT Using DIF

 Let the input x (n) represent a rectangular waveform, or x (0) = x (1) = x (2) = x (3) =
 1 and x (4) = x (5) = x (6) = x (7) = 0. The eight - point FFT fl ow graph in Figure 6.5
can be used to fi nd the output sequence X (k), k = 0, 1, . . . , 7. With N = 8, four twiddle
constants need to be calculated, or

 W 0 1=

 W e j jj1 2 8 4 4 0 707 0 707= = − = −− π π π/ cos(/) sin(/) . .

 W e jj2 4 8= = −− π/

 W e jj3 6 8 0 707 0 707= = − −− π/ . .

 The intermediate output sequence can be found after each stage.

 FIGURE 6.5. Eight - point FFT fl ow graph using DIF.

 Development of the FFT Algorithm with Radix-2 261

262 Fast Fourier Transform

 Stage 1
 x x x() () ()0 4 1 0+ = → ′

 x x x() () ()1 5 1 1+ = → ′

 x x x() () ()2 6 1 2+ = → ′

 x x x() () ()3 7 1 3+ = → ′

 [() ()] ()x x W x0 4 1 40− = → ′

 [() ()] . . ()x x W j x1 5 0 707 0 707 51− = − → ′

 [() ()] ()x x W j x2 6 62− = − → ′

 [() ()] . . ()x x W j x3 7 0 707 0 707 73− = − − → ′

where x ′ (0), x ′ (1), . . . , x ′ (7) represent the intermediate output sequence after the
fi rst iteration, which becomes the input to the second stage.

 Stage 2
 ′ + ′ = → ′′x x x() () ()0 2 2 0

 ′ + ′ = → ′′x x x() () ()1 3 2 1

 [() ()] ()′ − ′ = → ′′x x W x0 2 0 20

 [() ()] ()′ − ′ = → ′′x x W x1 3 0 32

 x x j x′ + ′ = − → ″() () ()4 6 1 4

 x x j j j x′ + ′ = − + − − = − → ″() () (. .) (. .) . ()5 7 0 707 0 707 0 707 0 707 1 41 5

 [() ()] ()x x W j x′ − ′ = + → ″4 6 1 60

 [() ()] . ()x x W j x′ − ′ = − → ″5 7 1 41 72

 The resulting intermediate, second - stage output sequence x ″ (0), x ″ (1), . . . , x ″ (7)
becomes the input sequence to the third stage.

 Stage 3
 X x x() () ()0 0 1 4= ″ + ″ =

 X x x() () ()4 0 1 0= ″ − ″ =

 X x x() () ()2 2 3 0= ″ + ″ =

 X x x() () ()6 2 3 0= ″ − ″ =

 X x x j j j() () () () (.) .1 4 5 1 1 41 1 2 41= ″ + ″ = − + − = −

 X x x j() () () .5 4 5 1 0 41= ″ − ″ = +

 X x x j j j() () () () (.) .3 6 7 1 1 41 1 0 41= ″ + ″ = + + − = −

 X x x j() () () .7 6 7 1 2 41= ″ − ″ = +

 We now use the notation of X ’ s to represent the fi nal output sequence. The values
 X (0), X (1), . . . , X (7) form the scrambled output sequence. We show later how to
reorder the output sequence and plot the output magnitude.

 Exercise 6.2: Sixteen - Point FFT

 Given x (0) = x (1) = · · · = x (7) = 1, and x (8) = x (9) = · · · = x (15) = 0, which represents
a rectangular input sequence, the output sequence can be found using the 16 - point
fl ow graph shown in Figure 6.6 . The intermediate output results after each stage are
found in a manner similar to that in Exercise 6.1 . Eight twiddle constants W 0 , W 1 , . . . ,
 W 7 need to be calculated for N = 16.

 Verify the scrambled output sequence X ’ s as shown in Figure 6.6. Reorder this
output sequence and take its magnitude. Verify the plot in Figure 6.7 , which repre-
sents a sinc function. The output X (8) represents the magnitude at the Nyquist
frequency.

 6.4 DECIMATION - IN - TIME FFT ALGORITHM WITH RADIX - 2

 Whereas the DIF process decomposes an output sequence into smaller subse-
quences, decimation - in - time (DIT) is a process that decomposes the input sequence
into smaller subsequences. Let the input sequence be decomposed into an even
sequence and an odd sequence, or

 x x x x n(), (), (), . . . , ()0 2 4 2

and

 x x x x n(), (), (), . . . , ()1 3 5 2 1+

 We can apply (6.1) to these two sequences to obtain

 X k x n W x n Wnk n k

n

N

n

N

() () () ()
(/)(/)

= + + +

=

−

=

−

∑∑ 2 2 12 2 1

0

2 1

0

2 1

 (6.22)

 Using W WN N
2

2= / in (6.22) yields

 X k x n W W x n WN
nk

N
k

N
nk

n

N

n

N

() () () /

(/)(/)

= + +
=

−

=

−

∑∑ 2 2 12 2
0

2 1

0

2 1

 (6.23)

 Decimation-in-Time FFT Algorithm with Radix-2 263

 F
IG

U
R

E
 6

.6
.

 Si
xt

ee
n -

 po
in

t
F

F
T

 fl
ow

 g
ra

ph
 u

si
ng

 D
IF

.

264

 FIGURE 6.7. Output magnitude for 16 - point FFT.

which represents two (N /2) - point DFTs. Let

 C k x n WN
nk

n

N

() /

(/)

= ()
=

−

∑ 2 2
0

2 1

 (6.24)

 D k X n WN
nk

n

N

() () /

(/)

= +
=

−

∑ 2 1 2
0

2 1

 (6.25)

 Then X (k) in (6.23) can be written

 X k C k W D kN
k() () ()= + (6.26)

 Equation (6.26) needs to be interpreted for k > (N /2) − 1. Using the symmetry
property (6.5) of the twiddle constant, W k + N /2 = − W k ,

 X k N C k W D k k Nk(/) () () , , . . . , (/)+ = − = −2 0 1 2 1 (6.27)

 For example, for N = 8, (6.26) and (6.27) become

 X k C k W D k kk() () () , , ,= + = 0 1 2 3 (6.28)

 X k C k W D k kk() () () , , ,+ = − =4 0 1 2 3 (6.29)

 Figure 6.8 shows the decomposition of an eight - point DFT into two four - point DFTs
with the DIT procedure. This decomposition or decimation process is repeated so
that each four - point DFT is further decomposed into two two - point DFTs, as shown
in Figure 6.9 . Since the last decomposition is (N /2) two - point DFTs, this is as far as
this process goes.

 Decimation-in-Time FFT Algorithm with Radix-2 265

266 Fast Fourier Transform

 Figure 6.10 shows the fi nal fl ow graph for an eight - point FFT using a DIT process.
The input sequence is shown to be scrambled in Figure 6.10 in the same manner as
the output sequence X (k) was scrambled during the DIF process. With the input
sequence x (n) scrambled, the resulting output sequence X (k) becomes properly
ordered. Identical results are obtained with an FFT using either the DIF or the DIT
process. An alternative DIT fl ow graph to the one shown in Figure 6.10 , with ordered
input and scrambled output, can also be obtained.

 The following exercise shows that the same results are obtained for an eight - point
FFT with the DIT process as in Exercise 6.1 with the DIF process.

 FIGURE 6.8. Decomposition of eight - point DFT into four - point DFTs using DIT.

 FIGURE 6.9. Decomposition of two four - point DFTs into four two - point DFTs using
DIT.

 Exercise 6.3: Eight - Point FFT Using DIT

 Given the input sequence x (n) representing a rectangular waveform as in Exercise
6.1 , the output sequence X (k), using the DIT fl ow graph in Figure 6.10 , is the same
as in Exercise 6.1 . The twiddle constants are the same as in Exercise 6.1 . Note that
the twiddle constant W is multiplied with the second term only (not with the fi rst).

 Stage 1
 x W x x() () ()0 4 1 0 1 00+ = + = → ′

 x W x x() () ()0 4 1 0 1 40− = − = → ′

 x W x x() () ()2 6 1 0 1 20+ = + = → ′

 x W x x() () ()2 6 1 0 1 60− = − = → ′

 x W x x() () ()1 5 1 0 1 10+ = + = → ′

 x W x x() () ()1 5 1 0 1 50− = − = → ′

 x W x x() () ()3 7 1 0 1 30+ = + = → ′

 x W x x() () ()3 7 1 0 1 70− = − = → ′

where the sequence x ′ represents the intermediate output after the fi rst iteration
and becomes the input to the subsequent stage.

 Stage 2
 x W x x′ + ′ = + = → ″() () ()0 2 1 1 2 00

 x W x j j x′ + ′ = + − = − → ″() () () ()4 6 1 1 42

 FIGURE 6.10. Eight - point FFT fl ow graph using DIT.

 Decimation-in-Time FFT Algorithm with Radix-2 267

268 Fast Fourier Transform

 x W x x′ − ′ = − = → ″() () ()0 2 1 1 0 20

 x W x j j x′ − ′ = − − = + → ″() () () ()4 6 1 1 62

 x W x x′ + ′ = + = → ″() () ()1 3 1 1 2 10

 x W x j j x′ + ′ = + − = − → ″() () ()() ()5 7 1 1 1 52

 x W x x′ − ′ = − = → ″() () ()1 3 1 1 0 30

 x W x j j x′ − ′ = − − = + → ″() () ()() ()5 7 1 1 1 72

where the intermediate second - stage output sequence x ″ becomes the input sequence
to the fi nal stage.

 Stage 3
 X x W x() () ()0 0 1 40= ″ + ″ =

 X x W x j() () () .1 4 5 1 2 4141= ″ + ″ = −

 X x W x() () ()2 2 3 02= ″ + ″ =

 X x W x j() () () .3 6 7 1 0 4143= ″ + ″ = −

 X x W x() () ()4 0 1 00= ″ − ″ =

 X x W x j() () () .5 4 5 1 0 4141= ″ − ″ = +

 X x W x() () ()6 2 3 02= ″ − ″ =

 X x W x j() () () .7 6 7 1 2 4143= ″ − ″ = +

which is the same output sequence found in Exercise 6.1 .

 6.5 BIT REVERSAL FOR UNSCRAMBLING

 A bit - reversal procedure allows a scrambled sequence to be reordered. To illus-
trate this bit - swapping process, let N = 8, represented by three bits. The fi rst and
third bits are swapped. For example, (100) b is replaced by (001) b . As such, (100) b
specifying the address of X (4) is replaced by or swapped with (001) b specifying the
address of X (1). Similarly, (110) b is replaced/swapped with (011) b , or the addresses
of X (6) and X (3) are swapped. In this fashion, the output sequence in Figure 6.5
with the DIF, or the input sequence in Figure 6.10 with the DIT, can be
reordered.

 This bit - reversal procedure can be applied for larger values of N . For example,
for N = 64, represented by six bits, the fi rst and sixth bits, the second and fi fth bits,
and the third and fourth bits are swapped.

 Several examples in this chapter illustrate the FFT algorithm, incorporating
algorithms for unscrambling.

 6.6 DEVELOPMENT OF THE FFT ALGORITHM WITH RADIX - 4

 A radix - 4 (base 4) algorithm can increase the execution speed of the FFT. FFT
programs on higher radices and split radices have been developed. We use a DIF
decomposition process to introduce the development of the radix - 4 FFT. The last
or lowest decomposition of a radix - 4 algorithm consists of four inputs and four
outputs. The order or length of the FFT is 4 M , where M is the number of stages. For
a 16 - point FFT, there are only two stages or iterations, compared with four stages
with the radix - 2 algorithm. The DFT in (6.1) is decomposed into four summations
instead of two as follows:

 X k x n W x n W x n Wnk nk

n N

N

n

N
nk

n N

() () () ()
/

(/)(/)

/

= + + +
=

−

=

−

=
∑∑

4

2 1

0

4 1

2

((/)

/

()
3 4 1

3 4

1N
nk

n N

N

x n W
−

=

−

∑ ∑ (6.30)

 Let n = n + N /4, n = n + N /2, and n = n + 3 N /4 in the second, third, and fourth sum-
mations, respectively. Then (6.30) can be written

X k x n W W x n N W

W x

nk kN nk

n

N

n

N

kN

() () (/)/
(/)(/)

/

= + +

+

=

−

=

−

∑∑ 4

0

4 1

0

4 1

2

4

((/) (/)/
(/) (/)

n N W W x n N Wnk kN

n

N
nk

n

N

+ + +
=

−

=

−

∑ ∑2 3 43 4

0

4 1

0

4 1

 (6.31)

which represents four (N /4) - point DFTs. Using

 W e e jkN j N kN jk k/ / / /() ()4 2 4 2= = = −− −π π

 W ekN jk k/ ()2 1= = −− π

 W jkN k3 4/ ()=

 (6.31) becomes

 X k x n j x n N x n N j x n N Wk k k nk

n

() [() () (/) () (/) () (/)]= + − + + − + + +
=

4 1 2 3 4
00

4 1(/)N −

∑ (6.32)

Let W WN N
4

4= / . Equation (6.32) can be written

 X k x n x n N x n N x n N WN
nk

n

N

() [() (/) (/) (/)] /

(/)

4 4 2 3 4 4
0

4 1

= + + + + + +
=

−

∑ (6.33)

 X k x n jx n N x n N jx n N W WN
n

N
nk

n

N

() [() (/) (/) (/)] /

(

4 1 4 2 3 4 4
0

+ = − + − + + +
=

//)4 1−

∑ (6.34)

 Development of the FFT Algorithm with Radix-4 269

270 Fast Fourier Transform

 X k x n x n N x n N x n N W WN
n

N
nk

n

N

() [() (/) (/) (/)] /

(/

4 2 4 2 3 4 2
4

0

+ = − + + + − +
=

44 1)−

∑ (6.35)

 X k x n jx n N x n N jx n N W WN
n

N
nk

n

() [() (/) (/) (/)] /

(

4 3 4 2 3 4 3
4

0

+ = + + − + − +
=

NN/)4 1−

∑ (6.36)

for k = 0, 1, . . . , (N /4) − 1. Equations (6.33) through (6.36) represent a decomposi-
tion process yielding four four - point DFTs. The fl ow graph for a 16 - point radix - 4
DIF FFT is shown in Figure 6.11 . Note the four - point butterfl y in the fl ow graph.
The ± j and − 1 are not shown in Figure 6.11 . The results shown in the fl ow graph are
for the following exercise.

 Exercise 6.4: Sixteen - Point FFT with Radix - 4

 Given the input sequence x (n) as in Exercise 6.2 , representing a rectangular sequence
 x (0) = x (1) = · · · = x (7) = 1, and x (8) = x (9) = · · · = x (15) = 0, we will fi nd the output
sequence for a 16 - point FFT with radix - 4 using the fl ow graph in Figure 6.11 . The
twiddle constants are shown in Table 6.1 .

 FIGURE 6.11. Sixteen - point radix - 4 FFT fl ow graph using DIF.

 The intermediate output sequence after stage 1 is shown in Figure 6.11 . For
example, after stage 1:

[() () () ()] ()

[() () () (

x x x x W x

x x x x

0 4 8 12 1 1 0 0 2 0

1 5 9

0+ + + = + + + = → ′
+ + + 113 1 1 0 0 2 1

0 4 8 12 1 0

0

0

)] ()

[() () () ()]

W x

x jx x jx W j

= + + + = → ′

− − + = − − −
� �

00 1 4

3 7 11 15 0 11

0 4

6

= − → ′

− + − = → ′
+

j x

x x x x W x

x jx

()

[() () () ()] ()

[() (

� �

)) () ()] ()

[() () ()

− − = + − − = + → ′

+ − −

x jx W j j x

x jx x jx

8 12 1 0 0 1 12

3 7 11

0

� �

(()] []()

. . ()

15 1 0 0

1 307 0 541 15

9 1W j W

j x

= + − − −
= − − → ′

For example, after stage 2:

 X j j j j j() () (. .) (.) (. .) .3 1 1 307 0 541 1 414 1 307 0 541 1 1 4= + + − + − + − − = − 996

and

X j j j j

j
() ()() (. .)() (.)()

(. .
15 1 1 1 307 0 541 1 414 1

1 307 0
= + + − − + −

+ − − 5541 1 5 028)() .− = +j j

 The output sequence X (0), X (1), . . . , X (15) is identical to the output sequence
obtained with the 16 - point FFT with the radix - 2 in Figure 6.6 .

 The output sequence is scrambled and needs to be resequenced or reordered.
This can be done using a digit - reversal procedure, in a similar fashion as a bit

 TABLE 6.1 Twiddle Constants for 16 - Point FFT
with Radix - 4

 m WN
m WN/4

m

 0 1 1
 1 0.9238 − j 0.3826 − j
 2 0.707 − j 0.707 − 1
 3 0.3826 − j 0.9238 + j
 4 0 − j 1
 5 − 0.3826 − j 0.9238 − j
 6 − 0.707 − j 0.707 − 1
 7 − 0.9238 − j 0.3826 + j

 Development of the FFT Algorithm with Radix-4 271

272 Fast Fourier Transform

reversal in a radix - 2 algorithm. The radix - 4 (base 4) uses the digits 0, 1, 2, 3. For
example, the addresses of X (8) and X (2) need to be swapped because (8) 10 in base
10 or decimal is equal to (20) 4 in base 4. Digits 0 and 1 are reversed to yield (02) 4
in base 4, which is also (02) 10 in decimal.

 Although mixed or higher radices can provide a further reduction in computa-
tion, programming considerations become more complex. As a result, radix - 2 is still
the most widely used, followed by radix - 4. Two programming examples are included
in Section 6.8 , and two projects are described in Chapter 10 .

 6.7 INVERSE FAST FOURIER TRANSFORM

 The inverse discrete Fourier transform (IDFT) converts a frequency - domain
sequence X (k) into an equivalent sequence x (n) in the time domain. It is
defi ned as

 x n
N

X k W n Nnk

k

N

() () , , . . . ,= = −−

=

−

∑1
0 1 1

0

1

 (6.37)

 Comparing (6.37) with the DFT equation defi nition in (6.1) , we see that the FFT
algorithm (forward) described previously can be used to fi nd the inverse FFT
(IFFT) with the two following changes:

 1. Adding a scaling factor of 1/ N

 2. Replacing W nk by its complex conjugate W − nk

 With the changes, the same FFT fl ow graphs can be used for the IFFT. We also
develop programming examples to illustrate the inverse FFT.

 A variant of the FFT, such as the FHT, can be obtained readily from the FFT.
Conversely, the FFT can be obtained from the FHT [10, 11] . A development of the
FHT with fl ow graphs and exercises for 8 - and 16 - point FHTs can be found in
Appendix E .

 Exercise 6.5: Eight - Point IFFT

 Let the output sequence X (0) = 4, X (1) = 1 − j 2.41, . . . , X (7) = 1 + j 2.41 obtained
in Exercise 6.1 become the input to an eight - point IFFT fl ow graph. Make the two
changes (scaling and complex conjugate of W) to obtain an eight - point IFFT
(reverse) fl ow graph from an eight - point FFT (forward) fl ow graph. The resulting
fl ow graph becomes an IFFT fl ow graph similar to Figure 6.5 . Verify that the result-
ing output sequence is x (0) = 1, x (1) = 1, . . . , x (7) = 0, which represents the rectan-
gular input sequence in Exercise 6.1 .

 Programming Examples 273

 6.8 PROGRAMMING EXAMPLES

 Example 6.1: DFT of a Sequence of Real Numbers with
Output in the CCS Graphical Display Window (dft)

 This example illustrates the DFT of an N - point, real - valued sequence. Program
 dft.c , listed in Figure 6.12 , calculates the complex DFT:

 x k x n e k Nj kn N

n

N

() () , , . . . ,/= = −−

=

−

∑ 2

0

1

0 1 1π (6.38)

 Using Euler ’ s relation to represent a complex exponential

 e t j tj t− = −ω ω ωcos() sin() (6.39)

the real and imaginary parts of X (k) are computed by the program:

 Re{ ()} (Re{ ()}cos(/) Im{ ()}sin(/))X k x n kn N x n kn N
n

N

= +
=

−

∑ 2 2
0

1

π π (6.40)

 Im{ ()} (Im{ ()}cos(/) Re{ ()}sin(/))X k x n kn N x n kn N
n

N

= −
=

−

∑ 2 2
0

1

π π (6.41)

 A structured data type COMPLEX is used by the program to represent the complex
valued time - and frequency - domain values of X (k) and x (n).

 The function dft() has been written such that it replaces the input samples x (n),
stored in array samples with their frequency - domain representation X (k).

 As supplied, the time - domain sequence x (n) consists of exactly 10 cycles of a
real - valued cosine wave (assuming a sampling frequency of 8 kHz, the frequency of
the cosine wave is 800 Hz). The DFT of this sequence, X (k), is equal to zero for all
 k , except at k = 10 and at k = 90. These two real values correspond to frequency
components at ± 800 Hz. Different time - domain input sequences can be used in the
program, most readily by changing the value of the constant TESTFREQ . Build this
project as dft .

 To test the program, open the project dft , load the executable fi le dft.out , and
then:

 1. Place a breakpoint at the line

 printf(“\n”); // place breakpoint here

in the source fi le dft.c .

274 Fast Fourier Transform

//dft.c N-point DFT of sequence read from lookup table

#include <stdio.h>
#include <math.h>

#define PI 3.14159265358979
#define N 100
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

typedef struct
{
 float real;
 float imag;
} COMPLEX;

COMPLEX samples[N];

void dft(COMPLEX *x)
{
 COMPLEX result[N];
 int k,n;

 for (k=0 ; k<N ; k++)
 {
 result[k].real=0.0;
 result[k].imag = 0.0;

 for (n=0 ; n<N ; n++)
 {
 result[k].real += x[n].real*cos(2*PI*k*n/N) +
x[n].imag*sin(2*PI*k*n/N);
 result[k].imag += x[n].imag*cos(2*PI*k*n/N) -
x[n].real*sin(2*PI*k*n/N);
 }
 }
 for (k=0 ; k<N ; k++)
 {
 x[k] = result[k];
 }
}

void main()
{
 int n;

 for(n=0 ; n<N ; n++)
 {
 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
 samples[n].imag = 0.0;
 }
 printf("real input data stored in array samples[]\n");
 printf("\n"); // place breakpoint here
 dft(samples); //call DFT function
 printf("done!\n");
}

 FIGURE 6.12. Listing of program dft.c .

 Programming Examples 275

2. Select View→ Graph → Time/Frequency and set the Graph Properties as shown
in Figure 6.13 . Note that this will display only the real part of the complex
values stored in array samples . The Graph Property Data Plot Style is set to
Bar in order to emphasize that the DFT operates on discrete data.

3. Select Debug→ Run . The program should halt at the breakpoint just before
calling function dft() and at this point the initial, time - domain contents of
array samples will be displayed in the Graphical Display window.

4. Select Debug→ Run again. The program should run to completion at which
point the contents of array samples will be equal to the frequency - domain
representation X (k) of the input data x (n). The real part of X (k) will now be
displayed in the Graphical Display window and you should be able to see two
distinct spikes at k = 10 and k = 90, representing frequency components at
± 800 Hz, as shown in Figure 6.14 .

 Change the frequency of the input waveform to 900 Hz (#define TESTFREQ

900.0) and repeat the procedure listed above. You should see a number of nonzero
values in the frequency - domain sequence X (k), as shown in Figure 6.15 . This effect
is referred to as spectral leakage and is due to the fact that the N sample time -
 domain sequence stored in array samples does not now contain an integer number

FIGURE 6.13. Graph Properties used to display real part of array samples in program
dft.c .

276 Fast Fourier Transform

of cycles of a sinusoid. Correspondingly, the frequency of that sinusoid is not exactly
equal to one of the N discrete frequency components, spaced at intervals of (8000.0/ N)
Hz in the frequency - domain representation X (k).

 The nature of the structured data type COMPLEX is such that array samples
comprises 2 N values of type float ordered so that the fi rst value is the real part of
X (0), the second is the imaginary part of X (0), the third is the real part of X (1),

FIGURE 6.14. Graphical Display of real part of array samples produced by program
dft.c (TESTFREQ = 800).

FIGURE 6.15. Graphical Display of real part of array samples produced by program
dft.c (TESTFREQ = 900).

 Programming Examples 277

and so on. The real parts of X (k) are displayed by setting the DSP Data Type to
32 - bit fl oating point, the Index Increment to 2, and the Start Address to samples ,
that is, the address of the fi rst value of type float in the array samples , in the Graph
Property Dialog window. In order to display the imaginary (rather than the real)
parts of the sequence X (k), the Start Address must be set to the address of the
second value of type float in the array samples . That address can be found by
moving the cursor over an occurrence of the identifi er samples in the source fi le
dft.c . Its hexadecimal address will appear in a pop - up box as shown in Figure
 6.16 . Entering this value in the Start Address fi eld of the Graph Property Dialog
window in place of the identifi er samples will result in the same Graphical Display .
Adding four (the number of bytes used to store one 32 - bit fl oating point value) to
the Start Address value will result in the imaginary parts of the sequence of complex
values being displayed.

Twiddle Factors
 Whereas the radix - 2 FFT is applicable if N is an integer power of 2, the DFT can
be applied to an arbitrary length sequence (e.g., N = 100), as illustrated by program
dft.c . However, the FFT is widely used because of its computational effi ciency.
Part of that effi ciency is due to the use of precalculated twiddle factors, stored in a
lookup table, rather than the repeated evaluation of sin() and cos() functions
during computation of the FFT. The use of precalculated twiddle factors can be
applied to the function dft() to give signifi cant effi ciency improvements to program
dft.c . Calls to the math library functions sin() and cos() are computationally
very expensive and are made a total of 4 N2 times in function dft() (listed in Figure
 6.12). In program dftw.c , listed in Figure 6.17 , these function calls are replaced by
reading precalculated twiddle factors from array twiddle .

 The source fi le dftw.c is stored in folder dft and can be substituted for source
fi le dft.c in project dft . Verify that program dftw.c gives similar results. (Change
the Output Filename to dftw.out .)

FIGURE 6.16. Pop - up window showing address in memory of array samples .

278 Fast Fourier Transform

//dftw.c N-point DFT of sequence read from lookup table
//using pre-computed twiddle factors

#include <stdio.h>
#include <math.h>

#define PI 3.14159265358979
#define N 100
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

typedef struct
{
 float real;
 float imag;
} COMPLEX;

COMPLEX samples[N];
COMPLEX twiddle[N];

void dftw(COMPLEX *x, COMPLEX *w)
{
 COMPLEX result[N];
 int k,n;

 for (k=0 ; k<N ; k++)
 {
 result[k].real=0.0;
 result[k].imag = 0.0;

 for (n=0 ; n<N ; n++)
 {
 result[k].real += x[n].real*w[(n*k)%N].real -
x[n].imag*w[(n*k)%N].imag;
 result[k].imag += x[n].imag*w[(n*k)%N].real +
x[n].real*w[(n*k)%N].imag;
 }
 }
 for (k=0 ; k<N ; k++)
 {
 x[k] = result[k];
 }
}

void main()
{
 int n;

 for(n=0 ; n<N ; n++)
 {
 twiddle[n].real = cos(2*PI*n/N);
 twiddle[n].imag = -sin(2*PI*n/N);
 }
 for(n=0 ; n<N ; n++)
 {
 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
 samples[n].imag = 0.0;
 }
 printf("real input data stored in array samples[]\n");
 printf("\n"); // place breakpoint here
 dftw(samples,twiddle); //call DFT function
 printf("done!\n");
}

 FIGURE 6.17. Listing of program dftw.c .

 Programming Examples 279

Example 6.2: Estimating Execution Times for DFT and
FFT Functions (fft)

 The computational expense of function dft() can be illustrated using Code Com-
poser ’ s Profi le Clock (see Example 1.3). In this example, the functions dft() and
dftw() used in Example 6.1 are compared with a third function, fft() , which
implements the FFT in C.

 Edit the lines in programs dft.c and dftw.c that read

#define N 100

to read

#define N 128

 Then

1. Ensure that source fi le dft.c and not dftw.c is present in the project.

2. Select Project→ Build Options . In the Compiler tab in the Basic category set
the Opt Level to Function(− o2) and in the Linker tab set the Output Filename
to .\Debug\dft.out .

3. Build the project and load dft.out .

4. Open source fi le dft.c by double - clicking on its name in the Project
View window and set breakpoints at the lines dft(samples); and
printf(“done!\n”); .

5. Select Profi le → Clock → Enable .

6. Select Profi le → Clock View.

7. Run the program. It should halt at the fi rst breakpoint.

8. Reset the Profi le Clock by double - clicking on its icon in the bottom right - hand
corner of the CCS window.

9. Run the program. It should stop at the second breakpoint.

 The number of instruction cycles counted by the Profi le Clock (23,828,053) gives
an indication of the computational expense of executing function dft() . On a
225 - MHz C6713, 23,828,053 instruction cycles correspond to an execution time of
105 ms.

 Repeat the preceding experiment substituting fi le dftw.c for fi le dft.c . The
modifi ed DFT function using twiddle factors, dftw() , uses 89,407 instruction cycles,
corresponding to 0.397 ms, and representing a decrease in execution time by a factor
of 266. At a sampling rate of 8 kHz, 0.397 ms corresponds to just over three sampling
periods.

 Finally, repeat the experiment using fi le fft.c (also stored in folder dft) (see
Figure 6.18). This program computes the FFT using a function written in C and

280 Fast Fourier Transform

//fft.c N-point FFT of sequence read from lookup table

#include <stdio.h>
#include <math.h>
#include "fft.h"

#define PI 3.14159265358979
#define N 128
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

COMPLEX samples[N];
COMPLEX twiddle[N];

void main()
{
 int n;
 for (n=0 ; n<N ; n++) //set up DFT twiddle factors
 {
 twiddle[n].real = cos(PI*n/N);
 twiddle[n].imag = -sin(PI*n/N);
 }

 for(n=0 ; n<N ; n++)
 {
 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
 samples[n].imag = 0.0;
 }
 printf("real input data stored in array samples[]\n");
 printf("\n"); // place breakpoint here
 fft(samples,N,twiddle); //call DFT function
 printf("done!\n");
}

defi ned in the fi le fft.h (Figure 6.19). Function fft() takes 24,089 instruction cycles,
or 0.107 ms (less than one sampling period at 8 kHz) to execute. The advantage, in
terms of execution time, of the FFT over the DFT should increase with the number
of points, N , used. Repeat this example using different values of N (e.g., 256 or 512).

 6.8.1 Frame - Based Processing

 Rather than processing one sample at a time, the DFT and the FFT algorithms
process blocks, or frames, of samples. Using the FFT in a real - time program there-
fore requires a slightly different approach from that used for input and output in
previous chapters.

 Frame - based processing divides continuous sequences of input and output
samples into frames of N samples. Rather than processing one input sample at each

 FIGURE 6.18. Listing of program fft.c .

 Programming Examples 281

//fft.h complex FFT function taken from Rulph's C31 book
//this file contains definition of complex dat structure also

struct cmpx //complex data structure used by FFT
{
 float real;
 float imag;
};
typedef struct cmpx COMPLEX;

void fft(COMPLEX *Y, int M, COMPLEX *w)
{
 COMPLEX temp1,temp2; //temporary storage variables
 int i,j,k; //loop counter variables
 int upper_leg, lower_leg; //index of upper/lower butterfly leg
 int leg_diff; //difference between upper/lower leg
 int num_stages=0; //number of FFT stages, or iterations
 int index, step; //index and step between twiddle factor
 i=1; //log(2) of # of points = # of stages
 do
 {
 num_stages+=1;
 i=i*2;
 } while (i!=M);

 leg_diff=M/2; //difference between upper & lower legs
 step=2; //step between values in twiddle.h
 for (i=0;i<num_stages;i++)
 {
 index=0;
 for (j=0;j<leg_diff;j++)
 {
 for (upper_leg=j;upper_leg<M;upper_leg+=(2*leg_diff))
 {
 lower_leg=upper_leg+leg_diff;
 temp1.real=(Y[upper_leg]).real + (Y[lower_leg]).real;
 temp1.imag=(Y[upper_leg]).imag + (Y[lower_leg]).imag;
 temp2.real=(Y[upper_leg]).real - (Y[lower_leg]).real;
 temp2.imag=(Y[upper_leg]).imag - (Y[lower_leg]).imag;
 (Y[lower_leg]).real=temp2.real*(w[index]).real
 -temp2.imag*(w[index]).imag;
 (Y[lower_leg]).imag=temp2.real*(w[index]).imag
 +temp2.imag*(w[index]).real;
 (Y[upper_leg]).real=temp1.real;
 (Y[upper_leg]).imag=temp1.imag;
 }
 index+=step;
 }
 leg_diff=leg_diff/2;

 FIGURE 6.19. Listing of header fi le fft.h .

282 Fast Fourier Transform

 step*=2;
 }
 j=0;
 for (i=1;i<(M-1);i++) //bit reversal for resequencing data
 {
 k=M/2;
 while (k<=j)
 {
 j=j-k;
 k=k/2;
 }
 j=j+k;
 if (i<j)
 {
 temp1.real=(Y[j]).real;
 temp1.imag=(Y[j]).imag;
 (Y[j]).real=(Y[i]).real;
 (Y[j]).imag=(Y[i]).imag;
 (Y[i]).real=temp1.real;
 (Y[i]).imag=temp1.imag;
 }
 }
 return;
} //end of fft()

FIGURE 6.19. (Continued)

sampling instant, a new frame of N input samples must be processed every N sam-
pling instants. In the context of real - time applications, frame - based processing con-
sists of three distinct activities. While a new frame of input samples is being collected,
a previously collected frame of input samples must be processed and a frame of
previously processed samples must be output. The basic rate of one sample per
sampling instant must be observed by both the input and output activities.

 Effectively, input, output, and processing activities must take place concurrently
and each must operate on a different frame of samples. A widely used method of
implementing this is to use three separate buffers — one for input, another for pro-
cessing, and a third for output.

 An important real - time constraint on the three activities is that input and output
activities must take place on a sample - by - sample basis at each and every sampling
instant. In between dealing with this, the processor can process the intermediate
frame of samples.

 Another real - time constraint is that in the time taken to collect a complete frame
of input samples, and to output a complete frame of previously processed samples
(i.e., N sampling instants), processing of the intermediate frame of samples must be
completed.

 Each time a new frame of input samples has been collected (i.e., every N sampling
instants), the frames exchange roles. The frame of input samples that has just been

 Programming Examples 283

collected becomes the intermediate frame of samples to be processed during the
next N sampling instants. The intermediate frame of samples processed during the
previous N sampling instants becomes the frame of samples to be output during
the next N sampling instants and the frame of samples output during the previous
N sampling instants becomes the frame into which new input samples will be written
during the next N sampling instants. Typically, frames of samples are represented
within a C program as arrays. Rather than dedicating the use of particular arrays to
each of the three activities — input, processing, and output — which would necessitate
transferring or copying the contents of one array to another every N sampling
instants, it is effi cient to dedicate pointers to each of the three activities and to
exchange their values every N sampling instants.

 In real time, input and output operations can be implemented particularly effi -
ciently using direct memory access (DMA). The frame - based processing examples
in this chapter use the less effi cient mechanism of sample - by - sample input and
output in an interrupt service routine while processing takes place in the main body
of the program.

 The following examples introduce the mechanisms required to implement the
FFT (or DFT) in real time.

Example 6.3: Frame-Based Processing (frames)

 The basic mechanism of triple - buffered frame - based processing is illustrated by
program frames.c , listed in Figure 6.20 . This program is used as the basis of later
examples in this chapter. In this case, however, the only processing carried out is to
apply a scalar gain of 0.5 to the input signal.

 For clarity, three arrays A , B , and C are declared explicitly. These are used as
the three buffers to store frames of samples. However, apart from when initializing
the values of pointers input_ptr , process_ptr , and output_ptr , the identifi ers A ,
B , and C are not used. An alternative approach would be to allocate memory
dynamically to these three pointers at the start of the program, using the
statements

input_ptr = (float *)malloc(N*sizeof(float));
output_ptr = (float *)malloc(N*sizeof(float));
process_ptr = (float *)malloc(N*sizeof(float));

 The pointer temp_ptr is used only to facilitate the rotation of the values of the
other three pointers.

 Build the project as frames . Load and run the program and verify its operation
using a signal source and oscilloscope or headphones. Recall that there is a potential
divider circuit connecting the LINE IN socket to the codec input and therefore an
inbuilt gain of 0.5 in addition to the gain applied by program frames.c .

284 Fast Fourier Transform

 FIGURE 6.20. Listing of program frames.c .

// frames.c - basic illustration of triple-buffered
// N sample frame-based processing

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#define N 128

short buffercount = 0; //no of input samples in buffer
short bufferfull = 0; //indicates buffer full
float A[N], B[N], C[N];
float *input_ptr, *output_ptr, *process_ptr, *temp_ptr;

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)(*(output_ptr + buffercount)));
 *(input_ptr + buffercount++) = (float)(input_left_sample());
 if (buffercount >= N)
 {
 buffercount = 0;
 bufferfull = 1;
 }
}

main()
{
 int i;

 input_ptr = A;
 output_ptr = B;
 process_ptr = C;
 comm_intr(); //initialise DSK, codec, McBSP
 while(1) //frame processing loop
 {
 while(bufferfull==0); //wait until buffer is full
 bufferfull = 0;
 temp_ptr = process_ptr; //rotate pointers to frames
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;
 //process the contents of the frame pointed to by process_ptr
 for (i=0 ; i<N ; i++)
 {
 *(process_ptr+i) *= 0.5; //apply a scalar gain of 0.5
 }
 } //end of while(1)
} //end of main()

 Programming Examples 285

Example 6.4: DFT of a Signal in Real -Time Using a DFT Function with
Precalculated Twiddle Factors (dft128c)

 Program dft128c.c combines the DFT function dftw() from program dftw.c and
the triple buffering mechanism of program frames.c in order to implement a
simple form of spectrum analyzer (Figure 6.21).

 In spite of its ineffi ciency compared with the FFT, the DFT implemented using
function dftw() from program dftw.c is capable of running in real time.

 A frame of 128 real - valued samples is read from the codec ADC, its 128 - point
complex DFT is computed using function dftw() , and then the real part of each of
the frequency - domain samples is replaced with its magnitude. The 128 magnitude
values are written to the codec DAC (and to buffer outbuffer for plotting).

 Build and run this project as dft128c . Use a signal generator connected to the
LINE IN input on the DSK to input a sinusoidal signal and connect an oscilloscope
to the LINE OUT output. Vary the frequency of the input signal between 100 and
5000 Hz. Figure 6.22 shows an example of what you should see on the oscilloscope
screen. The two smaller peaks correspond to the frequency content of the input
signal computed using the DFT. The larger, negative peaks correspond to impulses
added to the output signal every 128 samples, replacing the magnitude of sample
X (0), for the purpose of triggering the oscilloscope.

 The data in the output frame is ordered such that the fi rst value corresponds to
a frequency of 0 Hz. The next 64 (N − 1) values correspond to frequencies 62.5 Hz
(fs / N) to 4 kHz (fs /2) inclusive in steps of 62.5 Hz. The following 63 values corre-
spond to frequencies of − 3937.5 Hz to − 62.5 Hz inclusive.

 Increase the frequency of the input signal and as it approaches 4 kHz you should
see the two spikes move together toward a point halfway between successive oscil-
loscope trigger pulses. A slight degree of aliasing should be evident as the input
signal frequency is increased past 4 kHz and the magnitude of the spikes diminishes.
The magnitude frequency response of the AIC23 DAC reconstruction fi lter is only
3 dB down at half the sampling frequency.

 If the input signal is a 1750 - Hz sine wave, then the magnitude of the DFT of a
frame of 128 input samples should be zero except at two points, corresponding to
frequencies of ± 1750 Hz. Each frame output via the DAC will contain one other
nonzero value; the trigger pulse inserted at X (0). These three impulses contained in
each frame of samples appear on the oscilloscope as three pulses, each with the form
of the impulse response of the DAC reconstruction fi lter. Compare the pulses shown
in Figure 6.22 with that shown in Figure 2.32 .

 Figure 6.23 shows the output signal corresponding to a 1750 - Hz input signal in
more detail. Change the frequency of the input signal to 1781 Hz and you should
see an output waveform similar to that shown in Figure 6.24 . As the frequency of
the sinusoidal input signal is changed, the shape as well as the position (relative to
the trigger pulses) of the smaller pulses changes. The precise shape of the pulses is
due to the characteristics of the reconstruction fi lter in the AIC23 codec. The fact
that the pulse shape changes is due to the phenomenon of spectral leakage .

286 Fast Fourier Transform

 FIGURE 6.21. DFT program with real - time input (dft128c.c).

//dft128c.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include <math.h>
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128
#include "hamm128.h"

typedef struct
{
 float real;
 float imag;
} COMPLEX;

short buffercount = 0; //no of samples in iobuffer
short bufferfull = 0; //indicates buffer full
COMPLEX A[N], B[N], C[N];
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
COMPLEX twiddle[N];
short outbuffer[N];

void dft(COMPLEX *x, COMPLEX *w)
{
 COMPLEX result[N];
 int k,n;

 for (k=0 ; k<N ; k++)
 {
 result[k].real=0.0;
 result[k].imag = 0.0;

 for (n=0 ; n<N ; n++)
 {
 result[k].real += x[n].real*w[(n*k)%N].real
 - x[n].imag*w[(n*k)%N].imag;
 result[k].imag += x[n].imag*w[(n*k)%N].real
 + x[n].real*w[(n*k)%N].imag;
 }
 }
 for (k=0 ; k<N ; k++)
 {
 x[k] = result[k];
 }
}

 Programming Examples 287

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)((output_ptr + buffercount)->real));
 outbuffer[buffercount] =
 -(short)((output_ptr + buffercount)->real);
 (input_ptr + buffercount)->real = (float)(input_left_sample());
 (input_ptr + buffercount++)->imag = 0.0;
 if (buffercount >= N)
 {
 buffercount = 0;
 bufferfull = 1;
 }
}

main()
{
 int n;

 for (n=0 ; n<N ; n++) //set up twiddle factors
 {
 twiddle[n].real = cos(2*PI*n/N);
 twiddle[n].imag = -sin(2*PI*n/N);
 }
 input_ptr = A;
 output_ptr = B;
 process_ptr = C;
 comm_intr(); //initialise DSK
 while(1) //frame processing loop
 {
 while(bufferfull==0); //wait for new frame
 bufferfull = 0; //of input samples

 temp_ptr = process_ptr; //rotate frame pointers
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;

 dft(process_ptr,twiddle); //process contents of buffer

 for (n=0 ; n<N ; n++) // compute magnitude
 { // and place in real part
 (process_ptr+n)->real =
 -sqrt((process_ptr+n)->real*(process_ptr+n)->real
 + (process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
 }
 (process_ptr)->real = TRIGGER; // add oscilloscope trigger
 } //end of while(1)
} //end of main()

FIGURE 6.21. (Continued)

288 Fast Fourier Transform

 FIGURE 6.24. Detail of output signal from program dft128c.c for input sinusoid frequency
1781 Hz.

128 samples

trigger
pulse

0 Hz 0 Hz4 kHz

negative frequency
components

positive frequency
components

 FIGURE 6.22. Oscilloscope display produced using program dft128c.c .

 FIGURE 6.23. Detail of output signal from program dft128c.c for input sinusoid frequency
1750 Hz.

 Programming Examples 289

FIGURE 6.25. Detail of 128 - point magnitude DFT data calculated in program dft128c.c
for input sinusoid frequency 1750 Hz.

 Figure 6.25 shows the DFT magnitude (output) data corresponding to the oscil-
loscope trace of Figure 6.23 . The trigger pulse at the start of the block of data causes
the impulse response of the reconstruction fi lter to appear on the oscilloscope. It
can be deduced from Figure 6.25 that the frequency of the sinusoidal input signal
was exactly equal to 1750 Hz, corresponding to 28 f0 , where f0 = 62.5 Hz is the fun-
damental frequency associated with a block of 128 samples at a sampling rate of
8 kHz. The solitary nonzero frequency - domain sample produces an output pulse
shape very similar to that of the impulse response of the reconstruction fi lter.

 In contrast, it may be deduced from Figure 6.26 that the frequency of the sinu-
soidal input that produced the DFT magnitude data and hence the oscilloscope
trace of Figure 6.24 was between 28 f0 and 29 f0 , that is, between 1750 and 1812.5 Hz.
Figure 6.26 illustrates spectral leakage and Figure 6.24 shows the result of the data

FIGURE 6.26. Detail of 128 - point magnitude DFT data calculated in program dft128c.c
for input sinusoid frequency 1781 Hz.

290 Fast Fourier Transform

shown in Figure 6.26 , regarded as time - domain samples, fi ltered by the reconstruc-
tion fi lter in the AIC23 codec.

Modifying the Program to Reduce Spectral Leakage
 One method of reducing spectral leakage is to multiply the blocks of input samples
by a window function prior to computing the DFT. Effectively, a rectangular window
has been applied previously. Alter the line of program dft128c.c that reads

(input_ptr + buffercount) ->real =
(float)(input_left_sample());

to read

(input_ptr + buffercount) ->real =
(float)(input_left_sample())*hamming[buffercount];

and add the line

#include “hamm128.h”

 File hamm128.h contains the declaration of an array hamming initialized to contain
a 128 - point Hamming window.

Rebuild All and Run the program. Figure 6.27 shows the shape of output pulse
you can expect to see, regardless of the frequency of the sinusoidal input signal.

Example 6.5: FFT of a Real -Time Input Signal Using an
FFT Function in C (fft128c.c)

 Program fft128c.c , listed in Figure 6.28 , implements a 128 - point FFT in real time
using an external input signal. It calls a generic FFT function fft() written in C.
That function is defi ned in the fi le fft.h , which is included by program fft128c.
c . The function was written originally for use with the C31 DSK and is described in
Refs 13 and 14 . Program fft128c.c is similar to program dft128c.c in all respects
other than its use of fft() in place of the less computationally effi cient dft() .

 Build and run this project as fft128c . Repeat the experiments carried out in
 Example 6.4 and verify that the results are similar.

Example 6.6: FFT of a Sinusoidal Signal from a Table Using TI ’s C
Callable Optimized FFT Function (FFTsinetable)

 Figure 6.29 shows a listing of the program FFTsinetable.c , which illustrates a C
program calling TI ’ s optimized fi oating - point FFT function cfftr2 dit.sa , avail-
able at TI ’ s web site (also on CD). The twiddle constants are calculated within the
program. The imaginary components of the twiddle constants are negated, as

 Programming Examples 291

(a)

(b)

 FIGURE 6.27. (a) Detail of output signal from program dft128c.c , modifi ed to apply
Hamming window to blocks of input samples, for input sinusoid frequency 1750 Hz and
(b) data that produced oscilloscope trace.

required (assumed) by the FFT function. The FFT function also assumes N /2
complex twiddle constants. It is important to align the data in memory (on an 8 - byte
boundary). Both the input data and the twiddle constants are of type COMPLEX .

 The input signal consists of sine data values set in a table as real input data. The
imaginary components of the input sine data are set to zero. The input data are
arranged in memory as successive real and imaginary number pairs, as required
(assumed) by the FFT function. The resulting output is complex.

 The FFT function cfftr2_dit.sa uses a DIT, radix 2, and takes the FFT of a
complex input signal. Two support functions, digitrev_index.c and bitrev.sa ,
are used in conjunction with the complex FFT function for bit reversal. These two
support fi les are also available through TI ’ s web site (also on CD). The FFT function
 cfftr2_dit.sa assumes that the input data x are in normal order, while the FFT
coeffi cients or twiddle constants are in reverse order. As a result, the support func-

292 Fast Fourier Transform

 FIGURE 6.28. FFT program with real - time input calling a C - coded FFT function
(fft128c.c).

//fft128c.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128
#include "hamm128.h"

short buffercount = 0; //no of samples in iobuffer
short bufferfull = 0; //indicates buffer full
COMPLEX A[N], B[N], C[N];
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
COMPLEX twiddle[N];
short outbuffer[N];

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)((output_ptr + buffercount)->real));
 outbuffer[buffercount] =
 -(short)((output_ptr + buffercount)->real);
 (input_ptr + buffercount)->real = (float)(input_left_sample());
 (input_ptr + buffercount++)->imag = 0.0;
 if (buffercount >= N)
 {
 buffercount = 0;
 bufferfull = 1;
 }
}

main()
{
 int n;

 for (n=0 ; n<N ; n++) //set up twiddle factors
 {
 twiddle[n].real = cos(PI*n/N);
 twiddle[n].imag = -sin(PI*n/N);
 }
 input_ptr = A;
 output_ptr = B;
 process_ptr = C;
 comm_intr(); //initialise DSK
 while(1) //frame processing loop

 Programming Examples 293

 {
 while(bufferfull==0); //wait for new frame
 bufferfull = 0; //of input samples

 temp_ptr = process_ptr; //rotate frame pointers
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;

 fft(process_ptr,N,twiddle); //process contents of buffer

 for (n=0 ; n<N ; n++) // compute magnitude
 { // and place in real part
 (process_ptr+n)->real =
 -sqrt((process_ptr+n)->real*(process_ptr+n)->real
 + (process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
 }
 (process_ptr)->real = TRIGGER; // add oscilloscope trigger
 } //end of while(1)
} //end of main()

FIGURE 6.28. (Continued)

tion digitrev_index.c , to produce the index for bit reversal, and bitrev.sa , to
perform the bit reversal on the twiddle constants, are called before the FFT function
is invoked. These two support fi les for bit reversal are again called to bit - reverse
the resulting scrambled output.

 N is the number of complex input (note that the input data consist of 2 N ele-
ments) or output data, so that an N - point FFT is performed. FREQ determines the
frequency of the input sine data by selecting the number of points per cycle within
the data table. With FREQ set at 8, every eighth point from the table is selected,
starting with the fi rst data point. The modulo operator is used as a fi ag to reinitialize
the index. The following four points (scaled) within one period are selected: 0, 1000,
0, and − 1000. Example 2.10 (sine2sliders) illustrates this indexing scheme to
select different numbers of data points within a table.

 The magnitude of the resulting FFT is taken. The line of code

 output_sample (32000);

outputs a negative spike. It is used to trigger an oscilloscope. The input data are
scaled so that the output magnitude is positive. The sampling rate is achieved
through polling.

 Build and run this project as FFTsinetable . The two support fi les for bit reversal
and the complex FFT function also are included in the project. Figure 6.30 shows a
time - domain plot of the resulting output.

 Since an output occurs every T s , the time interval for 32 points corresponds
to 32 T s , or 32(0.125 ms) = 4 ms. A negative spike is then repeated every 4 ms. This

//FFTsinetable.c FFT{sine}from table. Calls TI FFT function

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include <math.h>
#define N 32 //number of FFT points
#define FREQ 8 //select # of points/cycle
#define RADIX 2 //radix or base
#define DELTA (2*PI)/N //argument for sine/cosine
#define TAB_PTS 32 //# of points in sine_table
#define PI 3.14159265358979
short i = 0;
short iTwid[N/2]; //index for twiddle constants
short iData[N]; //index for bitrev X
float Xmag[N]; //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[N/RADIX]; //array for twiddle constants
Complex x[N]; //N complex data values
#pragma DATA_ALIGN(W,sizeof(Complex)) //align W
#pragma DATA_ALIGN(x,sizeof(Complex)) //align x

short sine_table[TAB_PTS] = {0,195,383,556,707,831,924,981,1000,
981,924,831,707,556,383,195,-0,-195,-383,-556,-707,-831,-924,-981,
-1000,-981,-924,-831,-707,-556,-383,-195};

void main()
{
 for(i = 0 ; i < N/RADIX ; i++)
 {
 W[i].re = cos(DELTA*i); //real component of W
 W[i].im = sin(DELTA*i); //neg imag component
 } //see cfftr2_dit
 for(i = 0 ; i < N ; i++)
 {
 x[i].re=sine_table[FREQ*i % TAB_PTS]; //wrap when i=TAB_PTS
 x[i].im = 0 ; //zero imaginary part
 }
 digitrev_index(iTwid, N/RADIX, RADIX); //get index for bitrev()
 bitrev(W, iTwid, N/RADIX); //bit reverse W
 cfftr2_dit(x, W, N); //TI floating-pt complex FFT

 digitrev_index(iData, N, RADIX); //get index for bitrev()
 bitrev(x, iData, N); //freq scrambled->bit-reverse X
 for(i = 0 ; i < N ; i++)
 Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im); //mag of X

 comm_poll() ; //init DSK,codec,McBSP
 while (1) //infinite loop
 {
 output_left_sample(32000); //negative spike as reference
 for (i = 1; i < N; i++)
 output_left_sample((short)Xmag[i]); //output magnitude samples
 }
}

 FIGURE 6.29. FFT program with input read from a lookup table and using TI ’ s optimized
complex FFT function (FFTsinetable.c).

 Programming Examples 295

provides a reference, since the time interval between the two negative spikes cor-
responds to the sampling frequency of 8 kHz. The center of this time interval then
corresponds to the Nyquist frequency of 4 kHz (2 ms from the negative spike). The
fi rst positive spike occurs at 1 ms from the fi rst negative spike. This corresponds to
a frequency of f = F s /4 = 2 kHz. The second positive spike occurs at 3 ms from the
fi rst negative spike and corresponds to the folding frequency of (F s − f) = 6 kHz.

 Change FREQ to 4 in order to select eight sine data values within the table. Verify
that the output is a 1 - kHz signal (obtain a plot similar to that in Figure 6.30 from
an oscilloscope). A FREQ value of 12 produces an output of 3 kHz. A FREQ value of
15 shows the two positive spikes at the center (between the two negative spikes).
Note that aliasing occurs for frequencies larger than 4 kHz. To illustrate that, change
 FREQ to a value of 20. Verify that the output is an aliased signal at 3 kHz, in lieu of
5 kHz. A FREQ value of 24 shows an aliased signal of 2 kHz in lieu of 6 kHz.

 The number of cycles is documented within the function cfftr2_dit.sa (by
TI) as

 Cycles = + +(()) log ()2 23 2 6N N

 For a 1024 - point FFT, the number of cycles would be (2071) (10) + 6 = 20,716.
This corresponds to a time of t = 20,716 cycles/(225 MHz) = 92 µ s. That is consider-
ably less time than would be available to process a frame of 1024 samples collected
at a sampling rate of 8 kHz (i.e., 1024/8000 = 128 ms).

 Example 6.7: FFT of Real - Time Input Using TI ’ s C Callable Optimized
Radix - 2 FFT Function (FFTr2)

 This example extends Example 6.6 for real - time external input in lieu of a sine
table as input. Figure 6.31 shows a listing of the C source program FFTr2.c that

32 samples

trigger
pulse

0 Hz 4 kHz 0 Hz

positive frequency
components

negative frequency
components

 FIGURE 6.30. Time - domain plot representing the magnitude of the FFT of a 2 - kHz input
signal read from a lookup table and using TI ’ s optimized complex FFT function.

296 Fast Fourier Transform

//FFTr2.c FFT using TI optimized FFT function and real-time input

#include "dsk6713_aic23.h"
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include <math.h>
#define N 256 //number of FFT points
#define RADIX 2 //radix or base
#define DELTA (2*PI)/N //argument for sine/cosine
#define PI 3.14159265358979
short i = 0;
short iTwid[N/2]; //index for twiddle constants
short iData[N]; //index for bitrev X
float Xmag[N]; //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[N/RADIX]; //array for twiddle constants
Complex x[N]; //N complex data values
#pragma DATA_ALIGN(W,sizeof(Complex)) //align W on boundary
#pragma DATA_ALIGN(x,sizeof(Complex)) //align input x on boundary

void main()
{
 for(i = 0 ; i < N/RADIX ; i++)
 {
 W[i].re = cos(DELTA*i); //real component of W
 W[i].im = sin(DELTA*i); //neg imag component
 } //see cfftr2_dit
 digitrev_index(iTwid,N/RADIX,RADIX); //get index for bitrev() W
 bitrev(W, iTwid, N/RADIX); //bit reverse W

 comm_poll(); //init DSK,codec,McBSP
 for(i=0; i<N; i++)
 Xmag[i] = 0; //init output magnitude
 while (1) //infinite loop
 {
 for(i = 0 ; i < N ; i++)
 {
 x[i].re = (float)((short)input_left_sample()); //get input
 x[i].im = 0.0; //zero imaginary part
 if(i==0) output_sample(32000); //negative spike for reference
 else
 output_left_sample((short)Xmag[i]); //output magnitude
 }
 cfftr2_dit(x, W, N); //TI floating-pt complex FFT
 digitrev_index(iData, N, RADIX); //produces index for bitrev()
 bitrev(x, iData, N); //bit-reverse x
 for (i =0; i<N; i++)
 Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im)/32; //mag X
 }
}

 FIGURE 6.31. FFT program with real - time input using TI ’ s optimized complex FFT
function (FFTr2.c).

 Programming Examples 297

implements this project. The same FFT support fi les are used as in Example 6.6 ,
that is, TI ’ s radix - 2 optimized FFT function (cfftr2_dit), the function for generat-
ing the index for bit reversal (digitrev_index), and the function for the bit - rever-
sal procedure (bitrev). Since the FFT function assumes that the twiddle constants
are in reverse order while the input data are in normal order, the index generation
and bit reversal associated with the twiddle constants are performed (as in Example
6.6) before the complex FFT function is invoked.

 Build this project as FFTr2 . Input a 2 - kHz sinusoidal signal with an amplitude of
approximately 2 V p - p and verify the results shown in Figure 6.32 . These results are
similar to those in Example 6.4 except that in this case N = 256.

 A project application in Chapter 10 makes use of this example to display a
spectrum to a bank of LEDs connected to the DSK through the EMIF 80 - pin
connector.

Example 6.8: Radix-4 FFT of Real -Time Input Using TI ’s C Callable
Optimized FFT Function (FFTr4)

 Figure 6.33 shows the C source program FFTr4.c that calls a radix - 4 FFT function
to take the FFT of a real - time input signal.

 Build this project as FFTr4 . Input a 2 - kHz sinusoidal signal with an amplitude of
approximately 2 V p - p. Verify an output similar to that shown in Figure 6.34 . These
results are similar to those obtained with the radix - 2 FFT function in Example 6.7 .

6.8.2 Fast Convolution

 A major use of frame - based processing and of the FFT is the effi cient implementa-
tion of FIR fi lters.

FIGURE 6.32. Output waveform generated by program FFTr2.c .

298 Fast Fourier Transform

 FIGURE 6.33. FFT program that calls TI ’ s optimized radix - 4 FFT function using real - time
input (FFTr4.c).

//FFTr4.c FFT using TI optimized FFT function and real-time input

#include "dsk6713_aic23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include <math.h>
#define N 256 //no of complex FFT points
unsigned short JIndex[4*N]; //index for digit reversal
unsigned short IIndex[4*N]; //index for digit reversal
int i, count;
float Xmag[N]; //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[3*N/2]; //array for twiddle constants
Complex x[N]; //N complex data values
double delta = 2*3.14159265359/N;
#pragma DATA_ALIGN(x,sizeof(Complex)); //align x on boundary
#pragma DATA_ALIGN(W,sizeof(Complex)); //align W on boundary

void main()
{
 R4DigitRevIndexTableGen(N,&count,IIndex,JIndex); //for digit rev
 for(i = 0; i < 3*N/4; i++)
 {
 W[i].re = cos(delta*i); //real component of W
 W[i].im = sin(delta*i); //Im component of W
 }
 comm_poll(); //init DSK, codec, McBSP
 for(i=0; i<N; i++)
 Xmag[i] = 0; //init output magnitude
 while (1) //infinite loop
 {
 output_left_sample(32000); //-ve spike for reference
 for(i = 0 ; i < N ; i++)
 {
 x[i].re = (float)((short)input_left_sample()); //get input
 x[i].im = 0.0; //zero imaginary part
 if(i>0) output_left_sample((short)Xmag[i]);//output magnitude
 }
 cfftr4_dif(x, W, N); //radix-4 FFT function
 digit_reverse((double *)x,IIndex,JIndex,count);//unscramble
 for (i =0; i<N; i++)
 Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im)/32; //mag X
 }
}

 Programming Examples 299

 FIGURE 6.34. Output waveform generated by program FFTr4.c .

 Note that in the following examples, the number of samples in a frame is desig-
nated PTS/2 and the number of coeffi cients in an FIR fi lter is designated N .

 Example 6.9: Frame - Based Implementation of FIR Filters Using
Time - Domain Convolution (timeconvdemo)

 Program timeconvdemo.c , listed in Figure 6.35 , illustrates frame - based implemen-
tation of an FIR fi lter.

 The operation of an FIR fi lter is described by the convolution sum

 y n h i x n i
i

N

() () ()= −
=

−

∑
0

1

 (6.42)

 where h (i) is the i th out of N fi lter coeffi cients and x (n) is the n th input sample. In
a sample - by - sample implementation, the n th output sample y (n) is computed at the
 n th sampling instant using the convolution sum and a store of past input samples.
In a frame - based approach the convolution sum is applied to a frame of PTS/2
samples every PTS/2 sampling instants.

 The result of convolving a length PTS/2 sequence of input samples with a length
 N sequence of fi lter coeffi cients is a length (PTS/2 + N − 1) sequence of output
samples. That is a response (output sequence) that is longer than the frame of PTS/2
input samples from which it was computed and, as it stands, the basic frame process-
ing mechanism used in programs frames.c , dft128c.c , and fft128c.c cannot be
used. That was suited to situations in which each frame of input samples could be
processed independently of the frames immediately preceding and succeeding it.

 The solution to this problem is to store the section of the response that
extends beyond the PTS/2 samples of the current frame and to add that section
of the response to the output computed during processing of the next frame of

300 Fast Fourier Transform

 FIGURE 6.35. Program illustrating frame - based implementation of FIR fi lter using time -
 domain convolution (timeconvdemo.c).

//timeconvdemo.c overlap-add convolution demonstration program

#include <math.h>
#include <stdio.h>
#include "lp55f.cof" //low pass filter coeffs
#define PI 3.14159265358979
#define PTS 128 //frame size is PTS/2

float coeffs[PTS/2]; //zero-padded filter coeffs
float A[PTS], B[PTS], C[PTS]; //buffers
float *input_ptr, *output_ptr, *temp_ptr, *process_ptr;
float result[PTS]; //temporary storage
char in_buffer, proc_buffer, out_buffer, temp_buffer;
short i;
int wt = 0;

// convolution function - z = conv(x,y)
void conv(float *x, float *y, float *z, int n)
{
 int i, n_lo, n_hi;
 float *xp, *yp;
 for(i=0;i<(2*n-1);i++)
 {
 *z=0.0;
 n_lo=i-(n)+1;
 if(n_lo<0)n_lo=0;
 n_hi=i;
 if(n_hi>(n-1))n_hi=(n-1);
 for(xp=x+n_lo,yp=y+i-n_lo;xp<=x+n_hi;xp++,yp--)
 *z+=*xp * *yp;
 z++;
 }
 *z=0.0; //final value in result array
}

main()
{
 input_ptr = A; //initialise pointers
 output_ptr = B;
 process_ptr = C;
 in_buffer = 'A'; //initialise names of buffers
 out_buffer = 'B'; //for diagnostic messages
 proc_buffer = 'C';

 for (i=0 ; i<PTS/2 ; i++) coeffs[i] = 0.0; //zero pad filter
 for (i=0 ; i<N ; i++) coeffs[i] = h[i]; //in array coeffs

 for (i=0 ; i<PTS ; i++) //zero all buffer contents
 {

 Programming Examples 301

 *(output_ptr + i) = 0.0;
 *(process_ptr + i) = 0.0;
 *(input_ptr + i) = 0.0;
 }
 while (1) //loop forever
 {
 conv(process_ptr,coeffs,result,PTS/2); //convolve contents
 for (i=0 ; i<PTS ; i++) //of process buffer
 (process_ptr+i)=(result+i); //with filter coeffs
 for (i=0 ; i<PTS/2 ; i++) //read new input
 {
 *(input_ptr + i) = (float)(sin(2*PI*wt/50))
 + 0.25*sin(2*PI*wt/3);
 wt++;
 }
 printf("convolution completed in process buffer (%c)\n"
 ,proc_buffer);
 printf("new input samples read into input buffer (%c)\n"
 ,in_buffer);
 printf("output written from first part");
 printf(" of output buffer (%c)\n",out_buffer);
 printf("\n"); //insert breakpoint here
 for (i=0 ; i<PTS/2 ; i++) //add overlapping output
 { //sections in process buffer
 *(process_ptr + i) += *(output_ptr + i + PTS/2);
 }
 printf("second part of output buffer (%c) ", out_buffer);
 printf("has been added to first part");
 printf(" of process buffer (%c)\n",proc_buffer);
 printf("\n"); //insert breakpoint here
 temp_ptr = process_ptr; //rotate input, output,
 process_ptr = input_ptr; //and process buffers
 input_ptr = output_ptr;
 output_ptr = temp_ptr;
 temp_buffer = proc_buffer; //rotate names of buffer
 proc_buffer = in_buffer;
 in_buffer = out_buffer;
 out_buffer = temp_buffer;
 printf("buffer pointers rotated - ");
 printf("for next section of input\n");
 printf("input buffer is (%c), process buffer is (%c)"
 , in_buffer, proc_buffer);
 printf(", output buffer is (%c)\n", out_buffer);
 printf("\n");
 } // end of while(1)
} //end of main()

FIGURE 6.35. (Continued)

302 Fast Fourier Transform

T U V W X
PTS/2

convolution of input section
T to U with filter coefficients

input x(n)

output y(n)

convolution of input section
U to V with filter coefficients

convolution of input section
V to W with filter coefficients

 FIGURE 6.37. Overlapping sections of output samples, corresponding to successive frames
of input samples are summed to form a continuous output sequence.

input samples. Two alternative forms of this approach are named overlap - save and
 overlap - add . Program timeconvdemo.c illustrates the overlap - add approach.

 The basic mechanism of frame - based, overlap - add, FIR fi ltering is illustrated in
Figures 6.36 and 6.37 . Successive PTS / 2 - sample sections of the input sequence x (n)
are convolved with the FIR fi lter coeffi cients (zero - padded to length PTS / 2) to
produce overlapping sections of the output sequence y (n). Each overlapping con-
volution result contains (PTS − 1) samples. The overlapping sections are summed,
point by point, to form the overall output sequence y (n).

 The complementary overlap - save method achieves the same result by convolving
overlapping sections of the input sequence x (n) with the fi lter coeffi cients and dis-
carding parts of the result.

 FIGURE 6.36. Convolution of one frame of PTS / 2 input samples and N fi lter coeffi cients
(zero - padded to length PTS / 2) results in length (PTS − 1) section of output samples.

PTS/2 input samples

*

N FIR filter coefficients
(zero-padded to length PTS/2)

PTS – 1 output samples

 Programming Examples 303

A[PTS]

B[PTS]

C[PTS]

input_ptr

output ptr

process_ptr

 FIGURE 6.38. Contents of buffers A , B , and C at instant X in Figure 6.37 .

 Using the triple - buffering technique introduced in Example 6.3 , it is convenient
to use three buffers each of length PTS samples, each capable of storing a length
(PTS − 1) convolution result. The roles of the three buffers are exchanged after each
new frame of PTS / 2 input samples has been collected.

 At the same time as PTS / 2 input samples are being collected and stored in one
buffer (input buffer), and a previously collected set of PTS / 2 input samples is being
convolved with the fi lter coeffi cients to give a length (PTS − 1) response (process
buffer), the overlapping sum of PTS / 2 samples from two previously computed con-
volution operations are output.

 Assuming the use of three PTS - sample buffers A , B , and C and three pointers
 input_ptr , process_ptr , and output_ptr (as in program timeconvdemo.c),
Figure 6.38 shows the contents of those buffers corresponding to Figure 6.37 at
instant X , just prior to exchanging pointer values. Over the previous PTS / 2 sampling
instants:

 1. PTS / 2 input samples (section W to X) have been stored in the fi rst PTS / 2 ele-
ments of buffer A (pointed to by input_ptr).

 2. PTS / 2 previously collected input samples (section V to W) have been con-
volved with the fi lter coeffi cients and the result stored in the PTS elements of
buffer C (pointed to by process_ptr).

 3. PTS / 2 samples have been output, formed by summing values from the
fi rst PTS / 2 values stored in buffer B (pointed to by output_ptr) and the
second PTS / 2 values stored in buffer A .

 The buffer contents at instant X are:

 1. buffer A (input_ptr) PTS / 2 input samples (section W to X) and the last PTS / 2
samples of the convolution result corresponding to input samples in section T
to U .

304 Fast Fourier Transform

A[PTS]

B[PTS]

C[PTS]

input_ptr

output ptr

process_ptr

 FIGURE 6.39. Contents of buffers A , B , and C at instant Y in Figure 6.37 .

 2. buffer B (output_ptr) length (PTS − 1) convolution result corresponding to
input samples in section U to V .

 3. buffer C (process_ptr) length (PTS − 1) convolution result corresponding to
input samples in section V to W .

 At this point the pointer values are exchanged so that the new value of output_ptr
is equal to the old value of process_ptr , the new value of process_ptr is equal
to the old value of input_ptr , and the new value of input_ptr is equal to the old
value of output_ptr .

 Figure 6.39 shows the buffer contents corresponding to Figure 6.37 PTS / 2 sam-
pling instants later at instant Y , just prior to exchanging pointer values. Over the
previous PTS / 2 sampling instants:

 1. PTS / 2 input samples (section X to Y) have been stored in the fi rst PTS / 2 ele-
ments in buffer B (pointed to by input_ptr).

 2. PTS / 2 previously collected input samples (section W to X) have been con-
volved with the fi lter coeffi cients and the result stored in the PTS elements of
buffer A (pointed to by process_ptr).

 3. PTS / 2 samples have been output, formed by summing values from the
fi rst PTS / 2 values stored in buffer C (pointed to by output_ptr) and the
second PTS / 2 values stored in buffer B .

 The buffer contents at instant Y are:

 1. buffer A (process_ptr) length PTS convolution result corresponding to input
samples in section W to X .

 2. buffer B (input_ptr) PTS / 2 input samples (section X to Y) and the last PTS / 2
samples of the convolution result corresponding to input samples in section
 U to V .

 3. buffer C (output_ptr) length PTS convolution result corresponding to input
samples in section V to W .

 Programming Examples 305

 Between instants X and Y (PTS / 2 sampling instants) the contents of buffer C and
the second half of buffer B have not changed. Meanwhile, the fi rst PTS / 2 samples
in buffer B have been overwritten with new input samples and the PTS samples in
buffer A have been replaced by a new convolution result.

 The process is illustrated by program timeconvdemo.c , which applies a lowpass
fi lter to an internally generated input signal comprising the sum of two sinusoids of
different frequencies.

 Select File→ Workspace → Load Workspace and open the fi le timeconvdemo.wks
(in folder timeconvdemo). Note that the saved workspace fi le will load correctly
only if folder timeconvdemo is stored in folder c:\CCStudio_v3.1\MyProjects .
Load and Run timeconvdemo.out . Ignore any warning messages warning that
identifi ers A , B , and C have not been found, and close the Disassembly window that
appears. A number of breakpoints have been set so that the evolution of the con-
tents of buffers A , B , and C can be observed. Repeatedly clicking on the running man
will step through the program from breakpoint to breakpoint. At each breakpoint
the Graphical Display of the contents of each of the three buffers is updated and
explanatory messages are displayed in the Stdout window. The Code Composer
window should appear as shown in Figure 6.40 .

FIGURE 6.40. CCS window during execution of program timeconvdemo.c .

306 Fast Fourier Transform

 The fi lter implemented is a lowpass fi lter with a cutoff frequency of 2 kHz and a test
input signal comprising the sum of 160 - Hz and 2667 - Hz sinusoids is used. The expected
output signal is a sinusoid of frequency 160 Hz. In this example, PTS = 128 and N = 55.
Each frame consists of PTS / 2 = 64 samples and each buffer is of length 128.

 You should see successive frames of PTS / 2 input values (recognizable as the sum
of low and high frequency sinusoids) appear in each buffer in turn. As the next
buffer in sequence is being fi lled with input samples, the most recently collected
frame of PTS / 2 input samples is convolved with the N fi lter coeffi cients, zero - padded
to length PTS / 2 . Function conv() zero - pads the (PTS − 1) result of the convolution
operation to length PTS .

Example 6.10: Real-Time Frame -Based Implementation of FIR Filters
Using Time -Domain Convolution (timeconv)

 Program timeconv.c combines the frame - based fi ltering operation of
timeconvdemo.c with the real - time mechanism of frames.c in order to implement
frame - based FIR fi ltering in real - time (Figure 6.41).

 Build the project as timeconv . Load and Run program timeconv.out and use
a signal generator and oscilloscope to verify its operation as a lowpass fi lter.

Example 6.11: Frame-Based Implementation of FIR Filters Using
Frequency-Domain Convolution (fastconvdemo)

 The FFT provides an alternative method of implementing frame - based FIR fi lters.
Its advantage is that it is computationally more effi cient for long fi lters.

 Program fastconvdemo.c , listed in Figure 6.42 , is functionally equivalent to
program timeconvdemo.c . The same frame - based, overlap - add technique is used
but instead of computing the length PTS overlapping output sections using the
convolution sum, the fi lter coeffi cients and PTS / 2 sample sections of input sequence
are transformed into the frequency domain using the FFT, multiplied together point
by point, and the result transformed back to the time domain using the inverse FFT.
A number of changes to program timeconvdemo.c are necessary in order to accom-
modate this procedure. Although the input to and output from the fi lter in this
example comprise real - valued samples, the FFT operates on complex data and
therefore all three buffers used are declared to be of type COMPLEX .

 By setting up Graphical Display windows showing the real parts of the
three COMPLEX buffers and placing breakpoints at the lines indicated in
fastconvdemo.c , the operation of the program can be followed. As in Example
6.10 , a Code Composer workspace fi le is provided in order to set up the Graphical
Display windows and breakpoints.

 Select File→ Workspace → Load Workspace and open the fi le fastconvdemo.wks
(in folder fastconvdemo). Load and Run fastconvdemo.out . Ignore any warning
messages warning that identifi ers A , B , and C have not been found, and close the Dis-
assembly window that appears. A number of breakpoints have been set so that the

 Programming Examples 307

//timeconv.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "lp55f.cof"

#include <math.h>
#define PI 3.14159265358979
#define PTS 128

short buffercount = 0; //index into frames
short bufferfull=0;
float A[PTS], B[PTS], C[PTS]; //three buffers used
float coeffs[PTS]; //zero padded filter coeffs
float *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
float result[PTS]; //temporary storage

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)(*(output_ptr + buffercount)));
 *(input_ptr + buffercount++) = (float)(input_left_sample());
 if (buffercount >= PTS/2)
 {
 bufferfull = 1;
 buffercount = 0;
 }
}

// convolution function - z = conv(x,y)
void conv(float *x, float *y, float *z, int n)
{
 int i, n_lo, n_hi;
 float *xp, *yp;

 for(i=0;i<(2*n-1);i++)
 {
 *z=0.0;
 n_lo=i-(n)+1;
 if(n_lo<0)n_lo=0;
 n_hi=i;
 if(n_hi>(n-1))n_hi=(n-1);
 for(xp=x+n_lo,yp=y+i-n_lo;xp<=x+n_hi;xp++,yp--)
 *z+=*xp * *yp;
 z++;
 }
 *z=0.0; //final value in result array
}

 FIGURE 6.41. Real - time frame - based FIR program using time - domain convolution (time-
conv.c).

308 Fast Fourier Transform

void main()
{
 int i;
 for (i=0 ; i<PTS/2 ; i++) coeffs[i] = 0.0; //zero pad filter
 for (i=0 ; i<N ; i++) coeffs[i] = h[i]; //in array coeffs
 input_ptr = A; //initialise pointers
 output_ptr = B;
 process_ptr = C;
 comm_intr();
 while(1) //frame processing loop
 {
 while (bufferfull == 0); //wait for buffer full
 bufferfull = 0;
 temp_ptr = process_ptr;
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;
 conv(process_ptr,coeffs,result,PTS/2); //convolve contents
 for (i=0 ; i<PTS ; i++) //of process buffer
 (process_ptr+i)=(result+i); //with filter coeffs
 for (i=0 ; i<PTS/2 ; i++) //add overlapping output
 { //sections in process buffer
 *(process_ptr + i) += *(output_ptr + i + PTS/2);
 }
 } //end of while
} //end of main()

FIGURE 6.41. (Continued)

evolution of the contents of buffers A , B , and C can be observed. Repeatedly clicking
on the running man will step through the program from breakpoint to breakpoint.
At each breakpoint the Graphical Display of the contents of each of the three buffers
is updated and explanatory messages are displayed in the Stdout window.

 The basic difference between program fastconvdemo.c and program timecon-
vdemo.c is the method used to compute the overlapping sections of output samples.
The triple - buffering and overlap - add mechanisms used by the two programs are
identical. The FFT method of convolution comprises more distinct stages than time -
 domain convolution and breakpoints have been placed so that the buffer contents
after each stage are displayed. Figure 6.43 illustrates the stage at which a sequence of
zero - padded input samples in the process buffer (B) have just been transformed into
the frequency domain. Although only the real part of the frequency - domain repre-
sentation is displayed, it is possible to discern two distinct frequency components
corresponding to the 160 - Hz and 2667 - Hz sine waves that make up the input signal.

 Example 6.12: Real - Time Frame - Based Fast Convolution (fastconv)

 This program (Figure 6.44) is the functional equivalent of timeconv.c but uses the
FFT method of convolution used in program fastconvdemo.c . Build the project
as fastconv and verify the implementation of a lowpass fi lter. The program has

 Programming Examples 309

 FIGURE 6.42. Program illustrating frame - based implementation of FIR fi lter using fast
convolution (fastconvdemo.c).

//fastconvdemo.c overlap-add convolution demonstration program

#include <math.h>
#include <stdio.h>
#include "lp55f.cof" //time domain FIR coefficients
#define PI 3.14159265358979

#define PTS 128 //number of points used in FFT
#define FREQHI 2666.67
#define FREQLO 156.25
#define SAMPLING_FREQ 8000

#include "fft.h"

short buffercount = 0; //no of new samples in buffer
COMPLEX twiddle[PTS]; //twiddle factors stored in w
COMPLEX coeffs[PTS]; //zero padded freq coeffs
COMPLEX A[PTS], B[PTS], C[PTS];
short i; //general purpose index
float a,b; //used in complex multiply
COMPLEX *input_ptr, *output_ptr, *temp_ptr, *process_ptr;
char in_buffer, proc_buffer, out_buffer, temp_buffer;
int wt = 0;

main()
{
 input_ptr = A; //initialise pointers
 output_ptr = B;
 process_ptr = C;
 in_buffer = 'A'; //initialise names of buffers
 out_buffer = 'B'; //for diagnostic messages
 proc_buffer = 'C';

 for (i=0 ; i<PTS ; i++) //set up twiddle factors
 {
 twiddle[i].real = cos(PI*(i)/PTS);
 twiddle[i].imag = -sin(PI*(i)/PTS);
 }
 for (i=0 ; i<PTS ; i++) //set up freq domain coeffs
 {
 coeffs[i].real = 0.0;
 coeffs[i].imag = 0.0;
 }
 for (i=0 ; i<N ; i++)
 {
 coeffs[i].real = h[i];
 }

310 Fast Fourier Transform

 fft(coeffs,PTS,twiddle); //transform filter coeffs
 //to freq domain
 for (i=0 ; i<PTS ; i++) //zero all buffer contents
 {
 (output_ptr + i)->real = 0.0;
 (output_ptr + i)->imag = 0.0;
 (process_ptr + i)->real = 0.0;
 (process_ptr + i)->imag = 0.0;
 (input_ptr + i)->real = 0.0;
 (input_ptr + i)->imag = 0.0;
 }
while (1)
{
 for(i=0 ; i< PTS ; i++)
 (process_ptr + i)->imag = 0.0;
 for(i=PTS/2 ; i< PTS ; i++)
 (process_ptr + i)->real = 0.0;
 fft(process_ptr,PTS,twiddle); //transform samples into
 //frequency domain
 printf("frequency domain representation of ");
 printf("zero padded input data");
 printf(" in process buffer (%c) \n", proc_buffer);
 printf("\n"); //insert breakpoint
 for (i=0 ; i<PTS ; i++) //filter in frequency domain
 { //i.e. complex multiply
 a = (process_ptr + i)->real; //samples by coeffs
 b = (process_ptr + i)->imag;
 (process_ptr + i)->real = coeffs[i].real*a
 - coeffs[i].imag*b;
 (process_ptr + i)->imag = -(coeffs[i].real*b
 + coeffs[i].imag*a);
 }
 printf("frequency domain result of ");
 printf("multiplying by filter response");
 printf(" in process buffer (%c) \n", proc_buffer);
 printf("\n"); //insert breakpoint
 fft(process_ptr,PTS,twiddle);
 for (i=0 ; i<PTS ; i++)
 {
 (process_ptr + i)->real /= PTS;
 (process_ptr + i)->imag /= -PTS;
 }
 printf("time domain result of processing now");
 printf(" in process buffer (%c) \n", proc_buffer);
 printf("\n"); //insert breakpoint

FIGURE 6.42. (Continued)

 Programming Examples 311

 for (i=0 ; i<PTS/2 ; i++) //read new input into buffer
 {
 (input_ptr + i)->real =
 (float)(sin(2*PI*wt*FREQLO/SAMPLING_FREQ))
 + 0.25*sin(2*PI*wt*FREQHI/SAMPLING_FREQ);
 wt++;
 }
 printf("new input samples read into input buffer ");
 printf("(%c)\n",in_buffer);
 printf("output written from first part of output buffer ");
 printf("(%c)\n",out_buffer);
 printf("\n"); //insert breakpoint here

 for (i=0 ; i<PTS/2 ; i++) //overlap add (real part only)
 {
 (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
 }
 printf("second part of output buffer (%c) ", out_buffer);
 printf("has been added to first part of process buffer ");
 printf("(%c)\n", proc_buffer);
 printf("\n"); //insert breakpoint here

 temp_ptr = process_ptr; //rotate input, output
 process_ptr = input_ptr; //and process buffers
 input_ptr = output_ptr;
 output_ptr = temp_ptr;
 temp_buffer = proc_buffer; //rotate names of buffer
 proc_buffer = in_buffer;
 in_buffer = out_buffer;
 out_buffer = temp_buffer;
 printf("buffer pointers rotated - ");
 printf("for next section of input\n");
 printf("input buffer is (%c)", in_buffer);
 printf(" process buffer is (%c)", proc_buffer);
 printf(", output buffer is (%c)\n", out_buffer);
 printf("\n");
 } // end of while(1)
} //end of main()

FIGURE 6.42. (Continued)

been written so that different FIR fi lter coeffi cient (.cof) fi les can be used simply
by changing the line that reads

 #include “ lp55f.cof ”

 Note that the maximum possible value of N (the number of fi lter coeffi cients) is
 PTS / 2 . For longer FIR fi lter impulse responses, the value of PTS will have to be
increased by changing the line that reads

 #defi ne PTS 128

312 Fast Fourier Transform

FIGURE 6.43. Code Composer window during execution of program fastconvdemo.c .

Example 6.13: Graphic Equalizer (graphicEQ)

 Figure 6.45 shows a listing of the program graphicEQ.c , which implements a three -
 band graphic equalizer. TI ’ s fl oating - point complex radix - 2 FFT and IFFT support
functions are used again in this project (see also Examples 6.5 and 6.6). The coeffi -
cient fi le graphicEQcoeff.h contains three sets of coeffi cients: lowpass at 1.3 kHz,
bandpass between 1.3 and 2.6 kHz, and highpass at 2.6 kHz, designed with MAT-
LAB ’ s function fir1 . Both the input samples and the three sets of coeffi cients are
transformed into the frequency domain. The fi ltering is performed in the frequency
domain based on the overlap - add scheme used in Examples 6.9 – 6.12 [15, 16] . Note
that an alternative arrangement to the triple buffering used in those examples has
been employed.

 An array of PTS / 2 fl oating - point values, iobuffer , is used for both input and
output. New input samples replace previously computed output samples as they are
written to the DAC. Once iobuffer has been fi lled with PTS / 2 new input samples,
these are copied to an intermediate buffer (array samples) and replaced by PTS / 2
output samples. Build this project as graphicEQ (use the optimization level - o1).
Test the project using music or wideband noise as an input.

 Programming Examples 313

//fastconv.c

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "lp55f.cof"

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define PTS 128

short buffercount = 0; //index into frames
short bufferfull=0;
COMPLEX A[PTS], B[PTS], C[PTS]; //three buffers used
COMPLEX twiddle[PTS]; //twiddle factors
COMPLEX coeffs[PTS]; //zero padded freq coeffs
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
float a,b; //used in complex multiply

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)((output_ptr + buffercount)->real));
 (input_ptr + buffercount)->real = (float)(input_left_sample());
 (input_ptr + buffercount++)->imag = 0.0;
 if (buffercount >= PTS/2)
 {
 bufferfull = 1;
 buffercount = 0;
 }
}

void main()
{
 int n,i;
 for (n=0 ; n<PTS ; n++) //set up twiddle factors
 {
 twiddle[n].real = cos(PI*n/PTS);
 twiddle[n].imag = -sin(PI*n/PTS);
 }
 for (n=0 ; n<PTS ; n++) //set up freq domain coeffs
 {
 coeffs[n].real = 0.0;
 coeffs[n].imag = 0.0;
 }
 for (n=0 ; n<N ; n++)
 {
 coeffs[n].real = h[n];

 FIGURE 6.44. Real - time frame - based FIR program using fast convolution (fastconv.c).

314 Fast Fourier Transform

 }
 fft(coeffs,PTS,twiddle); //transform filter coeffs
 //to freq domain
 input_ptr = A; //initialise frame pointers
 process_ptr = B;
 output_ptr = C;
 comm_intr();
 while(1) //frame processing loop
 {
 while (bufferfull == 0); //wait for buffer full
 bufferfull = 0;
 temp_ptr = process_ptr;
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;

 for (i=0 ; i< PTS ; i++) (process_ptr + i)->imag = 0.0;
 for (i=PTS/2 ; i< PTS ; i++) (process_ptr + i)->real = 0.0;
 fft(process_ptr,PTS,twiddle); //transform samples
 //into frequency domain
 for (i=0 ; i<PTS ; i++) //filter in frequency domain
 { //i.e. complex multiply
 a = (process_ptr + i)->real; //samples by coeffs
 b = (process_ptr + i)->imag;
 (process_ptr + i)->real = coeffs[i].real*a
 - coeffs[i].imag*b;
 (process_ptr + i)->imag = -(coeffs[i].real*b
 + coeffs[i].imag*a);
 }
 fft(process_ptr,PTS,twiddle);
 for (i=0 ; i<PTS ; i++)
 {
 (process_ptr + i)->real /= PTS;
 (process_ptr + i)->imag /= -PTS;
 }
 for (i=0 ; i<PTS/2 ; i++) //overlap add (real part only)
 {
 (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
 }
 } // end of while
} //end of main()

FIGURE 6.44. (Continued)

 Verify that the low and high frequency components are accentuated, while the
midrange frequency components are attenuated. This is because the fi lter coeffi -
cients are scaled in the program by bass_gain and treble_gain , initially set to 1,
and by mid_gain , initially set to 0. The slider fi le graphicEQ.gel allows you to
control the three frequency bands independently. Figure 6.46 shows the output
spectrum obtained with a signal analyzer using noise as input and three different
gain settings.

 Programming Examples 315

 FIGURE 6.45. Equalizer program using TI ’ s fl oating - point FFT support functions
(graphicEQ.c).

//graphicEQ.c Graphic Equalizer using TI floating-point FFT functions

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#include <math.h>
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select mic in
#include "GraphicEQcoeff.h" //time-domain FIR coefficients
#define PI 3.14159265358979
#define PTS 256 //number of points for FFT
//#define SQRT_PTS 16
#define RADIX 2
#define DELTA (2*PI)/PTS
typedef struct Complex_tag {float real,imag;} COMPLEX;
#pragma DATA_ALIGN(W,sizeof(COMPLEX))
#pragma DATA_ALIGN(samples,sizeof(COMPLEX))
#pragma DATA_ALIGN(h,sizeof(COMPLEX))
COMPLEX W[PTS/RADIX] ; //twiddle array
COMPLEX samples[PTS];
COMPLEX h[PTS];
COMPLEX bass[PTS], mid[PTS], treble[PTS];
short buffercount = 0; //buffer count for iobuffer samples
float iobuffer[PTS/2]; //primary input/output buffer
float overlap[PTS/2]; //intermediate result buffer
short i; //index variable
short flag = 0; //set to indicate iobuffer full
float a, b; //variables for complex multiply
short NUMCOEFFS = sizeof(lpcoeff)/sizeof(float);
short iTwid[PTS/2] ;
float bass_gain = 1.0; //initial gain values
float mid_gain = 0.0; //change with GraphicEQ.gel
float treble_gain = 1.0;

interrupt void c_int11(void) //ISR
{
 output_left_sample((short)(iobuffer[buffercount]));
 iobuffer[buffercount++] = (float)((short)input_left_sample());
 if (buffercount >= PTS/2) //for overlap-add method iobuffer
 { //is half size of FFT used
 buffercount = 0;
 flag = 1;
 }
}

main()
{
 digitrev_index(iTwid, PTS/RADIX, RADIX);
 for(i = 0; i < PTS/RADIX; i++)
 {
 W[i].real = cos(DELTA*i);
 W[i].imag = sin(DELTA*i);
 }
 bitrev(W, iTwid, PTS/RADIX); //bit reverse W

 for (i=0 ; i<PTS ; i++)
 {
 bass[i].real = 0.0;

316 Fast Fourier Transform

 bass[i].imag = 0.0;
 mid[i].real = 0.0;
 mid[i].imag = 0.0;
 treble[i].real = 0.0;
 treble[i].imag = 0.0;
 }
 for (i=0; i<NUMCOEFFS; i++) //same # of coeff for each filter
 {
 bass[i].real = lpcoeff[i]; //lowpass coeff
 mid[i].real = bpcoeff[i]; //bandpass coeff
 treble[i].real = hpcoeff[i]; //highpass coef
 }

 cfftr2_dit(bass,W,PTS); //transform each band
 cfftr2_dit(mid,W,PTS); //into frequency domain
 cfftr2_dit(treble,W,PTS);

 comm_intr(); //initialise DSK, codec, McBSP
 while(1) //frame processing infinite loop
 {
 while (flag == 0); //wait for iobuffer full
 flag = 0;
 for (i=0 ; i<PTS/2 ; i++) //iobuffer into samples buffer
 {
 samples[i].real = iobuffer[i];
 iobuffer[i] = overlap[i]; //previously processed output
 } //to iobuffer
 for (i=0 ; i<PTS/2 ; i++)
 { //upper-half samples to overlap
 overlap[i] = samples[i+PTS/2].real;
 samples[i+PTS/2].real = 0.0; //zero-pad input from iobuffer
 }
 for (i=0 ; i<PTS ; i++)
 samples[i].imag = 0.0; //init samples buffer

 cfftr2_dit(samples,W,PTS);

 for (i=0 ; i<PTS ; i++) //construct freq domain filter
 { //sum of bass,mid,treble coeffs
 h[i].real = bass[i].real*bass_gain + mid[i].real*mid_gain
 + treble[i].real*treble_gain;
 h[i].imag = bass[i].imag*bass_gain + mid[i].imag*mid_gain
 + treble[i].imag*treble_gain;
 }
 for (i=0; i<PTS; i++) //frequency-domain representation
 { //complex multiply samples by h
 a = samples[i].real;
 b = samples[i].imag;
 samples[i].real = h[i].real*a - h[i].imag*b;
 samples[i].imag = h[i].real*b + h[i].imag*a;
 }

 icfftr2_dif(samples,W,PTS);

 for (i=0 ; i<PTS ; i++)
 samples[i].real /= PTS;
 for (i=0 ; i<PTS/2 ; i++) //add 1st half to overlap
 overlap[i] += samples[i].real;
 } //end of infinite loop
} //end of main()

FIGURE 6.45. (Continued)

 Programming Examples 317

 FIGURE 6.46. Output spectrum of a graphic equalizer obtained with a signal analyzer:
(a) bass_gain = treble_gain = 1, mid_gain = 0; (b) bass_gain = treble_gain = 0,
 mid_gain = 1; (c) bass_gain = mid_gain = 1, treble_gain = 0.

(a)

(b)

(c)

318 Fast Fourier Transform

REFERENCES

 1. J. W. Cooley and J. W. Tukey , An algorithm for the machine calculation of complex
Fourier series , Mathematics of Computation , Vol. 19 , pp. 297 – 301 , 1965 .

 2. J. W. Cooley , How the FFT gained acceptance , IEEE Signal Processing , pp. 10 – 13 , Jan.
 1992 .

 3. J. W. Cooley , The structure of FFT and convolution algorithms, from a tutorial ,
IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing , Apr.
 1990 .

 4. C. S. Burrus and T. W. Parks , DFT/FFT and Convolution Algorithms: Theory and Imple-
mentation , Wiley , Hoboken, NJ , 1988 .

 5. G. D. Bergland , A guided tour of the fast Fourier transform , IEEE Spectrum , Vol. 6 ,
pp. 41 – 51 , 1969 .

 6. E. O. Brigham , The Fast Fourier Transform , Prentice Hall , Upper Saddle River, NJ ,
 1974 .

 7. S. Winograd , On computing the discrete Fourier transform , Mathematics of Computa-
tion , Vol. 32 , pp. 175 – 199 , 1978 .

 8. H. F. Silverman , An introduction to programming the Winograd Fourier transform
algorithm (WFTA) , IEEE Transactions on Acoustics, Speech, and Signal Processing ,
Vol. ASSP - 25 , pp. 152 – 165 , Apr. 1977 .

 9. P. E. Papamichalis , Ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations, Vol. 3 , Texas Instruments , Dallas, TX , 1990 .

 10. R. N. Bracewell , Assessing the Hartley transform , IEEE Transactions on Acoustics,
Speech, and Signal Processing , Vol. ASSP - 38 , pp. 2174 – 2176 , 1990 .

 11. R. N. Bracewell , The Hartley Transform , Oxford University Press , New York , 1986 .

 12. H. V. Sorensen , D. L. Jones , M. T. Heidman , and C. S. Burrus , Real - valued fast Fourier
transform algorithms , IEEE Transactions on Acoustics, Speech, and Signal Processing ,
Vol. ASSP - 35 , pp. 849 – 863 , 1987 .

 13. R. Chassaing , Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK , Wiley , Hoboken, NJ , 1999 .

 14. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken, NJ ,
 1992 .

 15. A. V. Oppenheim and R. Schafer , Discrete - Time Signal Processing , Prentice Hall , Upper
Saddle River, NJ , 1989 .

 16. J. G. Proakis and D. G. Manolakis , Digital Signal Processing: Principles, Algorithms and
Applications , Prentice Hall , Upper Saddle River, NJ , 2002 .

Adaptive Filters

319

 • Adaptive structures
 • The linear adaptive combiner
 • The least mean squares (LMS) algorithm
 • Programming examples for noise cancellation and system identifi cation using

C code

 Adaptive fi lters are best used in cases where signal conditions or system parameters
are slowly changing and the fi lter is to be adjusted to compensate for this change.
A very simple but powerful fi lter is called the linear adaptive combiner , which is
nothing more than an adjustable FIR fi lter. The LMS criterion is a search algorithm
that can be used to provide the strategy for adjusting the fi lter coeffi cients. Program-
ming examples are included to give a basic intuitive understanding of adaptive
fi lters.

7.1 INTRODUCTION

 In conventional FIR and IIR digital fi lters, it is assumed that the process parameters
to determine the fi lter characteristics are known. They may vary with time, but
the nature of the variation is assumed to be known. In many practical problems,
there may be a large uncertainty in some parameters because of inadequate prior
test data about the process. Some parameters might be expected to change with
time, but the exact nature of the change is not predictable. In such cases it is highly

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

7

320 Adaptive Filters

desirable to design the fi lter to be self - learning so that it can adapt itself to the situ-
ation at hand.

 The coeffi cients of an adaptive fi lter are adjusted to compensate for changes in
input signal, output signal, or system parameters. Instead of being rigid, an adaptive
system can learn the signal characteristics and track slow changes. An adaptive fi lter
can be very useful when there is uncertainty about the characteristics of a signal or
when these characteristics change.

 Conceptually, the adaptive scheme is fairly simple. Most of the adaptive schemes
can be described by the structure shown in Figure 7.1 . This is a basic adaptive fi lter
structure in which the adaptive fi lter ’ s output y is compared with a desired signal d
to yield an error signal e , which is fed back to the adaptive fi lter. The error signal is
input to the adaptive algorithm, which adjusts the variable fi lter to satisfy some
predetermined criteria or rules. The desired signal is usually the most diffi cult one
to obtain. One of the fi rst questions that probably comes to mind is: Why are we
trying to generate the desired signal at y if we already know it? Surprisingly, in
many applications the desired signal does exist somewhere in the system or is
known a priori . The challenge in applying adaptive techniques is to fi gure out
where to get the desired signal, what to make the output y , and what to make the
error e .

 The coeffi cients of the adaptive fi lter are adjusted, or optimized, using an LMS
algorithm based on the error signal. Here we discuss only the LMS searching algo-
rithm with a linear combiner (FIR fi lter), although there are several strategies for
performing adaptive fi ltering. The output of the adaptive fi lter in Figure 7.1 is

 y n w n x n kk
k

N

() () ()= −
=

−

∑
0

1

 (7.1)

where w k (n) represent N weights or coeffi cients for a specifi c time n . The convolu-
tion equation (7.1) was implemented in Chapter 4 in conjunction with FIR fi ltering.
It is common practice to use the terminology of weights w for the coeffi cients associ-
ated with topics in adaptive fi ltering and neural networks.

 A performance measure is needed to determine how good the fi lter is. This
measure is based on the error signal,

 e n d n y n() () ()= − (7.2)

 FIGURE 7.1. Basic adaptive fi lter structure.

which is the difference between the desired signal d (n) and the adaptive fi lter ’ s
output y (n). The weights or coeffi cients w k (n) are adjusted such that a mean squared
error function is minimized. This mean squared error function is E [e 2 (n)], where E
represents the expected value. Since there are k weights or coeffi cients, a gradient
of the mean squared error function is required. An estimate can be found instead
using the gradient of e 2 (n), yielding

 w n w n e n x n k k Nk k() () () () , , . . . ,+ = + − = −1 2 0 1 1β (7.3)

which represents the LMS algorithm [1 – 3] . Equation (7.3) provides a simple but
powerful and effi cient means of updating the weights, or coeffi cients, without the
need for averaging or differentiating, and will be used for implementing adaptive
fi lters. The input to the adaptive fi lter is x (n), and the rate of convergence and accu-
racy of the adaptation process (adaptive step size) is b .

 For each specifi c time n , each coeffi cient, or weight, w k (n) is updated or replaced
by a new coeffi cient, based on (7.3) , unless the error signal e (n) is zero. After the
fi lter ’ s output y (n), the error signal e (n) and each of the coeffi cients w k (n) are
updated for a specifi c time n , a new sample is acquired (from an ADC) and the
adaptation process is repeated for a different time. Note that from (7.3) , the weights
are not updated when e (n) becomes zero.

 The linear adaptive combiner is one of the most useful adaptive fi lter structures
and is an adjustable FIR fi lter. Whereas the coeffi cients of the frequency - selective
FIR fi lter discussed in Chapter 4 are fi xed, the coeffi cients, or weights, of the adap-
tive FIR fi lter can be adjusted based on a changing environment such as an input
signal. Adaptive IIR fi lters (not discussed here) can also be used. A major problem
with an adaptive IIR fi lter is that its poles may be updated during the adaptation
process to values outside the unit circle, making the fi lter unstable.

 The programming examples developed later will make use of equations (7.1) –
 (7.3) . In (7.3) we simply use the variable b in lieu of 2 b .

 7.2 ADAPTIVE STRUCTURES

 A number of adaptive structures have been used for different applications in adap-
tive fi ltering.

 1. For noise cancellation . Figure 7.2 shows the adaptive structure in Figure 7.1
modifi ed for a noise cancellation application. The desired signal d is corrupted
by uncorrelated additive noise n . The input to the adaptive fi lter is a noise n ′
that is correlated with the noise n . The noise n ′ could come from the same
source as n but modifi ed by the environment. The adaptive fi lter ’ s output y is
adapted to the noise n . When this happens, the error signal approaches the
desired signal d . The overall output is this error signal and not the adaptive
fi lter ’ s output y . If d is uncorrelated with n , the strategy is to minimize E (e 2),

 Adaptive Structures 321

322 Adaptive Filters

 FIGURE 7.2. Adaptive fi lter structure for noise cancellation.

where E () is the expected value. The expected value is generally unknown;
therefore, it is usually approximated with a running average or with the instan-
taneous function itself. Its signal component, E (d 2), will be unaffected and only
its noise component E [(n − y) 2] will be minimized. A more complete discussion
is found in Widrow and Stearns [1] . This structure will be further illustrated
with programming examples using C code.

 2. For system identifi cation . Figure 7.3 shows an adaptive fi lter structure that can
be used for system identifi cation or modeling. The same input is to an unknown
system in parallel with an adaptive fi lter. The error signal e is the difference
between the response of the unknown system d and the response of the adap-
tive fi lter y . This error signal is fed back to the adaptive fi lter and is used to
update the adaptive fi lter ’ s coeffi cients until the overall output y = d . When
this happens, the adaptation process is fi nished, and e approaches zero. If the
unknown system is linear and not time varying, then after the adaptation is
complete, the fi lter ’ s characteristics no longer change. In this scheme, the adap-
tive fi lter models the unknown system. This structure is illustrated later with
three programming examples.

 3. Adaptive predictor . Figure 7.4 shows an adaptive predictor structure that can
provide an estimate of an input. This structure is illustrated later with a pro-
gramming example.

 4. Additional structures have been implemented, such as:

 (a) Notch with two weights , which can be used to notch or cancel/reduce a
sinusoidal noise signal. This structure has only two weights or coeffi cients.
It is shown in Figure 7.5 and is illustrated in Refs. 1 , 3 , and 4 .

 FIGURE 7.3. Adaptive fi lter structure for system identifi cation.

 (b) Adaptive channel equalization , used in a modem to reduce channel distor-
tion resulting from the high speed of data transmission over telephone
channels.

 The LMS is well suited for a number of applications, including adaptive echo and
noise cancellation, equalization, and prediction.

 Other variants of the LMS algorithm have been employed, such as the sign – error
LMS, the sign – data LMS, and the sign – sign LMS.

 1. For the sign – error LMS algorithm, (7.3) becomes

 w n w n e n x n kk k() () sgn[()] ()+ = + −1 β (7.4)

where sgn is the signum function,

 sgn u
u

u
() =

− <{ 1 0

1 0

if

if

�
 (7.5)

 2. For the sign – data LMS algorithm, (7.3) becomes

 w n w n e n x n kk k() () ()sgn[()]+ = + −1 β (7.6)

 FIGURE 7.4. Adaptive predictor structure.

 FIGURE 7.5. Adaptive notch structure with two weights.

 Adaptive Structures 323

324 Adaptive Filters

 3. For the sign – sign LMS algorithm, (7.3) becomes

 w n w n e n x n kk k() () sgn[()]sgn ()+ = + −[]1 β (7.7)

which reduces to

 w n
w n e n x n k

w n
k

k

k

()
() sgn[()] sgn[()]

()
+ =

+ = −
−{1

β
β

if

otherwise
 (7.8)

which is more concise from a mathematical viewpoint because no multiplica-
tion operation is required for this algorithm.

 The implementation of these variants does not exploit the pipeline features of
the TMS320C6x processor. The execution speed on the TMS320C6x for these vari-
ants can be slower than for the basic LMS algorithm due to additional decision - type
instructions required for testing conditions involving the sign of the error signal or
the data sample.

 The LMS algorithm has been quite useful in adaptive equalizers, telephone can-
celers, and so forth. Other methods, such as the recursive least squares (RLS) algo-
rithm [4] , can offer faster convergence than the basic LMS but at the expense of
more computations. The RLS is based on starting with the optimal solution and then
using each input sample to update the impulse response in order to maintain that
optimality. The right step size and direction are defi ned over each time sample.

 Adaptive algorithms for restoring signal properties become useful when an
appropriate reference signal is not available. The fi lter is adapted in such a way as
to restore some property of the signal lost before reaching the adaptive fi lter.
Instead of the desired waveform as a template, as in the LMS or RLS algorithms,
this property is used for the adaptation of the fi lter. When the desired signal is avail-
able, a conventional approach such as the LMS can be used; otherwise, a priori
knowledge about the signal is used.

 7.3 ADAPTIVE LINEAR COMBINER

 We will consider one of the most useful adaptive fi lter structures — the linear adap-
tive combiner. Two cases occur when using the linear combiner: (1) multiple inputs
and (2) a single input.

 Multiple Inputs
 The case of multiple inputs is described in Figure 7.6 . The confi guration consists of
 K independent input signals, each of which is weighted by w (k) and combined to
form the output,

 y n w k n x k n
k

K

() (,) (,)=
=

∑
0

 (7.9)

 The input can be represented as a (K + 1) - dimensional vector,

 X n x n x n x K n() = ⋅ ⋅ ⋅[(,) (,) (,)]0 1 T (7.10)

where n is the time index and the transpose T is used so that the vector can be
written on one line.

 Single Input
 In the case of a single input, the structure reduces to a (K + 1) - tap FIR fi lter with
adjustable coeffi cients as shown in Figure 7.7 . Each delayed input is weighted and
summed to produce the output,

 y n w k n x n k
k

K

() (,) ()= −
=

∑
0

 (7.11)

x (0) w (0,n)

x (1) w (1,n) y (n)

x (K) w (K,n)

+

 FIGURE 7.6. Linear combiner with multiple inputs.

x (n)

y (n)

x (n – 1) x (n – 2) x (n – K)

w (0, n) w (1, n) w (1, n) w (K, n)

Z
–1 Z

–1 Z
–1

+

 FIGURE 7.7. Adaptive linear combiner with single input.

 Adaptive Linear Combiner 325

326 Adaptive Filters

x (n)

y (n)

x (n – 1)
Z

–1

w (0) w (1)

+

 The single input and the weights can also be written as vectors,

 X() [() () ()]n x n x n x n K= − ⋅ ⋅ ⋅ −1 T (7.12)

 W() [(,) (,) (,) (,)]n w n w n w n w K n= ⋅ ⋅ ⋅0 1 2 T (7.13)

where n is the time index, which will frequently be dropped from the notation for
both w and x .

 Using the vector notation, (7.11) is cast as

 y n n n n n() () () () ()= =X W W XT T (7.14)

 Equations (7.9) , (7.11) , and (7.14) , as well as Figures 7.6 and 7.7 , all contain the same
information. To become more familiar with the notation, let us examine a fi lter with
two weights and a single input.

 Exercise 7.1: Two Weights

 Verify that equations (7.11) and (7.14) and Figure 7.8 give the same y for a two -
 weight fi lter.

 Solution
 For K = 1, equation (7.11) reduces to

 y n w k n x n k w n x n w n x n
k

() (,) () (,) () (,) ()= − = + −
=

∑
0

1

0 1 1

 FIGURE 7.8. Two - weight linear combiner.

or with the time index n implied on the weights,

 y n w x n w x n() () () () ()= + −0 1 1

 The equation above can also be obtained using (7.14) ,

 y n x n x n
w

w
w w

x n

x n
() [() ()]

()

()
[() ()]

()

()
= −

=
−

1
0

1
0 1

1

which reduces to

 y n x n w x n w() () () () ()= + −0 1 1

which can also be obtained by summing the signals at the node of the two - weight
diagram shown in Figure 7.8 .

 As can be seen in Figure 7.8 , the linear combiner with a single input is just an
FIR fi lter with adjustable coeffi cients. Although this is a very simple confi guration,
it can handle many of the adaptive applications.

 7.4 PERFORMANCE FUNCTION

 In the preceding section we provided a structure for the fi lter whose characteristics
may be changed by adjusting the weights. However, we still need a way to judge
how well the fi lter is operating — a performance measure is needed. The perfor-
mance function will be based on the error, which is obtained from the block diagram
in Figure 7.1 , with the time index incorporated:

 e n d n y n() () ()= − (7.15)

 The square of this function is

 e n d n d n y n y n2 2 2() () () () ()= − + 2 (7.16)

which is the instantaneous squared - error function. In terms of the weights, it
becomes

 e n d n d n n n n2 2 2() () () () () ()= − +X W W X X WT T T (7.17)

where the time index on the W has been dropped. Equation (7.17) represents a
quadratic surface in W , which means that the highest power of the weights is the
squared power. The strategy will be to adjust the weights so that the squared - error
function will be a minimum.

 Performance Function 327

328 Adaptive Filters

 To understand the performance surface equation (7.17) , consider the case of one
weight. The error surface then becomes

 e n d n d n x n w x n w2 2 2 22 0 0() () () () () () ()= − + (7.18)

which is a second order function in w (0). To fi nd the minimum, set the derivative of
 (7.18) with respect to w (0) equal to zero, or

de n
dw

d n x n x n w
2

2

0
2 2 0 0

()
()

() () () ()= − + = (7.19)

resulting in

 w
d n
x n

()
()
()

0 = (7.20)

which is the value of w (0) that yields the desired minimum.
 Since the signals d and x are functions of time, the minimum and the performance

surface also fl uctuate with the signals. This is not desirable; we would feel more
comfortable with a rigid performance function. To eliminate this problem, we
can take the expected value of the squared - error function, which for one weight
becomes

 E e n E d n E d n x n w E x n w[()] [()] [() ()] () [()] ()2 2 2 22 0 0= − + (7.21)

 This performance function is called the mean - squared error .
 Note that the expected value of any sum is the sum of the expected values. The

expected value of a product is the product of the expected values only if the variables
are statistically independent. The signals d (n) and x (n) are generally not statistically
independent. If the signals d and x are statistically time invariant, the expected values
of the signal products of d and x are constants, and (7.21) is rewritten

 E e n A Bw Cw[()] () ()2 22 0 0= − + (7.22)

where A , B , and C are constants.
 Using (7.21) as the performance function for one weight results in a fi xed

minimum point on a rigid performance function,

 w B C() /0 = (7.23)

 A plot of the one - dimensional error function with respect to w (0) is shown
in Figure 7.9 . This is a simple second order curve in two dimensions (E [e 2],

 w (0)) with a single minimum at w (0) = B / C . If we examine two weights, a three -
dimensional second order surface that resembles a bowl will result. With more
weights, a higher - dimensional second order surface will result that cannot be visu-
alized by humans. In practice, the weights (the weight in this case) will start at
some initial value w i and are adjusted in increments toward the minimum value
of the performance function. The procedure for adjusting the weights is a subject
of the next section.

 Taking the mean of the general squared - error function, (7.17) , results in a general
mean squared error performance function:

 E e n E d n E d n n E n n[()] [()] [() ()] [() ()]2 2 2= − +X W W X X WT T T (7.24)

 Again note that the mean value of any sum is the sum of the mean values. The
product values of d and X and X with X T cannot be further reduced since the mean
value of a product is the product of mean values only when the two variables are
statistically independent; d and X are generally not independent. This is still the
same second order performance surface as before, but now it is not fl uctuating with
 d and X but is rigid. However, if d and X are statistically time varying, the error
surface will wiggle as the statistics of d and X change.

 7.5 SEARCHING FOR THE MINIMUM

 In this section we deal with how the weights should be adjusted to fi nd the minimum
in a reasonably effi cient fashion. Of course, the weights could be adjusted ran-
domly, but life is too short. Since we will be dealing with real - time events and
changes that must be tracked, we need a relatively fast way of reaching the
minimum.

 Consider the one - weight system again to get an idea of how this search can be
conducted. Initially, the weight will equal some arbitrary value w (0, n), and it will

B/C w (0)0

min

E [e

2 (n)]

 FIGURE 7.9. One - weight performance curve.

 Searching for the Minimum 329

330 Adaptive Filters

w (0)

w (0, n)

w (0, n + 1)

wmin (0)0

E [e

2 (n)]
Negative

slope

Positive
slope

 FIGURE 7.10. Minimum search on one weight.

be adjusted in a stepwise fashion until the minimum is reached (Figure 7.10), The
size and direction of the step are the two things that must be chosen when making
a step. Each step will consist of adding an increment to w (0, n). Note that if the
current value of w (0, n) is to the right of the minimum, the step must be negative
(but the derivative of the curve is positive); similarly, if the current value is to the
left of the minimum, the increment must be positive (but the derivative is negative).
This observation leads to the conclusion that the negation of the derivative indicates
the proper direction of the increment. Since the derivative vanishes at the minimum,
it can also be used to adjust the step size. With these observations we conclude that
the step size and direction can be made proportional to the negative of the deriva-
tive and the iteration for the weights can be expressed as

 w n w n
dE e
dw

(,) (,)
[]
()

0 1 0
0

2

+ = − β (7.25)

where b is an arbitrary positive constant. As shown in Figure 7.10 , repeated applica-
tion of (7.25) will cause w (0) to move by steps from its initial value until it reaches
the minimum.

 The derivative of the function used in the one - dimensional search can be extended
to an N - dimensional surface by replacing it with the gradient of the function. The
gradient is a vector of fi rst derivatives with respect to each of the weights:

 grad{ } grad
T

E e P
P

w
P

w
P

w K
[] { }

() () ()
2

0 1
= =

∂
∂

∂
∂

⋅ ⋅ ⋅
∂

∂

 (7.26)

 The gradient points in the direction in which the function, in this case P , increases
most rapidly. Therefore, the step size and direction can be made proportional to the
gradient of the performance function.

 Similarly, the minimum of the N - dimensional performance curve occurs when
the gradient vanishes,

 grad{ }P = 0 (7.27)

or when the partial derivative with respect to each weight vanishes,

∂

∂
=

∂
∂

= ⋅ ⋅ ⋅
∂

∂
=

P
w

P
w

P
w K()

,
()

, ,
()0

0
1

0 0 (7.28)

 Replacing the single weight with a vector of weights and the derivative with the
gradient in (7.25) gives the multiple weight iteration rule,

 W W() () { }n n P+ = −1 β grad (7.29)

 The only issue left to resolve is how to fi nd grad{ P }. To get a simple yet practical
way to fi nd grad{ P }, we will use an estimate for it rather than the exact gradient.
Instead of using the gradient of the expected squared error, we will approximate it
with the grad{ e 2 }:

 grad grad{ } { }P e� 2 (7.30)

 To get a workable expression, let us perform the gradient operation on the squared -
 error function,

 grad grad{ } { }e e e2 2= (7.31)

where

 e n d n n n() [() () ()]= − X WT (7.32)

 Substitution yields

 grad grad T{ } [() () ()]e e d n n n2 2= − X W (7.33)

 Expanding the gradient term gives

 grad{ }

()

()

()

e e

e
w

e
w

e
w K

2 2

0

1 2=

∂
∂

∂
∂

∂
∂

= −
�

ee

x

x

x K

()

()

()

0

1

�

 (7.34)

 Searching for the Minimum 331

332 Adaptive Filters

and

 grad{ ()} () ()e n e n n2 2= − X (7.35)

 Substituting this result for grad{ P } in equation (7.29) results in

 W W X() () () ()n n e n n+ = +1 2β (7.36)

 The time index n has been included in the last two equations, implying that e will
be updated every sample time. Note that if e goes to zero, then W (n + 1) = W (n)
and the weights remain constant.

 Equation (7.36) forms the single most important result of this chapter, and it is
the basis for the LMS algorithm. This equation allows the weights to be updated
without squaring, averaging, or differentiating, yet it is powerful and effi cient. This
equation, as in (7.3) , will be used in the following examples.

 7.6 PROGRAMMING EXAMPLES FOR NOISE CANCELLATION AND
SYSTEM IDENTIFICATION

 The following programming examples illustrate adaptive fi ltering using the LMS
algorithm.

 Example 7.1: Adaptive Filter Using C Code (adaptc)

 This example applies the LMS algorithm using a C - coded program. It illustrates the
following steps for the adaptation process using the adaptive structure shown in
Figure 7.1 :

 1. Obtain new samples of the desired signal d and the reference input to the
adaptive fi lter x , which represents a noise signal.

 2. Calculate the adaptive FIR fi lter ’ s output y , applying (7.1) as in Chapter 4 with
an FIR fi lter. In the structure of Figure 7.1 , the overall output is the same as
the adaptive fi lter ’ s output y .

 3. Calculate the error signal applying (7.2) .

 4. Update/replace each coeffi cient or weight applying (7.3) .

 5. Update the input data samples for the next time n with the data move
scheme used in Chapter 4 . Such a scheme moves the data instead of a
pointer.

 6. Repeat the entire adaptive process for the next output sample point.

 Programming Examples for Noise Cancellation and System Identifi cation 333

 Figure 7.11 shows a listing of the program adaptc.c , which implements the
LMS algorithm for the adaptive fi lter structure in Figure 7.1 . A desired signal is
chosen as 2cos(2 n π f / Fs), and a reference noise input to the adaptive fi lter is chosen
as sin(2 n π f / Fs), where f is 1 kHz and Fs = 8 kHz.The adaptation rate, fi lter order,
and number of samples are 0.01, 21, and 60, respectively.

 The overall output is the adaptive fi lter ’ s output y , which adapts or converges to
the desired cosine signal d .

 FIGURE 7.11. Adaptive fi lter program(adaptc.c).

//adaptc.c - non real-time adaptation demonstration
#include <stdio.h>
#include <math.h>
#define beta 0.01 //convergence rate
#define N 21 //order of filter
#define NS 60 //number of samples
#define Fs 8000 //sampling frequency
#define pi 3.1415926
#define DESIRED 2*cos(2*pi*T*1000/Fs) //desired signal
#define NOISE sin(2*pi*T*1000/Fs) //noise signal

float desired[NS], Y_out[NS], error[NS];

void main()
{
 long I, T;
 float D, Y, E;
 float W[N+1] = {0.0};
 float X[N+1] = {0.0};

 for (T = 0; T < NS; T++) //start adaptive algorithm
 {
 X[0] = NOISE; //new noise sample
 D = DESIRED; //desired signal
 Y = 0; //filter'output set to zero
 for (I = 0; I <= N; I++)
 Y += (W[I] * X[I]); //calculate filter output
 E = D - Y; //calculate error signal
 for (I = N; I >= 0; I--)
 {
 W[I] = W[I] + (beta*E*X[I]); //update filter coefficients
 if (I != 0) X[I] = X[I-1]; //update data sample
 }
 desired[T] = D;
 Y_out[T] = Y;
 error[T] = E;
 }
 printf("done!\n");
}

334 Adaptive Filters

(a)

(b)

(c)

 FIGURE 7.12. Plots of adaptive fi lter output, desired output, and error using program
 adaptc.c .

 Build the project as adaptc . Because the program does not use any real - time
input or output, it is not necessary to add the fi les c6713dskinit.c or vectors_
intr.asm to the project.

 Figure 7.12 shows a plot of the adaptive fi lter output Y_out , desired output
 desired , and error error , plotted using CCS. The fi lter output converges to the
desired cosine signal. Change the adaptation or convergence rate beta to 0.02 and
verify a faster rate of adaptation.

 Programming Examples for Noise Cancellation and System Identifi cation 335

Example 7.2: Adaptive Filter for Sinusoidal Noise Cancellation
(adaptnoise)

 This example illustrates the application of the LMS criterion to cancel an undesir-
able sinusoidal noise. Figure 7.13 shows a listing of the program adaptnoise.c ,
which implements an adaptive FIR fi lter using the structure in Figure 7.2 .

 A desired sine wave of 1500 Hz with an additive (undesired) sine wave noise of
312 Hz forms one of two inputs to the adaptive fi lter structure. A reference (tem-
plate) cosine signal, with a frequency of 312 Hz, is the input to a 30 - coeffi cient
adaptive FIR fi lter. The 312 - Hz reference cosine signal is correlated with the 312 - Hz
additive sine noise but not with the 1500 - Hz desired sine signal.

 At each sampling instant, the output of the adaptive FIR fi lter is calculated and
the 30 weights or coeffi cients are updated along with the delay samples. The error
signal E is the overall desired output of the adaptive structure. This error signal is
the difference between the desired signal and additive noise (dplusn) and the
adaptive fi lter output, yn .

 All signals used are from a lookup table generated using MATLAB. No exter-
nal inputs are used in this example. Figure 7.14 shows the MATLAB m - fi le
adaptnoise.m (a more complete version is on the CD) used to calculate the
data values for the desired sine signal of 1500 Hz, the additive noise as a sine of
312 Hz, and the reference signal as a cosine of 312 Hz.The fi les generated are:

1. dplusn.h: sine(1500 Hz) + sine(312 Hz)

2. refnoise.h: cosine(312 Hz)

 Figure 7.15 shows the fi le dplusn.h with data values that represent the desired
1500 - Hz sine wave signal plus additive noise. The constant beta determines the
rate of convergence.

 Build and run this project as adaptnoise . Verify the following output result:
The undesired 312 - Hz sinusoidal signal is being gradually reduced (canceled), while
the desired 1500 - Hz signal remains. Note that in this application the output desired
is the error signal E , which adapts (converges) to the desired signal. A faster rate of
cancellation can be observed with a larger value of beta . However, if beta is too
large, the adaptation may become unstable. A GEL slider (adaptnoise.gel) is
provided that allows either the error signal or the 1500 - Hz sine wave with additive
noise signal to be output.

Example 7.3: Adaptive FIR Filter for Noise Cancellation
Using External Inputs (adaptnoise_2IN)

 This example extends the previous one to cancel undesired sinusoidal noise using
external inputs. Figure 7.16 shows the source program adaptnoise_2IN.c that

336 Adaptive Filters

 FIGURE 7.13. Adaptive FIR fi lter program for sinusoidal noise cancellation
(adaptnoise.c).

//adaptnoise.c Adaptive FIR filter for noise cancellation

#include "DSK6713_AIC23.h"
Uint32 fs= DSK6713_AIC23_FREQ_8KHZ;
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "refnoise.h" //cosine 312 Hz
#include "dplusn.h" //sin(1500) + sin(312)
#define beta 1E-9 //rate of convergence
#define N 30 //# of weights (coefficients)
#define NS 128 //# of output sample points
float w[N]; //buffer weights of adapt filter
float delay[N]; //input buffer to adapt filter
short output; //overall output
short out_type = 1; //output type for slider

interrupt void c_int11() //ISR
{
 short i;
 static short buffercount=0; //init count of # out samples
 float yn, E; //output filter/"error" signal

 delay[0] = refnoise[buffercount]; //cos(312Hz) input to adapt FIR
 yn = 0; //init output of adapt filter
 for (i = 0; i < N; i++) //to calculate out of adapt FIR
 yn += (w[i] * delay[i]); //output of adaptive filter

 E = dplusn[buffercount] - yn; //"error" signal=(d+n)-yn

 for (i = N-1; i >= 0; i--) //to update weights and delays
 {
 w[i] = w[i] + beta*E*delay[i]; //update weights
 delay[i] = delay[i-1]; //update delay samples
 }
 buffercount++; //increment buffer count
 if (buffercount >= NS) //if buffercount=# out samples
 buffercount = 0; //reinit count

 if (out_type == 1) //if slider in position 1

 output = ((short)E*10); //"error" signal overall output
 else if (out_type == 2) //if slider in position 2
 output=dplusn[buffercount]*10; //desired(1500)+noise(312)
 output_left_sample(output); //overall output result
 return; //return from ISR
}

void main()
{
 short T=0;
 for (T = 0; T < 30; T++)
 {
 w[T] = 0; //init buffer for weights
 delay[T] = 0; //init buffer for delay samples
 }
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 Programming Examples for Noise Cancellation and System Identifi cation 337

%adaptnoise.m Generates: dplusn.h (s312+s1500), refnoise.h
cos(312),and sin1500.h

for i=1:128
 desired(i) = round(100*sin(2*pi*(i-1)*1500/8000)); %sin(1500)
 addnoise(i) = round(100*sin(2*pi*(i-1)*312/8000)); %sin(312)
 refnoise(i) = round(100*cos(2*pi*(i-1)*312/8000)); %cos(312)
end
dplusn = addnoise + desired;
%sin(312)+sin(1500)

fid=fopen('dplusn.h','w');
%desired + noise
fprintf(fid,'short dplusn[128]={');
fprintf(fid,'%d, ' ,dplusn(1:127));
fprintf(fid,'%d' ,dplusn(128));
fprintf(fid,'};\n');
fclose(fid);

fid=fopen('refnoise.h','w');
 %reference noise
fprintf(fid,'short refnoise[128]={');
fprintf(fid,'%d, ' ,refnoise(1:127));
fprintf(fid,'%d' ,refnoise(128));
fprintf(fid,'};\n');
fclose(fid);

fid=fopen('sin1500.h','w');
 %desired sin(1500)
fprintf(fid,'short sin1500[128]={');
fprintf(fid,'%d, ' ,desired(1:127));
fprintf(fid,'%d' ,desired(128));
fprintf(fid,'};\n');
fclose(fid);

 FIGURE 7.14. MATLAB m - fi le used to generate data values for sine(1500 Hz), sine(1500 Hz)
 + sine(312 Hz), and cosine(312 Hz) (adaptnoise.m).

short dplusn[128]={0, 116, 118, 29, -17, 56, 170, 191, 93, -11,
-7, 81, 120, 34, -100, -143, -70, 7, -24, -138, -198, -129, -7,
32, -39, -108, -62, 71, 155, 111, 17, 5, 100, 189, 160, 37, -43,
-3, 82, 79, -37, -150, -147, -52, 2, -62, -167, -179, -72, 39,
40, -45, -82, 3, 133, 171, 92, 7, 29, 133, 184, 107, -22, -65,
3, 70, 26, -103, -182, -131, -28, -7, -93, -174, -137, -7, 78,
40, -45, -43, 68, 176, 166, 62, -1, 54, 150, 154, 41, -74, -77,
8, 47, -34, -157, -188, -100, -6, -19, -115, -159, -75, 57, 103,
34, -36, 4, 127, 197, 138, 26, -4, 74, 147, 104, -29, -115, -77,
11, 15, -90, -190, -171, -58, 14, -33, -122, -121};

 FIGURE 7.15. MATLAB header fi le generated for sine(1500 Hz) + sine(312 Hz) with 128
points (dplusn.h).

338 Adaptive Filters

 FIGURE 7.16. Adaptive fi lter program for noise cancellation using external inputs
(adaptnoise_2IN.c).

//adaptnoise_2IN.c Adaptive FIR for sinusoidal noise interference

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#define beta 1E-12 //rate of convergence
#define N 30 //# of weights (coefficients)
#define LEFT 0 //left channel
#define RIGHT 1 //right channel
float w[N]; //weights for adapt filter
float delay[N]; //input buffer to adapt filter
short output; //overall output
short out_type = 1; //output type for slider
volatile union{unsigned int uint; short channel[2];}AIC23_data;

interrupt void c_int11() //ISR
{
 short i;
 float yn=0, E=0, dplusn=0, desired=0, noise=0;

 AIC23_data.uint = input_sample(); //input from both channels
 desired =(AIC23_data.channel[LEFT]); //input left channel
 noise = (AIC23_data.channel[RIGHT]); //input right channel

 dplusn = desired + noise; //desired+noise
 delay[0] = noise; //noise as input to adapt FIR

 for (i = 0; i < N; i++) //calculate out of adapt FIR
 yn += (w[i] * delay[i]); //output of adaptive filter
 E = (desired + noise) - yn; //"error" signal=(d+n)-yn
 for (i = N-1; i >= 0; i--) //to update weights and delays
 {
 w[i] = w[i] + beta*E*delay[i]; //update weights
 delay[i] = delay[i-1]; //update delay samples
 }
 if(out_type == 1) //if slider in position 1
 output=((short)E); //error signal as output
 else if(out_type==2) //if slider in position 2
 output=((short)dplusn); //output (desired+noise)
 output_left_sample(output); //overall output result
 return;
}

 void main()
{
 short T=0;
 for (T = 0; T < 30; T++)
 {
 w[T] = 0; //init buffer for weights
 delay[T] = 0; //init delay sample buffer
 }
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 Programming Examples for Noise Cancellation and System Identifi cation 339

allows two external inputs: a desired signal and a sinusoidal interference. The program
uses the function input_sample() to return both left - and right - hand channels of
input as 16 - bit signed integer components of a 32 - bit structure. The desired signal is
input through the left channel and the undesired noise signal through the right
channel. A stereo 3.5 - mm jack plug to dual RCA jack plug cable and RCA to BNC
adapters are useful for implementing this example. The basic adaptive structure
shown in Figure 7.2 is applied here along with the LMS algorithm.

 Build this project as adaptnoise_2IN .

1. Desired: 1.5 kHz; undesired: 2 kHz. Input a desired sinusoidal signal (with a
frequency of 1.5 kHz) into the left channel and an undesired sinusoidal
noise signal of 2 kHz into the right channel. Run the program. Verify that the
2 - kHz noise signal is being canceled gradually. You can adjust the rate of
convergence by changing beta by a factor of 10 in the program. Load the
GEL slider program adaptnoise_2IN.gel and change the slider position
from 1 to 2.

 Verify the output as the two original sinusoidal signals at 1.5 and at 2 kHz.

2. Desired: wideband random noise; undesired: 2 kHz. Input random noise (from
a noise generator, Goldwave , etc.) as the desired wideband signal into the left
input channel and the undesired 2 - kHz sinusoidal noise signal into the right
input channel. Restart/run the program. Verify that the 2 - kHz sinusoidal
noise signal is being canceled gradually, with the wideband random noise
signal remaining.With the slider in position 2, observe that both the unde-
sired and desired input signals are as shown in Figure 7.17 a. Figure 7.17 b
shows only the desired wideband random noise signal after the adaptation
process.

Example 7.4: Adaptive FIR Filter for System ID of a Fixed FIR as
an Unknown System (adaptIDFIR)

 Figure 7.18 shows a listing of the program adaptIDFIR.c , which uses an adaptive
FIR fi lter to identify an unknown system. See also Examples 7.2 and 7.3 , which
implement an adaptive FIR fi lter for noise cancellation. A block diagram of the
system used in this example is shown in Figure 7.19 .

 The unknown system to be identifi ed is an FIR bandpass fi lter with 55 coeffi cients
centered at Fs /4 = 2 kHz. The coeffi cients of this fi xed FIR fi lter are read from the
fi le bp55f.cof , previously used in Example 4.5 . A 60 - coeffi cient adaptive FIR fi lter
is used to identify the fi xed (unknown) FIR bandpass fi lter.

 A pseudorandom binary noise sequence, generated within the program (see
also Examples 2.16 and 4.4), is input to both the fi xed (unknown) and the adap-
tive FIR fi lters and an error signal is formed from their outputs. The adaptation
process seeks to minimize the variance of that error signal. It is important to use
wideband noise as an input signal in order to identify the characteristics of the

340 Adaptive Filters

(a)

(b)

 FIGURE 7.17. Plots illustrating the adaptation process obtained using program adapt-
noise_2IN.c : (a) 2 - kHz undesired sinusoidal interference and desired wideband noise
signal before adaptation; and (b) cancellation of 2 - kHz interference after adaptation.

unknown system over the entire frequency range from zero to half the sampling
frequency.

 An extra memory location is used in each of the two delay sample buffers (fi xed
and adaptive FIR). These are used to update the delay samples.

 Build and run this project as adaptIDFIR . Load the GEL fi le adaptIDFIR.
gel and bring up a GEL slider by selecting GEL → Output Type . The slider can
be used to select fi r_out (the output from the fi xed (unknown) FIR fi lter),
 adaptfi r_out (the output from the adaptive FIR fi lter), or E (the error) as the

 Programming Examples for Noise Cancellation and System Identifi cation 341

//adaptIDFIR.c Adaptive FIR for system ID of an FIR

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "bp55f.cof" //fixed FIR filter coefficients
#include "noise_gen.h" //noise generation support file
#define beta 1E-12 //rate of convergence
#define WLENGTH 60 //# of coefffor adaptive FIR
float w[WLENGTH+1]; //buffer coeff for adaptive FIR
int dly_adapt[WLENGTH+1]; //adaptive FIR samples buffer
int dly_fix[N+1]; //buffer samples of fixed FIR
short out_type = 1; //output for adaptive/fixed FIR
int fb; //feedback variable
shift_reg sreg; //shift register

int prand(void) //pseudo-random sequence {-1,1}
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -8000; //scaled negative noise level
 else
 prnseq = 8000; //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb; //close feedback path
 return prnseq; //return noise sequence
}

interrupt void c_int11() //ISR
{
 int i;
 int fir_out = 0; //init output of fixed FIR
 int adaptfir_out = 0; //init output of adapt FIR
 float E; //error=diff of fixed/adapt out

 dly_fix[0] = prand(); //input noise to fixed FIR
 dly_adapt[0]=dly_fix[0]; //as well as to adaptive FIR
 for (i = N-1; i>= 0; i--)
 {
 fir_out +=(h[i]*dly_fix[i]); //fixed FIR filter output
 dly_fix[i+1] = dly_fix[i]; //update samples of fixed FIR
 }
 for (i = 0; i < WLENGTH; i++)
 adaptfir_out +=(w[i]*dly_adapt[i]); //adaptive FIR output

 FIGURE 7.18. Program to implement an adaptive FIR fi lter that models (identifi es) a fi xed
FIR fi lter (adaptIDFIR.c).

342 Adaptive Filters

 FIGURE 7.19. Block diagram representation of system identifi cation scheme implemented
by program adaptIDFIR.c .

adaptive
FIR

FIRPRBS

- +
adaptfir_out

fir_out

E

 E = fir_out - adaptfir_out; //error signal

 for (i = WLENGTH-1; i >= 0; i--)
 {
 w[i]=w[i]+(beta*E*dly_adapt[i]);//update adaptive FIR weights
 dly_adapt[i+1] = dly_adapt[i]; //update adaptive FIR samples
 }
 if (out_type == 1) //slider position for adapt FIR
 output_left_sample((short)adaptfir_out); //output adaptive FIR
 else if (out_type == 2) //slider position for fixed FIR
 output_left_sample((short)fir_out); //output fixed FIR filter
 else if (out_type == 3) //slider position for fixed FIR
 output_left_sample((short)E); //output of fixed FIR filter
 return;
}

void main()
{
 int T=0, i=0;
 for (i = 0; i < WLENGTH; i++)
 {
 w[i] = 0.0; //init coeff for adaptive FIR
 dly_adapt[i] = 0; //init buffer for adaptive FIR
 }
 for (T = 0; T < N; T++)
 dly_fix[T] = 0; //init buffer for fixed FIR
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feevack value
 comm_intr(); //init DSK, codec, McBSP
 while (1); //infinite loop
}

FIGURE 7.18. (Continued)

 Programming Examples for Noise Cancellation and System Identifi cation 343

signal written to the LINE OUT and HEADPHONE connectors. Verify that the
output of the adaptive FIR fi lter (adaptfir_out) converges to bandlimited noise
similar in frequency content to the output of the fi xed FIR fi lter (fir_out) and that
the variance of the error signal (E) gradually diminishes. Reload and run the program
in order to view the adaptation process again and to observe a different signal
(fir_out , adaptfir_out , or E) during the adaptation process.

 Edit the program to include the coeffi cient fi le bs55f.cof (in place of bp55f.
cof), which represents an FIR bandstop fi lter with 55 coeffi cients centered at 2 kHz.
The FIR bandstop fi lter represents the unknown system to be identifi ed.

 Rebuild and run the program and verify that the output of the adaptive FIR fi lter
(with the slider in position 1) is almost identical to that of the FIR bandstop fi lter
(with the slider in position 2). Increase (decrease) the value of beta by a factor of
10 to observe a faster (slower) rate of convergence. Change the number of weights
(coeffi cients) from 60 to 40 and verify a slight degradation of the identifi cation
process.

Example 7.5: Adaptive FIR for System ID of a Fixed FIR as an
Unknown System with Weights of an Adaptive Filter
Initialized as an FIR Bandpass (adaptIDFIRw)

 In this example, program adaptIDFIR.c is modifi ed slightly to create the program
adaptIDFIRW.c (Figure 7.20). This new program initializes the weights, w , of the
adaptive FIR fi lter with the coeffi cients of an FIR bandpass fi lter centered at 3 kHz,
read from the coeffi cient fi le bp3000.cof rather than initializing the weights to
zero.

 Build this project as adaptIDFIRw . Initially, the frequency content of the output
of the adaptive FIR fi lter is centered at 3 kHz. Then, gradually, as the adaptive fi lter
identifi es the fi xed (unknown) FIR bandpass fi lter (bp55.cof), its output changes
to bandlimited noise centered on frequency 2 kHz.

 The adaptation process is illustrated in Figures 7.21 and 7.22 . Figure 7.21 shows
the frequency content of the output of the adaptive fi lter at different stages in the
adaptation process (captured using an oscilloscope) and Figure 7.22 shows the
magnitude FFT of the adaptive fi lter coeffi cients at corresponding points in time.

Example 7.6: Adaptive FIR for System ID of Fixed IIR as an
Unknown System (iirsosadapt)

 An adaptive FIR fi lter can be used to identify the characteristics not only of other
FIR fi lters but of IIR fi lters (provided that the substantial part of the IIR fi lter
impulse response is shorter than that possible using the adaptive FIR fi lter). Program
iirsosadapt.c (Figure 7.23) combines parts of programs iirsos.c (Example
 5.1) and adaptIDFIR.c in order to illustrate this.

344 Adaptive Filters

 FIGURE 7.20. Program to implement an adaptive FIR fi lter that models (identifi es) a fi xed
FIR fi lter with initialised coeffi cients (adaptIDFIRw.c).

//adaptIDFIRW.c Adaptive FIR for system ID of an FIR

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "bp55.cof" //fixed FIR filter coefficients
#include "bp3000.cof"
#include "noise_gen.h" //noise generation support file
#define beta 1E-12 //rate of convergence
#define WLENGTH 60 //# of coefffor adaptive FIR
float w[WLENGTH+1]; //buffer coeff for adaptive FIR
int dly_adapt[WLENGTH+1]; //adaptive FIR samples buffer
int dly_fix[N+1]; //buffer samples of fixed FIR
short out_type = 1; //output for adaptive/fixed FIR
int fb; //feedback variable
shift_reg sreg; //shift register

int prand(void) //pseudo-random sequence {-1,1}
{
 int prnseq;
 if(sreg.bt.b0)
 prnseq = -8000; //scaled negative noise level
 else
 prnseq = 8000; //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb; //close feedback path
 return prnseq; //return noise sequence
}

interrupt void c_int11() //ISR
{
 int i;
 int fir_out = 0; //init output of fixed FIR
 int adaptfir_out = 0; //init output of adapt FIR
 float E; //error=diff of fixed/adapt out

 dly_fix[0] = prand(); //input noise to fixed FIR
 dly_adapt[0]=dly_fix[0]; //as well as to adaptive FIR
 for (i = N-1; i>= 0; i--)
 {
 fir_out +=(h[i]*dly_fix[i]); //fixed FIR filter output
 dly_fix[i+1] = dly_fix[i]; //update samples of fixed FIR
 }
 for (i = 0; i < WLENGTH; i++)
 adaptfir_out +=(w[i]*dly_adapt[i]); //adaptive FIR output

 Programming Examples for Noise Cancellation and System Identifi cation 345

 E = fir_out - adaptfir_out; //error signal

 for (i = WLENGTH-1; i >= 0; i--)
 {
 w[i]=w[i]+(beta*E*dly_adapt[i]);//update adaptive FIR weights
 dly_adapt[i+1] = dly_adapt[i]; //update adaptive FIR samples
 }
 if (out_type == 1) //slider position for adapt FIR
 output_left_sample((short)adaptfir_out); //output adaptive FIR
 else if (out_type == 2) //slider position for fixed FIR
 output_left_sample((short)fir_out); //output fixed FIR filter
 return;
}

void main()
{
 int T=0, i=0;
 for (i = 0; i < WLENGTH; i++)
 {
 w[i] = coeffs[i]; //init coeff for adaptive FIR
 dly_adapt[i] = 0; //init buffer for adaptive FIR
 }
 for (T = 0; T < N; T++)
 dly_fix[T] = 0; //init buffer for fixed FIR
 sreg.regval=0xFFFF; //initial seed value
 fb = 1; //initial feevack value
 comm_intr(); //init DSK, codec, McBSP
 while (1); //infinite loop
}

FIGURE 7.20. (Continued)

 The IIR fi lter coeffi cients used are those of a fourth order lowpass elliptic fi lter
(see Example 5.5) and are read from fi le elliptic.cof .

 Build and run this project as iirsosadapt . Verify that the adaptive fi lter con-
verges to a state in which the frequency content of its output matches that of the
(unknown) IIR fi lter. Figure 7.24 shows the fi ltered noise at the output of the adap-
tive fi lter (displayed using the FFT function of an Agilent 54621A oscilloscope) and
the magnitude FFT of the coeffi cients of the adaptive FIR fi lter (displayed using
CCS).

 Example 7.7: Adaptive FIR Filter for System Identifi cation of System
External to DSK (sysid)

 Program sysid.c (Figure 7.25) extends the previous examples to allow the iden-
tifi cation of a system external to the DSK, connected between the LINE OUT and

346 Adaptive Filters

 FIGURE 7.21. Frequency content of output of adaptive fi lter implemented using program
 adaptIDFIRw.c at three different instants. Captured using FFT function of Agilent 54621A
oscilloscope.

(a)

(b)

(c)

 Programming Examples for Noise Cancellation and System Identifi cation 347

(a)

(b)

(c)

 FIGURE 7.22. Magnitude FFT of coeffi cients of adaptive fi lter implemented using program
 adaptIDFIRw.c at three different instants. Plotted using CCS.

348 Adaptive Filters

 FIGURE 7.23. Listing of program iirsosadapt.c .

// iirsosadapt.c iir filter using cascaded second order sections
// characteristic identified using adaptive FIR filter
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h" //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "noise_gen.h"
#include "elliptic.cof" //contains a and b coefficient
 //values and defines
 //NUM_SECTIONS
float w[NUM_SECTIONS][2] = {0};
#define beta 1.0E-11 //learning rate
#define WLENGTH 256 //# of coeff for adaptive FIR
float h[WLENGTH+1]={0.0}; //buffer adaptive FIR coeffs
float dly_adapt[WLENGTH+1]={0.0}; //buffer adaptive FIR samples
short fb; //feedback variable
shift_reg sreg;

short prn(void) //pseudorandom noise generation
{
 short prnseq; //for pseudorandom sequence

 if(sreg.bt.b0) //sequence {1,-1}
 prnseq = -4000; //scaled negative noise level
 else
 prnseq = 4000; //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1); //XOR bits 0,1
 fb ^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb
 sreg.regval<<=1; //shift register 1 bit to left
 sreg.bt.b0 = fb; //close feedback path
 return prnseq; //return sequence
}

interrupt void c_int11() //interrupt service routine
{
 int section; //index for section number
 float input; //input to each section
 float wn,yn; //intermediate and output
 int i;
 float adaptfir_out=0.0; //init output of adaptive FIR
 float E; //error signal

 input = (float)(prn()); //PRBS in to first iir section
 dly_adapt[0] = input; //copy input value to fir
 for (section=0 ; section< NUM_SECTIONS ; section++)

 Programming Examples for Noise Cancellation and System Identifi cation 349

 {
 wn = input - a[section][0]*w[section][0]
 - a[section][1]*w[section][1];
 yn = b[section][0]*wn + b[section][1]*w[section][0]
 + b[section][2]*w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn;
 input = yn; //output of current section
 } //will be input to next
 for (i = 0; i < WLENGTH; i++)
 adaptfir_out +=(h[i]*dly_adapt[i]); //output of adaptive FIR
 E = yn - adaptfir_out; //error as output difference
 for (i = WLENGTH-1; i >= 0; i--)
 {
 h[i] = h[i]+(beta*E*dly_adapt[i]); //update adaptive FIR
 dly_adapt[i+1] = dly_adapt[i];
 }
 output_left_sample((short)adaptfir_out);
 return; //return from ISR
}

void main()
{
 int i=0;
 for (i = 0; i < WLENGTH; i++)
 {
 h[i] = 0.0; //init coeff of adaptive FIR
 dly_adapt[i] = 0.0; //init samples of adaptive FIR
 }
 sreg.regval = 0xFFFF; //initialise shift register
 fb = 1; //initial feedback value
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

FIGURE 7.23. (Continued)

LINE IN sockets. In Example 4.3 , program sysid.c was used to identify the char-
acteristics of a moving average fi lter implemented using a second DSK. Other fi lter
programs, for example, fi r.c or iirsos.c , could be run in place of average.c
on the second DSK.

 Alternatively, a purely analog system or a fi lter implemented using different DSP
hardware could be connected between LINE OUT and LINE IN and its character-
istics identifi ed.

 The following example requires the use of two DSKs. In Example 2.22 , the
number of adaptive fi lter coeffi cients used in program sysid.c was 128. For this

350 Adaptive Filters

 FIGURE 7.25. Use of program sysid.c to identify unknown system.

C6713 DSK

LINE IN

LINE OUT

program sysid.c

adaptive
filter

+

-

pseudo-
random
noise

unknown
system

(a)

(b)

 FIGURE 7.24. (a) Frequency content of adaptive fi lter output and (b) magnitude FFT of
adaptive fi lter coeffi cients after adaptation in program iirsosadapt.c .

 Programming Examples for Noise Cancellation and System Identifi cation 351

example, change the number of coeffi cients to 256 by changing the line that
reads

 #defi ne WLENGTH 128

to read

 #defi ne WLENGTH 256

 Connect the two DSKs as shown in Figure 7.26 . Load and run program iirsos.
c , including coeffi cient fi le elliptic.cof on the fi rst DSK. Close CCS and discon-
nect the USB cable from the DSK. Program iirsos.c will continue to run on the
DSK as long as the board is powered up. Connect the USB cable to the second
DSK, start CCS, and then load program sysid.c . (If you have two host computers
running CCS there is no need to disconnect the USB on the fi rst DSK.) Run
program sysid.c on the second DSK. Halt the program after a few seconds and
select View → Graph in order to examine the coeffi cients of the adaptive fi lter. Figure
 7.27 shows typical results. A number of features of the plots shown in Figure 7.27
are worthy of note. Compare Figure 7.27 b with Figure 7.24 b. As noted in Chapter
 4 , the characteristics of the codec reconstruction and antialiasing fi lters, the ac cou-
pling between codec and jack sockets, and the potential divider between the LINE
IN socket and the codec input are all included in the signal path identifi ed using
 sysid.c .

 The magnitude frequency response shown in Figure 7.27 b rolls off at low frequen-
cies (due to the ac coupling) and in the passband has a gain of less than unity (due
to the potential divider circuits). Less clear, since in this case the gain of the fi lter
at frequencies greater than 3800 Hz is designed to be low, the magnitude frequency
response in Figure 7.27 b rolls off signifi cantly beyond 3800 Hz (due to the antialias-

 FIGURE 7.26. Connection diagram for Example 7.7 .

C6713 DSK

LINE IN

LINE OUT

3.5-mm jack
to

3.5-mm jack
program sysid.c

adaptive
filter

+

-

pseudo-
random
noise

program iirsos.c

LINE IN

LINE OUT

C6713 DSK

3.5-mm jack
to

3.5-mm jack
IIR

filter

352 Adaptive Filters

ing and reconstruction fi lters in the codecs). Nonetheless, program sysid.c has
successfully given an indication of the characteristics of the IIR fi lter implemented
on the fi rst DSK.

 REFERENCES

 1. B. Widrow and S. D. Stearns , Adaptive Signal Processing , Prentice Hall , Upper Saddle
River, NJ , 1985 .

(a)

(b)

 FIGURE 7.27. Adaptive fi lter coeffi cients displayed using CCS (a) time domain and
(b) frequency domain.

 2. B. Widrow and M. E. Hoff , Jr. , Adaptive switching circuits , IRE WESCON , pp. 96 – 104 ,
 1960 .

 3. B. Widrow , J. R. Glover , J. M. McCool , J. Kaunitz , C. S. Williams , R. H. Hearn , J. R. Zeidler ,
 E. Dong , Jr. , and R. C. Goodlin , Adaptive noise cancelling: principles and applications ,
Proceedings of the IEEE , Vol. 63 , pp. 1692 – 1716 , 1975 .

 4. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken, NJ ,
 1992 .

References 353

Code Optimization

354

 • Optimization techniques for code effi ciency
 • Intrinsic C functions
 • Parallel instructions
 • Word - wide data access
 • Software pipelining

 In this chapter we illustrate several schemes that can be used to optimize and
drastically reduce the execution time of your code. These techniques include the use
of instructions in parallel, word - wide data, intrinsic functions, and software
pipelining.

8.1 INTRODUCTION

 Begin at a workstation level; for example, use C code on a PC. While code written
in assembly (ASM) is processor specifi c, C code can readily be ported from one
platform to another. However, optimized ASM code runs faster than C and requires
less memory space.

 Before optimizing, make sure that the code is functional and yields correct results.
After optimizing, the code can be so reorganized and resequenced that the optimi-
zation process makes it diffi cult to follow. One needs to realize that if a C - coded
algorithm is functional and its execution speed is satisfactory, there is no need to
optimize further.

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

8

 After testing the functionality of your C code, transport it to the C6x platform.
A fl oating - point implementation can be modeled fi rst, then converted to a fi xed -
 point implementation if desired. If the performance of the code is not adequate, use
different compiler options to enable software pipelining (discussed later), reduce
redundant loops, and so on. If the performance desired is still not achieved, you can
use loop unrolling to avoid overhead in branching. This generally improves the
execution speed but increases code size. You also can use word - wide optimization
by loading/accessing 32 - bit word (int) data rather than 16 - bit half - word (short)
data. You can then process lower and upper 16 - bit data independently.

 If performance is still not satisfactory, you can rewrite the time - critical section of
the code in linear assembly, which can be optimized by the assembler optimizer. The
profi ler can be used to determine the specifi c function(s) that need to be optimized
further.

 The fi nal optimization procedure that we discuss is a software pipelining scheme
to produce hand - coded ASM instructions [1, 2] . It is important to follow the proce-
dure associated with software pipelining to obtain an effi cient and optimized
code.

8.2 OPTIMIZATION STEPS

 If the performance and results of your code are satisfactory after any particular step,
you are done.

1. Program in C. Build your project without optimization.

2. Use intrinsic functions when appropriate as well as the various optimization
levels.

3. Use the profi ler to determine/identify the function(s) that may need to be
further optimized. Then convert these function(s) to linear ASM.

4. Optimize code in ASM.

8.2.1 Compiler Options

 When the optimizer is invoked, the following steps are performed. A C - coded
program is fi rst passed through a parser that performs preprocessing functions and
generates an intermediate fi le (.if) that becomes the input to an optimizer. The
optimizer generates an .opt fi le that becomes the input to a code generator for
further optimizations and generates an ASM fi le.

 The options are as follows:

1. -o0 optimizes the use of registers.

2. -o1 performs a local optimization in addition to the optimizations performed
by the previous option: -o0 .

 Optimization Steps 355

356 Code Optimization

3. -o2 performs a global optimization in addition to the optimizations performed
by the previous options: -o0 and -o1 .

4. -o3 performs a fi le optimization in addition to the optimizations performed
by the three previous options: -o0 , -o1 , and -o2 .

 The options -o2 and -o3 attempt to do software optimization.

8.2.2 Intrinsic C Functions

 There are a number of available C intrinsic functions that can be used to increase
the effi ciency of code:

1. int_mpy() has the equivalent ASM instruction MPY , which multiplies the 16
LSBs of a number by the 16 LSBs of another number.

2. int_mpyh() has the equivalent ASM instruction MPYH , which multiplies the
16 MSBs of a number by the 16 MSBs of another number.

3. int_mpylh() has the equivalent ASM instruction MPYLH , which multiplies
the 16 LSBs of a number by the 16 MSBs of another number.

4. int_mpyhl() has the equivalent instruction MPYHL , which multiplies the 16
MSBs of a number by the 16 LSBs of another number.

5. void_nassert(int) generates no code. It tells the compiler that the expres-
sion declared with the assert function is true. This conveys information to the
compiler about alignment of pointers and arrays and of valid optimization
schemes, such as word - wide optimization.

6. uint_lo(double) and uint_hi(double) obtain the low and high 32 bits of
a double word, respectively (available on C67x or C64x).

8.3 PROCEDURE FOR CODE OPTIMIZATION

1. Use instructions in parallel so that multiple functional units can be operated
within the same cycle.

2. Eliminate NOP s or delay slots, placing code where the NOP s are located.

3. Unroll the loop to avoid overhead with branching.

4. Use word - wide data to access a 32 - bit word (int) in lieu of a 16 - bit half - word
(short).

5. Use software pipelining, illustrated in Section 8.5 .

8.4 PROGRAMMING EXAMPLES USING CODE
OPTIMIZATION TECHNIQUES

 Several examples are developed to illustrate various techniques to increase the
effi ciency of code. Optimization using software pipelining is discussed in Section 8.5 .

//twosum.c Sum of Products with separate accumulation of even/odd terms
//with word-wide data for fixed-point implementation

int dotp (short a[], short b [])
{
 int suml, sumh, sum, i;
 suml = 0;
 sumh = 0;
 sum = 0;
 for (i = 0; i < 200; i +=2)
 {
 suml += a[i] * b[i]; //sum of products of even terms
 sumh += a[i + 1] * b[i + 1]; //sum of products of odd terms
 }
 sum = suml + sumh; //final sum of odd and even terms
 return (sum);
}

The dot product is used to illustrate the various optimization schemes. The dot
product of two arrays can be useful for many DSP algorithms, such as fi ltering and
correlation. The examples that follow assume that each array consists of 200 numbers.
Several programming examples using mixed C and ASM code, which provide neces-
sary background, were given in Chapter 3 .

 Example 8.1: Sum of Products with Word - Wide Data Access for
Fixed - Point Implementation Using C Code (twosum)

 Figure 8.1 shows the C code twosum.c , which obtains the sum of products of two
arrays accessing 32 - bit word data. Each array consists of 200 numbers. Separate
sums of products of even and odd terms are calculated within the loop. Outside the
loop, the fi nal summation of the even and odd terms is obtained.

 For a fl oating - point implementation, the function and the variables sum , suml ,
and sumh in Figure 8.1 are cast as fl oat in lieu of int :

 fl oat dotp (fl oat a[], fl oat b [])
{

fl oat suml, sumh, sum;
int i;
.
.
.

}

 FIGURE 8.1. C code for sum of products using word - wide data access for separate accumu-
lation of even and odd sum of product terms (twosum.c).

 Programming Examples Using Code Optimization Techniques 357

358 Code Optimization

//dotpintrinsic.c Sum of products with C intrinsic functions using C

for (i = 0; i < 100; i++)
 {
 suml = suml + _mpy(a[i], b[i]);
 sumh = sumh + _mpyh(a[i], b[i]);
 }
return (suml + sumh);

 FIGURE 8.2. Separate sum of products using C intrinsic functions (dotpintrinsic.c).

;twosumlasmfix.sa Sum of Products. Separate accum of even/odd terms
;With word-wide data for fixed-point implementation using linear ASM

loop: LDW *aptr++, ai ;32-bit word ai
 LDW *bptr++, bi ;32-bit word bi
 MPY ai, bi, prodl ;lower 16-bit product
 MPYH ai, bi, prodh ;higher 16-bit product
 ADD prodl, suml, suml ;accum even terms
 ADD prodh, sumh, sumh ;accum odd terms
 SUB count, 1, count ;decrement count
 [count] B loop ;branch to loop

 FIGURE 8.3. Separate sum of products using linear ASM code for fi xed - point implementa-
tion (twosumlasmfi x.sa).

 Example 8.2: Separate Sum of Products with C Intrinsic Functions
Using C Code (dotpintrinsic)

 Figure 8.2 shows the C code dotpintrinsic.c to illustrate the separate sum of
products using two C intrinsic functions, _ mpy and _ mpyh , which have the equivalent
ASM instructions MPY and MPYH , respectively. Whereas the even and odd sums of
products are calculated within the loop, the fi nal summation is taken outside the
loop and returned to the calling function.

 Example 8.3: Sum of Products with Word - Wide Access for Fixed - Point
Implementation Using Linear ASM Code (twosumlasmfi x.sa)

 Figure 8.3 shows the linear ASM code twosumlasmfi x.sa , which obtains two sepa-
rate sums of products for a fi xed - point implementation. It is not necessary to specify
the functional units. Furthermore, symbolic names can be used for registers. The LDW
instruction is used to load a 32 - bit word - wide data value (which must be word -
 aligned in memory when using LDW). Lower and upper 16 - bit products are calculated
separately. The two ADD instructions accumulate separately the even and odd sum
of products.

 Example 8.4: Sum of Products with Double - Word Load for Floating - Point
Implementation Using Linear ASM Code (twosumlasmfl oat)

 Figure 8.4 shows the linear ASM code twosumlasmfl oat.sa used to obtain two
separate sums of products for a fl oating - point implementation. The double - word
load instruction LDDW loads a 64 - bit data value and stores it in a pair of registers.
Each single - precision multiply instruction MPYSP performs a 32 × 32 multiplication.
The sums of products of the lower and upper 32 bits are performed to yield a sum
of both even and odd terms as 32 bits.

 Example 8.5: Dot Product with No Parallel Instructions for Fixed - Point
Implementation Using ASM Code (dotpnp)

 Figure 8.5 shows the ASM code dotpnp.asm for the dot product with no instructions
in parallel for a fi xed - point implementation. A fi xed - point implementation can be

;twosumlasmfloat.sa Sum of products.Separate accum of even/odd terms
;Using double-word load LDDW for floating-point implementation

loop: LDDW *aptr++, ai1:ai0 ;64-bit word ai0 and ai1
 LDDW *bptr++, bi1:bi0 ;64-bit word bi0 and bi1
 MPYSP ai0, bi0, prodl ;lower 32-bit product
 MPYSP ai1, bi1, prodh ;higher 32-bit product
 ADDSP prodl, suml, suml ;accum 32-bit even terms
 ADDSP prodh, sumh, sumh ;accum 32-bit odd terms
 SUB count, 1, count ;decrement count
 [count] B loop ;branch to loop

 FIGURE 8.4. Separate sum of products with LDDW using ASM code for fl oating - point imple-
mentation (twosumlasmfl oat.sa).

;dotpnp.asm ASM Code, no parallel instructions, fixed-point

 MVK .S1 200, A1 ;count into A1
 ZERO .L1 A7 ;init A7 for accum
LOOP LDH .D1 *A4++,A2 ;A2=16-bit data pointed by A4
 LDH .D1 *A8++,A3 ;A3=16-bit data pointed by A8
 NOP 4 ;4 delay slots for LDH
 MPY .M1 A2,A3,A6 ;product in A6
 NOP ;1 delay slot for MPY
 ADD .L1 A6,A7,A7 ;accum in A7
 SUB .S1 A1,1,A1 ;decrement count
 [A1] B .S2 LOOP ;branch to LOOP
 NOP 5 ;5 delay slots for B

 FIGURE 8.5. ASM code with no parallel instructions for fi xed - point implementation
(dotpnp.asm).

 Programming Examples Using Code Optimization Techniques 359

360 Code Optimization

performed with all C6x devices, whereas a fl oating - point implementation requires
a C67x platform such as the C6713 DSK.

 The loop iterates 200 times. With a fi xed - point implementation, each pointer
register A4 and A8 increments to point at the next half - word (16 bits) in each buffer,
whereas with a fl oating - point implementation, a pointer register increments the
pointer to the next 32 - bit word. The load, multiply, and branch instructions must use
the .D , .M , and .S units, respectively; the add and subtract instructions can use any
unit (except .M). The instructions within the loop consume 16 cycles per iteration.
This yields 16 × 200 = 3200 cycles. Table 8.4 shows a summary of several optimiza-
tion schemes for both fi xed - and fl oating - point implementations.

 Example 8.6: Dot Product with Parallel Instructions for Fixed - Point
Implementation Using ASM Code (dotpp)

 Figure 8.6 shows the ASM code dotpp.asm for the dot product with a fi xed - point
implementation with instructions in parallel. With code in lieu of NOP s, the number
of NOP s is reduced.

 The MPY instruction uses a cross - path (with .M1x) since the two operands are
from different register fi les or different paths. The instructions SUB and B are moved
up to fi ll some of the delay slots required by LDH . The branch instruction occurs after
the ADD instruction. Using parallel instructions, the instructions within the loop now
consume eight cycles per iteration, to yield 8 × 200 = 1600 cycles.

 Example 8.7: Two Sums of Products with Word - Wide (32 - bit) Data for
Fixed - Point Implementation Using ASM Code (twosumfi x)

 Figure 8.7 shows the ASM code twosumfi x.asm , which calculates two separate
sums of products using word - wide access of data for a fi xed - point implementation.
The loop count is initialized to 100 (not 200) since two sums of products are
obtained per iteration. The instruction LDW loads a word or 32 - bit data. The

;dotpp.asm ASM Code with parallel instructions, fixed-point

 MVK .S1 200, A1 ;count into A1
 || ZERO .L1 A7 ;init A7 for accum
LOOP LDH .D1 *A4++,A2 ;A2=16-bit data pointed by A4
 || LDH .D2 *B4++,B2 ;B2=16-bit data pointed by B4
 SUB .S1 A1,1,A1 ;decrement count
 [A1] B .S1 LOOP ;branch to LOOP (after ADD)
 NOP 2 ;delay slots for LDH and B
 MPY .M1x A2,B2,A6 ;product in A6
 NOP ;1 delay slot for MPY
 ADD .L1 A6,A7,A7 ;accum in A7,then branch
;branch occurs here

 FIGURE 8.6. ASM code with parallel instructions for fi xed - point implementaition.

multiply instruction MPY fi nds the product of the lower 16 × 16 data, and MPYH fi nds
the product of the upper 16 × 16 data. The two ADD instructions accumulate sepa-
rately the even and odd sums of products. Note that an additional ADD instruction
is needed outside the loop to accumulate A7 and B7. The instructions within the
loop consume eight cycles, now using 100 iterations (not 200), to yield 8 × 100 = 800
cycles.

 Example 8.8: Dot Product with No Parallel Instructions for Floating - Point
Implementation Using ASM Code (dotpnpfl oat)

 Figure 8.8 shows the ASM code dotpnpfl oat.asm for the dot product with a fl oat-
ing - point implementation using no instructions in parallel. The loop iterates 200

;twosumfix.asm ASM code for two sums of products with word-wide data
;for fixed-point implementation

 MVK .S1 100, A1 ;count/2 into A1
 || ZERO .L1 A7 ;init A7 for accum of even terms
 || ZERO .L2 B7 ;init B7 for accum of odd terms
LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4
 || LDW .D2 *B4++,B2 ;A3=32-bit data pointed by B4
 SUB .S1 A1,1,A1 ;decrement count
 [A1] B .S1 LOOP ;branch to LOOP (after ADD)
 NOP 2 ;delay slots for both LDW and B
 MPY .M1x A2,B2,A6 ;lower 16-bit product in A6
 || MPYH .M2x A2,B2,B6 ;upper 16-bit product in B6
 NOP ;1 delay slot for MPY/MPYH
 ADD .L1 A6,A7,A7 ;accum even terms in A7
 || ADD .L2 B6,B7,B7 ;accum odd terms in B7
;branch occurs here

 FIGURE 8.7. ASM code for two sums of products with 32 - bit data for fi xed - point imple-
mentation (twosumfi x.asm).

 Programming Examples Using Code Optimization Techniques 361

;dotpnpfloat.asm ASM Code with no parallel instructions for floating-pt

 MVK .S1 200, A1 ;count into A1
 ZERO .L1 A7 ;init A7 for accum
LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4
 LDW .D1 *A8++,A3 ;A3=32-bit data pointed by A8
 NOP 4 ;4 delay slots for LDW
 MPYSP .M1 A2,A3,A6 ;product in A6
 NOP 3 ;3 delay slots for MPYSP
 ADDSP .L1 A6,A7,A7 ;accum in A7
 SUB .S1 A1,1,A1 ;decrement count
 [A1] B .S2 LOOP ;branch to LOOP
 NOP 5 ;5 delay slots for B

 FIGURE 8.8. ASM code with no parallel instructions for fl oating - point implementation
(dotpnpfl oat.asm).

362 Code Optimization

times. The single - precision fl oating - point instruction MPYSP performs a 32 × 32 mul-
tiply. Each MPYSP and ADDSP requires three delay slots. The instructions within the
loop consume a total of 18 cycles per iteration (without including three NOP s associ-
ated with ADDSP). This yields a total of 18 × 200 = 3600 cycles. (See Table 8.4 for a
summary of several optimization schemes for both fi xed - and fl oating - point
implementations.)

 Example 8.9: Dot Product with Parallel Instructions for Floating - Point
Implementation Using ASM Code (dotppfl oat)

 Figure 8.9 shows the ASM code dotppfl oat.asm for the dot product with a fl oat-
ing - point implementation using instructions in parallel. The loop iterates 200 times.
By moving the SUB and B instructions up to take the place of some NOP s, the number
of instructions within the loop is reduced to 10. Note that three additional NOP s
would be needed outside the loop to retrieve the result from ADDSP . The instructions
within the loop consume a total of 10 cycles per iteration. This yields a total of
10 × 200 = 2000 cycles.

 Example 8.10: Two Sums of Products with Double - Word - Wide (64 - bit)
Data for Floating - Point Implementation Using ASM Code (twosumfl oat)

 Figure 8.10 shows the ASM code twosumfl oat.asm , which calculates two separate
sums of products using double - word - wide access of 64 - bit data for a fl oating - point
implementation. The loop count is initialized to 100 since two sums of products are
obtained per iteration. The instruction LDDW loads a 64 - bit double - word data value
into a register pair. The multiply instruction MPYSP performs a 32 × 32 multiply. The
two ADDSP instructions accumulate separately the even and odd sums of products.
The additional ADDSP instruction is needed outside the loop to accumulate A7 and

;dotppfloat.asm ASM Code with parallel instructions for floating-point

 MVK .S1 200, A1 ;count into A1
 || ZERO .L1 A7 ;init A7 for accum
LOOP LDW .D1 *A4++,A2 ;A2=32-bit data pointed by A4
 || LDW .D2 *B4++,B2 ;B2=32-bit data pointed by B4
 SUB .S1 A1,1,A1 ;decrement count
 NOP 2 ;delay slots for both LDW and B
 [A1] B .S2 LOOP ;branch to LOOP (after ADDSP)
 MPYSP .M1x A2,B2,A6 ;product in A6
 NOP 3 ;3 delay slots for MPYSP
 ADDSP .L1 A6,A7,A7 ;accum in A7,then branch
;branch occurs here

 FIGURE 8.9. ASM code with parallel instructions for fl oating - point implementation
(dotppfl oat.asm).

 Software Pipelining for Code Optimization 363

 FIGURE 8.10. ASM code with two sums of products for fl oating - point implementation
(twosumfl oat.asm).

;twosumfloat.asm ASM Code with two sums of products for floating-pt

 MVK .S1 100, A1 ;count/2 into A1
 || ZERO .L1 A7 ;init A7 for accum of even terms
 || ZERO .L2 B7 ;init B7 for accum of odd terms
LOOP LDDW .D1 *A4++,A3:A2 ;64-bit-> register pair A2,A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit-> register pair B2,B3
 SUB .S1 A1,1,A1 ;decrement count
 NOP 2 ;delay slots for LDW
 [A1] B .S2 LOOP ;branch to LOOP
 MPYSP .M1x A2,B2,A6 ;lower 32-bit product in A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product in B6
 NOP 3 ;3 delay slot for MPYSP
 ADDSP .L1 A6,A7,A7 ;accum even terms in A7
 || ADDSP .L2 B6,B7,B7 ;accum odd terms in B7
;branch occurs here
 NOP 3 ;delay slots for last ADDSP
 ADDSP .L1x A7,B7,A4 ;final sum of even and odd terms
 NOP 3 ;delay slots for ADDSP

B7. The instructions within the loop consume a total of 10 cycles, using 100 iterations
(not 200), to yield a total of 10 × 100 = 1000 cycles.

 8.5 SOFTWARE PIPELINING FOR CODE OPTIMIZATION

 Software pipelining is a scheme to write effi cient code in ASM so that all the func-
tional units are utilized within one cycle. Optimization levels - o2 and - o3 enable
code generation to generate (or attempt to generate) software - pipelined code.

 There are three stages associated with software pipelining:

 1. Prolog (warm - up). This stage contains instructions needed to build up the
loop kernel (cycle).

 2. Loop kernel (cycle). Within this loop, all instructions are executed in parallel.
The entire loop kernel can be executed in one cycle, since all the instructions
within the loop kernel stage are in parallel.

 3. Epilog (cool - off). This stage contains the instructions necessary to complete
all iterations.

 8.5.1 Procedure for Hand - Coded Software Pipelining

 1. Draw a dependency graph.

 2. Set up a scheduling table.

 3. Obtain code from the scheduling table.

364 Code Optimization

 8.5.2 Dependency Graph

 Figure 8.11 shows a dependency graph. A procedure for drawing a dependency
graph follows.

 1. Draw the nodes and paths.

 2. Write the number of cycles to complete an instruction.

 3. Assign functional units associated with each node.

 4. Separate the data path so that the maximum number of units are utilized.

 A node has one or more data paths going into and/or out of the node. The numbers
next to each node represent the number of cycles required to complete the associated
instruction. A parent node contains an instruction that writes to a variable, whereas
a child node contains an instruction that reads a variable written by the parent.

 The LDH instructions are considered to be the parents of the MPY instruction since
the results of the two load instructions are used to perform the MPY instruction.
Similarly, the MPY is the parent of the ADD instruction. The ADD instruction is fed
back as input for the next iteration; similarly with the SUB instruction.

 Figure 8.12 shows another dependency graph associated with two sums of prod-
ucts for a fi xed - point implementation. The length of the prolog section is the longest
path from the dependency graph in Figure 8.12 . Since the longest path is 8, the length
of the prolog is 7 before entering the loop kernel (cycle) at cycle 8.

 A similar dependency graph for a fl oating - point implementation can be obtained
using LDDW , MPYSP , and ADDSP in lieu of LDW , MPY/MPYH , and ADD , respectively, in
Figure 8.12 . Note that the single - precision instructions ADDSP and MPYSP both take
four cycles to complete (three delay slots each).

 FIGURE 8.11. Dependency graph for dot product: (a) initial stage and (b) fi nal stage.

 Software Pipelining for Code Optimization 365

 FIGURE 8.12. Dependency graph for two sums of products per iteration.

 8.5.3 Scheduling Table

 Table 8.1 shows a scheduling table drawn from the dependency graph.

 1. LDW starts in cycle 1.

 2. MPY and MPYH must start fi ve cycles after the LDW s due to the four delay slots.
Therefore, MPY and MPYH start in cycle 6.

 TABLE 8.1 Schedule Table of Dot Product Before Software Pipelining for
Fixed - Point Implementation

 Cycles
Units 1, 9, . . . 2, 10, . . . 3, 11, . . . 4, 12, . . . 5, 13, . . . 6, 14, . . . 7, 15, . . . 8, 16, . . .

 .D1 LDW
 .D2 LDW
 .M1 MPY
 .M2 MPYH
 .L1 ADD
 .L2 ADD
 .S1 SUB
 .S2 B

366 Code Optimization

 3. ADD must start two cycles after MPY/MPYH due to the one delay slot of MPY / MPYH .
Therefore, ADD starts in cycle 8.

 4. B has fi ve delay slots and starts in cycle 3, since branching occurs in cycle 9,
after the ADD instruction.

 5. SUB instruction must start one cycle before the branch instruction, since the
loop count is decremented before branching occurs. Therefore, SUB starts in
cycle 2.

 From Table 8.1 , the two LDW instructions are in parallel and are issued in cycles 1,
9, 17, The SUB instruction is issued in cycles 2, 10, 18, This is followed by the
branch (B) instruction issued in cycles 3, 11, 19, The two parallel instructions
 MPY and MPYH are issued in cycles 6, 14, 22, The ADD instructions are issued in
cycles 8, 16, 24,

 Table 8.1 is extended to illustrate the different stages: prolog (cycles 1 through
7), loop kernel (cycle 8), and epilog (cycles 9, 10, . . . not shown), as shown in Table
 8.2 . The instructions within the prolog stage are repeated until and including the
loop kernel (cycle) stage. Instructions in the epilog stage (cycles 9, 10, …) complete
the functionality of the code.

 From Table 8.2 , an effi cient optimized code can be obtained. Note that it is pos-
sible to start processing a new iteration before previous iterations are fi nished.
Software pipelining allows us to determine when to start a new loop iteration.

 Loop Kernel (Cycle)
 Within the loop kernel, in cycle 8, each functional unit is used only once. The
minimum iteration interval is the minimum number of cycles required to wait before
the initiation of a successive iteration. This interval is 1. As a result, a new iteration
can be initiated every cycle.

 Within loop cycle 8, multiple iterations of the loop execute in parallel. In cycle
8, different iterations are processed at the same time. For example, the ADD s add

 TABLE 8.2 Schedule Table of Dot Product After Software Pipelining for
Fixed - Point Implementation

 Cycles Units

 Prolog Loop Kernel

 1 2 3 4 5 6 7 8

 .D1 LDW LDW LDW LDW LDW LDW LDW LDW
 .D2 LDW LDW LDW LDW LDW LDW LDW LDW
 .M1 MPY MPY MPY
 .M2 MPYH MPYH MPYH
 .L1 ADD
 .L2 ADD
 .S1 SUB SUB SUB SUB SUB SUB SUB
 .S2 B B B B B B

 Software Pipelining for Code Optimization 367

data for iteration 1, while MPY and MPYH multiply data for iteration 3, LDW s load data
for iteration 8, SUB decrements the counter for iteration 7, and B branches for
iteration 6. Note that the values being multiplied are loaded into registers fi ve cycles
prior to the cycle when the values are multiplied. Before the fi rst multiplication
occurs, the fi fth load has just completed. This software pipeline is eight iterations
deep.

Example 8.11: Dot Product Using Software Pipelining for
a Fixed -Point Implementation

 This example implements the dot product using software pipelining for a fi xed - point
implementation. From Table 8.2 , one can readily obtain the ASM code dotpipedfi x.
asm shown in Figure 8.13 . The loop count is 100 since two multiplies and two
accumulates are calculated per iteration. The following instructions start in the fol-
lowing cycles:

Cycle 1 : LDW , LDW (also initialization of count and accumulators A7 and B7)

Cycle 2 : LDW , LDW , SUB

Cycles 3 – 5 : LDW , LDW , SUB , B

Cycles 6 – 7 : LDW , LDW , MPY , MPYH , SUB , B

Cycles 8 – 107 : LDW , LDW , MPY , MPYH , ADD , ADD , SUB , B

Cycle 108 : LDW , LDW , MPY , MPYH , ADD , ADD , SUB , B

 The prolog section is within cycles 1 through 7; the loop kernel is in cycle 8, where
all the instructions are in parallel; and the epilog section is in cycle 108. Note that
SUB is made conditional to ensure that Al is no longer decremented once it reaches
zero.

Example 8.12: Dot Product Using Software Pipelining for
a Floating -Point Implementation

 This example implements the dot product using software pipelining for a fl oating -
 point implementation. Table 8.3 shows a fl oating - point version of Table 8.2 . LDW
becomes LDDW , MPY/MPYH become MPYSP , and ADD becomes ADDSP . Both MPYSP and
ADDSP have three delays slots. As a result, the loop kernel starts in cycle 10 in lieu
of cycle 8. The SUB and B instructions start in cycles 4 and 5, respectively, in lieu of
cycles 2 and 3. ADDSP starts in cycle 10 in lieu of cycle 8. The software pipeline for
a fl oating - point implementation is 10 deep.

 Figure 8.14 shows the ASM code dotpipedfloat.asm , which implements
the fl oating - point version of the dot product. Since ADDSP has three delay slots, the
accumulation is staggered by four. The accumulation associated with one of the
ADDSP instructions at each loop cycle follows:

368 Code Optimization

 FIGURE 8.13. ASM code using software pipelining for fi xed - point implementation
(dotpipedfi x.asm).

;dotpipedfix.asm ASM code for dot product with software pipelining
;For fixed-point implementation
;cycle 1
 MVK .S1 100,A1 ;loop count
 || ZERO. L1 A7 ;init accum A7
 || ZERO .L2 B7 ;init accum B7
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
;cycle 2
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
;cycle 3
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
;cycle 4
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
;cycle 5
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
;cycle 6
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
 || MPYH .M2x A2,B2,B6 ;upper 16-bit product into B6
;cycle 7
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
 || MPYH .M2x A2,B2,B6 ;upper 16-bit product into B6
;cycles 8-107 (loop cycle)
 || LDW .D1 *A4++,A2 ;32-bit data in A2
 || LDW .D2 *B4++,B2 ;32-bit data in B2
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
 || MPYH .M2x A2,B2,B6 ;upper 16-bit product into B6
 || ADD .L1 A6,A7,A7 ;accum in A7
 || ADD .L2 B6,B7,B7 ;accum in B7
;branch occurs here
;cycle 108 (epilog)
 ADD .L1x A7,B7,A4 ;final accum of odd/even

 Software Pipelining for Code Optimization 369

 TABLE 8.3 Schedule Table of Dot Product After Software Pipelining for
Floating - Point Implementation

 Cycle Units

 Prolog Loop Kernel

 1 2 3 4 5 6 7 8 9 10

 .D1 LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW
 .D2 LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW LDDW
 .M1 MPYSP MPYSP MPYSP MPYSP MPYSP
 .M2 MPYSP MPYSP MPYSP MPYSP MPYSP
 .L1 ADDSP
 .L2 ADDSP
 .S1 SUB SUB SUB SUB SUB SUB SUB
 .S2 B B B B B B

 Loop
Cycle Accumulator (one ADDSP)

 1 0
 2 0
 3 0
 4 0
 5 p0 ;fi rst product
 6 p1 ;second product
 7 p3
 8 p4
 9 p0 + p4 ;sum of fi rst and fi fth products
 10 p1 + p5 ;sum of second and sixth products
 11 p2 + p6
 12 p3 + p7
 13 p0 + p4 + p8 ;sum of fi rst, fi fth, and ninth p roducts
 14 p1 + p5 + p9
 15 p2 + p6 + p10
 16 p3 + p7 + p11
 17 p0 + p4 + p8 + p12
 . .
 . .
 . .
 99 p2 + p6 + p10 + . . . + p94
 100 p3 + p7 + p11 + . . . + p95

 This accumulation is shown associated with the loop cycle. The actual cycle is
shifted by 9 (by the cycles in the prolog section). Note that the fi rst product, p0 , is
obtained (available) in loop cycle 5 since the fi rst ADDSP starts in loop cycle 1 and
has three delay slots. The fi rst product, p0 , is associated with the lower 32 - bit term.
The second ADDSP (not shown) accumulates the upper 32 - bit sum of products.

370 Code Optimization

;dotpipedfloat.asm ASM code for dot product with software pipelining
;For floating-point implementation
;cycle 1
 MVK .S1 100,A1 ;loop count
 || ZERO .L1 A7 ;init accum A7
 || ZERO .L2 B7 ;init accum B7
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
;cycle 2
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
;cycle 3
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
;cycle 4
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
;cycle 5
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
;cycle 6
 || LDDW .D1 *A4++,A3:A2 ;64-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;64-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product into B6
;cycle 7
 || LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product into B6
;cycle 8
 || LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product into B6
;cycle 9
 || LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product into B6

 FIGURE 8.14. ASM code using software pipelining for fl oating - point implementation
(dotpipedfl oat.asm).

 Software Pipelining for Code Optimization 371

;cycles 10-109 (loop kernel)
 || LDDW .D1 *A4++,A3:A2 ;32-bit data in A2 and A3
 || LDDW .D2 *B4++,B3:B2 ;32-bit data in B2 and B3
 || [A1] SUB .S1 A1,1,A1 ;decrement count
 || [A1] B .S2 LOOP ;branch to LOOP
 || MPYSP .M1x A2,B2,A6 ;lower 32-bit product into A6
 || MPYSP .M2x A3,B3,B6 ;upper 32-bit product into B6
 || ADDSP .L1 A6,A7,A7 ;accum in A7
 || ADDSP .L2 B6,B7,B7 ;accum in B7

;branch occurs here
;cycles 110-124 (epilog)
 ADDSP .L1x A7,B7,A0 ;lower/upper sum of products
 ADDSP .L2x A7,B7,B0 ;
 ADDSP .L1x A7,B7,A0 ;
 ADDSP .L2x A7,B7,B0 ;
 NOP ;wait for 1

st
 B0

 ADDSP .L1x A0,B0,A5 ;1st two sum of products
 NOP ;wait for 2

nd
 B0

 ADDSP .L2x A0,B0,B5 ;last two sum of products
 NOP 3 ;3 delay slots for ADDSP
 ADDSP .L1x A5,B5,A4 ;final sum
 NOP 3 ;3 delay slots for final sum

 A6 contains the lower 32 - bit products and B6 contains the upper 32 - bit products.
The sums of the lower and upper 32 - bit products are accumulated in A7 and B7,
respectively.

 The epilog section contains the following instructions associated with the actual
cycle (not loop cycles), as shown in Figure 8.14 .

 Cycle Instruction

 110 ADDSP
 111 ADDSP
 112 ADDSP
 113 ADDSP
 114 NOP
 115 ADDSP
 116 NOP
 117 ADDSP
 118 – 120 NOP 3
 121 ADDSP
 122 – 124 NOP 3

 In cycles 113 through 116, A7 contains the lower 32 - bit sum of products and B7
contains the upper 32 - bit sum of products, or:

FIGURE 8.14. (Continued)

372 Code Optimization

 Cycle A7 for Lower 32 Bits (B7 for Upper 32 Bits)

 113 p0 + p4 + p8 + . . . + p96
 114 p1 + p5 + p9 + . . . + p97
 115 p2 + p6 + p10 + . . . + p98
 116 p3 + p7 + p11 + . . . + p99

 In cycle 114, A0 = A7 + B7 is available. A0 accumulates the lower and the upper
sum of products, where

A7 = p0 + p4 + p8 + . . . + p96 (lower 32 bits)
B7 = p0 + p4 + p8 + . . . + p96 (upper 32 bits)

In cycle 115, B0 = A7 + B7 is available, where

A7 = pl + p5 + p9 + . . . + p97 (lower 32 bits)
B7 = p1 + p5 + p9 + . . . + p97 (upper 32 bits)

Similarly, in cycles 116 and 117, A0 and B0 are obtained (available) as

A0 = sum of lower/upper 32 bits of (p2 + p6 + p10 + . . . + p98)
B0 = sum of lower/upper 32 bits of (p3 + p7 + p11 + . . . + p99)

In cycle 119, A5 = A0 + B0 (obtained from cycles 114 and 115). In cycle 121, B5
= A0 + B0 (obtained from cycles 116 and 117).

 The fi nal sum accumulates in A4 and is available after cycle 124.

8.6 EXECUTION CYCLES FOR DIFFERENT OPTIMIZATION SCHEMES

 Table 8.4 shows a summary of the different optimization schemes for both fi xed - and
fl oating - point implementations, for a count of 200. The number of cycles can be

TABLE 8.4 Number of Cycles with Different Optimization Schemes for Both
Fixed- and Floating -Point Implementations (Count = 200)

Optimization Scheme

Number of Cycles

Fixed-Point Floating-Point

1. No optimization 2 + (16 × 200) = 3202 2 + (18 × 200) = 3602
2. With parallel instructions 1 + (8 × 200) = 1601 1 + (10 × 200) = 2001
3. Two sums per iteration 1 + (8 × 100) = 801 1 + (10 × 100) + 7 = 1008
4. With software pipelining 7 + (100) + 1 = 108 9 + (100) + 15 = 124

obtained for different array sizes, since the number of cycles in the prolog and epilog
stages remain the same.

 Note that for a count of 1000, the fi xed - and fl oating - point implementations with
software pipeling take:

Fixed - point : 7 + (count/2) + 1 = 508 cycles

Floating - point : 9 + (count/2) + 15 = 524 cycles

REFERENCES

 1. TMS320C6000 Programmer ’ s Guide , SPRU198G, Texas Instruments, Dallas, TX, 2002 .

 2. Guidelines for Software Development Effi ciency on the TMS320C6000 VelociTI Architec-
ture , SPRA434, Texas Instruments, Dallas, TX, 1998 .

References 373

DSP/BIOS and RTDX Using
MATLAB, Visual C++,
Visual Basic, and LabVIEW

374

 A number of examples in this chapter illustrate the use of the DSP/BIOS real - time
operating system and the real - time data exchange module RTDX.

 DSP/BIOS provides real - time scheduling, analysis, and data transfer capabilities
for an application running on a Texas Instruments DSP. RTDX allows the exchange
of data, in real time, between a DSP and an application running on a host computer.
Examples are given of host applications using MATLAB, Visual C++, Visual Basic,
and LabVIEW.

9.1 INTRODUCTION TO DSP/BIOS

 The following examples introduce some of the real - time scheduling and real - time
analysis features of DSP/BIOS. Example programs from previous chapters are
adapted to run as DSP/BIOS applications.

DSP/BIOS Threads
 At the heart of DSP/BIOS is a preemptive real - time scheduler. This determines
which one of a number of different threads is executed by the DSP at any given
time. Threads are DSP/BIOS objects that contain program code (functions). The
scheduler determines which thread to execute according to its type, priority, and
other object properties. There are several different types of thread that can be used
in a DSP/BIOS application.

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

9

 • Hardware interrupts (HWIs) have the highest priority in a DSP/BIOS applica-
tion. Their execution is triggered by interrupts from on - chip peripherals or
external devices and they always run to completion. HWI threads are not pre-
empted by any other threads. For that reason, HWIs should be used for the most
time - critical activities within an application and the code associated with them
(i.e., the interrupt service routines) should ideally be kept as short as possible.

 • Software interrupts (SWIs) are triggered (posted) from within a program. The
priority of a SWI object can be set to one of a number of different levels. SWIs
run to completion unless preempted by a higher priority SWI or by a HWI. The
code associated with a SWI is effectively an interrupt service routine. Typically,
SWIs are posted by HWIs. That way more time - consuming interrupt processing
can be carried out in an SWI without blocking or disabling other HWIs.

 • Periodic functions (PRDs) are a special type of SWI triggered by a dedicated
hardware timer. PRDs are preempted by higher priority SWIs and by HWIs.

 • Tasks (TSKs) are used for less time - critical activities. They run to completion
but may be preempted by HWIs, SWIs, PRDs, and higher priority TSKs. Tasks
can be created dynamically within a DSP/BIOS application, in which case they
will be executed starting at the time at which they are created. Otherwise, TSKs
will start execution at the start of the DSP/BIOS application. However, TSKs
cannot be created from within HWIs or SWIs. A number of different priority
levels can be set for TSKs.

 • Idle functions (IDLs) are executed repeatedly as part of the lowest priority
thread in a DSP/BIOS application. The idle loop runs continuously but is pre-
empted by HWIs, SWIs, PRDs, and TSKs. By default, the idle loop contains
functions that communicate real - time analysis data from the DSP to a host.

DSP/BIOS Confi guration Tool
 The DSP/BIOS Confi guration Tool is used to create and set the properties of the
DSP/BIOS objects that make up an application. It is a visual editor for confi guration
fi les (.cdb) that can be added to a CCS project. In addition, it generates assembly
language and header and linker command fi les and adds these to a CCS project
automatically. A confi guration fi le is central to a DSP/BIOS application since it
defi nes all of the objects used and their parameter settings. In order to create a
DSP/BIOS application, program source fi les, defi ning the functions used in the
threads, must be added to a CCS project. Figure 9.1 shows an example of a Confi gu-
ration Tool window.

DSP/BIOS Startup Sequence
 At the start of the execution of a DSP/BIOS application, the following sequence of
steps is followed.

1. Initialize the DSP hardware. Initially, all interrupts are disabled.

2. Initialize the DSP/BIOS modules.

 Introduction to DSP/BIOS 375

376 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

3. Call the function main() , defi ned in a user - supplied source fi le included in the
project. At this point, interrupts are still disabled and application - specifi c ini-
tialization functions (defi ned in user - supplied source fi les) can be called. Func-
tion main() runs to completion.

4. Start DSP/BIOS. At this point hardware and software interrupts are enabled,
the clock that is used by PRD threads is started, and TSKs are enabled. Execu-
tion of the highest priority TSK will start and all TSKs will eventually be run
to completion.

5. When all TSKs have been completed or are blocked, and when no HWI, SWI,
or PRD is running, the DSP/BIOS idle loop is entered.

 More detailed information about DSP/BIOS can be found in the TMS320C6000
DSP/BIOS User ’ s Guide [1] .

 The following examples illustrate the use of different types of DSP/BIOS threads.

9.1.1 Periodic Functions

Example 9.1: Blinking of LEDs at Different Rates Using
DSP/BIOS PRDs (bios_LED)

 This example illustrates the steps involved in the creation of a simple DSP/BIOS
application. The source fi le bios_LED.c , listed in Figure 9.2 , is stored in folder
bios_LED but no project fi le is supplied. We will create the project from scratch.

1. Create a new project by selecting Project → New and typing the Project Name
bios_LED and set the Target as TM320C67XX. A new project fi le bios_LED.
pjt will be created in the existing folder bios_LED .

FIGURE 9.1. DSP/BIOS Confi guration Tool window.

//bios_LED.c DSP/BIOS application to flash LEDs

void blink_LED0()

{
 DSK6713_LED_toggle(0);
}
void blink_LED1()
{
 DSK6713_LED_toggle(1);
}
void blink_LED2()

{
 DSK6713_LED_toggle(2);
}
void blink_LED3()

{
 DSK6713_LED_toggle(3);
}

void main()
{
 DSK6713_LED_init();
 return;
}

 2. Add the source fi le bios_LED.c to the project using Project → Add Files to
Project .

 3. Add a confi guration fi le to the project . Select File → New → DSP/BIOS
Confi guration and select dsk6713.cdb as the confi guration template.

 4. Expand on Scheduling in the confi guration fi le window and right - click on
 PRD — Periodic Function Manager → Insert PRD . This adds a periodic func-
tion, PRD0 , to the application. Rename the periodic function PRDblink_LED0
by right - clicking on its icon in the confi guration fi le window and choosing
 Rename .

 5. Right - click on PRDblink_LED0 and select Properties to set the period (ticks)
to 250 and the function to _blink_LED0 . Note the underscore prefi xing the
function name. By convention, this identifi es it as a C function. Function
 blink_LED0() is defi ned in fi le bios_LED.c . Click on OK to accept the
default settings for all other properties. The properties you have set for peri-
odic function PRDblink_LED0 should now appear at the right - hand side of
the confi guration fi le window.

 FIGURE 9.2. Listing of program bios_LED.c .

 Introduction to DSP/BIOS 377

378 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

6. Repeat steps 4 and 5 three times, substituting fi rst PRDblink_LED1 for
PRDblink_LED0 , _blink_LED1 for _blink_LED0 , and 500 for 250, and then
PRDblink_LED2 for PRDblink_LED0 , _blink_LED2 for _blink_LED0 , and
1000 for 250, and fi nally PRDblink_LED3 for PRDblink_LED0 , _blink_LED3
for _blink_LED0 , and 2000 for 250.

7. Save the confi guration fi le in folder bios_LED as bios_LED.cdb .

8. Add the confi guration fi le to the project (selecting Project → Add Files to
Project). Note that it is a (.cdb) type fi le. Verify that the fi le has been added
to the project by expanding DSP/BIOS Confi g in the Project View window.

9. Expand on Generated Files in the Project View window and you will fi nd that
when the confi guration fi le was added to the project, three more fi les, bios_
LEDcfg.cmd , bios_LEDcfg.s62 , and bios_LEDcfg_c.c , were generated
and added to the project automatically.

10. Select Project → Build Options and in the Basic category in the Compiler
tab set the Target Version to C671x . In the Preprocessor category, set the Pre -
 Defi ne Symbol option to CHIP_6713 and the Include Search Path option
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . In the Linker tab, set the
Include Libraries option to DSK6713bsl.lib and the Library Search Path to
c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib .

 Build the project as bios_LED . Load and run bios_led.out and verify that the
four LEDs on the DSK fl ash at rates of 2, 1, 0.5, and 0.25 Hz.

 Figure 9.3 shows the confi guration settings for the DSP/BIOS application bios_
LED . The application comprises four PRD objects scheduled to execute at intervals
of 250, 500, 1000, and 2000 PRD clock ticks (by default, one PRD clock tick is equal
to 1 ms). The functions called at these instants, blink_LED0() , blink_LED1() ,
blink_LED2() , and blink_LED3() , are defi ned in the source fi le bios_led.c . Each
function toggles the state of one of the LEDs on the DSK. Also defi ned in that
source fi le is the function main() . This function is called at the start of execution of
the DSP/BIOS application following DSP/BIOS initialization. In this example, func-
tion main() does very little, simply initializing the LEDs on the DSK by calling a
function from the Board Support Library DSK6713bsl.lib . When function main()
fi nishes execution, the application falls into the idle loop, which is then preempted,
periodically, by the four PRDs. There is nothing in the source fi le bios_LED.c to
indicate the real - time operation of the application. All of the scheduling is handled
by DSP/BIOS, as confi gured using the confi guration tool. Source fi le bios_LED.c
simply defi nes the functions executed by DSP/BIOS objects.

9.1.2 Hardware Interrupts

 Many of the example programs in previous chapters made use of hardware inter-
rupts generated by the AIC23 codec in order to perform in real - time. The following
example illustrates the use of hardware interrupts in a DSP/BIOS application.

Example 9.2: Sine Wave Generation Using DSP/BIOS
Hardware Interrupts (HWIs) (bios_sine8_intr)

 This example modifi es program sine8_intr.c , introduced in Chapter 2 , to run as
a DSP/BIOS application. That program, listed in Figure 2.14 , is quite simple. After
calling the initialization function comm_intr() , function main() enters an endless
idle loop (while(1)). The interrupt service routine c_int11() is assigned to the
codec ADC (McBSP_0 receive) interrupt INT11 by means of the interrupt service
table in fi le vectors_intr.asm . (See Figure 9.4 .)

 The following modifi cations to program sine8_intr.c and settings in the DSP/
BIOS confi guration fi le bios_sine8_intr.cdb make it suitable for use in a DSP/
BIOS application.

 • Delete the program statement while(1) ; in function main() . There is no need
to supply an explicit idle loop since in a DSP/BIOS application, after function
main() has completed execution, the application will enter the DSP/BIOS idle
loop (IDL).

 • HWI objects corresponding to all hardware interrupt sources are present by
default in the DSP/BIOS confi guration template dsk6713.cdb . Also by default,
most have their function property set to HWI_unused .

 • Set the function property of HWI object HWI_INT11 to _c_int11 .

FIGURE 9.3. DSP/BIOS confi guration settings for bios_LED application.

 Introduction to DSP/BIOS 379

380 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

//bios_sine8_intr.c DSP/BIOS application to generate sine wave
#include "DSK6713_AIC23.h" // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select mic in

#define LOOPLENGTH 8 // size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,-7071,-10000,-
7071};
short loopindex = 0; // look up table index

void c_int11(void)
{
 output_left_sample(sine_table[loopindex++]);
 if (loopindex >= LOOPLENGTH) loopindex = 0;
 return;
}

void main()
{
 comm_intr();
}

 FIGURE 9.4. Listing of Program bios_sine8_intr.c .

 • Delete the word interrupt preceding void c_int11() and set the HWI_
INT11 object property Use Dispatcher to True .

 The fi le vectors_intr.asm is not required in this example since the mapping of
interrupts to interrupt service routines is defi ned in the confi guration fi le and the
fi les it generates. However, routines comm_intr() and output_left_sample()
defi ned in fi le c6713dskinit.c are used and that source fi le must be added to the
project. As in the previous example, source fi le bios_sine8_intr.c is supplied
in folder bios_sine8_intr but no project or confi guration fi le has been provided.
In order to create a DSP/BIOS application:

 1. Create a new project by selecting Project → New and typing the Project
Name bios_sine8_intr and set the Target as TM320C67XX. A new
project fi le bios_sine8_intr.pjt will be created in the existing folder
 bios_sine8_intr .

 2. Add the source fi le bios_sine8_intr.c and the initialization and communi-
cation fi le c6713dskinit.c (from folder Support) to the project using Project
 → Add Files to Project .

 3. Create and add a confi guration fi le to the project . Select File → New → DSP/
BIOS Confi guration . Select dsk6713.cdb as the confi guration template. By
default, this confi guration fi le contains HWI objects corresponding to all hard-
ware interrupt sources.

4. Expand Scheduling and HWI — Hardware Interrupt Service Routine Manager
in the confi guration tool window and click on HWI _INT11. Verify that, among
the HWI_INT11 properties, by default the interrupt source is MCBSP_0_
Receive and the function is HWI_unused .

5. Right - click on HWI_INT11 and select Properties to set the function to _c_
int11 , the interrupt service routine defi ned in bios_sine8_intr.c . Under
the Dispatcher tab, check Use Dispatcher . Click on OK to accept the default
settings for all other properties.

6. Save the confi guration fi le in folder bios_sine8_intr as bios_sine8_intr.
cdb .

7. Add the confi guration fi le to the project (selecting Project → Add Files to
Project).

8. Select Project → Build Options and in the Basic category in the Compiler tab
set the Target Version to C671x . In the Preprocessor category, set the Pre -
 Defi ne Symbol option to CHIP_6713 and the Include Search Path option
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . In the Linker tab, set the
Include Libraries option to DSK6713bsl.lib and the Library Search Path to
c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib . In the Advanced category of compiler
options set the Memory Model option to Far . (See Figure 9.5 .)

 Build the project as bios_sine8_intr . Load and run bios_sine8_intr.out
and verify that a 1 - kHz tone is generated.

FIGURE 9.5. Project View window for Example 9.2 .

 Introduction to DSP/BIOS 381

382 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

9.1.3 Real-Time Analysis with DSP/BIOS

 The following example illustrates how data or diagnostic messages from a DSP/BIOS
application can be logged, without interfering with its real - time operation. Calls to
the C function printf() are computationally too expensive to be used within a real -
 time program. A LOG object inserted into a DSP/BIOS application sets up a buffer
to which the function LOG_printf() can be used to append messages. LOGprintf()
uses signifi cantly less computational effort than printf() . The buffer contents are
sent to a host computer in real time as part of the idle loop. Fixed or circular LOG
object buffers of different lengths can be set up using the Confi guration Tool .

Example 9.3: Using LOG_printf() Within a Sine Wave
Generation Program (bios_sine8_intr_LOG)

 Return to the bios_sine8_intr project of the previous example and replace the
source fi le bios_sine8_intr.c with the modifi ed fi le bios_sine8_intr_LOG.c
(also stored in folder bios_sine8_intr). (See Figure 9.6 .) The modifi cations made
to bios_sine8_intr.c are:

 • The line #include <log.h> has been added. This header fi le contains function
prototypes and the LOG object structure defi nition.

 • The line extern LOG_Obj LOG_sine8_intr ; has been added. This enables the
LOG object LOG_sine8_intr , added to the application, to be used by functions
defi ned in fi le bios_sine8_intr_LOG.c .

 • The line LOG_printf(&LOG_sine8_intr, “c_int_11: output value %d \n”,
sine_table[loopindex] ; will append a message to the LOG object buffer.

 In the Confi guration Tool, using the existing fi le bios_sin8_intr.cdb , expand
Instrumentation , right - click on LOG — Event Log Manager , and select Insert LOG .
Rename the new LOG object LOG_sine8_intr (the identifi er referred to in source
fi le bios_sine8_intr_LOG.c). The default LOG object properties of a circular
buffer of 64 words are suitable for this example.

 Build, load, and run bios_sine8_intr_LOG . Verify that a 1 - kHz sine wave is gen-
erated as before. Select DSP/BIOS → Message Log and halt the program. You should
see something similar to that shown in the lower part of Figure 9.7 . The output values
listed in the Message Log window are the same as the values written to the codec. The
messages, including the text “ c_int11: output value ” have been appended to the
Message Log in real time, without compromising the generation of the sine wave.

9.1.4 Software Interrupts

 Because HWI threads have the highest priority in DSP/BIOS, run to completion,
and are not preempted by any other threads, it is advisable to minimize the amount
of processing performed by an HWI function. In general, it is recommended that

//bios_sine8_intr_LOG.c DSP/BIOS application to generate sine wave
#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in

#define LOOPLENGTH 8 //size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,
 -7071,-10000,-7071};
short loopindex = 0; //look up table index

#include <log.h>

extern LOG_Obj LOG_sine8_intr;

void c_int11(void)
{
 LOG_printf(&LOG_sine8_intr,"c_int11: output value %d\n"
 ,sine_table[loopindex]);
 output_left_sample(sine_table[loopindex++]);
 if (loopindex >= LOOPLENGTH) loopindex = 0;
 return;
}

void main()
{
 comm_intr();
}

 FIGURE 9.6. Listing of modifi ed program bios_sine_intr_LOG.c .

HWI threads deal only with time - critical data transfers and post software interrupts
that trigger SWI threads to perform lower priority processing. This technique is
illustrated by the following example.

 Example 9.4: FIR Filter Using DSP / BIOS Hardware Interrupts (HWI s) and
Software Interrupts (SWI s) (bios_fi r_SWI)

 In this example, the FIR fi lter program fi r.c , introduced in Chapter 4 , is adapted
for use with DSP/BIOS. Whereas in program fi r.c the fi lter output was computed
within the hardware interrupt service routine c_int11() , in program bios_fi r_
SWI.c (Figure 9.8) that computation is performed by a separate function fi r_isr() .
Function c_int11() , executed as HWI object HWI_INT11, simply reads a new
input sample from the codec ADC, writes a new output sample to the codec DAC,
and posts a software interrupt in order to trigger execution of SWI object SWI_fi r_
isr . That object runs function fi r_isr() in which a new fi lter output sample is
calculated.

 Introduction to DSP/BIOS 383

384 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 The specifi c modifi cations made to program fir.c are:

 • The program statement while(1) in function main() has been deleted. After
function main() has completed execution, the application will enter the DSP/
BIOS idle loop (IDL).

 • The word interrupt preceding void c_int11() has been deleted.
 • The lines #include <std.h> and #include <swi.h> have been added. These

header fi les contain function prototypes and structure defi nitions used by SWI
threads.

 • The line extern far SWI_Obj SWI_fir_isr; has been added. This enables
the SWI object SWI_fi r_isr, added to the application, to be used by functions
defi ned in fi le bios_fir_SWI.c .

 The program is stored in folder bios_fir_SWI along with a project fi le and a
complete set of confi guration fi les. Open bios_fir_SWI.cdb and note that the HWI_
INT11 object function has been set to _c_int11 and that Use Dispatcher has been
set to True . Note also the presence of a SWI object named SWI_fi r_isr with the
function set to _fir_isr .

 Build, load, and run the program. Use a signal generator and oscilloscope
connected to LINE IN and LINE OUT to verify that the lowpass FIR fi lter is
operational.

FIGURE 9.7. Message Log window after running program bios_sine8_intr_LOG.c .

 Example 9.5: fft128 c . c Using SWI Object for Buffer Processing
(bios_fft128c_SWI)

 This example provides another illustration of the use of SWI objects in a DSP/BIOS
application. Program fft128c.c , introduced in Chapter 6 , is modifi ed to run as a
DSP/BIOS application. The program implements triple - buffered frame - based pro-
cessing using a hardware interrupt service routine (c_int11()) to read and write
sample values to and from input and output buffers at every sampling instant. In
the background, intermediate frames of samples are processed.

//bios_fir_SWI.c
#include <std.h>
#include <swi.h>
#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "lp33.cof" //filter coefficient file
float yn; //filter output
float x[N]; //filter delay line

extern far SWI_Obj SWI_fir_isr;

void c_int11() //ISR
{
 x[0]=(float)(input_left_sample()); //get input into delay line
 output_left_sample((short)(yn)); //output to codec
 SWI_post(&SWI_fir_isr);
 return;
}

void fir_isr(void)
{
 short i;

 yn = 0.0; //initialise filter output
 for (i=0 ; i<N ; i++) //calculate filter output
 yn += h[i]*x[i];
 for (i=(N-1) ; i>0 ; i--) //shift delay line contents
 x[i] = x[i-1];
 return;
}

void main()
{
 comm_intr(); //initialise DSK, codec
}

 FIGURE 9.8. Listing of program bios_fi r_SWI.c .

 Introduction to DSP/BIOS 385

386 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 In the DSP/BIOS application, the time - critical and relatively simple input and
output functions are handled on a sample - by - sample basis by an HWI. When the
input buffer is full and is ready to be processed, the processing function process_

buffer() is initiated by posting a software interrupt. In this way, software interrupts
are posted N = 128 times less frequently than hardware interrupts occur. Function
process_buffer() becomes in effect an SWI interrupt service routine.

 All of the fi les required for this example are stored in folder bios_fft128c_SWI .
Build, load, and run the project and use a signal generator and oscilloscope to verify
its operation. Refer to Example 6.5 for details of its expected performance. (See
Figure 9.9 .)

Example 9.6: fastconv.c Using TSK Object for Buffer Processing
(bios_fastconv_TSK)

 This example is closely related to the previous one in that it implements a frame -
 based processing algorithm. It modifi es program fastconv.c , described in Chapter
 6 , to run as a DSP/BIOS application (Figure 9.10). Unlike Example 9.5 , it uses a
DSP/BIOS TSK object in order to carry out background buffer processing. When,
in the HWI interrupt service routine, the input buffer becomes full, instead of
posting a software interrupt, a fl ag is set. That fl ag is tested within a TSK object and
acts as a signal to initiate the exchange of buffer pointers and the processing of
another frame of samples.

 Initialization procedures related specifi cally to the DSK and codec are carried
out in function main() . The buffer processing function, which can take place in the
background, although it must complete within 128 sampling instants, is associated
with a TSK object. Whereas in the previous example, the buffer processing function
was called repeatedly (every time a software interrupt was posted), in this example,
the buffer processing task is executed only once and hence an endless loop must
explicitly be programmed into the buffer processing function. That function can also
include initialization statements that, in the previous example, were placed in func-
tion main() .

 Open biosfastconv_TSK.cdb and note that the HWI_INT11 object function
has been set to _c_int11 and that Use Dispatcher has been set to True . Note also
the presence of a TSK object named TSK_process with the function set to
_process_buffer .

9.2 RTDX USING MATLAB TO PROVIDE INTERFACE
BETWEEN PC AND DSK

 Three examples illustrate RTDX using MATLAB to provide an interface between
the PC host and the DSK target. The following software tools are required:

1. The Embedded Target for TI C6000 DSP (2.0)

2. MATLAB Link for CCS

 RTDX Using MATLAB to Provide Interface Between PC and DSK 387

//bios_fft128c_SWI.c FFT implementation calling a C-coded FFT
//function uses triple buffering for frame-based processing
//BIOS SWI version
#include <std.h>
#include <swi.h>

#include "DSK6713_AIC23.h" //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128

short buffercount = 0; //index into frames
COMPLEX A[N], B[N], C[N]; //three buffers used
COMPLEX twiddle[N]; //twiddle factors
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
short ok=0;
short bufferfull=0;

extern far SWI_Obj SWI_process;

// attach to HWI
void c_int11(void) //ISR
{
 output_left_sample((short)((output_ptr + buffercount)->real));
 (input_ptr + buffercount)->real=(float)(input_left_sample());
 (input_ptr + buffercount++)->imag = 0.0;
 if (buffercount >= N)
 {
 SWI_post(&SWI_process);
 buffercount = 0;
 }
}

void process_buffer()
{
 int n;

 temp_ptr = process_ptr; //rotate pointers to frames
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;
 fft(process_ptr,N,twiddle); //transform into freq domain

 FIGURE 9.9. Listing of program bios_fft128c_SWI.c .

388 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 for (n=0 ; n<N ; n++) //compute magnitude
 { //and place in real part
 (process_ptr+n)->real =
 -sqrt((process_ptr+n)->real*(process_ptr+n)->real
 +(process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
 }
 (process_ptr)->real = TRIGGER; //add oscilloscope trigger
 return;
}

void main()
{
 int n;

 for (n=0 ; n<N ; n++) //set up twiddle factors
 {
 twiddle[n].real = cos(PI*n/N);
 twiddle[n].imag = -sin(PI*n/N);
 }
 input_ptr = A; //initialise frame pointers
 process_ptr = B;
 output_ptr = C;
 comm_intr(); //initialise DSK,codec,McBSP
 return;
} //end of main()

FIGURE 9.9. (Continued)

and they are available from MathWorks [2] . The required version supports the
C6713 DSK (as well as platforms C6711DSK, C6416DSK, and C6701EVM). The
examples and projects in this book were implemented using MATLAB ’ s Version
6.5, Revision 13.

 Example 9.7: MATLAB – DSK Interface Using RTDX (rtdx_matlab_sim)

 This example illustrates the interface between MATLAB and the DSK using RTDX.
A buffer of data created from MATLAB (running on the host PC) is sent to the
C6x processor (running on the DSK).The C source program (running on the DSK)
increments each data value in the buffer and sends the buffer of data back to
MATLAB. There is no real - time input or output in this simulation example. The
following support fi les are used for this example and provided by TI: (1) c67 13dsk.
cmd , the linker command fi le; (2) intvecs.asm , the vector fi le; (3) rtdx.lib , the
library support fi le; and (4) target.h , a header fi le to enable interrupt. They are
included in the folder rtdx_matlab_sim .

 Figure 9.11 shows the C source program rtdx_matlab_sim.c to illustrate the
interface. It creates two channels through RTDX: an input channel to transfer data
from the MATLAB on the PC to the C6x on the DSK and an output channel to

 RTDX Using MATLAB to Provide Interface Between PC and DSK 389

 FIGURE 9.10. Listing of program bios_fastconv_TSK.c .

//bios_fastconv_TSK.c

#include <std.h>
#include <tsk.h>
#include "DSK6713_AIC23.h" //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "lp55.cof"
#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define PTS 128

short buffercount = 0; //index into frames
COMPLEX A[PTS], B[PTS], C[PTS]; //three buffers used
COMPLEX twiddle[PTS]; //twiddle factors
COMPLEX coeffs[PTS]; //zero padded filter coeffs
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
short bufferfull=0;
float a,b; //used in complex multiply

void process_buffer()
{
 int n,i;
 for (n=0 ; n<PTS ; n++) //set up twiddle factors
 {
 twiddle[n].real = cos(PI*n/PTS);
 twiddle[n].imag = -sin(PI*n/PTS);
 }
 for (n=0 ; n<PTS ; n++) //set up freq domain coeffs
 {
 coeffs[n].real = 0.0;
 coeffs[n].imag = 0.0;
 }
 for (n=0 ; n<N ; n++)
 {
 coeffs[n].real = h[n];
 }
 fft(coeffs,PTS,twiddle); //transform coeffs
 input_ptr = A; //initialise frame pointers
 process_ptr = B;
 output_ptr = C;
 comm_intr();
 while(1) //frame processing loop
 {

 while (bufferfull == 0); //wait for buffer full
 bufferfull = 0;

390 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 temp_ptr = process_ptr;
 process_ptr = input_ptr;
 input_ptr = output_ptr;
 output_ptr = temp_ptr;

 for (i=0 ; i< PTS ; i++) (process_ptr + i)->imag = 0.0;
 for (i=PTS/2 ; i< PTS ; i++) (process_ptr + i)->real = 0.0;

 fft(process_ptr,PTS,twiddle); //transform into freq domain

 for (i=0 ; i<PTS ; i++) //filter in frequency domain
 { //i.e. complex multiply
 a = (process_ptr + i)->real; //samples by coeffs
 b = (process_ptr + i)->imag;
 (process_ptr+i)->real=coeffs[i].real*a-coeffs[i].imag*b;
 (process_ptr+i)->imag=-(coeffs[i].real*b+coeffs[i].imag*a);
 }
 fft(process_ptr,PTS,twiddle);
 for (i=0 ; i<PTS ; i++)
 {
 (process_ptr + i)->real /= PTS;
 (process_ptr + i)->imag /= -PTS;
 }
 for (i=0 ; i<PTS/2 ; i++) //overlap add (real part only)
 {
 (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
 }
 } // end of while
}

// attach to HWI
void c_int11(void) //ISR
{
 output_left_sample((short)((output_ptr + buffercount)->real));
 (input_ptr + buffercount)->real = (float)(input_left_sample());
 (input_ptr + buffercount++)->imag = 0.0;
 if (buffercount >= PTS/2)
 {
 bufferfull = 1;
 buffercount = 0;
 }
}

void main()
{
 return;
} //end of main()

FIGURE 9.10. (Continued)

 RTDX Using MATLAB to Provide Interface Between PC and DSK 391

transfer data from the target DSK to the PC host.When the input channel is enabled,
data are read (received as input to the DSK) from MATLAB. After each data value
in the buffer is incremented by 1, an output channel is enabled to write the data
(sent as output from the DSK) to MATLAB. Note that the input (read) and output
(write) designations are from the target DSK.

 Figure 9.12 shows the MATLAB - based program rtdx_matlab_sim.m . This
program creates a buffer of data values 1, 2, . . . , 10. It requests board information,
opens CCS, and enables RTDX.It also loads the executable fi le rtdx_matlab_sim.
out within CCS and runs the program on the DSK. Two channels are opened
through RTDX: an input channel to write/send the data from MATLAB (PC) to
the DSK and an output channel to read/receive the data from the DSK.

 Build this project as rtdx_matlab_sim within CCS. The appropriate support fi les
are included in the folder rtdx_matlab_sim . Add the necessary support fi les: the
C source fi le rtdx_matlab_sim.c , the vector fi le intvecs.asm (from TI), c6713dsk.
cmd (from TI), rtdx.lib (located in CCStudio_v3.1 \ c6000 \ rtdx \ lib), and the
interrupt support header fi le target.h (from MATLAB). This process creates the
executable fi le rtdx_matlab_sim.out .

 FIGURE 9.11. C program that runs on the DSK to illustrate RTDX with MATLAB. The
buffer of data is incremented by one on the DSK and sent back to MATLAB (rtdx_matlab_
sim.c).

//RTDX_MATLAB_sim.c MATLAB-DSK interface using RTDX between PC & DSK

#include <rtdx.h> //RTDX support file
#include "target.h" //for init interrupt
short buffer[10] = {0}; //init data from PC
RTDX_CreateInputChannel(ichan); //data transfer PC-->DSK
RTDX_CreateOutputChannel(ochan); //data transfer DSK-->PC

void main(void)
{
 int i;

 TARGET_INITIALIZE(); //init for interrupt
 while(!RTDX_isInputEnabled(&ichan)) //for MATLAB to enable RTDX
 puts("\n\n Waiting to read "); //while waiting
 RTDX_read(&ichan,buffer,sizeof(buffer));//read data by DSK
 puts("\n\n Read Completed");
 for (i = 0; I < 10; i++)
 buffer[i]++; //increment by 1 data from PC
 while(!RTDX_isOutputEnabled(&ochan)) //for MATLAB to enable RTDX
 puts("\n\n Waiting to write "); //while waiting
 RTDX_write(&ochan,buffer,sizeof(buffer));//send data from DSK to PC
 puts("\n\n Write Completed");
 while(1) {} // infinite loop
}

392 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 FIGURE 9.12. MATLAB program that runs on the host PC to illustrate RTDX with
MATLAB. Buffer of data sent from MATLAB to the DSK (rtdx_matlab_sim.m).

%RTDX_MATLAB_sim.m MATLAB-DSK interface using RTDX. Calls CCS
%loads .out file.Data transfer from MATLAB->DSK,then DSK->MATLAB

indata(1:10) = [1:10]; %data to send to DSK
ccsboardinfo %board info
cc = ccsdsp('boardnum',0); %set up CCS object
reset(cc) %reset board
visible(cc,1); %for CCS window
enable(cc.rtdx); %enable RTDX
if ~isenabled(cc.rtdx)
 error('RTDX is not enabled')
end
cc.rtdx.set('timeout', 20); %set 20sec time out for RTDX
open(cc,'rtdx_matlab_sim.pjt'); %open project
load(cc,'./debug/rtdx_matlab_sim.out'); %load executable file
run(cc); %run
configure(cc.rtdx,1024,4); %configure two RTDX channels
open(cc.rtdx,'ichan','w'); %open input channel
open(cc.rtdx,'ochan','r'); %open output channel
pause(3) %wait for RTDX channel to
open
enable(cc.rtdx,'ichan'); %enable channel TO DSK
if isenabled(cc.rtdx,'ichan')
 writemsg(cc.rtdx,'ichan', int16(indata)) %send 16-bit data to DSK
 pause(3)
else
 error('Channel ''ichan'' is not enabled')
end
enable(cc.rtdx,'ochan'); %enable channel FROM DSK
if isenabled(cc.rtdx,'ochan')
 outdata=readmsg(cc.rtdx,'ochan','int16') %read 16-bit data from DSK
 pause(3)
else
 error('Channel ''ochan'' is not enabled')
end
if isrunning(cc), halt(cc); %if DSP running halt
processor
end
disable(cc.rtdx); %disable RTDX
close(cc.rtdx,'ichan'); %close input channel
close(cc.rtdx,'ochan'); %close output channel

 Access MATLAB and make the following directory (path) active:

 CCStudio_v3.1 \ myprojects \ rtdx_matlab_sim

Within MATLAB, run the (.m) fi le, typing rtdx_matlab_sim . Verify that the exe-
cutable fi le is being loaded (through the CCS window) and run. Within the CCS

 RTDX Using MATLAB to Provide Interface Between PC and DSK 393

window, the following messages should be printed:Waiting to read, Read completed,
Waiting to write, and Write completed.Then, within MATLAB, the following should
be printed: outdata = 2 3 4 . . . 11, indicating that the values (1, 2, . . . , 10) in the buffer
indata sent initially to the DSK were each incremented by 1 due to the C source
program line of code: buffer[i]++ ; executed on the C6x (DSK).

 Example 9.8 further illustrates RTDX through MATLAB, acquiring external
real - time input data (from the DSK) and sending them to MATLAB for further
processing (FFT, plotting).

Example 9.8: MATLAB–DSK Interface Using RTDX,
with MATLAB for FFT and Plotting (rtdx_matlabFFT)

 This example illustrates the interface between MATLAB and the DSK using RTDX.
An external input signal is acquired from the DSK, and the input samples are stored
in a buffer on the C6x processor. Using RTDX, data from the stored buffer are
transferred from the DSK to the PC host running MATLAB. MATLAB takes the
FFT of the received data from the DSK and plots it, displaying the FFT magnitude
on the PC monitor. The same support tools as in Example 9.7 are required, including
The Embedded Target for TI C6000 DSP (2.0) and MATLAB Link for CCS, avail-
able from MathWorks. The following support fi les are also used for this example
and provided by TI: (1) the linker command fi le c6713dsk.cmd ; (2) the vector fi le
intvecs.asm ; and (3) the library support fi le rtdx.lib . In the init/comm fi le
c6713dskinit.c , the line of code to point at the IRQ vector table is bypassed since
the support fi le intvecs.asm handles that.

 Figure 9.13 shows the program rtdx_matlabFFT.c to illustrate the interface. It
is a loop program as well as a data acquisition program, storing 256 input samples.
Even though the program is polling - based, interrupt is used for RTDX. An output
channel is created to provide the real - time data transfer from the C6x on the DSK
to the PC host.

 Figure 9.14 shows the MATLAB - based program rtdx_matlabFFT.m . This
program provides board information, opens CCS, and enables RTDX. It also loads
the executable fi le (rtdx_matlabFFT.out) within CCS and runs the program on
the DSK. Note that the output channel for RTDX is opened and data are read (from
MATLAB running on the PC).A 256 - point FFT of the acquired input data is taken,
sampling at 16 kHz.The program obtains a total of 2048 buffers, and execution stops
afterwards.

 Build this project as rtdx_matlabFFT within CCS. The necessary support fi les
are included in the folder rtdx_matlabFFT . Add the necessary support fi les, includ-
ing rtdx_matlabFFT.c , c6713dskinit.c , intvecs.asm (from TI), c6713dsk.cmd
(from TI), and rtdx.lib (located in c6713\c6000\rtdx\lib). Use the following
compiler options: -g –ml3 . The option –ml3 (from the Advanced Category) allows
for Memory Models: Far Calls and Data. This process yields the executable .out

fi le.

394 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

//RTDX_MATLABFFT.c RTDX-MATLAB for data transfer PC->DSK(with loop)

#include "dsk6713_aic23.h" //codec-DSK support file
#include <rtdx.h> //RTDX support file
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
RTDX_CreateOutputChannel(ochan); //create out channel C6x-->PC

void main()
{
 short i, input_data[256]={0}; //input array size 256
 comm_poll(); //init DSK, codec, McBSP
 IRQ_globalEnable(); //enable global intr for RTDX
 IRQ_nmiEnable(); //enable NMI interrupt
 while(!RTDX_isOutputEnabled(&ochan)) //wait for PC to enable RTDX
 puts("\n\n Waiting... "); //while waiting
 while(1) // infinite loop
 {
 i=0;
 while (i<256) //for 256 samples
 {
 input_data[i] = input_sample(); //defaults to left channel
 output_sample(input_data[i++]); //defaults to left channel
 }
 RTDX_write(&ochan,input_data,sizeof(input_data));//send 256 samples
 }
}

 FIGURE 9.13. C program that runs on the DSK to illustrate RTDX with MATLAB. Input
from the DSK is sent to MATLAB (rtdx_matlabFFT.c).

 Access MATLAB and make the following directory (path) active:

 CCStudio_v3.1 \ myprojects \ rtdx_matlabFFT

This folder contains the necessary fi les associated with this project. Within
MATLAB, run the (.m) fi le rtdx_matlabFFT . Verify that the executable (.out) fi le
is being loaded and run within CCS. Input a sinusoidal signal with a frequency of
2 kHz and verify that the output is the delayed (attenuated) input signal (a loop
program). Within MATLAB the plot shown in Figure 9.15 is displayed on the PC
monitor, which is the FFT magnitude of the input sinusoidal signal.Vary the fre-
quency of the input signal to 3 kHz and verify the FFT magnitude displaying a
spike at 3 kHz.

 The FFT is executed on the PC host. As a result, on an older/slower PC, changing
the input signal frequency will not yield a corresponding FFT magnitude plot
immediately. Note : If it is desired to transfer data from the PC to the DSK, an input
channel would be created using

 RTDX Using MATLAB to Provide Interface Between PC and DSK 395

%RTDX_MATLABFFT.m MATLAB-DSK interface with loop. Calls CCS,
%loads .out file. Data from DSK‡MATLAB for FFT and plotting

ccsboardinfo %board info
cc=ccsdsp('boardnum',0); %setup CCS object
reset(cc); %reset board
visible(cc,1); %for CCS window
enable(cc.rtdx); %enable RTDX
if ~isenabled(cc.rtdx);
 error('RTDX is not enabled')
end
cc.rtdx.set('timeout', 20); %set 20sec timeout for RTDX
open(cc,'rtdx_matlabFFT.pjt'); %open project
load(cc,'./debug/rtdx_matlabFFT.out'); %load executable file
run(cc); %run program
configure(cc.rtdx,1024,1); %configure one RTDX channel
open(cc.rtdx,'ochan','r'); %open output channel
pause(3) %wait for RTDX channel to open
fs=16e3; %set sample rate in MATLAB
fftlen=256; %FFT length
fp=[0:fs/fftlen:fs/2-1/fftlen]; %for plotting within MATLAB
enable(cc.rtdx,'ochan'); %enable channel from DSK
isenabled(cc.rtdx,'ochan');
for i=1:2048 %obtain 2048 buffers then stop
 outdata=readmsg(cc.rtdx,'ochan','int16'); %read 16-bit data from DSK
 outdata=double(outdata); %32-bit data for FFT
 FFTMag=abs(fftshift(fft(outdata))); %FFT using MATLAB
 plot(fp,FFTMag(129:256))
 title('FFT Magnitude of data from DSK');
 xlabel('Frequency');
 ylabel('Amplitude');
 drawnow;
end
halt(cc); %halt processor
close(cc.rtdx,'ochan'); %close channel
clear cc %clear object

 FIGURE 9.14. MATLAB program that runs on the host PC to illustrate RTDX with
MATLAB. MATLAB ’ s FFT and plotting functions are used (rtdx_matlabFFT.m).

 RTDX_CreateInputChannel(ichan);
 While(!RTDX_isInputEnabled(& ichan));
 RTDX_read(& ichan, . . .)

This creates an input channel, waits for the input channel to be enabled, and reads
the data (input to the C6x on the DSK). In the MATLAB program, the following
lines of code

 open(cc.rtdx, ’ ichan ’ , ’ w ’);
 enable(cc.rtdx, ’ ichan ’);
 writemsg(. . .);

396 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

FIGURE 9.15. MATLAB ’ s plot of the FFT magnitude of data received from the DSK.

open and enable an input channel and then write (send) the data from MATLAB
running on the host PC to the C6x on the DSK. See Example 9.7 .

Example 9.9: MATLAB–DSK Interface Using RTDX for
FIR Filter Implementation (rtdx_matlabFIR)

 This example further illustrates RTDX with MATLAB with the implementation
of FIR fi lters. Figure 9.16 shows the C source program FIR3LP_RTDX.c that
generates an input signal and implements an FIR fi lter on the DSK. The input
signal consists of the product of random noise and a sine wave from a lookup
table. This generated signal is the input to an FIR fi lter (see Example 4.1). The
output of the fi lter is stored in a buffer, the address of which is transferred to
MATLAB through the output RTDX channel. Initially, the implemented fi lter is a
lowpass FIR fi lter with a cutoff frequency at 600 Hz. The coeffi cients of this fi lter
are in the fi le LP600.cof . Two other FIR lowpass fi lter coeffi cients can also be
selected in this example: LP1500.cof and LP3000.cof . These three sets of coeffi -
cients were used in Example 4.2 (FIR3LP). The address of the specifi c fi lter to be
implemented is read through the RTDX input channel. All the appropriate support

 RTDX Using MATLAB to Provide Interface Between PC and DSK 397

 FIGURE 9.16. C program that implements FIR fi lters and runs on the DSK. It illustrates
RTDX with MATLAB.

//FIR3LP_RTDX.c FIR-3 Lowpass with different BWs using RTDX-MATLAB
#include "lp600.cof" //coeff file LP @ 600 Hz
#include <rtdx.h>
#include <stdio.h>
#include "target.h"
int yn = 0; //initialize filter's output
short dly[N]; //delay samples
short h[N]; //filter characteristics 1xN
short loop = 0;
short sine_table[32]={0,195,383,556,707,831,924,981,1000,981,924,831,
 707,556,383,195,0,-195,-383,-556,-707,-831,-924,-981,
 -1000,-981,-924,-831,-707,-556,-383,-195};//sine values
short amplitude = 10;
#define BUFFER_SIZE 256
int buffer[BUFFER_SIZE];
int inputsample, outputsample;
short j = 0;
RTDX_CreateInputChannel(ichan); //create input channel
RTDX_CreateOutputChannel(ochan); //create output channel

void main()
{
 short i;
 TARGET_INITIALIZE();
 RTDX_enableInput(&ichan); //enable RTDX channel
 RTDX_enableOutput(&ochan); //enable RTDX channel
 for (i=0; i<N; i++)
 {
 dly[i] = 0; //init buffer
 h[i] = hlp600[i]; //start addr of LP600 coeff
 }
 while(1) //infinite loop
 {
 inputsample=rand()+amplitude*(sine_table[loop]);//generate input
 if (loop < 31) ++loop;
 else loop = 0;
 dly[0]=inputsample; //FIR filter section
 yn = 0; //initialize filter output
 if (!RTDX_channelBusy(&ichan)) {
 RTDX_readNB(&ichan,&h[0],N*sizeof(short));} //input coeff
 for (i = 0; i< N; i++)
 yn +=(h[i]*dly[i]); //y(n) += h(LP#,i)*x(n-i)
 for (i = N-1; i > 0; i--) //starting @ bottom of buffer
 dly[i] = dly[i-1]; //update delays
 outputsample = (yn >> 15); //filter output
 buffer[j] = outputsample; //store output -> buffer
 j++;
 if (j==BUFFER_SIZE) {
 j = 0;
 while (RTDX_writing != NULL) {} //wait rtdx write to complete
 RTDX_write(&ochan, &buffer[0], BUFFER_SIZE*sizeof(int));
 }
 }
}

398 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

fi les for this example are in the folder rtdx_matlabFIR . The CCS project is already
built.

 1. Access MATLAB, and set the path to c: \ CCStudio_v3.1 \ myprojects \ RTDX_
MATLABFIR . Open the MATLAB program (mwslider.m) and set the appropri-
ate path (within the program). Within MATLAB, type mwslider . This
MATLAB program mwslider.m displays a slider to select among the three
sets of fi lter coeffi cients, and plots both the fi ltered signal and its spectrum.
You should obtain Figure 9.17 (without the plots). The slider is initially set to
implement the lowpass fi lter with a cutoff frequency of 600 Hz.

(a)

 FIGURE 9.17. MATLAB plots with slider used to select one of three FIR lowpass fi lter
coeffi cients. The upper and lower graphs show the fi ltered signal and its spectrum, respec-
tively: (a) selecting BW of 600 Hz; (b) selecting BW of 1500 Hz; and (c) selecting BW of
3000 Hz.

 RTDX Using MATLAB to Provide Interface Between PC and DSK 399

(b)

FIGURE 9.17. (Continued)

 2. Select the target (this must be done fi rst), and press OK to select the C6713
DSK board. Press Start to run. This opens CCS and loads and runs the execut-
able fi le rtdx_matlabFIR.out . Verify the results in Figure 9.17 a that shows
the fi ltered signal (upper graph) as well as its spectrum (lower graph). From
the lower graph, the bandwidth is at approximately 0.15, which represents
the normalized frequency v , where v = f/FN and FN is the Nyquist frequency,
4 kHz. This corresponds to a cutoff frequency f = 0.15 FN = 600 Hz. Change the
slider to the middle position to select the 1500 - Hz lowpass fi lter for imple-
mentation and verify the results in Figure 9.17 b. Figure 9.17 c shows that the
3000 - Hz fi lter was selected and implemented. Note that the normalized
frequency is approximately 0.75, which corresponds to a cutoff frequency,
 f = 0.75 F N = 3000 Hz.

400 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

(c)

FIGURE 9.17. (Continued)

 9.3 RTDX USING VISUAL C ++ TO INTERFACE WITH DSK

 Two examples are provided to illustrate the use of RTDX with Microsoft ’ s Visual
C++, one of which makes use of MATLAB ’ s functions for fi nding and plotting the
FFT magnitude (not for the RTDX interface).Three projects in Chapter 10 (DTMF,
FIR, and Radix - 4 FFT) make use of RTDX with Visual C++ to obtain a PC - DSK
interface.

 Example 9.10: Visual C ++ – DSK Interface Using RTDX for
Amplitude Control of the Sine Wave (rtdx_vc_sine)

 This example illustrates the use of RTDX with Microsoft Visual C++. The applica-
tion running on the target DSK generates a sine wave.A procedure follows to

illustrate the development of the host application with RTDX support — in particu-
lar, the development of a Visual C++ application with a slider control for adjusting
the amplitude of the generated sine wave running on the C6x DSK. All the Visual
C++ application fi les are on the CD in the folder rtdx_vc_sine .

 CCS Component
 Figure 9.18 shows the C source program rtdx_vc_sine.c that implements the sine
generation with amplitude control.This is the same C source program used to illus-
trate RTDX with Visual Basic in Example 9.12 as well as with LabVIEW in Example
9.16 . An RTDX input channel is created and enabled in order to read the slider
data from the PC host.

 Create, save, and add the confi guration fi le rtdx_vc_sine.cdb to the project.
Select INT11, MCSP_1_Transmit as the interrupt source and _c_int11 as the
function. See Example 9.2 . Add the autogenerated linker command fi le and the
BSL library support fi le.The run - time and the CSL library support fi les are included

 FIGURE 9.18. C program that runs on the DSK to illustrate RTDX with Visual C++. It
generates a sine wave (rtdx_vc_sine.C).

//RTDX_vc_sine.c Sine generation.RTDX using Visual C++(or VB/LABVIEW)

#include "rtdx_vc_sinecfg.h" //generated by .cdb file
#include "dsk6713_aic23.h" //codec-dsk support file
#include <rtdx.h> // for rtdx support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
short loop = 0;
short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707};
int gain = 1;
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11() //ISR set in .cdb
{
 output_sample(sin_table[loop]*gain);
 if (++loop > 7) loop = 0;
}

void main()
{
 comm_intr(); //init codec,dsk,MCBSP
 RTDX_enableInput(&control_channel); //enable input channel
 while(1) //infinite loop
 {
 if(!RTDX_channelBusy(&control_channel)) //if channel not busy
 RTDX_read(&control_channel,&gain,sizeof(gain));//read from PC
 }
}

 RTDX Using Visual C++ to Interface with DSK 401

402 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

in the autogenerated linker command fi le. Add also the init and communication
fi les, but not the vector fi le. The necessary fi les are included in the folder
rtdx_vc_sine .

 Build this project as rtdx_vc_sine . Within CCS, load and run the executable fi le
rtdx_vc_sine.out . Verify that a 2 - kHz sine wave is generated and outputted
through the codec on the DSK.

 Enable RTDX within CCS. Select Tools → RTDX → Confi guration Control →
 Enable RTDX (activate/check it).

Visual C++ Component
 Run the Visual C++ application (executable fi le on the CD). The gain slider in
Figure 9.19 should pop up. Vary the gain slider position and verify a corresponding
change in the amplitude of the generated sine wave with the DSK output connected
to a speaker or a scope.

Procedure to Develop the Visual C++ Executable File
 This proceduce is used to develop the necessary Visual C++ support fi les to create
the executable (.exe) fi le (already on the CD in the folder rtdx_vc_sine).

1. Launch Microsoft Visual C++ and select File → New to create a new project.
Various types of C++ projects will be displayed in the new project dialog.

2. Select MFCAPPWizard (exe), and specify rtdx_vc_sine as the project name
and c:\ccstudio_v3.1\myprojects\rtdx_vc_sine as the location. Click
OK .

3. This brings out the MFCAPPWizard dialog. Select the application type dialog
based , then select next . Click on next twice to accept the default settings. Then,
click on Finish and OK . Three classes will be automatically generated and
added to the project.

4. A dialog resource editor will be opened. Click on TODO: Place dialog
controls here and delete it from the main dialog window by pressing the

FIGURE 9.19. Gain slider obtained with Visual C++ for the project rtdx_vc_sine .

delete key. Resize the main dialog window to an appropriate size (use
the lower - right corner with the mouse). Select the slider control from the
Control Toolbox (on the right). Draw the slider control in the main dialog
window by holding it down with the left mouse button and moving it to the
dialog window. Release the button when the control is of the appropriate
size.

5. Right - click on the slider control in the main dialog window, and select the
properties menu item. Click on the styles tab and select the Tick Marks and
the Auto Ticks options. From the Point list, select the Top/Left option. Close
the slider control property dialog.

6. Click on the ClassView pane (bottom - left window) to expose the three classes
that constitute the project, as shown in Figure 9.20 , along with the slider
control. These classes are:
 • CaboutDlg
 • CtestprojectApp
 • CtestprojectDlg

 where testproject is the project name specifi ed initially in step 2 (rtdx_vc_
sine). The class of interest is CTestprojectDlg since it is the class that
controls the main dialog window. The CTestprojectApp class is a standard
class included in most projects to handle application startup, since there is
no main function, as in a typical C++ console application. The CAboutDlg

FIGURE 9.20. Visual C++ windows displaying the classview pane and the gain slider control
for the project rtdx_vc_sine.

 RTDX Using Visual C++ to Interface with DSK 403

404 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

class is responsible for displaying an About message dialog, as in most
window - based applications.

7. From the main menu, select View and select the ClassWizard menu item. This
pops up the MFCClassWizard dialog window. (Make sure to select CTestpro-
jectDlg from the class name.) Select the Member Variables tab, and then select
IDC_SLIDER1 from the list of control IDs.

8. Click the Add Variable button to display the Add Member Variable dialog.
Choose an appropriate member variable name, such as m_slider , and make
sure that the Category fi eld is Value and the Variable type fi eld is int . Click
OK to return to the ClassWizard dialog window.

9. Create a new class for RTDX. Click on the Add Class button and select from a
type library . Browse in the folder c:\CCStudio_v3.1\cc\bin and select (or
type) the fi le Rtdxint.dll . This pops up the Confi rm classes dialog. Click OK
to return to the ClassWizard dialog. Click OK again to dismiss the ClassWizard
dialog. The new class IRtdxExp has been added for the functionality of RTDX.

10. From the ClassView pane (lower - left window):

 (a) Select the class CTestprojectDlg . Right - click on the class and select Add
member variable . For variable type, use IRtdxExp * (note the pointer
notation), and for variable name use pRTDX (or another name). Click
OK to dismiss the dialog. This creates a pointer that represents and
manipulates the class IRtdxExp created in the previous step.

(b) Right - click on the class CTestprojectDlg and select Add Windows Message
Handler . This will bring up the New Windows Message dialog. From the
list, fi nd and select the message WM_DESTROY . Click on the Add and
Edit button to insert the new windows message. Add the following lines
of code just after the function

CDialog::OnDestroy().
if(pRTDX->Close())

MessageBox(“Could not close the channel! ”, “Error”);

 (c) Right - click on the class CTestprojectDlg and choose the Add Windows
Message Handler to bring up again the New Windows Message dialog.
Select the WM_HSCROLL message and click on the Add and Edit button.
Add the following lines of code just above the function CDialog::

OnHScroll(nSBCode, nPos, pScrollBar). This is shown in Figure
 9.21 .

long buffer;
UpdateData(TRUE);
pRTDX->WriteI4((long)m_slider, &buffer);
UpdateData(FALSE);

(d) Select the class CTestprojectDlg and expand it. Locate the function
OnInitDialog() and double - click on it. Add the following lines of code
just above the return instruction:

CSliderCrtl* pSliderCrtl = (CSliderCrtl *)
GetDlgItem(IDC_SLIDER1);

pSliderCrtl->SetRange(1,10);
pRTDX = new IRtdxExp;
pRTDX->CreateDispatch(_T(“RTDX”));
if(pRTDX->SetProcessor(_T(“C6713DSK”),_T(“CPU_1”)))
MessageBox(“Could not set the processor! ”,

“Error”);if(pRTDX->Open(“control_channel”, “W”))
MessageBox(“Could not open the channel! ”, “Error”);

 (e) Double - click on the class CTestprojectDlg and add the following line of
code just before the class defi nition statement:

#include “rtdxint.h”

FIGURE 9.21. Visual C++ windows handler for the message WM_HSCROLL .

 RTDX Using Visual C++ to Interface with DSK 405

406 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 (f) Select the class CTestprojectApp and expand it. Double - click on the func-
tion InitInstance() and add the following line of code:

AfxOleInit();

just above the line CTestAppDlg dlg;.

 The added lines of code can be verifi ed from the fi le rtdx_vc_sineDlg.cpp (on
the CD). Select Build (menu item from the main project window) → Rebuild All to
create the application (executable) fi le.

Example 9.11: Visual C++–DSK Interface Using RTDX with MATLAB
Functions for FFT and Plotting (rtdx_vc_FFTmatlab)

 This example illustrates real - time data communication using RTDX with Microsoft
Visual C++, invoking MATLAB ’ s FFT and plotting functions. MATLAB is not used
in this example to provide the RTDX communication link between the PC and the
DSK, as in Examples 9.7 – 9.9 . Instead, only MATLAB ’ s functions for FFT and plot-
ting are invoked.

 The folder rtdx_vc_FFTmatlab contains the Visual C++ support fi les, including
the application/executable fi le rtdx_vc_FFTmatlab.exe (already built). See also
 Example 9.10 .

Running Executable from CCS
 The folder rtdx_MatlabFFT for Example 9.8 includes the main C source program
(Figure 9.13) rtdx_matlabFFT.c , which implements a loop program. It also creates
and enables an output channel to write/send data acquired from the DSK to the
PC. It illustrated RTDX with MATLAB in Example 9.8 , and it can be used in this
example to illustrate this Microsoft Visual C++ application. The (.m) MATLAB fi le
that provides the RTDX communication link between the DSK and the PC in
 Example 9.8 is not used in this example. Only MATLAB ’ s FFT and plotting func-
tions are used.

 Input into the DSK a 2 - kHz sine wave with an approximate amplitude of 1 V p - p.
Within the CCS window, select Tools → RTDX → Enable RTDX (check it). Load
and run rtdx_matlabFFT.out . The RTDX communication link is not yet produced,
and “ waiting ” is printed continuously within the CCS window.

Running Visual C++ Application
 Run the Visual C++ application rtdx_vc_FFTMatlab.exe located in the folder
rtdx_vc_FFTMatlab\debug (double - click on it).

 Verify a loop program with the DSK output to a scope, and an FFT plot of
the 2 - kHz sine wave as shown in Figure 9.22 , obtained using MATLAB ’ s FFT and

plotting functions (see also Example 9.8). Change the input sine wave frequency to
3 kHz and verify that the MATLAB plots 3 - kHz sine wave.

 You can readily add the labels for the x and y axes in Figure 9.22 by modifying
the fi le rtdx_vc_FFTMatlabDlg.cpp . Find the section of code where the MATLAB
functions are invoked for FFT and plotting. After the line of code for the fi gure ’ s
title, insert the appropriate xlabel and ylabel functions. Launch Microsoft Visual
C++. Select File and open the workspace (.dsw) fi le located in the folder rtdx_vc_
FFTmatlab . Select Build → Rebuild All to recreate a new application (.exe) fi le.
Verify that the FFT plot now contains the x and y axis labels.

Creation of Visual C++ Application and Support Files
1. Repeat steps 1 – 3 in Example 9.10 . The Resource Dialog editor should be

opened. Resize the main dialog window. Right - click on the TODO:Place
dialog control here and select the Properties menu item. From the resulting
property dialog in the Caption fi eld, enter any messages that you want dis-
played in the dialog window (such as RTDX with Visual C++ to . . .), and then
close the property dialog window.

FIGURE 9.22. Plot of FFT magnitude (with MATLAB) to illustrate RTDX using Visual
C++ for the project rtdx_vc_matlabFFT .

 RTDX Using Visual C++ to Interface with DSK 407

408 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

 2. Click on the ClassView pane to expose the three classes: CaboutDlg, CRtdx_
vc_fftMatlabApp , and CRtdx_vc_fftMatlabDlg. Figure 9.23 a shows the Class-
View pane displaying these classes and a message inserted by the user in step
3. You can adjust the size of the dialog window so that it looks like Figure
 9.23 , which will pop up when you run the executable fi le. (Delete the cancel

 FIGURE 9.23. (a) ClassView pane displaying the three classes, and a message inserted by
the user, for the project rtdx_vc_FFTmatlab; and (b) message when application fi le is
executed.

(a)

(b)

button and change the text of the OK button to Exit, which is already
done.)

3. Select View from the main menu, then ClassWizard. This pops up the MFC
ClassWizard dialog window. Repeat step 9 in Example 9.10 .

4. Repeat step 3, but select New (instead of from a type library). For the class
name, enter CRTDXThread . Click on the Base Class list, select CWinThread ,
and click OK . The newly created CRTDXThread class can be used to run a
separate window thread that continuously polls the open RTDX channel for
incoming real - time data. This is more effi cient than having the main program
poll the RTDX channel.

5. From the ClassView pane, right - click on the class CRtdx_vc_fftMatlabDlg and
select Add member variable . For the type, use CRTDXThread * (note the
pointer notation) and for the name, use pRTDXThread (or another name)
and click OK to dismiss the dialog. Double - click on CRtdx_vc_fftMatlabDlg
to open its class defi nition fi le, and add the following line of code (just before
the class defi nition):

#include “RTDXThread.h”

6. Create a class for the functionality with MATLAB:

 (a) Click on Insert from the main menu and select New Class . For the class
type, select Generic class and for the name, type CMatlabClass . Then click
OK to close the dialog.

(b) Select and double - click on the CMatlabClass (from the ClassView pane)
to open its class defi nition fi le. Add the following lines of code (just above
the class defi nition):

#include “Engine.h”
#pragma comment(lib, “libeng.lib”)
#pragma comment(lib, “libmx.lib”)

Right - click on CMatlabClass and select Add member variable. For the
type, use Engine * (note the pointer notation) and for the name, use
pEngine (or another name), and then click OK .

 (c) Double - click on CMatlabClass to reveal its class defi nition. Add the fol-
lowing lines of code below the defi nition for pEngine (below Engine *
pEngine):

public:
void OpenMatlab(LPCTSTR lpCommand);
. . . //already added
int CreateBuffer(char *pOutputBuffer, int nLength);

 RTDX Using Visual C++ to Interface with DSK 409

410 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

(d) Click on the File View pane (next to the ClassView pane), and expand
Rtdx_vc_fftMatlab to expose three folders. Expand on Source Files , and
double - click on MatlabClass.cpp. Add this section of code at the end of
this fi le (after the pair of brackets):

void CMatlabClass::OpenMatlab(LPCTSTR lpCommand)
{
pEngine = engOpen(lpCommand);
. . .
return engOutputBuffer(pEngine, pOutputBuffer, nLength);
}

 (e) Right - click on the class CRtdx_vc_fftMatlabDlg and select Add Windows
Message Handler . Find and select the message WM_DESTROY , and click
on Add and Edit to insert the new windows message. Add the following
lines of code beneath the function CDialog::OnDestroy():

nFlat = 0;
WaitForSingleObject(pRTDXThread->m_hThread,INFINITE);

 (f) Right - click on the class CRtdx_vc_fftMatlabDlg and click on Add member
function . For the type, use UINT and for the declaration, type static RTD
XThreadFunction(LPVOID lpVoid) and then click OK .

 (g) Expand the class CRtdx_vc_fftMatlabDlg , double - click on the member
function RTDXThreadFunction(LPVOID lpVoid) , and add the following
lines of code in the function body (between the pair of brackets):

CMatlabClass* pMatlab;
IRtdxExp *pRtdx;
. . .
pMatlab->ExecuteLine(_T(“fs = 16e3; ”));
. . .
pMatlab->ExecuteLine (_T(“plot(fp, fftMag(129: 256)) ”));
. . .
return 0;

Scroll to the top of the fi le and add the following two include fi les and
the global variable nflag :

#includee “MatlabClass.h”
#include “Rtdxint.h”
int nFlag = 1;

(h) With the class CRtdx_vc_fftMatlabDlg expanded, double - click on the
member function OnInitDialog() and add the following line of code just
before the return instruction:

pRTDXThread = (CRTDXThread *)AfxBeginThread
(RTDXThreadFunction,m_hWnd);

7. The path of MATLAB libraries and include fi les need to be added before
building the project. Select Tools → Options to display the Options dialog,
and click on the Directories tab. Select the Include File s item from Show
directories for . Click twice on the rectangle below the list of Directories , then
click on the “ . . . ” displayed on the right. Browse in your MATLAB installa-
tion directory for the include path c:\ Matlab_folder \ extern \ include (e.g.,
matlabR13 as the Matlab_folder). From the Show directories for list, select the
library fi le item. Click twice on the rectangle below the list of Directories and
select the “ . . . ” (as before). Browse in your MATLAB folder for the path
c:\ Matlab_folder \ extern \ lib \ win32 \ microsoft \ msvc60 , and click on OK to save
the changes.

 Build the Visual C++ application project. Select Build → Rebuild All to create
rtdx_vc_FFTMatlab.exe .

9.4 RTDX USING VISUAL BASIC TO PROVIDE INTERFACE
BETWEEN PC AND DSK

 Two examples are provided to illustrate the interface between the PC host and the
DSK with RTDX using Visual Basic.

Example 9.12: Visual Basic –DSK Interface Using RTDX for
Amplitude Control of a Sine Wave (rtdx_vbsine)

 This example generates a sine wave outputted through the codec on the DSK. It
illustrates RTDX using Visual Basic (VB) to create a slider and control the ampli-
tude of the generated sine wave.

CCS Component
 Figure 9.24 shows the C source program rtdx_vbsine.c that implements the
sine generation with amplitude control. This is the same C source program used to
illustrate RTDX with Visual C++ in Example 9.7 and LabVIEW in Example 9.16 .
An RTDX input channel is created and enabled in order to read the slider data
from the PC host. This example is not meant to teach the reader VB, but rather to
use it.

 Create, save, and add a confi guration fi le rtdx_vbsine.cdb to the project.
Select INT11, MCSP_1_Transmit as the interrupt source, and _c_int11 as the
function (see Example 9.2). Add the autogenerated linker command fi le and the

 RTDX Using Visual Basic to Provide Interface Between PC and DSK 411

412 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

//rtdx_vbsine.c Sine generation.RTDX with Visual Basic(VC++/LABVIEW)

#include "rtdx_vbsinecfg.h" //generated by .cdb file
#include "dsk6713_aic23.h" //codec-dsk support file
#include <rtdx.h> // for rtdx support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
short loop = 0;
short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707};
int gain = 1;
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11() //ISR set in .cdb
{
 output_sample(sin_table[loop]*gain);
 if (++loop > 7) loop = 0;
}

void main()
{
 comm_intr(); //init codec,dsk,MCBSP
 RTDX_enableInput(&control_channel); //enable input channel
 while(1) //infinite loop
 {
 if(!RTDX_channelBusy(&control_channel)) //if channel not busy
 RTDX_read(&control_channel,&gain,sizeof(gain));//read from PC
 }
}

 FIGURE 9.24. C program that generates a sine wave. It illustrates RTDX using VB to
control the amplitude of the generated sine wave (rtdx_vbsine.c).

BSL library support fi le. The run - time and the CSL library support fi les are
included in the auto - generated linker command fi le. Add also the init and commu-
nication fi le, but not the vector fi le. The necessary fi les are included in the folder
 rtdx_vbsine .

 Build this project as rtdx_vbsine . Within CCS, load and run the executable fi le
 rtdx_vbsine.out . Verify that a 2 - kHz sine wave is generated and outputted through
the codec on the DSK.

 Enable RTDX within CCS. Select Tools → RTDX → Confi guration Control →
 Enable RTDX (activate/check it).

 VB Component
 The folder rtdx_vbsine contains a subfolder PC that contains the support fi les
associated with VB. Click on the (.vbp) VB project fi le to open VB. The project
consists of the fi le slider.frm that describes the slider and the fi le boardproc_
frm.frm that describes the board information. These two fi les are included with

CCS. The slider is the same as that used in an example (hostio1) included with CCS.
Within VB, select Run → Start . Press OK for the board information and the slider
box shown in Figure 9.25 should pop up. Connect the DSK output to a scope. Vary
the slider position and verify the change in the amplitude of the generated output
sine wave (keep the mouse cursor on the slider button to change the slider value).
Note that the Application (.exe) fi le, included on the CD, also can be used to run
the VB project directly. This application fi le can be recreated within VB after loading
the project fi le and selecting File → Make rtdx_vbsine.exe .

 The next example implements a loop using RTDX with VB, where the amplitude
of the output signal is changed using a gain value sent by the PC host to the C6x
processor.

Example 9.13: Visual Basic –DSK Interface Using RTDX for Amplitude
Control of Output in a Loop Program (rtdx_vbloop)

 This example extends the previous example with a loop program using VB and
RTDX to control the amplitude of an output signal. A window where the user can
enter a gain value is built in VB. That gain value is sent from the PC host to the C6x
processor. Figure 9.26 shows the C source program rtdx_vbloop.c that implements
this project example. See also the previous example.

 An RTDX input channel is created and enabled. When the RTDX channel is not
busy, the C6x processor reads the data from the PC. Create and add a confi guration
fi le to set the interrupt service function, and add similar support fi les to the project,
as in the previous example.

 Build this project as rtdx_vbloop . Input a sine wave with an approximate ampli-
tude and frequency of 0.5 V p - p and 2 kHz, respectively. Verify that the DSK output
exhibits the characteristics of a loop program, as in Examples 2.1 and 2.2 . Enable
RTDX within CCS as in the previous example.

 The subfolder PC within the folder rtdx_vbloop contains the support fi les associ-
ated with VB. The VB project includes the board information fi le, as in the previous
example, and gain.frm , a block where the user can enter a gain value to control
the amplitude of the output sine wave. The object gain.frm was created with VB.

FIGURE 9.25. Volume slider to control the amplitude of the DSK output signal. Object
created with VB for the project rtdx_vbsine .

 RTDX Using Visual Basic to Provide Interface Between PC and DSK 413

414 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

//rtdx_vbloop.c RTDX with Visual basic(or VC++)for loop gain control
#include "rtdx_vbloopcfg.h" //generated by .cdb file
#include "dsk6713_aic23.h"
#include <rtdx.h> //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
int gain = 1; //initial gain value
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11() //ISR
{
 output_sample(gain*input_sample()); //output = scaled input
}

void main()
{
 comm_intr(); //init codec,DSK,MCBSP
 RTDX_enableInput(&control_channel); //enable RTDX channel
 while(1) //infinite loop
 {
 if(!RTDX_channelBusy(&control_channel)) //if channel not busy
 RTDX_read(&control_channel,&gain,sizeof(gain));//read gain from PC
 }
}

 FIGURE 9.26. C program that implements a loop. It illustrates RTDX using VB to control
the amplitude of an output signal from the DSK (rtdx_vbloop).

 FIGURE 9.27. Gain slider to control the amplitude of the DSK output signal. Loop gain
object created with VB for the project rtdx_vbloop .

Run the application (.exe) fi le. Enter a gain value of 3 (see Figure 9.27) and verify
the increase in amplitude of the output sine wave.

 Note that instead of using gain.frm in the project, you can use slider.frm from
the previous example to obtain the slider.

9.5 RTDX USING LABVIEW TO PROVIDE INTERFACE
BETWEEN PC AND DSK

 Three examples are provided to illustrate RTDX with LabVIEW for fi lter design
and for adjusting the gain of a generated sinusoid. These examples are not intended
to teach LabVIEW, but rather to illustrate the interface between the DSK and
LabVIEW. The source fi les (LabVIEW Instrument .vi) are included on the CD.
You can test these examples even if you do not have the LabVIEW tools. If you do,
you can further open the source as a block diagram of a virtual instrument (VI)
consisting of individual block components (as smaller VIs). VIs are available for
signal generation, plotting, and so on.

 The following tools are required:

1. LabVIEW Full Development System, V. 7.0

2. LabVIEW DSP Test Integration Toolkit for TI DSP, V. 2.0

 and are available from National Instruments [7] . The DSP test integration toolkit
provides the RTDX link between LabVIEW and the DSK. To create the executable
(application) fi le, the professional version is required.

Example 9.14: LabVIEW–DSK Interface Using RTDX for
FIR Filtering (rtdx_lv_filter)

 This example illustrates RTDX using LabVIEW to provide the communication link
between the C6x running on the DSK and LabVIEW running on the host PC.
LabVIEW is used for the design of an FIR fi lter, for the generation of a sine wave
as input to the fi lter, and for plotting the fi ltered output. The FIR fi lter is imple-
mented on the DSK. All the necessary fi les for this example are included in the
folder rtdx_lv_filter .

1. Click on the LabVIEW Instrument (.vi) fi le rtdx_lv_filter to open the
(.vi) window shown in Figure 9.28 . The initial fi lter settings are for an FIR
bandpass fi lter design using a Hamming window, and with low and high cutoff
frequencies of 500 and 1000 Hz, respectively. Select Operate → Run . In Figure
 9.28 , the upper graphs show both the input sine wave generated with LabVIEW
and the output of the fi lter implemented on the DSK. The theoretical fre-
quency response of the designed fi lter is also plotted showing a center fre-
quency at 750 Hz. Vary the input signal frequency between 300 and 1200 Hz
and verify that the fi lter ’ s output amplitude starts with zero, reaches a maximum
at 750 Hz, and then decreases again toward zero.

 Change the fi lter settings for a lowpass with a bandwidth (low cutoff fre-
quency) of 1500 Hz. Vary the frequency of the input signal between 0 and
1600 Hz. Verify that the amplitude and frequency of the fi ltered output signal

 RTDX Using LabVIEW to Provide Interface Between PC and DSK 415

416 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

FIGURE 9.28. LabVIEW Instrument window for FIR fi lter design and plotting to illustrate
RTDX for the project rtdx_lv_filter .

are the same as those of the input signal for frequencies between 0 and
1300 Hz. The output signal ’ s amplitude decreases toward zero for input fre-
quencies beyond 1300 Hz.

 Various windows for the fi lter design are available, such as Hamming,
Hanning, Blackman, and so on. Experiment with different fi lter characteristics.

2. From Figure 9.28 , select Window → Show Block Diagram . The LabVIEW
tools are required to view the block diagram (the source). Figure 9.29 shows
a section of the block diagram that contains various components (smaller
blocks). A full description and the function of different blocks can readily be
obtained by highlighting each block.

 CCS is invoked from LabVIEW to build the project and to load and run
the (.out) fi le (from the current directory) on the DSK. (See the CPU status
within CCS in Figure 9.28 .) Input and output arrays of data, specifi ed as 32

bit integers (cinput,coutput), are transferred to the DSK through RTDX
(Figure 9.29).

3. Figure 9.30 shows the C source program rtdx_lv_filter.c that runs on the
DSK. It creates two input channels (for the sine wave data and the fi lter coef-
fi cients generated by LabVIEW) and one output channel for the fi ltered
output data (coutput). Inputs to the DSK are obtained using RTDX_read()
or RTDX_readNB() to read/input the sine data (cinput) and the coeffi cients
(ccoefs). The fi lter is implemented on the DSK by the function FIR Filter ,
and the fi ltered output (coutput) is sent to LabVIEW for plotting using
RTDX_write() . If the fi lter characteristics are changed, a new set of coeffi -
cients (ccoefs) is calculated within LabVIEW and sent to the DSK through
RTDX.

Example 9.15: LabVIEW–DSK Interface Using RTDX for Controlling
the Gain of a Generated Sinusoid (rtdx_lv_gain)

 In this example, LabVIEW is used to control the amplitude of a generated sine wave
and to plot the scaled output sine wave. An array of data representing the generated
sine wave and a gain value are sent from LabVIEW to the DSK. Through RTDX,

FIGURE 9.29. LabVIEW diagram for FIR fi lter design through RTDX for the project
rtdx_lv_filter .

 RTDX Using LabVIEW to Provide Interface Between PC and DSK 417

//rtdx_lv_filter.c RTDX with LABVIEW->filter design/plot DSK output
#include <rtdx.h> //RTDX support
#include "target.h" //init target
#define kBUFFER_SIZE 48 //RTDX read/write buffers
#define kTAPS 51
double gFIRHistory [kTAPS+1];
double gFIRCoefficients [kTAPS];
int input[kBUFFER_SIZE],output[kBUFFER_SIZE];
int gain;
double FIRFilter(double val,int nTaps,double* history,double* coefs);
int ProcessData (int* output, int* input, int gain);
RTDX_CreateInputChannel(cinput); //create RTDX input data channel
RTDX_CreateInputChannel(ccoefs); //input channel for coefficients
RTDX_CreateOutputChannel(coutput); //output channel DSK->PC(Labview)
void main()
{
int i;
TARGET_INITIALIZE(); //init target for RTDX
RTDX_enableInput(&cinput); //enable RTDX channels
RTDX_enableInput(&ccoefs); //for input, coefficients, output
RTDX_enableOutput(&coutput);
gFIRCoefficients[0] = 1.0;
for (i = 1; i<kTAPS; i++)
 gFIRCoefficients[i] = 0.0;
for (;;) //infinite loop
 {
 while(!RTDX_read(&cinput,input,sizeof(input)));//wait for new buffer
 if (!RTDX_channelBusy(&ccoefs)) //if new set of coefficients
 RTDX_readNB(&ccoefs,&gFIRCoefficients,sizeof(gFIRCoefficients));
 ProcessData (output, input, 1); //filtering on DSK
 RTDX_write(&coutput,&output,szeof(output));//output from DSK->LABVIEW
 }
}
int ProcessData (int *output,int *input,int gain) //calls FIR filter
{
int i;
double filtered;
for(i=0; i<kBUFFER_SIZE; i++) {
 filtered=FIRFilter(input[i]*gain,kTAPS,gFIRHistory,gFIRCoefficients);
 output[i] = (int)(filtered + 0.5);} //scale output
return 0;
}

double FIRFilter (double val,int nTaps,double* history,double* coefs)
{ //FIR Filter
 double temp, filtered_val, hist_elt;
 int i;
 hist_elt = val;
 filtered_val = 0.0;
 for (i = 0; i < nTaps; i++)
 {
 temp = history[i];
 filtered_val += hist_elt * coefs[i];
 history[i] = hist_elt;
 hist_elt = temp;
 }
 return filtered_val;
}

 FIGURE 9.30. C program running on the DSK that implements an FIR fi lter and illustrates
RTDX with LabVIEW (rtdx_lv_fi lter.c).

418

the C6x on the DSK scales the received sine wave input data and sends the resulting
scaled output waveform to LabVIEW for plotting. The necessary fi les for this
example are in the folder rtdx_lv_gain .

1. Click on the LabVIEW Instrument (.vi) fi le rtdx_lv_gain to obtain Figure
 9.31 . Run it as in Example 9.14 . The project rtdx_lv_gain.pjt is opened
within CCS, and loaded and run on the DSK. See the Code Composer Status
in Figure 9.31 . Verify that the amplitude of the output sine wave is fi ve times
that of the input. You can vary the input signal frequency as well as the gain
settings to control the scaled output amplitude waveform. The output fre-
quency is the same as the input frequency. You can readily change the input
signal type to a square wave, a triangle, or a sawtooth.

 From the block diagram, one can verify that the input and output data are
transferred through RTDX as two arrays (using [I32]), whereas the gain is
transferred as a single value (using I32).The brackets represent the array nota-
tion (using 32 - bit integer format).

2. Figure 9.32 shows the C source program rtdx_lv_gain.c that runs on the
DSK. Through RTDX, the input and output channels are enabled and
opened for the C6x on the DSK to read the generated sine wave data and the
user set gain value and to write the scaled sine wave data to LabVIEW for
plotting.

FIGURE 9.31. LabVIEW Instrument window to control the gain of a generated sine wave
through RTDX for the project rtdx_lv_gain .

 RTDX Using LabVIEW to Provide Interface Between PC and DSK 419

420 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

//rtdx_lv_gain.c RTDX with LABVIEW to control gain of generated sine

#include <rtdx.h> //RTDX support
#include "target.h" //init target
#define kBUFFER_SIZE 49
RTDX_CreateInputChannel(cinput); //create RTDX input channel
RTDX_CreateInputChannel(cgain); //input channel for gain
RTDX_CreateOutputChannel(coutput); //channel for scaled output

void Gain(int *output,int *input,int gain) //scale array of input array
{
 int i;
 for(i=0; i<kBUFFER_SIZE; i++)
 output[i]=input[i]*gain; //scaled output
}

void main()
{
 int input[kBUFFER_SIZE];
 int output[kBUFFER_SIZE];
 int gain = 5; //initial gain setting
 TARGET_INITIALIZE(); //init target for RTDX
 RTDX_enableInput(&cgain); //enable RTDX channels
 RTDX_enableInput(&cinput); //for input array
 RTDX_enableOutput(&coutput); //for output array
 for (;;) //infinite loop
 {
 if (!RTDX_channelBusy(&cgain)) //if new gain value
 RTDX_readNB(&cgain, &gain, sizeof(gain)); //read it
 while(!RTDX_read(&cinput,input,sizeof(input)));//wait for input
 Gain (output, input, gain); //function to scale
 RTDX_write(&coutput,&output,sizeof(input)); //output DSK-->host
 }
}

 FIGURE 9.32. C program running on the DSK that generates a sine wave and illustrates
RTDX with LabVIEW (rtdx_lv_gain.c).

 Example 9.16: L ab VIEW – DSK Interface Using RTDX for Controlling
the Amplitude of a Generated Sinusoid with Real - Time Output from
the DSK (rtdx_lv_sine)

 This example illustrates the use of LabVIEW to control the amplitude of a sine
wave generated on the DSK.See also Examples 9.14 and 9.15 . The sine wave is
generated using the same C source program that illustrates RTDX with Visual C++
(Figure 9.18) and VB (Figure 9.24) .

 Figure 9.33 shows the LabVIEW Instrument fi le rtdx_lv_sine . Run it. Connect
the output of the DSK to a scope and verify the change in the output sine wave by
varying the Volume slider within LabVIEW.

ACKNOWLEDGMENTS

 A special thanks for the contributions on RTDX by Aghogho Obi, from WPI, with
the examples using Visual C++; Mary Ann Nazario, from MathWorks, with Example
9.9 ; and Mike Triborn, from National Instruments, with the examples using
LabVIEW.

REFERENCES

 1. TMS320C6000 DSP/BIOS User ’ s Guide , SPRU303B, Texas Instruments, Dallas, TX,
 2000 .

 2. The MathWorks, Inc. Available at www.mathworks.com .

 3. National Instruments . Available at www.ni.com .

FIGURE 9.33. LabVIEW Instrument window for controlling the DSK output amplitude of
a sine wave through RTDX for the project rtdx_lv_sine .

References 421

DSP Applications and
Student Projects

422

 This chapter can be used as a source of experiments, projects, and applications,
demonstrating how the examples in earlier chapters can be combined and extended.
It describes a number of applications and projects carried out by students (at Roger
Williams University, the University of Massachusetts – Dartmouth, and at Worcester
Polytechnic Institute). The descriptions are accompanied by program listings, not all
of which are complete, but which are intended to serve as a starting point for devel-
opment of further student projects.

 Additional ideas for projects can be found in Refs. 1 – 6 . A wide range of projects
has been implemented on the fl oating - point C30 and C31 processors [7 – 21] as well
as on the fi xed - point TMS320C25 [22 – 28] . They range in topic from communications
and controls to neural networks and also can be used as a source of ideas to imple-
ment other projects.

10.1 DTMF SIGNAL DETECTION USING CORRELATION, FFT, AND
GOERTZEL ALGORITHM

 This project implements the detection of a dual tone multifrequency (DTMF) tone
and is decomposed into four smaller projects. The fi rst miniproject uses a correlation
scheme and displays the detected DTMF signals with the onboard LEDs. The
second miniproject expands on the fi rst one and uses RTDX that provides a PC –
 DSK interface to display on the PC monitor the detected DTMF signals by the C6x
on the DSK. The third miniproject uses the FFT to estimate the DTMF signals. The

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

10

fourth miniproject uses Goertzel ’ s algorithm and implements the DTMF detection
on the C6416 DSK (can be transported readily to the C6713 DSK). The complete
executable fi les for all four subprojects are included on the CD.

 A DTMF signal consists of two sinusoidal signals: one from a group (row) of four
low frequencies and the other from a group (column) of three high frequencies. This
is illustrated in Table 10.1 . When a key is pressed from a telephone, a DTMF signal
is generated. For example, pressing button 6 generates a tone consisting of the sum-
mation of the two tones with frequencies of 770 and 1477 Hz, as shown in Table 10.1 .
For easier detection, these frequencies are chosen so that the sum or difference of
any two frequencies does not equal that of any of the other frequencies.

 Various schemes can be used to decode DTMF signals:

 1. A correlation scheme, as described in this fi rst miniproject. An RTDX option
in the second miniproject provides a PC – DSK interface displaying the dialed
(received) numbers on the PC screen.

 2. The FFT (or the DFT) to detect the signals corresponding to the DTMF tones.
The FFT is used in the third miniproject to estimate the weights associated
with the seven frequencies.

 3. Use of a bank of FIR fi lters so that each fi lter passes only one of the frequen-
cies. The average power at the output of two of these fi lters should be larger
than that at the other outputs, yielding the corresponding DTMF tone (not
used in this project).

 4. Use of Goertzel ’ s algorithm [2, 22, 28, 29] in lieu of the FFT or DFT since only
two frequencies need be detected/selected. This method (see Appendix F) can
be more effi cient than the FFT when a “ small ” number of spectrum points are
required rather than the entire spectrum.

 Each DTMF signal can be represented as

 u t A t t() (sin() sin())= + + +ω ϕ ω ϕ1 1 2 2

where w 1 and w 2 are the two frequencies that need to be determined, and j 1 and j 2
are unknown phases. Frequency f 1 is one of the following frequencies: 697, 770, 852,
or 941 Hz; and frequency f 2 is one of the following frequencies: 1209, 1336, or 1477 Hz
 [30, 31] .

 TABLE 10.1 DTMF Encoding

 Frequencies 1209 Hz 1336 Hz 1477 Hz

 697 Hz 1 2 3
 770 Hz 4 5 6
 852 Hz 7 8 9
 941 Hz * 0 #

 DTMF Signal Detection Using Correlation, FFT, and Goertzel Algorithm 423

424 DSP Applications and Student Projects

 10.1.1 Using a Correlation Scheme and Onboard LED s for
Verifying Detection

 The correlation scheme is as follows. Let the input signal be u (t) = A (sin(2 p 697 t +
 j 1) + sin(2 p 1209 t + j 2)). Since the input signal includes sin(2 p 697 t + j 1), the correla-
tion of the input signal with sin(2 p 697 t + j 1) must be higher than the correlations
with sin(2 p 770 t + j 1), sin(2 p 852 t + j 1), and sin(2 p 941 t + j 1). The Fourier transform
 ∫ u (t) e - j w t dt has a peak at 697 Hz. Using Euler ’ s formula for the exponential function,
it becomes a correlation of u (t) with sine and cosine functions. As a result, the input
frequency can be determined by correlating the input signal with the sine and cosine
for each possible frequency. The algorithm is as follows:

 1. For each frequency, fi nd the following correlations:

W u t t W u t tn n n n
n

N

n
sin cos()sin(), ()cos()697 697

1

2 697 2 697= =
==

∑π π
11

1477 14772 1477 2 147

N

n n nW u t t W u t

∑

= =

. . .

()sin(), ()cos(sin cosπ π 77
11

tn
n

N

n

N

)
==

∑∑

 2. For each frequency, fi nd the maximum between sine weight and cosine
weight:

W W W

W W W

697 697 697

1477 1477 1477

=

=

max(,)
. . .

max(,)

sin cos

sin cos

 3. Among the fi rst four weights, choose the largest one; and among the last three
weights, choose the largest one:

 W W W W W1 697 770 852 941= max(, , ,)

 W W W W2 1209 1336 1477= max(, ,)

 4. The frequencies present in the input signal can then be obtained. If both W 1
and W 2 , are larger than a threshold, turn on the appropriate LEDs correspond-
ing to each character, as shown in Table 10.2 .

 Figure 10.1 shows the C source program partial_dtmf.c that can be completed
readily. Build this project as DTMF. You can test this project fi rst since the complete
executable fi le DTMF.out is included on the CD in the folder DTMF. It can be tested
using one of the following:

 1. A phone to create the DTMF signals and a microphone to capture these
signals as input to the DSK ’ s mic input. Alternatively, a microphone with the

 TABLE 10.2 Characters and
Corresponding LEDs

 1 0001
 2 0010
 3 0011
 4 0100
 5 0101
 6 0110
 7 0111
 8 1000
 9 1001
 * 1010
 0 1011
 # 1100

 FIGURE 10.1. Core C program using correlation to detect DTMF tones (partial_dtmf.c).

//DTMF.c Core program to decode DTMF signals and turn on LEDs
#define N 100
#define thresh 40000
short i;short buffer[N]; short sin697[N],cos697[N],sin770[N],cos770[N];
...
long weight697,weight697_sin,weight697_cos; long ...weight1477_cos;
long weight1,weight2,choice1,choice2;
interrupt void c_int11()
{
 for (i = N-1; i > 0; i--)
 buffer[i]=buffer[i-1]; // initialize buffer
 buffer[0] = input_sample(); //input into buffer
 output_sample(buffer[0]*10); //output from buffer
 weight697_sin=0; weight697_cos=0; //weight @ each freq
 ...
 weight1477_sin = 0; weight1477_cos = 0;
 for (i = 0; i < N; i++)
 {
 weight697_sin = weight697_sin + buffer[i]*sin697[i];
 weight697_cos = weight697_cos + buffer[i]*cos697[i];
 ...
 weight1477_cos= weight1477_cos + buffer[i]*cos1477[i];
 }
 //for each freq compare sine and cosine weights and choose largest
 if(abs(weight697_sin)>abs(weight697_cos)) weight697=abs(weight697_sin);
 else weight697 = abs(weight697_cos);
 ...
 if(abs(weight1477_sin)>abs(weight1477_cos)) weight1477 = abs(weight1477_sin);
 else weight1477 = abs(weight1477_cos);
 weight1=weight697; choice1=1;//among weight697,..weight941->largest
 if(weight770 > weight1) {weight1 = weight770; choice1=2;} //...
 if(weight941 > weight1) {weight1 = weight941; choice1=4;}
 weight2=weight1209; choice2=1;//among weight1209,..weight1477->largest
 if(weight1336> weight2) {weight2 = weight1336; choice2=2;}

 DTMF Signal Detection Using Correlation, FFT, and Goertzel Algorithm 425

426 DSP Applications and Student Projects

 if(weight1477> weight2) {weight2 = weight1477; choice2=3;}
 if((weight1>thresh)&&(weight2>thresh)) //set threshhold
 { // depending on choices1 and 2 turn on corresponding LEDs
 if((choice1 == 1)&&(choice2 == 1)) { //button "1" -> 0001
 DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);}
 ... //for button "2","3",..,"*","0"
 if((choice1 == 4)&&(choice2 == 3)) //button "#" -> 1100
 {DSK6713_LED_on(0);DSK6713_LED_on(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 } //end of if > threshold
 else { //weights below threshold, turn LEDs off
 DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 return;
}
void main()
{
DSK6713_LED_init();
DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
for (i = 0; i < N; i++) //define sine/cosine for all 7 frequencies
 {
 buffer[i]=0;
 sin697[i]=1000*sin(2*3.14159*i/8000.*697);
 cos697[i]=1000*cos(2*3.14159*i/8000.*697);
 ...
 cos1477[i]=1000*cos(2*3.14159*i/8000.*1477);
 }
 comm_intr(); while(1); //init, infinite loop
}

FIGURE 10.1. (Continued)

necessary pre - amp can be used and connected directly to the line input on the
DSK. For the threshold value set in the program, use 1,000,000 with the micro-
phone input option. Dial a few numbers and verify the corresponding LEDs
turning on based on the number detected.

 2. Figure 10.2 shows the core of the MATLAB program partial_dtmf.m that
generates/plays DTMF signals as input to the DSK. This program can be
completed readily. Verify that all 12 DTMF signals 0, 1, . . . , # are consecutively
generated by the MATLAB program, each lasting approximately 1.5 s. Also
verify that the corresponding LEDs on the DSK are turned on for each
detected DTMF signal. For the line input, use a threshold value of 40,000 in
the program.

 3. A tone generator using DialpadChameleon (can be downloaded from the
web). This provides a pad with keys to generate short DTMF signals that can
be used as input to the DSK.

 The length of the signal affects the reliability of detection. If the buffer size is
too small, the probability of turning on the wrong LEDs increases because of the
uncertainty in frequency associated with short signals. If the buffer is too long, it
complicates the detection near the transmission points. The Dialpad signals have
the shortest duration.

%DTMF.m Core MATLAB file to generate DTMF signals

clear all
t = 1:8000;
t = t/8000;
num_1 = zeros(8000,1);
num_2 = zeros(8000,1);
... ;also num_0, num_star
num_pound = zeros(8000,1);

for n = 1:8000
 num_1(n) = sin(2*pi*697*t(n)) + sin(2*pi*1209*t(n));
 num_2(n) = sin(2*pi*697*t(n)) + sin(2*pi*1336*t(n));
 ...
 num_pound(n)=sin(2*pi*941*t(n))+sin(2*pi*1477*t(n));
end

for i = 1:100000000
 soundsc(num_1);
 pause(1.5);
 soundsc(num_2);
 pause(1.5);
 ...
 soundsc(num_pound);
 pause(1.5);
end

 FIGURE 10.2. Core MATLAB program to generate DTMF tones (partial_dtmf.m).

 10.1.2 Using RTDX with Visual C++ to Display Detected
 DTMF Signals on the PC

 Figure 10.3 a shows the core of the C source program DTMF_BIOS_RTDX.c for the
RTDX version to provide a PC – DSK interface for displaying the DTMF signals on
the PC monitor. These signals are detected by the C6x on the DSK and transferred
to the PC for display. Figure 10.3 a can be completed readily. The complete RTDX
with Visual C++ support fi les are included on the CD. Examples 9.10 and 9.11 and
Sections 10.3 and 10.4 illustrate RTDX using Visual C++.

 Build this project as DTMF_BIOS_RTDX . Examples 9.1 – 9.3 introduce the use of
the confi guration (.cdb) fi le. The interrupt is set within this confi guration fi le. The
complete executable (.out) fi le is also on the CD. Load/run the executable (.out)
fi le within CCS. Select Tools → Confi guration Control → Enable RTDX (check it).
Use one of the three options (as in the non - RTDX version) to input the DTMF
signals.

 Run the application Visual C++ fi le DTMF_BIOS_RTDX.EXE . Verify the corre-
sponding detected DTMF signals on the LEDs also displayed on the PC monitor,
as shown in Figure 10.3 b.

 DTMF Signal Detection Using Correlation, FFT, and Goertzel Algorithm 427

428 DSP Applications and Student Projects

//DTMF_BIOS_RTDX.c Addtl. code to DTMF.c for RTDX version using VC++

#include <rtdx.h> //RTDX support file
RTDX_CreateOutputChannel(ochan); //output channel for DSK->PC
#define thresh 80000 //defines a threshold
short value = 0; short w = 0; //used for RTDX version
.... see DTMF.c
if((weight1>thresh)&&(weight2>thresh)) //set threshold
 if((choice1 == 1)&&(choice2 == 1)) { //button "1" -> 0001
 DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);
 value = 1;
 }
 . . . //for button "2", "3",..., "*", "0"
 if((choice1 == 4)&&(choice2 == 3)) { //button "#" -> 1100
 DSK6713_LED_on(0);DSK6713_LED_on(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
 value = 12;
 }
} //end of if > than the threshold value (see DTM
else { //weights below threshold, turn LEDs off
 DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
 value = 0;
}
w = w + 1;
if w > 50;
{
 w = 0;
 RTDX_write(&ochan,&value,sizeof(value));//send value to PC
}
return;
} //end of interrupt service routine
void main()
{
. . . as in DTMF.c
comm_intr();
while(!RTDX_isOutputEnabled(&ochan))
 puts("\n\n Waiting . . . "); //wait for output channel->enabled
while(1); //infinite loop
}

(a)

(b)

 FIGURE 10.3. (a) Core C program to detect DTMF signals with RTDX for PC – DSK inter-
face (DTMF_BIOS_RTDX.c) ; (b) PC screen displaying detected DTMF signals with RTDX for
PC – DSK interface.

Implementation Issues
1. A number is sent to the PC (through RTDX) every 50th time and can be

changed.

2. The threshold value can be adjusted.

3. A “length” of 15 is set in the fi le numbersDlg.cpp . This is used to analyze
the last 15 numbers and determine if a button was pressed. A smaller value
can cause false detection due to noise, whereas it can be more diffi cult to rec-
ognize a short DTMF signal with a larger value of length .

 If the number 1 is pressed using a Dialpad, dozens of 1 ’ s are transmitted through
RTDX and appear in the data stream. With no button pressed, a stream of 0 ’ s is
transmitted. The algorithm distinguishes the actual buttons that are pressed. An
array of size length stores the last length numbers. The number of 1 ’ s in the array
goes into Weight1 , the number of 2 ’ s in the array goes into Weight2 , and so on. If
any of the weights is greater than 70% of length , then it is decided that the number
corresponding to that weight was pressed. The character corresponding to this
number is then added to the string shown in Figure 10.3 b. Note that each weight
should be followed by Weight0 (except Weight0).

10.1.3 Using FFT and Onboard LEDs for Verifying Detection

 Figure 10.4 shows the core of the C source program that implements this mini -
 project using an FFT scheme to detect the DTMF signals. Example 6.8 and Section
 10.4 illustrates the radix - 4 FFT. The FFT is used to estimate the weights associated
with the seven frequencies. For example, the 697 - Hz signal corresponds to a weight
of 697(256/8000) � 22, and we would use the 22nd value of the FFT array. A 256 -
 point FFT is used with a sampling frequency of 8000 Hz. Similarly, the 770 - Hz signal
corresponds to a weight of 770(256/8000) � 25, and we would use the 25th value of
the FFT array, and so on for the other weights (28, 31, 39, 43, and 47). We then fi nd
the largest weights associated with the fi rst four frequencies to determine the row
frequency signal and the largest weights associated with the last three frequencies
to determine the column frequency signal. For the largest weights, the corresponding
LEDs are turned on (as in Section 10.1.1). As with the previous schemes, the same
input (MATLAB, Dialpad, or microphone) can be used. Verify similar results.

10.1.4 Using Goertzel Algorithm

 The Goertzel algorithm described in Appendix F may be used for DTMF
detection.

10.2 BEAT DETECTION USING ONBOARD LEDs

 This miniproject implements a beat detection scheme using the onboard LEDs [32] .
Music visualization is a continuously progressing area in audio processing, not only

 Beat Detection Using Onboard LEDs 429

430 DSP Applications and Student Projects

 FIGURE 10.4. Core C program using FFT to detect DTMF tones (partial_dtmf_bios_
FFT.c).

//DTMF_Bios_FFT.c Core program using radix-4 FFT and onboard LEDs
. . . //see radix-4 example in Chapter 6
short input_buffer[N] = {0}; //to store input samples...same as x
float output_buffer[7] = {0}; //to store magnitude of FFT
short buffer_count, i, J;
short nFlag; //indicator to begin FFT
short nRow, nColumn;
double delta;
float tempvalue;
interrupt void c_int11()
{
 input_buffer[buffer_count] = input_sample();
 output_sample((short)input_buffer[buffer_count++]);
 if(buffer_count >= N) //if accum more than N points->begin FFT
 {
 buffer_count = 0; //reset buffer_count
 nFlag = 0; //flag to signal completion
 for(i = 0; i < N; i++)
 {
 x[2*i] = (float)input_buffer[i]; //real part of input
 x[2*i+1] = 0; //imaginary part of input
 }
 }
}
void main(void)
{
 nFlag = 1;
 buffer_count = 0;
 . . . //generate twiddle constants, then index for digit reversal
 comm_intr();
 while(1) //infinite loop
 {
 while(nFlag); //wait for ISR to finish buffer accum samples
 nFlag = 1;
 //call radix-4 FFT, then digit reverse function
 output_buffer[0]=(float) sqrt(x[2*22]*x[2*22]+x[2*22+1]*x[2*22+1]);
 . . . //for weigths 25,28,31,39,43
 output_buffer[6]=(float) sqrt(x[2*47]*x[2*47]+x[2*47+1]*x[2*47+1]);
 tempvalue = 0; //choose largest row frequency
 nRow = 0;
 for(j = 0; j < 4; j++)
 {
 if(tempvalue < output_buffer[j])
 {
 if(output_buffer[j] > 0.5e4)
 {
 nRow = j + 1;
 tempvalue = output_buffer[j];
 }
 }
 } //end of for loop

 tempvalue = 0; //choose largest column frequency
 nColumn = 0;
 for(j = 4; j < 7; j++)
 . . . //as with the rows
 nColumn = j - 3;
 . . . //as with the rows
 } //end of for loop
 if((nRow != 0) && (nColumn != 0))
 {
 if((nRow==1)&&(nColumn==1)) //for button 0001 ("1")
 {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);}
 if((nRow==1)&&(nColumn==2)) //for button 0010
 {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_on(2);DSK6713_LED_off(3);}
 //for button "3", "4", ..., "#"
 }
 else
 {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 }; //end of while (1) infinite loop
} //end of main

FIGURE 10.4. (Continued)

 Beat Detection Using Onboard LEDs 431

Time (s)

Frequency
(H z)

0 1 2 3 4 5 6
0

0. 5

1

1. 5

2

x 10
4

0 1 2 3 4 5 6
0

0. 2

0. 4

0. 6

0. 8

1

Time (s)

Po we r

Beats

 FIGURE 10.5. Spectrogram plot of a music sample for a beat detector project.

for analysis of music but also for entertainment visualization purposes. The scheme
is based on the idea that the drum is the most energy - rich component of the music.
In this project, the beat of the music is the drum pattern or bass line of the piece
of music. Figure 10.5 , obtained with MATLAB ’ s capability for plotting the spectro-
gram of an input .wav fi le, shows a representative sample section of a piece of music
featuring a live drum, a voice, and other instruments. The beat pattern is visible in

432 DSP Applications and Student Projects

the spectrogram of the music, and the energy plot shows that the beat of the drum
can be the most energy - rich portion of the music.

 Furthermore, it is advantageous to fi lter out any higher - frequency portions of the
music that may also have high energy. This has the added advantage that the parts
of the music containing no bass line will not “ confuse ” the algorithm.

 Implementation
 Figure 10.6 shows the partial C source program beatdetector.c that can be com-
pleted readily. The project can be tested fi rst using the executable (.out) fi le on the
CD in the folder beatdetector . The incoming music signal is continuously sampled
at 8 kHz (with a 4 - kHz antialiasing fi lter on the codec) and stored in a buffer. The
buffer has 4000 points and is decomposed into 20 chunks, each chunk consisting of
200 points. The signal energy of a smaller portion of the buffer — a “ chunk ” of the
larger buffer — consisting of the most recently collected samples is compared to the
signal energy of the entire buffer. When this portion of the signal has a signifi cantly
higher energy than the rest of the signal, it is considered to be a beat. The average
algorithm is described by the following equations:

 E
N

B k
k

N

=
=

∑1 2

0

[]

 e
n

B k
k i

i n

=
=

+

∑1 2

0

0

[]

 beat
true
false otherwise

= > ⋅{ e E C

 〈 E 〉 and 〈 e 〉 represent the average energy of the buffer and of each chunk, respec-
tively. C is the comparison factor (sensitivity), B is the buffer, and i 0 is the start
position in the chunk buffer. N and n represent the number of points in the buffer
and in the chunk, respectively. The fi rst two equations represent the average for the
entire buffer and for a chunk, respectively, and the third equation describes the
actual beat detection logic.

 To fi ne - tune this method, the following can be adjusted: (1) the length N of the
larger buffer (the total signal being compared against), (2) the length n of the chunks
(the “ instantaneous ” signal), and (3) the sensitivity C of the energy comparison.
Values for C ranging from 0.5 to 2 were tested, and a value of 1.3 seems to be optimal
for most types of music.

 A larger buffer size can give a better energy average; however, this has several
drawbacks:

 1. A larger chunk size means lower accuracy since the beat status can only be
updated as often as a single chunk is fi lled and processed.

 2. The larger the buffer, the longer the processing time for calculating the average
energy, so the buffer size is limited by the processing speed of the board.

 3. A larger buffer requires the use of external memory, which can mean a reduc-
tion in speed.

 A buffer stored in internal memory with a length of half a second (4000 points)
decomposed into 20 chunks seems to work best. The LEDs onboard the DSK are

 FIGURE 10.6. Core C program for beat detection (beatdetector.c).

//Beatdetector.c Core program for beat detection project

const int chunks = 20; //number of frames in buffer
const int instant_length = 200; //length of 1 buffer
#define average_length 4000 //length of buffer
const float c = 1.3; //confidence multiplier
double ae = 0, ie = 0;
short buffer[average_length]; //Buffer
void main()
{
 comm_poll(); //init DSK, codec, McBSP
 while(average_counter < average_length){ //sample entire buffer
 buffer[average_counter] = input_sample();
 average_counter++;
 }
 while(1) { //infinite loop
 instant_counter = 0;
 while(instant_counter<instant_length){ //sample one frame and
 buffer[chunk_counter*instant_length+instant_counter]=input_sample();
 instant_counter++; //move it to circular buffer
 }
 for (average_counter=0;average_counter<average_length;average_counter++) {
 ae=ae+buffer[average_counter]*buffer[average_counter];//av energy
 } //in entire buffer
 ae = ae / average_length;
for (instant_counter=0;instant_counter<instant_length;instant_counter++) {
 ie=ie+buffer[chunk_counter*instant_length+instant_counter]
 *buffer[chunk_counter*instant_length+instant_counter];
 } //average energy in last few msec
 ie = ie / instant_length;
 if (ie > ae*c){//if energy in short buffer>whole buffer,turn on LEDs
 ..
 else { //if not, turn off LEDs
 ..
 }
 chunk_counter++; //incr position in chunk counter
 if(chunk_counter>=chunks) chunk_counter=0; //right point in buffer
 } //end of while(1) infinite loop
} //end of main

 Beat Detection Using Onboard LEDs 433

434 DSP Applications and Student Projects

fl ashed whenever a beat is detected. To expand on this project, the beat information
can be fed back (from the DSK output) as data or as an audio signal to control, for
example, external light effects. Alternatively, it can be fed back to the host PC for
further processing, such as calculating beats per minute. RTDX can then be used
to provide an interface between the PC host and the DSK (see Chapter 9).

 Build this project as beatdetector and verify that this detection scheme (with
several different types of music) recognizes the drum in most cases, with very few
false positives.

10.3 FIR WITH RTDX USING VISUAL C++ FOR TRANSFER
OF FILTER COEFFICIENTS

 This project implements an FIR fi lter using VC++ with RTDX to transfer the coef-
fi cients. Chapters 4 and 9 discuss FIR fi lters and RTDX with VC++, respectively.
All the appropriate fi les for this project are on the CD in the folder rtdx_vc_FIR .
Figure 10.7 shows the C source program rtdx_vc_FIR.c that runs on the DSK.
It implements the FIR fi lter and creates and enables an input channel through
RTDX to read a new set of coeffi cients. These coeffi cients are transferred through
RTDX from the PC host to the C6x running on the DSK.

1. Build this project as rtdx_vc_FIR . A confi guration (.cdb) fi le is created to
set INT11. Note that the project includes several autogenerated support fi les
including the linker command fi le. The init/comm. fi le is included in the project
for real - time input and output. The vector fi le is not included since INT11 is
set within the confi guration fi le. See Example 9.2 .

 Within CCS, load and run the executable fi le. Select Tools → RTDX →
Confi guration Control and Enable RTDX (check it).

2. Run the Visual C++ application fi le included in the folder rtdx_vc_FIR\VC_
FIR_RTDX\Debug . A message for the user to load a coeffi cient fi le pops up, as
shown in Figure 10.8 . Load the coeffi cient fi le LP600.cof , looking in the folder
rtdx_vc_FIR . This coeffi cient fi le was designed with MATLAB and used in
 Example 4.7 to implement a lowpass FIR fi lter with a cutoff frequency at
600 Hz. Verify this result.

 Load LP1500.cof and LP3000.cof , which represent FIR lowpass fi lters
with 81 coeffi cients and with cutoff frequencies at 1500 and 3000 Hz, respec-
tively. Verify that these FIR fi lters can be implemented readily.

 The coeffi cient fi les are transferred in real time to the C program running on the
DSK, using the function RTDX_read() in Figure 10.7 . The coeffi cients are stored
in the buffer RtdxBuffer , along with N that represents the number of coeffi cients
(81) as the fi rst value in the coeffi cient fi le (the lowpass coeffi cient fi les in the
example FIR3LP have been modifi ed for this project). Experiment with different
sets of coeffi cients.

 10.4 RADIX - 4 FFT WITH RTDX USING VISUAL C++ AND
MATLAB FOR PLOTTING

 This project implements a radix - 4 FFT using TI ’ s optimized functions. The resulting
FFT magnitude of a real - time input is sent to MATLAB for plotting. In real time,
the output data are sent to the PC host using RTDX with Visual C++. Chapter 9
includes two examples using RTDX with Visual C++, and Chapter 6 includes two

 FIGURE 10.7. C source program that runs on the DSK to implement an FIR fi lter
using RTDX with Visual C++ to transfer the coeffi cients from the PC to the DSK
(rtdx_vc_FIR.c).

//rtdx_vc_FIR.c FIR with RTDX using VC++ to transfer coefficients file
#include "dsk6713_aic23.h"
#include <rtdx.h>
#define RTDX_BUFFER_SIZE 256 //change for higher order
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;
RTDX_CreateInputChannel(control_channel); //create input channel
short* pFir; //->filter's Impulse response
short RtdxBuffer[RTDX_BUFFER_SIZE]={0}; //buffer for RTDX
short dly[RTDX_BUFFER_SIZE] = {0}; //buffer for input samples
short i;
short N; //order of filter
int yn;
interrupt void c_int11()
{
 dly[0] = input_sample();
 yn = 0;
 for(i = 0; i < N; i++)
 yn += pFir[i]*dly[i];
 for(i = N - 1; i > 0; i--)
 dly[i] = dly[i-1];
 output_sample(yn >> 15);
}
void main()
{
 N = 0; //initial filter order
 pFir = &RtdxBuffer[1]; //-> 2nd element in buffer
 comm_intr();
 RTDX_enableInput(&control_channel); //enable RTDX input channel
 while(1) //infinite loop
 {
 if(!RTDX_channelBusy(&control_channel)) //if free, read->buffer
 { //read N and coefficients
 RTDX_read(&control_channel,&RtdxBuffer,sizeof(RtdxBuffer));
 N = RtdxBuffer[0]; //extract filter order
 }
 }
}

 Radix-4 FFT with RTDX Using Visual C++ and MATLAB for Plotting 435

436 DSP Applications and Student Projects

 FIGURE 10.8. Visual C++ message to load a fi le with the FIR coeffi cients to be transferred
through RTDX from the PC to the DSK.

examples (one in real time) to implement a radix - 4 FFT. The necessary fi les are in
the folder rtdx_vc_FFTr4 . This includes the Visual C++ support and executable
fi les in the folder rtdx_vc_FFTr4\rtdxFFT .

 CCS Component
 The C source program rtdx_vc_FFTr4.c runs on the DSK and is shown in Figure
 10.9 a. An output RTDX channel is created and enabled to write (send) the resulting
FFT magnitude data in the buffer output_buffer to MATLAB running on the
PC host for plotting (only). RTDX is achieved using Visual C++. The radix - 4 FFT
support functions for generating the index for digit reversal, and for digit reversal,
were used in Chapter 6 . The complex radix - 4 FFT function cfftr4_dif.c is also
on the CD (the ASM version was used in Chapter 6). Note that the real and imagi-
nary components of the input are consecutively arranged in memory (as required
by the FFT function). Digit reversal is performed on the resulting FFT since it is
scrambled and needs to be resequenced. After the FFT magnitude is calculated
and stored in output_buffer , it is sent to MATLAB through an output RTDX
channel.

 The project uses DSP/BIOS only to set interrupt INT 11 using the (.cdb) con-
fi guration fi le (see Example 9.2). As a result, a vector fi le is not required. The BSL
fi le needs to be added (the support fi les for RTDX and CSL are included in the
autogenerated linker command fi le, which must be added to the project by the
user).

 Build this project within CCS as rtdx_vc_FFTr4 . Within CCS, select Tools →
RTDX and confi gure the buffer size to 2048 (not 1024), and then enable RTDX
(check it). From the confi guration (.cdb) fi le, select Input/Output → RTDX . Right -
 click for properties to increase the buffer size from 1024 to 2056. Load and run the
(.out) fi le. Input a 2 - kHz sine wave with an approximate amplitude of 1

2 V p - p. The
output from the DSK is like a loop program.

 FIGURE 10.9. (a) C program to implement radix - 4 FFT and illustrate RTDX with Visual
C++, using MATLAB for FFT and plotting (rtdx_vc_FFTr4.c); (b) message when the VC++
application fi le is executed.

//rtdx_vc_FFTr4.c Core r4-FFT using RTDX with VC++(MATLAB for plotting)
. . . N=256,16kHz rate,align x&w,... see Examples in Chapter 6
#include <rtdx.h>
short input_buffer[N] = {0}; //store input samples(same as x)
float output_buffer[N] = {0}; //store magnitude FFT
short buffer_count=0;
short nFlag=1; //when to begin the FFT
short i, j;
RTDX_CreateOutputChannel(ochan); //output channel C6x->PC transfer
interrupt void c_int11() //ISR
{
 input_buffer[buffer_count] = input_sample(); //input -->buffer
 output_sample(input_buffer[buffer_count++]); //loop
 if(buffer_count >= N)
 { //if more than N pts, begin FFT
 buffer_count = 0; //reset buffer_count
 nFlag = 0; //flag to signal completion
 for(i = 0; i < N; i++)
 {
 x[2*i]=(float)input_buffer[i]; //real component of input
 x[2*i+1] = 0; //imaginary component of input
 }
 }
}
void main(void)
{
 . . . //generate twiddle constants and digit reversal index
 comm_intr(); //init DSK
 while(!RTDX_isOutputEnabled(&ochan));//wait for PC to enable RTDX
 while(1) //infinite loop
 {
 while(nFlag); //wait to finish accum samples
 nFlag = 1;
 cfftr4_dif(x, w, N); //call radix-4 FFT function
 digit_reverse((double *)x, IIndex, JIndex, count);
 for(j = 0; j < N; j++)
 output_buffer[j]=(float)sqrt(x[2*j]*x[2*j]+x[2*j+1]*x[2*j+1]);
 RTDX_write(&ochan,output_buffer,sizeof(output_buffer));//Send DSK>PC
 };
}

(a)

(b)

 Radix-4 FFT with RTDX Using Visual C++ and MATLAB for Plotting 437

438 DSP Applications and Student Projects

Visual C++ Component
 Execute/run the application fi le rtdxFFT.exe located in the VC++ folder rtdx_vc_
FFTr4\rtdxFFT (within debug). Figure 10.9 b will pop up, followed by the FFT
magnitude plot from MATLAB. Verify that the FFT of the 2 - kHz sine wave output
is plotted within MATLAB, as in Example 9.8 .

 The Visual C++ fi le rtdxFFTDlg.cpp includes the code section for MATLAB to
set the sampling rate and plot the received data. It is located in the dialog class
within the thread

UINT CRtdxFFTDlg::RTDXThreadFunction(LPVOID lpvoid)

 Recreate the executable (application) fi le. Launch Microsoft Visual C++ and select
File → Open Workspace to open rtdxFFT.dsw . Build and Rebuild All.

10.5 SPECTRUM DISPLAY THROUGH EMIF USING A BANK OF 32 LEDs

 This miniproject takes the FFT of an input analog audio signal and displays the
spectrum of the input signal through a bank of 32 LEDs. The specifi c LED that
turns on depends on the frequency content of the input signal. The bank of LEDs
is controlled through the external memory interface (EMIF) bus on the DSK. This
EMIF bus is a 32 - bit data bus available through the 80 - pin connector J4 onboard
the DSK.

 The FFT program in Chapter 6 using TI ’ s optimized ASM - coded FFT function is
extended for this project. Figure 10.10 shows the core of the program that imple-
ments this project — using a 64 - point radix - 2 FFT, sampling at 32 kHz — and does not
output the negative spike (32,000) for reference. The executable (.out) fi le is on the
CD in the folder graphic_FFT . and can be used fi rst to test this project. See also the
project used to display the spectrum through EMIF using LCDs in Section 10.6 .

EMIF Consideration
 To determine whether the data is being outputted through the EMIF bus, the fol-
lowing program is used:

define OUTPUT 0xA0000000 //output address (EMIF)
int *output = (int *) OUTPUT; //map memory location to variable
void main()
{
*output = 0x00000001; //output 0x1 to the bus
}

 This program defi nes the output EMIF address and gives the capability to read and
write to the EMIF bus. Test the EMIF by writing different values lighting different
LEDs. The fi nal version of the program includes a header fi le to defi ne the output
EMIF address.

 EMIF - LED s
 A total of 32 LEDs connect through four line drivers (74LS244). Current - limiting
resistors of 300 ohms are connected between each LED and ground. The line drivers
allow for the needed current to light up the LEDs. The current drawn by the LED
is limited to 10 mA so that the line drivers are not overloaded. Figure 10.11 shows
one of the line drivers. Pin 20 is connected to +5 V and pin 10 to ground. Pins 1 and
19 are also connected to ground to enable the output of the line driver. Each line
driver supports eight inputs and eight outputs. The pins labeled with “ Y ” are output
pins. Each of the output pins (on a line driver) is connected to pins 33 – 40, which
correspond to data pins 31 – 24 on the EMIF bus. The arrangement is the same with
the other three line drivers connecting to pins 43 – 50 (data pins 23 – 16), pins 53 – 60

//graphic_FFT.c Core program.Displays spectrum to LEDs through EMIF

#include "output.h" //contains EMIF address
int *output = (int *)OUTPUT; //EMIF address in header file
. . .
while (1) //infinite loop
 {
 . //same as in FFTr2.c
 .
 for(i = 0; i < N/2; i++)
 {
 if (Xmag[i] > 20000.0) //if mag FFT >20000
 {
 out = out + 1 << i; //shifts one to appropriate bit location
 }
 }
 *output = out; //output to EMIF bus
 out = 0; //reset out variable for next iteration
 }

 FIGURE 10.10. Core C program to implement radix - 2 FFT using TI ’ s optimized FFT support
functions. It displays the spectrum to 32 LEDs through EMIF (graphic_FFT.c).

 FIGURE 10.11. Line driver used with external LEDs to display the spectrum in project
 graphic_FFT .

 Spectrum Display Through EMIF Using a Bank of 32 LEDs 439

440 DSP Applications and Student Projects

(data pins 15 – 8), and pins 63 – 70 (data pins 7 – 0), respectively. Pin 79 on the EMIF
bus is used for universal ground. See also the schematics of connectors J3 and J4
shown in the fi le c6713_dsk_schem.pdf , included with CCS. Table 10.3 shows the
EMIF signals.

Note : Pin 75 on J3 (not J4), the 80 - pin connector for the external peripheral
interface, is to be connected to ground since it is an enable pin for the EMIF inter-
face and enables the output voltages on these pins.

Implementation
 The real - time radix - 2 FFT program example in Chapter 6 is slightly modifi ed to
check the amplitude of a specifi c frequency and determine whether or not it is above
a set threshold value of 20,000. If so, the value of that specifi c frequency is sent to
the EMIF output port to light the appropriate LED(s). From Figure 10.10 , when a
value of the FFT magnitude is larger than the set threshold, the variable out is
output. This output corresponds to a bit that is shifted by the value of the index i
that is the corresponding frequency location in the FFT array. This bit shift moves
a binary 1 to the appropriate bit location corresponding to the specifi c LED to be
lit. This process is repeated for every value in the magnitude FFT array. If multiple
values in the FFT array are larger than the set threshold of 20,000, then the appro-
priate bit - shifted value is accumulated. This process lights up all the LEDs that have
frequencies with corresponding amplitudes above the set threshold value. Setting
the threshold value at 20,000 creates a range of frequencies from about 150 Hz to
15 kHz.

 Build this project as graphic_FFT and verify that the lights adapt to the input
audio signal in real time. You can also test this program with a signal generator as
input to the DSK. Increase the frequency of the input signal and verify the sequence
associated with the LEDs that turn on.

10.6 SPECTRUM DISPLAY THROUGH EMIF USING LCDs

 This project implements a graphical frequency display through the use of a 2 × 16
character liquid - crystal display (LCD) (LCM - S01602DTR/M from Lumex). Each
LCD character is decomposed into two separate states to form a bar graph display-
ing the spectrum of an input signal. See also the previous project, which displays a
spectrum through EMIF using a bank of 32 LEDs. Figure 10.12 shows the core of
the program, EMIF_LCD.c , that implements this project. It uses the C - coded FFT
function called from FFT128c.c in Chapter 6 to obtain the spectrum (for the section
of code that is excluded without outputting the negative spike for reference).

FFT Component
 One component of the program is based on the FFT program example in Chapter
 6 that calls a C - coded FFT function (see FFT128c.c). The FFT component uses 256

TABLE 10.3 EMIF Signals

Pin Signal I/O Description Pin Signal I/O Description

1 5V Vcc 5V voltage supply pin 2 5V Vcc 5V voltage supply pin
3 EA21 O EMIF address pin 21 4 EA20 O EMIF address pin 20
5 EA19 O EMIF address pin 19 6 EA18 O EMIF address pin 18
7 EA17 O EMIF address pin 17 8 EA16 O EMIF address pin 16
9 EA15 O EMIF address pin 15 10 EA14 O EMIF address pin 14

11 GND Vss System ground 12 GND Vss System ground
13 EA13 O EMIF address pin 13 14 EA12 O EMIF address pin 12
15 EA11 O EMIF address pin 11 16 EA10 O EMIF address pin 10
17 EA9 O EMIF address pin 9 18 EA8 O EMIF address pin 8
19 EA7 O EMIF address pin 7 20 EA6 O EMIF address pin 6
21 5V Vcc 5V voltage supply pin 22 5V Vcc 5V voltage supply pin
23 EA5 O EMIF address pin 5 24 EA4 O EMIF address pin 4
25 EA3 O EMIF address pin 3 26 EA2 O EMIF address pin 2
27 BE3# O EMIF byte enable 3 28 BE2# O EMIF byte enable 2
29 BE1# O EMIF byte enable 1 30 BE0# O EMIF byte enable 0
31 GND Vss System ground 32 GND Vss System ground
33 ED31 I/O EMIF data pin 31 34 ED30 I/O EMIF data pin 30
35 ED29 I/O EMIF data pin 29 36 ED28 I/O EMIF data pin 28
37 ED27 I/O EMIF data pin 27 38 ED26 I/O EMIF data pin 26
39 ED25 I/O EMIF data pin 25 40 ED24 I/O EMIF data pin 24
41 3.3V Vcc 3.3V voltage supply pin 42 3.3V Vcc 3.3V voltage supply pin
43 ED23 I/O EMIF data pin 23 44 ED22 I/O EMIF data pin 22
45 ED21 I/O EMIF data pin 21 46 ED20 I/O EMIF data pin 20
47 ED19 I/O EMIF data pin 19 48 ED18 I/O EMIF data pin 18
49 ED17 I/O EMIF data pin 17 50 ED16 I/O EMIF data pin 16
51 GND Vss System ground 52 GND Vss System ground
53 ED15 I/O EMIF data pin 15 54 ED14 I/O EMIF data pin 14
55 ED13 I/O EMIF data pin 13 56 ED12 I/O EMIF data pin 12
57 ED11 I/O EMIF data pin 11 58 ED10 I/O EMIF data pin 10
59 ED9 I/O EMIF data pin 9 60 ED8 I/O EMIF data pin 8
61 GND Vss System ground 62 GND Vss System ground
63 ED7 I/O EMIF data pin 7 64 ED6 I/O EMIF data pin 6
65 ED5 I/O EMIF data pin 5 66 ED4 I/O EMIF data pin 4
67 ED3 I/O EMIF data pin 3 68 ED2 I/O EMIF data pin 2
69 ED1 I/O EMIF data pin 1 70 ED0 I/O EMIF data pin 0
71 GND Vss System ground 72 GND Vss System ground
73 ARE# O EMIF async read

enable
74 AWE# O EMIF async write

enable
75 AOE# O EMIF async output

enable
76 ARDY I EMIF asynchronous

ready
77 N/C — No connect 78 CE1# O Chip enable 1
79 GND Vss System ground 80 GND Vss System ground

 Spectrum Display Through EMIF Using LCDs 441

442 DSP Applications and Student Projects

 FIGURE 10.12. Core C program using a C - coded FFT function to display the spectrum to
LCDs through EMIF (EMIF_LCD.c).

//EMIF.LCD.c Core C program. Displays spectrum to LCDs through EMIF
#define IOPORT 0xA1111111 //EMIF address
int *ioport = (int *)IOPORT; //pointer to get data out
int input, output; //temp storage
void set_LCD_characters(); //prototypes
void send_LCD_characters();
void init_LCD();
void LCD_PUT_CMD(int data);
void LCD_PUT_CHAR(int data);
void delay();
float bandage[16]; //holds FFT array after downsizing
short k=0, j=0;
int toprow[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int botrow[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
short rowselect = 1; //start on top row
short colselect = 0; //start on left of LCD
#define LCD_CTRL_INIT 0x38 //initialization for LCD
#define LCD_CTRL_OFF 0x08
#define LCD_CTRL_ON 0x0C
#define LCD_AUTOINC 0x06
#define LCD_ON 0x0C
#define LCD_FIRST_LINE 0x80
#define LCD_SECOND_LINE 0xC0 //address of second line
main()
{
 ..
 init_LCD(); //init LCD
 while(1) //infinite loop
 {
 for(k=0; k<16; k++){ //for 16 bands
 float sum = 0; //temp storage
 for(j=0; j<8; j++) //for 8 samples per band
 sum += x1[8*k+j]; //sum up samples
 bandage[k] = (sum/8); //take average
 }
 set_LCD_characters(); //set up character arrays
 send_LCD_characters(); //put them on LCD
 } //end of infinite loop
} //end of main
interrupt void c_int11() //ISR
{
 output_sample(bandage[buffercount/16]); //out from iobuffer
 ..
}
void set_LCD_characters() //to fill arrays with characters
{
 int n = 0; //temp index variable
 for (n=0; n<16; n++)
 {
 if(bandage[n] > 40000) //first threshold
 {
 toprow[n] = 0xFF; //block character
 botrow[n] = 0xFF;
 }

 else if(bandage[n] > 20000) //second threshold
 {
 toprow[n] = 0x20; //blank space
 botrow[n] = 0xFF;
 }
 else //below second threshold
 {
 toprow[n] = 0x20;
 botrow[n] = 0x20;
 }
 }
}
void send_LCD_characters()
{
 int m=0;
 LCD_PUT_CMD(LCD_FIRST_LINE); //start address
 for (m=0; m<16; m++) //display top row
 LCD_PUT_CHAR(toprow[m]);
 LCD_PUT_CMD(LCD_SECOND_LINE); //second line
 for (m=0; m<16; m++) //display bottom row
 LCD_PUT_CHAR(botrow[m]);
}
void init_LCD()
{
 LCD_PUT_CMD(LCD_CTRL_INIT); //put command
 LCD_PUT_CMD(LCD_CTRL_OFF); //off display
 LCD_PUT_CMD(LCD_CTRL_ON); //turn on
 LCD_PUT_CMD(0x01); //clear display
 LCD_PUT_CMD(LCD_AUTOINC); //set address mode
 LCD_PUT_CMD(LCD_CTRL_ON); //set it
}
void LCD_PUT_CMD(int data)
{
 *ioport = (data & 0x000000FF); //RS=0, RW=0
 delay();
 *ioport = (data | 0x20000000); //bring enable line high
 delay();
 *ioport = (data & 0x000000FF); //bring enable line low
 delay();
}
void LCD_PUT_CHAR(int data)
{
 *ioport = ((data & 0x000000FF)| 0x80000000); //RS=1, RW=0
 *ioport = ((data & 0x000000FF)| 0xA0000000); //enable high
 *ioport = ((data & 0x000000FF)| 0x80000000); //enable Low
 delay();
}
void delay() //create 1 ms delay
{
 int q=0, junk=2;
 for (q=0; q<8000; q++)
 junk = junk*junk;
}

FIGURE 10.12. (Continued)

 Spectrum Display Through EMIF Using LCDs 443

444 DSP Applications and Student Projects

points and samples at 32 kHz to allow a frequency display range from 0 to 16 kHz.
The second component of the program is associated with the EMIF - LCD.

LCD Component
 Since the LCD is 16 characters wide, each character is chosen to correspond to one
band. The FFT range can then be decomposed linearly into sixteen 1 - kHz bands,
with each band being determined in a nested “ for loop. ” The 256 - point FFT is then
decomposed into 16 bands with eight samples per band. The average of the samples
is taken and placed into an array of size 16. Using thresholds, this array is then
parsed to determine which character (blank or fi lled) is to be displayed on the
LCD.

 Each LCD character has two different states, either fully on or fully off (four
states total). These characters are then placed in arrays, one array for the top row
of the LCD and one for the bottom row. These arrays are accessed by the function
that writes data to the appropriate LCD. Two functions are used to transfer data to
the LCD:

1. The fi rst function, LCD_PUT_CMD , is used primarily by an initialization func-
tion (init_LCD). It masks the proper data bits and confi gures the control
lines. The LCD has setup and hold times that must be achieved for proper
operation. The LCD_PUT_CMD function sets the control lines, with delays to
ensure that there are no timing glitches, and then pulses the enable control
line. Clocking the data into the LCD occurs during the falling edge of the
enable line.

2. The second function, LCD_PUT_CHAR , sends the characters to the LCD and
requires different control signals. The cursor address is autoincremented so
that a character is sent to the proper position on the LCD.

 With only one port to use, the two functions LCD_PUT_CHAR and LCD_PUT_CMD
include bitwise AND and OR operations to mask and set only certain bits.

 The delay function creates a 1 - ms delay to meet the timing requirements (setup
and hold times) of the LCD for proper operation.

EMIF-LCD Pins Description
 Table 10.4 displays information of the LCD pins and the EMIF connector. EMIF
pins information on connector J4 is shown in Table 10.3 (associated with the previ-
ous project) and contained in the fi le c6713_dsk_schem.pdf , included with CCS.
The least signifi cant data pins (ED0 – ED7) for the characters are selected, and the
three most signifi cant data pins (ED29 – ED31) for the control lines are selected.
The fi rst six pins on the LCD are used for power and control signals. To enable the
data for output through the EMIF bus, pin 75 of the External Peripheral Interface
connector J3 (not J4) is to be connected to ground (see also the previous
project).

 Build this project as EMIF_LCD . Use either an input signal from a signal gener-
ator or an input audio signal. Verify the graphical frequency display on the
LCDs.

 Some possible improvements to this project include:

1. More thresholds so that more levels of frequency intensities can be repre-
sented. More than four thresholds would better illustrate the frequency
intensity.

2. The bands can be displayed logarithmically instead of linearly. A logarithmic
display would allow for a wider range of frequencies. An up - sampling scheme
would then be used.

10.7 TIME–FREQUENCY ANALYSIS OF SIGNALS WITH SPECTROGRAM

 This project makes use of the short time Fourier transform (STFT) for the analysis
of signals, resulting in a spectrogram plot [33, 34] . A spectrogram is a plot of the
frequencies that make up a particular signal. The magnitude of the frequency at a
particular time is represented by the colors in the graph. This plot of frequency
versus time provides information on the changing frequency content of a signal over
time.

 The spectrogram is the square of the absolute value of the STFT of a signal. The
STFT looks at a nonstationary signal as small blocks in time and takes the Fourier
transform of each block to obtain the frequency content of the signal at that time.
This involves multiplying the signal with a moving window to observe smaller seg-
ments of the signal and taking the Fourier transform of the product. The use of a

TABLE 10.4 EMIF-LCD Pin Connections

LCD
PinNumber Name Function

DSK (EMIF)
Pin Connection J4

1 Vss Ground Gnd
2 Vdd Supply +5V
3 Vee Contrast Gnd
4 RS Register select ED31
5 R/W Read/write ED30
6 E Enable ED29
7 D0 Data bit 0 ED0
8 D1 Data bit 1 ED1
9 D2 Data bit 2 ED2

10 D3 Data bit 3 ED3
11 D4 Data bit 4 ED4
12 D5 Data bit 5 ED5
13 D6 Data bit 6 ED6
14 D7 Data bit 7 ED7

 Time–Frequency Analysis of Signals with Spectrogram 445

446 DSP Applications and Student Projects

sliding window and its size needs to be determined. A large window size (length)
can be chosen to enhance the frequency resolution, but at the expense of the time
resolution, and vice versa. The window increment, which represents the distance
between successive windows, also needs to be determined.

 A spectrogram can be more useful than a plot of the spectrum since there can
be a different spectrum for each time. The spectrogram is plotted as frequency
versus time as a three - dimensional plot. Consider a musical scale consisting of eight
musical notes representing the C scale major: C, D, E, F, G, A, B, C with the follow-
ing sinusoidal frequencies: 262, 294, 330, . . . , 523, respectively, starting with the
middle C at a frequency of 262 Hz. The subsequent C is one octave higher at 523 Hz,
which represents a doubling in frequency. A spectrogram plot of frequency versus
time would identify each note as it is played.

 Time – frequency analysis techniques include the STFT, Gabor expansion, and
energy distribution - based techniques such as the Wigner – Ville distribution. These
techniques are used to study the behavior of nonstationary signals such as music
and speech signals.

 The fi les for this project are in the folder spectrogram (with separate sub-
folders). The spectrogram project is decomposed into three separate sections
(versions), all of which make use of MATLAB ’ s function imagesc to plot the
spectrogram:

1. Simulation using MATLAB to read a .wav fi le and plot its spectrogram

2. RTDX with MATLAB and use of a C - coded FFT function

3. RTDX with Visual C++ and a radix - 4 optimized FFT function

10.7.1 Simulation Using MATLAB

 This is a simulated version using MATLAB. Figure 10.13 a shows the MATLAB fi le
spectrogram.m that plots a spectrogram, using the function wavread to read a
.wav fi le chirp.wav that is a swept sinusoidal signal. MATLAB ’ s FFT function is
also used, as well as the function imagesc , to fi nd the spectrogram of the input
.wav fi le.

 Run the MATLAB program and verify Figure 10.13 b as the spectrogram of a
chirp signal. It illustrates the increase in frequency of the swept sinusoidal signal
over time. You can readily test other .wav fi les on the CD.

10.7.2 Spectrogram with RTDX Using MATLAB

 This version of the project makes use of RTDX with MATLAB for transferring
data from the DSK to the PC host. Section 9.1 introduces the use of a confi guration
(.cdb) fi le and Section 9.2 illustrates RTDX with MATLAB.

 FIGURE 10.13. Spectrogram simulation with MATLAB: (a) MATLAB program to read
and fi nd the spectrogram of an input .wav fi le and (b) spectrogram plot of an input chirp
signal.

(b)

%Spectrogram.m Reads .wav file,plots spectrogram using STFT with MATLAB

[x,fs,bits] = wavread('chirp.wav'); %read .wav file
N = length(x);
t=(0:N-1)/fs;
set(0,'DefaultAxesColorOrder',[0 0 0],...
 'DefaultAxesLineStyleOrder','-|-.|--|:');
figure(1); plot(t,x); %plots time-domain signal
xlabel('Time (sec)'); ylabel('Amplitude'); title('Waveform of signal');
M=256; B=floor(N/M); %divide signal->blocks of M samples
x_mat=reshape(x(1:M*B),[M B]); %reshape vector into MxB matrix
win=hamming(M); %Hamming window before FFT
win_mat=repmat(win,[1 B]);
x_fft=fft(x_mat.*win_mat); %perform FFT
y=abs(x_fft(1:M/2,:)); %want positive freq and mag info
t=(1:B)*(M/fs); %values for time and freq axes
f=((0:M-1)/(M-1))*(fs/2);
figure(2);
imagesc(t,f,dB(y)); %plot spectrogram
colormap(jet); colorbar; set(gca,'ydir','normal');
xlabel('Time (sec)'); ylabel('Frequency (Hz)'); title('Spectrogram');

(a)

 Time–Frequency Analysis of Signals with Spectrogram 447

448 DSP Applications and Student Projects

 FIGURE 10.14. Spectrogram using RTDX with MATLAB: (a) core program to calculate
FFT and transfer FFT data from the DSK to the PC; (b) spectrogram plot of an external
chirp input signal; and (c) spectrogram plot of a 500 - Hz square wave input signal.

//Partial_Spectrogram_rtdx_mtl.c Core program for Time-Frequency
//analysis with spectrogram using RTDX-MATLAB
. . . See FFT256c.c
#include <rtdx.h> //RTDX support file
#include "hamming.cof" //Hamming window coefficients
RTDX_CreateOutputChannel(ochan); //create output channel C6x->PC

main()
{
 //. . . calculate twiddle constants
 comm_intr(); //init DSK, codec, McBSP
 while(!RTDX_isOutputEnabled(&ochan)) //wait for PC to enable RTDX
 puts("\n\n Waiting . . . "); //while waiting
 while(1) //infinite loop
 {
 . . .
 for (i = 0 ; i < PTS ; i++) //swap buffers
 {
 samples[i].real=h[i]*iobuffer[i];//multiply by Hamming coeffs
 iobuffer[i] = x1[i]; //process frame to iobuffer
 }
 . . . use FFT magnitude squared
 RTDX_write(&ochan,x1,sizeof(x1)/2);//send 128 samples to PC
 } //end of infinite loop
} //end of main
interrupt void c_int11() //ISR
{. . . as in FFT256c.c }

(a)

 Figure 10.14 a shows the core source program spectrogram_rtdx_mtl.c that
runs on the DSK and can readily be completed using the program FFT128c.c in
Chapter 6 (the complete executable fi le is on the CD). It calls the C - coded FFT
function used in Chapter 6 and enables an RTDX output channel to write/send the
resulting FFT data to the PC running MATLAB for fi nding the spectrogram. A total
of N /2 (128 points) are sent (in lieu of 256) for better resolution (continuity). The
(.cdb) confi guration fi le is used to set interrupt INT11, as in Section 9.1 . From this
confi guration fi le, select Input/Output → RTDX . Right - click on properties and
change the RTDX buffer size to 8200. Within CCS, select Tools → RTDX → Con-
fi gure to set the host buffer size to 2048 (from 1024).

 An input signal is read in blocks of 256 samples. Each block of data is then multi-
plied with a Hamming window of length 256 points. The FFT of the windowed data is
calculated and squared. Half of the resulting FFT of each block of 256 points is then
transferred to the PC running MATLAB to fi nd the spectrogram. Build this project
as spectrogram_rtdx_mtl . Within CCS, select Tools → RTDX → Confi gure .

(b)

(c)

FIGURE 10.14. (Continued)

 Time–Frequency Analysis of Signals with Spectrogram 449

450 DSP Applications and Student Projects

 Open MATLAB, select the appropriate path, and run spectrogram_rtdx.m (on
the CD). Within MATLAB, CCS will enable RTDX and will load and run the COFF
(.out) executable fi le. Then MATLAB will plot the resulting spectrogram of an
input signal. Input/play Chirp.wav (output of a soundcard as input to the DSK)
and verify the spectrogram of this input signal plotted by MATLAB, as shown in
Figure 10.14 b. For a chirp input signal, the transfer of 128 points (in lieu of 256)
yields a better spectrogram.

 For a faster and accurate plot, delete the commands within the MATLAB fi le
that include the labels (x and y axes, and title) in the spectrogram plot.

 Use a 500 - Hz square wave as input and verify the spectrogram plot shown in
Figure 10.14 c. A darker red strip is formed at the 500 - Hz fundamental frequency,
and lighter red strips at the other harmonics of 1500, 2500, and 3500 Hz. For this
type of input, you may choose to transfer the entire block of 256 - point FFT data at
each time.

 You can extend this project version using TI ’ s optimized FFT function (see
Chapter 6).

10.7.3 Spectrogram with RTDX Using Visual C++

 This project is also tested using RTDX with Visual C++ for data transfer from the
DSK to the PC host. The program spectrogram_rtdx_r4.c (on the CD) imple-
ments a 256 - point radix - 4 FFT using TI ’ s optimized FFT function and the associated
support fi les for digit reversal. See also the two radix - 4 FFT examples in Chapter 7
and Section 10.4 . As with the MATLAB version for RTDX, only 128 points are
transferred at a time.

 Change the buffer size to 8200 within the (.cdb) fi le, as with the previous
MATLAB version. Within CCS, change the host buffer size from 1024 to 2048.
Enable RTDX (there is no MATLAB fi le for doing so). Load/run the .out fi le.

 The Visual C++ support fi les are on the CD. Access/run the VC++ application
fi le vc_spectrogram.exe . You should get the Visual C++ dialog message in Figure
 10.15 until MATLAB plots the spectrogram of a real - time input signal. Input/play

FIGURE 10.15. Visual C++ dialog message for a spectrogram.

the (.wav) chirp signal and verify that the results are identical to those achieved
with the spectrogram in Figure 10.14 b, being continuously updated within MATLAB.
The fi le vc_spectrogramdlg.cpp contains the MATLAB commands for plotting
the spectrogram. However, MATLAB is not used in this version to provide the
RTDX link.

 As in Section 10.7.2 , you can obtain a fast and accurate plot by deleting the com-
mands for including the title and the labels within the spectrogram plot. These
commands are in the fi le vc_spectrogramdlg.cpp .

 You can extend this project version using the radix - 2 FFT (in lieu of the radix - 4).
Chapter 6 includes several examples based on the radix - 2 FFT.

10.8 AUDIO EFFECTS (ECHO AND REVERB, HARMONICS,
AND DISTORTION)

 This project illustrates various audio effects such as distortion, echo and reverb, and
harmonics [35] . Figure 10.16 shows the core program soundboard.c (virtually
complete) that implements this project. The overall program fl ow consists of pre-
amplifi cation, distortion, echo/reverb, harmonics, and postamplifi cation. Preamp and
postamp are included to avoid overdriving the output. A sampling rate of 16 kHz is
chosen, and a total of 10 sliders are used for the overall control. The slider gel fi le
is on the CD in the folder soundboard .

 The distortion effect is the simplest to implement. It requires overamplifying each
sample and clipping it at maximum and minimum values. The acquired input sample
is amplifi ed based on whether it is positive or negative. The amplifi cation polynomial
used for the distortion component is used to amplify the signal in a nonlinear
fashion. The result is scaled by a distortion magnitude controlled by a slider, then
clipped so as not to overdrive the output.

 The resulting output is processed for an echo/reverb effect (see Examples 2.4
and 2.5 on echo effects). The length of the echo is controlled by changing the
buffer size where the samples are stored. A dynamic change of the echo length
leads to a reverb effect. A fading effect with a decaying echo is obtained with a
slider.

 The third effect is harmonics boost. A harmonics buffer is used for this effect.
Two main loop sections are created to produce two separate sets of harmonics. The
larger (outer) loop combines the input with samples from the harmonics buffer at
twice the input frequency. The smaller (inner) loop produces the next harmonics at
four times the input frequency. The magnitudes of the harmonics are controlled with
a slider.

 These effects were tested successfully using the input from a keyboard with the
keyboard output to a speaker. The audio output is sent to both channels of the codec
(see Example 2.9), using the stereo capability of the onboard codec. The executable
and gel fi les are included in the folder soundboard .

 A drum effect section is included in the program for expanding the project. The
use of external memory must be considered when applying many effects.

 Audio Effects (Echo and Reverb, Harmonics, and Distortion) 451

452 DSP Applications and Student Projects

//Soundboard.c Core C program for sound effects
union {Uint32 uint; short channel[2];} AIC23_data;
union {Uint32 uint; short channel[2];} AIC23_input;
short EchoLengthB = 8000; //echo delay
short EchoBuffer[8000]; //create buffer
short echo_type = 1; //to select echo or delay
short Direction = 1; //1->longer echo,-1->shorter
short EchoMin=0,EchoMax=0; //shortest/longest echo time
short DistMag=0,DistortionVar=0,VolSlider=100,PreAmp=100,DistAmp=10;
short HarmBuffer[3001]; //buffer
short HarmLength=3000; //delay of harmonics
float output2;
short DrumOn=0,iDrum=0,sDrum=0; //turn drum sound when = 1
int DrumDelay=0,tempo=40000; //delay counter/drum tempo
short ampDrum=40; //volume of drum sound
.. //addtl casting
interrupt void c_int11() //ISR
{
AIC23_input.uint = input_sample(); //newest input data
input=(short)(AIC23_input.channel[RIGHT]+AIC23_input.channel[LEFT])/2;
input = input*.0001*PreAmp*PreAmp;
output=input;
output2=input; //distortion section
if (output2>0)
output2=0.0035*DistMag*DistMag*DistMag*((12.35975*(float)input)
 - (0.359375*(float)input*(float)input));
else output2 =0.0035*DistMag*DistMag*DistMag*(12.35975*(float)input
 + 0.359375*(float)input*(float)input);
output2/=(DistMag+1)*(DistMag+1)*(DistMag+1);
if (output2 > 32000.0) output2 = 32000.0 ;
else if (output2 < -32000.0) output2 = -32000.0;
output= (output*(1/(DistMag+1))+output2); //overall volume slider
input = output; //echo/reverb section
iEcho++; //increment buffer count
if (iEcho >= EchoLengthB) iEcho = 0; //if end of buffer reinit
output=input + 0.025*EchoAmplitude*EchoBuffer[iEcho];//newest+oldest
if(echo_type==1) EchoBuffer[iEcho] = output; //for decaying echo
else EchoBuffer[iEcho]=input; //for single echo (delay)
EchoLengthB += Direction; //alter the echo length
if(EchoLengthB<EchoMin+100){Direction=1;} //echo delay is shortest->
if(EchoLengthB>EchoMax){Direction=-1;} //longer,if longest->shorter
input=output; //output echo->harmonics gen
if(HarmBool==1) { //everyother sample...
 HarmBool=0; //switch the count
 HarmBuffer[iHarm]=input; //store sample in buffer
 if(HarmBool2==1){ //everyother sample...
 HarmBool2=0; //switch the count
 HarmBuffer[uHarm] += SecHarmAmp*.025*input;//store sample in buffer
 }
 else{HarmBool2=1; uHarm++; //or just switch the count,
 if(uHarm>HarmLength) uHarm=0; //and increment the pointer
 }
}

 FIGURE 10.16. Core C program to obtain various audio effects (soundboard.c).

else{HarmBool=1; iHarm++; //or just switch the count
if(iHarm>HarmLength) iHarm=0;} //and increment the pointer
output=input+HarmAmp*0.0125*HarmBuffer[jHarm];//add harmonics to output
jHarm++; //and increment the pointer
if(jHarm>HarmLength) jHarm=0; //reinit when maxed out
DrumDelay--; //decrement delay counter
if(DrumDelay<1) { //drum section
 DrumDelay=50000-Tempo; //if time for drumbeat
 DrumOn=1; //turn it on
}
if(0){ //if drum is on
 output=output+(kick[iDrum])*.05*(ampDrum);//play next sample
 if((sDrum%2)==1) {iDrum++;} //but play at Fs/2
 sDrum++; //incr sample number
 if(iDrum>2500){iDrum=0; DrumOn=0;} //drum off if last sample
}
output = output*.0001*VolSlider*VolSlider;
AIC23_data.channel[LEFT]=output;
AIC23_data.channel[RIGHT]=AIC23_data.channel[LEFT];
output_sample(AIC23_data.uint); //output to both channels
}
main() //init DSK,codec,McBSP and while(1) infinite loop

FIGURE 10.16. (Continued)

 10.9 VOICE DETECTION AND REVERSE PLAYBACK

 This project detects a voice signal from a microphone, then plays it back in the
reverse direction. Figure 10.17 shows the block diagram that implements this project.
All the necessary fi les are in the folder detect_play . Two circular buffers are used:
an input buffer to hold 80,000 samples (10 seconds of data) continuously being
updated and an output buffer to play back the input voice signal in the reverse
direction. The signal level is monitored, and its envelope is tracked to determine
whether or not a voice signal is present.

Buffer
#1

HPF
(DC-
block)

Rectify LPF
Signal
level
monitor

Buffer
#2

Input

Output

 FIGURE 10.17. Block diagram for the detection of a voice signal from a microphone and
playback of that signal in the reverse direction.

 Voice Detection and Reverse Playback 453

454 DSP Applications and Student Projects

+

z-1

1-a

a
-

+
DC estimate

Input Output

 When a voice signal appears and subsequently dies out, the signal - level monitor
sends a command to start the playback of the accumulated voice signal, specifying
the duration of the signal in samples. The stored data are transferred from the input
buffer to the output buffer for playback. Playback stops when one reaches the end
of the entire signal detected.

 The signal - level monitoring scheme includes rectifi cation and fi ltering (using
a simple fi rst order IIR fi lter). An indicator specifi es when the signal reaches
an upper threshold. When the signal drops below a low threshold, the time differ-
ence between the start and end is calculated. If this time difference is less than a
specifi ed duration, the program continues into a no - signal state (if noise only).
Otherwise, if it is more than a specifi ed duration, a signal - detected mode is
activated.

 Figure 10.18 shows the DC blocking fi lter as a fi rst - order IIR highpass fi lter. The
coeffi cient a is much smaller than 1 (for a long time constant). The estimate of the
DC fi lter is stored as a 32 - bit integer.

 The lowpass fi lter for the envelope detection is also implemented as a fi rst order
IIR fi lter, similar to the DC blocking fi lter except that the output is returned directly
rather than being subtracted from the input. The fi lter coeffi cient a is larger for this
fi lter to achieve a short time contant.

 Build and test this project as detect_play .

 10.10 PHASE SHIFT KEYING — BPSK ENCODING AND
DECODING WITH PLL

 See also the two projects on binary phase shift keying (BPSK) and modulation
schemes in Sections 10.11 and 10.12 . This project is decomposed into smaller mini -
 projects as background for the fi nal project. The fi nal project is the transmission of
an encoded BPSK signal with voice as input and the reception (demodulation) of
this signal with phase - locked loop (PLL) support on a second DSK. All the fi les
associated with these projects are located in separate subfolders within the folder
 PSK .

 FIGURE 10.18. DC blocking fi rst order IIR highpass fi lter for voice signal detection and
reverse playback.

10.10.1 BPSK Single -Board Transmitter/Receiver Simulation

 BPSK is a digital modulation technique that separates bits by shifting the
carrier 180 degrees. A carrier frequency signal is chosen that is known by both the
transmitter and the receiver. Each bit is encoded as a phase shift in the carrier at
some predetermined period. When a 0 is sent, the carrier is transmitted with no
phase shift, and when a 1 is sent, the carrier is phase shifted by 180 degrees
 [36 – 39] .

CCS Component
 The necessary fi les for this project are on the CD in BPSK_sim within the folder
PSK . Figure 10.19 shows the C source program BPSK_sim.c that modulates a
bit stream of 10 bits set in the program. Since there is no carrier synchro-
nization, demodulation is performed by the same program on the same DSK
board.

 Build this project as BPSK_sim . Connect the DSK output to the input to verify
the demodulation of the transmitted sequence. Run the program. The demodulator
program prints the demodulated sequence within CCS. Verify that it is the same as
the sequence set in the array encodeSeq to be encoded.

 The array buffer stores the entire received vector that can be plotted within
CCS. Select View→ Graph → Time/Frequency . Use buffer as the address, 190 as the
acquisition and display size, 8000 as the sample rate, and a 16 - bit signed integer
format. Figure 10.20 a shows the CCS plot of the received sequence: {1, 0, 1, 1, 0, 0,
0, 1, 0, 1} as set in the program. Note that when the received sequence changes from
a 0 to a 1 or from a 1 to a 0, a change of phase is indicated in the positive and nega-
tive y axis, respectively. Change the sequence to be encoded in the program to
{0, 1, 0, 0, 1, 1, 1, 0, 1, 0} and verify the CCS plot in Figure 10.20 b.

MATLAB Component
 The MATLAB program BPSK_sim.m is also included on the CD. It simulates the
modulation and demodulation of a random bit stream. Run this MATLAB fi le and
verify the plots in Figures 10.21 a and 10.21 b for signal - to - noise ratios (SNRs) of 0.5
and 5.0, respectively. They display the transmitted and received waveforms of a
random bit stream. The SNR can be changed in the program. The MATLAB program
also displays the decision regions and detection, as shown in Figures 10.22 a and
 10.22 b, for SNRs of 0.5 and 5.0, respectively. With small values of SNR, the received
signals fall outside the appropriate decision regions, resulting in errors in detection.
The received signal is noisier, resulting in some false detection. This occurs when
the correlator produces an incorrect phase for the incoming symbol. Correct detec-
tions are marked with blue × ’ s and incorrect detections with red circles. For larger
values of SNR, there are no false detections and the correlated signals lie well within
the detection region.

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 455

456 DSP Applications and Student Projects

//BPSK.c BPSK Modulator/Demod. DSK Output sequence --> Input
#include "dsk6713_aic23.h" //codec-DSK support file
#include <math.h>
#include <stdio.h>
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define PI 3.1415926
#define N 16 //# samples per symbol
#define MAX_DATA_LENGTH 10 //size of mod/demod vector
#define STABILIZE_LEN 10000 //# samples for stabilization
float phi_1[N]; //basis function
short r[N] = {0}; //received signal
int rNum=0, beginDemod=0; //# of received samples/demod flag
short encSeqNum=0, decSeqNum=0; //# encoded/decoded bits
short encSymbolVal=0,decSymbolVal=0;//encoder/decoder symbol index
short encodeSeq[MAX_DATA_LENGTH]={1,0,1,1,0,0,0,1,0,1};//encoded seq
short decodeSeq[MAX_DATA_LENGTH]; //decoded sequence
short sigAmp[2] = {-10000, 10000}; //signal amplitude
short buffer[N*(MAX_DATA_LENGTH+3)];//received vector for debugging
short buflen=0, stabilizeOutput=0;
interrupt void c_int11() //interrupt service routine
{
 int i, outval= 0;
 short X = 0;
 if(stabilizeOutput++ < STABILIZE_LEN) //delay start to Stabilize
 {
 r[0] = input_sample();
 output_sample(0);
 return;
 }
 if(encSeqNum < MAX_DATA_LENGTH) //modulate data sequence
 {
 outval = (int) sigAmp[encodeSeq[encSeqNum]]*phi_1[encSymbolVal++];
 if(encSymbolVal>=N) {encSeqNum++; encSymbolVal=0; }
 output_sample(outval);
 }
 else output_sample(0); //0 if MAX_DATA_LENGTH exceeded
 r[rNum++] = (short) input_sample();//input signal
 buffer[buflen++] = r[rNum - 1];
 if(beginDemod) //demod received signal
 {
 if(decSeqNum<2 && rNum==N) { //account for delay in signal
 decSeqNum ++; rNum = 0; }
 if(rNum == N) //synchronize to symbol length
 {
 rNum = 0;
 for(i=0; i<N; i++) //correlate with basis function
 X += r[i]*phi_1[i];
 decodeSeq[decSeqNum-2] = (X >= 0) ? 1: 0; //do detection
 if(++decSeqNum == MAX_DATA_LENGTH+2) //print received sequence

 FIGURE 10.19. C program that modulates a sequence of 10 numbers to illustrate BPSK,
using a single DSK for modulation and demodulation (BPSK.c).

 {
 for(i=0; i<decSeqNum-2; i++)
 printf("Received Value: %d\n", decodeSeq[i]);
 exit(0);
 }
 }
 }
 else { beginDemod = 1; rNum = 0; }
}
void main()
{
 int i; comm_intr(); //init DSK, codec, McBSP
 for(i=0; i<=N; i++)
 phi_1[i] = sin(2*PI*i/N); //basis function
 while(1); //infinite loop
}

FIGURE 10.19. (Continued)

 FIGURE 10.20. CCS plot of a received sequence, representing a BPSK modulated signal:
(a) sequence of {1, 0, 1, 1, 0, 0, 0, 1, 0, 1} and (b) sequence of {0, 1, 0, 0, 1, 1, 1, 0, 1, 0}.

(a)

(b)

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 457

458 DSP Applications and Student Projects

(a) (b)

 FIGURE 10.21. MATLAB plots simulating the modulation of a random bit stream showing
the transmitted and received waveforms for (a) SNR = 0.5 and (b) SNR = 5.0.

 FIGURE 10.22. MATLAB plots displaying decision regions and detection for (a) SNR =
 0.5 and (b) SNR = 5.0.

(a) (b)

 10.10.2 BPSK Transmitter/Voice Encoder
with Real - Time Input

 CCS Component
 Figure 10.23 shows the C source program bpsk_ReIn.c that implements a transmit-
ter/voice encoder with a real - time input signal. You can use your voice as input from
a microphone connected to the mic input.

 Build this project as BPSK_ReIn . All the necessary fi les for this project are on the
CD in BPSK_ReIn within the folder PSK . Use voice as input to the DSK, with the
DSK output to a scope. Verify that a representative segment of the encoded BPSK
output signal from the DSK is as shown in Figure 10.24 .

 FIGURE 10.23. C program to illustrate a transmitter/voice encoder using a real - time input
signal (bpsk_ReIn.c). 20

//BPSK_ReIn.c Illustrates transmitter/voice encoder with Real IN
#include "dsk6713_aic23.h" //codec-DSK support file
#include <math.h>
Uint32 fs=DSK6713_AIC23_FREQ_32KHZ; //set sampling rate
#define NUMSAMP 4 //# samples per symbol
#define MAX_DATA_LENGTH 10 //size of mod/demod vector
short encSeqNum=0, encSymbolVal=0; //# encoded bits/symbol index
short sin_table[NUMSAMP]={0,10000,0,-10000};
short sample_data; short bits[16]={0}; short outval=1;

interrupt void c_int11() //interrupt service routine
{
 int i;
 short j=0;
 sample_data=(short)input_sample(); //input sample
 if(encSeqNum == 32) //decimate 32kHz to 1kHZ
 {
 encSeqNum = 0;
 if((sample_data>1000)||(sample_data<-1000)) {//above noise threshold
 for(i=0;i<8;i++) bits[i]=(sample_data&(1<<i))?1:-1;} //8sig bits
 else {for(i=0;i<8;i++) bits[i]=0;} //get next bit
 }
 outval = (short) bits[j];
 output_sample(outval*sin_table[encSymbolVal++]);//output next sample
 if(encSymbolVal>=NUMSAMP) {encSymbolVal=0; j++;} //reset encSymbolVal
 encSeqNum++;
 if (j==8) j=0; //start next sample
}
void main()
{comm_intr(); while(1);} //init DSK/infinite loop

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 459

460 DSP Applications and Student Projects

FIGURE 10.24. Plot of encoded DSK output using voice as input to the DSK.

MATLAB Component
 The corresponding MATLAB fi le for this project bpsk_ReIn.m is on the CD. Verify
the resulting MATLAB plots in Figure 10.25 . The upper graph shows the received
waveform signal segment. A .wav fi le is used to model the input signal being
encoded as a BPSK signal. The plots show successive samples being encoded and
decoded. The .wav sample is decimated to 1 kHz, converted to a bit stream, and
then modulated to a BPSK signal that is then plotted. The upper graph shows which
amplitude of the voice signal is being modulated into a BPSK signal. Note that as
the circle moves along the received waveform in the upper graph, the corresponding
BPSK signal and transmitted bits are displayed in the lower graph and are continu-
ously encoded (updated).

10.10.3 Phase-Locked Loop

 This project is a PLL receiver. In BPSK, the receiver must be able to lock onto the
phase of a received signal in order to distinguish between 1 ’ s and 0 ’ s. A sinusoid of

1 kHz, with varying phase, is used as the real - time input to the DSK. This input signal
has eight unique phase shifts. The real - time output signal is the phase of the received
signal. Two DSKs are required to implement this project.

 To determine the phase of an incoming sinusoid, the maximum of the correla-
tion coeffi cient is calculated between the received sinusoid and a sinusoid offset
by a phase estimate. The correlation coeffi cient, Y , between two sinusoids is
given by

 Y t t= + +∫ sin()sin()ω φ ω φ
π

carrier est
0

2

 The received sine wave has a phase of f carrier , and an estimate of the phase is
 f est . The correlation coeffi cient has a maximum Value when f carrier and f est are
equal.

 FIGURE 10.25. MATLAB plots of an encoded voice signal (lower graph) and received
segment (upper graph).

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 461

462 DSP Applications and Student Projects

 To determine this maximum, begin with an initial estimate of f est . For every
period of the incoming signal that is received, that signal is correlated with a sine
wave that has a phase slightly larger and slightly smaller than f est . This yields two
values for the correlation coeffi cient, one at f est + e and the other at f est − e . The
difference between these two values gives an approximation of the derivative of the
correlation coeffi cient. Using the difference between the correlation coeffi cients at
 f est + e and f est − e as an estimate of the derivative, a new value for f est is calculated
using

 φ φ ε εest est= + −+ −()Y Y

where

 Y t t+ = + + +∫ε

π

ω φ ω φ εsin()sin()carrier est
0

2

 Y t t− = + + −∫ε

π

ω φ ω φ εsin()sin()carrier est
0

2

 This process is repeated every time a full period of the incoming sine wave is
received. Eventually, f carrier and f est will be equal and the derivative estimated by the
difference in the correlation coeffi cient f est + e and f est − e will be 0. When this occurs,
the receiver is considered locked onto the signal.

 Implementation

 1. Figure 10.26 shows the C source program sine8_phase_shift.c used to
generate a 1 - kHz sine wave with eight unique phase shifts as the output of the
fi rst DSK. This output sine wave has varying phases but a constant frequency.
Build this project as sine8_phase_shift . Verify that the DSK output con-
nected to a scope is as shown in Figure 10.27 . Every 50 periods of the sine
wave, the loop index in the program is incremented by 1 to skip one of the
lookup values set in sine_table . This results in a transmitted sine wave with
eight different phase values. Connect the output of the DSK into the input of
the second DSK.

 2. Figure 10.28 shows the C source program bpsk_demod.c (on the CD) that
implements a PLL demodulator on the second DSK. Note that the fi rst DSK
is still running even though the USB port is unplugged and reconnected to
the second DSK. See also the example scrambler in Chapter 4 . Figure 10.29 a
shows a CCS plot of the demodulator output. Note that eight different ampli-
tude values are shown for each period of the received input sinusoid. This plot
is obtained within CCS using phiBuf as the starting address, with 500 points

//sin8_phase_shift.c Sine generation. Illustrates phase shift
#include "dsk6713_aic23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
short loop = 0;
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values
short phase_change_idx = 0;
interrupt void c_int11() //interrupt service routine
{
 output_sample(sine_table[loop]);
 if (loop < 7) ++loop; //reinit index loop
 else loop = 0;
 if (phase_change_idx++ >= 50*8) //phase shift every 50 periods
 {
 if (loop == 7) loop = 0; //skip a value
 else loop++;
 phase_change_idx = 0;
 }
 return;
}
void main()
{
 comm_intr(); while(1); //init DSK/infinite loop
}

 FIGURE 10.26. C program the generates a sine wave with eight unique phase shifts
(sine8_phase_shift.c).

 FIGURE 10.27. DSK output of a generated 1 - kHz sine wave with a varying phase.

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 463

as the acquisition and display size. You can readily change the demodulator
program so that the phase shift is every fi ve periods of the sine wave. You can
further adjust the indexing through the sine values to create a phase shift
showing four (or two) different amplitude values.

464 DSP Applications and Student Projects

//BPSK_demod.c PLL demodulator. Input from 1st DSK
#include "dsk6713_aic23.h" //codec-DSK support file
#include <math.h>
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define NUMSAMP 16 //# samples per symbol
#define PI 3.1415926
short sample_data; //input sample
short ri=0, r[10000]={0}; //buffer index/received data
short r_symbol[NUMSAMP]; //buffer to receive one period
short SBind=0, phiBind=0; //symbol/phi buffer index
float phiBuf[1000] = {0}; //buffer to view phi estimates
float y1, y2, damp=1; //correlation vectors,damping
float phi = PI; //phase estimate

interrupt void c_int11() //interrupt service routine
{
 int i, max=1;
 sample_data=(short)input_sample(); //receive sample
 r[ri++] = sample_data;
 r_symbol[SBind++] = sample_data; //put sample in symbol buffer
 if(ri >= 10000) ri = 0; //reset buffer index
 if(SBind == NUMSAMP) //after one period is received
 { //then perform phi estimate
 SBind = 0; //reset buffer index
 y1 = 0, y2 = 0;
 for(i=0; i<NUMSAMP; i++) //correlate received symbol
 {
 y1 += r_symbol[i]*sin(2*PI*i/NUMSAMP + phi - 0.1);
 y2 += r_symbol[i]*sin(2*PI*i/NUMSAMP + phi + 0.1);
 if(r_symbol[i] > max) max = r_symbol[i];
 }
 y1=y1/max; y2=y2/max; //normalize correlation coefs
 phi = phi + 0.4*(y2 - y1)*phi; //determine new estimate for phi
 if(phi < 1) phi=phi+2*PI; //normalize phi
 if(phi >(2*PI+1)) phi=phi-2*PI;
 phiBuf[phiBind++]=phi; //put phi in buffer for viewing
 if(phiBind >= 1000) phiBind = 0; //reset buffer index
 }
output_sample(phi);
}
void main()
{
 comm_intr(); while(1); //init DSK/infinite loop
}

 FIGURE 10.28. C program implementing a PLL demodulator (bpsk_demod.c).

 Figure 10.29 b shows a CCS plot of the PLL output buffer that receives only
one period of the sine wave. Use a starting address of r_symbol , an acquisition
and display size of 16, and a 16 - bit signed integer (not a 32 - bit fl oat, as for
 phiBuf).

 10.10.4 BPSK Transmitter and Receiver with PLL

 The support fi les for this project are in the subfolders transmitter and receiver .
This project is the fi nal product and includes the demodulation of a transmitted
BPSK signal. It uses two DSKs: one to transmit a BPSK signal and the other to
demodulate it. The transmitter.c program shown in Figure 10.30 uses the stereo
capability of the AIC23 codec to transmit a 12 - kHz carrier signal through the right
channel and the BPSK encoded voice signal through the left channel. In this case,
you can use a stereo cable that connects the output of the fi rst DSK running the
transmitter program to the input of the second DSK running receiver.c . Use voice

(b)

(a)

 FIGURE 10.29. CCS plot of a PLL demodulator: (a) output showing eight different ampli-
tudes and (b) output buffer that receives only one period.

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 465

466 DSP Applications and Student Projects

//transmitter.c Transmits voice as a BPSK signal
#include "dsk6713_aic23.h" //codec-DSK support file
#include <math.h>
#include "lp1500.cof" //1500 Hz coeff lowpass filter
Uint32 fs=DSK6713_AIC23_FREQ_48KHZ; //set sampling rate
#define NUMSAMP 4 //# samples per Symbol
#define MAX_DATA_LENGTH 10 //size of Mod/Demod vector
#define NUM_BITS 8 //number of bits per sample
#define SYNC_INTERVAL 100 //interval between sync bits
short encSeqNum = 8; //number of encoded bits
short encSymbolVal = 0; //encoder symbol index
short sin_table[NUMSAMP]={0,1000,0,-1000}; //for carrier
short bits[8]; //holds encoded sample
short sampleBuffer[2000]; //to view sample
short sIndex = 0; //index sampleBuffer
short syncSequence[8]={1,1,1,-1,1,-1,-1,1};//synchronization sequence
short outval=1; //bit value to be encoded
short encodeVal = 0; //filtered input value
int yn = 0; //init filter's output
short gain=10; //gain on output
short syncTimer = 0; //tracks time between syncs
#define LEFT 0 //setup left/right channel
#define RIGHT 1
union {Uint32 uint; short channel[2];} AIC23_data;

interrupt void c_int11() //interrupt service routine
{
 int i;
 short sample_data;
 sample_data = input_sample();
 yn = fircircfunc(sample_data,h,N); //asm func passing to A4,B4,A6
 if(encSymbolVal >= NUMSAMP) //increment through waveform
 {
 encSymbolVal = 0;
 encSeqNum++;
 }
 if(encSeqNum == NUM_BITS) //when all 8 bits sent
 { //get a new sample
 encSeqNum = 0;
 if(syncTimer++ >= SYNC_INTERVAL) //determine whether
 { //to send sync sequence
 syncTimer = 0;
 for(i=0; i<8; i++) //put sync sequence in bit
 bits[i] = syncSequence[i];
 }
 else
 { //get the bits
 encodeVal = (short) (yn >> 15);
 for(i=8; i<16; i++) //encode input sequence
 bits[i-8]=(encodeVal&(1<<i)) ? 1 : -1; //shift
 }
 sampleBuffer[sIndex++] = encodeVal;
 if(sIndex >= 2000) sIndex = 0;
 }
 outval = (short) bits[encSeqNum];
 AIC23_data.channel[RIGHT]=gain*sin_table[encSymbolVal];//carrier
 AIC23_data.channel[LEFT]=gain*outval*sin_table[encSymbolVal++];//data
 output_sample(AIC23_data.uint); //output to both channels
}
void main(){
 comm_intr(); while(1); } //init,infinite loop

 FIGURE 10.30. C program for BPSK transmission (transmitter.c).

as input. Verify the successful reception (demodulation) of the transmitted BPSK
signal, with the receiver output connected to a speaker.

 See Example 4.12 for the use of an FIR fi lter function implemented in ASM code.
For this project, N = 8, so that the size of the circular buffer is 512 bytes (a 16 - bit
value occupies two memory locations).

 The input is lowpass - fi ltered, decimated, and converted to an 8 - bit stream. The
bit stream is then modulated as a BPSK signal, and four output samples are gener-
ated for each bit. Each sample of the voice is a 16 - bit integer. Because of sampling
rate limitations, only the most signifi cant 8 bits are used for transmission. This yields
a resolution of 256 sample levels for the amplitude of the voice, which results in
some degradation in the fi delity of the received signal.

 The procedure is to sample the voice, get the most signifi cant 8 bits, then transmit
one period of a sine wave for each bit. Each period of a sine wave is constructed
by outputting to the D/A converter four values of the sine wave. Therefore, for one
voice sample, 30 output samples are necessary. This is a severe limitation since the
maximum sampling rate is 96 kHz. The maximum sampling rate of the voice that we
can implement is then 96 kHz/32, or 3 kHz.

 The receiver uses eight samples to determine the phase of the phase - locked loop
component allowing for a 48 - kHz sampling rate by the transmitter. It can be verifi ed
that the receiver ’ s voice bandwidth is approximately 3 kHz. To reconstruct a byte,
the receiver must know where the frame starts for each byte. The transmitter peri-
odically sends a synchronization sequence that is 1 byte long. This occurs once every
100 bytes.

 To achieve frame synchronization, a synchronization sequence is sent periodically
by the transmitter. This sequence is 8 bits long and is detected by the receiver by
correlating the incoming bits with the expected sequence. A trigger variable looks
over the previously received 8 bits and counts the number of bits that match the
synchronization sequence. If the trigger variable is equal to 8, then the synchroniza-
tion sequence was detected. With 8 bits in the synchronization sequence, there are
256 possible values, so that there is a 1/256 possibility that the sequence will occur
randomly. This is too high a probability, and since we are receiving bits at 12 kHz
(96 kHz/eight samples per bit), we would expect the sequence to occur randomly
about 47 times a second (12 kHz/256). To lower this rate, we make sure that succes-
sive synchronization sequences are separated by the expected interval before declar-
ing that the sequence has actually been received. When a correlation is detected,
the frame index is reset to zero.

 Since the receiver is reconstructing voice samples at a rate of 64 kHz, it needs to
interpolate received voice samples to provide the DAC with a sample every time
the interrupt routine is invoked. The receiver uses Newton ’ s Forward interpolation
with a third - degree polynomial to interpolate the sample values [39] . The generic
expansion follows for points f 0 through f n :

p x f u f u u f u u u f

u u
() [()/ !] [()()/ !]

[(
= + + − + − − +

+ −
0 1 1 2 2 3 31 2 1 2 3∆ ∆ ∆ �

11 2 1)() ()/ !]u u n n fn n− − + +� �∆

 Phase Shift Keying—BPSK Encoding and Decoding with PLL 467

468 DSP Applications and Student Projects

where u = [(x − x i)/(x i +1 − x i)] and f i is the value of the function f (n) at x i . To inter-
polate, based on three points, this equation becomes

 p x f u f f u u f f f() () [()/]()= + − + − − +0 1 0 2 1 01 2 2

 Interpolating the output values signifi cantly increases the quality of the output
voice.

 Possible improvements include the following:

 1. At least a quadrature phase shift keying (QPSK) scheme can be used
for the transmitter/receiver to allow much higher data rates across the
channel.

 2. Noise can be added to the system to increase the practicality of the project.

 3. In addition to a phase estimator, a frequency estimator can be added to
the receiver. Channels can sometimes introduce frequency distortion into
a signal, and this would help the correlator to decode the modulated
sequence.

 10.11 BINARY PHASE SHIFT KEYING

 This miniproject implements BPSK (see also Section 10.10). Two separate
boards are used, one to modulate a signal simulating the transmitter component
and the other to demodulate the received signal, simulating the receiver
component.

 Modulation
 The modulation scheme transmits binary data using the polar nonreturn to zero
(NRZ), ± 1 V for the input data. The input is multiplied by a carrier signal with a
frequency of f c = 8 kHz. For input data with values of ± 1 V, the amplitude of the
carrier remains the same, but not the phase. An input of +1 V yields a carrier output
with a zero - phase shift, while an input of − 1 V yields a carrier output that has been
shifted by 180 ° .

 A 100 - Hz square wave with an amplitude of ± 1 V is chosen as the input data.
Using a threshold detector at 0 V, it is determined from the input whether the output
signal carrier is a positive or a negative cosine. An 8 - kHz cosine as the carrier is
generated using a 4 - point lookup table, sampling at 32 kHz. If the sampled data are
greater than zero, then the output carrier is the generated cosine multiplied by +1;
if the sampled data are less than zero, then the output carrier is the generated cosine
multiplied by − 1. Whenever the input signal switches from +1 to − 1, or vice versa,
the phase of the cosine wave is scaled by 180 ° . This change in phase looks like an
M or a W on an oscilloscope. Figure 10.31 shows the core of the C source code

//BPSK_modulate.c Core program for BPSK modulation
. . .
short cos_table[4] = {1000,0,-1000,0};
interrupt void c_int11()
{
 input_data = ((short)input_sample());
 if(input_data>0) bpsk_signal = cos_table[i++];
 else bpsk_signal = -1*cos_table[i++];
 output_sample(bpsk_signal);
 if(i > 3) i=0;
}
void main()
{ comm_intr(); while(1); }

 bpsk_modulate.c for the modulation scheme. Build the modulation component of
the project. Verify that the output is an 8 - kHz sinusoidal waveform, which becomes
the input to the second DSK.

 Demodulation
 The second DSK simulates a pozar as a carrier recovery to demodulate the received
signal. Demodulation can occur regardless of the input phase. The carrier recovery
scheme is shown in Figure 10.32 and consists of a mixer, a bandpass fi lter centered
at 16 kHz, a frequency divider by 2, a second mixer, and a lowpass fi lter with a cutoff
frequency of 4 kHz. The output at each node is (with an input m (t) = ± 1 V, f m =
 100 Hz):

 Node 1: s t m t f tc() ()cos()= +2π θ

 Node 2: m t f t f tc c
2 2 1

2
1
22 2 2()cos () cos[()]π θ π θ+ = + +

 Node 3: 1
2 2 2cos[()]π θf tc +

 FIGURE 10.31. Core C program for BPSK modulation (bpsk_modulate.c).

Mixer Mixer
BPF,
2*fc

Frequency
Divider

LPF,
4 kHz

m(t)
654321

s(t) 2

 FIGURE 10.32. Carrier recovery block diagram for BPSK demodulation.

 Binary Phase Shift Keying 469

470 DSP Applications and Student Projects

 Node 4: 1
2 2cos()π θf tc +

Node 5: 1

2 2 2
4

2 2cos() ()cos()
()

{cos[()π θ π θ π θf t m t f t
m t

f tc c c+ + = +]] }+ 1

Node 6:

m t()
4

 For the demodulator, the sampling frequency is set at 48 kHz (in lieu of 32 kHz) to
prevent aliasing and allow for the use of a bandpass fi lter at node 2, since the output
of the fi rst mixer is at 16 kHz.

 The signal at node 1 is the output of the modulator: a cosine wave (with an M
or W) due to any phase shift. At node 2, it is a 16 - kHz signal with a DC component.
At node 3, the signal is fi ltered by a 30th order least squares FIR bandpass fi lter
centered at 16 kHz. The FIR fi lter uses a least squares design with MATLAB ’ s
SPTool. The 16 - kHz fi ltered signal is downsampled (decimated) to obtain an 8 - kHz
signal at node 4. The downsampling is achieved by setting every other input value
to zero. The last stage of demodulation uses a product detector — a combination of
a mixer and a lowpass fi lter — to recover the original binary input. The mixer multi-
plies the 8 - kHz signal with the original input signal. This yields two signals: one at
twice the carrier frequency and the other as a DC component with the original m (t)
input signal. This signal is then lowpass fi ltered to yield the original binary signal,
regardless of the input phase. The lowpass fi lter is a 30th order Kaiser FIR fi lter,
also designed with MATLAB ’ s SPTool. The output at node 6 is then a 100 - Hz square
wave, the same as the modulator input signal. Figure 10.33 shows the core of the C
source program bpsk_demodulate.c for the demodulator.

 Verify that the original input signal to the modulator is recovered as the output
from the demodulator. Experiment with different sampling rates, fi lter characteris-
tics, and carrier frequencies to reduce the occasional output noise.

 10.12 MODULATION SCHEMES — PAM AND PSK

 This project implements both pulse amplitude modulation and phase shift keying
schemes. See also the projects in Sections 10.10 and 10.11 . The fi les for this project
are included in the folder modulation_schemes .

 10.12.1 Pulse Amplitude Modulation

 In pulse amplitude modulation (PAM), the amplitude of the pulse conveys the
information. The information symbols are transmitted at discrete and uniformly
spaced time intervals. They are mapped to a train of pulses in the form of a carrier
signal. The amplitude of these pulses represents a one - to - one mapping of the infor-

//BPSK_demodulate.c Core C program for BPSK demodulation
...
double mixer_out, pd;
interrupt void c_int11()
{
 input_signal=((short)input_sample()/10);
 mixer_out = input_signal*input_signal;
 dly[0] = mixer_out;
 ..
 filter_output = (yn >> 15); //output of 16 kHz BP filter
 x = 0; //init downsampled value
 if (flag == 0) //discard input sample value
 flag = 1; //don't discard at next sampling
 else {
 x = filter_output; //downsampled value is input value
 flag = 0;
 }
 pd = x * input_signal; //product detector
 dly2[0] = ((short)pd); //for 4 kHz LP filter
 ..
 m = (yn2 >> 15); //output of LP filter
 output_sample(m);
 return;
}
void main()
{ comm_intr(); while(1); }

mation symbols to the respective levels. For example, in binary PAM, bit 1 is repre-
sented by a pulse with amplitude A and bit 0 by − A.

 At the receiver, the information is recovered by obtaining the amplitude of each
pulse. The pulse amplitudes are then mapped back to the information symbol. Figure
 10.34 shows the block diagram of a typical PAM system. This is a simplifi ed version

 FIGURE 10.33. Core C program for BPSK demodulation (bpsk_demodulate.c).

Map J-bit
to 2J Levels

Impulse
Modulator

Transmit
Filter
GT(w)

Receive
Filter
GR(w)

Quantizer
Map from

2J Levels to
J-bit Words

Parallel to
Serial

Converter

Serial to
Parallel

Converter

Bit Stream

Channel
C(w)

Bit Stream

 FIGURE 10.34. PAM system.

 Modulation Schemes—PAM and PSK 471

472 DSP Applications and Student Projects

without the introduction of adaptive equalizers or symbol clock recovery, which
takes into account the effects of the channel. The incoming bit stream (output of
the DSK) is parsed into J - bit words, with different lengths of parsing, resulting in
different numbers of levels. For example, there are eight levels when J = 3. These
levels are equidistant from each other on a constellation diagram and symmetric
around the zero level, as shown in Figure 10.35 . The eight constellation points rep-
resent the levels, with each level coded by a sequence of 3 bits. Tables 10.5 – 10.7
show the mapping levels.

010 011 100 101 110 111000 001

d d

 FIGURE 10.35. Constellation diagram of an eight - level PAM.

 TABLE 10.5 Four - Level PAM Lookup Table
for Mapping

 Symbol Block Level (in hex)

 0000 0x7FFF
 0101 0x2AAA
 1010 − 0x2AAB
 1111 − 0x8000

 TABLE 10.6 Eight - Level PAM Lookup Table
for Mapping

 Symbol Block Level (in hex)

 000 0x7FFF
 001 0x5B6D
 010 0x36DB
 011 0x1249
 100 − 0x1249
 101 − 0x36DB
 110 − 0x5B6D
 111 − 0x7FFF

Transmitter/Receiver Algorithm
 An input sample is composed of 16 bits. Depending on the type of PAM, an appro-
priate masking is used. The same transmitter and receiver implementations apply
to four - level and eight - level PAM with differences in masking, shifting, and lookup
tables (see Tables 10.5 – 10.7). For the 8 - PAM, the LSB of the input sample is dis-
carded so that the remaining number of bits (15) is an integer multiple of 3, which
does not have a noticeable effect on the modulated waveform and on the recovered
voice.

 Consider the specifi c case of a 16 - PAM. In order to achieve the desired symbol
rate, the input sample is decomposed into segments 4 bits long. Each input sample
is composed of four segments. Parsing the input sample is achieved through the use
of masking and shifting. The fi rst symbol block is obtained with masking of the four
least signifi cant bits by anding the input sample with 0x000F. The second symbol
block is obtained through shifting the original input sample by four to the right and
masking the four LSBs. These steps are repeated until the end of the input sample
length and produce four symbol blocks. Assume that the input sample is 0xA52E.
In this case, 1110 (after masking the four LSBs) is mapped to − 0x6EEF, as shown
in Table 10.7 . Each symbol block is composed of 4 bits mapped into the 16 uniformly
spaced levels between − 0x8000 and 0x7FFF. The spacing between each level is
0x1111, selected for uniform spacing. The selected level is then transmitted as a
square wave. The period of the square wave is achieved by outputting the same level
many times to ensure a smooth - looking square wave at the output of the
transmitter.

TABLE 10.7 Sixteen-Level PAM Lookup Table
for Mapping

Symbol Block Level (in hex)

0000 0x7FFF
0001 0x6EEE
0010 0x5DDD
0011 0x4CCC
0100 0x3BBB
0101 0x2AAA
0110 0x1999
0111 0x0888
1000 −0x0889
1001 −0x199A
1010 −0x2AAB
1011 −0x3BBC
1100 −0x4CCD
1101 −0x5DDE
1110 −0x6EEF
1111 −0x8000

 Modulation Schemes—PAM and PSK 473

474 DSP Applications and Student Projects

 The receiver is implemented with the assumption that the effects of the channel
and noise are neglected. As a result, the received sample is composed of individual
transmitted symbols or levels. Each transmitted symbol is a 4 - bit segment, demodu-
lated by mapping it back to the original sequence of bits. The demodulated symbols
are then arranged in a buffer in order to reproduce the original transmitted sequence.
The least signifi cant transmitted segment is placed in the least signifi cant received
sequence (by adding and shifting). The fi rst segment is shifted by 12 to the left in
order to place it at the most signifi cant segment, and subsequently shifted by 4 to
the right. The process is repeated until the four segments are in the right order the
way they were transmitted. The sample is then sent to the codec, and the original
waveform is reconstructed.

10.12.2 Phase Shift Keying

 Phase shift keying (PSK) is a method of transmitting and receiving digital signals
in which the phase of a transmitted signal is varied to convey information. Several
schemes can be used to accomplish PSK, the simplest one being binary PSK (BPSK),
using only two signal phases: 0 ° and 180 ° . If the phase of the wave is 0 ° , then the
signal state is low, and if the phase of the wave is 180 ° (if phase reverses), the signal
state is high (biphase modulation). More complex forms of PSK employ four - or
eight - wave phases, allowing binary data to be transmitted at a faster rate per phase
change. In four - phase modulation, the possible phase angles are 0 ° , +90 ° , − 90 ° , and
180 ° ; each phase shift can represent 2 bits per symbol. In eight - phase modulation,
the possible phase angles are 0 ° , +45 ° , − 45 ° , +90 ° , − 90 ° , +135 ° , − 135 ° , and 180 ° ; each
phase shift can represent 4 bits per symbol.

Binary Phase Shift Keying
 A single data channel modulates the carrier. A single bit transition, 1 to 0 or 0 to 1,
causes a 180 ° phase shift in the carrier. Thus, the carrier is modulated by the data.
Detection of a BPSK signal uses the following: (1) a squarer that yields a DC com-
ponent and a component at 2 fc ; (2) a bandpass fi lter to extract the fc component;
and (3) a frequency divider, the output of which is multiplied by the input. The result
is lowpass fi ltered to yield a PCM signal.

Quadrature Phase Shift Keying
 Quadrature phase shift keying (QPSK) is a modulation scheme in which the phase
is modulated while the frequency and the amplitude are kept fi xed. There are four
phases, each of which is separated by 90 ° . These phases are sometimes referred to
as states and are represented by a pair of bits. Each pair is represented by a particular
waveform, called a symbol , to be sent across the channel after modulating the
carrier. The receiver demodulates the signal and looks at the recovered symbol to
determine which pair of bits was sent. This requires a unique symbol for each pos-
sible combination of data bits in a pair. Because there are four possible combina-

tions of data bits in a pair, QPSK creates four different symbols, one for each pair,
by changing an in - phase (I) gain and a quadrature (Q) gain.

 The QPSK transmitter system uses both sine and cosine at the carrier frequency
to transmit two separate message signals, sI[n] and sQ[n], referred to as the in - phase
and quadrature signals, respectively. Both the in - phase and quadrature signals can
be recovered, allowing transmission with twice the amount of signal information at
the same carrier frequency.

Transmitter/Receiver Algorithm
 An input sample is obtained and stored in a memory location, which contains 16
bits. Depending on the type of PSK (two - level or four - level), appropriate masking
is used. For BPSK, an input value is segmented into sixteen 1 - bit components; for
QPSK, it is fractioned into 8 dibits. This is achieved by masking the input with the
appropriate values, 0x0001 and 0x0003, respectively. In order to obtain the next
segment to be processed, the previous input data is shifted once for BPSK or twice
for QPSK.

 Following the extraction of segments, values are assigned to sinusoids with cor-
responding phases. In BPSK, there are only two phases: 0 ° and 180 ° for bits 0 and
1, respectively. However, for QPSK, we need four phases (0 ° , 90 ° , 180 ° , and 270 °)
corresponding to 00, 01, 11, and 10. This mapping is used in accordance with gray
encoding. This minimizes the error caused by interference during the transmission
of the signal by maximizing the distance between symbols with the most different
bits on the constellation diagram. Each input sample is represented with 16 bits.
Every sampled data contains 16 segments for BPSK, and 8 segments for QPSK.
Since each symbol is transmitted by a sinusoid generated digitally by four points,
an input sample is acquired every 64 and 32 output samples for BPSK and QPSK,
respectively.

 At the PSK receiver, each sinusoid is mapped into the corresponding symbols
composed of 1 bit for BPSK or 2 bits for QPSK. The extracted symbols are then
aligned in the newly constructed 16 - bit value by appropriate left shifts. The sample
is then sent to the codec, and the original waveform is regenerated.

Implementation Results
 The necessary fi les are in the folder modulation_schemes . The C source fi le
modulation_scheme.c contains all the schemes for both modulation and demodu-
lation, and a gel fi le to select the specifi c case. The 10 cases implement the 4 - , 8 - , and
16 - PAM, BPSK, and QPSK for both modulation and demodulation. For example,
the slider in positions 1 and 2 implements the 4 - PAM scheme for modulation and
demodulation, respectively.

PAM
 Three PAM modulation and demodulation schemes are implemented, based on a
lookup table and level assignment. The demodulation process is designed on the

 Modulation Schemes—PAM and PSK 475

476 DSP Applications and Student Projects

same DSK, with the output of the modulator fed into the input of the demodulator.
The modulation output for each PAM scheme is obtained using a 1.3 - kHz sinusoid
as input, with the output to a scope. For the 4 - PAM scheme, the output is shown in
Figure 10.36 a. The four levels are labeled to indicate the modulation process. The
2 ’ s complement format of the codec reverses the negative and positive values. For
example, − 0x8000 is shown as the most positive value. Figure 10.36 b shows the
modulation levels for the 8 - PAM output with the same sinusoidal input. Figure
 10.36 c shows the output of the 16 - PAM modulator, where 12 of the 16 levels are
present. This describes the effect of increasing the number of levels. The spacing
between levels is smaller than in the other two PAM schemes. The higher the
number of levels, the harder it is to distinguish and demodulate the signal.

BPSK
 The waveforms generated from the BPSK modulator are sinusoids phase - shifted by
180 ° . Figure 10.37 shows the BPSK modulator output. When the sinusoid has a 0 °
phase shift, it represents a binary 0, and when it is shifted by 180 ° , it represents a
binary 1. Using the lookup table, the symbol is demodulated into “ 0 ” or “ 1. ” When
similar symbols follow each other, the waveform is continuous; when different
symbols follow each other, the waveform shows an abrupt shift at that point.

QPSK
 The output of the QPSK modulator is shown in Figure 10.38 . The major drawback
of the QPSK implementation on the DSK concerns interpolation. Since the phases
are 90 ° phase - shifted with respect to each other, the waveforms are not continuous.
As a result, when one waveform ends with a 0 and the other starts with a 0, there
is a slight perturbation (in the case of 01 followed by 00 in Figure 10.38). The narrow
spacings are transitions created by the interpolation fi lter. Note that 01 has a 180 °
phase shift with respect to 10, and 00 is 90 ° out of phase with both of them.

 Modulation and demodulation for each scheme were also tested using recorded
speech as input. The quality of the output voice indicates a successful demodulator
(with the output of the modulator as input to the demodulator).

Implementation Issues
 Each input sample was parsed into four levels. Each level was sent to the output of
the codec 12 times (for an acceptable square wave). As a result, for each input
sample there are 48 output samples (4 × 12). The output sample rate is 48 times the
input sample rate (using downsampling). For the PSK cases, the output waveform
is a four - sample sinusoid with different phases. Each input sample is parsed into
symbols, and each symbol is sent to the output of the codec four times. For BPSK,
the symbol is 1 bit with an output - to - input ratio of 64 (4 × 16), and for QPSK, the
symbol consists of 2 bits with a ratio of 32 (4 × 8).

 For the PAM cases, a square wave pulse was chosen and implemented by output-
ting the level 12 times. For BPSK and QPSK, the output was a sinusoid composed

(a)

(b)

 FIGURE 10.36. PAM output obtained with a scope: (a) 4 - level, (b) 8 - level, and
(c) 16 - level.

 Modulation Schemes—PAM and PSK 477

478 DSP Applications and Student Projects

(c)

FIGURE 10.36. (Continued)

 FIGURE 10.37. BPSK modulator output obtained with a scope.

of four output samples with different phases (to represent the sinusoid appropri-
ately). It is more effi cient than the PAM case.

 Transmitting from one DSK and receiving from another DSK involves synchro-
nization issues that require symbol clock recovery and an adaptive equalizer (using
a PLL).

 10.13 SELECTABLE IIR FILTER AND SCRAMBLING SCHEME USING
ONBOARD SWITCHES

 This miniproject implements one of several IIR fi lters using the onboard DIP
switches to select a specifi c fi lter type. Furthermore, one of the switch options imple-
ments a scrambling scheme with voice as input. With the DSK output of the voice
scrambler as the input to a second DSK to unscramble, the original voice signal can
be recovered.

 Four 10th order IIR Butterworth fi lters of varying bandwidths are designed using
MATLAB as described in Appendix D (utilized for FIR and IIR fi lter designs in
Chapters 4 and 5). Table 10.8 shows the assignments of the DIP switches and the
corresponding implementations. A “ 1 ” represents a switch in the up position, while
a “ 0 ” represents a switch in the down or pressed position. For example, the switch
combinations of “ 0011 ” (binary 3) and 0101 (binary 5) select a 3 - kHz lowpass IIR
fi lter and a voice scrambling scheme, respectively, for implementation.

 FIGURE 10.38. QPSK modulator output obtained with a scope.

 Selectable IIR Filter and Scrambling Scheme Using Onboard Switches 479

480 DSP Applications and Student Projects

TABLE 10.8 Dip Switch Assignments and
Corresponding Implementations

Dip Switch
Combination Type fc or Bandwidth

0000 Original signal N/A
0001 Lowpass 2kHz
0010 Highpass 2kHz
0011 Lowpass 3kHz
0100 Bandpass 1.5–3kHz
0101 Voice scrambler N/A
0110–1111 No output N/A

 Figure 10.39 shows the core of the C source program IIR_ctrl.c that imple-
ments the four IIR fi lters as well as the scrambling scheme. The code section of the
program that implements the four IIR fi lters can be found in the program example
IIR.c in Chapter 5 . The complete code section for the scrambling scheme is included
in IIR_ctrl.c . From Figure 10.39 , if DIP_Mask is 3 or 5, a 3 - kHz IIR lowpass fi lter
or a voice - scrambling scheme is selected and implemented.

Scrambling/Unscrambling
 By setting the sample rate to 16 kHz and taking every other input sample in the
voice scrambler scheme, input samples are effectively acquired at 8 kHz and output
samples intermittently at 16 kHz. The input samples are stored in a buffer. The
samples from the buffer are output in quick bursts, independently of the input.
When it is nearly full, the buffer is emptied by outputting a sample every sampling
period. The buffer is then refi lled and the process is repeated. This results in an
output that sounds as if the signal frequency had doubled. Table 10.9 illustrates the
input and output scheme for a buffer size of 4. This is neither an upsampling (inter-
polating) nor a downsampling (decimating) scheme, since no data are added or
ignored by the program. After period 8, the buffer is emptied and the cycle restarts
at period 1. For a buffer size of 4, there is no pronounced difference between the
input and output voice signals. However, for a buffer size of 512 or greater, the
output voice signal is quite unrecognizable.

 The scrambled output signal can be recovered. The complete unscrambling C
source program IIR_recov.c is on the CD. The output of the voice scrambler
becomes the input to the second DSK running the program IIR_recov.c . (Chapter
 4 includes an example using modulation and FIR fi ltering to scramble and unscram-
ble a voice signal.) The unscrambling program assumes that DIP_Mask is equal to 5
in the scrambler program. The buffer size of 512 used by the scrambler must be
known in order to recover the original input voice signal. The samples are lowpass
fi ltered by 4 kHz in order to reduce some high frequency noise incurred with the
scrambling process before being outputted. There is still a small amount of high

//IIR_ctrl.c Selectable IIR filter with scrambling option using DIP SW
. . .
short DIP_Mask = 20; //any DIP SW value except 0-15
short BUFFER_SIZE = 512; //size of buffer
short buffer[512]; //buffer for voice scrambler
short index=0,input_index=0,output_index=0;//index for sample #,buffer
interrupt void c_int11()
{
 short i, input;
 int un, yn;
 input = (short)input_sample(); //external input
 if (DIP_Mask == 0) { //output = input (no filtering)
 {. . . yn=input; } //like a loop program
 }else if (DIP_Mask == 1) { //2kHz filter if DIP=1
 for(i=0;i<stages;i++) {un=input-... yn=...update delays- See IIR.c}
 ...
 }else if (DIP_Mask == 2) {... //...for other filters
 }
 else if (DIP_Mask == 5){ //for voice scrambler
 if((index % 2) == 0) { //every other sample
 buffer[input_index++] = input; //input sample->buffer
 if(input_index==BUFFER_SIZE) {input_index=0;} //reset when full
 }
 if (index >= BUFFER_SIZE) { //if buffer is at least half full
 yn = buffer[output_index++]; //output next value
 if(output_index==BUFFER_SIZE) {output_index=0;} //reset if at end
 }
 index++; //incr overall sample index
 if(index>=(BUFFER_SIZE*2)) {index=0; } //reinit sample index if end
 }else { yn = 0; } //no output if other DIP #
 output_sample((short)(yn)); // output
 return;
}
void main()
{
 comm_intr();
 while(1) {
 short newMask = 0;
 newMask += DSK6713_DIP_get(3) * 1;
 newMask += DSK6713_DIP_get(2) * 2;
 newMask += DSK6713_DIP_get(1) * 4;
 newMask += DSK6713_DIP_get(0) * 8; //hex value of DIP switch
 if (DIP_Mask != newMask) { //wait for change
 DIP_Mask = newMask; //load DIP switch value
 if (DIP_Mask == 5) {
 DSK6713_LED_on(3);
 DSK6713_LED_off(2);
 DSK6713_LED_on(1);
 DSK6713_LED_off(0);
 } else if (DIP_Mask == 4) { ... //for other SWs
 } //and all LEDs off
 } //end of 1

st
 if

 } //end of while(1)
} //end of main

 FIGURE 10.39. Core C program to select and implement IIR fi lters using the onboard
switches with an optical scrambling scheme.

 Selectable IIR Filter and Scrambling Scheme Using Onboard Switches 481

482 DSP Applications and Student Projects

CHANNEL
ENCODER

CHANNEL
DECODER

Input
cosine
signal

Output
cosine
signal

 FIGURE 10.40. Hard - decision decoding setup.

 TABLE 10.9 Input and Output Scheme for Voice Scrambler

 Period 1 Period 2 Period 3 Period 4 Period 5 Period 6 Period 7 Period 8

 Input Sample 1 X Sample 2 X Sample 3 X Sample 4 X
 Output X X X X Sample 1 Sample 2 Sample 3 Sample 4

frequency noise in the output. Note that the scrambling scheme uses bit manipula-
tion that requires no external synchronization between the scrambling transmitter
and the unscrambling receiver.

 The (complete) executable fi le for the IIR and scrambling implementations is on
the CD as minimicro.out , and the unscrambling executable fi le is on the CD as
 minimicrob.out . These executable fi les can be used fi rst to test the different imple-
mentations for IIR fi ltering and the scrambling/unscrambling scheme. The appropri-
ate support fi les are included in the folder IIR_ctrl .

 DIP switch values 6 to 15 yield no output and can be used for expanding this
project to implement additional IIR or FIR fi lters and/or another scrambling scheme.
RTDX can be used to pass the designed coeffi cients (see the FIR project incorpo-
rating RTDX and Chapter 9).

 10.14 CONVOLUTIONAL ENCODING AND VITERBI DECODING

 Channel coding schemes widely used in communication systems mostly consist of
the convolutional encoding and Viterbi decoding algorithms to reduce the bit errors
on noisy channels. This project implements a 3 - output, 1 - input, 2 - shift register (3,1,2)
convolutional encoder used for channel encoding and a channel decoder employing
soft decision and basic Viterbi decoding techniques.

 Soft Decision and Basic Viterbi Decoding
 The system setups are used for soft decision and Viterbi decoding techniques. In
Figures 10.40 and 10.41 , the channel encoder represents a (3,1,2) convolutional

AWGN
Noise

CHANNEL
ENCODER

BPSK
MODULATOR

CHANNEL
DECODER

Output
cosine signal

Input cosine
signal

 FIGURE 10.41. Soft decision decoding setup.

A B
u

v(1)

 v(2)

v(3)

XOR

encoding algorithm, and the channel decoder represents the Viterbi decoding
algorithm.

 In the Viterbi decoding setup shown in Figure 10.40 , a cosine signal is the input
to the channel encoder algorithm. The encoded output is stored in a buffer. The
elements of this buffer provide the input to the channel decoder algorithm that
decodes it and returns the original cosine signal. Both the encoder and decoder
outputs are displayed within CCS.

 In the soft decision decoding setup shown in Figure 10.41 , a cosine signal is given
as input to the channel encoder algorithm. The binary output of the channel encoder
is modulated using the BPSK technique, whereby the 0 output of the channel
encoder is translated into − 1 and the 1 output is translated into +1. Additive white
Gaussian noise (AWGN) is generated and added to the modulated output. The
signal that is corrupted by the additive noise is fed to the channel decoder. Both
the encoder and decoder outputs are displayed within CCS. The variance of AWGN
is varied, and the decoder ’ s performance is observed.

 (3,1,2) Convolutional Encoder
 Convolutional coding provides error correction capability by adding redundancy
bits to the information bits. The convolutional encoding is usually implemented by
the shift register method and associated combinatorial logic that performs modulo -
 two addition, an XOR operation. A block diagram of the implemented (3,1,2) con-
volutional encoder is shown in Figure 10.42 , where u is the input, v (1), v (2), v (3) are
the outputs, and A, B are the shift registers. The outputs are

 v u()1 =

 v u b()2 = ⊕

 v u a b()3 = ⊕ ⊕

where a and b are the contents of the shift registers A and B, respectively. Initially
the contents of the shift registers are 0 ’ s. The shift registers go through four different

 FIGURE 10.42. A (3,1,2) convolutional encoder.

 Convolutional Encoding and Viterbi Decoding 483

484 DSP Applications and Student Projects

State 0S

00

State 1S
01

State 2S
10

State 3S

11

0/ 000

0/ 011 1/ 100

0/ 001 0/ 010

1/111

1/110

1/101

states, depending on the input (0 or 1) received. Once all the input bits are processed,
the contents of the shift registers are again reset to zero by feeding two 0 ’ s (since
we have two shift registers) at the input.

 State Diagram
 The basic state diagram of the encoder is shown in Figure 10.43 , where S 0 , S 1 , S 2 ,
and S 3 represent the different states of the shift registers. Furthermore, m/xyz indi-
cates that on receiving an input bit m , the output of the encoder is xyz ; that is, if
 u = m = > v (1) = x, v (2) = y, v (3) = z for that particular state of shift registers A and
B. The arrows indicate the state changes on receiving the inputs.

 Trellis Diagram
 The corresponding trellis diagram for the state diagram is shown in Figure 10.44 .
The four possible states of the encoder are shown as four rows of horizontal dots.
There is one column of four dots for the initial state of the encoder and one for
each time instant during the message. The solid lines connecting the dots in the
diagram represent state transitions when the input bit is a 0. The dotted lines rep-
resent transitions when the input bit is a 1. For this encoding scheme, each encoding
state at time n is linked to two states at time n + 1. The Viterbi algorithm is used
for decoding the trellis - coded information bits by expanding the trellis over the
received symbols. The Viterbi algorithm reduces the computational load by taking
advantage of the special structure of the trellis codes.

 Modulation and AWGN for Soft Decision
 In the soft decision decoding setup, the 1/0 output of the convolutional encoder
is mapped into an antipodal baseband signaling scheme (BPSK) by translating
0 ’ s to − 1 ’ s and 1 ’ s to +1 ’ s. This can be accomplished by performing the operation

 FIGURE 10.43. State diagram for encoding.

 y = 2 x − 1 on each convolutional encoder output symbol, where x is the encoder
output symbol and y is the output of the BPSK modulator.

 AWGN is added to this modulated signal to create the effect of channel noise.
AWGN is a noise whose voltage distribution over time has characteristics that can
be described using a Gaussian distribution, that is, a bell curve. This voltage distribu-
tion has zero mean and a standard deviation that is a function of the SNR of the
received signal. The standard deviation of this noise can be varied to obtain signals
with different SNRs at the decoder input.

 A zero - mean Gaussian noise with standard deviation s can be generated as
follows. In order to obtain Gaussian random numbers, we take advantage of the
relationships between uniform, Rayleigh, and Gaussian distributions. C only pro-
vides a uniform random number generator, rand() . Given a uniform random
variable U , a Rayleigh random variable R can be obtained using

 R U U= − = −2 1 1 2 1 12σ σln(/()) ln(/())

where s 2 is the variance of the Rayleigh random variable. Given R and a second
uniform random variable V , a Gaussian random variable G can be obtained using

 G R V= cos

 Viterbi Decoding Algorithm
 The Viterbi decoding algorithm uses the trellis diagram to perform the decoding.
The basic cycle repeated by the algorithm at each stage into the trellis is:

 1. Add : At each cycle of decoding, the branch metrics enumerating from the
nodes (states) of the previous stage are computed. These branch metrics are
added to the previously accumulated and saved path metrics.

 FIGURE 10.44. Trellis diagram for encoding.

000 000 000 000 000

011011011
111 111 111 111

111

100100100

001 001 001 001

110

010

110

010

110110

010

101 101 101

 Convolutional Encoding and Viterbi Decoding 485

486 DSP Applications and Student Projects

2. Compare : The path metrics leading to each of the encoder ’ s states are
compared.

3. Select : The highest - likelihood path (survivor) leading to each of the encoder ’ s
states is selected, and the lower - likelihood paths are discarded.

 A metric is a measure of the “ distance ” between what is received and all of the possi-
ble channel symbols that could have been received. The metrics for the soft decision
and the basic Viterbi decoding techniques are computed using different methods. For
basic Viterbi decoding, the metric used is the Hamming distance, which specifi es the
number of bits by which two symbols differ. For the soft decision technique, the metric
used is the Euclidean distance between the signal points in a signal constellation.
More details of the decoding algorithm are presented elsewhere [40, 41] .

Implementation
 Build this project as viterbi . The complete C source program and the executable
(.out) fi les are included on the CD in the folder Viterbi . Several functions are
included in the program to perform convolutional encoding and BPSK modulation,
add white Gaussian noise, and implement the Viterbi decoding algorithm (the more
extensive function).

 The following time - domain graphs can be viewed within CCS — input, encoder
output, and decoder output — using the addresses input, enc_output , and dec_output ,
respectively. For the graphs, use an acquisition buffer size of 128, a sampling fre-
quency of 8000, a 16 - bit signed integer for both input and decoder output, and a
32 - bit fl oat for the encoder output.

 Three gel fi les are used (included on the CD):

1. Input.gel: to select one of the following three input signals: cos666 (default),
cos666 + cos1500 , and cos666 + cos2200 , where 666 represents a 666 - Hz
cosine.

2. Technique.gel: to select between soft decision and basic Viterbi decoding.

3. Noise.gel: to select a suitable standard deviation for AWGN. One of fi ve
different values (0, 0.3, 0.4, 2.0, 3.0) of the standard deviation of the AWGN
can be selected.

Results
 The following results are obtained:

Case 1: input = cosine 666 Hz, using soft decision

Case 2: input = cosine 666 Hz, standard deviation s = 0.4

Case 3: input = cosine 666 Hz, standard deviation s = 3.0

Case 4: input = cosine (666 + 1500) Hz, using basic Viterbi decoding (noise
level 0)

 With the default settings, the encoded output will appear between the +1 and − 1
voltage levels, as shown in Figure 10.45 a. The output of the Viterbi decoder is shown
in Figure 10.45 b. With an increase in the noise level, slight variations will be observed
around the +1 and − 1 voltage levels at the encoder output. These variations will
increase with an increase in noise level. It can be observed from the decoder outputs
that it is able to recover the original cosine signal. With the noise level set at 0, 0.3,
or 0.4 using the noise.gel slider, the decoder is still able to recover the original cosine
signal, even though there is some degradation in the corresponding encoder output,
as shown in Figure 10.46 . With further increase in the noise level with s = 3.0, the
decoder output is degraded, as shown in Figure 10.47 .

 Figure 10.48 illustrates case 4 using cosine (666 + 1500) as input. With the tech-
nique.gel slider selected for Viterbi decoding, the encoder output appears between
the 0 and 1 voltage levels, as shown in Figure 10.48 b, since the input is of plain binary
form. The decoded output is the restored input cosine signal shown in Figure 10.48 c.
There is no additive noise added in this case.

 This project can be extended for real - time input and output signals.

 Illustration of the Viterbi Decoding Algorithm
 Much of the material introduced here can be found in Ref. 41. To illustrate the
Viterbi decoding algorithm, consider the basic Viterbi symbol inputs. Each time a

(a)

(b)

 FIGURE 10.45. CCS plots of output using case 1: (a) convolutional encoder varying between
+1/ − 1 and (b) Viterbi decoder.

 Convolutional Encoding and Viterbi Decoding 487

488 DSP Applications and Student Projects

(a)

(b)

 FIGURE 10.46. CCS plots of output using case 2: (a) convolutional encoder with AWGN
(s = 0.4) and (b) Viterbi decoder.

(a)

(b)

 FIGURE 10.47. CCS plots of output using case 3: (a) convolutional encoder with AWGN
(s = 0.3) and (b) Viterbi decoder.

(a)

(b)

(c)

 FIGURE 10.48. CCS plots using case 4: (a) input to convolutional encoder; (b) output from
convolutional encoder (between 0 and 1); and (c) output from a Viterbi decoder.

triad of channel symbols is received, a metric is computed to measure the “ distance ”
between what is received and all of the possible channel symbol triads that could
have been received. Going from t = 0 to t = 1, there are only two possible channel
symbol triads that could have been received: 000 and 111. This is because the con-
volutional encoder was initialized to the all - 0 ’ s state, and given one input bit = 1 or
0, there are only two states to transition to and two possible outputs of the encoder:
000 and 111.

 The metric used is the Hamming distance between the received channel symbol
triad and the possible channel symbol triad. The Hamming distance is computed
by simply counting how many bits are different between the received channel
symbol triad and the possible channel symbol triad. The results can only be zero,

 Convolutional Encoding and Viterbi Decoding 489

490 DSP Applications and Student Projects

one, two, or three. The Hamming distance (or other metric) values computed at
each time instant, for the paths between the states at the previous time instant and
the states at the current time instant, are called branch metrics . For the fi rst time
instant, these results are saved as accumulated error metric values associated
with states. From the second time instant on, the accumulated error metrics are
computed by adding the previous accumulated error metrics to the current branch
metrics.

 Consider that at t = 1, 000 is received at the input of the decoder.. The only pos-
sible channel symbol triads that could have been received are 000 and 111. The
Hamming distance between 000 and 000 is zero. The Hamming distance between
000 and 111 is three. Therefore, the branch metric value for the branch from State
00 to State 00 is zero, and for the branch from State 00 to State 10 it is two. Since
the previous accumulated error metric values are equal to zero, the accumulated
metric values for State 00 and for State 10 are equal to the branch metric values.
The accumulated error metric values for the other two states are undefi ned (in the
program, this undefi ned value is initialized to be the maximum value for integer).
The path history table is updated for every time instant. This table, which has an
entry for each state, stores the surviving path for that state at each time instant.
These results at t = 1 are shown in Figure 10.49 a.

 Consider that at t = 2, 110 is received at the input of the decoder. The possible
channel symbol triads that could have been received in going from t = 1 to t = 2 are
000 going from State 00 to State 00, 111 going from State 00 to State 10, 001 going
from State 10 to State 01, and 110 going from State 10 to State 11. The Hamming
distance is two between 000 and 110, one between 111 and 110, three between 001
and 110, and zero between 110 and 110. These branch metric values are added to
the previous accumulated error metric values associated with each state that we
came from to get to the current states. At t = 1, we can only be at State 00 or State
10. The accumulated error metric values associated with those states were 0 and 2,
respectively. The calculation of the accumulated error metric associated with each
state at t = 2 is shown in Figure 10.49 b.

 Consider that at t = 3, 010 is received. There are now two different ways that
we can get from each of the four states that were valid at t = 2 to the four states
that are valid at t = 3. To handle that, we compare the accumulated error metrics
associated with each branch and discard the larger one of each pair of branches
leading into a given state. If the members of a pair of accumulated error metrics
going into a particular state are equal, that value is saved. The operation of
adding the previously accumulated error metrics to the new branch metrics, com-
paring the results, and selecting the smaller accumulated error metric to be
retained for the next time instant is called the add - compare - select operation. The
path history for a state is also updated by selecting the path corresponding to the
smallest path metric for that state. This can be found by adding the current
selected path transition to the path history of its previous state. The result for t =
 3 follows.

0

3

000

111

Received Input = 000

Accumulated
error metric Path history

0

1

State: 00

State: 01

State: 10

State: 11

(a)

0+2=2

0+1=1

000

111

Received Input = 110

Accumulated
error metric000

111

110

001

3+3=6

3+0=3

Path history

0 0

1 0

0 1

1 1

State: 00

State: 01

State: 10

State: 11

(b)

2+1, 6+1: 3

6+2, 2+2: 4

000

111

Received Input = 010

Accumulated
error metric 000

111

110

001

1+2, 3+0: 3

3+3, 1+1: 2

Path history

0 0 0

0 1 0

0 0 1

0 1 1

State: 00

State: 01

State: 10

State: 11
110

111

000

001

101

010

100

011

(c)

 FIGURE 10.49. Trellis diagrams to illustrate Viterbi decoding: (a) t = 1; (b) t = 2; and
(c) t = 3.

 Convolutional Encoding and Viterbi Decoding 491

 At t = 3, the decoder has reached its steady state; that is, it is possible to
have eight possible state transitions. For every other time instant from now on,
the same process gets repeated until the end of input is reached. The last two
inputs that are received in a Viterbi decoder are also considered special cases. At

492 DSP Applications and Student Projects

the convolutional encoder, when the end of input is reached, we input two trailing
zeros in order to reset the shift register states to zero. As a consequence of this, in
a Viterbi decoder, in the last but one time instant, the only possible states in the
Viterbi decoder are State 00 and State 01. Therefore, the expected inputs are 000,
011, 001, and 010. And for the last time instant, the only possible state is 00. There-
fore, the expected inputs are only 000 and 011. This case is illustrated in Figure
 10.49 c.

 In the program, it is assumed that the decoder has a memory of only 16, meaning
that at any one time, the path history can store only 16 paths. As soon as the fi rst
16 channel symbol triads are read, the path history becomes full. The path history
in this source code is an array named path_history . Each variable of this array
maintains the path history for a particular state, with each bit in the variable
storing a selected path with the rightmost bit storing the most recent path. There-
fore, before processing the 17th channel symbol triad, the minimum branch metric
state is found, and the leftmost bit in the path history of this state is output into a
variable dec_output . For every other time instant afterward, this process is repeated
and the leftmost bit of the selected path_history variable is output to dec_output .
On completing the decoding algorithm, dec_output contains the desired decoder
output.

 A variable named output_table lists the output symbols for every input at a par-
ticular state, as shown in the following table:

 Current State

 Output Symbols If:

 Input = 0 Input = 1

 00 000 111
 01 011 100
 10 001 110
 11 010 101

 The soft decision Viterbi algorithm functions in a similar fashion, except that the
metric is computed in a different way. The metric is specifi ed using the Euclidean
distance between the signal points in a signal constellation. In the soft decision
algorithm, the output of the encoder is sent in the form of BPSK - modulated symbols,
that is, 0 is sent as − 1 and 1 is sent as +1. Before this distance is found, BPSK modu-
lation is performed on the possible channel symbol triad. Assume that a channel
symbol triad containing { a 1, a 2, a 3} is received, and the expected input channel
symbol triad is 001. After BPSK modulation, it can be written as { b 1, b 2, b 3}, where
 b 1 = − 1, b 2 = − 1, and b 3 = +1. Then, the distance between these two channel symbols
is found using

 distance ()= − + − + −abs b a abs b a abs b a1 1 2 2 3 3() ()

10.15 SPEECH SYNTHESIS USING LINEAR PREDICTION OF
SPEECH SIGNALS

 Speech synthesis is based on the reproduction of human intelligible speech through
artifi cial means [42 – 45] . Examples of speech synthesis technology include text -
to - speech systems. The creation of synthetic speech covers a range of processes; and
even though they are often lumped under the general term text - to - speech , a lot of
work has been done to generate speech from sequences of the speech sounds.
This would be a speech - sound (phoneme) to audio waveform synthesis, rather than
going from text to phonemes (speech sounds) and then to sound. One of the fi rst
practical applications of speech synthesis was a speaking clock. It used optical storage
for phrases and words (noun, verb, etc.), concatenated to form complete sentences.
This led to a series of innovative products such as vocoders, speech toys, and so on.
Advances in the understanding of the speech production mechanism in humans,
coupled with similar advances in DSP, have had an impact on speech synthesis tech-
niques. Perhaps the most singular factors that started a new era in this fi eld were the
computer processing and storage technologies. While speech and language were
already important parts of daily life before the invention of the computer, the equip-
ment and technology that developed over the last several years have made it possible
to produce machines that speak, read, and even carry out dialogs. A number of
vendors provide both recognition and speech technology. Some of the latest applica-
tions of speech synthesis are in cellular phones, security networks, and robotics.

 There are different methods of speech synthesis based on the source. In a text -
 to - speech system, the source is a text string of characters read by the program to
generate voice. Another approach is to associate intelligence in the program so that
it can generate voice without external excitation. One of the earliest techniques was
Formant synthesis . This method was limited in its ability to represent voice with high
fi delity due to its inherent drawback of representing phonemes by three frequencies.
This method and several analog technologies that followed were replaced by digital
methods. Some early digital technologies were RELP (residue excited) and VELP
(voice excited). These were replaced by new technologies, such as LPC (linear pre-
dictive coding), CELP (code excited), and PSOLA (pitch synchronous overlap - add).
These technologies have been used extensively to generate artifi cial voice.

Linear Predictive Coding
 Most methods that are used for analyzing speech start by transforming acoustic data
into spectral form by performing short time Fourier analysis of the speech wave.
Although this type of spectral analysis is a well - known technique for studying
signals, its application to speech signal suffers from limitations due to the nonsta-
tionary and quasiperiodic properties of the speech wave. As a result, methods based
on spectral analysis often do not provide a suffi ciently accurate description of
speech articulation. Linear predictive coding (LPC) represents the speech wave-
form directly in terms of time - varying parameters related to the transfer function

 Speech Synthesis Using Linear Prediction of Speech Signals 493

494 DSP Applications and Student Projects

of the vocal tract and the characteristics of the source function. It uses the knowl-
edge that any speech can be represented by certain types of parametric information,
including the fi lter coeffi cients (that model the vocal tract) and the excitation signal
(that maps the source signals). The implementation of LPC reduces to the calcula-
tion of the fi lter coeffi cients and excitation signals, making it suitable for digital
implementation.

 Speech sounds are produced as a result of acoustical excitation of the human
vocal tract. During production of the voiced sounds, the vocal chord is excited by a
series of nearly periodic pulses generated by the vocal cords. In unvoiced sounds,
excitation is provided by the air passing turbulently through constrictions in the
tract. A simple model of the vocal tract is a discrete time - varying linear fi lter. Figure
 10.50 is a diagram of the LPC speech synthesis. To reproduce the voice signal, the
following are required:

 1. An excitation signal

 2. The LPC fi lter coeffi cients

 The excitation mechanism can be approximated using a residual signal generator
(for voiced signals) or a white Gaussian noise generator (for unvoiced signals) with
adjustable amplitudes and periods. The linear predictor P , a transversal fi lter with
 p delays of one sample interval each, forms a weighted sum of past samples as the
input of the predictor. The output of the predictor at the n th sampling instant is
given by

 s a sn k m n
k

p

= ⋅ +
=

∑ () δ
1

where m = n − k and d n represents the n th excitation sample.

 Implementation
 The input to the program is a sampled array of input speech using an 8 - kHz sam-
pling rate. The samples are stored in a header fi le. The length of the input speech

 FIGURE 10.50. Diagram of the speech synthesis process.

array is 10,000 samples, translating into approximately 1.25 seconds of speech. The
input array is segmented into a large number of frames, each 80 B long with an
overlap of 40 B for each frame. Each frame is then passed to the following modules:
windowing, autocorrelation, LPC, residual, IIR, and accumulate. External memory
is utilized. A block diagram of the LPC speech synthesis algorithm with the various
modules is shown in Figure 10.51 .

 1. Segmentation . This module separates the input voice into overlapping seg-
ments. The length of the segment is such that the speech segment appears
stationary as well as quasiperiodic. The overlap provides a smooth transition
between consecutive speech frames.

 2. Windowing . The speech waveform is decomposed into smaller frames
using the Hamming window. This suppresses the sidelobes in the frequency
domain.

 3. Levinson – Durbin algorithm . To calculate the LPC coeffi cients, the auto-
correlation matrix of the speech frame is required. From this matrix, the LPC
coeffi cients can be obtained using

 r i a r i kk
k

p

() = ⋅ −()
=

∑
1

where r (i) and ak represent the autocorrelation array and the coeffi cients,
respectively.

 4. Residual signal . For synthesis of the artifi cial voice, the excitation is given by
the residual signal, which is obtained by passing the input speech frame
through an FIR fi lter. It serves as an excitation signal for both voiced and
unvoiced signals. This limits the algorithm due to the energy and frequency
calculations required for making decisions about voiced/unvoiced excitation
since, even for an unvoiced excitation that has a random signal as its source,
the same principle of residue signal can still be used. This is because, in
the case of unvoiced excitation, even the residue signal obtained will be
random.

 FIGURE 10.51. Speech synthesis algorithm with various modules.

 Speech Synthesis Using Linear Prediction of Speech Signals 495

496 DSP Applications and Student Projects

5. Speech synthesis . With the representation of the speech frame in the form of
the LPC fi lter coeffi cients and the excitation signal, speech can be synthesized.
This is done by passing the excitation signal (the residual signal) through an
IIR fi lter. The residual signal generation and the speech synthesis modules
imitate the vocal chord and the vocal tract of the speech production system
in humans.

6. Accumulation and buffering . Since speech is segmented at the beginning, the
synthesized voice needs to be concatenated. This is performed by the accumu-
lation and buffering module.

7. Output . When the entire synthesized speech segment is obtained, it is played.
During playback, the data are downsampled to 4 kHz to restore the intelligibil-
ity of the speech.

Implementation
 The complete support fi les are on the CD in the folder speech_syn . Generate a
.wav fi le of the speech sample to be synthesized. For example, include goaway.wav
in the MATLAB fi le input_read.m . The MATLAB fi le samples it for 8 kHz and
stores the input samples array in the header fi le input.h . Include this generated
header fi le in the main C source program speech.c . Build this project as speech_
syn . Run the MATLAB program input_read.m to generate the two header fi les
input.h (containing the input samples) and hamming.h (for the Hamming coeffi -
cients). Load/run speech_syn.out and verify the synthesized speech “ go away ”
from a speaker connected to the DSK output. Three other .wav fi les are included
in the folder and can be tested readily.

Results
 Speech is synthesized for the following: “ Go away, ” “ Hello, professor, ” “ Good
evening, ” and “ Vacation. ” The synthesized output voice is found to have consider-
able fi delity to the original speech. The voice/unvoiced speech phonemes are repro-
duced with considerable accuracy. This project can be improved with a larger buffer
size for the samples and noise suppression fi lters. There is noise after each time the
sentence is played. A speech recognition algorithm can be implemented in conjunc-
tion with the speech synthesis to facilitate a dialog.

10.16 AUTOMATIC SPEAKER RECOGNITION

 This project implements an automatic speaker recognition system [46 – 50] . Speaker
recognition refers to the concept of recognizing a speaker by his/her voice or speech
samples. This is different from speech recognition. In automatic speaker recognition,
an algorithm generates a hypothesis concerning the speaker ’ s identity or authentic-
ity. The speaker ’ s voice can be used for ID and to gain access to services such as
banking, voice mail, and so on.

 Speaker recognition systems contain two main modules: feature extraction and
 classifi cation .

 1. Feature extraction is a process that extracts a small amount of data from the
voice signal that can be used to represent each speaker. This module converts
a speech waveform to some type of parametric representation for further
analysis and processing. Short - time spectral analysis is the most common
way to characterize a speech signal. The Mel - frequency cepstrum coeffi cients
(MFCCs) are used to parametrically represent the speech signal for the
speaker recognition task. The steps in this process are shown in Figure 10.52 :

 (a) Block the speech signal into frames, each consisting of a fi xed number of
samples.

 (b) Window each frame to minimize the signal discontinuities at the begin-
ning and end of the frame.

 (c) Use FFT to convert each frame from time to frequency domain.

 (d) Convert the resulting spectrum into a Mel - frequency scale.

 (e) Convert the Mel spectrum back to the time domain.

 2. Classifi cation consists of models for each speaker and a decision logic neces-
sary to render a decision. This module classifi es extracted features according
to the individual speakers whose voices have been stored. The recorded voice
patterns of the speakers are used to derive a classifi cation algorithm. Vector
quantization (VQ) is used. This is a process of mapping vectors from a large
vector space to a fi nite number of regions in that space. Each region is called
a cluster and can be represented by its center, called a codeword . The collection
of all clusters is a codebook . In the training phase, a speaker - specifi c VQ code-
book is generated for each known speaker by clustering his/her training acous-
tic vectors. The distance from a vector to the closest codeword of a codebook
is called a VQ distortion . In the recognition phase, an input utterance of an

Input Speech
Analog

Sampling
Digital

Framing/
Blocking

Windowing

FFT
(Converstion to

Frequency
domain)

Computing Mel
Frequency
Coefficiens

Computing
Code Vector

using VQ

Code Word

(Spelling error-Computing-not computung)

 FIGURE 10.52. Steps for speaker recognition implementation.

 Automatic Speaker Recognition 497

498 DSP Applications and Student Projects

unknown voice is vector - quantized using each trained codebook, and the total
VQ distortion is computed. The speaker corresponding to the VQ codebook
with the smallest total distortion is identifi ed.

 Speaker recognition can be classifi ed with identifi cation and verifi cation. Speaker
identifi cation is the process of determining which registered speaker provides a
given utterance. Speaker verifi cation is the process of accepting or rejecting the
identity claim of a speaker. This project implements only the speaker identifi cation
(ID) process. The speaker ID process can be further subdivided into closed set and
open set . The closed set speaker ID problem refers to a case where the speaker is
known a priori to belong to a set of M speakers. In the open set case, the speaker
may be out of the set and, hence, a “ none of the above ” category is necessary. In
this project, only the simpler closed set speaker ID is used.

 Speaker ID systems can be either text - independent or text - dependent . In the text -
 independent case, there is no restriction on the sentence or phrase to be spoken,
whereas in the text - dependent case, the input sentence or phrase is indexed for each
speaker. The text - dependent system, implemented in this project, is commonly
found in speaker verifi cation systems in which a person ’ s password is critical for
verifying his/her identity.

 In the training phase , the feature vectors are used to create a model for each
speaker. During the testing phase , when the test feature vector is used, a number
will be associated with each speaker model indicating the degree of match with that
speaker ’ s model. This is done for a set of feature vectors, and the derived numbers
can be used to fi nd a likelihood score for each speaker ’ s model. For the speaker
ID problem, the feature vectors of the test utterance are passed through all the
speakers ’ models and the scores are calculated. The model having the best score
gives the speaker ’ s identity (which is the decision component).

 This project uses MFCC for feature extraction, VQ for classifi cation/training, and
the Euclidean distance between MFCC and the trained vectors (from VQ) for
speaker ID. Much of this project was implemented with MATLAB [47] .

Mel-Frequency Cepstrum Coeffi cients
 MFCCs are based on the known variation of the human ear ’ s critical bandwidths.
A Mel - frequency scale is used with a linear frequency spacing below 1000 Hz and
a logarithmic spacing above that level. The steps used to obtain the MFCCs
follow.

1. Level detection . The start of an input speech signal is identifi ed based on a
prestored threshold value. It is captured after it starts and is passed on to the
framing stage.

2. Frame blocking . The continuous speech signal is blocked into frames of N
samples, with adjacent frames being separated by M (M < N). The fi rst frame
consists of the fi rst N samples. The second frame begins M samples after the

fi rst frame and overlaps it by N − M samples. Each frame consists of 256
samples of speech signal, and the subsequent frame starts from the 100th
sample of the previous frame. Thus, each frame overlaps with two other sub-
sequent frames. This technique is called framing . The speech sample in one
frame is considered to be stationary.

 3. Windowing . After framing, windowing is applied to prevent spectral leakage.
A Hamming window with 256 coeffi cients is used.

 4. Fast Fourier transform . The FFT converts the time - domain speech signal into
a frequency domain to yield a complex signal. Speech is a real signal, but its
FFT has both real and imaginary components.

 5. Power spectrum calculation . The power of the frequency domain is calculated
by summing the square of the real and imaginary components of the signal to
yield a real signal. The second half of the samples in the frame are ignored
since they are symmetric to the fi rst half (the speech signal being real).

 6. Mel - frequency wrapping . Triangular fi lters are designed using the Mel -
frequency scale with a bank of fi lters to approximate the human ear. The
power signal is then applied to this bank of fi lters to determine the frequency
content across each fi lter. Twenty fi lters are chosen, uniformly spaced in the
Mel - frequency scale between 0 and 4 kHz. The Mel - frequency spectrum is
computed by multiplying the signal spectrum with a set of triangular fi lters
designed using the Mel scale. For a given frequency f , the mel of the frequency
is given by

 B f f() [/]= +1125 1 700ln() mels

 If m is the mel, then the corresponding frequency is

 B m m− = −1 700 1125 700() [exp(/)] Hz

 The frequency edge of each fi lter is computed by substituting the correspond-
ing mel. Once the edge frequencies and the center frequencies of the fi lter are
found, boundary points are computed to determine the transfer function of
the fi lter.

 7. Mel - frequency cepstrum coeffi cients . The log mel spectrum is converted back
to time. The discrete cosine transform (DCT) of the log of the signal yields
the MFCCs.

 Speaker Training — VQ
 VQ is a process of mapping vectors from a large vector space to a fi nite number of
regions in that space. Each region is called a cluster and can be represented by its
center, the codeword. As noted earlier, a codebook is the collection of all the clus-
ters. An example of a one - dimensional VQ has every number less than − 2 approxi-
mated by − 3; every number between − 2 and 0 approximated by − 1; every number

 Automatic Speaker Recognition 499

500 DSP Applications and Student Projects

between 0 and 2 approximated by +1; and every number greater than 2 approxi-
mated by +3. These approximate values are uniquely represented by 2 bits, yielding
a one - dimensional, 2 - bit VQ. An example of a two - dimensional VQ consists of 16
regions and 16 stars, each of which can be uniquely represented by 4 bits (a two -
 dimensional 4 - bit VQ). Each pair of numbers that fall into a region are approxi-
mated by a star associated with that region. The stars are called codevectors , and
the regions are called encoding regions . The set of all the codevectors is called the
codebook , and the set of all encoding regions is called the partition of the space.

Speaker Identifi cation (Using Euclidean Distances)
 After computing the MFCCs, the speaker is identifi ed using a set of trained vectors
(samples of registered speakers) in an array. To identify the speaker, the Euclidean
distance between the trained vectors and the MFCCs is computed for each trained
vector. The trained vector that produces the smallest Euclidean distance is identifi ed
as the speaker.

Implementation
 The design is fi rst tested with MATLAB. A total of eight speech samples from eight
different people (eight speakers, labeled S1 to S8) are used to test this project. Each
speaker utters the same single digit, zero , once in a training session (then also in a
testing session). A digit is often used for testing in speaker recognition systems
because of its applicability to many security applications. This project was imple-
mented on the C6711 DSK and can be transported to the C6713 DSK. Of the eight
speakers, the system identifi ed six correctly (a 75% identifi cation rate). The identi-
fi cation rate can be improved by adding more vectors to the training codewords.
The performance of the system may be improved by using two - dimensional or four -
 dimensional VQ (training header fi le would be 8 × 20 × 4) or by changing the
quantization method to dynamic time wrapping or hidden Markov modeling. A
readme fi le to test this project is on the CD in the folder speaker_recognition ,
along with all the appropriate support fi les. These support fi les include several
modules for framing and windowing, power spectrum, threshold detection, VQ, and
the Mel - frequency spectrum.

10.17 m -LAW FOR SPEECH COMPANDING

 An analog input such as speech is converted into digital form and compressed into
8 - bit data. m - Law encoding is a nonuniform quantizing logarithmic compression
scheme for audio signals. It is used in the United States to compress a signal into a
logarithmic scale when coding for transmission. It is widely used in the telecommu-
nications fi eld because it improves the SNR without increasing the amount of
data.

 The dynamic range increases, while the number of bits for quantization remains
the same. Typically, m - law compressed speech is carried in 8 - bit samples. It carries

more information about smaller signals than about larger signals. It is based on the
observation that many signals are statistically more likely to be near a low - signal
level than a high - signal level. As a result, there are more quantization points closer
to the low level.

 A lookup table with 256 values is used to obtain the quantization levels from 0
to 7. The table consists of a 16 × 16 set of numbers: Two 0 ’ s, two 1 ’ s, four 2 ’ s, eight
3 ’ s, sixteen 4 ’ s, thirty - two 5 ’ s, sixty - four 6 ’ s, and one hundred twenty - eight 7 ’ s. More
higher - level signals are represented by 7 (from the lookup table). Three exponent
bits are used to represent the levels from 0 to 7, 4 mantissa bits are used to represent
the next four signifi cant bits, and 1 bit is used for the sign bit.

 The 16 - bit input data are converted from linear to 8 - bit m - law (simulated for
transmission), then converted back from m - law to 16 - bit linear (simulated as receiv-
ing), and then output to the codec.

 From the 16 - bit sample signal, the eight MSBs are used to choose a quantization
level from the lookup table of 256 values. The quantization is from 0 to 7 so that 0
and 1 range across 2 values, . . . , 2 ranges across 4 values, 3 ranges across 8 values, . . . ,
and 7 ranges across 128 values. This is a logarithmic companding scheme.

 Build this project as Mulaw . The C source fi le for this project, Mulaw.c , is included
on the CD.

10.18 SB-ADPCM ENCODER/DECODER: IMPLEMENTATION OF
G.722 AUDIO CODING

 An audio signal is sampled at 16 kHz, transmitted at a rate of 64 kbits/s, and recon-
structed at the receiving end [51, 52] .

Encoder
 The subband adaptive differential pulse code - modulated (SB - ADPCM) encoder
consists of a transmit quadrature mirror fi lter that splits the input signal into a low
frequency band, 0 to 4 kHz, and a high frequency band, 4 to 8 kHz. The low and
high frequency signals are encoded separately by dynamically quantizing an adap-
tive predictor ’ s output error. The low and high encoder error signals are encoded
with 6 and 2 bits, respectively. As long as the error signal is small, a negligible
amount of overall quantization noise and good performance can be obtained. The
low and high band bits are multiplexed, and the result is 8 bits sampled at 8 kHz
for a bit rate of 64 kbits/s. Figure 10.53 shows a block diagram of an SB - ADPCM
encoder.

Transmit Quadrature Mirror Filter
 The transmit quadrature mirror fi lter (QMF) takes a 16 - bit audio signal sampled
at 16 kHz and separates it into a low band and a high band. The fi lter coeffi cients

 SB-ADPCM Encoder/Decoder: Implementation of G.722 Audio Coding 501

502 DSP Applications and Student Projects

 FIGURE 10.53. Block diagram of the ADPCM encoder.

 FIGURE 10.54. Block diagram of the ADPCM encoder.

represent a 4 - kHz lowpass fi lter. The sampled signal is separated into odd and even
samples, with the effect of aliasing the signals from 4 to 8 kHz. This aliasing causes
the high frequency odd samples to be 180 ° out of phase with the high frequency
even samples. The low frequency even and odd samples are in phase. When the odd
and even samples are added after being fi ltered, the low frequency signals construc-
tively add, while the high frequency signals cancel each other, producing a low band
signal sampled at 8 kHz.

 The low subband encoder converts the low frequencies from the QMF into an
error signal that is quantized to 6 bits.

 Decoder
 The decoder decomposes a 64 - kbits/s signal into two signals to form the inputs to
the lower and higher SB - ADPCM decoder, as shown in Figure 10.54 . The receive
QMF consists of two digital fi lters to interpolate the lower and higher subband
ADPCM decoders from 8 to 16 kHz and produce output at a rate of 16 kHz. In the
higher SB - ADPCM decoder, adding the quantized difference signal to the signal
estimate produces the reconstructed signal.

 Components of the ADPCM decoder include an inverse adaptive quantizer,
quantizer adaptation, adaptive prediction, predicted value computation, and recon-
structed signal computation. With input from a CD player, the DSK reconstructed
output signal sound quality was good. Buffered input and reconstructed output data
also confi rmed successful results from the decoder.

 Build this project as G722 . The support fi les (encoder and decoder functions, etc.)
to implement this project are included on the CD in the folder G722 .

 10.19 ENCRYPTION USING THE DATA ENCRYPTION
STANDARD ALGORITHM

 Cryptography is the art of communicating with secret data. In voice communication,
cryptography refers to the encrypting and decrypting of voice data through a pos-
sibly insecure data line. The goal is to prevent anyone who does not have a “ key ”
from receiving and understanding a transmitted message.

 The data encryption standard (DES) is an algorithm that was formerly
considered to be the most popular method for private key encryption. DES is
still appropriate for moderately secured communication. However, with current
computational power, one would be able to break (decrypt) the 56 - bit key in a rela-
tively short period of time. As a result, for very secure communication, the DES
algorithm has been modifi ed into the triple - DES or (AES) standards. DES is a very
popular private - key encryption algorithm and was an industry standard until 1998,
after which it was replaced by triple - DES and AES, two slightly more complex
algorithms derived from DES [53 – 56] . Triple - DES increases the size of the key and
the data blocks used in this project, essentially performing the same algorithm three
times before sending the ciphered data. AES encryption, known as the Rijndael
algorithm , is the new standard formally implemented by the National Institute
of Standards and Technology (NIST) for data encryption in high - level security
communications.

 DES is a bit - manipulation technique with a 64 - bit block cipher that uses an effec-
tive key of 56 bits. It is an iterated Feistel - type cipher with 16 rounds. The general
model of DES has three main components for (see Figure 10.55): (1) initial permu-
tation; (2) encryption — the core iteration/ f - function (16 rounds); and (3) fi nal per-
mutation. X and Y are the input and output data streams in 64 - bit block segments,
respectively, and K 1 through K 16 are distinct keys used in the encryption algorithm.
The initial permutation is based on the predefi ned Table 10.10 . The value at each
position is used to scramble the input before the encryption routine. For example,
the 58th bit of data is moved into the fi rst position of a 64 - bit array, the 50th bit into
position 2, and so on. The input stream is permutated using a nonrepetitive random
table of 64 integers (1 – 64) that corresponds to a new position of each bit in the 64 -
 bit data block. The fi nal permutation is the reverse of the initial permutation to
reorder the samples into the correct original formation. The initial permutation is

 FIGURE 10.55. DES model.

Inital
Permutation

Final
Permutation

X Encryption
1

Encryption
16

Y

K16K1

K

 Encryption Using the Data Encryption Standard Algorithm 503

504 DSP Applications and Student Projects

 TABLE 10.10 Initial Permutation

 IP

 58 50 42 34 26 18 10 2
 60 52 44 36 28 20 12 4
 62 54 46 38 30 22 14 6
 64 56 48 40 32 24 16 8
 57 49 41 33 25 17 9 1
 59 51 43 35 27 19 11 3
 61 53 45 37 29 21 13 5
 63 55 47 39 31 23 15 7

followed by the actual encryption. The permutated 64 - bit block is divided into a left
and a right block of 32 bits each. Sixteen rounds take place, each undergoing a
similar procedure, as illustrated in Figure 10.56 . The right block is placed into the
left block of the next round, and the left block is combined with an encoded version
of the right block and placed into the right block of the next round, or

 L Ri i= −1

 R L f R ki i i i= ⊕− −1 1(,)

where L i − 1 and R i − 1 are the left and right blocks, respectively, each with 32 bits, and
 k i is the distinct key for the particular round of encryption. The original key is sent
through a key scheduler that alters the key for each round of encryption. The left
block is not utilized until the very end, when it is XORed with the encrypted right
block.

 The f - function operating on a 32 - bit quantity expands these 32 bits into 48 bits
using the expansion table (see Table 10.11). This expansion table performs a per-
mutation while duplicating 16 of the bits (the rightmost two columns). For example,
the fi rst integer is 32, so that the fi rst bit in the output block will be bit 32; the second
integer is 1, so that the second bit in the output block will be bit 1; and so on.

L i- 1 R i- 1

L i R i

f

+

K i

 FIGURE 10.56. Encryption process — one round.

 The 48 - bit key transformations are XORed with these expanded data, and the
results are used as the input to eight different S - boxes. Each S - box takes 6 conse-
cutive bits and outputs only 4 bits. The 4 output bits are taken directly from the
numbers found in a corresponding S - box table. This process is similar to that of a
decoder where the 6 bits act as a table address and the output is a binary represen-
tation of the value at that address. The zeroth and fi fth bits determine the row of
the S - box, and the fi rst through fourth bits determine which column the number is
located in. For example, 110100 points to the third row (10) and 10th column (1010).
The fi rst 6 bits of data correspond to the fi rst of eight S - box tables, shown in Table
 10.12 . The 32 bits of output from the S - boxes are permutated according to the P - box
shown in Table 10.13 , and then output from the f - function shown in Figure 10.57 .
For example, from Table 10.13 , bits 1 and 2 from the input block will be moved to
bits 16 and 7 in the output, respectively. After the 16 rounds of encryption, a fi nal
permutation occurs, which reverses the initial permutation, yielding an encrypted
data signal.

 The signal output from the encryption algorithm is not decipherable by the
human ear even if the signal is fi ltered in any way. For testing purposes, the fi rst
three onboard switches were utilized: sw 0 for selecting different keys; sw 1 to enable
encryption only, or both encryption and decryption; and sw 2 as an on/off switch (a
loop program).

TABLE 10.11 Expansion of 32 bits to 48

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

TABLE 10.12 S-Box Example, S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 14

TABLE 10.13 P-Box

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25

 Encryption Using the Data Encryption Standard Algorithm 505

506 DSP Applications and Student Projects

Ri

Ki

Ri – 1

Expansion
E(Ri – 1)

Li – 1

32
32

32

32

Permutation P

44

66

S8S1

48

32

48

48

 FIGURE 10.57. Core f - function of DES.

 This project was successfully implemented on the C6711 DSK with a different
onboard codec and can be transported to a C6713 DSK. All the necessary fi les are
in the folder encryption . The sections of code associated with the onboard switches
need to be modifi ed so that the corresponding available library support functions
are utilized. The highest level of compiler optimization (- o3) was utilized in building
this project.

 10.20 PHASE - LOCKED LOOP

 The PLL project implements a software - based linear PLL. The basic PLL causes a
particular system to track another PLL. It consists of a phase detector, a loop fi lter,
and a voltage - controlled oscillator. The software PLL is more versatile. However, it

is limited by the range in frequency that can be covered, since the PLL function
must be executed at least once every period of the input signal [57 – 59] .

 Initially, the PLL was tested using MATLAB, then ported to the C6x using C.
The PLL locks to a sine wave, generated either internally within the program or
from an external source. Output signals are viewed on a scope or on a PC using
RTDX.

 Figure 10.58 shows a block diagram of the linear PLL implemented in two
versions:

 1. Using an external input source, with the output of the digitally controlled
oscillator (DCO) to an oscilloscope

 2. Using RTDX with an input sine wave generated from a lookup table and
various signals viewed using Excel

 The phase detector, from Figure 10.58 , multiplies the input sine wave by the
square wave output of the DCO. The sum and difference frequencies of the two
inputs to the phase detector produce an output with a high and a low frequency
component, respectively. The low frequency component is used to control the loop,

 FIGURE 10.58. PLL block diagram.

 Phase-Locked Loop 507

508 DSP Applications and Student Projects

while the high frequency component is fi ltered out. When the PLL is locked, the
two inputs to the phase detector are at the same frequency but with a quadrature
(90 °) relationship.

 The loop fi lter is a lowpass fi lter that passes the low frequency output component
of the phase detector while it attenuates the undesired high frequency component.
The loop fi lter is implemented as a single - pole IIR fi lter with a zero to improve the
loop ’ s dynamics and stability. The scaled output of the loop fi lter represents the
instantaneous incremental phase step the DCO is to take. The DCO outputs a
square wave as a Walsh function: +1 for phase between 0 and p and − 1 for phase
between −p and 0, with an incremental phase proportional to the number at its
input.

RTDX for Real -Time Data Transfer
 The RTDX feature was used to transfer data to the PC host using a sine wave from
a lookup table as input. A single output channel was created to pass to CCS the
input signal, the output of both the loop fi lter and the DCO, and time stamps. CCS
buffers these data so that they can be accessed by other applications on the PC host.
CCS has an interface that allows PC applications to access buffered RTDX data.
Visual Basic Excel was used to display the results on the PC monitor. Chapter 9
introduced RTDX with several examples using different schemes.

 This project was implemented on the C6211 DSK and can be transported to the
C6713 DSK. All the necessary fi les, including the MATLAB fi le to test the project,
are on the CD in the folder PLL .

10.21 MISCELLANEOUS PROJECTS

 The following projects can also be used as a source of ideas to implement other
projects.

10.21.1 Multirate Filter

 With multirate processing, a fi lter can be realized with fewer coeffi cients than with
an equivalent single - rate approach. Possible applications include a controlled noise
source and background noise synthesis.

Introduction
 Multirate processing uses more than one sampling frequency to perform a desired
processing operation. The two basic operations are decimation , which is a sampling -
 rate reduction, and interpolation , which is a sampling - rate increase. Decimation
techniques have been used in fi ltering. Multirate decimators can reduce the compu-
tational requirements of the fi lter. Interpolation can be used to obtain a sampling -
 rate increase. For example, a sampling - rate increase by a factor of K can be achieved
by padding K − 1 zeros between pairs of consecutive input samples xi and xi+1 . We

 Miscellaneous Projects 509

can also obtain a noninteger sampling - rate increase or decrease by cascading the
decimation process with the interpolation process. For example, if a net sampling -
 rate increase of 1.5 is desired, we would interpolate by a factor of 3, padding
(adding) two zeros between each input sample, and then decimate with the inter-
polated input samples shifted by 2 before each calculation. Decimating or interpo-
lating over several stages generally results in better effi ciency [60 – 67] .

 Design Considerations
 A binary random signal is fed into a bank of fi lters that are used to shape the output
spectrum. The functional block diagram of the multirate fi lter is shown in Figure
 10.59 . The frequency range is divided into 10 octave bands, with each band 13 - octave
controllable. The control of each octave band is achieved with three fi lters. The
coeffi cients of these fi lters are combined to yield a composite fi lter with one set of
coeffi cients for each octave. Only three unique sets of fi lter coeffi cients (low, middle,
and high) are required, because the center frequency and the bandwidth are pro-
portional to the sampling frequency. Each of the 13 - octave fi lters has a bandwidth of
approximately 23% of its center frequency, a stopband rejection of greater than
45 dB, with an amplitude that can be controlled individually. This control provides
the capability of shaping an output pseudorandom noise spectrum. The sampling
rate of the output is chosen to be 16,384 Hz. Forty - one coeffi cients are used for the
highest 13 - octave fi lter to achieve these requirements. The middle 13 - octave fi lter
coeffi cients were used as BP41.cof in Chapter 4 .

 In order to meet the fi lter specifi cations in each region with a constant sampling
rate, the number of fi lter coeffi cients must be doubled from one octave fi lter to the
next lower one. As a result, the lowest - octave fi lter would require 41 × 2 9 coeffi cients.
With 10 fi lters ranging from 41 to 41 × 2 9 coeffi cients, the computational require-
ments would be considerable. To reduce these computational requirements, a mul-
tirate approach is used, as shown in Figure 10.59 .

 The noise generator is a software - based implementation of a maximal length
sequence technique used for generating pseudorandom numbers. This pseudo-
random noise generator was implemented in Example 3.3 . The output of the
noise generator provides uncorrelated noise input to each of the 10 sets of bandpass
fi lters. The noise generation example in Chapter 3 uses the process shown in
Figure 10.60 .

 Because each 13 - octave fi lter can be scaled individually, a total of 30 levels can be
controlled. The output of each octave bandpass fi lter (except the last one) becomes
the input to an interpolation lowpass fi lter, using a 2 : 1 interpolation factor. The
ripple in the output spectrum is minimized by having each adjacent 13 - octave fi lter
with crossover frequencies at the 3 - dB points.

 The center frequency and bandwidth of each fi lter are determined by the sam-
pling rate. The sampling rate of the highest - octave fi lter is processed at 16,384
samples per second (you can use a sampling rate of 16 kHz, 48 kHz, etc.), and each
successively lower - octave band is processed at half the rate of the next higher
band.

 F
IG

U
R

E
 1

0.
59

.
 F

un
ct

io
na

l b
lo

ck
 d

ia
gr

am
 o

f
a

10
 - b

an
d

m
ul

ti
ra

te
 fi

lt
er

.

510

 Miscellaneous Projects 511

 Only three separate sets of 41 coeffi cients are used for the lower, middle, and
higher 13 - octave bands. For each octave band, the coeffi cients are combined as
follows:

H H L H L H Lij lj i mj i hj i= + +− −()() ()() ()()3 2 3 1 3

where i = 1, 2, . . . , 10 bands and j = 0, 1, . . . , 40 coeffi cients; L 1 , L 2 , . . . , L 30 represent
the level of each 13 - octave band fi lter; and H lj , H mj , H hj represent the j th coeffi cient
of the lower, middle, and higher 13 - octave band FIR fi lter. For example, for the fi rst
band (i = 1),

H H L H L H L

H H L H L H

l m h

l m h

0 0 1 0 2 0 3

1 1 1 1 2

= + +

= + +

()() ()() ()()

()() ()() (11 3

40 40 1 40 2 40 3

)()

()() ()() ()()

L

H H L H L H Ll m h

�

= + +

and for band 10 (i = 10),

H H L H L H L

H H L H L

l m h

l m

0 0 28 0 29 0 30

1 1 28 1 29

= + +

= +

()() ()() ()()

()() ()()) ()()

()() ()() ()()

+

= + +

H L

H H L H L H L

h

l m h

1 30

40 40 28 40 29 40 30

�

 For an effi cient design with the multirate technique, lower - octave bands are pro-
cessed at a lower sampling rate, then interpolated up to a higher sampling rate, by
a factor of 2, to be summed with the next higher octave band fi lter output, as shown
in Figure 10.59 . Each interpolation fi lter is a 21 - coeffi cient FIR lowpass fi lter, with

 FIGURE 10.60. A 32 - bit pseudorandom generator.

512 DSP Applications and Student Projects

a cutoff frequency of approximately one - fourth of the sampling rate. For each input,
the interpolation fi lter provides two outputs, or

 y x I I x I I x I1 0 0 1 1 2 3 10 200 0= + + + + ⋅ ⋅ ⋅ +

 y I x I I x I x I2 0 0 1 2 1 3 9 190 0= + + + + ⋅ ⋅ ⋅ +

where y 1 and y 2 are the fi rst and second interpolated outputs, respectively, x n are the
fi lter inputs, and I n are the interpolation fi lter coeffi cients. The interpolator is pro-
cessed in two sections to provide the data - rate increase by a factor of 2.

 For the multirate fi lter, the approximate number of multiplication operations
(with accumulation) per second is

MAC S/ ()()
()(

= + + + + + + + + +
+
41 21 32 64 128 256 512 1024 2048 4096 8192

41 116 384
1 686 106

,)
.� ×

 The approximate number of multiplications/accumulation per second for an
equivalent single - rate fi lter is then

 MAC S/ ()= × + + + + ⋅ ⋅ ⋅ + = ×Fs 41 1 2 2 2 2 687 102 3 9 6

which would considerably increase the processing time requirements.
 A brief description (recipe) of the main processing follows, for the fi rst time

through (using three buffers B 1 , B 2 , B 3).

 Band 1
 1. Run the bandpass fi lter and obtain one output sample.

 2. Run the lowpass interpolation fi lter twice and obtain two outputs. The inter-
polator provides two sample outputs for each input sample.

 3. Store in buffer B 2 , size 512, at locations 1 and 2 (in memory).

 Band 2
 1. Run the bandpass fi lter two times and sum with the two previous outputs

stored in B 2 from band 1.

 2. Store the summed values in B 2 at the same locations 1 and 2 (again).

 3. Pass the sample in B 2 at location 1 to the interpolation fi lter twice and obtain
two outputs.

 4. Store these two outputs in buffer B 3 , size 256, at locations 1 and 2.

 5. Pass the sample in B 2 at location 2 to the interpolation fi lter twice and obtain
two outputs.

 6. Store these two outputs in buffer B 3 at locations 3 and 4.

 Miscellaneous Projects 513

 Band 3
 1. Run the bandpass fi lter four times and sum with the previous four outputs

stored in B 3 from band 2.

 2. Store the summed values in B 3 at locations 1 through 4.

 3. Pass the sample in B 3 at location 1 to the interpolation fi lter twice and obtain
two outputs.

 4. Store these two outputs in buffer B 2 at locations 1 and 2.

 5. Pass the sample in B 3 at location 2 to the interpolation fi lter twice and obtain
two outputs.

 6. Store these two outputs in buffer B 2 at locations 3 and 4.

 7. Repeat steps 3 and 4 for the other two samples at locations 3 and 4 in B 3 . For
each of these samples, obtain two outputs, and store each set of two outputs
in buffer B 2 at locations 5 through 8.

 Band 10
 1. Run the bandpass fi lter 512 times and sum with the previous 512 outputs

stored in B 2 from band 9.

 2. Store the summed values in B 2 at locations 1 through 512.

 No interpolation is required for band 10. After all the bands are processed, wait
for the output buffer B 1 , size 512, to be empty. Then switch the buffers B 1 and B 2 —
 the last working buffer with the last output buffer. The main processing is then
repeated.

 The multirate fi lter was implemented on the C25 processor using 9 bands and on
the C30 processor using 10 bands [8] and can be transported to the C6x. Using a
total of 30 different levels, any specifi c 13 - octave fi lter can be turned on or off. For
example, all the fi lter bands can be turned on except bands 2 and 5. Figure 10.61
shows the frequency response of the three 13 - octave fi lters of band 9 implemented
on the C30. Note that if a sampling rate of 8 kHz is set (for the highest band), the
middle 13 - octave band 1 fi lter would have a center frequency of 4 Hz (one - fourth of
the equivalent sampling rate for band 1).

 10.21.2 Acoustic Direction Tracker

 This project uses two microphones to capture an audio signal. From the delay associ-
ated with the signal reaching one of the microphones before the other, a relative
angle where the source is located can be determined. A signal radiated at a distance
from its source can be considered to have a plane wavefront, as shown in Figure
 10.62 . This allows the use of equally spaced sensors (many microphones can be used
as acoustical sensors) in a line to ascertain the angle at which the signal is radiating.
Since one microphone is closer to the source than the other, the signal received by

514 DSP Applications and Student Projects

the more distant microphone is delayed in time. This time shift corresponds to the
angle where the source is located and the relative distance between the microphones
and the source. The angle c = arcsin(a / b), where the distance a is the product of the
speed of sound and the time delay (phase/frequency).

 Figure 10.63 shows a block diagram of the acoustic signal tracker. Two 128 - point
arrays of data are obtained, cross - correlating the fi rst signal with the second and
then the second signal with the fi rst. The resulting cross - correlation data are decom-

 FIGURE 10.61. Frequency response of the three 1
3

 - octave fi lters of band 9.

 FIGURE 10.62. Signal reception with two microphones.

 Miscellaneous Projects 515

posed into two halves, each transformed using a 128 - point FFT. The resulting phase
is the phase difference of the two signals.

 This project was implemented on the C30 [17] and can be transported to the
C6713 processor. To test this project, a speaker was positioned a few feet from the
two microphones, which are separated by 1 foot. The speaker receives a 1 - kHz signal
from a function generator. A track of the source speaker is plotted over time on
the PC monitor. Plots of the cross - correlation and the magnitude of the cross -
correlation of the two microphone signals were also displayed on the PC monitor.

 10.21.3 Neural Network for Signal Recognition

 The goal of this project is to recognize a signal. The FFT of a signal becomes the
input to a neural network that is trained to recognize the signal using the back -
 propagation learning rule.

 Design and Implementation
 The neural network consists of three layers with a total of 90 nodes: 64 input nodes
in the fi rst layer, 24 nodes in the middle or hidden layer, and 2 output nodes in the
third layer. The 64 points as input to the neural network are obtained by retaining
half of the 128 points resulting from a 128 - point FFT of the signal to be recognized.
In recent years, many books and articles on neural networks have been published
 [68, 69] . Neural network products are now available from many vendors.

 Many different rules have been described in the literature for training a neural
network. The back - error propagation is one of the most widely used for a wide range
of applications. Given a set of input, the network is trained to give a desired
response. If the network gives the wrong answer, then it is corrected by adjusting
its parameters so that the error is reduced. During this correction process, one starts

 FIGURE 10.63. Block diagram of an acoustic signal tracker.

516 DSP Applications and Student Projects

with the output nodes and propagation is backward to the input nodes (back propa-
gation). Then the propagation process is repeated.

 To illustrate the procedure for training a neural network using the back - propaga-
tion rule, consider a simple three - layer network with seven nodes, as shown in Figure
 10.64 . The input layer consists of three nodes, and the hidden layer and output layer
each consist of two nodes. Given the following set of inputs — input No. 1 = 1 into
node 0, input No. 2 = 1 into node 1, and input No. 3 = 0 into node 2 — the network
is to be trained to yield the desired output 0 at node 0 and 1 at node 1. Let the sub-
scripts i, j, k be associated with the fi rst, second, and third layers, respectively. A set
of random weights are initially chosen, as shown in Figure 10.64 . For example, the
weight w 11 = 0.9 represents the weight value associated with node 1 in layer 1 and
node 1 in the middle or hidden layer 2. The weighted sum of the input value is

 s w xj ji i
i

=
=
∑

0

2

where j = 0, 1 and i = 0, 1, 2. Then

 s w x w x w x0 00 0 01 1 02 2 0 5 1 0 3 1 0 1 0 0 8= + + = + + =(.)() (.)() (.)() .

 FIGURE 10.64. Three - layer neural network with seven nodes.

 Miscellaneous Projects 517

 Similarly, s 1 = 1.3. A function of the resulting weighted sum f (s j) is next computed.
This transfer function f of a processing element must be differentiable. For this
project, f is chosen as the hyperbolic tangent function tanh. Other functions, such
as the unit step function or the smoother sigmoid function, also can be used. The
output of the transfer function associated with the nodes in the middle layer is

 x f s s jj j j= = =() (), ,tanh 0 1

The output of node 0 in the hidden layer then becomes

 x0 0 664= =tanh(0.8) .

Similarly, x 1 = 0.862. The weighted sum at each node in layer 3 is

 s w x kk kj j
j

= =
=
∑ , ,0 1

0

1

to yield

 s w x w x0 00 0 01 1 1 0 0 664 0 9 0 862 1 44= + = + =(.)(.) (.)(.) .

Similarly, s 1 = 0.524. The output of the transfer function is associated with the output
layer, and replacing j by k ,

 x f s kk k= =(), ,0 1

Then x 0 = tanh(1.44) = 0.894, and x 1 = tanh(0.524) = 0.481. The error in the output
layer can now be found using

 e d x f sk k k k= − ′() ()

where d k − x k refl ects the amount of error, and f ′ (s) represents the derivative of
tanh(s), or

 f x f s f s′ = + −() (())(())1 1

Then

 e0 0 0 894 1 1 0 18= − + − = −(.)()() .tanh(1.44) tanh(1.44)

Similarly, e 1 = 0.399. Based on this output error, the contribution to the error by
each hidden layer node is to be found. The weights are then adjusted based on this
error using

 ∆w e xkj k j= η

518 DSP Applications and Student Projects

where h is the network learning rate constant, chosen as 0.3. A large value of h can
cause instability, and a very small one can make the learning process much too slow.
Then

 ∆w00 0 3 0 18 0 664 0 036= − = −(.)(.)(.) .

Similarly, ∆ w 01 = − 0.046, ∆ w 10 = 0.08, and ∆ w 11 = 0.103. The error associated with the
hidden layer is

 e f s e wj j k kj
k

= ′
=

∑()
0

1

Then

 e0 1 1 0 18 1 0 0 399 0 4= + − − + = −()(){(.)(.) (.)(.)}tanh(0.8) tanh(0.8) 00 011.

Similarly, e 1 = − 0.011. Changing the weights between layers i and j ,

 ∆w e xji j i= η

Then

 ∆w00 0 3 0 011 1 0 0033= − = −(.)(.)() .

 Similarly, ∆ w 01 = − 0.0033, ∆ w 02 = 0, ∆ w 10 = − 0.0033, ∆ w 11 = − 0.0033, and ∆ w 12 = 0. This
gives an indication of by how much to change the original set of weights chosen.
For example, the new set of coeffi cients becomes

 w w w00 00 00 0 5 0 0033 0 4967= + = − =∆ . . .

and w 01 = 0.2967, w 02 = 0.1, and so on.
 This new set of weights represents only the values after one complete cycle. These

weight values can be verifi ed using a training program for this project. For this pro-
cedure of training the network, readjusting the weights is continuously repeated
until the output values converge to the set of desired output values. For this project,
the training program is such that the training process can be halted by the user, who
can still use the resulting weights.

 This project was implemented on the C30 and can be transported to the C6x.
Two sets of inputs were chosen: a sinusoidal and a square wave input. The FFT
(128 - point) of each input signal is captured and stored in a fi le, with a total of 4800
points: 200 vectors, each with 64 features (retaining one - half of the 128 points).

 Miscellaneous Projects 519

Another program scales each set of data (sine and square wave) so that the values
are between 0 and 1.

 To demonstrate this project, two output values for each node are displayed on
the PC screen. Values of +1 for node 0 and − 1 for node 1 indicate that a sinusoidal
input is recognized, and values of − 1 for node 0 and +1 for node 1 indicate that a
square wave input is recognized.

 This project was successful but was implemented for only the two sets of chosen
data. Much work remains to be done, such as training more complex sets of data
and examining the effects of different training rules based on the different signals
to be recognized.

 10.21.4 Adaptive Temporal Attenuator

 An adaptive temporal attenuator (ATA) suppresses undesired narrowband signals
to achieve a maximum signal - to - interference ratio. Figure 10.65 shows a block
diagram of the ATA. The input is passed through delay elements, and the outputs
from selected delay elements are scaled by weights. The output is

 y k k k ii
i

N

[] [] ([])= ⋅ = ⋅ −
=

−

∑m r m rT

0

1

 where m is a weight vector, r a vector of delayed samples selected from the input
signal, and N the number of samples in m and r . The adaptive algorithm computes
the weights based on the correlation matrix and a direction vector:

 C m D[,] []k kδ λ= ⋅ =0

[] [] []()? −

=
−ƒ= 1

0

1
,

n

i

Tkk
N

k δδ rrC

[] [] DmC λδ =◊= kk 0,

[] []() DCm 10, −== δλ kk

D1

Σ

Input

Output y

r2

D2

r3r1

DN-1

rN

m1

m2

m3

 FIGURE 10.65. Block diagram of an adaptive temporal attenuator.

520 DSP Applications and Student Projects

where C is a correlation matrix, D a direction vector, and l a scale factor. The cor-
relation matrix C is computed as an average of the signal correlation over several
samples:

 C r r[,] ([] [])k
N

k k
i

n

δ δ= ⊗ −
=

−

∑1

0

1

AV

T

where N AV is the number of samples included in the average. The direction vector
 D indicates the signal desired:

 D = ⋅ ⋅ ⋅ −[exp()] exp[()]1 1j j NT Tω τ ω τ T

where w T is the angular frequency of the signal desired, t the delay between samples
that create the output, and N the order of the correlation matrix.

 This procedure minimizes the undesired - to - desired ratio (UDR) [70] . UDR
is defi ned as the ratio of the total signal power to the power of the signal
desired, or

 UDR= total
T

T T

P

P
k k k

P k P kd d d

=
⋅ ⋅

⋅
=

⋅
m C m

m D m D
[] [,] []

([]) ([])
0 1

2

where P d is the power of the signal desired.
 MATLAB is used to simulate the ATA, then ported to the C6x for real - time

implementation. Figure 10.66 shows the test setup using a fi xed desired signal of
1416 Hz and an undesired signal of 1784 Hz (which can be varied). From MATLAB,
and optimal value of t is found to minimize UDR. This is confi rmed in real time,
since for that value of t (varying t with a GEL fi le), the undesired signal (initially
displayed from an HP3561A analyzer) is greatly attenuated.

Signal
Generator

Signal
Generator

TMS320C6x DSK
Implementing the
ATA

Spectrum
Analyzer

Desired signal:
fd =1416 Hz fixed

Undesired signal:
fu =1784 Hz

Variable frequency
and amplitude

PC:
Slider control
for t

Output
signal

 FIGURE 10.66. Test setup for an adaptive temporal attenuator.

 Miscellaneous Projects 521

10.21.5 FSK Modem

 This project implements a digital modulator/demodulator. It generates 8 - ary FSK
carrier tones. The following steps are performed in the program.

 1. The sampled data are acquired as input.

 2. The 6 MSBs are separated into two 3 - bit samples.

 3. The most signifi cant portion of the sample data selects an FSK tone.

 4. The FSK tone is sent to a demodulator.

 5. The FSK tone is windowed using the Hanning window function.

 6. DFT (16 - point) results are obtained for the windowed FSK tone.

 7. DFT results are sent to the function that selects the frequency with the
highest amplitude, corresponding to the upper 3 bits of the sampled data.

 8. The process is repeated for the lower 3 bits of the sampled data.

 9. The bits are combined and sent to the codec.

10. The gel program allows for an option to interpolate or upsample the recon-
structed data for a smoother output waveform.

10.21.6 Image Processing

 This project implements various schemes used in image processing:

1. Edge detection: for enhancing edges in an image using Sobe ’ s edge detection

2. Median fi ltering: nonlinear fi lter for removing noise spikes in an image

3. Histogram equalization: to make use of the image spectrum

4. Unsharp masking: spatial fi lter to sharpen the image, emphasizing its high
frequency components

5. Point detection: for emphasizing single - point features in the image

 A major issue was using/loading the images as .h fi les in lieu of using real - time
images (due to the course ’ s one - semester time constraint). During the course of this
project, the following evolved: a code example for additive noise with a Gaussian
distribution, with adjustable variance and mean, and a code example of histogram
transformation to map the distribution of one set of numbers to a different distribu-
tion (used in image processing).

10.21.7 Filter Design and Implementation Using
a Modifi ed Prony ’s Method

 This project designs and implements a fi lter based on a modifi ed Prony ’ s
method [71 – 74] . The method is based on the correlation property of the fi lter ’ s

522 DSP Applications and Student Projects

representation and does not require computation of any derivatives or an initial
guess of the coeffi cient vector. The fi lter ’ s coeffi cients are calculated recursively to
obtain the fi lter ’ s impulse response.

10.21.8 PID Controller

 Both nonadaptive and adaptive controllers using the proportional, integral, and
derivative (PID) control algorithm have been implemented [17, 75, 76] .

10.21.9 Four-Channel Multiplexer for Fast Data Acquisition

 A four - channel multiplexer module was designed and built for this project, imple-
mented in C [8] . It includes an 8 - bit fl ash ADC, a FIFO, a MUX, and a crystal oscil-
lator (2 or 20 MHz). An input is acquired through one of the four channels. The FFT
of the input signal is displayed in real time on the PC monitor.

10.21.10 Video Line Rate Analysis

 This project is discussed in Refs. 8 and 77 and implemented using C and C30
code. It analyzes a video signal at the horizontal (line) rate. Interactive algorithms
commonly used in image processing for fi ltering, averaging, and edge enhance-
ment using C code are utilized for this analysis. The source of the video signal is a
charge - coupled device (CCD) camera as input to a module designed and built
for this project. This module includes fl ip - fl ops, logic gates, and a clock. Displays
on the PC monitor illustrate various effects on one horizontal video line signal
from either a 500 - kHz or a 3 - MHz IIR lowpass fi lter and from an edge enhance-
ment algorithm.

ACKNOWLEDGMENTS

 I owe a special debt to all the students who have made this chapter possible. They
include students from Roger Williams University, the University of Massachusetts –
 Dartmouth, and the Worcester Polytechnic Institute (WPI) who have contributed
to my general background in real - time DSP applications over the last 20 years: in
particular, the undergraduate and graduate students at WPI who have recently
taken my two courses on real - time DSP. Many projects and mini - projects from these
students are included in this chapter. A special thanks to the following students:
N. Alsindi, E. Boron, A. Buchholz, J. Chapman, G. Colangelo, J. Coyne, H.
Daempfl ing, T. Daly, D. Debiasio, A. Dupont, J. Elbin, J. Gaudette, E. Harvey, K.
Krishna, M. Lande, M. Lauer, E. Laurendo, R. Lemdiasov, M. Marcantonio, A.
Nadkarni, S. Narayanan, A. Navalekar, A. Obi, P. Phadnis, J. Quartararo, V. Rangan,
D. Sebastian, M. Seward, D. Tulsiani, and K. Yuksel.

REFERENCES

 1. R. Chassaing , DSP Applications Using C and the TMS320C6x DSK , Wiley , Hoboken, NJ ,
 2002 .

 2. J. H. McClellan , R. W. Schafer , and M. A. Yoder , DSP First: A Multimedia Approach ,
 Prentice Hall , Upper Saddle River, NJ , 1998 .

 3. N. Kehtarnavaz and M. Keramat , DSP System Design Using the TMS320C6000 , Prentice
Hall , Upper Saddle River, NJ , 2001 .

 4. N. Dahnoun , DSP Implementation Using the TMS320C6x Processors , Prentice Hall ,
 Upper Saddle River, NJ , 2000 .

 5. S. Tretter , Communication System Design Using DSP Algorithms — With Laboratory
Experiments for the TMS320C6701 and TMS320C6711 , Kluwer Academic , Boston ,
 2003 .

 6. M. Morrow , T. Welch , C. Cameron , and G. York , Teaching real - time beamforming with
the C6211 DSK and MATLAB, Proceedings of the Texas Instruments DSPS Fest Annual
Conference , 2000 .

 7. R. Chassaing , Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK , Wiley , Hoboken, NJ , 1999 .

 8. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken, NJ ,
 1992 .

 9. C. Marven and G. Ewers , A Simple Approach to Digital Signal Processing , Wiley ,
 Hoboken, NJ , 1996 .

 10. J. Chen and H. V. Sorensen , A Digital Signal Processing Laboratory Using the TMS320C30 ,
 Prentice Hall , Upper Saddle River, NJ , 1997 .

 11. S. A. Tretter , Communication System Design Using DSP Algorithms , Plenum Press , New
York , 1995 .

 12. R. Chassaing et al ., Student projects on digital signal processing with the TMS320C30,
Proceedings of the 1995 ASEE Annual Conference , June 1995 .

 13. J. Tang , Real - time noise reduction using the TMS320C31 digital signal processing starter
kit, Proceedings of the 2000 ASEE Annual Conference , 2000 .

 14. C. Wright , T. Welch III , M. Morrow , and W. J. Gomes III , Teaching real - world DSP
using MATLAB and the TMS320C31 DSK, Proceedings of the 1999 ASEE Annual
Conference , 1999 .

 15. J. W. Goode and S. A. McClellan , Real - time demonstrations of quantization and
prediction using the C31 DSK, Proceedings of the 1998 ASEE Annual Conference ,
 1998 .

 16. R. Chassaing and B. Bitler , Signal processing chips and applications , The Electrical
Engineering Handbook , CRC Press , Boca Raton, FL , 1997 .

 17. R. Chassaing et al ., Digital signal processing with C and the TMS320C30: Senior projects,
Proceedings of the 3rd Annual TMS320 Educators Conference , Texas Instruments, Dallas,
TX, 1993 .

References 523

524 DSP Applications and Student Projects

 18. R. Chassaing et al ., Student projects on applications in digital signal processing with C
and the TMS320C30, Proceedings of the 2nd Annual TMS320 Educators Conference ,
Texas Instruments, Dallas, TX, 1992 .

 19. R. Chassaing , TMS320 in a digital signal processing lab, Proceedings of the TMS320
Educators Conference , Texas Instruments, Dallas, TX, 1991 .

 20. P. Papamichalis , Ed., Digital Signal Processing Applications with the TMS320 Family:
Theory, Algorithms, and Implementations , Vols. 2 and 3, Texas Instruments , Dallas, TX ,
 1989, 1990 .

 21. Digital Signal Processing Applications with the TMS320C30 Evaluation Module: Selected
Application Notes , Texas Instruments , Dallas, TX , 1991 .

 22. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 ,
 Wiley , Hoboken, NJ , 1990 .

 23. I. Ahmed , Ed., Digital Control Applications with the TMS320 Family , Texas Instruments ,
 Dallas, TX , 1991 .

 24. A. Bateman and W. Yates , Digital Signal Processing Design , Computer Science Press ,
 New York , 1991 .

 25. Y. Dote , Servo Motor and Motion Control Using Digital Signal Processors , Prentice Hall ,
 Upper Saddle River, NJ , 1990 .

 26. R. Chassaing , A senior project course in digital signal processing with the TMS320 , IEEE
Transactions on Education , Vol. 32 , pp. 139 – 145 , 1989 .

 27. R. Chassaing , Applications in digital signal processing with the TMS320 digital signal
processor in an undergraduate laboratory, Proceedings of the 1987 ASEE Annual Con-
ference , June 1987 .

 28. K. S. Lin , Ed., Digital Signal Processing Applications with the TMS320 Family: Theory,
Algorithms, and Implementations , Vol. 1, Prentice Hall , Upper Saddle River, NJ , 1988 .

 29. G. Goertzel , An algorithm for the evaluation of fi nite trigonometric series , American
Mathematics Monthly , Vol. 65 , Jan. 1958 .

 30. ScenixSemiconductors available at http://www.electronicsweekly.com/
_toolkits/system/feature3.asp .

 31. A. Si , Implementing DTMF detection using the Silicon Laboratories Data Access
Arrangement (DAA), Scenix Semiconductors, Sept. 1999 .

 32. www.gamedev.net/reference/programming/features/beatdetection/ .

 33. S. Qian , Introduction to Time - Frequency and Wavelet Transform , Prentice - Hall , Upper
Saddle River, NJ , 2002 .

 34. B. Boashah , Time - Frequency Signal Analysis: Methods and Applications , Wiley Halsted
Press , Hoboken, NJ , 1992 .

 35. U. Zoler , Digital Audio Signal , Wiley , Chichester, England , 1995 .

 36. J. Proakis and M. Salehi , Communication Systems Engineering , Prentice - Hall , Upper
Saddle River, NJ , 1994 .

 37. S. Haykin , Communication Systems , Wiley , Hoboken, NJ , 2001 .

 38. B. Sklar , Digital Communications: Fundamentals and Applications , Prentice Hall , Upper
Saddle River, NJ , 2001 .

 39. http://www.physics.gmu.edu/∼amin/phys251/Topics/NumAnalysis/
Approximation/polynomialInterp.html .

 40. S. Lin and D. J. Costello , Error Control Coding, Fundamentals and Applications ,
 Prentice Hall , Upper Saddle River, NJ , 1983 .

 41. C. Fleming , A tutorial on convolutional encoding with viterbi decoding. Available at
http://home.netcom.com/∼chip.f/viterbi/algrthms2.html .

 42. J. Flanagan and L. Rabiner , Speech Synthesis , Dowden, Hutchinson & Ross , Stroudsburg,
PA , 1973 .

 43. R. Rabiner and R. W. Schafer , Digital Signal Processing of Speech Signals , Prentice Hall ,
 Englewood Cliffs, NJ , 1978 .

 44. R. Deller , J. G. Proakis , and J. H. Hansen , Discrete - Time Processing of Signals , Macmillan ,
 New York , 1993 .

 45. B. Gold and N. Morgan , Speech and Audio Signal Processing , Wiley , Hoboken, NJ ,
 2000 .

 46. R. P. Ramachandran and R. J. Mammoce , Eds., Modern Methods of Speech Processing ,
 Kluwer Academic , Boston , 1995 .

 47. M. N. Do , An automatic speaker recognition system, Audio Visual Communications Lab,
Swiss Federal Institute of Technology, Lausanne.

 48. X. Huang et al ., Spoken Language Processing , Prentice Hall , Upper Saddle River, NJ ,
 2001 .

 49. R. P. Ramchandran and Peter Kabal , Joint solution for formant and speech predictors
in speech processing, Proceedings of the IEEE International Conference on Acoustics,
Speech, Signal Processing , pp. 315 – 318 , Apr. 1988 .

 50. L. B. Rabiner and B. H. Juang , Fundamentals of Speech Recognition , Prentice Hall ,
 Upper Saddle River, NJ , 1993 .

 51. ITU - T Recommendation G.722 Audio Coding with 64 kbits/s .

 52. P. M. Embree , C Algorithms for Real - Time DSP , Prentice Hall , Upper Saddle River, NJ ,
 1995 .

 53. ECB Mode (Native DES), Frame Technology, 1994. Available at http://www.cs.nps.
navy.mil/curricula/tracks/security/notes/chap04_38.html .

 54. S. Hallyn , DES: The Data Encryption Standard , last modifi ed June 27, 1996. Available at
http://www.cs.wm.edu/∼hallyn/des .

 55. N. Nicolicim , Data Encryption Standard (DES) History of DES , McMaster University,
lecture notes, October 9, 2001. Available at www.ece.mcmaster.ca/faculty/

nicolici/coe4oi4/2001/lecture10.pdf .

 56. B. Sunar , interview and lecture notes. Available at http://www.ece.wpi.edu/∼sunar .

 57. Roland E. Best , Phase - Locked Loops Design, Simulation, and Applications , 4th ed.,
 McGraw - Hill , New York , 1999 .

References 525

526 DSP Applications and Student Projects

 58. W. Li and J. Meiners , Introduction to Phase Locked Loop System Modeling , SLTT015,
Texas Instruments , Dallas, TX , May 2000 .

 59. J. P. Hein and J. W. Scott , Z - domain model for discrete - time PLL ’ s , IEEE Transactions
on Circuits and Systems , Vol. CS - 35 , pp. 1393 – 1400 , Nov. 1988 .

 60. R. Chassaing , P. Martin , and R. Thayer , Multirate fi ltering using the TMS320C30 fl oat-
ing - point digital signal processor, Proceedings of the 1991 ASEE Annual Conference ,
 June 1991 .

 61. R. E. Crochiere and L. R. Rabiner , Multirate Digital Signal Processing , Prentice Hall ,
 Upper Saddle River, NJ , 1983 .

 62. R. W. Schafer and L. R. Rabiner , A digital signal processing approach to interpolation ,
Proceedings of the IEEE , Vol. 61, pp. 692 – 702 , 1973 .

 63. R. E. Crochiere and L. R. Rabiner , Optimum FIR digital fi lter implementations for
decimation, interpolation and narrow - band fi ltering , IEEE Transactions on Acoustics,
Speech, and Signal Processing , Vol. ASSP - 23 , pp. 444 – 456 , 1975 .

 64. R. E. Crochiere and L. R. Rabiner , Further considerations in the design of decimators
and interpolators , IEEE Transactions on Acoustics, Speech, and Signal Processing , Vol.
 ASSP - 24 , pp. 296 – 311 , 1976 .

 65. M. G. Bellanger , J. L. Daguet , and G. P. Lepagnol , Interpolation, extrapolation, and
reduction of computation speed in digital fi lters , IEEE Transactions on Acoustics, Speech,
and Signal Processing , Vol. ASSP - 22 , pp. 231 – 235 , 1974 .

 66. R. Chassaing , W. A. Peterson , and D. W. Horning , A TMS320C25 - based multirate fi lter ,
IEEE Micro , pp. 54 – 62 , Oct. 1990 .

 67. R. Chassaing , Digital broadband noise synthesis by multirate fi ltering using the
TMS320C25, Proceedings of the 1988 ASEE Annual Conference , Vol. 1, June 1988 .

 68. B. Widrow and R. Winter , Neural nets for adaptive fi ltering and adaptive pattern recog-
nition , Computer , pp. 25 – 39 , Mar. 1988 .

 69. D. E. Rumelhart , J. L. McClelland , and the PDP Research Group , Parallel Distributed
Processing: Explorations in the Microstructure of Cognition , Vol. 1, MIT Press ,
 Cambridge, MA , 1986 .

 70. I. Progri and W. R. Michalson , Adaptive spatial and temporal selective attenuator in the
presence of mutual coupling and channel errors, ION GPS - 2000 , 2000 .

 71. F. Brophy and A. C. Salazar , Recursive digital fi lter synthesis in the time domain , IEEE
Transactions on Acoustics, Speech, and Signal Processing , Vol. ASSP - 22 , 1974 .

 72. W. H. Press , S. A. Teukolsky , W. T. Vetterling , and B. P. Flannery , Numerical Recipes in C:
The Art of Scientifi c Computing , Cambridge University Press , New York , 1992 .

 73. J. Borish and J. B. Angell , An effi cient algorithm for measuring the impulse response
using pseudorandom noise , Journal of the Audio Engineering Society , Vol. 31 , 1983 .

 74. T. W. Parks and C. S. Burrus , Digital Filter Design , Wiley , Hoboken, NJ , 1987 .

 75. J. Tang , R. Chassaing , and W. J. Gomes III , Real - time adaptive PID controller using the
TMS320C31 DSK, Proceedings of the 2000 Texas Instruments DSPS Fest Conference ,
 2000 .

 76. J. Tang and R. Chassaing , PID controller using the TMS320C31 DSK for real - time motor
control, Proceedings of the 1999 Texas Instruments DSPS Fest Conference , 1999 .

 77. B. Bitler and R. Chassaing , Video line rate processing with the TMS320C30, Proceedings
of The 1992 International COnference On Signal Processing Applications and Technol-
ogy (ICSPAT) , 1992 .

 78. MATLAB, The Language of Technical Computing, Version 6.3 , MathWorks, Natick,
MA.

References 527

TMS320C6x Instruction Set

528

A.1 INSTRUCTIONS FOR FIXED - AND FLOATING -POINT OPERATIONS

 Table A.1 shows a listing of the instructions available for the C6x processors. The
instructions are grouped under the functional units used by these instructions. These
instructions can be used with both fi xed - and fl oating - point C6x processors. Some
additional instructions are available for the fi xed - point C64x processor [2] .

A.2 INSTRUCTIONS FOR FLOATING -POINT OPERATIONS

 Table A.2 shows a listing of additional instructions available with the fl oating - point
processor C67x. These instructions handle fl oating - point type of operations and are
grouped under the functional units used by these instructions (see also Table A.1).

REFERENCES

 1. TMS320C6000 CPU and Instruction Set , SPRU189F, Texas Instruments, Dallas, TX,
 2000 .

 2. TMS320C6000 Programmer ’ s Guide , SPRU198G, Texas Instruments, Dallas, TX, 2002 .

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

A

 TMS320C6x Instruction Set 529

TABLE A.1 Instructions for Fixed - and Floating -Point Operations

.L Unit .M Unit .S Unit .D Unit

ABS MPY ADD ADD

ADD MPYH ADDK ADDAB

ADDU MPYHL ADD2 ADDAH

AND MPYHLU AND ADDAW

CMPEQ MPYHSLU B disp LDB

CMPGT MPYHSU B IRPa LDBU

CMPGTU MPYHU B NRPa LDH

CMPLT MPYHULS B reg LDHU

CMPLTU MPYHUS CLR LDW

LMBD MPYLH EXT LDB (15 -bit offset) b

MV MPYLHU EXTU LDBU (15 -bit offset) b

NEG MPYLSHU MV LDH (15 -bit offset) b

NORM MPYLUHS MVCa LDHU (15 -bit offset) b

NOT MPYSU MVK LDW (15 -bit offset) b

OR MPYU MVKH MV

SADD MPYUS MVKLH STB

SAT SMPY NEG STH

SSUB SMPYH NOT STW

SUB SMPYHL OR STB (15 -bit offset) b

SUBU SMPYLH SET STH (15 -bit offset) b

SUBC SHL STW (15 -bit offset) b

XOR SHR SUB

ZERO SHRU SUBAB

SSHL SUBAH

SUB SUBAW

SUBU ZERO

SUB2

XOR

ZERO

a S2 only.
b D2 only.

Source: Courtesy of Texas Instruments [1, 2] .

TABLE A.2 Instructions for Floating -Point Operations

.L Unit .M Unit .S Unit .D Unit

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

DPTRUNC CMPGTDP

INTDP CMPGTSP

INTDPU CMPLTDP

INTSP CMPLTSP

INTSPU RCPDP

SPINT RCPSP

SPTRUNC RSQRDP

SUBDP RSQRSP

SUBSP SPDP

Source: Courtesy of Texas Instruments [1, 2] .

Registers for Circular Addressing
and Interrupts

530

 A number of special - purpose registers available on the C6x processor are shown in
Figures B.1 to B.8 [1] .

1. Figure B.1 shows the address mode register (AMR) that is used for the circular
mode of addressing. It is used to select one of eight register pointers (A4
through A7, B4 through B7) and two blocks of memories (BK0, BK1) that
can be used as circular buffers.

2. Figure B.2 shows the control status register (CSR) with bit 0 for the global
interrupt enable (GIE) bit.

3. Figure B.3 shows the interrupt enable register (IER).

4. Figure B.4 shows the interrupt fl ag register (IFR).

5. Figure B.5 shows the interrupt set register (ISR).

6. Figure B.6 shows the interrupt clear register (ICR).

7. Figure B.7 shows the interrupt service table pointer (ISTP).

8. Figure B.8 shows the serial port control register (SPCR).

 In Section 3.7.2 we discuss the AMR register and in Section 3.14 the interrupt
registers.

REFERENCE

 1. C6000 CPU and Instruction Set , SPRU189F, Texas Instruments, Dallas, TX, 2000 .

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

B

 Registers for Circular Addressing and Interrupts 531

 FIGURE B.1. Address mode register (AMR). (Courtesy of Texas Instruments .)

 FIGURE B.2. Control status register (CSR). (Courtesy of Texas Instruments .)

 FIGURE B.3. Interrupt enable register (IER). (Courtesy of Texas Instruments .)

 FIGURE B.4. Interrupt fl ag register (IFR). (Courtesy of Texas Instruments .)

532 Registers for Circular Addressing and Interrupts

 FIGURE B.5. Interrupt set register (ISR). (Courtesy of Texas Instruments .)

 FIGURE B.6. Interrupt clear register (ICR). (Courtesy of Texas Instruments .)

 FIGURE B.7. Interrupt service table pointer (ISTP). (Courtesy of Texas Instruments .)

 FIGURE B.8. Serial port control register (SPCR). (Courtesy of Texas Instruments .)

 Fixed - Point Considerations

 533

 The C6713 is a fl oating - point processor capable of performing both integer
and fl oating - point operations. Both the C6713 and the A1C23 codec support 2 ’ s -
 complement arithmetic. It is thus appropriate here to review some fi xed - point
concepts [1] .

 In a fi xed - point processor, numbers are represented in integer format. In a
fl oating - point processor, both fi xed - and fl oating - point arithmetic can be handled.
With the fl oating - point processor C6713, a much greater range of numbers can be
represented than with a fi xed - point processor.

 The dynamic range of an N - bit number based on 2 ’ s - complement representation
is between − (2 N − 1) and (2 N − 1 − 1), or between − 32,768 and 32,767 for a 16 - bit system.
By normalizing the dynamic range between − 1 and 1, the range will have 2 N sections,
where 2 − (N − 1) is the size of each section starting at − 1 up to 1 − 2 − (N − 1) . For a 4 - bit
system, there would be 16 sections, each of size 18 from − 1 to 78 .

 C.1 BINARY AND TWO ’ S - COMPLEMENT REPRESENTATION

 To make illustrations more manageable, a 4 - bit system is used rather than a 32 - bit
word length. A 4 - bit word can represent the unsigned numbers 0 through 15, as
shown in Table C.1 .

 The 4 - bit unsigned numbers represent a modulo (mod) 16 system. If 1 is added
to the largest number (15), the operation wraps around to give 0 as the answer.
Finite bit systems have the same modulo properties as number wheels on combina-

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

C

534 Fixed-Point Considerations

 TABLE C.1 Unsigned Binary Number

 Binary Decimal

 0000 0
 0001 1
 0010 2
 0011 3
 . .
 . .
 . .
 1110 14
 1111 15

 FIGURE C.1. Number wheel for unsigned integers.

tion locks. Therefore, a number wheel graphically demonstrates the addition proper-
ties of a fi nite bit system. Figure C.1 shows a number wheel with the numbers 0
through 15 wrapped around the outside. For any two numbers x and y in the range,
the operation amounts to the following procedure:

 1. Find the fi rst number x on the wheel.

 2. Step off y units in the clockwise direction, which brings you to the answer.

 For example, consider the addition of the two numbers (5 + 7) mod 16, which yields
12. From the number wheel, locate 5, then step 7 units in the clockwise direction to
arrive at the answer, 12. As another example, (12 + 10) mod 16 = 6. Starting with 12
on the number wheel, step 10 units clockwise, past zero, to 6.

 Negative numbers require a different interpretation of the numbers on the wheel.
If we draw a line through 8 cutting the number wheel in half, the right half will

 Binary and Two’s-Complement Representation 535

represent the positive numbers and the left half the negative numbers, as shown in
Figure C.2 . This representation is the 2 ’ s - complement system. The negative numbers
are the 2 ’ s complement of the positive numbers, and vice versa.

 A 2 ’ s - complement binary integer,

 B b b bn= −1 1 0�

is equivalent to the decimal integer

 I B b b bn
n() = − × + + × + ×−

−
1

1
1

1
0

02 2 2�

where the b ’ s are binary digits. The sign bit has a negative weight; all the others have
positive weights. For example, consider the number − 2:

 1110 1 2 1 2 1 2 0 2 8 4 2 0 23 2 1 0= − × + × + × + × = − + + + = −

To apply the graphical technique to the operation 6 + (− 2) mod 16 = 4, locate 6 on
the wheel, then step off (1110) units clockwise to arrive at the answer 4.

 The binary addition of these same numbers,

0110
1110

10100

C

 FIGURE C.2. Number wheel for signed integers.

536 Fixed-Point Considerations

shows a carry in the most signifi cant bit, which in the case of fi nite register arithmetic
will be ignored. This carry corresponds to the wraparound through zero on the
number wheel. The addition of these two numbers results in correct answers, by
ignoring the carry in the most signifi cant bit position, provided that the answer is
in the range of representable numbers − 2 n − 1 to (2 n − 1 − 1) in the case of an n - bit
number, or between − 8 and 7 for the 4 - bit number wheel example. When − 7 is added
to − 8 in the 4 - bit system, we get an answer of +1 instead of the correct value of − 15,
which is out of range. When two numbers of like sign are added to produce an
answer with opposite sign, overfl ow has occurred. Subtraction with 2 ’ s - complement
numbers is equivalent to adding the 2 ’ s complement of the number being subtracted
to the other number.

 C.2 FRACTIONAL FIXED - POINT REPRESENTATION

 Rather than using the integer values just discussed, a fractional fi xed - point number
that has values between +0.99 . . . and − 1 can be used. To obtain the fractional n - bit
number, the radix point must be moved n − 1 places to the left. This leaves one sign
bit plus n − 1 fractional bits. The expression

 F B b b b bn
n() ()= − × + × + × + + ×− −

−
− −

0
0

1
1

2
2

1
12 2 2 2�

converts a binary fraction to a decimal fraction. Again, the sign bit has a weight of
negative 1 and the weights of the other bits are positive powers of 1/2. The number
wheel representation for the fractional 2 ’ s - complement 4 - bit numbers is shown in
Figure C.3 . The fractional numbers are obtained from the 2 ’ s - complement integer
numbers of Figure C.2 by scaling them by 2 3 . Because the number of bits in a 4 - bit
system is small, the range is from − 1 to 0.875. For a 16 - bit word, the signed integers
range from − 32,768 to +32,767. To get the fractional range, scale those two signed
integers by 2 − 15 or 32,768, which results in a range from − 1 to 0.999969 (usually taken
as 1).

 C.3 MULTIPLICATION

 If one multiplies two n - bit numbers, the common notion is that a 2 n - bit operand
will result. Although this is true for unsigned numbers, it is not so for signed
numbers. As shown before, sign numbers need one sign bit with a weight of − 2 n − 1 ,
followed by positive weights that are powers of 2. To fi nd the number of bits needed
for the result, multiply the two largest numbers together:

 P n n n= − − =− − −()()2 2 21 1 2 2

This number is a positive number representable in (2 n − 1) bits. The MSB of this
result occupies the (2 n − 2) - bit position counting from 0. Since this number is posi-

tive, its sign bit, which would show up as a negative number (a power of 2), does
not appear. This is an exceptional case, which is treated as an overfl ow in fractional
representation. Since the fractional representation requires that both operand and
resultant occupy the same range, − 1 � range < +1, the operation (− 1) × (− 1) pro-
duces an unrepresentable number, +1.

 Consider the next larger combination:

 P n n n n= − − + = −− − − −()()2 2 1 2 21 1 2 2 1

Since the second number subtracts from the fi rst, the product will occupy up to the
(2 n − 3) - bit position, counting from 0. Thus, it is representable in (2 n − 2) bits. With
the exceptional case ruled out, this makes the bit position (2 n − 2) available for the
sign bit of the resultant. Therefore, (2 n − 1) bits are needed to support an (n × n) - bit
signed multiplication.

 To clarify the preceding equation, consider the 4 - bit case, or

 P = − − + = −()()2 2 1 2 23 3 6 3

The number 2 6 occupies bit position 6. Since the second number is negative, the
summation of the two is a number that will occupy only bit positions less than bit
position 6, or

 2 2 64 8 56 001110006 3− = − = =

 FIGURE C.3. Number wheel for fi xed - point representation.

 Multiplication 537

538 Fixed-Point Considerations

Thus, bit position 6 is available for the sign bit. The 8 - bit equivalent would have 2
sign bits (bits 6 and 7). The C6x supports signed and unsigned multiplies and there-
fore provides 2 n bits for the product.

 Consider the multiplication of two fractional 4 - bit numbers, with each number
consisting of 3 fractional bits and 1 sign bit. Let the product be represented by an
8 - bit number. The fi rst number is − 0.5 and the second number is 0.75; the multiplica-
tion is as follows:

− =
× =

0 50 1 100
0 75 0 110

11111000
111000

111 1

. .

. .

. 001000

2 2 2 2 0 3751 0 1 3

C
= − + + + = −− − .

The underlined bits of the multiplicand indicate sign extension. When a negative
multiplicand is added to the partial product, it must be sign - extended to the left up
to the limit of the product in order to give the proper larger bit version of the same
number. To demonstrate that sign extension gives the correct expanded bit number,
scan around the number wheel in Figure C.2 in the counterclockwise direction from
0. Write the codes for 5 - bit, 6 - bit, 7 - bit, . . . negative numbers. Note that they would
be derived correctly by sign - extending the existing 4 - bit codes; therefore, sign exten-
sion gives the correct expanded bit number. The carry - out will be ignored; however,
the numbers 111.101000 (9 - bit word), 11.101000 (8 - bit word), and 1.101000 (7 - bit
word) all represent the same number: − 0.375. Thus, the product of the preceding
example could be represented by (2 n − 1) bits, or 7 bits for a 4 - bit system.

 When two 16 - bit numbers are multiplied to produce a 32 - bit result, only 31 bits
are needed for the multiply operation. As a result, bit 30 is sign - extended to bit 31.
The extended bits are frequently called sign bits.

 Consider the following example: to multiply (0101) 2 by (1110) 2 , which is equiva-
lent to multiplying 5 by − 2 in decimal, which would result in − 10. This result is
outside the dynamic range { − 8, 7} of a 4 - bit system. Using a Q - 3 format, this corre-
sponds to multiplying 0.625 by − 0.25, yielding a result of − 0.15625, which is within
the fractional range.

 When two Q - 15 format numbers (each with a sign bit) are multiplied, the result
is a Q - 30 format number with one extra sign bit. The MSB is the extra sign bit. One
can shift right by 15 to retain the MSBs and only one of the 2 sign bits. By shifting
right by 15 (dividing by 2 15) to be able to store the result into a 16 - bit system, this
discards the 15 LSBs, thereby losing some precision. One is able to retain high preci-
sion by keeping the most signifi cant 15 bits. With a 32 - bit system, a left shift by 1
bit would suffi ce to get rid of the extra sign bit.

 Note that when two Q - 15 numbers, represented with a range of − 1 to 1, are mul-
tiplied, the resulting number remains within the same range. However, the addition
of two Q - 15 numbers can produce a number outside this range, causing overfl ow.
Scaling would then be required to correct this overfl ow.

REFERENCE

 1. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken, NJ , 1990 .

Reference 539

MATLAB and Goldwave
Support Tools

540

 This appendix gives a brief description of the use of MATLAB and Goldwave in
support of the exercises in this book. Their use is also described at various other
points in the preceding chapters.

D.1 fdatool FOR FIR FILTER DESIGN

 MATLAB ’ s fi lter design and analysis tool fdatool makes use of MATLAB func-
tions, for example, cheby1() (see Chapter 5), that can be called from the MATLAB
command line but integrates them with a graphical user interface (GUI) for the
design and analysis of fi lters. It is invoked by typing

>> fdatool

at the MATLAB command line.
 Three MATLAB functions dsk_fir67() , dsk_sos_iir67() , and dsk_sos_

iir67int() are provided in the folder Support on the CD accompanying this book.
These can be used in conjunction with fdatool to create coeffi cient fi les for use
with a number of example programs.

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

D

fdatool for FIR Filter Design 541

Example D.1: Design of FIR Bandstop Filter Using fdatool and
dsk_fir67()

 This example describes how the fi lter coeffi cient fi le bs2700f.cof , used in Example
4.4 , was created.

 Enter the fdatool parameters shown in Figure D.1 to design an FIR bandstop
fi lter centered at 2700 Hz. The fi lter uses N = 89 coeffi cients and the Kaiser window
function. Select File → Export and then set the parameters Export to, Export as , and
Variable Names to Workspace, Coeffi cients , and bs2700 , respectively. Click on Export .
At the MATLAB command line, type

>> dsk_fir67(bs2700)

and enter the fi lename bs2700f.cof .
 The resultant coeffi cient (.cof) fi le is listed in Figure D.2 . This fi le is compatible

with programs fir.c , firprn.c , firprnbuf.c , adaptidfir.c .
 Figure D.3 shows Code Composer Graphical Displays of the coeffi cients and

their magnitude FFT.

FIGURE D.1. Characteristics of an FIR bandstop fi lter centered at 2700 Hz, designed using
fdatool .

542 MATLAB and Goldwave Support Tools

// bs2700f.cof
// this file was generated automatically using function dsk_fir67.m

#define N 89

float h[N] = {
-4.4230E-004,7.0433E-004,-2.6120E-004,-1.7972E-004,-6.9219E-
018,2.4316E-004,
4.7954E-004,-1.7657E-003,1.5295E-003,1.3523E-003,-4.4872E-
003,3.6368E-003,
2.0597E-003,-7.4813E-003,6.1048E-003,2.2005E-003,-9.5210E-
003,7.8501E-003,
1.6112E-003,-9.1250E-003,7.2785E-003,5.9684E-004,-5.0469E-
003,2.6733E-003,
-2.6271E-017,3.1955E-003,-7.2161E-003,1.0221E-003,1.4959E-002,-
2.2570E-002,
4.8135E-003,2.8456E-002,-4.2116E-002,1.1962E-002,4.1134E-002,-
6.3159E-002,
2.2081E-002,5.0364E-002,-8.2093E-002,3.3692E-002,5.4206E-002,-
9.5274E-002,
4.4497E-002,5.1989E-002,9.0000E-001,5.1989E-002,4.4497E-002,-9.5274E-
002,
5.4206E-002,3.3692E-002,-8.2093E-002,5.0364E-002,2.2081E-002,-
6.3159E-002,
4.1134E-002,1.1962E-002,-4.2116E-002,2.8456E-002,4.8135E-003,-
2.2570E-002,
1.4959E-002,1.0221E-003,-7.2161E-003,3.1955E-003,-2.6271E-
017,2.6733E-003,
-5.0469E-003,5.9684E-004,7.2785E-003,-9.1250E-003,1.6112E-
003,7.8501E-003,
-9.5210E-003,2.2005E-003,6.1048E-003,-7.4813E-003,2.0597E-
003,3.6368E-003,
-4.4872E-003,1.3523E-003,1.5295E-003,-1.7657E-003,4.7954E-
004,2.4316E-004,
-6.9219E-018,-1.7972E-004,-2.6120E-004,7.0433E-004,-4.4230E-004
};

 D.2 fdatool FOR IIR FILTER DESIGN

 Example D.2: Design of IIR Bandstop Filter Using fdatool and
 dsk_sos_iir67()

 Figure D.4 shows the fdatool window corresponding to the design of a sixth order
IIR bandstop fi lter centered at 1800 Hz. The fi lter coeffi cients can be exported to
the MATLAB workspace by selecting File → Export and then setting the parame-
ters Export to, Export as , and Variable Names SOS Matrix , and Scale Values to
 Workspace, Coeffi cients, SOS , and G , respectively. Click on Export .

 FIGURE D.2. Listing of coeffi cient fi le bs2700f.cof .

FIGURE D.3. Code Composer window showing fi lter coeffi cients read from fi le bs2700f.
cof and their magnitude FFT.

 At the MATLAB command line, type

>> dsk_sos_iir67(SOS,G)

and enter the fi lename bs1800.cof , or type

>> dsk_sos_iir67int(SOS,G)

and enter the fi lename bs1800int.cof .
 Coeffi cient fi le bs1800.cof should be compatible with programs iirsos.c ,

iirsosprn.c , iirsosdelta.c , and iirsosadapt.c . Coeffi cient fi le bs1800int.
cof should be compatible with program iir.c .

 Figure D.5 shows the output produced by program iirsosprn.c using coeffi -
cient fi le bs1800.cof .

fdatool for IIR Filter Design 543

544 MATLAB and Goldwave Support Tools

D.3 MATLAB FOR FIR FILTER DESIGN USING THE STUDENT VERSION

 FIR fi lters can be designed using the Student Version [2] of MATLAB [1] .

Example D.3: Design of FIR Filters Using the Student Version of MATLAB

 Figure D.6 shows the listing of a MATLAB M - fi le script mat33.m that designs a
33 - coeffi cient FIR bandpass fi lter using the Parks – McClellan algorithm based
on the Remez exchange algorithm and Chebyshev approximation theory. The
desired fi lter has a center frequency of 800 Hz (assuming a sampling frequency of
8 kHz) and its magnitude frequency response is specifi ed in vectors nfreq and mag .
Vector nfreq contains a set of normalized frequency points, in ascending order, in
the range 0 to 1, where 1 corresponds to half the sampling frequency. Vector mag
contains a set of gain magnitudes corresponding to the frequencies specifi ed in
vector nfreq .

 Function firpm() returns the 33 coeffi cients of an FIR fi lter designed to meet the
specifi ed magnitude frequency response as closely as possible. The coeffi cients are

FIGURE D.4. Characteristics of a sixth order IIR bandstop fi lter centered at 1800 Hz using
fdatool .

returned as vector bp33 and both the desired magnitude frequency response (speci-
fi ed by vectors nfreq and mag) and the magnitude frequency response calculated
using the fi lter coeffi cients bp33 are plotted as shown in Figure D.7 . Note that mag-
nitude is plotted on a linear scale.

 The fi lter coeffi cients can be exported as fi le bp33f.cof , for use by example
program fi r.c , by typing

 > > dsk_fi r67(bp33 ′)

at the MATLAB command line and entering the fi lename bp33f.cof .

 FIGURE D.5. Output generated by program iirsosprn.c using coeffi cient fi le bs1800.
cof .

%mat33.m M-file for 33-coefficient FIR bandpass filter design
nfreq=[0 0.1 0.15 0.25 0.3 1]; % normalized frequencies
mag = [0 0 1 1 0 0]; % magnitudes at normalized
frequencies
bp33 = firpm(32,nfreq,mag); % use Parks-McClellan
[h,w]=freqz(bp33,1,512); % compute frequency response
plot(nfreq,mag,'b-') % plot desired and computed
hold on % frequency responses
plot(w/pi,abs(h),'r')
xlabel('normalized frequency');
ylabel('magnitude');

 FIGURE D.6. Listing of M - fi le mat33.m .

 MATLAB for FIR Filter Design Using the Student Version 545

546 MATLAB and Goldwave Support Tools

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized frequency

M
ag

ni
tu

de

 FIGURE D.7. Desired and calculated magnitude frequency responses of FIR bandpass fi lter
designed using M - fi le mat33.m .

 Example D.4: Multiband FIR Filter Design Using the Student Version
of MATLAB

 This example extends the previous one to design an FIR fi lter with two passbands.
M - fi le script mat63.m is similar in structure to mat33.m but contains a different
magnitude frequency response specifi ed by vectors nfreq and mag . In addition, it
produces 63 rather than 33 fi lter coeffi cients in a vector bp63 . Figure D.8 shows the
magnitude frequency response plot produced by mat63.m .

 D.4 MATLAB FOR IIR FILTER DESIGN USING THE STUDENT VERSION

 Example D.5: Design of IIR Bandstop Filter Using the Bilinear Transform
in MATLAB

 The analog fi lter having the transfer function

 H s
s

s s
()

.
=

+
+ +

2

2

347311379
4324 75 347311379

 (D.1)

is a low order IIR bandstop fi lter centered on 3000 Hz.
 Assuming either that it has been entered by typing

 > > b = [1, 0, 347311379];
 > > a = [1, 4324.75, 347311379];

or that it has been designed using

 > > [b,a]=cheby1(1,2,[2 * pi * 2550,2 * pi * 3450], ‘ stop ’ , ‘ s ’);

its frequency response can be displayed by typing

 > > freqs(b,a)

at the MATLAB command line.
 The bilinear transform method of creating an IIR fi lter based on this analog

prototype can be implemented by typing

 > > [bz,az]=bilinear(b,a,8000);

where 8000 specifi es a sampling rate of 8 kHz, and the bilinear transform used is

 s
z
z

=
−
+

2
8000

1
1

()
()

 (D.2)

yielding

 H z
z z

z z
()

. . .
. .

=
+ +

+ +

− −

− −

0 8971 0 2716 0 8971
1 0 2716 0 7942

1 2

1 2
 (D.3)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Normalized frequency

M
ag

ni
tu

de

 FIGURE D.8. Desired and calculated magnitude frequency responses of FIR fi lter designed
using M - fi le mat63.m .

 MATLAB for IIR Filter Design Using the Student Version 547

548 MATLAB and Goldwave Support Tools

The frequency response of this fi lter can be displayed by typing

 > > freqz(bz,az)

and should confi rm that its stopband is centered not at 3000 Hz (1.885e - 4 rad/s) but
at approximately 2200 Hz (1.382e - 4 rad/s) . This is due to the frequency warping
effect, described in Chapter 5 , of the bilinear transform. A digital fi lter having a
stopband centered at 3000 Hz can be designed by prewarping the prototype analog
fi lter design to match its gain at that frequency. In MATLAB, this is achieved by
passing another parameter to function bilinear() . Typing

 > > [bz,az]=bilinear(b,a,8000,3000);

causes the bilinear transform used to be

 s
z
z

=
−
+

2 3000
3000 8000

1
1

π
πtan(/)

()
()

 (D.4)

yielding

 H z
z z

z z
()

. . .
. .

=
+ +

+ +

− −

− −

0 9236 1 2956 0 9236
1 1 2956 0 8472

1 2

1 2
 (D.5)

Typing

 > > freqz(bz,az)

should confi rm that equation (D.5) represents a bandstop fi lter centered at 3000 Hz
as specifi ed by the analog prototype. Either fi lter (equation (D.3) or equation (D.5))
can be implemented as a single direct form II, second order stage. The MATLAB
vectors bz and az can be written to a .cof fi le by typing

 > > dsk_sos_iir67([bz,az],[1;1]);

and then used by programs iirsos.c , iirsosprn.c , iirsosdelta.c , and
 iirsosadapt.c .

 D.5 USING THE GOLDWAVE SHAREWARE UTILITY
AS A VIRTUAL INSTRUMENT

 Goldwave is a shareware utility software program that can turn a PC with a sound-
card into a virtual instrument. It can be downloaded from the Internet [3] . One can
create a function generator to generate different signals such as a sine wave and

random noise. It can also be used as an oscilloscope and as a spectrum analyzer, and
to record/edit a speech signal. Effects such as echo and fi ltering can be applied to
stored sounds. Lowpass, highpass, bandpass, and bandstop fi lters can be imple-
mented on a soundcard with Goldwave and their effects on a signal illustrated
readily.

Goldwave was used to record the speech contained in fi les mefsin.wav and
corrupt.wav used in Chapters 2 and 4 and to add the unwanted sine wave compo-
nents to those recordings.

REFERENCES

 1. MATLAB, The Language of Technical Computing , MathWorks, Natick, MA, 2003 .

 2. MATLAB Student Version , MathWorks, Natick, MA, 2000 .

 3. Goldwave , available at www.goldwave.com.

References 549

 Fast Hartley Transform

550

 Whereas complex additions and multiplications are required for an FFT, the
Hartley transform [1 – 8] requires only real multiplications and additions. The FFT
maps a real function of time into a complex function of frequency, whereas the fast
Hartley transform (FHT) maps the same real - time function into a real function of
frequency. The FHT can be particularly useful in cases where the phase is not a
concern.

 The discrete Hartley transform (DHT) of a time sequence x (n) is defi ned as

 H k x n
nk

N
k N

n

N

() () , , , . . . ,=

 = −

=

−

∑ cas
2

0 1 1
0

1 π
 (E.1)

where

 cas u u u= +cos sin (E.2)

In a similar development to the FFT, (E.1) can be decomposed as

 H k x n
nk

N
x n

nk
Nn

N

n N

N

() () ()
(/)

/

=

 +

=

−

=

−

∑ ∑cas cas
2 2

0

2 1

2

1π π
 (E.3)

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

E

 Fast Hartley Transform 551

Let n = n + N /2 in the second summation of (E.3) :

 H k x n
nk

N
x n

N k n N
Nn

N

() ()
(/)(/

=

 + +

+

{ }

=
cas cas

2
2

2 2

0

2 π π))−

∑
1

 (E.4)

Using (E.2) and the identities

sin() sin cos cos sin

cos() cos cos sin sin

A B A B A B

A B A B A B

+ = +
+ = − (E.5)

for odd k ,

cas
2 2 2 2π π π π πk n N

N
nk

N
k

nk
N

k
(/)

cos cos() sin sin()
+

 =

 −

++

 +

= −

 −

sin cos() cos sin()

cos si

2 2

2

π π π π

π

nk
N

k
nk

N
k

nk
N

nn
2

2

π

π

nk
N

nk
N

= −

cas (E.6)

and, for even k ,

 cas cas
2 2 2 2 2π π π πk n N

N
nk

N
nk

N
nk

N
(/)

cos sin
+

 =

 +

 =

 (E.7)

Using (E.6) and (E.7) , (E.4) becomes

 H k x n x n
N nk

N
k

n

N

() () ,
(/)

= + +

=

−

2
2

0

2 1

cas for even
π∑∑ (E.8)

and

 H k x n x n
N nk

N
k

n

N

() () ,
(/)

= − +

=

−

∑
2

2

0

2 1

cas for odd
π

 (E.9)

Let k = 2 k for even k , and let k = 2 k + 1 for odd k . Equations (E.8) and (E.9)
become

 H k x n x n
N n k

Nn

N

() ()
(/)

2
2

2 2

0

2 1

= + +

=

−

∑ cas
π

 (E.10)

 H k x n x n
N n k

Nn

N

() ()
[](/)

2 1
2

2 2 1

0

2 1

+ = − +

+

=

−

∑ cas
π

 (E.11)

552 Fast Hartley Transform

Furthermore, using (E.5)

cas
2 2 1 2 2 2 2 2π π π πn k

N
n

N
n k
N

n k
N

()
cos cos sin

+

 =

 +

{ }

++

 −

{ }sin cos sin

2 2 2 2 2π π πn
N

n k
N

n k
N

and

sin sin
()

cos cos
()

2 2

2 2

π π

π π

kn
N

k N n
N

kn
N

k N n
N

 = −

−

 =

−

Equation (E.11) becomes

H k x n x n
N n

N
n k
Nn

N

() () cos
(

2 1
2

2 2 2

0

+ = − +

{

=

π π
cas

//)

sin
()

2 1

2 2 2

−

∑

+

−

}π πn

N
k N n

N
cas (E.12)

Substituting N /2 − n for n in the second summation, (E.12) becomes

H k x n x n
N n

N

x
N

n

n

N

() () cos
(/)

2 1
2

2

2

0

2 1

+ = − +

{

+ −
=

−

∑ π

 − −

}

x N n

n
N

n k
N

() sin
2 2 2π π

cas (E.13)

Let

a n x n x n
N

b n x n x n
N n

N

x
N

() ()

() () cos

= + +

= − +

+

2

2
2π

22
2

−

 − −

n x N n

n
N

() sin
π

Equations (E.10) and (E.13) become

 H k a n
n k
Nn

N

() ()
(/)

2
2 2

0

2 1

=

=

−

∑ cas
π

 (E.14)

 H k b n
n K
Nn

N

() ()
(/)

2 1
2

0

2 1

+ =
2

=

−

∑ cas
π

 (E.15)

 Fast Hartley Transform 553

A more complete development of the FHT can be found in Ref. 3 . We now illustrate
the FHT with two exercises: an 8 - point FHT and a 16 - point FHT. We will then
readily verify these results from the FFT exercises in Chapter 6 .

 Exercise E.1: Eight - Point Fast Hartley Transform

 Let the rectangular sequence x (n) be represented by x (0) = x (1) = x (2) = x (3) = 1,
and x (4) = x (5) = x (6) = x (7) = 0. The fl ow graph in Figure E.1 is used to fi nd X (k).
We will now use X (k) instead of H (k). The sequence is fi rst permuted and the inter-
mediate results after the fi rst two stages are as shown in Figure E.1 . The coeffi cients
C n and S n are (with N = 8)

C

S

n n N

n n N

=

=

cos(/)

sin(/)

2

2

π

π

 FIGURE E.1. Eight - point FHT fl ow graph.

554 Fast Hartley Transform

The output sequence X (k) after the fi nal stage 3 is also shown in Figure E.1 . For
example,

X

X

0 2 2 0 2 0 2 2 1 2 0 4

1 2 2 1 2 1 2 1 414 0 3 41

() = + + = + () + () =
() = + + = + + =

C S

C S . .

�
XX() () .7 0 0 7 2 7 1 414= + + = −C S (E.16)

This resulting output sequence can be verifi ed from the X (k) obtained with the FFT,
using

 DHT{ } DFT[] Im{DFT[]}x n x n x n() Re{ () } ()= − (E.17)

For example, from the eight - point FFT in Exercise 6.1, X (1) = 1 − j 2.41, and

Re{ }

Im{ }

X

X

()

() .

1 1

1 2 41

=
= −

Using (E.17) ,

 DHT{ }x X() () (.) .1 1 1 2 41 3 41= = − − =

as in (E.16) . Conversely, the FFT can be obtained from the FHT using

Re{DFT[]} {DHT[]+DHT[]}
Im{DFT[]} {DH

x n x N n x n
x n

() () ()
()

= −
=

1
2
1
2 TT[] DHT[]}x N n x n() ()− − (E.18)

For example, using (E.18) to obtain X (1) = 1 − j 2.41 from the FHT,

Re{ }
Im{ }

X X X
X X X

() { () ()} { . . }
() [() (
1 7 1 1 41 3 41 1
1 7

1
2

1
2

1
2

= + = − + =
= − 11 1 41 3 41 2 411

2)] { . . } .= − − = − (E.19)

where the left - hand side of (E.18) is associated with the FFT and the right - hand
side with the FHT.

 Exercise E.2: Sixteen - Point Fast Hartley Transform

 Let the rectangular sequence x (n) be represented by x (0) = x (1) = . . . = x (7) = 1,
and x (8) = x (9) = . . . = x (15) = 0. A 16 - point FHT fl ow graph can be arrived at,
building on the 8 - point FHT. The permutation of the input sequence before the fi rst

 Fast Hartley Transform 555

 FIGURE E.2. Sixteen - point FHT fl ow graph.

stage is as follows for the fi rst (upper) eight - point FHT: x (0), x (8), x (4), x (12), x (2),
 x (10), x (6), x (14) and for the second (lower) eight - point FHT: x (1), x (9), x (5), x (13),
 x (3), x (11), x (7), x (15). After the third stage, the intermediate output results for the
upper and the lower eight - point FHTs are as obtained in the previous eight - point
FHT example. Figure E.2 shows the fl ow graph of the fourth stage for the 16 - point
FHT. The intermediate output results from the third stage become the input to the
fourth stage in Figure E.2 . The output sequence X (0), X (1), . . . , X (15) from Figure
 E.2 can be verifi ed using the results obtained with the 16 - point FFT in Exercise 6.2.
For example, using

C

S

n
n

N
n

n
n

N
n

= =

= =

cos cos

sin sin

2
8

2
8

π π

π π

with N = 16, X (1) can be obtained from Figure E.2 :

 X()1 3 414 3 414 1 1 414 1 3 414 3 154 0 541 6 027= + − = + − =C S

556 Fast Hartley Transform

Equation (E.18) can be used to verify X (1) = 1 − j 5.028, as obtained using the FFT
in Exercise 6.2 . Note that, for example,

X() . (.) (.)
. . .
.

15 1 414 1 414 15 3 414 15
1 414 1 306 1 306
4

= − + − +
= − − −
= −

C S

00269

as shown in Figure E.2 .

 REFERENCES

 1. R. N. Bracewell , The fast Hartley transform , Proceedings of the IEEE , Vol. 72, pp. 1010 –
 1018 , Aug. 1984 .

 2. R. N. Bracewell , Assessing the Hartley transform , IEEE Transactions on Acoustics, Speech,
and Signal Processing , Vol. ASSP - 38, pp. 2174 – 2176 , 1990 .

 3. R. N. Bracewell , The Hartley Transform , Oxford University Press , New York , 1986 .

 4. R. N. Bracewell , The Fourier Transform and its Applications , McGraw Hill , New York ,
 2000 .

 5. H. V. Sorensen , D. L. Jones , M. T. Heidman , and C. S. Burrus , Real - valued fast Fourier
transform algorithms , IEEE Transactions on Acoustics, Speech, and Signal Processing , Vol.
ASSP - 35, pp. 849 – 863 , 1987 .

 6. H. S. Hou , The fast Hartley transform algorithm , IEEE Transactions on Computers , Vol.
C - 36, pp. 147 – 156 , Feb. 1987 .

 7. H. S. Hou , Correction to “ The fast Hartley transform algorithm , ” IEEE Transactions on
Computers , Vol. C - 36, pp. 1135 – 1136 , Sept. 1987 .

 8. A. Zakhor and A. V. Oppenheim , Quantization errors in the computation of the discrete
Hartley transform , IEEE Transactions on Acoustics, Speech, and Signal Processing , Vol.
ASSP - 35, pp. 1592 – 1601 , Oct. 1987 .

 Goertzel Algorithm

 557

 Goertzel ’ s algorithm performs a DFT using an IIR fi lter calculation. Compared to
a direct N - point DFT calculation, this algorithm uses half the number of real
multiplications, the same number of real additions, and requires approximately 1/ N
the number of trigonometric evaluations. The biggest advantage of the Goertzel
algorithm over the direct DFT is the reduction of the trigonometric evaluations.
Both the direct method and the Goertzel method are more effi cient than the FFT
when a “ small ” number of spectrum points is required rather than the entire spec-
trum. However, for the entire spectrum, the Goertzel algorithm is an N 2 effort, just
as is the direct DFT.

 F.1 DESIGN CONSIDERATIONS

 Both the fi rst order and the second order Goertzel algorithms are explained in
several books [1 – 3] and in Ref. 4 . A discussion of them follows. Since

 W eN
kN j k− = =2 1π

both sides of the DFT in (6.1) can be multiplied by it, giving

 X k W x k WN
kN

N
kr

r

N

() ()= − +

=

−

∑
0

1

 (F.1)

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

F

558 Goertzel Algorithm

which can be written

 X k x r WN
k N r

r

N

() ()= − −()

=

−

∑
0

1

 (F.2)

Defi ne a discrete - time function as

 y n x r Wk N
k n r

r

N

() () ()= − −

=

−

∑
0

1

 (F.3)

The discrete transform is then

 X k y nk n N() ()= = (F.4)

Equation (F.3) is a discrete convolution of a fi nite - duration input sequence x (n),
0 < n < N − 1, with the infi nite sequence WN

kn− . The infi nite impulse response
is therefore

 h n WN
kn() = − (F.5)

The z - transform of h (n) in (F.5) is

 H z h n z n

n

() ()= −

=

∞

∑
0

 (F.6)

Substituting (F.5) into (F.6) gives

 H z W z W z W z
W zN

kn n
N

k
N

k

n N
k() = = + + + =

−
− − − − − −

=

∞

− −∑ 1
1

1
1 2 2

0
2 1� (F.7)

Thus, equation (F.7) represents the transfer function of the convolution sum in
equation (F.3) . Its fl ow graph represents the fi rst order Goertzel algorithm and is
shown in Figure F.1 . The DFT of the k th frequency component is calculated by

+

+

x (n) y (n)

Z
–1

WN
–K

 FIGURE F.1. First order Goertzel algorithm.

 Design Considerations 559

starting with the initial condition y k (− 1) = 0 and running through N iterations to
obtain the solution X (k) = y k (N). The x (n) ’ s are processed in time order, and pro-
cessing can start as soon as the fi rst one comes in. This structure needs the same
number of real multiplications and additions as the direct DFT but 1/ N the number
of trigonometric evaluations.

 The second order Goertzel algorithm can be obtained by multiplying the numera-
tor and denominator of (F.7) by 1 1− − −W zN

kn to give

 H z
W z

k N z z
N

k

()
cos(/)

=
−

− +

+ −

− −

1

1 2 2

1

1 2π
 (F.8)

The fl ow graph for this equation is shown in Figure F.2 . Note that the left
half of the graph contains feedback fl ows and the right half contains only feed-
forward terms. Therefore, only the left half of the fl ow graph must be evaluated
each iteration. The feedforward terms need only be calculated once for y k (N).
For real data, there is only one real multiplication in this graph and only one
trigonometric evaluation for each frequency. Scaling is a problem for fi xed - point
arithmetic realizations of this fi lter structure; therefore, simulation is extremely
useful.

 The second order Goertzel algorithm is more effi cient than the fi rst order Goertzel
algorithm. The fi rst order Goertzel algorithm (assuming a real input function)
requires approximately 4 N real multiplications, 3 N real additions, and two trigono-
metric evaluations per frequency component as opposed to N real multiplications,
2 N real additions, and two trigonometric evaluations per frequency component for
the second order Goertzel algorithm. The direct DFT requires approximately 2 N
real multiplications, 2 N real additions, and 2 N trigonometric evaluations per fre-
quency component.

 This Goertzel algorithm is useful in situations where only a few points in the
spectrum are necessary, as opposed to the entire spectrum. Detection of several
discrete frequency components is a good example. Since the algorithm processes
samples in time order, it allows the calculation to begin when the fi rst sample
arrives. In contrast, the FFT must have the entire frame in order to start the
calculation.

x (n) y (n)

Z
–12 cos (2pk /N)

Z
–1

–WN
K

–1

 FIGURE F.2. Second order Goertzel algorithm.

560 Goertzel Algorithm

REFERENCES

 1. G. Goertzel , An algorithm for the evaluation of fi nite trigonometric series , American
Mathematics Monthly , vol. 65 , Jan. 1958 .

 2. A. V. Oppenheim and R. Schafer , Discrete - Time Signal Processing , Prentice Hall , Upper
Saddle River, NJ , 1989 .

 3. C. S. Burrus and T. W. Parks , DFT/FFT and Convolution Algorithms: Theory and Imple-
mentation , Wiley , Hoboken, NJ , 1988 .

 4. http://ptolemy.eecs.berkeley.edu/papers/96/dtmf_ict/www/node3.html .

TMS320C6416 DSK

561

G.1 TMS320C64X PROCESSOR

 Another member of the C6000 family of processors is the C64x, which can operate
at a much higher clock rate. The C6416 DSK operates at 1 GHz for a 1.00 - ns instruc-
tion cycle time. Features of the C6416 architecture include: four 16 × 16 - bit multi-
pliers (each .M unit can perform two multiplies per cycle), sixty - four 32 - bit
general - purpose registers, more than 1 MB of internal memory consisting of 1 MB
of L2 RAM/cache, and 16 kB of each L1P program cache and L1D data cache
 [1 – 7] .

 The C64x is based on the architecture VELOCITI.2, which is an extension of
VELOCITI [2] . The extra registers allow for packed data types to support four 8 -
 bit or two 16 - bit operations associated with one 32 - bit register, increasing parallel-
ism [3] . For example, the instruction MPYU4 performs four 8 - bit multiplications
within a single instruction cycle time. Several special - purpose instructions have also
been added to handle many operations encountered in wireless and digital imaging
applications, where 8 - bit data processing is common. In addition, the .M unit (for
multiply operations) can also handle shift and rotate operations. Similarly, the .D

unit (for data manipulation) can also handle logical operations. The C64x is a fi xed -
 point processor. Existing instructions are available to more units. Double - word
load (LDDW) and store (STDW) instructions can access 64 bits of data, with up to a
two double - word load or store instructions per cycle (read or write 128 bits per
cycle).

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

G

562 TMS320C6416 DSK

 A few instructions have been added for the C64x processor. For example, the
instruction

BDEC LOOP,B0

decrements a counter B0 and performs a conditional branch to LOOP based on B0.
The branch decision is before the decrement, with the branch decision based on a
negative number (not on whether the number is zero). This multitask instruction
resembles the syntax used in the C3x and C4x family of processors.

 Furthermore, with the intrinsic C function _dotp2 , it can perform two 16 × 16
multiplies and adds the products together to further reduce the number of cycles.
This intrinsic function in C has the corresponding assembly function DOTP2 . With
two multiplier units, four 16 × 16 multiplies per cycle can be performed, double the
rate of the C62x or C67x. At 720 MHz, this corresponds to 2.88 billion multiply
operations per second, or 5.76 billion 8 × 8 multiplies per second.

G.2 PROGRAMMING EXAMPLES USING THE C6416 DSK

 Nearly all of the program examples described in Chapters 1 – 9 of this book will
run on the C6416 DSK provided that the appropriate support fi les are used.
Files c6416dskinit.c and c6416dskinit.h must be used in place of fi les
c6713dskinit.c and c6713dskinit.h and library fi les csl6416.lib , dsk-
6416bsl.lib , and rts6400.lib must be used in place of csl6713.lib , dsk-
6713bsl.lib , and rts6700.lib . Slightly different compiler and linker build options
are also required by the C6416 DSK.

 Assuming that a C6416 DSK is being used in place of the C6713 DSK and that
Code Composer Studio for that DSK has been installed, these issues can be resolved
by copying the fi les supplied on the CD in folder C6416 into folder c:\CCStudio_
v3.1\MyProjects . Support fi les appropriate to the C6416 DSK are stored in folder
c:\CCStudio_v3.1\MyProjects\support and the project (.pjt) fi les provided
have been set up to use those support fi les and with the appropriate compiler and
linker options.

 Three examples of the use of programs described earlier in this book are pre-
sented here.

Example G.1: Sine Wave Generation with DIP Switch Control (sine8_LED)

 This example is equivalent to Example 1.1 . Figure G.1 shows a listing of program
sine8_LED.c provided for the C6416 DSK. The essential differences between this
fi le and that listed in Figure 1.2 concern the header fi le included (dsk6416_aic23.
h), and the support library functions called (e.g., DSK6416_DIP_INIT()). Figure G.2
shows the Preprocessor Compiler and Basic Linker options for the project. Compare
Figures G.2 a and G.2 b with Figures 1.7 and 1.8 and note, for example, that the

 Programming Examples Using the C6416 DSK 563

//sine8_LED.c sine generation with DIP switch control

#include "dsk6416_aic23.h" //codec support
Uint32 fs = DSK6416_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6416_AIC23_INPUT_MIC 0x0015
#define DSK6416_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6416_AIC23_INPUT_MIC; //select input
#define LOOPLENGTH 8
short loopindex = 0; //table index
short gain = 10; //gain factor
short sine_table[LOOPLENGTH]=
 {0,707,1000,707,0,-707,-1000,-707}; //sine values

void main()
{
 comm_poll(); //init DSK,codec,McBSP
 DSK6416_LED_init(); //init LED from BSL
 DSK6416_DIP_init(); //init DIP from BSL
 while(1) //infinite loop
 {
 if(DSK6416_DIP_get(0)==0) //if DIP #0 pressed
 {
 DSK6416_LED_on(); //turn LED #0 ON
 output_left_sample(sine_table[loopindex++]*gain); //output
 if (loopindex >= LOOPLENGTH) loopindex = 0; //reset index
 }
 else DSK6416_LED_off(0); //else turn LED #0 OFF
 } //end of while(1)
} //end of main

 FIGURE G.1. Listing of program sine8_LED.c .

 FIGURE G.2. Compiler and Linker options for Example G.1 .

(a) (b)

564 TMS320C6416 DSK

//loop_intr.c loop program using interrupts

#include "DSK6416_AIC23.h" //codec support
Uint32 fs=DSK6416_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6416_AIC23_INPUT_MIC 0x0015
#define DSK6416_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6416_AIC23_INPUT_MIC; //select input

interrupt void c_int11() //interrupt service routine
{
 short sample_data;

 sample_data = input_left_sample(); //input data
 output_left_sample(sample_data); //output data
 return;
}

void main()
{
 comm_intr(); //init DSK, codec, McBSP
 while(1); //infinite loop
}

 Include and Library Search Paths , the Include Libraries , and the Pre - Defi ne Symbol
options are different.

 Project fi le sine8_LED.pjt has been provided so that in order to run the program
 sine8_LED.c it is necessary only to open that project, build, load, and run.

 The functionality of the program, that is, a 1 - kHz tone is output via LINE OUT
and HEADPHONE sockets while DIP switch #0 is pressed down, is the same as
that described in Example 1.1 .

 Example G.2: Loop Program Using the C 6416 DSK (loop_intr)

 Figure G.3 shows the C source fi le loop_intr.c that implements a loop program.
Compare this program with that listed in Figure 2.4 . Build the project as loop_
intr and verify that the results are similar to those described for Example 2.2 .

 Example G.3: Estimating Execution Times for DFT and FFT Functions

 This example is similar to Example 6.2 . Three different methods of computing
the DFT of 128 sample values are implemented in programs dft.c , dftw.c , and
 fft.c . Using Code Composer ’ s Profi le Clock , an indication of the number of pro-
cessor instruction cycles used for the computation can be obtained.

 One of the main differences between the C6416 and C6713 processors is the
absence of fl oating - point hardware in the case of the C6416. The same C programs,

 FIGURE G.3. Listing of program loop_intr.c .

 Programming Examples Using the C6416 DSK 565

using fl oating - point variables, can be compiled and run on the C6416 processor but
it will use software routines in place of fl oating - point hardware in order to carry
out fl oating - point arithmetic operations. In general, the C6416 will use more instruc-
tion cycles than the C6713 to carry out fl oating - point arithmetic. On the other hand,
the processor on the C6416 DSK has a clock speed of 1 GHz whereas the C6713
DSK processor uses a 225 - MHz clock.

 As in the case of Example 6.2 , edit the lines in programs dft.c and dftw.c that
read

#define N 100

to read

#define N 128

Then:

1. Ensure that source fi le dft.c and not dftw.c is present in the project.

2. Select Project → Build Options . In the Compiler tab in the Basic category set
the Opt Level to Function(– o2) and in the Linker tab set the Output Filename
to .\Debug\dft.out .

3. Build the project and load dft.out .

4. Open source fi le dft.c by double - clicking on its name in the Project
View window and set breakpoints at the lines dft(samples); and
printf(“done!\n”); .

5. Select Profi le → Clock → Enable .

6. Select Profi le → Clock View.

7. Run the program. It should halt at the fi rst breakpoint.

8. Reset the Profi le Clock by double - clicking on its icon in the bottom right - hand
corner of the CCS window.

9. Run the program. It should stop at the second breakpoint.

 The number of instruction cycles counted by the Profi le Clock (271,966,152) gives
an indication of the computational expense of executing function dft() . On a
1 - GHz C6416, 271,966,152 instruction cycles correspond to an execution time
of 272 ms. Repeat the preceding experiment substituting fi le dftw.c for fi le dft.c .
The modifi ed DFT function using twiddle factors, dftw() , uses 6,256,266 instruction
cycles, corresponding to 6.26 ms and representing a decrease in execution time by a
factor of 43. At a sampling rate of 8 kHz, 6.26 ms corresponds to just over fi fty sam-
pling periods.

 Finally, repeat the experiment using fi le fft.c (also stored in folder dft). This
program computes the FFT using a function written in C and defi ned in the fi le
fft.h . Function fft() takes 1,608,328 instruction cycles, or 1.61 ms (approximately

566 TMS320C6416 DSK

13 sampling periods at 8 kHz) to execute. The advantage, in terms of execution time,
of the FFT over the DFT seen in Example 6.2 is repeated here. However, the
fl oating - point computations take more than ten times longer on the C6416
processor.

REFERENCES

 1. TMS320C6416, TMS320C6415, TMS320C6416 Fixed - Pont Digital Signal Processors,
SPRS146 , Texas Instruments, Dallas, TX, 2003 .

 2. TMS320C6000 Programmer ’ s Guide, SPRU198G , Texas Instruments, Dallas, TX, 2002 .

 3. TMS320C6000 CPU and Instruction Set, SPRU189F , Texas Instruments, Dallas, TX,
 2000 .

 4. TMS320C64x Technical Overview, SPRU395 , Texas Instruments, Dallas, TX, 2003 .

 5. How to Begin Development Today with the TMS320C6416, TMS320C6415, and
TMS320C6416 DSPs Application Report, SPRA718 , Texas Instruments, Dallas, TX,
 2003 .

 6. TMS320C6000 Chip Support Library API User ’ s Guide, SPRU401 , Texas Instruments,
Dallas, TX, 2003 .

 7. TMS320C6000 DSK Board Support Library API User ’ s Guide, SPRU432 , Texas Instru-
ments, Dallas, TX, 2001 .

Index

Accumulated error metric, 490
Accumulation and buffering module, in

LPC speech synthesis, 496
Acoustic direction tracker, 513–515
adaptc project, 332–334
adaptIDFIR project, 339–343
adaptIDFIRw project, 343
Adaptive channel equalization, adaptive

structures for, 321–322
Adaptive fi lters, 154, 319–353. See also

Adaptive FIR fi lter
adaptive linear combiner, 319, 324–327
adaptive structures in, 321–324
performance function of, 320–321,

327–329
search for minima of, 329–332
for sinusoidal noise cancellation, 335
two-weight, 326–327

Adaptive FIR fi lter
for noise cancellation, 335–339
for system ID of fi xed FIR, 339–343
for system ID of fi xed IIR, 343–345

Adaptive linear combiner, 319, 324–327
Adaptive predictor, adaptive structures for,

322–323
Adaptive temporal attenuator (ATA),

519–520

567

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

adaptnoise_2IN project, 335–339
adaptnoise project, 335
ADC, see Analog-to-digital converter
Add-compare-select operation, 490
Add instructions, 113
Additive white Gaussian noise (AWGN),

for soft decision, 484
Addressing modes, linear and circular,

110–112
Address mode register (AMR), 111,

530
AES encryption standard, 503
AIC23 codec, 1, 20, 46–47

changing LINE IN gain of, 50
format of data, to and from, 52
identifi cation of bandwidth of, 85
impulse response of, 89, 92
settings defi ned in c6713dskinit.h,

33–34, 50
Aliasing, 74–75, 81–82, 82–85

in impulse invariance method, 230
aliasing project, 82–85
Amplitude modulation (AM), 92–95,

470–474
am project, 92–95
Analog-to-digital converter (ADC), 4, 34,

46, 102

568 Index

Animation, 29
Antialiasing fi lter, 82
Arithmetic operations, of TMS320C6x

processors, 105
asm statement, within C, 117
ASM (assembly) code

optimizing, 354–373
syntax of, 112–113
TMS320C6x format for, 112

ASM (assembly) functions. See also Linear
assembly function

ASM program calling, 135–139
C calling, 131–135, 197–206, 251–252

Assembler directives, 115–116
Assembler optimizer, 355
Audio effects, 451–453
Automatic speaker recognition,

496–500
average project, 165–167
averagen project, 168

Bandpass FIR fi lters, 161, 175–177, 343
implementation of, 188

Bandstop FIR fi lters, 161, 175
implementation of, 188

Beat detection, using onboard LEDs,
429–434

beatdetector project, 434
Bilinear transformation (BLT), 217–220

design procedure using, 219
design using, 232–236
frequency warping in, 233
implementation method, 232

Binary phase-shift keying (BPSK), 454,
468–470, 474, 476

demodulation, 469–470
encoding/decoding, 468–469
modulation, 468–469
single-board transmitter/receiver

simulation, 455–458
Binary representation, 533–539
bios_fastconv_TSK project, 386
bios_fft128c_SWI project, 385–386
bios_fir_SWI project, 383–385
bios_LED project, 376–378
bios_sine8_intr_LOG project, 382
bios_sine8_intr project, 379–381
Bit reversal, 268
Blackman window function, 164
BPSK folder, 468
BPSK_ReIN project, 459–460

BPSK_sim project, 455–468
BPSK transmitter/receiver, with PLL,

465–468
BPSK transmitter/voice encoder, with

real-time input, 459–460
Branch instructions, 115
Branch metrics, 490
Build options, for CCS, 13–15
Butterfl y graph, 260

C6416 folder, 7, 562
C6713 folder, 7
c6713dsk.cmd linker command fi le, 12,

34, 41
c6713dskinit.c initialization/

communication fi le, 12, 31–33, 48
c6713dskinit.h header fi le, 33,

35–38
Cascade IIR fi lter structure, 215–216
C compiler, with CCS, 3, 6
.cdd fl ashburn utility, 99
Circular addressing, registers for, 530
Circular addressing mode, 111–112
Circular buffers, 111, 530

ASM functions with, 201–205
in external memory, 205–206

Classifi cation module, in automatic speaker
recognition, 497

Closed set identifi cation, 498
Cluster, 497
Codebook, 497, 500
code_casm project, 135
Code Composer Studio (CCS), 1, 3, 6

build options for, 13–15
graphical displays with, 23
installation and support for, 6
memory window, 23, 26

Codec, see AIC23 codec
Code detection, using C calling an ASM

function, 135
Code optimization, 354–373

compiler options for, 355–356
execution cycles for, 372–373
procedure for, 356
programming examples using, 356–363
software pipelining for, 363–372
steps in, 355–356

Codevectors, 500
Codeword, 497, 499
comm_intr() function, 33
comm_poll() function, 33, 48

Index 569

Compiler options
with CCS, 13–15
for code optimization, 355–356

Constellation diagram, 472
Control status register (CSR), 118, 500
Convolution, 146, 153, 165

frequency-domain, 306–312
time-domain, 299–306

Convolutional encoding, 482, 483
CPU functional units, of TMS320C6x

processors, 105–106
Cross-path constraints, 128
Cross-path instructions, 127
Cross-paths, of TMS320C6x processors,

106

DAC, see Digital-to-analog converter
Data alignment, 123
Data allocation, 122–123
Data types, 124–125
Decimation, 508
Decimation-in-frequency (DIF) algorithms,

255
eight-point FFT using, 261–263
radix-2, 257–263

Decimation-in-time (DIT) algorithms, 255
eight-point FFT using, 267–268
radix-2, 263–268

Decode stage, 109
delay project, 53
Dependency graph, 363, 364–365
detect_play project, 453–454
dft128c project, 285–290
dft project, 273–277
dft.c program, 274, 564
dftw.c program, 277–278
fft.c program, 279, 564

Difference equations, 150–151
DTMF tone generation using, 247
sine generation using, 244–247
swept sinusoid generation using, 248–251

Digital-to-analog converter (DAC), 4, 46
dimpulse project, 78
DIP switch, 4, 9, 479–482
Direct form I IIR fi lter structure, 212
Direct form II IIR fi lter structure, 212–213,

223–225
Direct form II transpose IIR fi lter structure,

214–215
Direct memory access (DMA), 122
Discrete cosine transform (DCT), 255

Discrete Fourier transform (DFT), 255
of real-number sequence, 273–278
of real-time signal, 285–290

Discrete Hartley transform, 255
Division operation, 126
dotp4a project, 135–139
dotp4clasm project, 139–141
dotp4 project, 23–30
dotpintrinsic project, C code with, 358
dotpipedfix project, ASM code with, 367
dotpipedfloat project, ASM code with,

367–372
dotpnpfloat project, ASM code with,

361–362
dotpnp project, ASM code with, 359–360
dotppfloat project, ASM code with, 362
dotpp project, ASM code with, 360
Dot product, 23–30

code optimization examples using,
357–372

double data type, 125
Double-precision (DP) data format, 125
DSK board, 3–5. See also DSP Starter Kit

(DSK)
dsk_fir67.m program, 179
dsk_sos_iir67int.m program, 543
dsk_sos_iir67.m program, 240
DSP applications/student projects, 422–527

acoustic direction tracker, 513–515
adaptive temporal attenuator, 519–520
audio effects, 451–453
automatic speaker recognition, 496–500
beat detection using onboard LEDs,

429–434
binary phase shift keying, 468–470
convolutional encoding and Viterbi

decoding, 482–492
dual-tone multifrequency signal

detection, 422–429
encryption, 503–506
fi lter coeffi cient transfer, 434–435
fi lter design and implementation, 521
four-channel multiplexer, 522
FSK modem, 521
G.722 audio coding implementation,

501–502
IIR fi lter and scrambling scheme, 479–482
image processing, 521
modulation schemes, 470–479
mu-law for speech companding, 500–501
multirate fi lter, 508–513

570 Index

DSP applications/student projects
(Continued)

neural network for signal recognition,
515–519

phase-locked loop project, 506–508
phase shift keying, 454–468
PID controller, 522
radix-4 FFT with RTDX using Visual

C++ and MATLAB for plotting,
435–438

spectrum display, 438–445
speech synthesis, 493–496
time-frequency analysis of signals,

445–451
video line rate analysis, 522
voice detection and reverse playback,

453–454
DSP/BIOS, 374–421

hardware interrupts (HWI), 375,
378–381

idle functions (IDL), 375
periodic functions (PRD), 375, 376–378
software interrupts (SWI), 375, 382–386
tasks (TSK), 375, 386
threads, 374

DSP Starter Kit (DSK), 1. See also DSK
entries

quick tests of, 7–9
DTMF_BIOS_RTDX project, 427–429
DTMF folder, 424
DTMF generation

using difference equations, 247
using lookup tables, 66–69

.D (data transfer) units, of TMS320C6x
processors, 105

echo_control project, 54–57
echo project, 53–54
Edge detection, in image processing, 521
Eight-level PAM lookup table, 472
EMIF_LCD project, 440–445
Encoding regions, 500
Encryption, using data encryption standard

algorithm, 503–506
encryption project, 503–506
Euclidean distances, speaker identifi cation

using, 500
Execute packets (EPs), 106

multiple, 129
Execute stage, 109
External memory, using to record voice, 95

External memory interface (EMIF), in
spectrum display, 438–445

factclasm project, 141–142
factorial project, 132–133
far declaration, 124
fastconvdemo project, 306–308
Fast convolution, 297–317

with overlap-add for FIR
implementation, 308–312

with overlap-add simulation for FIR,
306–308

fastconv project, 308–312
Fast Fourier transform (FFT), 255–318. See

also Inverse fast Fourier transform
(IFFT)

bit reversal and, 268
butterfl y, 260
decimation-in-frequency algorithm for,

255
decimation-in-time algorithm with

radix-2, 263–268
eight-point using decimation-in-

frequency, 261–263
eight-point using decimation-in-time,

267–268
radix-2, 256–257
radix-4, 269–272
of real-time input signal, 290

using an FFT function in C, 290
using TI optimized radix-2 function,

295–297
using TI optimized radix-4 function,

297
of a sinusoidal signal, 290–295
sixteen-point, 263, 270–272

Fast Hartley transform (FHT), 255, 550–556
FDATool fi lter designer, 178, 540–544

for bandpass IIR fi lter design, 241
for FIR fi lter design, 541–542
for IIR fi lter design, 542–544

Feature extraction module, in automatic
speaker recognition, 497

Fetch packets (FPs), 106
multiple EPs in, 129

fft128c project, 290
FFTr2 project, 295–297
FFTr4 project, 297
FFTsinetable project, 290–295
f-function, in encryption, 504
File types, with CCS, 7

Index 571

Finite impulse response (FIR) fi lters, 146–
209. See also FIR entries; Infi nite
impulse response (IIR) fi lters

discrete signals and, 151–152
implementation using Fourier series,

158–162
with internally generated pseudorandom

noise, 182–186
lattice structure of, 154–158
lowpass, 160, 161–162, 186–188
operation and design of, 152–154
programming examples using C and ASM

code, 165–207
with RTDX using Visual C++ for fi lter

coeffi cient transfer, 434–435
window functions for, 162–164

FIR2ways project, 193
FIR3LP project, 186–188
FIR4types project, 188–191
FIR bandpass fi lters, see Bandpass FIR

fi lters
FIR bandstop fi lters, see Bandstop FIR

fi lters
FIRcasmfast project, 200–201
FIRcasm project, 197–200
FIRcirc_ext project, 205–206
FIRcirc project, 201–205
FIR fi lter implementation

two different methods for, 193
using C calling a faster ASM function,

200–201
using C calling an ASM function,

197–200
with circular buffer, 201–205
with circular buffer in external

memory, 205–206
using Fourier series, 158–162
using frequency-domain convolution,

306–308
using real-time frequency-domain

convolution, 308–312
using real-time time-domain convolution,

299–306
using time-domain convolution, 306

FIRPRNbuf project, 182–186
FIRPRN project, 178–182
FIR project, 175–178
Fixed-point format, 124–125
Fixed-point operations, instructions for,

528–529
Fixed-point processors, 103

Flashburn (.cdd) utility, 99
Flash memory, 105

erasing and programming, 99
using, 95–101

flash_sine project, 95–101
float data type, 125
Floating-point format, 125–126
Fourier series, FIR implementation using,

158–162
Four-level PAM lookup table, 472
Fractional fi xed-point representation, 536
Frame-based processing, 280–297
Frame blocking, in determining MFCCs,

498
frames project, 283–284
Frame synchronization, 467
Frequency-domain plot, 25
Frequency inversion, scrambling by, 193
Frequency warping, 233
Functional unit latency, 110
Functional units, of TMS320C6x processors,

105–106

G.722 audio coding, implementation of,
501–502

G722 project, 501–502
Gabor expansion, 446
GEL slider, 18–19, 63–65
General Extension Language (GEL), 18
Goertzel algorithm, 422–429, 557–560
Goldwave shareware utility, 548–549
graphicEQ project, 312–317
Graphic equalizer, 312–317
graphic_FFT project, 438–440
Graph Property Dialogs, 24–25
Gray encoding, 475

Hamming distance, 490
Hamming window function, 163, 490, 495
Hanning window function, 163
Hardware interrupts (HWI), in DSP/BIOS,

375, 378–381
Header fi les, 7
hex6x.exe program, 98
.hex fi le, 98–99
Highpass FIR fi lter, 161

implementation, 188
Histogram equalization, in image

processing, 521
HWI (DSP/BIOS Hardware interrupt), 375,

378–381

572 Index

IDL (DSP/BIOS Idle function), 375
Idle functions (IDL), in DSP/BIOS, 375
IIR_ctrl folder, 482
IIR fi lter scheme, using onboard DIP

switches, 479–482
iir project, 243–244
iirsosadapt project, 343–345
iirsosdelta project, 228–230
iirsosprn project, 225–228
iirsos project, 223–225
iirsostr.c program, 225
Image processing, 521
Impulse invariance method, 220–223
Impulse response, 78, 89, 92
Indirect addressing, 110
Infi nite impulse response (IIR) fi lters,

210–254
second order sections, 216, 223

Initialization/communication fi le, 30–33
input_left_sample() function, 33,

48
Instruction sets, for TMS320C6x processors,

112–115
int data type, 124
Interrupt acknowledgment (IACK), 120
Interrupt clear register (ICR), 118, 530
Interrupt control registers, 118, 530
Interrupt enable register (IER), 118, 530
Interrupt fl ag register (IFR), 118, 530
Interrupt return pointer (IRP), 119
Interrupts, 118–121

registers for, 118, 530
Interrupt service table (IST), 120
Interrupt service table base (ISTB) register,

120
Interrupt service table pointer (ISTP), 118,

530
Interrupt set register (ISR), 118, 530
intrinsics, 126
INUMx signals, 120
Inverse discrete Fourier transform (IDFT),

255, 272
Inverse fast Fourier transform (IFFT),

272

Kaiser window function, 164
k-parameters, 154

LabVIEW, for PC/DSK interface, 415, 421
Laplace transform, 146, 147, 149, 221, 222
Lattice structure, of FIR fi lters, 154–158

Least mean squares (LMS) algorithms
for adaptive fi lters, 321, 323–324
sign-data algorithm, 323
sign-error algorithm, 323
sign-sign algorithm, 324
types of, 323–324

LED, 4, 9
Level detection, in determining MFCCs, 498
Levinson–Durbin algorithm, in LPC speech

synthesis, 495
Linear adaptive combiner, see Adaptive

linear combiner
Linear addressing mode, 110
Linear assembly, 116–117
Linear assembly function, C function

calling, 139–142
Linear phase, with FIR fi lters, 154
Linear prediction, of speech signals,

493–496
Linear predictive coding (LPC), 493–494
Linker command fi les, 34–38
Linker options, with CCS, 15
Liquid-crystal displays (LCDs), in spectrum

display, 440–445
Load instructions, 114–115
LOG object, in DSP/BIOS, 382
Lookup table

DTMF generation with, 66–69
impulse generation with, 78
sine wave generation with, 60
square-wave generation with, 75–77

Loop count, trip directive for, 127
loop_buf project, 57–60, 82
loop_intr project, 51–53, 564
loop_poll project, 48–51
Loop program

using C6416 DSK, 564
with input data stored in memory, 57–60
using interrupts, 51–53, 564
using polling, 48–51

Lowpass FIR fi lter, 160
implementation, 188

.L (logical) units, of TMS320C6x
processors, 105

MATLAB, 540–548
MATLAB student version

for FIR fi lter design, 544–545
for IIR fi lter design, 546–548

Mean-squared error, 328
Median fi ltering, in image processing, 521

Index 573

Mel-frequency cepstrum coeffi cients
(MFCCs), 497

Memory. See also Direct memory access
(DMA); External memory; Flash
memory

circular buffer in external, 205–206
fl ash, 105
internal, 105
for TMS320C6x processors, 104–105
viewing sample update in, 199–200

Memory constraints, 128
Memory data, viewing and saving, 23, 26
Memory map, of TMS320C6x processors,

107
Memory models, 124
Memory window, in CCS, 23, 26
Modulation, 468–469, 470–479
modulation_schemes folder, 470
Move instructions, 115
Moving average fi lter, 165
mu-law, for speech companding, 500–501
mulaw project, 500–501
Multichannel buffered serial ports

(McBSPs), 121
Multiple EPs, pipelining effects with,

129–130
Multiplication, of n-bit numbers, 536–539
Multiply instructions, 113–114
Multirate fi lter, 508–513
.M (multiply) units, of TMS320C6x

processors, 105
myprojects folder, 7

n-bit numbers, multiplication of, 536–539
near declaration, 124
Neural network, for signal recognition,

515–519
Newton’s Forward interpolation, 467
Noise cancellation

adaptive FIR fi lter for, 335–339
adaptive structures for, 322

noisegen_casm program, 133–135
Noise generation, using C calling an

assembly function, 133–135
Nonmaskable interrupt (NMI), 119
Nonmaskable interrupt return pointer

(NRP), 119
notch2 project, 191–192
Notch fi lters, to recover corrupted input

voice, 191–192
Number wheels, 534–535, 537

Open set identifi cation, 498
Optimization

benchmarking (profi ling) with, 30
benchmarking (profi ling) without, 29

output_left_sample() function, 10, 33,
48

Overlap-add, 302
Overlap-save, 302

PAM lookup tables, 472–473
Parallel form IIR fi lter structure, 216–217
Parks–McClellan algorithm, 153, 164
PC/DSK interface

using LabVIEW, 415–421
using MATLAB, 386–399
using Visual Basic, 411–414
using Visual C++, 400–411

Performance function, 327–329
Periodic functions (PRD), in DSP/BIOS,

375, 376–378
Phase-locked loop (PLL), 460, 506–508
Phase shift keying (PSK), 454–468, 474–479
PID (proportional, integral, derivative)

controller, 522
Pipelining, 108–110. See also Software

pipelining
effects of, 109, 129
hand-coded software pipelining, 363
with stalling effects, 130

PLL project, 506–508
Plotting

with CCS, 23
with MATLAB, 393–396, 406–411

Point detection, in image processing, 521
Poles, 149–150
Ports, multichannel buffered serial, 121
POST program, 7

recovering, 99–101
pragma directives, 95, 123–124
prandom project, 78–82
PRD (DSP/BIOS Periodic function), 375,

376–378
Prewarping, 235
Profi le clock, 29, 564
Profi ling

with optimization, 30
without optimization, 29

Program errors, correcting with CCS, 17
Program fetch stage, 108
Project creation, 11–13
Project view window 13

574 Index

Pseudorandom noise, 78–82
as input to FIR fi lter, 178–186
as input to IIR fi lter, 225–228
as input to moving average fi lter, 168
prandom.c program, 78–82
using C calling an assembly function,

133–135
PSK folder, 454–468
PSOLA (pitch synchronous overlap-add)

digital technology, 493
Pulse amplitude modulation (PAM),

470–474

Quadrature mirror fi lter (QMF), 501
Quadrature phase-shift keying (QPSK),

474, 476
Quantization error, 103

Radix-2 decimation-in-frequency FFT
algorithm, 255

Radix-2 decimation-in-time FFT algorithm,
263–268

Radix-2 fast Fourier transform, 256–257
Radix-4 fast Fourier transform, 269–272

of real-time input, 297
with RTDX using Visual C++ and

MATLAB for plotting, 406–411
sixteen-point, 263, 270–272

ramp project, 92
Real-time data exchange (RTDX), 6

for amplitude control of loop program
output, 413–414

for controlling generated sinusoid
amplitude, 420–421

for controlling generated sinusoid gain,
417–420

displaying detected DTMF signals with,
427–429

in fi lter coeffi cient transfer, 434–435
for FIR fi lter implementation, 396–400,

415–417
MATLAB–DSK interface using, 388–393
with MATLAB FFT and plotting

functions, 406–411
for sine wave amplitude control, 400–406,

411–413
spectrograms with, 446–450
using LabVIEW for PC/DSK interface,

415–421
using MATLAB for PC/DSK interface,

386–399

using Visual Basic for PC/DSK interface,
411–414

using Visual C++ to interface with DSK,
400–411

Real-time scheduler, 374
Real-time signal processing, 2
Reconstruction fi lter, 46, 76–82, 145
receiver folder, 465
record project, 95
Rectangular window function, 162
Refl ection coeffi cients, 154. See also

k-parameters
Register fi les, 110
Registers

for circular addressing and interrupts,
111, 530–532

in indirect addressing, 110
interrupt control, 118–120
supporting data communication, 121
for TMS320C6x processors, 110

RELP (residue excited) digital technology,
493

Remez exchange algorithm, 164
Residual signal module, in LPC speech

synthesis, 495
Rijndael algorithm, 503
rtdx_lv_filter project, 415–417
rtdx_lv_gain project, 417–420
rtdx_lv_sine project, 420–421
rtdx_matlabFFT project, 393–396
rtdx_matlabFIR project, 396–400
rtdx_matlab_sim project, 388–393
rtdx_vbloop project, 413–414
rtdx_vbsine project, 411–413
rtdx_vc_FFTmatlab folder, 406
rtdx_vc_FFTr4 project, 435–438
rtdx_vc_FIR project, 434–435
rtdx_vc_sine project, 400–406

Sample update, viewing in memory, 199
Sampling rate, 46
S-boxes, in encryption, 505
Scheduling tables, 363, 365–372
scrambler project, 193–196
Segmentation module, in LPC speech

synthesis, 495
Serial port control register (SPCR), 33, 530
Serial ports, multichannel buffered, 121
short data type, 124
Short time Fourier transform (STFT), 445
Sigma–delta technology, 46

Index 575

Signal recognition, neural network for,
515–519

Sign-data LMS algorithm, 323
signed int data type, 124
Sign-error LMS algorithm, 323
Sign-sign LMS algorithm, 324
sin1500MATL project, 70–72
sine2sliders project, 63–65
sine8_buf project, 21–23
sine8_intr project, 60–61
sine8_LED project, 9–21, 562–564
sine8_phase_shift project, 462
sineDTMF_intr project, 66–69
sinegencasm project, 251–252
sinegenDE project, 244–247
sinegenDTMF project, 247
sinegen_table project, 69–70
sine_intr project, 61–62
sine_led_ctrl project, 72–73
sine_stereo project, 62–63
sine wave generation

real-time, 60
sin1500.c program, 70–72
sine2sliders.c program, 63–65
sine8_intr.c program, 60
sine_intr.c program, 61
stereo output, 62–63
sweep8000.c program, 65–66
using lookup table, 60
using sin() function call, 61
using values generated in program, 69–70
with DIP switch control, 72–73

Single-precision (SP) data format, 125
Sinusoidal noise cancellation, adaptive fi lter

for, 335
Sixteen-level PAM lookup table, 473
Sliders

for amplitude and frequency of sine
wave, 63–65

GEL fi les for 18–19
Software interrupts (SWI), in DSP/BIOS,

375, 382–384
Software pipelining, 127–128, 355, 363–372
soundboard folder, 451–453
Speaker identifi cation, 500
Speaker recognition, automatic, 496–500
speaker_recognition folder, 496–500
Spectral leakage, 275, 290
spectrogram folder, 445–451
spectrogram_rtdx_mtl project,

445–450

Spectrograms
with RTDX using MATLAB, 446–450
with RTDX using Visual C++, 450–451
time-frequency analysis of signals with,

445–451
Spectrum display

through EMIF using LCDs, 440–445
through EMIF using 32 LEDs, 438–440

speech_syn project, 493–496
Speech synthesis, using linear prediction of

speech signals, 493–496
squarewave project, 75–77
Stalling effects, 130
Stereo codec, 4, 40–42
Stereo output, sine generation with, 62–63
Store instructions, 114–115
Subtract instructions, 113–114
Sum of products. 357
sum project, 131–132
.S units, of TMS320C6x processors, 105
Support fi les, with CCS, 30

communication, 30–33
header, 33
initialization, 30–33
linker command, 34, 41
vector, 34, 39–40

sweep8000 project, 65–66
sweepDE project, 248–251
SWI (DSP/BIOS Software interrupt), 375,

382–386
sysid project, 85, 168, 345–352
sysid16 project, 85–92
system identifi cation

adaptive structures for, 322
of codec antialiasing and reconstruction

fi lters, 85–92

Tasks (TSK), in DSP/BIOS, 375, 386
Text-to-speech systems, 493
Threads, in DSP/BIOS, 374
timeconv project, 306
timeconvdemo project, 299–306
Time-domain plot, 24
Time-frequency analysis, of signals, 445–

451
TLV320AIC23 onboard stereo codec, 2, 4,

46–47
TMS320C62xx fi xed-point processors, 4
TMS320C6416 digital signal processor, 1, 5
TMS320C6416 DSK, 1, 561–566
TMS320C64x processors, 4, 561–566

576 Index

TMS320C6713 digital signal processor, 1, 4,
104

board for, 4
TMS320C67xx fl oating-point processors, 4
TMS320C6x instruction set, 528–529
TMS320C6x processors, 1–3, 102–145

addressing modes and, 110–112
architecture of, 104–105
asm statement and, 117
assembler directives and, 115–116
C callable assembly functions with,

117–118
code improvement for, 126–128
constraints with, 128–130
CPU functional units of, 105–106
direct memory access and, 122
fetch and execute packets and, 106–108
fi xed- and fl oating-point format and,

124–126
instruction set for, 112–115, 528–529
interrupts and, 118–121
linear assembly and, 116–117, 139–142
memory with, 122–124
multichannel buffered serial ports with,

121–122
pipelining and, 108–110
register fi les and, 110
timers and, 118

transmitter folder, 465
Transmitter/receiver algorithm

for PAM, 473–474
for PSK, 475

Trellis diagram, 485
TSK (DSP/BIOS Task), 375, 386
Twiddle constants/factors, 256, 267, 271,

277
Two’s-complement representation, 533–539
twosumfix project, ASM code with,

360–361
twosumfloat project, 362–363
twosumlasmfix project, linear ASM code

with, 358–359

twosumlasmfloat project, linear ASM
code with, 359

twosum project, C code for, 357–358

Universal synchronous bus (USB) cable, 3
Unsharp masking, in image processing, 521

Variable Watch, implementing, 26
Vector fi les, 34
vectors_intr.asm fi le, 39
vectors_poll.asm fi le, 12, 40
VELOCITI architecture, 5, 106, 561
VELP (voice excited) digital technology,

493
Very-long-instruction-word (VLIW)

architecture, 5, 106
Video line rate analysis, 522
Visual Basic (VB), for PC/DSK interface,

411–414
Visual C++, for PC/DSK interface, 400–411
Viterbi decoding algorithm, 482, 485

hard-decision decoding setup, 482
soft decision decoding setup, 482–483

viterbi project, 482–492
Voice detection, 453–454
Voice recording, using external memory, 95
Voice scrambling, using fi ltering and

modulation, 193–196
VQ distortion, 497
VQ process, 499

Watch window, monitoring, 18–20
Wigner–Ville distribution, 446
Window functions, 162–164

Blackman, 164
Kaiser, 164
Hamming, 163
Hanning, 163
rectangular, 162

Windowing, in LPC speech synthesis, 495

z-transform (ZT), 146–150, 220–222

	Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK
	Contents
	Preface
	Preface to the First Edition
	List of Examples
	Programs/Files on Accompanying CD
	1 DSP Development System
	1.1 Introduction
	1.2 DSK Support Tools
	1.2.1 C6713 and C6416 DSK Boards
	1.2.2 TMS320C6713 Digital Signal Processor
	1.2.3 TMS320C6416 Digital Signal Processor

	1.3 Code Composer Studio
	1.3.1 CCS Version 3.1 Installation and Support
	1.3.2 Installation of Files Supplied with This Book
	1.3.3 File Types

	1.4 Quick Tests of the DSK (On Power On and Using CCS)
	1.5 Programming Examples to Test the DSK Tools
	1.6 Support Files
	1.6.1 Initialization/Communication File (c6713dskinit.c)
	1.6.2 Header File (c6713dskinit.h)
	1.6.3 Vector Files (vectors_intr.asm, vectors_poll.asm)
	1.6.4 Linker Command File (c6713dsk.cmd)

	1.7 Assignments
	References

	2 Input and Output with the DSK
	2.1 Introduction
	2.2 TLV320AIC23 (AIC23) Onboard Stereo Codec for Input and Output
	2.3 Programming Examples Using C Code
	2.3.1 Real-Time Sine Wave Generation

	2.4 Assignments
	References

	3 Architecture and Instruction Set of the C6x Processor
	3.1 Introduction
	3.2 TMS320C6x Architecture
	3.3 Functional Units
	3.4 Fetch and Execute Packets
	3.5 Pipelining
	3.6 Registers
	3.7 Linear and Circular Addressing Modes
	3.7.1 Indirect Addressing
	3.7.2 Circular Addressing

	3.8 TMS320C6x Instruction Set
	3.8.1 Assembly Code Format
	3.8.2 Types of Instructions

	3.9 Assembler Directives
	3.10 Linear Assembly
	3.11 ASM Statement Within C
	3.12 C-Callable Assembly Function
	3.13 Timers
	3.14 Interrupts
	3.14.1 Interrupt Control Registers
	3.14.2 Interrupt Acknowledgment

	3.15 Multichannel Buffered Serial Ports
	3.16 Direct Memory Access
	3.17 Memory Considerations
	3.17.1 Data Allocation
	3.17.2 Data Alignment
	3.17.3 Pragma Directives
	3.17.4 Memory Models

	3.18 Fixed- and Floating-Point Format
	3.18.1 Data Types
	3.18.2 Floating-Point Format
	3.18.3 Division

	3.19 Code Improvement
	3.19.1 Intrinsics
	3.19.2 Trip Directive for Loop Count
	3.19.3 Cross-Paths
	3.19.4 Software Pipelining

	3.20 Constraints
	3.20.1 Memory Constraints
	3.20.2 Cross-Path Constraints
	3.20.3 Load/Store Constraints
	3.20.4 Pipelining Effects with More Than One EP Within an FP

	3.21 Programming Examples Using C, Assembly, and Linear Assembly
	3.22 Assignments
	References

	4 Finite Impulse Response Filters
	4.1 Introduction to the z-Transform
	4.1.1 Mapping from s-Plane to z-Plane
	4.1.2 Difference Equations

	4.2 Discrete Signals
	4.3 FIR Filters
	4.4 FIR Lattice Structure
	4.5 FIR Implementation Using Fourier Series
	4.6 Window Functions
	4.6.1 Hamming Window
	4.6.2 Hanning Window
	4.6.3 Blackman Window
	4.6.4 Kaiser Window
	4.6.5 Computer-Aided Approximation

	4.7 Programming Examples Using C and ASM Code
	4.8 Assignments
	References

	5 Infinite Impulse Response Filters
	5.1 Introduction
	5.2 IIR Filter Structures
	5.2.1 Direct Form I Structure
	5.2.2 Direct Form II Structure
	5.2.3 Direct Form II Transpose
	5.2.4 Cascade Structure
	5.2.5 Parallel Form Structure

	5.3 Bilinear Transformation
	5.3.1 BLT Design Procedure

	5.4 Programming Examples Using C and ASM Code
	5.5 Assignments
	References

	6 Fast Fourier Transform
	6.1 Introduction
	6.2 Development of the FFT Algorithm with Radix-2
	6.3 Decimation-in-Frequency FFT Algorithm with Radix-2
	6.4 Decimation-in-Time FFT Algorithm with Radix-2
	6.5 Bit Reversal for Unscrambling
	6.6 Development of the FFT Algorithm with Radix-4
	6.7 Inverse Fast Fourier Transform
	6.8 Programming Examples
	6.8.1 Frame-Based Processing
	6.8.2 Fast Convolution

	References

	7 Adaptive Filters
	7.1 Introduction
	7.2 Adaptive Structures
	7.3 Adaptive Linear Combiner
	7.4 Performance Function
	7.5 Searching for the Minimum
	7.6 Programming Examples for Noise Cancellation and System Identification
	References

	8 Code Optimization
	8.1 Introduction
	8.2 Optimization Steps
	8.2.1 Compiler Options
	8.2.2 Intrinsic C Functions

	8.3 Procedure for Code Optimization
	8.4 Programming Examples Using Code Optimization Techniques
	8.5 Software Pipelining for Code Optimization
	8.5.1 Procedure for Hand-Coded Software Pipelining
	8.5.2 Dependency Graph
	8.5.3 Scheduling Table

	8.6 Execution Cycles for Different Optimization Schemes
	References

	9 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW
	9.1 Introduction to DSP/BIOS
	9.1.1 Periodic Functions
	9.1.2 Hardware Interrupts
	9.1.3 Real-Time Analysis with DSP/BIOS
	9.1.4 Software Interrupts

	9.2 RTDX Using MATLAB to Provide Interface Between PC and DSK
	9.3 RTDX Using Visual C++ to Interface with DSK
	9.4 RTDX Using Visual Basic to Provide Interface Between PC and DSK
	9.5 RTDX Using LabVIEW to Provide Interface Between PC and DSK
	Acknowledgments
	References

	10 DSP Applications and Student Projects
	10.1 DTMF Signal Detection Using Correlation, FFT, and Goertzel Algorithm
	10.1.1 Using a Correlation Scheme and Onboard LEDs for Verifying Detection
	10.1.2 Using RTDX with Visual C++ to Display Detected DTMF Signals on the PC
	10.1.3 Using FFT and Onboard LEDs for Verifying Detection
	10.1.4 Using Goertzel Algorithm

	10.2 Beat Detection Using Onboard LEDs
	10.3 FIR with RTDX Using Visual C++ for Transfer of Filter Coefficients
	10.4 Radix-4 FFT with RTDX Using Visual C++ and MATLAB for Plotting
	10.5 Spectrum Display Through EMIF Using a Bank of 32 LEDs
	10.6 Spectrum Display Through EMIF Using LCDs
	10.7 Time–Frequency Analysis of Signals with Spectrogram
	10.7.1 Simulation Using MATLAB
	10.7.2 Spectrogram with RTDX Using MATLAB
	10.7.3 Spectrogram with RTDX Using Visual C++

	10.8 Audio Effects (Echo and Reverb, Harmonics, and Distortion)
	10.9 Voice Detection and Reverse Playback
	10.10 Phase Shift Keying—BPSK Encoding and Decoding with PLL
	10.10.1 BPSK Single-Board Transmitter/Receiver Simulation
	10.10.2 BPSK Transmitter/Voice Encoder with Real-Time Input
	10.10.3 Phase-Locked Loop
	10.10.4 BPSK Transmitter and Receiver with PLL

	10.11 Binary Phase Shift Keying
	10.12 Modulation Schemes—PAM and PSK
	10.12.1 Pulse Amplitude Modulation
	10.12.2 Phase Shift Keying

	10.13 Selectable IIR Filter and Scrambling Scheme Using Onboard Switches
	10.14 Convolutional Encoding and Viterbi Decoding
	10.15 Speech Synthesis Using Linear Prediction of Speech Signals
	10.16 Automatic Speaker Recognition
	10.17 µ-Law for Speech Companding
	10.18 SB-ADPCM Encoder/Decoder: Implementation of G.722 Audio Coding
	10.19 Encryption Using the Data Encryption Standard Algorithm
	10.20 Phase-Locked Loop
	10.21 Miscellaneous Projects
	10.21.1 Multirate Filter
	10.21.2 Acoustic Direction Tracker
	10.21.3 Neural Network for Signal Recognition
	10.21.4 Adaptive Temporal Attenuator
	10.21.5 FSK Modem
	10.21.6 Image Processing
	10.21.7 Filter Design and Implementation Using a Modified Prony’s Method
	10.21.8 PID Controller
	10.21.9 Four-Channel Multiplexer for Fast Data Acquisition
	10.21.10 Video Line Rate Analysis

	Acknowledgments
	References

	Appendix A TMS320C6x Instruction Set
	A.1 Instructions for Fixed- and Floating-Point Operations
	A.2 Instructions for Floating-Point Operations
	References

	Appendix B Registers for Circular Addressing and Interrupts
	Reference

	Appendix C Fixed-Point Considerations
	C.1 Binary and Two’s-Complement Representation
	C.2 Fractional Fixed-Point Representation
	C.3 Multiplication
	Reference

	Appendix D MATLAB and Goldwave Support Tools
	D.1 fdatool for FIR Filter Design
	D.2 fdatool for IIR Filter Design
	D.3 MATLAB for FIR Filter Design Using the Student Version
	D.4 MATLAB for IIR Filter Design Using the Student Version
	D.5 Using the Goldwave Shareware Utility as a Virtual Instrument
	References

	Appendix E Fast Hartley Transform
	References

	Appendix F Goertzel Algorithm
	F.1 Design Considerations
	References

	Appendix G TMS320C6416 DSK
	G.1 TMS320C64x Processor
	G.2 Programming Examples Using the C6416 DSK
	References

	Index

