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Preface

xv

 Since the publication of the fi rst edition of this book in 2005, Texas Instruments has 
released a new version of Code Composer Studio (CCS). Consequently, although 
nearly all of the program examples presented in the fi rst edition will work with the 
DSK, some of the detailed instructions for using CCS described in the fi rst edition 
are no longer accurate. Every effort has been made to ensure that this edition is 
compatible with Version 3 of Code Composer Studio. Slight changes have been 
made to the program examples to the extent that the examples provided with this 
edition should not be mixed with the earlier versions. 

 Sadly, Rulph Chassaing passed away in 2005. I had the privilege and the pleasure 
of being able to work with Rulph after attending his workshop at the TI developer 
conference in 1999. We corresponded regularly while he was writing his book on 
the C6711 DSK and Rulph kindly included some of the program examples I had 
developed. I helped Rulph to present a workshop at the TI developer conference 
in 2002, and we maintained contact while he wrote the fi rst edition of this book. 
I have used Rulph ’ s books, on the C31, C6711, and C6713 processors, for teaching 
both at Heriot - Watt (UK) and at Zhejiang (PRC) universities. 

 Rulph ’ s books are an extensive and valuable resource for teaching DSP hands - on 
in a laboratory setting. They contain a wealth of practical examples — programs that 
run on TI DSKs (nearly all in real - time) and illustrate vividly many key concepts 
in digital signal processing. It would have been a great shame if the continued use 
of this text had been compromised by incompatibilities with the latest version of 
CCS.

 While thoroughly checking the fi rst edition and attempting to ensure the compat-
ibility (with CCS) and integrity of the example programs, I have taken the oppor-
tunity to develop and to add more (particularly in Chapters  2 ,  5 ,  6 , and  9 ) and to 
evolve a slightly more narrative structure (particularly in Chapters  2 ,  4 ,  5 , and  6 ). 



A small amount of material from the fi rst edition has been dropped. Due to their 
natures, Chapters  3 ,  8 , and  10  have been left very much unchanged. 

 While it contains a degree of introductory DSP theory, some details of the archi-
tecture of the C6713 and C6416 processors, an introduction to assembly language 
programming for those processors, and no little instruction on the use of Code 
Composer Studio, the emphasis of this book is on illustrating DSP concepts hands -
 on in a laboratory environment using real audio frequency signals. 

 The strength of this book lies, I believe, in the number (and utility) of program 
examples. I hope that professors and instructors will be able to pick material from 
the book in order to hold their own hands - on laboratory classes. 

 I am thankful to Robert Owen of the Texas Instruments University Program in 
Europe for support of the DSP teaching facilities at Heriot - Watt University and 
to Cathy Wicks of the Texas Instruments University Program in North America for 
the initial suggestion of updating the book and for her continued support. Walter 
J. Gomes III (Jay) and I mapped out the update to this book before he passed away 
last year. The thought of his enthusiasm for the project has been a constant 
motivation.

 I thank my colleague at Heriot - Watt University, Dr. Keith Brown, for his help in 
testing program examples and for his suggestions. But above all, I thank Rulph for 
inspiring me to get involved in teaching hands - on DSP.  

   D onald  R eay
  Heriot - Watt University  

  Edinburgh, United Kingdom  
  January 2008  
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 Digital signal processors, such as the TMS320 family of processors, are used in a 
wide range of applications, such as in communications, controls, speech processing, 
and so on. They are used in cellular phones, digital cameras, high - defi nition televi-
sion (HDTV), radio, fax transmission, modems, and other devices. These devices 
have also found their way into the university classroom, where they provide an 
economical way to introduce real - time digital signal processing (DSP) to the 
student.

 Texas Instruments introduced the TM320C6x processor, based on the very - long -
 instruction - word (VLIW) architecture. This new architecture supports features that 
facilitate the development of effi cient high - level language compilers. Throughout 
the book we refer to the C/C++ language simply as C. Although TMS320C6x/assem-
bly language can produce fast code, problems with documentation and maintenance 
may exist. With the available C compiler, the programmer must  “ let the tools do the 
work. ”  After that, if the programmer is not satisfi ed, Chapters  3  and  8  and the last 
few examples in Chapter  4  can be very useful. 

 This book is intended primarily for senior undergraduate and fi rst - year graduate 
students in electrical and computer engineering and as a tutorial for the practicing 
engineer. It is written with the conviction that the principles of DSP can best be 
learned through interaction in a laboratory setting, where students can appreciate 
the concepts of DSP through real - time implementation of experiments and projects. 
The background assumed is a course in linear systems and some knowledge of C. 

 Most chapters begin with a theoretical discussion, followed by representative 
examples that provide the necessary background to perform the concluding experi-
ments. There are a total of 105 programming examples, most using C code, with a 
few in assembly and linear assembly code. A list of these examples appears on page 
xvii. A total of 22 students ’  projects are also discussed. These projects cover a wide 
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range of applications in fi ltering, spectrum analysis, modulation techniques, speech 
processing, and so on. 

 Programming examples are included throughout the text. This can be useful to 
the reader who is familiar with both DSP and C programming but who is not nec-
essarily an expert in both. Many assignments are included at the end of Chapters 
 1  –  6 . 

 This book can be used in the following ways: 

1.     For a DSP course with a laboratory component, using parts of Chapters  1  –  9 . 
If needed, the book can be supplemented with some additional theoretical 
materials, since its emphasis is on the practical aspects of DSP. It is possible 
to cover Chapter  7  on adaptive fi ltering following Chapter  4  on fi nite impulse 
response (FIR) fi ltering (since there is only one example in Chapter  7  that 
uses materials from Chapter  5 ). It is my conviction that adaptive fi ltering 
should be incorporated into an undergraduate course in DSP.  

2.     For a laboratory course using many of the examples and experiments from 
Chapters  1  –  7  and Chapter  9 . The beginning of the semester can be devoted 
to short programming examples and experiments and the remainder of the 
semester for a fi nal project. The wide range of sample projects (for both 
undergraduate and graduate students) discussed in Chapter  10  can be very 
valuable.

3.     For a senior undergraduate or fi rst - year graduate design project course using 
selected materials from Chapters  1  –  10 .  

4.     For the practicing engineer as a tutorial and reference, and for workshops and 
seminars, using selected materials throughout the book.    

 In Chapter  1  we introduce the tools through three programming examples. 
These tools include the powerful Code Composer Studio (CCS) provided with 
the TMS320C6713 DSP starter kit (DSK). It is essential to perform these examples 
before proceeding to subsequent chapters. They illustrate the capabilities of CCS 
for debugging, plotting in both the time and frequency domains, and other matters. 
Appendix H contains several programming examples using the TMS320C6416 
DSK.

 In Chapter  2  we illustrate input and output (I/O) with the AIC23 stereo codec 
on the DSK board through many programming examples. Chapter  3  covers the 
architecture and the instructions available for the TMS320C6x processor. Special 
instructions and assembler directives that are useful in DSP are discussed. Pro-
gramming examples using both assembly and linear assembly are included in this 
chapter.

 In Chapter  4  we introduce the  z - transform and discuss FIR fi lters and the effect 
of window functions on these fi lters. Chapter  5  covers infi nite impulse response 
(IIR) fi lters. Programming examples to implement real - time FIR and IIR fi lters are 
included. Appendix D illustrates MATLAB for the design of FIR and IIR fi lters. 
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 Chapter  6  covers the development of the fast Fourier transform (FFT). Program-
ming examples on FFT are included using both radix - 2 and radix - 4 FFT. In Chapter 
 7  we demonstrate the usefulness of the adaptive fi lter for a number of applications 
with least mean squares (LMS). Programming examples are included to illustrate 
the gradual cancellation of noise or system identifi cation. Students have been very 
receptive to applications in adaptive fi ltering. Chapter  8  illustrates techniques for 
code optimization. 

 In Chapter  9  we introduce DSP/BIOS and discuss a number of schemes (Visual 
C++, MATLAB, etc.) for real - time data transfer (RTDX) and communication 
between the PC and the DSK. 

 Chapter  10  discusses a total of 22 projects implemented by undergraduate and 
graduate students. They cover a wide range of DSP applications in fi ltering, spec-
trum analysis, modulation schemes, speech processing, and so on. 

 A CD is included with this book and contains all the programs discussed. See 
page xxi for a list of the folders that contain the support fi les for the examples and 
projects.

 Over the last 10 years, faculty members from over 200 institutions have taken my 
workshops on  “ DSP and Applications. ”  Many of these workshops were supported 
by grants from the National Science Foundation (NSF) and, subsequently, by Texas 
Instruments. I am thankful to NSF, Texas Instruments, and the participating faculty 
members for their encouragement and feedback. I am grateful to Dr. Donald Reay 
of Heriot - Watt University, who contributed several examples during his review of 
my previous book based on the TMS320C6711 DSK. I appreciate the many sugges-
tions made by Dr. Mounir Boukadoum of the University of Quebec, Dr. Subrama-
niam Ganesan from Oakland University, and Dr. David Kozel from Purdue 
University at Calumet. I also thank Dr. Darrell Horning of the University of New 
Haven, with whom I coauthored my fi rst book,  Digital Signal Processing with the 
TMS320C25 , for introducing me to  “ book writing. ”  I thank all the students at Roger 
Williams University, the University of Massachusetts at Dartmouth, and Worcester 
Polytechnic Institute (WPI) who have taken my real - time DSP and senior design 
project courses, based on the TMS320 processors, over the last 20 years. The contri-
bution of Aghogho Obi, from WPI, is very much appreciated. 

 The continued support of many people from Texas Instruments is also very much 
appreciated: Cathy Wicks and Christina Peterson, in particular, have been very sup-
portive of this book. 

 Special appreciation: The laboratory assistance of Walter J. Gomes III in several 
workshops and during the development of many examples has been invaluable. His 
contribution is appreciated.  

   R ulph  C hassaing
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DSP Development System 

1

 •      Installing and testing Code Composer Studio Version 3.1  
 •      Use of the TMS320C6713 or TMS320C6416 DSK  
 •      Programming examples    

 This chapter describes how to install and test Texas Instruments ’  integrated develop-
ment environment (IDE), Code Composer Studio (CCS), for either the TMS320C6713 
or the TMS320C6416 Digital Signal Processing Starter Kit (DSK). Three example 
programs that demonstrate hardware and software features of the DSK   and CCS 
are presented. It is recommended strongly that you review these examples before 
proceeding to subsequent chapters. The detailed instructions contained in this 
chapter are specifi c to CCS Version 3.1.  

1.1 INTRODUCTION

 The Texas Instruments TMS320C6713 and TMS320C6416 Digital Signal Processing 
Starter Kits are low cost development platforms for real - time digital signal pro-
cessing applications. Each comprises a small circuit board containing either a 
TMS320C6713 fl oating - point digital signal processor or a TMS320C6416 fi xed - point 
digital signal processor and a TLV320AIC23 analog interface circuit (codec) and 
connects to a host PC via a USB port. PC software in the form of Code Composer 
Studio (CCS) is provided in order to enable software written in C or assembly 
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language to be compiled and/or assembled, linked, and downloaded to run on the 
DSK. Details of the TMS320C6713, TMS320C6416, TLV320AIC23, DSK, and CCS 
can be found in their associated datasheets  [36 – 38] . The purpose of this chapter is 
to introduce the installation and use of either DSK. 

 A digital signal processor (DSP) is a specialized form of microprocessor. The 
architecture and instruction set of a DSP are optimized for real - time digital signal 
processing. Typical optimizations include hardware multiply - accumulate (MAC) 
provision, hardware circular and bit - reversed addressing capabilities (for effi cient 
implementation of data buffers and fast Fourier transform computation), and 
Harvard architecture (independent program and data memory systems). In many 
cases, DSPs resemble microcontrollers insofar as they provide single chip computer 
solutions incorporating onboard volatile and nonvolatile memory and a range of 
peripheral interfaces and have a small footprint, making them ideal for embedded 
applications. In addition, DSPs tend to have low power consumption requirements. 
This attribute has been extremely important in establishing the use of DSPs in cel-
lular handsets. As may be apparent from the foregoing, the distinctions between 
DSPs and other, more general purpose, microprocessors are blurred. No strict defi -
nition of a DSP exists. Semiconductor manufacturers bestow the name DSP on 
products exhibiting some, but not necessarily all, of the above characteristics as they 
see fi t. 

 The C6x notation is used to designate a member of the Texas Instruments (TI) 
TMS320C6000 family of digital signal processors. The architecture of the C6x digital 
signal processor is very well suited to numerically intensive calculations. Based on 
a very - long - instruction - word (VLIW) architecture, the C6x is considered to be TI ’ s 
most powerful processor family. 

 Digital signal processors are used for a wide range of applications, from com-
munications and control to speech and image processing. They are found in cellular 
phones, fax/modems, disk drives, radios, printers, hearing aids, MP3 players, HDTV, 
digital cameras, and so on. Specialized (particularly in terms of their onboard 
peripherals) DSPs are used in electric motor drives and a range of associated 
automotive and industrial applications. Overall, DSPs are concerned primarily with 
real - time signal processing. Real - time processing means that the processing must 
keep pace with some external event; whereas nonreal - time processing has no 
such timing constraint. The external event to keep pace with is usually the analog 
input. While analog - based systems with discrete electronic components including 
resistors and capacitors are sensitive to temperature changes, DSP - based systems 
are less affected by environmental conditions such as temperature. DSPs enjoy 
the major advantages of microprocessors. They are easy to use, fl exible, and 
economical.

 A number of books and articles have been published that address the importance 
of digital signal processors for a number of applications  [1 – 22] . Various technologies 
have been used for real - time processing, from fi ber optics for very high frequency 
applications to DSPs suitable for the audio frequency range. Common applications 
using these processors have been for frequencies from 0 to 96   kHz. It is standard 



within telecommunications systems to sample speech at 8   kHz (one sample every 
0.125   ms). Audio systems commonly use sample rates of 44.1   kHz (compact disk) or 
48   kHz. Analog/digital (A/D) - based data - logging boards in the megahertz sampling 
rate range are currently available.  

1.2 DSK SUPPORT TOOLS 

 Most of the work presented in this book involves the development and testing of 
short programs to demonstrate DSP concepts. To perform the experiments described 
in the book, the following tools are used: 

1.      A Texas Instruments DSP starter kit (DSK) .   The DSK package includes:  

     (a)     Code Composer Studio (CCS), which provides the necessary software 
support tools. CCS provides an integrated development environment 
(IDE), bringing together the C compiler, assembler, linker, debugger, and 
so on.  

(b)     A circuit board (the TMS320C6713 DSK is shown in Figure  1.1 ) contain-
ing a digital signal processor and a 16 - bit stereo codec for analog signal 
input and output.  

     (c)     A universal synchronous bus (USB) cable that connects the DSK board 
to a PC.  

(d)     A +5   V universal power supply for the DSK board.    

2.      A PC .   The DSK board connects to the USB port of the PC through the USB 
cable included with the DSK package.  

3.      An oscilloscope, spectrum analyzer, signal generator, headphones, microphone, 
and speakers .   The experiments presented in subsequent chapters of this 
book are intended to demonstrate digital signal processing concepts in real -
 time, using audio frequency analog input and output signals. In order to 
appreciate those concepts and to get the greatest benefi t from the experi-
ments, some forms of signal source and sink are required. As a bare minimum, 
a microphone and either headphones or speakers are required. A far greater 
benefi t will be acquired if a signal generator is used to generate sinusoidal, 
and other, test signals and an oscilloscope and spectrum analyzer are used to 
display, measure, and analyze input and output signals. Many modern digital 
oscilloscopes incorporate FFT functions, allowing the frequency content of 
signals to be displayed. Alternatively, a number of software packages that 
use a PC equipped with a soundcard to implement virtual instruments are 
available.      

 All the fi les and programs listed and discussed in this book (apart from some 
of the student project fi les in Chapter  10 ) are included on the accompanying CD. 
A list of all the examples is given on pages xxi – xxvi. 
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1.2.1 C6713 and C6416 DSK Boards 

 The DSK packages are powerful, yet relatively inexpensive, with the necessary 
hardware and software support tools for real - time signal processing  [23 – 43] . They 
are complete DSP systems. The DSK boards, which measure approximately 5   ×    8 
inches, include either a 225 - MHz C6713 fl oating - point digital signal processor or 
a 1 - GHz C6416 fi xed - point digital signal processor and a 16 - bit stereo codec 
TLV320AIC23 (AIC23) for analog input and output. 

 The onboard codec AIC23  [38]  uses sigma – delta technology that provides analog -
 to - digital conversion (ADC) and digital - to - analog conversion (DAC) functions. It 
uses a 12 - MHz system clock and its sampling rate can be selected from a range of 
alternative settings from 8 to 96   kHz. 

 A daughter card expansion facility is also provided on the DSK boards. 
Two 80 - pin connectors provide for external peripheral and external memory 
interfaces.

 The DSK boards each include 16   MB (megabytes) of synchronous dynamic RAM 
(SDRAM) and 512   kB (kilobytes) of fl ash memory. Four connectors on the boards 
provide analog input and output: MIC IN for microphone input, LINE IN for line 
input, LINE OUT for line output, and HEADPHONE for a headphone output 
(multiplexed with line output). The status of four user DIP switches on the DSK 
board can be read from within a program running on the DSP and provide the user 
with a feedback control interface. The states of four LEDs on the DSK board can 
be controlled from within a program running on the DSP. Also onboard the DSKs 
are voltage regulators that provide 1.26   V for the DSP cores and 3.3   V for their 
memory and peripherals.  

1.2.2 TMS320C6713 Digital Signal Processor 

 The TMS320C6713 (C6713) is based on the very - long - instruction - word (VLIW) 
architecture, which is very well suited for numerically intensive algorithms. The 
internal program memory is structured so that a total of eight instructions can be 
fetched every cycle. For example, with a clock rate of 225   MHz, the C6713 is capable 
of fetching eight 32 - bit instructions every 1/(225   MHz) or 4.44   ns. 

 Features of the C6713 include 264   kB of internal memory (8   kB as L1P and L1D 
Cache and 256   kB as L2 memory shared between program and data space), eight 
functional or execution units composed of six ALUs and two multiplier units, a 32 -
 bit address bus to address 4   GB (gigabytes), and two sets of 32 - bit general - purpose 
registers.

 The C67xx processors (such as the C6701, C6711, and C6713) belong to the family 
of the C6x fl oating - point processors; whereas the C62xx and C64xx belong to the 
family of the C6x fi xed - point processors. The C6713 is capable of both fi xed -  and 
fl oating - point processing. The architecture and instruction set of the C6713 are dis-
cussed in Chapter  3 .  



  1.2.3    TMS 320 C 6416 Digital Signal Processor 

 The TMS320C6416 (C6416) is based on the VELOCITI advanced very - long - 
instruction - word (VLIW) architecture, which is very well suited for numerically 
intensive algorithms. The internal program memory is structured so that a total of 
eight instructions can be fetched every cycle. For example, with a clock rate of 1   GHz, 
the C6416 is capable of fetching eight 32 - bit instructions every 1/(1   GHz) or 1.0   ns. 

(a)

(b)

    FIGURE 1.1.     TMS3206713 - based DSK board: (a) board and (b) block diagram. 
( Courtesy of Texas Instruments .)  
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 Features of the C6416 include 1056   kB of internal memory (32   kB as L1P and 
L1D cache and 1024   kB as L2 memory shared between program and data space), 
eight functional or execution units composed of six ALUs and two multiplier units, 
a 32 - bit address bus to address 4   GB (gigabytes), and two sets of 32 - bit general -
 purpose registers.   

1.3 CODE COMPOSER STUDIO 

 Code Composer Studio (CCS) provides an integrated development environment 
(IDE) for real - time digital signal processing applications based on the C program-
ming language. It incorporates a C compiler, an assembler, and a linker. It has 
graphical capabilities and supports real - time debugging. 

 The C compiler compiles a C source program with extension  .c  to produce an 
assembly source fi le with extension  .asm . The assembler assembles an  .asm  source 
fi le to produce a machine language object fi le with extension  .obj . The linker com-
bines object fi les and object libraries as input to produce an executable fi le with 
extension .out . This executable fi le represents a linked common object fi le format 
(COFF), popular in Unix - based systems and adopted by several makers of digital 
signal processors  [44] . This executable fi le can be loaded and run directly on the 
digital signal processor. Chapter  3  introduces the linear assembly source fi le with 
extension .sa , which is a  “ cross ”  between C and assembly code. A linear optimizer 
optimizes this source fi le to create an assembly fi le with extension  .asm  (similar to 
the task of the C compiler). 

 A Code Composer Studio project comprises all of the fi les (or links to all of the 
fi les) required in order to generate an executable fi le. A variety of options enabling 
fi les of different types to be added to or removed from a project are provided. In 
addition, a Code Composer Studio project contains information about exactly how 
fi les are to be used in order to generate an executable fi le. Compiler/linker options 
can be specifi ed. A number of debugging features are available, including setting 
breakpoints and watching variables, viewing memory, registers, and mixed C and 
assembly code, graphing results, and monitoring execution time. One can step 
through a program in different ways (step into, or over, or out). 

 Real - time analysis can be performed using CCS ’ s real - time data exchange 
(RTDX) facility. This allows for data exchange between the host PC and the target 
DSK as well as analysis in real - time without halting the target. The use of RTDX 
is illustrated in Chapter  9 . 

1.3.1 CCS Version 3.1 Installation and Support 

 Instructions for installation of CCS Version 3.1 are supplied with the DSKs. The 
default location for CCS fi les is  c:\CCStudio_v3.1  and the following instructions 
assume that that you have used this default. An icon with the label 6713 DSK 
CCStudio v3.1  (or  6416 DSK CCStudio v3.1 ) should appear on the desktop. 



 CCS Version 3.1 provides extensive help facilities and a number of examples 
and tutorials are included with the DSK package. Further information (e.g., 
data sheets and application notes) are available on the Texas Instruments website 
http://www.ti.com.

1.3.2 Installation of Files Supplied with This Book 

 The great majority of the examples described in this book will run on either the 
C6713 or the C6416 DSK. However, there are differences, particularly concerning 
the library fi les used by the different processors, and for that reason a complete set 
of fi les is provided on the CD for each DSK. Depending on whether you are using 
a C6713 or a C6416 DSK, copy all of the subfolders, and their contents, supplied 
on the CD accompanying this book in folders C6416 or C6713 into the folder 
c:\CCStudio_v3.1\MyProjects  so that, for example, the source fi le  sine8_LED.c
will be located at c:\CCStudio_v3.1\MyProjects\sine8_LED\sine8_LED.c.

 Change the properties of all the fi les copied so that they are not read - only (all 
the folders can be highlighted to change the properties of their contents at once).  

1.3.3 File Types 

 You will be working with a number of fi les with different extensions. They include: 

   1.      file.pjt :   to create and build a project named fi le.  

   2.      file.c :   C source program.  

   3.      file.asm :   assembly source program created by the user, by the C compiler, 
or by the linear optimizer.  

   4.      file.sa :   linear assembly source program. The linear optimizer uses  file.sa
as input to produce an assembly program file.asm .  

   5.      file.h :   header support fi le.  

   6.      file.lib :   library fi le, such as the run - time support library fi le  rts6700.lib .  

   7.      file.cmd :   linker command fi le that maps sections to memory.  

   8.      file.obj :   object fi le created by the assembler.  

   9.      file.out :   executable fi le created by the linker to be loaded and run on the 
C6713 or C6416 processor.  

10.      file.cdb :   confi guration fi le when using DSP/BIOS.      

1.4 QUICK TESTS OF THE DSK ( ON POWER ON AND USING CCS)

1.     On power on, a power on self - test (POST) program, stored by default in the 
onboard fl ash memory, uses routines from the board support library (BSL) to 
test the DSK. The source fi le for this program,  post.c , is stored in folder 

 Quick Tests of the DSK (On Power On and Using CCS)  7
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 c: \ CCStudio_v3.1 \ examples \ dsk6713 \ bsl \ post . It tests the internal, exter-
nal, and fl ash memory, the two multichannel buffered serial ports (McBSP), 
DMA, the onboard codec, and the LEDs. If all tests are successful, all four 
LEDs blink three times and stop (with all LEDs on). During the testing of 
the codec, a 1 - kHz tone is generated for 1 second.  

  2.     Launch CCS from the icon on the desktop. A USB enumeration process will 
take place and the Code Composer Studio window will open.  

  3.     Click on  Debug → Connect  and you should see the message  “ The target is now 
connected ”  appear (for a few seconds) in the bottom left - hand corner of the 
CCS window.  

  4.     Click on  GEL → Check DSK → QuickTest . The Quick Test can be used for 
confi rmation of correct operation and installation. A message of the following 
form should then be displayed in a new window within CCS:

    Switches Board Revision CPLD Revision: : :15 2 2     

 The value displayed following the label Switches refl ects the state of the four 
DIP switches on the edge of the DSK circuit board. A value of 15 corresponds to 
all four switches in the up position. Change the switches to (1110) 2 , that is, the fi rst 
three switches (0,1,2) up and the fourth switch (3) down. Click again on  GEL →
 Check DSK → QuickTest  and verify that the value displayed is now 7 ( “ Switches: 7 ” ). 
You can set the value represented by the four user switches from 0 to 15. Programs 
running on the DSK can test the state of the DIP switches and react accordingly. 
The values displayed following the labels Board Revision and CPLD Revision 
depend on the type and revision of the DSK circuit board. 

     Alternative Quick Test of  DSK  Using Code Supplied with This Book 
    1.     Open/launch CCS from the icon on the desktop if not done already.  

  2.     Select  Debug → Connect  and check that the symbol in the bottom left - hand 
corner of the CCS window indicates connection to the DSK.  

  3.     Select  File → Load Program  and load the fi le  c: \ CCStudio_v3.1 \ MyProjects \
 sine8_LED \ Debug \  sine8_LED.out  . This loads the executable fi le   sine8_
LED.out   into the digital signal processor. (This assumes that you have 
already copied all the folders on the accompanying CD into the folder: 
 c: \ CCStudio_v3.1 \ MyProjects .)  

  4.     Select  Debug → Run .    

  Check that the DSP is running. The word RUNNING should be displayed in the 
bottom left - hand corner of the CCS window.  

 Press DIP switch #0 down. LED #0 should light and a 1 - kHz tone should be 
generated by the codec. Connect the LINE OUT (or the HEADPHONE) socket 
on the DSK board to a speaker, an oscilloscope, or headphones and verify the gen-
eration of the 1 - kHz tone. The four connectors on the DSK board for input and 
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output (MIC, LINE IN, LINE OUT, and HEADPHONE) each use a 3.5 - mm jack 
audio cable. halt execution of program  sine8_LED.out  by selecting  Debug → Halt .    

  1.5   PROGRAMMING EXAMPLES TO TEST THE  DSK  TOOLS 

 Three programming examples are introduced to illustrate some of the features of 
CCS and the DSK board. The aim of these examples is to enable the reader to 
become familiar with both the software and hardware tools that will be used 
throughout this book. It is strongly suggested that you complete these three exam-
ples before proceeding to subsequent chapters. The examples will be described 
assuming that a C6713 DSK is being used. 

     Example 1.1:   Sine Wave Generation Using Eight Points with  DIP  Switch 
Control ( sine8_LED ) 

 This example generates a sinusoidal analog output waveform using a table - lookup 
method. More importantly, it illustrates some of the features of CCS for editing 
source fi les, building a project, accessing the code generation tools, and running a 
program on the C6713 processor. The C source fi le   sine8_LED.c   listed in Figure 
 1.2  is included in the folder   sine8_LED  .    

  Program Description 
 The operation of program   sine8_LED.c   is as follows. An array,  sine_table , of 
eight 16 - bit signed integers is declared and initialized to contain eight samples of 
exactly one cycle of a sinusoid. The value of  sine_table[i]  is equal to

    1000 2 8 1sin for , 2, 3, . . . , 7( / )πi i =  

Within function   main()  , calls to functions   comm_poll()  ,   DSK6713_LED_init()  , 
and   DSK6713_DIP_init()   initialize the DSK, the AIC23 codec onboard the DSK, 
and the two multichannel buffered serial ports (McBSPs) on the C6713 processor. 
Function   comm_poll()   is defi ned in the fi le   c6713dskinit.c  , and functions 
  DSK6713_LED_init()   and   DSK6713_DIP_init()   are supplied in the board support 
library (BSL) fi le  dsk6713bsl.lib . 

 The program statement  while(1)  within the function   main()   creates an infi nite 
loop. Within that loop, the state of DIP switch #0 is tested and if it is pressed down, 
LED #0 is switched on and a sample from the lookup table is output. If DIP switch 
#0 is not pressed down then LED #0 is switched off. As long as DIP switch #0 is 
pressed down, sample values read from the array  sine_table  will be output and 
a sinusoidal analog output waveform will be generated via the left - hand channel 
of the AIC23 codec and the LINE OUT and HEADPHONE sockets. Each time 
a sample value is read from the array  sine_table , multiplied by the value of 
the variable  gain , and written to the codec, the index,  loopindex , into the array 
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//sine8_LED.c  sine generation with DIP switch control

#include "dsk6713_aic23.h"             //codec support
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#define LOOPLENGTH 8
short loopindex = 0;                   //table index
short gain = 10;                       //gain factor
short sine_table[LOOPLENGTH]=
  {0,707,1000,707,0,-707,-1000,-707};  //sine values

void main()
{
  comm_poll();                         //init DSK,codec,McBSP
  DSK6713_LED_init();                  //init LED from BSL
  DSK6713_DIP_init();                  //init DIP from BSL
  while(1)                             //infinite loop
  {
    if(DSK6713_DIP_get(0)==0)          //if DIP #0 pressed
    {
      DSK6713_LED_on();                //turn LED #0 ON
      output_left_sample(sine_table[loopindex++]*gain); //output
      if (loopindex >= LOOPLENGTH) loopindex = 0; //reset index
    }
    else DSK6713_LED_off(0);           //else turn LED #0 OFF
  }                                    //end of while(1)
}                                      //end of main 

    FIGURE 1.2.     Sine wave generation program using eight points with DIP switch control 
( sine8_LED.c ).  

is incremented and when its value exceeds the allowable range for the array 
( LOOPLENGTH - 1 ), it is reset to zero. 

 Each time the function  output_left_sample() , defi ned in source fi le 
  C6713dskinit.c  , is called to output a sample value, it waits until the codec, initial-
ized by the function  comm_poll()  to output samples at a rate of 8   kHz, is ready for 
the next sample. In this way, once DIP switch #0 has been pressed down it will be 
tested at a rate of 8   kHz. The sampling rate at which the codec operates is set by 
the program statement

 Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;  

 One cycle of the sinusoidal analog output waveform corresponds to eight output 
samples and hence the frequency of the sinusoidal analog output waveform is equal 
to the codec sampling rate (8   kHz) divided by eight, that is, 1   kHz.  
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Creating a Project 
 This section illustrates how to create a project, adding the necessary fi les to generate 
an executable fi le  sine8_LED.out . As supplied on the CD, folder  sine8_LED  con-
tains a suitable project fi le named  sine8_LED.pjt . However, for the purposes of 
gaining familiarity with CCS, this section will illustrate how to create that project 
fi le from scratch. 

   1.      Delete the existing project fi le   sine8_LED.pjt  in folder  c:\CCStudio_v3.1\
myprojects\sine8_LED . Do this from outside CCS. Remember, a copy of 
the fi le  sine8_LED.pjt  still exists on the CD.  

   2.      Launch CCS  by double - clicking on its desktop icon.  

   3.      Create a new project fi le   sine8_LED.pjt  by selecting  Project→ New
and typing sine8_LED  as the project name, as shown in Figure  1.3 .  Set   Target
to   TMS320C67XX before clicking on  Finish . The new project fi le will be 
saved in the folder c:\CCStudio_v3.1\myprojects\sine8_LED . The  .pjt
fi le stores project information on build options, source fi lenames, and 
dependencies. The names of the fi les used by a project are displayed in the 
Project View  window, which, by default, appears at the left - hand side of the 
Code Composer window.    

   4.      Add the source fi le   sine8_LED.c   to the project.   sine8_LED.c  is the top level 
C source fi le containing the defi nition of function  main() . This source fi le is 
stored in the folder sine8_LED  and must be added to the project if it is to 
be used to generate the executable fi le  sine8_LED.out . Select  Project→ Add 
Files to Project  and look for  Files of Type C Source Files ( * .c,  * .ccc). Open , 

FIGURE 1.3.     CCS  Project Creation  window for project  sine8_LED .  
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or double - click on,  sine8_LED.c . It should appear in the  Project View  window 
in the Source  folder.  

   5.      Add the source fi le   c6713dskinit.c   to the project.   c6713dskinit.c  con-
tains the function defi nitions for a number of low level routines including 
comm._poll()  and  output_left_sample() . This source fi le is stored in the 
folder c:\CCStudio_v3.1\myprojects\Support . Select  Project→ Add Files 
to Project  and look for  Files of Type C Source Files ( * .c,  * .ccc). Open , or 
double - click on,  c6713dskinit.c . It should appear in the  Project View
window in the Source  folder.  

   6.      Add the source fi le   vectors__poll.asm   to the project.   vectors_poll.asm
contains the interrupt service table for the C6713. This source fi le is stored 
in the folder c:\CCStudio_v3.1\myprojects\Support . Select  Project→ Add 
Files to Project  and look for  Files of Type ASM Source Files ( * .a * ). Open , or 
double - click on,  vectors_poll.asm . It should appear in the  Project View
window in the Source  folder.  

   7.      Add library support fi les   rts6700.lib,   dsk6713bsl.lib, and   csl6713.lib
to the project.  Three more times, select  Project→ Add Files to Project  and 
look for Files of Type Object and Library Files ( * .o * ,  * .l * )  The three library 
fi les are stored in folders  c:\CCStudio_v3.1\c6000\cgtools\lib ,  c:\
CCStudio_v3.1\c6000\dsk6713\lib , and  c:\CCStudio_v3.1\c6000\csl\
lib , respectively. These are the run - time support (for C67x architecture), 
board support (for C6713 DSK), and chip support (for C6713 processor) 
library fi les.  

   8.      Add the linker command fi le   c6713dsk.cmd   to the project.  This fi le is stored 
in the folder c:\CCStudio_v3.1\myprojects\Support . Select  Project→ Add 
Files to Project  and look for  Files of Type Linker Command File ( * .cmd; * .
lcf) . Open, or double - click on,  c6713dsk.cmd . It should then appear in the 
Project View  window.  

   9.     No header fi les will be shown in the  Project View  window at this stage. Select-
ing Project→ Scan All File Dependencies  will rectify this. You should now be 
able to see header fi les  c6713dskinit.h ,  dsk6713.h , and  dsk6713_aic23.
h , in the  Project View  window.  

10.      The Project View  window in CCS should look as shown in Figure    1.4.  The 
GEL fi le  dsk6713.gel  is added automatically when you create the project. 
It initializes the C6713 DSK invoking the board support library to use the 
PLL to set the CPU clock to 225   MHz (otherwise the C6713 runs at 50   MHz 
by default). Any of the fi les (except the library fi les) listed in the  Project
View  window can be displayed (and edited) by double - clicking on their 
name in the Project View  window. You should not add header or include fi les 
to the project. They are added to the project automatically when you select 
Scan All File Dependencies . (They are also added when you build the 
project.)      
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 Verify from the  Project View  window that the project ( .pjt ) fi le, the linker 
command ( .cmd ) fi le, the three library ( .lib ) fi les, the two C source ( .c ) fi les, and 
the assembly ( .asm ) fi le have been added to the project.  

Code Generation and Build Options 
 The code generation tools underlying CCS, that is, C compiler, assembler, and linker, 
have a number of options associated with each of them. These options must be set 
appropriately before attempting to build a project. Once set, these options will be 
stored in the project fi le. 

Setting Compiler Options 
 Select  Project→ Build Options  and click on the  Compiler  tab. Set the following 
options, as shown in Figures  1.5 ,  1.6 , and  1.7 . In the  Basic  category set  Target Version
to C671x ( - mv6710) . In the  Advanced  category set  Memory Models  to  Far ( – mem_

FIGURE 1.4.      Project View  window showing fi les added at step 10. 



FIGURE 1.5.     CCS Build Options: Basic compiler settings.  

FIGURE 1.6.     CCS Build Options: Advanced compiler settings.    

14
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FIGURE 1.7.     CCS Build Options: Preprocessor compiler settings.    

model:data=far) . In the  Preprocessor  category set  Pre - Defi ne Symbol  to  CHIP_6713
and Include Search Path  to  c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . Compiler 
options are described in more detail in Ref.  28 . Click on  OK .        

Setting Linker Options 
 Click on the  Linker     tab in the  Build Options  window, as shown in Figure  1.8 . The 
Output Filename  should default to  .\ Debug \ sine8_LED.out  based on the name of 
the project fi le and the  Autoinit Model  should default to  Run - Time Autoinitializa-
tion . Set the following options (all in the  Basic  category). Set  Library Search Path
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib  and set  Include Libraries  to  rts6700.lib;
dsk6713bsl.lib;csl6713.lib . The map fi le can provide useful information for debug-
ging (memory locations of functions, etc.). The –c  option is used to initialize vari-
ables at run time, and the –o  option is to name the linked executable output fi le 
sine8_LED.out . Click on  OK .     

Building, Downloading, and Running the Project 
 The project  sine8_LED  can now be built, and the executable fi le  sine8_LED.out
can be downloaded to the DSK and run. 
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FIGURE 1.8.     CCS Build Options: Basic Linker settings.    

1.     Build this project as  sine8_LED . Select  Project→ Rebuild All . Or press the 
toolbar button with the three downward arrows. This compiles and assembles 
all the C fi les using  cl6x  and assembles the assembly fi le  vectors_poll.asm
using asm6x . The resulting object fi les are then linked with the library fi les 
using lnk6x . This creates an executable fi le  sine8_LED.out  that can be loaded 
into the C6713 processor and run. Note that the commands for compiling, 
assembling, and linking are performed with the Build option. A log fi le  cc_
build_Debug.log  is created that shows the fi les that are compiled and assem-
bled, along with the compiler options selected. It also lists the support functions 
that are used. The building process causes all the dependent fi les to be included 
(in case one forgets to scan for all the fi le dependencies). You should see a 
number of diagnostic messages, culminating in the message  “ Build Complete, 
0 Errors, 0 Warnings, 0 Remarks ”  appear in an output window in the bottom 
left - hand side of the CCS window. It is possible that a warning about the Stack 
Size will have appeared. This can be ignored or can be suppressed by uncheck-
ing the Warn About Output Sections  option in the  Advanced  category of 
Linker Build Options . Alternatively, it can be eliminated by setting the  Stack
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Size  option in the  Advanced  category of  Linker Build Options  to a suitable 
value (e.g., 0x1000 ).  

Connect to the DSK . Select  Debug→ Connect  and check that the symbol in 
the bottom left - hand corner of the CCS window indicates connection to the 
DSK.

2.     Select  File→ Load Program  in order to load  sine8_LED.out . It should be 
stored in the folder c:\CCStudio_v3.1\MyProjects\sine8_LED\Debug . Select 
Debug→ Run . In order to verify that a sinusoidal output waveform with a fre-
quency of 1   kHz is present at both the LINE OUT and HEADPHONE 
sockets on the DSK, when DIP switch #0 is pressed down, use an oscilloscope 
connected to the LINE OUT socket and a pair of headphones connected to 
the HEADPHONE socket.     

Editing Source Files Within CCS
 Carry out the following actions in order to practice editing source fi les. 

1.     Halt execution of the program (if it is running) by selecting  Debug→ Halt .  

2.     Double - click on the fi le  sine8_LED.c  in the  Project View  window. This should 
open a new window in CCS within which the source fi le is displayed and may 
be edited.  

3.     Delete the semicolon in the program statement

short gain = 10; 

4.     Select  Debug→ Build  to perform an incremental build or use the toolbar 
button with the two (not three) downward arrows. The incremental build is 
chosen so that only the C source fi le  sine8_LED.c  is compiled. Using the 
Rebuild option (the toolbar button with three downward arrows), fi les com-
piled and/or assembled previously would again go through this unnecessary 
process.

5.   Two error messages, highlighted in red, stating

“Sine8_LED.c”, Line 11: error: expected a “;”
“Sine8_LED.c”, Line 23: error: identifier “sine_table” is 
undefined

should appear in the Build  window of CCS (lower left). You may need to 
scroll - up the  Build  window for a better display of these error messages. 
Double - click on the fi rst highlighted error message line. This should bring the 
cursor to the section of code where the error occurs. Make the appropriate 
correction (i.e. replace the semicolon) Build  again,  Load , and  Run  the program 
and verify your previous results.     
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  Monitoring the Watch Window 
 Ensure that the processor is still running (and that DIP switch #0 is pressed down). 
Note the message  “ RUNNING ”  displayed at the bottom left of CCS. The  Watch  
window allows you to change the value of a parameter or to monitor a variable: 

  1.     Select  View → Quick Watch . Type  gain , then click on  Add to Watch . The gain 
value of 10 set in the program in Figure  1.2  should appear in the Watch 
window.  

  2.     Change   gain   from 10 to 30 in the  Watch  window. Press enter. Verify that the 
amplitude of the generated tone has increased (with the processor still running 
and DIP switch #0 pressed down). The amplitude of the sine wave should have 
increased from approximately 0.9   V p - p to approximately 2.5   V p - p.     

  Using a  GEL  Slider to Control the Gain 
 The General Extension Language (GEL) is an interpreted language similar to (a 
subset of) C. It allows you to change the value of a variable (e.g., gain) while the 
processor is running. 

  1.     Select  File → Load GEL  and load the fi le  gain.gel  (in folder  sine8_LED ). 
Double - click on the fi lename   gain.gel   in the  Project View  window to 
view it within CCS. The fi le is listed in Figure  1.9 . The format of a slider GEL 
function is

 slider param_defi nition( minVal, maxVal, increment, 
pageIncrement, paramName )
{
 statements
} 

where  param_defi nition  identifi es the slider and is displayed as the name of 
the slider window,  minVal  is the value assigned to the GEL variable  param-
Name  when the slider is at its lowest level,  maxVal  is the value assigned to the 

/*gain.gel GEL slider to vary amplitude of sine wave*/
/*generated by program sine8_LED.c*/

menuitem "Sine Gain"

slider Gain(0,30,4,1,gain_parameter) /*incr by 4, up to 30*/
{
  gain = gain_parameter;             /*vary gain of sine*/
}     

    FIGURE 1.9.     Listing of GEL fi le  gain.gel .  
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GEL variable paramName  when the slider is at its highest level, increment 
specifi es the incremental change to the value of the GEL variable  paramName
made using the up -  or down - arrow keys, and  pageIncrement  specifi es the 
incremental change to the value of the GEL variable paramName  made by 
clicking in the slider window.  

  In the case of  gain.gel , the statement

gain = gain_parameter; 

assigns the value of the GEL variable gain_parameter  to the variable  gain
in program sine8_LED . The line

menuitem “Sine Gain ”

sets the text that will appear as an option in the CCS GEL  menu when 
gain.gel  is loaded.  

2.     Select  GEL→ Sine Gain → Gain . This should bring out the slider   window shown 
in Figure  1.10 , with the minimum value of 0 set for the gain.  

3.     Press the up - arrow key three times to increase the gain value from 0 to 12. 
Verify that the peak - to - peak value of the sine wave generated is approxi-
mately 1.05   V. Press the up - arrow key again to continue increasing the slider, 
incrementing by 4 each time. The amplitude of the sine wave should be 
about 2.5   V p - p with the value of  gain  set to 30. Clicking in the  Gain  slider   
window above or below the current position of the slider will increment or 
decrement its value by 1. The slider can also be dragged up and down. 
Changes to the value of gain  made using the slider are refl ected in the 
Watch  window.        

 Figure  1.11  shows several windows within CCS for the project  sine8_LED .    

FIGURE 1.10.     GEL slider used to vary gain in program  sine8_LED.c .  
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Changing the Frequency of the Generated Sinusoid 
 There are several different ways in which the frequency of the sinusoid generated 
by program sine8_LED.c  can be altered. 

1.     Change the AIC23 codec sampling frequency from 8   kHz to 16   kHz by chang-
ing the line that reads

Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; 

to read

Uint32 fs = DSK6713_AIC23_FREQ_16KHZ; 

Rebuild (use incremental build) the project, load and run the new executable 
fi le, and verify that the frequency of the generated sinusoid is 2   kHz. The 

FIGURE 1.11.     CCS windows for project  sin8_LED , including  Watch    window and GEL 
slider.
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sampling frequencies supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48, 
and 96   kHz.  

2.     Change the number of samples stored in the lookup table to four. By changing 
the lines that read

#define LOOPLENGTH 8
short sine_table[LOOPLENGTH]={0,707,1000,707,0, -707,0,-1000,
-707};

to read

#define LOOPLENGTH 4
short sine_table[LOOPLENGTH]={0,1000,0, -1000};

Verify that the frequency of the sinusoid generated is 2   kHz (assuming an 
8 - kHz sampling frequency).  

  Remember that the sinusoid is no longer generated if the DIP switch #0 is 
not pressed down. A different DIP switch can be used to control whether or 
not a sinusoid is generated by changing the value of the parameter passed to 
the functions DSK6713_DIP_get(), DSK6713_LED_on(), and DSK6713_

LED_off() . Suitable values are 0, 1, 2, and 3.    

 Two sliders can readily be used, one to change the gain and the other to 
change the frequency. A different signal frequency can be generated, by changing 
the incremental changes applied to the value of loopindex  within the C program 
(e.g., stepping through every two points in the table). When you exit CCS after you 
build a project, all changes made to the project can be saved. You can later return 
to the project with the status as you left it before. For example, when returning to 
the project, after launching CCS, select Project→ Open  to open an existing project 
such as sine8_LED.pjt  (with all the necessary fi les for the project already 
added).

Example 1.2: Generation of Sinusoid and Plotting with CCS ( sine8_buf)

 This example generates a sinusoidal analog output signal using eight precalculated 
and prestored sample values. However, it differs fundamentally from sine8_LED  in 
that its operation is based on the use of interrupts. In addition, it uses a buffer to 
store the BUFFERLENGTH    most recent output samples. It is used to illustrate the 
capabilities of CCS for plotting data in both time and frequency domains. 

 All the fi les necessary to build and run an executable fi le  sine8_BUF.out  are 
stored in folder sine8_buf . Program fi le  sine8_buf.c  is listed in Figure  1.12 . 
Because a project fi le  sine8_buf.pjt  is supplied, there is no need to create a new 
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//sine8_buf.c sine generation with output stored in buffer

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;       //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input
#define LOOPLENGTH 8
#define BUFFERLENGTH 256
int loopindex = 0;                       //table index
int bufindex = 0;                        //buffer index
short sine_table[LOOPLENGTH]={0,707,1000,707,0,-707,-1000,-707};
int out_buffer[BUFFERLENGTH];            //output buffer
short gain = 10;
interrupt void c_int11()             //interrupt service routine
  short out_sample;

  out_sample = sine_table[loopindex++]*gain;
  output_left_sample(out_sample);        //output sample value
  out_buffer[bufindex++] = out_sample;   //store in buffer
  if (loopindex >= LOOPLENGTH) loopindex = 0; //check end table
  if (bufindex >= BUFFERLENGTH) bufindex = 0; //check end buffer
  return;
}                                        //return from interrupt

void main()
{
  comm_intr();                           //initialise DSK
  while(1);                              //infinite loop
}

    FIGURE 1.12.     Listing of program  sine8_buf.c .  

project fi le, add fi les to it, or alter compiler and linker build options. In order to 
build, download and run program  sine8_buf.c . 

  1.     Close any open projects in CCS.  

  2.     Open project   sine8_buf.pjt   by selecting  Project → Open  and double - clicking 
on fi le  sine8_buf.pjt  in folder  sine8_buf . Because this program uses inter-
rupt - driven input/output rather than polling, the fi le  vectors_intr.asm  is 
used in place of  vectors_poll.asm . The interrupt service table specifi ed in 
 vectors_intr.asm  associates the interrupt service routine  c_int11()  with 
hardware interrupt INT11, which is asserted by the AIC23 codec on the DSK 
at each sampling instant.      

 Within function  main() , function  comm_intr()  is used in place of  comm_poll() . 
This function is defi ned in fi le  c6713dskinit.c  and is described in more detail in 
Chapter  2 . Essentially, it initializes the DSK hardware, including the AIC23 codec, 
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such that the codec sampling rate is set according to the value of the variable fs

and the codec interrupts the processor at every sampling instant. The statement 
while(1)  in function  main()  creates an infi nite loop, during which the processor 
waits for interrupts. On interrupt, execution proceeds to the interrupt service routine 
(ISR) c_int11() , which reads a new sample value from the array  sine_table  and 
writes it both to the array out_buffer  and to the DAC using function  output_
left_sample() . Interrupts are discussed in more detail in Chapter  3 . 

 Build this project as  sine8_buf . Load and run the executable fi le  sine8_buf.
out  and verify that a 1 - kHz sinusoid is generated at the LINE OUT and HEAD-
PHONE sockets (as in  Example 1.1 ).  

Graphical Displays in CCS
 The array  out_buffer  is used to store the  BUFFERLENGTH  most recently output 
sample values. Once program execution has been halted, the data stored in out_

buffer  can be displayed graphically in CCS. 

1.     Select  View→ Graph → Time/Frequency  and set the  Graph Property Dialog
properties as shown in Figure  1.13 a. Figure  1.13 b shows the resultant  Graphi-
cal Display  window.  

2.     Figure  1.14 a shows the  Graph Property Dialog  window that corresponds to 
the frequency domain representation of the contents of out_buffer  shown 
in Figure  1.14 b. The spike at 1   kHz represents the frequency of the sinusoid 
generated by program sine8_buf.c .         

Viewing and Saving Data from Memory into File 
 To view the contents of  out_buffer , select  View→ Memory . Specify  out_buffer  as 
the Address  and select  32 - bit Signed Integer  as the  Format , as shown in Figure  1.15 a. 
The resultant Memory  window is shown in Figure  1.15 b.   

 To save the contents of  out_buffer  to a fi le, select  File→ Data → Save . Save the 
fi le as  sine8_buf.dat , selecting data type  Integer , in the folder  sine8_buf . In the 
Storing Memory into File  window, specify  out_buffer  as the  Address  and a  Length
of 256. The resulting fi le is a text fi le and you can plot this data using other applica-
tions (e.g., MATLAB). Although the values stored in array sine_table  and passed 
to function output_left_sample()  are 16 - bit signed integers, array  out_buffer
is declared as type int  (32 - bit signed integer) in program  sine8_buf.c  to allow 
for the fact that there is no 16 - bit Signed Integer data type option in the  Save Data
facility in CCS.  

Example 1.3: Dot Product of Two Arrays ( dotp4)

 This example illustrates the use of breakpoints and single stepping within CCS. In 
addition, it illustrates the use of Code Composer ’ s  Profi le Clock  in order to estimate 
the time taken to execute a section of code. 
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(a)

(b)

    FIGURE 1.13.     (a)  Graph Property  window and (b) Time domain plot of data stored in 
 out_buffer .  

 Multiply/accumulate is a very important operation in digital signal processing. It 
is a fundamental part of digital fi ltering, correlation, and fast Fourier transform 
algorithms. Since the multiplication operation is executed so commonly and is 
essential for most digital signal processing algorithms, it is important that it executes 
in a single instruction cycle. The C6713 and C6416 processors can perform two 
multiply/accumulate operations within a single instruction cycle. 

 The C source fi le  dotp4.c , listed in Figure  1.16 , calculates the dot products of 
two arrays of integer values. The fi rst array is initialized using the four values 1, 2, 
3, and 4, and the second array using the four values 0, 2, 4, and 6. The dot product 
is (1    ×    0)   +   (2    ×    2)   +   (3    ×    4)   +   (4    ×    6)   =   40.   
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(a)

(b)

    FIGURE 1.14.     (a)  Graph Property  window and (b) Frequency domain plot of data stored 
in  out_buffer .  

 The program can readily be modifi ed to handle larger arrays. No real - time input 
or output is used in this example, and so the real - time support fi les  c6713dskinit.
c  and  vectors_intr.asm  are not needed. 

 Build this project as   dotp4   ensuring that the following fi les are included in the 
project: 

  1.      dotp4.c : C source fi le.  

  2.      6713dsk.cmd : generic linker command fi le.  

  3.      rts6700.lib : library fi le.    

 The  Project View  window should appear as shown in Figure  1.17 .    
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    FIGURE 1.15.     (a)  Memory  window settings and (b)  Memory  window view of data stored in 
 out_buffer .  

(a)

(b)

  Implementing a Variable Watch 
    1.     Select  Project → Build Options  and verify that the  Basic Compiler     settings are 

as shown in Figure  1.18 . In this example it is important to  ensure that the 
optimization is disabled  ( Opt Level None ).  

  2.     Build the project by clicking on the toolbar button with the three downward 
arrows (or select  Project → Build ). Load the executable fi le  dotp4.out .  

  3.     Select  View → Quick Watch . Type   sum   to watch the variable  sum , and click on 
 Add to Watch . The message  “ identifi er not found: sum ”  should be displayed in 
the  Watch  window. The variable  sum  is declared locally in function  dotp()  and 
until that function is called it does not exist.  

  4.     Set a breakpoint at the line of code

 sum += a[i]  *  b[i]; 

by clicking on that line in the source fi le  dotp4.c    and then either right - clicking 
and selecting  Toggle Software Breakpoint , or clicking on the  Toggle Breakpoint  
toolbar button. A red dot should appear to the left of that line of code.  
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//dotp4.c dot product of two vectors

int dotp(short *a, short *b, int ncount); //function prototype
#include <stdio.h>              //for printf
#define count 4                 //# of data in each array
short x[count] = {1,2,3,4};     //declaration of 1st array
short y[count] = {0,2,4,6};     //declaration of 2nd array

main()
{
  int result = 0;               //result sum of products

  result = dotp(x, y, count);   //call dotp function
  printf("result = %d (decimal) \n", result); //print result
}

int dotp(short *a, short *b, int ncount) //dot product function
{
  int i;
  int sum = 0;
  for (i = 0; i < ncount; i++)
    sum += a[i] * b[i];         //sum of products
  return(sum);                  //return sum as result
}

    FIGURE 1.16.     Listing of program  dotp4.c .    

    FIGURE 1.17.      Project View  window for project  dotp4 .    
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FIGURE 1.18.      Build Options  for project  dotp4 .    

5.     Select  Debug→ Run  (or use the  “ running man ”  toolbar button). The program 
will execute up to, but not including, the line of code at which the breakpoint 
has been set. A yellow arrow will appear to the left of that line of code. At 
this point, a value of 0 for the variable sum  should appear in the  Watch  window. 
sum  is a variable that is local to function  dotp() . Now that the function is 
being executed, the variable exists and its value can be displayed.  

6.     Continue program execution by selecting  Debug→ Step Into , or by using func-
tion key F11. Continue to single - step and watch the variable  sum  in the  Watch
window change in value through 0, 4, 16, and 40 (See Figure  1.19 .).  

7.     Once the value of the variable  sum   has reached 40, select  Debug→ Run  in order 
to complete execution of the program, and verify that the value returned by 
function dotp()  is displayed as

result = 40 (decimal) 

in the Stdout  window. At this point, the message  “ identifi er not found: sum ”  
should be displayed in the Watch  window again, refl ecting the fact that execu-
tion of function dotp()  has ended and that the local variable  sum  no longer 
exists.        
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 The  printf()  function is useful for debugging but its use should be avoided in 
real - time programs since it takes over 6000 instruction cycles to execute.  

Animating
1.     Select  File→ Reload Program  to reload the executable fi le  dotp4.out  (alter-

natively, select Debug→ Restart ). After the executable fi le is loaded, or follow-
ing restart, the program counter is set to the address labeled c_int00 . This 
can be verifi ed by looking at the  Disassembly  window.  

2.     The breakpoint set previously should still be set at the same line of code as 
before. Select Debug→ Animate  and watch the value of the variable  sum  dis-
played in the Watch  window change. The speed of animation can be controlled 
by selecting Option→ Customize → Animate Speed  (by default, the maximum 
speed setting of 0 seconds is set).     

Estimating Execution Time for Function dotp() Using the Profi le Clock 
 The time taken to execute function  dotp()  can be estimated using Code 
Composer ’ s  Profi le Clock . 

FIGURE 1.19.     Various windows associated with program  dotp4.c .      
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1.     Open project  dotp4.pjt .  

2.     Select  Project→ Build Options . In the  Compiler  tab in the  Basic  category set 
the Opt Level  to  none .  

3.     Select  Project→ Build  and then  File→ Load Program  in order to create and 
load fi le  dotp4.out .  

4.     Open source fi le  dotp4.c    and clear all breakpoints. Set breakpoints at the 
lines

result = dotp(x, y, count); 

and

printf(“result = %d (decimal) \n”, result); 

5.     Select  Profi le → Clock → Enable .  

6.     Select  Profi le → Clock View . A small clock icon and the number of processor 
instruction cycles that the Profi le Clock  has counted should appear in the 
bottom right - hand corner of the Code Composer window.  

7.     Run the program. It should halt at the fi rst breakpoint.  

8.     Reset the  Profi le Clock  by double - clicking on its icon in the bottom right - hand 
corner of the Code Composer window.  

9.     Run the program. It should stop at the second breakpoint.    

 The number of instruction cycles counted by the  Profi le Clock  between the two 
breakpoints, that is, during execution of function dotp() , should be displayed next 
to the icon. On a 225 - MHz C6713 processor, each instruction cycle takes 4.44   ns. 
Repeat the experiment having set the compiler optimization level to Function ( – o2)
and you should see a reduction in the number of instruction cycles used by function 
dotp()  by a factor of approximately 2. Using breakpoints and the  Profi le Clock  can 
give an indication of the execution times of sections of program but it does not 
always work with higher levels of compiler optimization, for example, File ( - o3) . 
More detailed profi ling of program execution can be achieved using a simulator.    

1.6 SUPPORT FILES 

 The support fi les  c6713dskinit.c ,  vectors_intr.asm  or  vectors_poll.asm , 
and c6713dsk.cmd  are used by nearly all of the examples in this book. 

1.6.1 Initialization/Communication File ( c6713dskinit.c)

 Source fi le  c6713dskinit.c , supplied on the CD accompanying this book and listed 
in Figure  1.20 , contains the defi nitions of a number of functions used to initialize 
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//c6713dskinit.c
//includes functions from TI in the C6713 CSL and C6713DSK BSL

#include "C6713dskinit.h"
#define using_bios
extern Uint32 fs;            //sampling frequency
extern Uint16 inputsource;   //input source (MIC or LINE)

void c6713_dsk_init()        //initialize DSK
{
  DSK6713_init();            //BSL routine to init DSK

  hAIC23_handle=DSK6713_AIC23_openCodec(0, &config);
  DSK6713_AIC23_setFreq(hAIC23_handle, fs); //set sampling rate
  // choose MIC or LINE IN on AIC23
  DSK6713_AIC23_rset(hAIC23_handle, 0x0004, inputsource);
  MCBSP_config(DSK6713_AIC23_DATAHANDLE,&AIC23CfgData);
  MCBSP_start(DSK6713_AIC23_DATAHANDLE, MCBSP_XMIT_START |
              MCBSP_RCV_START | MCBSP_SRGR_START |
              MCBSP_SRGR_FRAMESYNC, 220); //restart data channel
}

void comm_poll()             //for communication using polling
{
  poll=1;                    //1 if using polling
  c6713_dsk_init();          //init DSP and codec
}

void comm_intr()             //for communication using interrupt
{
  poll=0;                    //0 since not polling
  IRQ_globalDisable();       //globally disable interrupts
  c6713_dsk_init();          //init DSP and codec
  CODECEventId=MCBSP_getXmtEventId(DSK6713_AIC23_codecdatahandle);

#ifndef using_bios           //if not using DSP/BIOS
  IRQ_setVecs(vectors);      //use interrupt vector table
#endif                       //set up in vectors_intr.asm

  IRQ_map(CODECEventId, 11); //map McBSP1 Xmit to INT11
  IRQ_reset(CODECEventId);   //reset codec INT 11
  IRQ_globalEnable();        //globally enable interrupts
  IRQ_nmiEnable();           //enable NMI interrupt
  IRQ_enable(CODECEventId);  //enable CODEC eventXmit INT11

  output_sample(0);          //start McBSP by outputting a sample
}

void output_sample(int out_data) //output to both channels
{
  short CHANNEL_data;

  AIC_data.uint=0;           //clear data structure
 

        FIGURE 1.20.     Listing of support fi le  c6713dskinit.c .  
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  AIC_data.uint=out_data;    //write 32-bit data

//The existing interface defaults to right channel. 
//To default instead to the left channel and use
//output_sample(short), left and right channels are swapped.
//In main source program use LEFT 0 and RIGHT 1
//(opposite of what is used here)

  CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
  AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
  AIC_data.channel[LEFT]=CHANNEL_data;
  // if polling, wait for ready to transmit
  if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
  // write data to AIC23 via MCBSP
  MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_left_sample(short out_data) //output to left channel
{
  AIC_data.uint=0;                 //clear data structure
  AIC_data.channel[LEFT]=out_data; //write 16-bit data
  // if polling, wait for ready to transmit
  if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
  // write data to AIC23 via MCBSP
  MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_right_sample(short out_data)//output to right channel
{
  AIC_data.uint=0;                  //clear data structure
  AIC_data.channel[RIGHT]=out_data; //write 16-bit data
  // if polling, wait for ready to transmit
  if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
  // write data to AIC23 via MCBSP
  MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

Uint32 input_sample()        //input from both channels
{
  short CHANNEL_data;

  // if polling, wait for ready to receive
  if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
  //read data from AIC23 via MCBSP
  AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);

  //Swap left and right channels (see comments in output_sample())
  CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
  AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
  AIC_data.channel[LEFT]=CHANNEL_data;
  return(AIC_data.uint);
}

FIGURE 1.20. (Continued)
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short input_left_sample()    //input from left channel
{
  // if polling, wait for ready to receive
  if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
  //read data from AIC23 via MCBSP
  AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
  return(AIC_data.channel[LEFT]); //return left channel data
}
short input_right_sample()   //input from right channel
{
  // if polling, wait for ready to receive
  if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
  //read data from AIC23 via MCBSP
  AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
  return(AIC_data.channel[RIGHT]); //return right channel data
}

FIGURE 1.20. (Continued)

the DSK. Calls are made from these functions to lower level functions provided 
with CCS in the board support library (BSL) and chip support library (CSL) fi les 
 dsk6713bsl.lib  and  csl6713.lib .   

 Functions   comm_intr()   and   comm_poll()   initialize communications between 
the C6713 processor and the AIC23 codec for either interrupt - driven or polling -
 based input and output. In the case of interrupt - driven input and output, interrupt 
#11 (INT11), generated by the codec via the serial port (McBSP), is confi gured and 
enabled (selected). The nonmaskable interrupt bit must be enabled as well as the 
global interrupt enable (GIE) bit. 

 Functions   input_sample()  ,   input_left_sample()  ,   input_right_sample()  , 
  output_sample()  ,   output_left_sample()  , and   input_right_sample()   are 
used to read and write data to and from the codec. In the case of polling - based 
input and output, these functions wait until the next sampling instant (determined 
by the codec) before reading or writing, using the lower level functions  MCBSP_
read()  or  MCBSP_write() . They do this by polling (testing) the receive ready 
(RRDY) or transmit ready (XRDY) bits of the McBSP control register (SPCR). 
In the case of interrupt - driven input and output, the processor is interrupted by 
the codec at each sampling instant and when either   input_sample()   or   output_
sample()   is called from within the interrupt service routine, reading or writing 
proceeds without RRDY or XRDY being tested. Interrupts are discussed further 
in Chapter  3 .  

  1.6.2   Header File ( c6713dskinit.h ) 

 The corresponding header support fi le   c6713dskinit.h   contains function proto-
types as well as initial settings for the control registers of the AIC23 codec. Nearly 
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all of the example programs in this book use the same AIC23 control register set-
tings. However, two codec parameters — namely, sampling frequency and selection 
of ADC input (LINE IN or MIC IN) — are changed more often, from one program 
example to another, and for that reason the following mechanism has been adopted. 
During initialization of the DSK (in function dsk_init() , defi ned in fi le 
c6713dskinit.c ), the AIC23 codec control registers are initialized using the 
DSK6713_AIC23_Config  type data structure  config  defi ned in header fi le 
c6713dskinit.h . Immediately following this initialization, two functions  DSK6713_
AIC23_setFreq()  and  DSK6713_AIC23_rset()  are called and these set the sam-
pling frequency and select the input source according to the values of the variables 
fs  and  inputsource . These values are set in the fi rst few lines of every top level 
source fi le; for example,

Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input source 

 In this way, the sampling frequency and input source can be changed without 
having to edit either c6713sdkinit.h  or  c6713dskinit.c . (See Figure  1.21 .)    

1.6.3 Vector Files ( vectors_intr.asm, vectors_poll.asm)

 To make use of interrupt INT11, a branch instruction (jump) to the interrupt service 
routine (ISR) c_int11()  defi ned in a C program, for example,  sine8_buf.c , must 
be placed at the appropriate point in the interrupt service table (IST). Assembly 
language fi le  vectors_intr.asm , which sets up the IST, is listed in Figure  1.22 . 
Note the underscore preceding the name of the routine or function being called. 
By convention, this indicates a C function.   

 For a polling - based program, fi le  vectors_poll.asm  is used, in place of  vectors_
intr.asm . The main difference between these fi les is that there is no branch to  c_
int11()  in the IST set up by  vectors_poll.asm . Common to both fi les is a branch 
to c_int00() , the start of a C program, associated with reset. (See Figure  1.23 .)    

1.6.4 Linker Command File ( c6713dsk.cmd)

 Linker command fi le  C6713dsk.cmd  is listed in Figure  1.24 . It specifi es the memory 
confi guration of the internal and external memory available on the DSK and the 
mapping of sections of code and data to absolute addresses in that memory. For 
example, the .text  section, produced by the C compiler, is mapped into IRAM, 
that is, the internal memory of the C6713 digital signal processor, starting at address 
0x00000220 . The section  .vectors  created by  vectors_intr.asm  or by  vectors_
poll.asm  is mapped into IVECS, that is, internal memory starting at address 
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          FIGURE 1.21.     Listing of support header fi le  c6713dskinit.h .  

/*c6713dskinit.h include file for c6713dskinit.c */

#include "dsk6713.h"\
#include "dsk6713_aic23.h"

#define LEFT  1
#define RIGHT 0

union {
   Uint32 uint;
   short channel[2];
   } AIC_data;

extern far void vectors();       //external function

static Uint32 CODECEventId, poll;

// needed to modify the BSL data channel McBSP configuration
MCBSP_Config AIC23CfgData = {
        MCBSP_FMKS(SPCR, FREE, NO)              |
        MCBSP_FMKS(SPCR, SOFT, NO)              |
        MCBSP_FMKS(SPCR, FRST, YES)             |
        MCBSP_FMKS(SPCR, GRST, YES)             |
        MCBSP_FMKS(SPCR, XINTM, XRDY)           |
        MCBSP_FMKS(SPCR, XSYNCERR, NO)          |
        MCBSP_FMKS(SPCR, XRST, YES)             |
        MCBSP_FMKS(SPCR, DLB, OFF)              |
        MCBSP_FMKS(SPCR, RJUST, RZF)            |
        MCBSP_FMKS(SPCR, CLKSTP, DISABLE)       |
        MCBSP_FMKS(SPCR, DXENA, OFF)            |
        MCBSP_FMKS(SPCR, RINTM, RRDY)           |
        MCBSP_FMKS(SPCR, RSYNCERR, NO)          |
        MCBSP_FMKS(SPCR, RRST, YES),

        MCBSP_FMKS(RCR, RPHASE, SINGLE)         |
        MCBSP_FMKS(RCR, RFRLEN2, DEFAULT)       |
        MCBSP_FMKS(RCR, RWDLEN2, DEFAULT)       |
        MCBSP_FMKS(RCR, RCOMPAND, MSB)          |
        MCBSP_FMKS(RCR, RFIG, NO)               |
        MCBSP_FMKS(RCR, RDATDLY, 0BIT)          |
        MCBSP_FMKS(RCR, RFRLEN1, OF(0))         |
        MCBSP_FMKS(RCR, RWDLEN1, 32BIT)         |
        MCBSP_FMKS(RCR, RWDREVRS, DISABLE),

        MCBSP_FMKS(XCR, XPHASE, SINGLE)         |
        MCBSP_FMKS(XCR, XFRLEN2, DEFAULT)       |
        MCBSP_FMKS(XCR, XWDLEN2, DEFAULT)       |
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        MCBSP_FMKS(XCR, XCOMPAND, MSB)          |
        MCBSP_FMKS(XCR, XFIG, NO)               |
        MCBSP_FMKS(XCR, XDATDLY, 0BIT)          |
        MCBSP_FMKS(XCR, XFRLEN1, OF(0))         |
        MCBSP_FMKS(XCR, XWDLEN1, 32BIT)         |
        MCBSP_FMKS(XCR, XWDREVRS, DISABLE),

        MCBSP_FMKS(SRGR, GSYNC, DEFAULT)        |
        MCBSP_FMKS(SRGR, CLKSP, DEFAULT)        |
        MCBSP_FMKS(SRGR, CLKSM, DEFAULT)        |
        MCBSP_FMKS(SRGR, FSGM, DEFAULT)         |
        MCBSP_FMKS(SRGR, FPER, DEFAULT)         |
        MCBSP_FMKS(SRGR, FWID, DEFAULT)         |
        MCBSP_FMKS(SRGR, CLKGDV, DEFAULT),

        MCBSP_MCR_DEFAULT,
        MCBSP_RCER_DEFAULT,
        MCBSP_XCER_DEFAULT,

        MCBSP_FMKS(PCR, XIOEN, SP)              |
        MCBSP_FMKS(PCR, RIOEN, SP)              |
        MCBSP_FMKS(PCR, FSXM, EXTERNAL)         |
        MCBSP_FMKS(PCR, FSRM, EXTERNAL)         |
        MCBSP_FMKS(PCR, CLKXM, INPUT)           |
        MCBSP_FMKS(PCR, CLKRM, INPUT)           |
        MCBSP_FMKS(PCR, CLKSSTAT, DEFAULT)      |
        MCBSP_FMKS(PCR, DXSTAT, DEFAULT)        |
        MCBSP_FMKS(PCR, FSXP, ACTIVEHIGH)       |
        MCBSP_FMKS(PCR, FSRP, ACTIVEHIGH)       |
        MCBSP_FMKS(PCR, CLKXP, FALLING)         |
        MCBSP_FMKS(PCR, CLKRP, RISING)
};

DSK6713_AIC23_Config config = {                                 \
0x0017, /* Set-Up Reg 0     Left line in volume control */      \
        /* LRS     0        simultaneous l/r volume: disabled */\
        /* LIM     0        left line input mute: disabled */   \
        /* XX      00       reserved */                         \
        /* LIV     10111    left line input volume: 0 dB */     \
                                                                \
0x0017, /* Set-Up Reg 1     Right line in volume control */     \
        /* RLS     0        simultaneous r/l volume: disabled */\
        /* RIM     0        right line input mute: disabled */  \
        /* XX      00       reserved */                         \
        /* RIV     10111    right line input volume: 0 dB */    \
                                                                \

FIGURE 1.21. (Continued)
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0x01f9, /* Set-Up Reg 2     Left channel headphone volume */    \
        /* LRS     1        simultaneous l/r volume: enabled */ \
        /* LZC     1        zero-cross detect: enabled */       \
        /* LHV     1111001  left headphone volume: 0 dB */      \
                                                                \
0x01f9, /* Set-Up Reg 3     Right channel headphone volume */   \
        /* RLS     1        simultaneous r/l volume: enabled */ \
        /* RZC     1        zero-cross detect: enabled */       \
        /* RHV     1111001  right headphone volume: 0 dB */     \
                                                                \
0x0015, /* Set-Up Reg 4     Analog audio path control */        \
        /* X       0        reserved */                         \
        /* STA     00       sidetone attenuation: -6 dB */      \
        /* STE     0        sidetone: disabled */               \
        /* DAC     1        DAC: selected */                    \
        /* BYP     0        bypass: off */                      \
        /* INSEL   0        input select for ADC: line */       \
        /* MICM    0        microphone mute: disabled */        \
        /* MICB    1        microphone boost: enabled */        \
                                                                \
0x0000, /* Set-Up Reg 5     Digital audio path control */       \
        /* XXXXX   00000    reserved */                         \
        /* DACM    0        DAC soft mute: disabled */          \
        /* DEEMP   00       deemphasis control: disabled */     \
        /* ADCHP   0        ADC high-pass filter: disabled */   \
                                                                \
0x0000, /* Set-Up Reg 6     Power down control */               \
        /* X       0        reserved */                         \
        /* OFF     0        device power: on (i.e. not off) */  \
        /* CLK     0        clock: on */                        \
        /* OSC     0        oscillator: on */                   \
        /* OUT     0        outputs: on */                      \
        /* DAC     0        DAC: on */                          \
        /* ADC     0        ADC: on */                          \
        /* MIC     0        microphone: on */                   \
        /* LINE    0        line input: on */                   \
                                                                \
0x0043, /* Set-Up Reg 7     Digital audio interface format */   \
        /* XX      00       reserved */                         \
        /* MS      1        master/slave mode: master */        \
        /* LRSWAP  0        DAC left/right swap: disabled */    \
        /* LRP     0        DAC lrp: MSB on 1st BCLK */         \
        /* IWL     00       input bit length: 16 bit */         \
        /* FOR     11       data format: DSP format */          \
                                                                \
0x0081, /* Set-Up Reg 8     Sample rate control */              \
        /* X       0        reserved */                         \
        /* CLKOUT  1        clock output divider: 2 (MCLK/2) */ \
 

FIGURE 1.21. (Continued)
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        /* CLKIN   0        clock input divider: 2 (MCLK/2) */  \
        /* SR,BOSR 00000    sample rate: ADC 48kHz DAC 48kHz */ \
        /* USB/N   1        clock mode select : USB */          \
                                                                \
0x0001  /* Set-Up Reg 9     Digital interface activation */     \
        /* XX..X   00000000 reserved */                         \
        /* ACT     1        active */                           \
};

DSK6713_AIC23_CodecHandle hAIC23_handle;

void c6713_dsk_init();
void comm_poll();
void comm_intr();
void output_sample(int);
void output_left_sample(short);
void output_right_sample(short);
Uint32 input_sample();
short input_left_sample();
short input_right_sample();

FIGURE 1.21. (Continued)

 0x00000000  (the interrupt service table). Chapter  2  contains an example illustrating 
the use of the  pragma  directive to create a section named EXT_RAM to be mapped 
into external memory starting at address  0x80000000  (SDRAM). Chapter  2  also 
contains an example to illustrate the use of the non - volatile fl ash memory that starts 
at address  0x90000000  (FLASH  ). In Chapter  4 , we illustrate the implementation 
of a digital fi lter in assembly language using external memory. Chapter  10  contains 
two projects that utilize the external memory interface (EMIF) 80 - pin connector 
on the DSK, which starts at address  0xA0000000,  to interface to external LEDs 
and LCDs.     

  1.7   ASSIGNMENTS 

    1.     Modify program  sine8_buf.c  to generate a sine wave with a frequency of 
3000   Hz. Verify your result using an oscilloscope connected to the LINE OUT 
socket on the DSK as well as using Code Composer to plot the 32 most 
recently output samples in both the time and frequency domains.  

  2.     Write a polling - based program such that when DIP switch #3 is pressed down, 
LED #3 turns on and a 500 - Hz cosine wave is generated for 5 seconds.  

  3.     Write an interrupt - driven program that maintains a buffer containing the 128 
most recent input samples read at a sampling frequency of 16   kHz from the 
AIC23 codec, using the MIC IN socket on the DSK. Halt the program and 
plot the buffer contents using Code Composer.  



    FIGURE 1.22.     Listing of vector fi le  vectors_intr.asm .  

*Vectors_intr.asm Vector file for interrupt INT11
   .global _vectors           ;global symbols
   .global _c_int00
   .global _vector1
   .global _vector2
   .global _vector3
   .global _vector4
   .global _vector5
   .global _vector6
   .global _vector7
   .global _vector8
   .global _vector9
   .global _vector10
   .global _c_int11                ;for INT11
   .global _vector12
   .global _vector13
   .global _vector14
   .global _vector15 
  
   .ref _c_int00                   ;entry address

VEC_ENTRY .macro addr              ;macro for ISR
    STW   B0,*--B15\
    MVKL  addr,B0
    MVKH  addr,B0
    B     B0
    LDW   *B15++,B0
    NOP   2
    NOP
    NOP
   .endm

_vec_dummy:
  B    B3
  NOP  5

   .sect ".vectors"                ;aligned IST section
   .align 1024
_vectors:
_vector0:   VEC_ENTRY _c_int00     ;RESET
_vector1:   VEC_ENTRY _vec_dummy   ;NMI
_vector2:   VEC_ENTRY _vec_dummy   ;RSVD
_vector3:   VEC_ENTRY _vec_dummy
_vector4:   VEC_ENTRY _vec_dummy
_vector5:   VEC_ENTRY _vec_dummy
_vector6:   VEC_ENTRY _vec_dummy
_vector7:   VEC_ENTRY _vec_dummy
_vector8:   VEC_ENTRY _vec_dummy
_vector9:   VEC_ENTRY _vec_dummy
_vector10:  VEC_ENTRY _vec_dummy
_vector11:  VEC_ENTRY _c_int11     ;ISR address
_vector12:  VEC_ENTRY _vec_dummy
_vector13:  VEC_ENTRY _vec_dummy
_vector14:  VEC_ENTRY _vec_dummy
_vector15:  VEC_ENTRY _vec_dummy 

 Assignments  39



40  DSP Development System

*Vectors_poll.asm  Vector file for polling
   .global _vectors
   .global _c_int00
   .global _vector1
   .global _vector2
   .global _vector3
   .global _vector4
   .global _vector5
   .global _vector6
   .global _vector7
   .global _vector8
   .global _vector9
   .global _vector10
   .global _vector11
   .global _vector12
   .global _vector13
   .global _vector14
   .global _vector15

   .ref _c_int00    ;entry address

VEC_ENTRY .macro addr
    STW   B0,*--B15
    MVKL  addr,B0
    MVKH  addr,B0
    B     B0
    LDW   *B15++,B0
    NOP   2
    NOP
    NOP
   .endm

_vec_dummy:
  B    B3
  NOP  5

 .sect ".vectors"
 .align 1024

_vectors:
_vector0:   VEC_ENTRY _c_int00     ;RESET
_vector1:   VEC_ENTRY _vec_dummy   ;NMI
_vector2:   VEC_ENTRY _vec_dummy   ;RSVD
_vector3:   VEC_ENTRY _vec_dummy
_vector4:   VEC_ENTRY _vec_dummy
_vector5:   VEC_ENTRY _vec_dummy
_vector6:   VEC_ENTRY _vec_dummy
_vector7:   VEC_ENTRY _vec_dummy
_vector8:   VEC_ENTRY _vec_dummy
_vector9:   VEC_ENTRY _vec_dummy
_vector10:  VEC_ENTRY _vec_dummy
_vector11:  VEC_ENTRY _vec_dummy
_vector12:  VEC_ENTRY _vec_dummy
_vector13:  VEC_ENTRY _vec_dummy
_vector14:  VEC_ENTRY _vec_dummy
_vector15:  VEC_ENTRY _vec_dummy

    FIGURE 1.23.     Listing of vector fi le  vectors_poll.asm .  



    FIGURE 1.24.     Listing of linker command fi le  c6713dsk.cmd .  

/*C6713dsk.cmd  Linker command file*/

MEMORY
{
  IVECS:    org=0h,         len=0x220
  IRAM:     org=0x00000220, len=0x0002FDE0 /*internal memory*/
  SDRAM: org=0x80000000, len=0x01000000 /*external memory*/
  FLASH: org=0x90000000, len=0x00020000 /*flash memory*/
}

SECTIONS
{
  .EXT_RAM :> SDRAM
  .vectors :> IVECS /*in vector file*/
  .text    :> IRAM  /*Created by C Compiler*/
  .bss     :> IRAM
  .cinit   :> IRAM
  .stack   :> IRAM
  .sysmem  :> IRAM
  .const   :> IRAM
  .switch  :> IRAM
  .far     :> IRAM
  .cio     :> IRAM
  .csldata :> IRAM
}

  4.     Write a program that reads input samples from the left - hand channel of the 
AIC23 codec ADC at a sampling frequency of 16   kHz using function  input_
left_sample()  and, just after it has been read, writes each sample value to 
the right - hand channel of the AIC23 codec DAC using function  output_
right_sample() . Verify the effective connection of the left - hand channel of 
the LINE IN socket to the right - hand channel of the LINE OUT socket using 
a signal generator and an oscilloscope. Gradually increase the frequency of 
the input signal until the amplitude of the output signal is reduced drastically. 
This frequency corresponds to the bandwidth of the DSP system (illustrated 
in more detail in Chapter  2 ).     
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 •      Input and output with the onboard AIC23 stereo codec  
 •      Programming examples using C code     

2.1 INTRODUCTION

 A basic DSP system, suitable for processing audio frequency signals, comprises a 
digital signal processor and analog interfaces as shown in Figure  2.1 . The C6713 and 
C6416 DSKs provide just such a system, using either the TMS320C6713 (C6713) 
fl oating - point processor or the TMS320C6416 (C6416) fi xed - point processor and the 
TLV320AIC23 (AIC23) codec  [1] . The term codec refers to the  coding  of analog 
waveforms as digital signals and the decoding  of digital signals as analog waveforms. 
The AIC23 codec performs both the analog - to - digital conversion (ADC) and digital -
 to - analog conversion (DAC) functions shown in Figure  2.1 .   

 Alternatively, I/O daughter cards, plugged into the External Peripheral Interface 
80 - pin connector J3 on the DSK board can be used for analog input and output. 
However, the programming examples in this book use only the onboard AIC23 codec. 

 The programming examples in this chapter will run on either the C6713 or the 
C6416 DSK but for the most part only the C6713 DSK will be referred to. 

Sampling, Reconstruction, and Aliasing 
 Within digital signal processors, signals are represented as sequences of discrete 
samples and whenever signals are sampled, the possibility of aliasing arises. Later 

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
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    FIGURE 2.1.     Basic digital signal processing system.  

in this chapter, the phenomenon of aliasing is explored in some detail. Suffi ce it to 
say at this stage that aliasing is undesirable and that it may be avoided by the use 
of an antialiasing fi lter placed at the input to the system shown in Figure  2.1  and by 
suitable design of the DAC. In a baseband system, an effective antialiasing fi lter is 
one that allows frequency components below half of the sampling frequency to pass 
but which attenuates greatly, or stops, frequency components equal to or greater 
than half of the sampling frequency. A suitable DAC for a baseband system essen-
tially comprises a lowpass fi lter having characteristics similar to the aforementioned 
antialiasing fi lter. The AIC23 codec contains digital antialiasing and reconstruction 
fi lters.    

  2.2    TLV 320 AIC 23 ( AIC 23) ONBOARD STEREO CODEC FOR INPUT 
AND OUTPUT 

 Both the C6713 and C6416 DSKs make use of the TLV320AIC23 (AIC23) codec 
for analog input and output. The analog - to - digital converter (ADC), or coder, part 
of the codec converts an analog input signal into a sequence of sample values (16 - bit 
signed integer) to be processed by the digital signal processor. The digital - to - analog 
converter (DAC), or decoder, part of the codec reconstructs an analog output signal 
from a sequence of sample values (16 - bit signed integer) that have been processed 
by the digital signal processor. 

 The AIC23 is a stereo audio codec based on sigma – delta technology  [1 – 5] . Its 
functional block diagram is shown in Figure  2.2 .   

 A 12 - MHz crystal supplies the clock to the AIC23 codec (also to the DSP and 
the USB interface). Using this 12 - MHz master clock, with oversampling rates of 
250 Fs  and 272 Fs , exact audio sample rates of 48   kHz (12   MHz/250) and the CD rate 
of 44.1   kHz (12   MHz/272) can be obtained. The sampling rate of the AIC23 can be 
confi gured to be 8, 16, 24, 32, 44.1, 48, or 96   kHz. 

 Communication with the AIC23 codec for input and output uses two multichan-
nel buffered serial ports (McBSPs) on the C6713 or C6416. McBSP0 is used as a 
unidirectional channel to send a 16 - bit control word to the AIC23. McBSP1 is used 
as a bidirectional channel to send and receive audio data (McBSP1 and McBSP2 
are used on the C6416 DSK). The codec can be confi gured for data - transfer word-
lengths of 16, 20, 24, or 32 bits. 



 The LINE IN and HEADPHONE OUT signal paths within the codec contain 
confi gurable gain elements with ranges of 12 to  − 34   dB in steps of 1.5   dB, and 6 to 
 − 73   dB in steps of 1   dB, respectively. A diagram of the AIC23 codec interfaced to 
the C6713 DSK is shown in  6713_dsk_schem.pdf , included with the CCS package. 
With few exceptions, the programming examples in this book confi gure the codec 
for a sampling rate of 8   kHz, 32 - bit data transfer, and 0 - dB gain in the LINE IN and 
HEADPHONE OUT signal paths. 

 The maximum allowable input signal level at the LINE IN inputs to the codec is 
1   V   rms. However, the C6713 and C6416 DSKs contain a potential divider circuit 
with a gain of 0.5 between their LINE IN sockets and the codec itself with the effect 
that the maximum allowable input signal level at the LINE IN sockets on the DSKs 
is 2   V   rms. Above this level, input signals will be distorted. Input and output sockets 
on the DSKs are ac coupled to the codec.  
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    FIGURE 2.2.     TLV320AIC23 codec block diagram. (Courtesy of Texas Instruments.)  
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  2.3   PROGRAMMING EXAMPLES USING C CODE 

 The following examples illustrate analog input and output using the DSK. They are 
included in order to introduce both the DSK hardware and the CCS development 
environment. The example programs demonstrate some important concepts associ-
ated with analog - to - digital conversion and digital - to - analog conversion, including 
sampling, aliasing, and reconstruction. In addition, they illustrate the use of inter-
rupts in order to implement real - time applications using the DSK. Many of the 
concepts and techniques described in this chapter are used again in subsequent 
chapters. 

     Example 2.1:   Basic Input and Output Using Polling ( loop_poll ) 

 The C language source fi le for a program,  loop_poll.c , that simply copies input 
samples read from the AIC23 codec ADC back to the AIC23 codec DAC as output 
samples is listed in Figure  2.3 . Effectively, the MIC input socket is connected straight 
through to the HEADPHONE OUT socket on the DSK via the AIC23 codec and 
the digital signal processor.  loop_poll.c  uses the same polling technique for real -
 time input and output as program  sine8_LED.c , presented in Chapter  1 .    

  Input and Output Functions Defi ned in Support File  c6713dskinit.c  
 The functions  input_left_sample() ,  output_left_sample() , and  comm_poll()  
are defi ned in the support fi le  c6713dskinit.c.  This way the C source fi le  loop_

    FIGURE 2.3.     Loop program using polling ( loop_poll.c ).  

//loop_poll.c loop program using polling

#include "DSK6713_AIC23.h"             //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;     //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input

void main()
{
  short sample_data;

  comm_poll();                         //init DSK, codec, McBSP
  while(1)                             //infinite loop
  {
    sample_data = input_left_sample(); //input sample
    output_left_sample(sample_data);   //output sample
  }
}
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poll.c  is kept as small as possible and potentially distracting low level detail is 
hidden. The implementation details of these, and other, functions defi ned in 
c6713dskinit.c  need not be studied in detail in order to carry out the examples 
presented in this book but are described here for completeness. 

 Further calls are made by  input_left_sample()  and  output_left_sample()
to lower level functions contained in the board support library DSK6713bsl.lib . 

 Function  comm_poll()  initializes the DSK and, in particular, the AIC23 codec 
such that its sample rate is set according to the value of the variable fs  (assigned 
in loop_poll.c ), its input source according to the value of the variable  input-
source  (assigned in  loop_poll.c ), and polling mode is selected. Other AIC23 
confi guration settings are determined by the parameters specifi ed in fi le 
c6713dskinit.h . These parameters include the gain settings in the LINE IN and 
HEADPHONE out signal paths, the digital audio interface format, and so on. 
Similar values for all of these parameters are used by almost all of the program 
examples in this book. Only rarely will they be changed and so it is convenient to 
hide them out of the way in fi le  c6713dskinit.h . 

 The two settings, sampling rate and input source, are changed suffi ciently fre-
quently, from one program example to another, that their values are set in each 
example program by initializing the values of the variables fs  and  inputsource . 
In function dsk6713_init()  in fi le  c6713dskinit.c , these values are used by 
functions DSK6713_AIC23_setFreq()  and  DSK6713_AIC23_rset() , respectively. 

 In polling mode, function  input_left_sample()  polls, or tests, the receive ready 
bit ( RRDY ) of the McBSP serial port control register ( SPCR ) until this indicates that 
newly converted data is available to be read using function MCBSP_read() . Function 
output_left_sample()  polls, or tests, the transmit ready bit ( XRDY ) of the McBSP 
serial port control register ( SPCR ) until this indicates that the codec is ready to 
receive a new output sample. A new output sample is sent to the codec using func-
tion McBSP_write() . 

 Although polling is simpler than the interrupt technique used in  sine8_buf.c
(and in nearly all the other programs in subsequent chapters of this book), it is less 
effi cient since the processor spends nearly all of its time repeatedly testing whether 
the codec is ready either to transmit or to receive data.  

Running the Program 
 Project fi le  loop_poll.pjt  is stored in folder  loop_poll .  Open  project 
loop_poll.pjt  and load the executable fi le  loop_poll.out . Run the program 
and use a microphone and headphones to verify that the program operates as 
intended.

 For a closer examination of the characteristics of the program you can use a signal 
generator and oscilloscope. Prior to connecting a signal generator to the LINE IN 
socket, you will need to Rebuild  the program having changed the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; 
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to read

Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; 

in order to select the LINE IN rather than the MIC socket on the DSK.  

Testing the Allowable Input Signal Amplitude 
 Input a sinusoidal waveform to the LINE IN connector on the DSK, with an ampli-
tude of approximately 2.0   V p - p and a frequency of approximately 1   kHz. Connect 
the output of the DSK, LINE OUT, to an oscilloscope, and verify the presence of 
a tone of the same frequency, but attenuated to approximately 1.0   V p - p. This attenu-
ation is due to the potential divider network, comprising two resistors, on the DSK 
circuit board between the LINE IN socket and the codec input. 

 The full scale range of the ADC and of the DAC in the codec is 1   V   rms (2.83   V 
p - p). Increase the amplitude of the input sinusoidal waveform (at the LINE IN 
socket) beyond 2   V   rms (5.66   V p - p) and verify that the output signal becomes 
distorted.

Changing the LINE IN  Gain of the  AIC23 Codec 
 The AIC23 codec allows for the gain on left -  and right - hand line - in input channels 
to be adjusted independently in steps of 1.5   dB by writing different values to the left 
and right line input channel volume control registers. The values assigned to these 
registers by function comm_poll()  are defi ned in the header fi le  c6713dskinit.h . 
In order to change the values written, that fi le must be modifi ed. 

1.     Copy the fi les  c6713dskinit.h  and  C6713dskinit.c  from the  Support
folder into the folder loop_poll  so that you don ’ t modify the original header 
fi le.  

2.     Remove these two fi les from the  loop_poll  project by right - clicking on 
c6713dskinit.c  in the  Project View  window and then selecting  Project→
 Remove from Project .  

3.     Add the copy of the fi le  c6713dskinit.c  in folder  loop_poll  to the project 
by selecting Project →  Add Files to Project .  

4.     Check that you have added the  copy  of fi le  c6713dskinit.c  to the project 
by right - clicking on it in the  Project View  window and selecting  Properties .  

5.     Select  Project→ Scan all Dependencies  in order to replace the fi le 
c6713dskinit.h  with the copy in folder  loop_poll .  

6.     Edit the copy of fi le  c6713dskinit.h  included in the project (and stored in 
folder loop_poll ), changing the line that reads

0x0017 / * Set -Up Reg 0 Left line volume control */
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to read

0x001B / * Set -Up Reg 0 Left line volume control */

 This modifi es the value written to the AIC23 left line input channel gain reg-
ister from 0x0017 to 0x001B and this increases the gain from 0   dB to 6   dB.  

7.      Build  the project, making sure that the copy of the fi le  c6713dskinit.c
used in the project is the copy in folder loop_poll . The header fi le 
c6713dskinit.h  that will be included will come from that same folder.  

8.     Load and run the executable fi le  loop_poll.out  and verify that the 
output signal is not attenuated, but has the same amplitude as the input 
signal, that is, 2   V p - p. The changes you have just made are to a copy of 
c6713dskinit.h  in folder  loop_poll  and are limited in the scope of their 
effect to that project.     

Example 2.2: Basic Input and Output Using Interrupts ( loop_intr)

 Program  loop_intr.c  is functionally equivalent to program  loop_poll.c  but 
makes use of interrupts. This simple program is important because many of the other 
example programs in this book are based on the same interrupt - driven model. 
Instead of simply copying the sequence of samples representing an input signal to 
the codec output, a digital fi ltering operation can be performed each time a new 
input sample is received. It is worth taking time to ensure that you understand 
how program loop_intr.c  works. In function  main() , the initialization function 
comm_intr()  is called.  comm_intr()  is very similar to  comm_poll()  but in addition 
to initializing the DSK, codec, and McBSP, and not  selecting polling mode, it sets 
up interrupts such that the AIC23 codec will sample the analog input signal and 
interrupt the C6713 processor, at the sampling frequency defi ned by the line

Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate 

 It also initiates communication with the codec via the McBSP. 
 In this example, a sampling rate of 8   kHz is used and interrupts will occur every 

0.125   ms. (Sampling rates of 16, 24, 32, 44.1, 48, and 96   kHz are also possible.) 
 Following initialization, function  main()  enters an endless while loop, doing 

nothing but waiting for interrupts. The functions that will act as interrupt service 
routines for the various different interrupts are specifi ed in the interrupt service 
table contained in fi le  vectors_intr.asm . This assembly language fi le differs from 
the fi le  vectors_poll.asm  in that function  c_int11()  is specifi ed as the interrupt 
service routine for interrupt INT11. 

 On interrupt, the interrupt service routine (ISR)  c_int11()  is called and it is 
within that routine that the most important program statements are executed. 
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Function  output_left_sample()  is used to output a value read from the codec 
using function  input_left_sample() .    

  Format of Data Transferred to and from  AIC 23 Codec 
 The AIC23 ADC converts left -  and right - hand channel analog input signals into 
16 - bit signed integers and the DAC converts 16 - bit signed integers to left -  and right -
 hand channel analog output signals. Left -  and right - hand channel samples are com-
bined to form 32 - bit values that are communicated via the multichannel buffered 
serial port (McBSP) to and from the C6713. Access to the ADC and DAC from a 
C program is via the functions  Uint32 input_sample() ,  short input_left_

sample() ,  short input_right_sample() ,  void output_sample(int out_data) , 
 void output_left_sample(short out_data) , and  void output_right_

sample(short out_data) . 
 The 32 - bit unsigned integers ( Uint32 ) returned by  input_sample()  and passed 

to  output_sample()  contain both left and right channel samples. The statement

 union {
 Uint32 uint;
 Short channel [2];
} AIC_data; 

//loop_intr.c loop program using interrupts

#include "DSK6713_AIC23.h"        //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

interrupt void c_int11()             //interrupt service routine
{
  short sample_data;

  sample_data = input_left_sample(); //input data
  output_left_sample(sample_data);   //output data
  return;
}

void main()
{
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
}

    FIGURE 2.4.     Loop program using interrupts ( loop_intr.c ).    
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in fi le  dsk6713init.h  declares a variable that may be handled either as one 
32 - bit unsigned integer ( AIC_data.uint ) containing left and right channel sample 
values, or as two 16 - bit signed integers ( AIC_data.channel[0]  and  AIC_data.
channel[1] ). 

 Most of the program examples in this book use only one channel for input and 
output and for clarity most use the functions input_left_sample()  and  output_
left_sample() . These functions are defi ned in the fi le  c6713dskinit.c , where the 
unpacking and packing of the signed 16 - bit integer left - hand channel sample values 
out of and into the 32 - bit words received and transmitted from and to the codec are 
carried out.  

Running the Program 
 Create and build this project as  loop_intr  ensuring that the support fi les 
c6713dskint.c  and  vectors_intr.asm  have been added to the project. Verify the 
same results as obtained using program loop_poll .  

Example 2.3: Modifying Program loop_intr.c to Create a Delay ( delay)

 Some simple, yet striking, effects can by achieved simply by delaying the samples 
as they pass from input to output. Program delay.c , listed in Figure  2.5 , demon-
strates this. A delay line is implemented using the array buffer  to store samples as 
they are read from the codec. Once the array is full, the program overwrites the 
oldest stored input sample with the current, or newest, input sample. Just prior to 
overwriting the oldest stored input sample in buffer , that sample is retrieved, added 
to the current input sample, and output to the codec. Figure  2.6  shows a block 
diagram representation of the operation of program delay.c  in which the block 
labeled T  represents a delay of  T  seconds.     

 Build and run the project as  delay , using microphone and headphones to verify 
its operation.  

Example 2.4: Modifying Program loop_intr.c to Create an Echo ( echo)

 By feeding back a fraction of the output of the delay line to its input, a fading echo 
effect can be realized. Program echo.c , listed in Figure  2.7 , does this. Figure  2.8  
shows a block diagram representation of the operation of program echo.c .     

 The value of the constant  BUF_SIZE  determines the number of samples stored 
in the array buffer  and hence the duration of the delay. The value of the constant 
GAIN  determines the fraction of the output that is fed back into the delay line and 
hence the rate at which the echo effect fades away. Setting the value of GAIN  equal 
to or greater than unity would cause instability of the loop. 

 Build and run this project as  echo . Experiment with different values of  GAIN
(between 0.0 and 1.0) and BUF_SIZE  (between 100 and 8000). Source fi le  echo.c
must be edited and the project rebuilt in order to make these changes.  
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//delay.c Basic time delay

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;       //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define BUF_SIZE 8000
short input,output,delayed;
short buffer[BUF_SIZE];
int i;

interrupt void c_int11()       //interrupt service routine
{
  input = input_left_sample(); //read new input sample
  delayed = buffer[i];         //read output of delay line
  output = input + delayed;    //output sum of new and delayed
  buffer[i] = input;           //replace delayed sample with
  if(++i >= BUF_SIZE) i=0;     //new input sample then increment
  output_left_sample(output);  //buffer index
  return;                      //return from ISR
}

void main()
{
  for(i=0 ; i<BUF_SIZE ; i++)
    buffer[i] = 0; 
  comm_intr();                  //init DSK, codec, McBSP
  while(1);                     //infinite loop
}

    FIGURE 2.5.     Delay program using interrupts ( delay.c ).  

    FIGURE 2.6.     Block diagram representation of program  delay.c .  
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  Example 2.5:   Echo with  GEL  Slider Control of Delay and Feedback 
( echo_control ) 

 This example extends  Example 2.4  to allow real - time adjustment of the gain and 
delay parameters of the echo effect. Two GEL sliders, defi ned in fi le  echo_control.
gel , are used. Program  echo_control.c , listed in Figure  2.9 , differs from program 
 echo.c  in the following respects. 
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//echo.c echo with fixed delay and feedback

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;       //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define GAIN 0.6               //fraction of output fed back
#define BUF_SIZE 2000          //this sets length of delay
short buffer[BUF_SIZE];        //storage for previous samples
short input,output,delayed;
int i;                         //index into buffer 

interrupt void c_int11()       //interrupt service routine
{
  input = input_left_sample(); //read new input sample from ADC
  delayed = buffer[i];         //read delayed value from buffer
  output = input + delayed;    //output sum of input and delayed
  output_left_sample(output);
  buffer[i] = input + delayed*GAIN; //store new input and
                               //fraction of delayed value
  if(++i >= BUF_SIZE) i=0;     //test for end of buffer
  return;                      //return from ISR
}

void main()
{
  comm_intr();                 //init DSK, codec, McBSP
  for(i=0 ; i<BUF_SIZE ; i++)  //clear buffer
    buffer[i] = 0;
  while(1);                    //infinite loop
}

    FIGURE 2.7.     Fading echo program ( echo.c ).  

    FIGURE 2.8.     Block diagram representation of program  echo.c .  
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//echo_control.c echo with variable delay and feedback

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;       //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define MAX_BUF_SIZE 8000      //set maximum length of delay
float gain = 0.5;
short buflength = 1000;
short buffer[MAX_BUF_SIZE];    //storage for previous samples
short input,output,delayed;
int i = 0;                     //index into buffer

interrupt void c_int11()       //interrupt service routine
{
  input = input_left_sample(); //read new input sample from ADC
  delayed = buffer[i];         //read delayed value from buffer
  output = input + delayed;    //output sum of input and delayed
  output_left_sample(output);
  buffer[i] = input + delayed*gain; //store new input and
                               //fraction of delayed value
  if(++i >= MAX_BUF_SIZE)      //test for end of buffer
    i = MAX_BUF_SIZE - buflength;
  return;                      //return from ISR
}

void main()
{
  for(i=0 ; i<MAX_BUF_SIZE ; i++) //clear buffer
    buffer[i] = 0;
  comm_intr();                 //init DSK, codec, McBSP
  while(1);                    //infinite loop
}

    FIGURE 2.9.     Echo program with variable delay and feedback gain ( echo_control.c ).  

  1.     Array  buffer  is declared to be the maximum size required,  MAX_BUF_SIZE .  

  2.     To achieve a variable delay, integer variable  bufl ength  is used to control the 
length of the circular buffer implemented using array  buffer . When the value 
of the index  i , used to access elements of the array  buffer , is incremented 
beyond the maximum value allowable ( MAX_BUF_SIZE )  , it is reset not to zero 
as in program  echo.c  but to ( MAX_BUF_SIZE  –  bufl ength ).      

 Build the project as   echo_control  . Load and run fi le  echo_control.out  and 
then select  File → Load GEL  and load  echo_control.gel . Select  GEL → echo 
control  to bring up the gain and delay sliders.    
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//echo_control.gel

menuitem "echo control"

slider gain(0,18,1,1,gain_parameter)
{
  gain = gain_parameter*0.05;
}

slider delay(1,20,1,1,delay_parameter)
{
  buflength = delay_parameter*100;
}

    FIGURE 2.10.     GEL fi le ( echo_control.gel ) for slider control of delay and feedback gain 
in program  echo_control.c .    

//loop_buf.c loop program with storage

#include "DSK6713_AIC23.h"              //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;      //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#define BUFSIZE 512

int buffer[BUFSIZE];
int buf_ptr = 0;

interrupt void c_int11()       //interrupt service routine
{
  int sample_data;

  sample_data = input_left_sample();    //read input sample
  buffer[buf_ptr] = sample_data;        //store in buffer
  if(++buf_ptr >= BUFSIZE) buf_ptr = 0; //update buffer index
  output_left_sample(sample_data);      // write output sample
  return;
}

void main()
{
  comm_intr();                          //init DSK, codec, McBSP
  while(1);                             //infinite loop
}

    FIGURE 2.11.     Loop program with input data stored in memory ( loop_buf.c ).  

  Example 2.6:   Loop Program with Input Data Stored in a Buffer ( loop_buf ) 

 Program   loop_buf.c  , listed in Figure  2.11 , is an interrupt - based program and is 
stored in folder  loop_buf . It is similar to program  loop_intr.c  except that it 
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(a)

(b)

    FIGURE 2.12.     Input samples corresponding to 550 - Hz sine wave, obtained using program 
 loop_buf.c , plotted using Code Composer: (a) time domain and (b) frequency domain.  

maintains a circular buffer in array  buffer  containing the  BUF_SIZE  most recent 
input sample values. Consequently, it is possible to display this data in CCS after 
halting the program.   

 Build this project as   loop_buf  . Use a signal generator connected to the 
LINE IN socket to input a sinusoidal signal with a frequency between 100 and 
3500   Hz. Halt the program after a short time and select  View → Graph → Time/Fre-
quency  in order to display the contents of array  buffer . Figures  2.12 and 2.13  show 
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(a)

(b)

    FIGURE 2.13.      Graph Property Dialog  windows showing properties for use with program 
 loop_buf.c : (a) time domain and (b) frequency domain.  
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examples of time -  and frequency - domain representations of that data and the  Graph 
Properties  used in each case. An input frequency of 550   Hz was used. Program 
 loop_buf.c  is used again later in this chapter.       

  2.3.1   Real - Time Sine Wave Generation 

 The following examples build on program  sine8_buf.c , introduced in Chapter  1 . 
By generating a variety of different analog output waveforms, including sinusoids 
of different frequencies, the characteristics of the codec DAC are demonstrated and 
the concepts of sampling, reconstruction, and aliasing are illustrated. 

 In addition, use of the  Goldwave  shareware application is introduced. This virtual 
instrument is a useful alternative to a dedicated spectrum analyzer and is used again 
in later chapters. 

  Example 2.7:   Sine Wave Generation Using a Lookup Table ( sine8_intr ) 

 Program  sine8_intr.c , listed in Figure  2.14 , generates a sinusoidal signal using 
interrupts and a table lookup method. Its operation is as follows. An eight point 

    FIGURE 2.14.     Sine wave generation program using lookup table ( sine8_intr.c ).  

//sine8_intr.c Sine generation using lookup table

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define LOOPLENGTH 8                 //size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,
                              -7071,-10000,-7071};
short loopindex = 0;                 //look up table index

interrupt void c_int11()             //interrupt service routine
{
  output_left_sample(sine_table[loopindex]); //output value
  if (++loopindex >= LOOPLENGTH) loopindex = 0;
  return;                            //return from interrupt\
}

void main() 
{
  comm_intr();                       //initialise DSK
  while(1);                          //infinite loop
}
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lookup table is initialized in the array  sine_table  such that the value of  sine_
table[i]  is equal to

    10 000 2 8 0 1 2 7, / forsin( ) , , , . . . ,πi i =     

 In this example, a sampling rate of 8   kHz is used and interrupts will occur every 
0.125   ms. On interrupt, the interrupt service routine (ISR)  c_int11()  is called and 
within that routine the most important program statements are executed. Function 
 output_left_sample()  is used to output a value read from the array  sine_table  
to the DAC and the index variable  loopindex  is incremented to point to the next 
value in the array. If the incremented value of  loopindex  is greater than or equal 
to the number of sample values in the table ( LOOPLENGTH ), it is reset to zero. The 
1 - kHz frequency of the sinusoidal output signal corresponds to the eight samples 
per cycle output at a rate of 8   kHz. 

 The DAC converts the output sample values into a sinusoidal analog output 
signal. Build and run the project as  sine8_intr  and verify a 1   kHz output 
waveform.  

  Example 2.8:   Sine Wave Generation Using  sin()  Function Call 
( sine_intr ) 

 Different sine wave frequencies can be generated using the table lookup method 
used by program  sine8_intr.c . For example, a 3 - kHz tone can be generated by 
changing the line that reads

 short sine_table[LOOPSIZE] = 
   {0, 7071, 10000, 7071, 0,  - 7071,  - 10000,  - 7071}; 

to read

 short sine_table[LOOPSIZE] = 
   {0, 7071,  - 10000, 7071, 0,  - 7071, 10000,  - 7071};  

 However, changing the contents and/or size of the lookup table is not a fl exible 
way of generating sinusoids of arbitrary frequencies. Program  sine_intr.c , 
listed in Figure  2.15 , takes a different approach. At each sampling instant, that is, 
within function  c_int11() , a new output sample value is calculated using a call to 
the math library function  sin() . The fl oating - point parameter,  theta , passed to that 
function is incremented at each sampling instant by the value  theta_increment = 
2 * PI * frequency/SAMPLING_FREQ  and when value of  theta  exceeds 2  π   the value 
2  π   is subtracted from it.   

 While program  sine_intr.c  has the advantage of fl exibility, it also has the dis-
advantage, relative to program  sine8_intr.c , that it requires far greater compu-
tational effort, which is important in real - time applications. 
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 Build and run this project as   sine_intr   and experiment by changing the value 
assigned to the variable  frequency  (within the range 100 – 3800).  

  Example 2.9:   Sine Wave Generation with Stereo Output ( sine_stereo ) 

 Source fi le  sine_stereo.c , stored in the folder  sine_stereo , is listed in Figure 
 2.16 . It illustrates the use of both left -  and right - hand channels of the AIC23 codec. 
Build and run this project as   sine_stereo  . Verify that a 1 - kHz sinusoid is output 
through the right - hand channel and a 3 - kHz sinusoid is output through the left - hand 
channel.    

//sine_intr.c Sine generation using sin() function

#include <math.h>
#include "DSK6713_AIC23.h"              //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;      //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define SAMPLING_FREQ 8000
#define PI 3.14159265358979

float frequency = 1000.0;
float amplitude = 10000.0;
float theta_increment;
float theta = 0.0;

interrupt void c_int11()
{
 theta_increment = 2*PI*frequency/SAMPLING_FREQ;
 theta += theta_increment;
 if (theta > 2*PI) theta -= 2*PI;
 output_left_sample((short)(amplitude*sin(theta)));
 return;
}

void main()
{
 comm_intr();
 while(1);
}

    FIGURE 2.15.     Sine wave generation program using call to math function  sin()  
( sine_intr.c ).  
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//sine_stereo Sine generation to both LEFT and RIGHT channels

#include "dsk6713_aic23.h"          //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input

#define LEFT  0
#define RIGHT 1
union {Uint32 uint; short channel[2];} AIC23_data;

#define LOOPLENGTH 8              //size of look up table
short sine_table_left[LOOPLENGTH]={0,7071,10000,7071,0,
                                   -7071,-10000,-7071};
short sine_table_right[LOOPLENGTH]={0,-7071,10000,-7071,
                                    0,7071,-10000,7071};
short loopindex = 0;              //look up table index

interrupt void c_int11()          //interrupt service routine
{
  AIC23_data.channel[RIGHT]=sine_table_right[loopindex];
  AIC23_data.channel[LEFT]=sine_table_left[loopindex];

  output_sample(AIC23_data.uint); //output to both channels
  if (++loopindex >= LOOPLENGTH)
    loopindex = 0;                //check for end of table
  return;
}

void main() 
{
  comm_intr();                    //init DSK,codec,McBSP
  while(1) ;                      //infinite loop
}

    FIGURE 2.16.     Program to generate two sinusoids of different frequencies using left -  and 
right - hand channels ( sine_stereo.c ).  

  Example 2.10:   Sine Wave Generation with Two Sliders for 
Amplitude and Frequency Control ( sine2sliders ) 

 The polling - based program  sine2sliders.c , listed in Figure  2.17 , generates a sine 
wave. Two sliders are used to vary both the amplitude (gain) and the frequency of 
the sinusoid generated. Using a lookup table containing 32 samples of exactly one 
cycle of a sine wave, the frequency of the output waveform is varied by selecting 
different numbers of points per cycle. The gain slider scales the volume/amplitude 
of the waveform signal. The appropriate GEL fi le   sine2sliders.gel   is listed in 
Figure  2.18 .     
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//sine2sliders.c Sine generation with different # of points

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;       //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

short loop = 0;
short sine_table[32]={0,195,383,556,707,831,924,981,1000,
                      981,924,831,707,556,383,195,0,-195,
                      -383,-556,-707,-831,-924,-981,-1000,
                      -981,-924,-831,-707,-556,-383,-195};
short gain = 1;                      //slider gain
short frequency = 2;                 //slider frequency

void main()
{
  comm_poll();                       //init DSK, codec, McBSP
  while(1)                           //infinite loop
  {
    output_left_sample(sine_table[loop]*gain); //output value
    loop += frequency;               //incr frequency index
    loop = loop % 32;                //modulo to reset index
  }
}

    FIGURE 2.17.     Sinusoid generation with GEL slider controls for gain and frequency 
( sine2sliders.c ).  

/*sine2sliders.gel Two sliders to vary gain and frequency*/

menuitem "Sine Parameters"

slider Gain(1,8,1,1,gain_parameter)
{
  gain = gain_parameter;
}

slider Frequency(2,8,2,2,frequency_parameter)
{
  frequency = frequency_parameter;
}      

    FIGURE 2.18.     GEL slider controls for gain and frequency ( sine2sliders.gel ).  
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 The 32 sine data values in the table or buffer correspond to

    1000 2 32 0 1 2 31sin( ) , , , . . . ,πi i/ for =   

 The frequency slider sets the value of the variable  frequency  to 2, 4, 6, or 8. This 
value is added to the index into the lookup table,  loop , at each sampling instant. 
The modulo operator is used to test when the end of the lookup table is reached. 
When the loop index reaches 32, it is reset to zero. For example, with the frequency 
slider at position 2, the loop or frequency index steps through every other value in 
the table. This corresponds to 16 data values within one cycle. 

 Build this project as   sine2sliders  , using the appropriate support fi les for a 
polling - driven program. The main C source fi le   sine2sliders.c   is contained in the 
folder  sine2sliders . Verify that initially the frequency generated is 500   Hz (fre-
quency   =   2). Increase the slider position (the use of a slider was introduced in 
 Example 1.1 ) to 4, 6, and 8, and verify that the signal frequencies generated are 
1000, 1500, and 2000   Hz, respectively. Note that when the slider is at position 4, the 
loop or frequency index steps through the table selecting the eight values (per 
cycle) — sin[0], sin[4], sin[8],       .      .      .       , sin[28] — that correspond to the data values 0, 707, 
1000, 707, 0,  − 707,  − 1000, and  − 707. The resulting frequency generated is then 1   kHz 
(as in  Example 1.1 ).  

  Example 2.11:   Sweep Sinusoid Using Table with 8000 Points ( sweep8000 ) 

 Figure  2.19  shows a listing of the program  sweep8000.c , which generates a sweep-
ing sinusoidal signal using a table lookup with 8000 points. The header fi le  sine8000_
table.h  contains the 8000 data points that represent exactly one cycle of a sine 
wave. The fi le  sine8000_table.h  (stored in folder  sweep8000 ) was generated 
using the MATLAB command

 x = 1000 * sin(2 * pi * [0:7999]/8000)    

 Figure  2.20  shows a partial listing of the fi le   sine8000_table.h  .   
 At each sampling instant, program  sweep8000.c  reads an output sample value 

from the array  sine8000 , using the value of  fl oat_index , cast as an integer, as an 
index, and increments the value of  fl oat_index  by the value  fl oat_incr . With  N  
points in the lookup table representing one cycle of a sinusoid, the frequency of the 
output waveform is equal to  SAMPLING_FREQ * fl oat_incr/N . 

 A fi xed value of  fl oat_incr  would result in a fi xed output frequency. In program 
 sweep8000.c , the value of  fl oat_incr  itself is incremented at each sampling instant 
by the value  DELTA_INCR  and hence the frequency of the output waveform increases 
gradually from  START_FREQ  to  STOP_FREQ . The output waveform generated by the 
program can be altered by changing the values of the constants  START_FREQ, 
STOP_FREQ , and  SWEEPTIME , from which the value of  DELTA_INCR  is calculated. 
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//sweep8000.c sweep sinusoid using table with 8000 points

#include "DSK6713_AIC23.h"               //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;      //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include "sine8000_table.h"     //one cycle with 8000 points
#define SAMPLING_FREQ 8000.0
#define N 8000
#define START_FREQ 100.0
#define STOP_FREQ 3500.0
#define START_INCR START_FREQ*N/SAMPLING_FREQ
#define STOP_INCR STOP_FREQ*N/SAMPLING_FREQ
#define SWEEPTIME 5.0
#define DELTA_INCR (STOP_INCR - START_INCR)/(N*SWEEPTIME)

short amplitude = 10;              //amplitude
float float_index = 0.0;
float float_incr = START_INCR;
short i;

void main()
{
  comm_poll();                     //init DSK, codec, McBSP
  while(1)                         //infinite loop
  {
    float_incr += DELTA_INCR;
 if (float_incr > STOP_INCR) float_incr = START_INCR;
    float_index += float_incr;
    if (float_index > N) float_index -= N;
    i = (short)(float_index);
    output_left_sample(amplitude*sine8000[i]); //output
  }
}

    FIGURE 2.19.     Program to generate sweeping sinusoid using table lookup with 8000 points 
( sweep8000.c ).  

 Build and run this project as   sweep8000  . Verify the output as a sweeping sinusoid 
taking  SWEEPTIME  seconds to increase in frequency from  START_FREQ  to  STOP_FREQ . 
Note that the source program   sweep8000.c   is polling - driven (use the appropriate 
interrupt vector fi le  vectors_poll.asm ).  

  Example 2.12:   Generation of  DTMF  Tones Using a Lookup Table 
( sineDTMF_intr ) 

 Program  sineDTMF_intr.c , listed in Figure  2.21 , uses a lookup table containing 512 
samples of a single cycle of a sinusoid together with two independent pointers to 
generate a dual tone multifrequency (DTMF) waveform. DTMF waveforms are 
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//sine8000_table.h Sine table with 8000 points generated with MATLAB

short sine8000[8000]=
{0, 1, 2, 2, 3, 4, 5, 5,
6, 7, 8, 9, 9, 10, 11, 12,
13, 13, 14, 15, 16, 16, 17, 18,
19, 20, 20, 21, 22, 23, 24, 24,
25, 26, 27, 27, 28, 29, 30, 31,
31, 32, 33, 34, 35, 35, 36, 37,
38, 38, 39, 40, 41, 42, 42, 43,
44, 45, 46, 46, 47, 48, 49, 49,
50, 51, 52, 53, 53, 54, 55, 56,
57, 57, 58, 59, 60, 60, 61, 62,
63, 64, 64, 65, 66, 67, 67, 68,
69, 70, 71, 71, 72, 73, 74, 75,
75, 76, 77, 78, 78, 79, 80, 81,
  . 
  .
  .
-13, -12, -11, -10, -9, -9, -8, -7,
-6, -5, -5, -4, -3, -2, -2, -1};    

    FIGURE 2.20.     Partial listing of sine with 8000 data points ( sine8000_table.h ).  

used in telephone networks to indicate key presses. A DTMF waveform is the sum 
of two sinusoids of different frequencies. A total of 16 different combinations of 
frequencies each comprising one of four low frequency components (697, 770, 852, 
or 941   Hz) and one of four   high frequency components (1209, 1336, 1477, or 1633) 
are used. Program  sineDTMF_intr.c  uses two independent pointers into a single 
lookup table, each updated at the same rate (16   kHz) but each stepping through the 
values in the table at a different rate.   

 A pointer that stepped through every single one of the  TABLESIZE  samples stored 
in the lookup table at a sampling rate of 16   kHz would generate a sinusoidal tone 
with a frequency of  f    =   ( 16000 / TABLESIZE ). A pointer that stepped through the 
samples stored in the lookup table, incremented by a value  STEP , would generate a 
sinusoidal tone with a frequency of  f    =   ( 16000  *  STEP / TABLESIZE ). 

 From this it is possible to calculate the required step size for any desired 
frequency  f . For example, in order to generate a sinusoid with frequency 770   Hz, 
the required step size is STEP   =   TABLESIZE    *    770/16000   =   512    *    770/16000   =  
 24.64. 

 In other words, at each sampling instant, the pointer into the lookup table should 
be incremented by 24.64. The pointer value, or index, into the lookup table must in 
practice be an integer value ( (short)loopindexlow ) but the fl oating - point value 
of the pointer, or index,  loopindexlow , can be maintained and incremented by 
24.64, wrapping around 0.0 when its value exceeds 512.0 using the statements

 loopindexlow += 24.64;
if(loopindexlow > (fl oat)TABLESIZE)loopindexlow - =(fl oat)TABLESIZE;  
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//sinedtmf_intr.c DTMF tone generation using lookup table

#include "DSK6713_AIC23.h"              //codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;     //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#include <math.h>
#define PI 3.14159265358979

#define TABLESIZE 512             // size of look up table
#define SAMPLING_FREQ 16000
#define STEP_770 (float)(770 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1336 (float)(1336 * TABLESIZE)/SAMPLING_FREQ
#define STEP_697 (float)(697 * TABLESIZE)/SAMPLING_FREQ
#define STEP_852 (float)(852 * TABLESIZE)/SAMPLING_FREQ
#define STEP_941 (float)(941 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1209 (float)(1209 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1477 (float)(1477 * TABLESIZE)/SAMPLING_FREQ
#define STEP_1633 (float)(1633 * TABLESIZE)/SAMPLING_FREQ

short sine_table[TABLESIZE];
float loopindexlow = 0.0;         // look up table index
float loopindexhigh = 0.0;
short i;

interrupt void c_int11()          //interrupt service routine
{
  output_left_sample(sine_table[(short)loopindexlow]
  + sine_table[(short)loopindexhigh]);
  loopindexlow += STEP_697;
  if (loopindexlow > (float)TABLESIZE)
    loopindexlow -= (float)TABLESIZE;
  loopindexhigh += STEP_1477;
  if (loopindexhigh > (float)TABLESIZE)
    loopindexhigh -= (float)TABLESIZE;

  return;                         //return from interrupt
}

void main()
{
  comm_intr();                    // initialise DSK
  for (i=0 ; i< TABLESIZE ; i++)
    sine_table[i] = (short)(10000.0*sin(2*PI*i/TABLESIZE));
  while(1);
}

    FIGURE 2.21.     Program to generate DTMF tone using lookup table ( sineDTMF_intr.c ).  
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 In program  sineDTMF_intr.c , the fl oating - point values by which the table 
lookup indices are incremented are predefi ned using, for example, line

 #defi ne STEP_770 (fl oat)(770  *  TABLESIZE) / SAMPLING_FREQ  

 In order to change the DTMF tone generated, and simulate a different key press, 
edit the fi le  sineDTMF.c  and change the lines that read

 loopindexlow += STEP_697;
loopindexhi += STEP_1477; 

to, for example,

 loopindexlow += STEP_770;
loopindexhi += STEP_1209;  

 An example of the output generated by program  sineDTMF_intr.c  is shown in 
Figure  2.22 .    

  Example 2.13:   Sine Wave Generation with Table Values Generated Within 
Program ( sinegen_table ) 

 This example creates one period of sine data values for a table. Then these values 
are output to generate a sine wave. Figure  2.23  shows a listing of the program 
  sinegen_table.c  , which implements this project. The frequency generated is

    f FS= = =/ number of points / Hz( ) 8000 10 800       

    FIGURE 2.22.     Frequency - domain representation of output signal generated using program 
 sineDTMF_intr.c .    
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 Build and run this project as   sinegen_table  . Verify a sine wave generated with 
a frequency of 800   Hz. Change the number of points to generate a 400 - Hz sine wave 
(only  table_size  needs to be changed).  

  Example 2.14:   Sine Wave Generation with Table Created by  MATLAB  
( sin1500MATL ) 

 This example illustrates the generation of a sinusoid using a lookup table created 
with MATLAB. Figure  2.24  shows a listing of the MATLAB program  sin1500.m , 
which generates a fi le with 128 data points with 24 cycles. The sine wave frequency 
generated is

    f FS= =( )/( )number of cycles number of points Hz1500     

//sinegen_table.c generates a sinusoid using a look-up table

#include "DSK6713_AIC23.h"           //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in
#include <math.h>
#define table_size (short)10         //set table size
short sine_table[table_size];        //sine table array
int i;

interrupt void c_int11()             //interrupt service routine
{
  output_left_sample(sine_table[i]); //output each sine value
  if (i < table_size - 1) ++i;     //incr index until end of table
  else i = 0;                        //reset index if end of table
  return;                            //return from interrupt
}

void main()
{
  float pi=3.14159;

  for(i = 0; i < table_size; i++)
    sine_table[i]=10000*sin(2.0*pi*i/table_size);
  i = 0;
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
}

    FIGURE 2.23.     Sine wave generation program using table generated within program 
 sinegen_table.c .  
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 Run  sin1500.m  within MATLAB and verify the creation of header fi le 
 sin1500.h  with 128 points, as shown in Figure  2.25 . Different numbers of points 
representing sinusoidal signals of different frequencies can readily be obtained with 
minor changes to the MATLAB program  sin1500.m .   

 Figure  2.26  shows a listing of the C source fi le  sin1500MATL.c , which implements 
this project in real time. This program includes the header fi le generated by 
MATLAB. See also  Example 2.13 , which generates the table within the main C 
source program rather than using MATLAB.   

 Build and run this project as   sin1500MATL  . Verify that the output is a 1500 - Hz 
sine wave signal. Within CCS, be careful when you view the header fi le  sin1500.h  
so as not to truncate it.  

%sin1500.m Generates 128 points representing sin(1500) Hz
%Creates file sin1500.h
for i=1:128
 sine(i) = round(1000*sin(2*pi*(i-1)*1500/8000)); %sin(1500)
end

fid = fopen('sin1500.h','w');         %open/create file
fprintf(fid,'short sin1500[128]={');  %print array name,"={"
fprintf(fid,'%d, ' ,sine(1:127));     %print 127 points
fprintf(fid,'%d' ,sine(128));         %print 128th point
fprintf(fid,'};\n');                  %print closing bracket
fclose(fid);                          %close file 

    FIGURE 2.24.     MATLAB program to generate a lookup table for sine wave data 
( sin1500.m ).  

    FIGURE 2.25.     Sine table lookup header fi le generated by MATLAB ( sin1500.h ).  

short sin1500[128]=
{0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924,
 0, 924, 707, -383, -1000, -383, 707, 924,
 0, -924, -707, 383, 1000, 383, -707, -924}; 
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//Sin1500MATL.c Generates sine from table created with MATLAB

#include "DSK6713_AIC23.h"           //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "sin1500.h"                 //created with MATLAB
int i=0;

interrupt void c_int11()
{ 
 output_sample(sin1500[i]*10);      //output each sine value
 if (i < 127) ++i;                  //incr until end of table
   else i = 0; 
 return;                            //return from interrupt
}

void main()
{
 comm_intr();                       //init DSK, codec, McBSP
 while(1);                          //infinite loop
}

    FIGURE 2.26.     Sine generation program using header fi le with sine data values generated 
by MATLAB ( sin1500MATL.c ).  

  Example 2.15:   Sine Wave Generation with  DIP  Switch Control 
( sine_led_ctrl ) 

 The program  sine_led_ctrl.c , shown in Figure  2.27 , implements sine wave gen-
eration using a DIP switch to control for how long the sine wave is generated. When 
DIP switch #0 is pressed and held down, LED #0 toggles and a 1 - kHz sine wave is 
generated, for as long as DIP switch #0 is held down or for a duration determined 
by the value of the variable  on_time . A GEL slider ( sine_led_ctrl.gel ) can be 
used to vary the value of  on_time  between 1 and 10 seconds. Unlike  Example 1.1 , 
after DIP switch #0 is pressed down, a sine wave is generated but  only  for  on_time  
seconds.   

 Build and run this project as   sine_led_ctrl  . Press DIP switch #0 and verify 
both that LED #0 toggles and that a 1 - kHz sine wave is generated for 1 second 
(with  on_time  set at 1). Load the GEL fi le  sine_led_ctrl.gel  and select  GEL →
 Delay Control  to obtain the slider. Increase the slider value to 8. The sine wave 
should be generated and LED #0 should toggle for approximately 8 seconds after 
DIP switch #0 is pressed.  
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    FIGURE 2.27.     Sine generation with DIP switch control program ( sine_led_ctrl.c ).  

//sine_led_ctrl.c Sine generation with DIP Switch control

#include "dsk6713_aic23.h"          //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};
short loop=0, gain=10;
short j=0, k = 0;                   //delay counter
short flag = 0;                     //for LED on
short const delay = 800;            //for delay loop
short on_time = 1;                  //led is on for on_time secs

void main()
{
 comm_poll();                       //init BSL
 DSK6713_LED_init();                //init LEDs
 DSK6713_DIP_init();                //init DIP SWs
 while(1)                           //infinite loop
 {
  if(DSK6713_DIP_get(0)==0 &&(k<=(on_time*5))) //if SW0 pressed
  {
   if(flag==0) DSK6713_LED_toggle(0);    //LED0 toggles
   else DSK6713_LED_off(0);              //turn LED0 off
   output_sample(sine_table[loop]*gain); //output with gain
   if(loop < 7) loop++;             //increment loop index
   else loop = 0;                   //reset if end of table
   if (j < delay) ++j;              //delay counter
   else
   {
    j = 0;                          //reset delay counter
    if (flag == 1)
    {
     flag = 0;                      //if flag=1 toggle LED
     k++;
    }
    else flag = 1;                  //toggle flag
   }
  }
  else
  {
   DSK6713_LED_off(0);              //turn off LED0
   if(DSK6713_DIP_get(0)==1) k=0;   //if LED0 off reset counter
  } 
 }
} 
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  Example 2.16:   Signal Reconstruction, Aliasing, and the Properties 
of the  AIC 23 Codec 

 Generating analog output signals using programs such as  sine_intr.c  (Figure 
 2.15 ) is a useful means of investigating the characteristics of the AIC23 codec. 
Change the value of the variable  frequency  in program  sine_intr.c  to an arbi-
trary value between 100.0 and 3500.0 and you should fi nd that a sine wave of that 
frequency is generated. Change the value of the variable  frequency  to 7000.0, 
however, and you will fi nd that a 1 - kHz sine wave is generated. Verify that the same 
is true if the value of  frequency  is changed to 9000.0 or 15000.0. 

 These effects are due to the phenomenon of aliasing. Sequences of samples cal-
culated using function  sin()  at frequencies 8000 n     ±    1000   Hz, where  n    =   0,  ± 1,  ± 2, 
 ± 3,       .      .      .       are identical and all are reconstructed by the codec as a 1 - kHz sine wave. 

 A graphical representation of this is shown in Figure  2.28 .   

    FIGURE 2.28.     Graphical representation of equivalence of signals generated by sampling 
1 - kHz and 7 - kHz sine waves at 8 - kHz.  
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 In the time domain, the sampling process may be represented by multiplication 
of the analog input waveform sin(2 * pi * 1000 * t)   (Figure  2.28 a) by a sequence of 
impulses at intervals of    Ts   =   0.125   ms (Figure  2.28 c), resulting in a sequence of 
weighted impulses (Figure  2.28 e). 

 In the frequency domain, the analog input waveform is represented by two 
discrete values at ± 1   kHz (Figure  2.28 b) and the sequence of time - domain impulses 
by a sequence of impulses in the frequency domain at intervals of   1/ Ts   =   8   kHz 
(Figure  2.28 d). 

 Multiplication in the time domain is equivalent to convolution in the frequency 
domain. Convolving the signals of Figures  2.28 b and  2.28 d, the frequency - domain 
representation of the sampled sinusoid (Figure  2.28 e) is an infi nitely repeated 
sequence of copies of the two impulses at ± 1   kHz centered at 0   Hz,  ± 8   kHz, 
± 16   kHz,       .      .      .       (Figure  2.28 f). 

 Next, consider the case of a 7 - kHz sine wave sampled at 8   kHz. Time -  and 
frequency - domain representations of the analog input signal sin(2 * pi * 7000 * t)   
are shown in Figures  2.28 g and  2.28 h. 

 Convolving the signal shown in Figure  2.28 h with that shown in Figure  2.28 d 
results in the signal shown in Figure  2.28 j. This comprises an infi nitely repeated 
sequence of copies of the two impulses at ± 7   kHz centered at 0   Hz,  ± 8   kHz, 
± 16   kHz,       .      .      .       . Despite their different derivations, Figures  2.28 f and  2.28 j are identical. 
This corresponds to the equivalence of the time - domain sample sequences shown 
in Figures  2.28 e and  2.28 i. 

 The lowpass characteristic of the DAC can be represented by the attenuation, or 
blocking, of frequency components outside the range ± 4   kHz. This results, in this 
example, in the lowpass fi ltered or reconstructed versions of the signals in Figures 
 2.28 f and  2.28 j being identical to that shown in Figure  2.28 b. 

 Since the reconstruction (digital - to - analog conversion) process is one of lowpass 
fi ltering, it follows that the bandwidth of signals output by the codec is limited. This 
can be demonstrated in a number of different ways. 

 For example, run program  sine_intr.c  with the value of the variable  fre-
quency  set to 3500.0. Verify that the output waveform generated has a frequency 
of 3500   Hz. Next, change the value of the variable  frequency  to 4500.0. The fre-
quency of the output waveform should again be equal to 3500   Hz. Try any value for 
the variable frequency . You should fi nd that it is impossible to generate an output 
waveform with a frequency greater than 4000   Hz (assuming a sampling frequency 
of 8   kHz).  

Example 2.17: Square Wave Generation Using Lookup Table ( squarewave)

 Program  squarewave.c , listed in Figure  2.29  and stored in folder  squarewave , 
differs from program sine8_intr.c  only insofar as it uses a lookup table containing 
64 samples of one cycle of a square wave of frequency 125   Hz rather than 8 samples 
of one cycle of a sine wave. Build and run the program and, using an oscilloscope, 
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you should see an output waveform as shown in Figure  2.30 a. This waveform is 
equivalent to a square wave (represented by the samples in the lookup table) passed 
through a lowpass fi lter (the DAC). The symmetrical  “ ringing ”  at each edge of the 
square wave is indicative of the presence of a digital FIR fi lter, which is exactly how 
the DAC implements the lowpass reconstruction fi lter. Figure  2.31  shows the mag-
nitude frequency response of that fi lter as specifi ed in the AIC23 datasheet. The 
drooping of the level of the waveform between transients seen in the oscilloscope 
trace of Figure  2.30 a is due to the ac coupling of the codec to the LINE OUT 
socket.       

 The lowpass characteristic of the reconstruction fi lter can further be highlighted 
by looking at the frequency content of the output waveform. Only harmonics 
below 3.8   kHz are present in the analog output waveform as shown in Figure 
 2.30 (b). 

 The following examples demonstrate a number of alternative approaches to 
observing the lowpass characteristic of the DAC reconstruction fi lter.  

//squarewave.c 125 Hz square wave generated using lookup table
#include "dsk6713_aic23.h"          //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  // set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#define LOOPLENGTH 64
short square_table[LOOPLENGTH] =
{10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
10000, 10000, 10000, 10000, 10000, 10000, 10000, 10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000,
-10000,-10000,-10000,-10000,-10000,-10000,-10000,-10000};
short loopindex = 0;

interrupt void c_int11()
{
  output_sample(square_table[loopindex++]);
  if (loopindex >= LOOPLENGTH)
    loopindex = 0;
  return;          
}

void main()
{
  comm_intr();
  while(1);
}

    FIGURE 2.29.     Program to generate square wave ( squarewave.c ).  
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(a)

(b)

    FIGURE 2.30.     Waveform generated using program  squarewave.c : (a) time domain and (b) 
frequency domain.  

    FIGURE 2.31.     Magnitude frequency response of AIC23 codec reconstruction fi lter. (Cour-
tesy of Texas Instruments.)  
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FIGURE 2.32.     Waveform generated using program  dimpulse.c  . Upper trace shows output 
signal in time domain (5    m s/div); lower trace shows output signal in frequency domain 
(1 - kHz/div).

Example 2.18: Step and Impulse Responses of the DAC Reconstruction 
Filter ( dimpulse)

 The frequency of the output waveform generated by program  squarewave.c  is 
suffi ciently low that it may be considered as illustrating the step response of the 
reconstruction fi lter in the DAC. The impulse response of the fi lter can be illustrated 
by running program dimpulse.c . This program replaces the samples of a square 
wave in the lookup table with a discrete impulse sequence. Figure  2.32  shows the 
output waveform generated by dimpulse.c  and its FFT calculated using an  Agilent
54621A  oscilloscope.   

 Note in all of the time - domain oscilloscope plots that the output waveform is 
piecewise constant with a step length of 12.5    m s. This, together with the symmetrical 
form of impulse response, is indicative of an oversampling digital lowpass recon-
struction fi lter within the AIC23. The output sample sequence written to the DAC 
at a rate of 8   kHz is upsampled to a rate of 80   kHz and passed through a lowpass 
digital fi lter and then a zero order hold. For many applications, including the example 
programs in this book, there is no need for further analog lowpass fi ltering of the 
codec output signal. Figure  2.33  highlights the piecewise constant nature of the 
codec output signal.    

Example 2.19: Frequency Response of the DAC Reconstruction Filter 
Using Pseudorandom Noise ( prandom)

 The program  prandom.c , listed in Figure  2.34 , generates a pseudorandom noise 
sequence. It uses a software - based implementation of a maximal - length sequence 
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technique for generating a pseudorandom binary sequence. An initial 16 - bit seed is 
assigned to a register. Bits b0, b1, b11, and b13 are XORed and the result is placed 
into a feedback variable. The register with the initial seed value is then shifted one 
bit to the left. The feedback variable is then assigned to bit b0 of the register. A 
scaled minimum or maximum is assigned to  prnseq   , depending on whether the 
register ’ s bit b0 is zero or 1. This scaled value corresponds to the noise - level ampli-
tude. The header fi le  noise_gen.h  defi nes the shift register bits.   

 Build and run this project as   prandom  . Figure  2.35  shows the output waveform 
displayed using an oscilloscope and using  Goldwave . The output spectrum is rela-
tively fl at until the cutoff frequency of approximately 3800   Hz, which represents the 
bandwidth of the reconstruction fi lter on the AIC23 codec.    

(a)

(b)

    FIGURE 2.33.     Output waveform generated using program  sine_intr.c : (a) 1 - kHz sine 
wave and (b) detailed view emphasizing piecewise constant nature.  
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// prandom.c program to test response of AIC23 codec
// using pseudo-random noise
#include "DSK6713_AIC23.h"         // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in

#include "noise_gen.h"             //support file for noise
#define NOISELEVEL 8000            //scale for  1 sequence
int fb;                            //feedback variable
shift_reg sreg;                    //shift register
float yn;                          //output sample

int prand(void)                    //pseudo-random noise
{
  int prnseq; 
  if(sreg.bt.b0)
    prnseq = -NOISELEVEL;          //scaled -ve noise level
  else 
    prnseq = NOISELEVEL;           //scaled  noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);   //XOR bits 0,1
  fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
  sreg.regval<<=1;                 //shift register to left
  sreg.bt.b0=fb;                   //close feedback path
  return prnseq;
}

void resetreg(void)                //reset shift register
{
  sreg.regval=0xFFFF;              //initial seed value
  fb = 1;                          //initial feedback value
}

interrupt void c_int11()           //interrupt service routine
{
  yn = (float)(prand());           //get new sample value
  output_left_sample((short)(yn)); //output to codec
  return;                          //return from interrupt
}

void main()
{
  resetreg();                      //reset shift register
  comm_intr();                     //initialise McBSP and codec
  while (1);                       //infinite loop
}

    FIGURE 2.34.     Pseudorandom binary sequence generation ( prandom.c ).  
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(a)

(b)

    FIGURE 2.35.     Waveform generated using program  prandom.c : (a) using  Goldwave  and (b) 
using oscilloscope. Upper trace shows output signal in time domain (5   ms/div); lower trace 
shows output signal in frequency domain (1   kHz/div).  

  Aliasing 
 So far we have seen that the AIC23 codec cannot generate signal components 
having frequencies greater than 4   kHz. This is true however we produce output 
sample sequences. It follows that it is inadvisable to allow analog input signal com-
ponents having frequencies greater than 4   kHz to be sampled at the input to a DSP 
system. This can be prevented by passing analog input signals through a lowpass 
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FIGURE 2.36.      Graph Property  settings for use with program  loop_buf.c .  

antialiasing fi lter prior to sampling. An oversampling digital antialiasing fi lter with 
characteristics similar to those of the reconstruction fi lter in the digital - to - analog 
converter is built in to the analog - to - digital converter in the AIC23 codec.  

Example 2.20: Step Response of the AIC23 Codec Antialiasing Filter 
(loop_buf)

 In order to investigate the step response of the  antialiasing  fi lter on the AIC23, 
connect a signal generator to the DSK LINE IN socket. Adjust the signal generator 
to give a square wave output of frequency 270   Hz and amplitude 0.2   V. Load and run 
program loopbuf.c  on the DSK, halting the DSP after a few seconds. You can view 
the most recent 64 input sample values by selecting View→ Graph  and setting the 
Graph Properties  as shown in Figure  2.36 . You should see something similar to the 
display shown in Figure  2.37 b. Figure  2.37 a shows the square wave input signal that 
produced the display of Figure  2.37 b. The ringing on either side of edges of the square 
wave and the drooping of the level between transients are due to the antialiasing 
fi lter and the ac coupling of the codec to the LINE IN socket on the DSK.      

Example 2.21: Demonstration of Aliasing ( aliasing)

 The digital antialiasing fi lters in the AIC23 codec cannot be bypassed or disabled. 
However, as mentioned previously, aliasing is a potential problem whenever sam-
pling takes place. Program aliasing.c  uses a sampling rate of 16   kHz for the codec 
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but then resamples the sequence of samples produced by the ADC at the lower rate 
of 8   kHz (downsampling). The sequence of samples generated at a rate of 16   kHz 
by the ADC may contain frequency components at frequencies greater than 4   kHz 
and therefore if that sample sequence is downsampled to a rate of 8   kHz simply by 
discarding every second sample, aliasing may occur. To avoid aliasing, the 16 - kHz 
sample sequence output by the ADC must be passed through a digital antialiasing 
fi lter before downsampling. Program  aliasing.c  uses an FIR fi lter (see Chapter 
 4 ) for this task (Figure  2.38 ). For the purposes of this example, it is suffi cient to 
consider that the program demonstrates the effect of sampling at a frequency of 
8   kHz with and without using an antialiasing fi lter.   

(a)

(b)

    FIGURE 2.37.     Step response of AIC23 codec antialiasing fi lter: (a) square wave input signal 
and (b) input samples captured using program  loop_buf.c .  
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    FIGURE 2.38.     C source program to demonstrate aliasing effect ( aliasing.c ).  

//aliasing.c illustration of downsampling, aliasing, upsampling

#include "DSK6713_AIC23.h"          //codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#include "lp6545.cof"               //filter coefficients

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input

#define DISCARD 0
#define SAMPLE 1

short flag = DISCARD;           //toggles for 2x down-sampling
short indly[N],outdly[N];       //antialias, reconstr delay lines
float yn; int i;                //filter output, index
short antialiasing = 1;         //init for no antialias filter

interrupt void c_int11()        //ISR
{
 indly[0]=(float)(input_left_sample()); //new input sample
 yn = 0.0;                      //initialize downsampled value
 if (flag == DISCARD) flag = SAMPLE; //don't discard
 else
  {
   if (antialiasing == 1)       //if antialiasing filter used
    {                           //compute downsampled value
     for (i = 0 ; i < N ; i++)  //using LP filter coeffs
      yn += (h[i]*indly[i]);    //filter is uses float
    }
   else                         //if filter is bypassed
   yn = indly[0];               //downsampled value is input
   flag = DISCARD;              //next input will be discarded
  } 
 for (i = N-1; i > 0; i--)
  indly[i] = indly[i-1];        //update input buffer

 outdly[0] = (yn);              //input to reconstr filter
 yn = 0.0;                      //8 kHz sample values and zeros
 for (i = 0 ; i < N ; i++)      //are filtered at 16 kHz rate
  yn += (h[i]*outdly[i]);       //by reconstr lowpass filter

 for (i = N-1; i > 0; i--)
  outdly[i] = outdly[i-1];      //update delay lines

 output_left_sample((short)yn); //16 kHz rate sample
 return;                        //return from interrupt
}

void main()
{
 comm_intr();                   //init DSK, codec, McBSP 
 while(1);                      //infinite loop
}
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 Build, load, and run program  aliasing.c . Connect a signal generator to the 
LINE IN input on the DSK and vary the frequency of the input signal between 0 
and 8   kHz. Initially, the antialiasing fi lter is enabled and signals with frequencies 
greater than 3.8   kHz do not pass from the DSK input (LINE IN) to the DSK output 
(LINE OUT and HEADPHONE). Load the GEL slider aliasing.gel  and bring 
it up by selecting GEL→ Aliasing Control . Using the GEL slider you can disable 
the antialiasing fi lter in program  aliasing.c  and by varying the frequency of the 
input signal (with antialiasing disabled) you should be able to verify that signals 
with frequencies between 4   kHz and 8   kHz are  “ folded back ”  into the frequency 
range 0 – 4   kHz.  

Example 2.22: Identifi cation of  AIC23 Codec Bandwidth 
Using an Adaptive Filter ( sysid)

 Another way of observing the limited bandwidth of the codec is to measure its 
magnitude frequency response using program sysid.c  (Figure  2.39 ). This program 
uses an adaptive FIR fi lter and is described in more detail in Chapter  7 . However, 
you need not understand exactly how program sysid.c  works in order to use it. 
Effectively, it identifi es the characteristics of the path between its discrete - time 
output and its discrete - time input (points A and B in Figure  2.40 ).     

 Connect the analog LINE OUT output on the DSK to its analog LINE IN input 
using a 3.5 - mm jack to 3.5 - mm jack cable as shown in Figure  2.40 . The signal path 
that will be identifi ed by program  sysid.c  comprises the series combination of the 
digital - to - analog and analog - to - digital converters. 

 Run program  sysid.c  for a few seconds and then halt it and observe the mag-
nitude frequency response that it has identifi ed by selecting  View→ Graph  and 
setting Graph Properties  as shown in Figure  2.41 . The roll - off of the frequency 
response at very low frequencies is due to the ac coupling of the codec (Figure  2.42 ). 
Figure  2.44  shows the corresponding time - domain impulse response identifi ed by 
sysid.c .          

Example 2.23: Identifi cation of  AIC23 Codec Bandwidth 
Using Adaptive Filter ( sysid16)

 Program  sysid.c  can identify frequency response characteristics in the range 0 to 
fs/2 (in this case fs   =   8   kHz) but the antialiasing and reconstruction fi lters in the 
codec have a bandwidth only slightly narrower than this. Hence, in Figure  2.42  only 
the passband of those fi lters is displayed. The following example uses two DSKs, 
one running program loop_intr.c  with a sampling rate of 8   kHz and the other 
running program sysid16.c , which is similar to program  sysid.c  but uses a sam-
pling frequency of 16   kHz, allowing it to identify frequency response characteristics 
in the range 0 – 8   kHz and to give a better idea of the passband, stopband, and transi-
tion band of the fi lters. 
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      FIGURE 2.39.     C source program used to identify characteristics of AIC23 codec antialiasing 
and reconstruction fi lters ( sysid.c ).  

//sysid.c
#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "noise_gen.h"             //support for noise gen
#define beta 1E-12                 //learning rate
#define WLENGTH 256
#define NOISELEVEL 8000

float w[WLENGTH+1];                //coeffs for adaptive FIR
float dly_adapt[WLENGTH+1];        //samples of adaptive FIR
int fb;                            //feedback variable
shift_reg sreg;                    //shift register

int prand(void)                    //gen pseudo-random sequence
{
  int prnseq; 
  if(sreg.bt.b0)
   prnseq = -NOISELEVEL;           //scaled negative noise level
  else 
   prnseq = NOISELEVEL;            //scaled positive noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);   //XOR bits 0,1
  fb^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 -> fb
  sreg.regval<<=1;
  sreg.bt.b0=fb;                   //close feedback path
  return prnseq;                   //return noise value
}

interrupt void c_int11()           //interrupt service routine
{
 int i;
 float adaptfir_out = 0.0;         //init adaptive filter output
 float fir_out = 0.0;
 float E;                          //output error

 fir_out = (float)(input_left_sample()); //unknown system output
 dly_adapt[0]=prand();             //pseudo-random noise used as
 output_left_sample((short)(dly_adapt[0])); //input to filter
                                   //and to unknown system
 for (i = 0; i < WLENGTH; i++)
  adaptfir_out +=(w[i]*dly_adapt[i]); //compute filter output

 E = fir_out - adaptfir_out;       //compute output error signal
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 for (i = WLENGTH-1; i >= 0; i--)
  {
   w[i] = w[i]+(beta*E*dly_adapt[i]); //update adaptive weights
   dly_adapt[i+1] = dly_adapt[i];     //update adaptive samples
  }
 return;
}

void main()
{
 int i = 0;
 for (i = 0; i <= WLENGTH; i++)
  {
   w[i] = 0.0;                     //init coeffs for adaptive FIR
   dly_adapt[i] = 0.0;             //init buffer for adaptive FIR
  }

 sreg.regval=0xFFFF;               //initial seed value
 fb = 1;                           //initial feedback value
 comm_intr();                      //init DSK, codec, McBSP
 while (1);                        //infinite loop
}   

FIGURE 2.39. (Continued)
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    FIGURE 2.40.     Connection diagram for identifi cation of antialiasing and reconstruction fi lter 
characteristics using adaptive fi lter ( sysid.c ).  

 Connect two DSKs together as shown in Figure  2.45 . Make sure that program 
 loop_intr.c  is running on one DSK before running program  sysid16.c  for a 
short time on the other. After running and halting program  sysid16.c , use the 
 View → Graph  facility with parameters set as shown in Figure  2.46  in order to view 
the magnitude frequency response of the DSK running program  loop_intr.c . 
Compare the frequency response shown in Figure  2.47  with that shown in the AIC23 
datasheet (Figure  2.31 ). (See also Figures  2.48 and 2.49 ).            
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FIGURE 2.42.     Magnitude frequency response of AIC23 codec reconstruction and antialias-
ing fi lters identifi ed using program  sysid.c .  

FIGURE 2.41.      Graph Property  settings (frequency domain) for use with program 
sysid.c .  
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FIGURE 2.43.      Graph Property  settings (time domain) for use with program  sysid.c .  

FIGURE 2.44.     Impulse response of AIC23 codec reconstruction and antialiasing fi lters 
identifi ed using program  sysid.c .  
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    FIGURE 2.46.      Graph Property  settings (frequency domain) for use with program 
 sysid16.c .  
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    FIGURE 2.45.     Connection diagram for identifi cation of antialiasing and reconstruction fi lter 
characteristics using adaptive fi lter ( sysid16.c ).  
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FIGURE 2.47.     Magnitude frequency response of AIC23 codec reconstruction and antialias-
ing fi lters identifi ed using program  sysid16.c .  

FIGURE 2.48.      Graph Property  settings (time domain) for use with program  sysid16.c .  
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Example 2.24: Ramp Generation ( ramp)

 Figure  2.50  shows a listing of the program  ramp.c , which generates a ramp, or saw-
tooth, output waveform. The value of the output sample is incremented by 2000 
every sampling instant until it reaches the value 30,000, at which point it is reset to 
the value − 30,000. The range of output sample values is constrained to be less than 
the full signed 16 - bit integer range in order to prevent the sharp ringing effect seen 
in the output waveform overloading the codec output circuits.   

 Build and run this project as  ramp . Figure  2.51  shows the output waveform cap-
tured using an oscilloscope.    

Example 2.25: Amplitude Modulation ( am)

 This example illustrates an amplitude modulation (AM) scheme. Figure  2.52  shows 
a listing of the program am.c , which generates an AM signal. The array  baseband
holds 20 samples of one cycle of a cosine waveform with a frequency of fs/20   =  
 400   Hz. The array  carrier  holds 20 samples of fi ve cycles of a sinusoidal carrier 
signal with a frequency of 5   fs/20   =   2000   Hz. Output sample values are calculated by 
multiplying the baseband signal by the carrier signal. In this way, the baseband signal 
modulates the carrier signal. The variable amp  is used to set the modulation index. 
Program am.c  uses the polling method for input and output.   

 Build this project as  am . Verify that the output consists of the 2 - kHz carrier signal 
and two sideband signals as shown in Figure  2.53 . The sideband signals are at the 
frequency of the carrier signal    ±    the frequency of the sideband signal, or at 1600 
and 2400   Hz.   

FIGURE 2.49.     Impulse response of AIC23 codec reconstruction and antialiasing fi lters 
identifi ed using program  sysid16.c .  
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//ramp.c Generates a ramp

#include "dsk6713_aic23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling freq
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in
short output;

interrupt void c_int11()        //interrupt service routine
{
 output_left_sample(output);    //output each sample period
 output += 2000;                //increment output value
 if (output >= 30000)           //if peak is reached
  output = -30000;              //reinitialize
 return;                        //return from interrupt
}

 void main()
{
 output = 0;                    //init output to zero
 comm_intr();                   //init DSK, codec, McBSP
 while(1);                      //infinite loop
}

    FIGURE 2.50.     Ramp generation program ( ramp.c ).  

    FIGURE 2.51.     Output waveform generated using program  ramp.c .  
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    FIGURE 2.53.     Frequency - domain representation of output waveform generated using 
program  am.c .  

//am.c AM using table for carrier and baseband signals

#include "DSK6713_AIC23.h"                   // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;           //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select mic in

short amp = 1;                               //modulation index

void main()
{

 short baseband[20]={1000,951,809,587,309,0,
                     -309,-587,-809,-951,-1000,
                     -951,-809,-587,-309,0,309,
                     587,809,951};           //400-Hz baseband
 short carrier[20] ={1000,0,-1000,0,1000,0,-1000,
                     0,1000,0,-1000,0,1000,0,-1000,
                     0,1000,0,-1000,0};      //2-kHz carrier
 short output[20];
 short k;

 comm_poll();                                //init DSK, codec
 while(1)                                    //infinite loop
  {
   for (k=0; k<20; k++)
    {
     output[k]=carrier[k]+((amp*baseband[k]*carrier[k]/10)>>12);
     output_left_sample(20*output[k]);       //scale output
    }
  }
}

    FIGURE 2.52.     Amplitude modulation program ( am.c ).  
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 Load the GEL fi le  am.gel , and verify that the modulation index can be con-
trolled using the GEL slider. Projects on modulation are included in Chapter  10 .  

Example 2.26: Use of External Memory to Record Voice ( record)

 This example illustrates the use of the  pragma  directive in a C source program to 
store data in external memory. The C6713 processor contains a total of 264   kB of 
internal memory but the DSK board includes 16   MB of SDRAM external memory. 
Figure  2.54  shows the C source program  record.c  that implements this project 
example. It defi nes a buffer size of 2,400,000 allowing approximately 300 seconds 
of speech to be recorded and stored in external memory, sampling at 8   kHz.   

 The  pragma  directive, used in the line.

#pragma DATA_SECTION(buffer, ”EXT_RAM”)

specifi es that the array  buffer  is allocated to a memory section named  .EXT_RAM . 
Within the linker command fi le,  c6713dsk.cmd , that section is mapped into the 
external SDRAM on the DSK (starting at address 0x080000000 ). Without the use 
of the pragma  directive, array  buffer  would have been allocated to the memory 
section .bss  along with the other variables declared in program  record.c . 

 Build this project as  record . Load and run the program. Connect a microphone 
to the MIC socket and headphones to the LINE OUT socket. 

1.     When DIP switch #3 is pressed, and while it remains down, input samples from 
the microphone are stored in buffer , starting at  buffer[0] . LED #3 should 
light, indicating that recording is in progress. Lift DIP switch #3 up to stop 
recording.

2.     When DIP switch #0 is pressed, and while it remains down, the samples stored 
in buffer  are replayed. LED #0 should light, indicating that playing is in 
progress. Lift DIP switch #0 up to stop replaying.    

 The same recording can be replayed as many times as desired, but when DIP 
switch #3 is pressed down again, recording will overwrite the existing contents of 
buffer .  

Example 2.27: Use of Flash Memory to Run an Application on Power Up 
(flash_sine)

 By default, the C6713 DSP on the DSK uses external memory interface (EMIF) 
boot mode. On power up or reset, the fi rst 1000 bytes of data stored in nonvolatile 
fl ash memory, starting at address  0x90000000 , are copied to internal RAM starting 
at address 0x00000000  and execution starts from address  0x00000000  (reset vector). 
As supplied, the program executed on the DSK at this point is a short power on 
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    FIGURE 2.54.     C source program to illustrate use of external memory to store samples 
( record.c ).  

//record.c record/play input using external memory

#include "dsk6713_aic23.h"              //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;      //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#define N 2400000                       //buffer size 300 secs
long i;
short buffer[N];
#pragma DATA_SECTION(buffer,".EXT_RAM") //buffer in ext memory

void main()
{
 short recording = 0;
 short playing = 0;
 for (i=0 ; i<N ; i++) buffer[i] = 0;
 DSK6713_DIP_init();
 DSK6713_LED_init();
 comm_poll();                           //init DSK, codec
 while(1)                               //infinite loop
 {
  if(DSK6713_DIP_get(3) == 0)           //if SW#3 is pressed
  {
   i=0;
   recording = 1;                       //start recording
   while (recording == 1)
   {
    DSK6713_LED_on(3);                  //turn on LED#3
    buffer[i++] = input_left_sample();  //input data
    if (i>2000)
     if (DSK6713_DIP_get(3)==1)         //if SW#3 lifted
     {
      recording = 0;                    //stop recording
      DSK6713_LED_off(3);               //turn LED#3 off
     }
   }
  }
  if(DSK6713_DIP_get(0)==0)             //if SW#0 is pressed
  {
   i=0;
   playing = 1;                         //start playing
   while (playing == 1)
   {
    DSK6713_LED_on(0);                  //turn on LED#0
    output_left_sample(buffer[i++]);    //output data
    if (i>2000)
     if (DSK6713_DIP_get(0) == 1)       //if SW#1 is lifted
     {
      playing = 0;                      //stop playing
      DSK6713_LED_off(0);               //turn LED#0 off
     }
   }
  }
 }
}
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self - test (POST) procedure that, among other functions, fl ashes the onboard LEDs, 
tests memory, and outputs a burst of 1 - kHz sine wave via the codec. By reprogram-
ming the fl ash memory we can get the processor to run a different program on 
power up. In the following example, we will program the fl ash memory so that the 
following sequence of events will take place on power up or reset. 

1.     In EMIF boot mode, the contents of the fi rst 1000 bytes of fl ash memory 
(0x90000000  through  0x900003FF ) will be copied to internal RAM ( 0x00000000
through 0x000003FF ). Addresses  0x00000000  through  0x000001FF  comprise 
the interrupt service table. Address 0x00000200  is the start of a small boot 
program, or function, boot_start , pointed to by the reset vector.  

2.     Program execution will start from the reset vector (address  0x00000000 ) and 
branch immediately to the program boot_start . That program will then load 
an application program from fl ash memory (starting after the fi rst 1000 bytes, 
at address 0x90000400 ) into internal memory and then execute it.    

 In order to get an application to run at power up, in addition to the application 
code we must provide the small boot program and an interrupt service table in 
which the reset vector points to the small boot program. This can be done by replac-
ing the fi les  vectors_intr.asm  and  c6713dsk.cmd  in a Code Composer project. 

 Utilities  hex6x  and  FlashBurn  are required in order to: 

1.     Convert an executable application program ( .out  fi le) from COFF to a hex 
fi le format suitable for storage in fl ash memory.  

2.     Reprogram the fl ash memory.    

 The application used for this example is  flash_sine.c , which generates a 1 - kHz 
sine wave (Figure  2.55 ). 

1.      Verify that program   flash_sine.c   works as intended.  Build the executable 
fi le  flash_sine.out  using the standard support fi les  c6713dskinit.c  and 
vectors_intr.asm  and linker command fi le  c6713dsk.cmd . These fi les are 
included in the project flash_sine.pjt  in the folder  flash_sine . Load and 
run the executable fi le  flash_sine.out , and verify that a 1 - kHz sine wave is 
generated.

2.      Remove the fi les   vectors_intr.asm   and   c6713dsk.cmd   from the project  and 
replace them with the fi les  vecs_int_flash.asm  and  c6713dsk_flash.cmd . 
vecs_int_flash.asm  is a modifi ed version of  vectors_intr.asm . In addition 
to the vector table it contains the small boot programboot_start , which copies 
the code from fl ash to internal memory upon boot up. The address of the code 
in fl ash memory ( 0x90000400 ) and the code size ( 0x00003000 ) are hard - coded 
into the fi le  vecs_int_flash.asm .  c6713dsk_flash.cmd  is a new linker 
command fi le. It sets up a section called  bootload  starting at address  0x200
with a length of 0x200  into which program  boot_start  will be loaded.      
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 These two fi les are stored in folder  fl ash_sine . Rebuild the project and verify 
again that the 1 - kHz tone is generated using the new executable ( .out ) fi le (also 
named  sine_fl ash.out ). 

 This test verifi es that the INT11 vector specifi ed in fi le  vecs_int_fl ash.asm  is 
correct. Neither the reset vector nor the  boot_start  routine are tested since when 
a  .out  fi le is run from Code Composer, the program counter is loaded with the start 
address of the application. 

  Creating a  .hex  File 
 In order to be loaded into fl ash memory, the executable fi le  fl ash_sine.out  must 
be converted from a COFF to a hex fi le format. The COFF - to - hex converter fi le 
 hex6x.exe  is included with Code Composer in the directory  c:\CCStudio_
v3.1\ c6000\cgtools\bin  . Copy  hex6x.exe  into the folder  fl ash_sine . Access 
DOS, and from the folder  fl ash_sine , type

 hex6x fl ash_sine_hex.cmd 

to create  fl ash_sine.hex . Within the fi le  fl ash_sine_hex.cmd , the executable fi le 
 fl ash_sine.out  is specifi ed as input and  fl ash_sine.hex  as output. A fl ash length 
of  0x40000  is specifi ed, which should be at least the length of the actual code (this 

//flash_sine.c Sine generation to illustrate use of flash

#include "dsk6713_aic23.h"           //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
short loop = 0,  gain = 10;
short sine_table[8] = {0,707,1000,707,0,-707,-1000,-707};

interrupt void c_int11()             //interrupt service routine
{
  output_sample(sine_table[loop]*gain);
  if (++loop > 7)                    //if end of buffer
    loop = 0;                        //reset index
  return;
}

void main()
{
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
} 

    FIGURE 2.55.     C source program to illustrate use of fl ash memory to store application 
program ( fl ash_sine.c ).    
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can be found in the .map  fi le). If this length is not great enough, you will be 
prompted to increase it.  

Confi guring the FlashBurn ( .cdd) Utility 
 The  FlashBurn  utility is stored in folder  c:\CCStudio_v3.1\bin\utilities\
flashburn . If it has not been installed already, install it using the DSK tools CD. If 
a FlashBurn  option is not present in CCS, then start  FlashBurn  directly by double -
 clicking on its icon in  Windows Explorer . Within  FlashBurn , select  File→ New , to 
confi gure the  FlashBurn  utility and create  flash_sine.cdd , as shown in Figure  2.56 , 
with the following fi elds: 

1.      Conversion cmd File :

c:\CCStudio_v3.1\myprojects\flash_sine\flash_sine_hex.cmd

2.      File to Burn :

c:\CCStudio_v3.1\myprojects\flash_sine\flash_sine.hex

3.      FBTC Program File :  

c:\CCStudio_v3.1\bin\utilities\flashburn\c6000\dsk6713\
FBTC6713.out

 Save this fi le as  flash_sine.cdd  in directory  c:\CCStudio_v3.1\myprojects\
flash_sine . 

 Select  Program→ Download FBTC . This will connect  FlashBurn  to the DSK. We 
now need to erase and reprogram the fl ash memory.  

Erasing and Programming the Flash Memory 
 Within the  FlashBurn  utility shown in Figure  2.56 , select  Program→ Erase Flash . 
This erases any program stored in the fl ash memory. Still within the  Flashburn  utility, 
select Program→ Program Flash . This loads  flash_sine.hex  into the fl ash memory. 
To verify that the sine generation program is stored into the fl ash memory, close the 
(.cdd) Flashburn  utility, exit CCS, and unplug the power to the DSK. Turn the power 
to the DSK back on. The post  program no longer runs. Instead, verify that a 1 - kHz 
sine wave is now generated continuously.  

Recovering the post Program 
 Launch CCS and select  Debug→ Connect . Launch  FlashBurn  and open the confi gu-
ration fi le  post.cdd , stored in folder  c:\CCStudio_v3.1\examples\dsk6713\
bsl\post , by selecting  File→ Open . The  FlashBurn  window should appear as shown 
in Figure  2.57 .  Select Program → Erase Flash  to erase the program  flash_sine.hex
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FIGURE 2.57.      Flashburn  utility during programming of fl ash memory with program 
post.c .  

FIGURE 2.56.      Flashburn  utility during programming of fl ash memory with program 
flash_sine.c .  



currently stored in the fl ash memory. Then select  Program→ Program Flash  to 
download post.hex  into the fl ash memory.       

2.4 ASSIGNMENTS

1.     Implement a suppressed carrier amplitude modulation scheme using an exter-
nal input to modulate a 2 - kHz carrier signal generated using a lookup table. 
Use a sampling frequency of 8   kHz. Test your results using a sinusoidal input 
signal with an amplitude less than 0.35   V and a frequency less than 2   kHz (a 
higher frequency input signal will cause aliasing). Use an oscilloscope with an 
FFT function or a spectrum analyzer to display the signal generated.  

2.     Write a program to generate a sine wave of frequency 666   Hz and turn on 
LED #0 while DIP switch #0 is pressed down, generate a sine wave of fre-
quency 1.33   kHz and turn on LED #1 while DIP switch #1 is pressed down, 
generate a sine wave of frequency 2   kHz and turn on LED #2 while DIP switch 
#2 is pressed down, and generate a sine wave of frequency 2.667   kHz and turn 
on LED #3 while DIP switch #3 is pressed down. Use a sampling frequency 
of 8   kHz and a 12 - point lookup table to generate the sine waves.     
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 •      Architecture and instruction set of the TMS320C6x processor  
 •      Addressing modes  
 •      Assembler directives  
 •      Linear assembler  
 •      Programming examples using C, assembly, and linear assembly code     

3.1 INTRODUCTION

 Texas Instruments introduced the fi rst - generation TMS32010 DSP in 1982, the 
TMS320C25 in 1986  [1] , and the TMS320C50 in 1991. Several versions of each of 
these processors — C1x, C2x, and C5x — are available with different features, such as 
faster execution speed. These 16 - bit processors are all fi xed - point processors and 
are code compatible. 

 In a von Neumann architecture, program instructions and data are stored in a 
single memory space. A processor with a von Neumann architecture can make a 
read or a write to memory during each instruction cycle. Typical DSP applications 
require several accesses to memory within one instruction cycle. The fi xed - point 
processors C1x, C2x, and C5x are based on a modifi ed Harvard architecture with 
separate memory spaces for data and instructions that allow concurrent accesses. 

 Quantization error or round - off noise from an ADC is a concern with a fi xed -
 point processor. An ADC uses only a best - estimate digital value to represent an 
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input. For example, consider an ADC with a word length of 8 bits and an input range 
of ± 1.5   V. The steps represented by the ADC are: input range/2 8    =   3/256   =   11.72   mV. 
This produces errors that can be up to ± (11.72   mV)/2   =    ± 5.86   mV. Only a best esti-
mate can be used by the ADC to represent input values that are not multiples of 
11.72   mV. With an 8 - bit ADC, 2 8  or 256 different levels can represent the input signal. 
An ADC with a larger word length, such as a 16 - bit ADC (or larger, currently very 
common), can reduce the quantization error, yielding a higher resolution. The more 
bits an ADC has, the better it can represent an input signal. 

 The TMS320C30 fl oating - point processor was introduced in the late 1980s. 
The C31, the C32, and the more recent C33 are all members of the C3x family of 
fl oating - point processors  [2, 3] . The C4x fl oating - point processors, introduced 
subsequently, are code compatible with the C3x processors and are based on the 
modifi ed Harvard architecture  [4] . 

 The TMS320C6201 (C62x), announced in 1997, is the fi rst member of the C6x 
family of fi xed - point digital signal processors. Unlike the previous fi xed - point pro-
cessors, C1x, C2x, and C5x, the C62x is based on a VLIW architecture, still using 
separate memory spaces for instructions and data, as with the Harvard architecture. 
The VLIW architecture has simpler instructions, but more are needed for a task 
than with a conventional DSP architecture. 

 The C62x is not code compatible with the previous generation of fi xed - point 
processors. Subsequently, the TMS320C6701 (C67x) fl oating - point processor was 
introduced as another member of the C6x family of processors. The instruction set 
of the C62x fi xed - point processor is a subset of the instruction set of the C67x pro-
cessor.  Appendix A  contains a list of instructions available on the C6x processors. 
A more recent addition to the family of the C6x fi xed - point processors is the C64x. 
The C64x is introduced in  Appendix G   . 

 An application - specifi c integrated circuit (ASIC) has a DSP core with customized 
circuitry for a specifi c application. A C6x processor can be used as a standard 
general - purpose DSP   programmed for a specifi c application. Specifi c - purpose digital 
signal processors are the modem, echo canceler, and others. 

 A fi xed - point processor is better for devices that use batteries, such as cellular 
phones, since it uses less power than does an equivalent fl oating - point processor. 
The fi xed - point processors, C1x, C2x, and C5x, are 16 - bit processors with limited 
dynamic range and precision. The C6x fi xed - point processor is a 32 - bit processor 
with improved dynamic range and precision. In a fi xed - point processor, it is neces-
sary to scale the data. Overfl ow, which occurs when an operation such as the addition 
of two numbers produces a result with more bits than can fi t within a processor ’ s 
register, becomes a concern. 

 A fl oating - point processor is generally more expensive since it has more  “ real 
estate ”  or is a larger chip because of additional circuitry necessary to handle integer 
as well as fl oating - point arithmetic. Several factors, such as cost, power consump-
tion, and speed, come into play when choosing a specifi c DSP  . The C6x processors 
are particularly useful for applications requiring intensive computations. Family 
members of the C6x include both fi xed - point (e.g., C62x, C64x) and fl oating - point 
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(e.g., C67x) processors. Other DSPs   are also available from companies such as 
Motorola and Analog Devices  [5] . 

 Other architectures include the Super Scalar, which requires special hardware to 
determine which instructions are executed in parallel. The burden is then on the 
processor more than on the programmer, as in the VLIW architecture. It does not 
necessarily execute the same group of instructions, and as a result, it is diffi cult to 
time. Thus, it is rarely used in DSPs.  

  3.2    TMS 320 C 6 x  ARCHITECTURE 

 The TMS320C6713 onboard the DSK is a fl oating - point processor based on the 
VLIW architecture  [6 – 10] . Internal memory includes a two - level cache architecture 
with 4   kB of level 1 program cache (L1P), 4   kB of level 1 data cache (L1D), and 
256   kB of level 2 memory shared between program and data space. It has a glueless 
(direct) interface to both synchronous memories (SDRAM and SBSRAM) and 
asynchronous memories (SRAM and EPROM). Synchronous memory requires 
clocking but provides a compromise between static SRAM and dynamic DRAM, 
with SRAM being faster but more expensive than DRAM. 

 On - chip peripherals include two McBSPs, two timers, a host port interface (HPI), 
and a 32 - bit EMIF. It requires 3.3   V for I/O and 1.26   V for the core (internal). Internal 
buses include a 32 - bit program address bus, a 256 - bit program data bus to accommo-
date eight 32 - bit instructions, two 32 - bit data address buses, two 64 - bit data buses, 

    FIGURE 3.1.     Functional block diagram of TMS320C6713. ( Courtesy of Texas 
Instruments .)  
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and two 64 - bit store data buses. With a 32 - bit address bus, the total memory space is 
232    =   4   GB, including four external memory spaces: CE0, CE1, CE2, and CE3. Figure 
 3.1  shows a functional block diagram of the C6713 processor included with CCS.   

 Independent memory banks on the C6x allow for two memory accesses within 
one instruction cycle. Two independent memory banks can be accessed using two 
independent buses. Since internal memory is organized into memory banks, two 
loads or two stores of instructions can be performed in parallel. No confl ict results 
if the data accessed are in different memory banks. Separate buses for program, 
data, and direct memory access (DMA) allow the C6x to perform concurrent 
program fetches, data read and write, and DMA operations. With data and instruc-
tions residing in separate memory spaces, concurrent memory accesses are possible. 
The C6x has a byte - addressable memory space. Internal memory is organized as 
separate program and data memory spaces, with two 32 - bit internal ports (two 64 - bit 
ports with the C64x) to access internal memory. 

 The C6713 on the DSK includes 264   kB of internal memory, which starts at 
0x00000000 , and 16   MB of external SDRAM, mapped through CE0 starting at 
0x80000000 . The DSK also includes 512   kB of Flash memory (256   kB readily avail-
able to the user), mapped through CE1 starting at 0x90000000 . Figure  3.2  shows 
the L2 internal memory confi guration, included with CCS  [7] . Table  3.1  shows the 
memory map, also included with CCS  [7] . A schematic diagram of the DSK is 
included with CCS ( 6713dsk_schem.pdf ).     

 With the DSK operating at 225   MHz, one can ideally achieve two multiplies and 
accumulates per cycle, for a total of 450 million multiplies and accumulates (MACs) 
per second. With six of the eight functional units in Figure  3.1  (not the  .D  units 
described later) capable of handling fl oating - point operations, it is possible to 
perform 1350 million fl oating - point operations per second (MFLOPS). Operating 
at 225   MHz, this translates into 1800 million instructions per second (MIPS) with a 
4.44 - ns instruction cycle time.  

3.3 FUNCTIONAL UNITS 

 The CPU consists of eight independent functional units divided into two data paths, 
A and B, as shown in Figure  3.1 . Each path has a unit for multiply operations ( .M ), 
for logical and arithmetic operations ( .L ), for branch, bit manipulation, and 
arithmetic operations ( .S ), and for loading/storing and arithmetic operations ( .D ). 
The .S  and  .L  units are for arithmetic, logical, and branch instructions. All data 
transfers make use of the .D  units. 

 The arithmetic operations, such as subtract or add ( SUB  or  ADD ), can be performed 
by all the units, except the.M  units (one from each data path). The eight functional units 
consist of four fl oating/fi xed - point ALUs (two  .L  and two  .S ), two fi xed - point ALUs 
(.D  units), and two fl oating/fi xed - point multipliers ( .M  units). Each functional unit can 
read directly from or write directly to the register fi le within its own path. Each path 
includes a set of sixteen 32 - bit registers, A0 through A15 and B0 through B15. Units 
ending in 1 write to register fi le A, and units ending in 2 write to register fi le B. 
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    FIGURE 3.2.     Internal memory confi guration of L2. ( Courtesy of Texas Instruments .)  

 Two cross - paths ( 1x  and  2x ) allow functional units from one data path to access 
a 32 - bit operand from the register fi le on the opposite side. There can be a maximum 
of two cross - path source reads per cycle. Each functional unit side can access data 
from the registers on the opposite side using a cross - path (i.e., the functional units 
on one side can access the register set from the other side). There are 32 general -
 purpose registers, but some of them are reserved for specifi c addressing or are used 
for conditional instructions.  

  3.4   FETCH AND EXECUTE PACKETS 

 The architecture VELOCITI, introduced by TI, is derived from the VLIW architec-
ture. An execute packet (EP) consists of a group of instructions that can be executed 
in parallel within the same cycle time. The number of EPs within a fetch packet (FP) 



TABLE 3.1 Memory Map 

Memory Block Description Block Size (Bytes) Hex Address Range 

Internal RAM (L2) 192K 0000 0000 –0002 FFFF 
Internal RAM/cache 64K 0003 0000 –0003 FFFF 
Reserved 24M–256K 0004 0000 –017F FFFF 
External memory interface (EMIF) registers 256K 0180 0000 –0183 FFFF 
L2 registers 128K 0184 0000 –0185 FFFF 
Reserved 128K 0186 0000 –0187 FFFF 
HPI registers 256K 0188 0000 –018B FFFF 
McBSP 0 registers 256K 018C 0000 –018F FFFF 
McBSP 1 registers 256K 0190 0000 –0193 FFFF 
Timer 0 registers 256K 0194 0000 –0197 FFFF 
Timer 1 registers 256K 0198 0000 –019B FFFF 
Interrupt selector registers 512 019C 0000 –019C 01FF 
Device confi guration registers 4 019C 0200 –019C 0203 
Reserved 256K–516 091C 0204 –019F FFFF 
EDMA RAM and EDMA registers 256K 01A0 0000 –01A3 FFFF 
Reserved 768K 01A4 0000 –01AF FFFF 
GPIO registers 16K 01B0 0000 –01B0 3FFF 
Reserved 240K 01B0 4000 –01B3 FFFF 
I2C0 registers 16K 01B4 0000 –01B4 3FFF 
I2C1 registers 16K 01B4 4000 –01B4 7FFF 
Reserved 16K 01B4 8000 –01B4 BFFF 
McASP0 registers 16K 01B4 C000 –01B4 FFFF 
McASP1 registers 16K 01B5 0000 –01B5 3FFF 
Reserved 160K 01B5 4000 –01B7 BFFF 
PLL registers 8K 01B7 C000 –01B7 DFFF 
Reserved 264K 01B7 E000 –01BB FFFF 
Emulation registers 256K 01BC 0000 –01BF FFFF 
Reserved 4M 01C0 0000 –01FF FFFF 
QDMA registers 52 0200 0000 –0200 0033 
Reserved 16M–52 0200 0034 –02FF FFFF 
Reserved 720M 0300 0000 –2FFF FFFF 
McBSP0 data port 64M 3000 0000 –33FF FFFF 
McBSP1 data port 64M 3400 0000 –37FF FFFF 
Reserved 64M 3800 0000 –3BFF FFFF 
McASP0 data port 1M 3C00 0000 –3C0F FFFF 
McASP1 data port 1M 3C10 0000 –3C1F FFFF 
Reserved 1G + 62M 3C20 0000 –7FFF FFFF 
EMIF CE0 a 256M 8000 0000 –8FFF FFFF 
EMIF CE1 a 256M 9000 0000 –9FFF FFFF 
EMIF CE2 a 256M A000 0000 –AFFF FFFF 
EMIF CE3 a 256M B000 0000 –BFFF FFFF 
Reserved 1G C000 0000 –FFFF FFFF 

a The number of EMIF address pins (EA[21:2]) limits the maximum addressable memory (SDRAM) to 
128MB per CE space. 

Source: Courtesy of Texas Instruments. 
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can vary from one (with eight parallel instructions) to eight (with no parallel instruc-
tions). The VLIW architecture was modifi ed to allow more than one EP to be 
included within an FP. 

 The least signifi cant bit of every 32 - bit instruction is used to determine if the next 
or subsequent instruction belongs in the same EP (if 1) or is part of the next EP (if 
0). Consider an FP with three EPs: EP1, with two parallel instructions, and EP2 and 
EP3, each with three parallel instructions, as follows:

  Instruction A
 ||  Instruction B

 Instruction C
 ||  Instruction D
 ||  Instruction E

 Instruction F
 ||  Instruction G
 ||  Instruction H  

 EP1 contains the two parallel instructions A and B; EP2 contains the three paral-
lel instructions C, D, and E; and EP3 contains the three parallel instructions F, G, 
and H. The FP would be as shown in Figure  3.3 . Bit 0 (LSB) of each 32 - bit instruc-
tion contains a  “ p ”  bit that signals whether it is in parallel with a subsequent instruc-
tion. For example, the  “ p ”  bit of instruction B is zero, denoting that it is not within 
the same EP as the subsequent instruction C. Similarly, instruction E is not within 
the same EP as instruction F.    

  3.5   PIPELINING 

 Pipelining is a key feature in a DSP   to get parallel instructions working properly, 
requiring careful timing. There are three stages of pipelining: program fetch, decode, 
and execute. 

  1.     The  program fetch stage  is composed of four phases:  

     (a)      PG : program address generate (in the CPU) to fetch an address  

     (b)      PS : program address send (to memory) to send the address  

     (c)      PW : program address ready wait (memory read) to wait for data  

     (d)      PR : program fetch packet receive (at the CPU) to read opcode from 
memory    

    FIGURE 3.3.     One FP with three EPs showing the  “ p ”  bit of each instruction.  

31 0   31       0   31          0   31         0   31     0   31         0   31    0   31        0  
            1             0             1              1             0             1             1            0   
       A B        C D        E  F          G    H 



2.     The  decode stage  is composed of two phases: 

      (a)      DP : to dispatch all the instructions within an FP to the appropriate func-
tional units  

(b)      DC : instruction decode    

3.     The  execute stage  is composed of 6 phases (with fi xed point) to 10 phases 
(with fl oating point) due to delays (latencies) associated with the following 
instructions:

      (a)     Multiply instruction, which consists of two phases due to one delay  

(b)     Load instruction, which consists of fi ve phases due to four delays  

     (c)     Branch instruction, which consists of six phases due to fi ve delays      

 Table  3.2  shows the pipeline phases, and Table  3.3  shows the pipelining effects. 
The fi rst row in Table  3.3  represents cycle 1, 2,       .      .      .       , 12. Each subsequent row repre-
sents an FP. The rows represented by PG, PS,       .      .      .       illustrate the phases associated with 
each FP. The program generate (PG) of the fi rst FP starts in cycle 1, and the PG of 
the second FP starts in cycle 2, and so on. Each FP takes four phases for program 
fetch and two phases for decoding. However, the execution phase can take from 1 
to 10 phases (not all execution phases are shown in Table  3.3 ). We are assuming that 
each FP contains one EP.     

 For example, at cycle 7, while the instructions in the fi rst FP are in the fi rst execu-
tion phase E1 (which may be the only one), the instructions in the second FP are 
in the decoding phase, the instructions in the third FP are in the dispatching phase, 
and so on. All seven instructions are proceeding through the various phases. There-
fore, at cycle 7,  “ the pipeline is full. ”  

 Most instructions have one execute phase. Instructions such as multiply ( MPY ), 
load ( LDH/LDW ), and branch ( B ) take two, fi ve, and six phases, respectively. Addi-
tional execute phases are associated with fl oating - point and double - precision types 
of instructions, which can take up to 10 phases. For example, the double - precision 

TABLE 3.2 Pipeline Phases 

Program Fetch Decode Execute

PG PS PW PR DP DC E1–E6 (E1 –E10 for double precision) 

TABLE 3.3 Pipelining Effects 

Clock Cycle 

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
PG PS PW PR DP DC E1 E2 E3 E4 E5

PG PS PW PR DP DC E1 E2 E3 E4
PG PS PW PR DP DC E1 E2 E3

PG PS PW PR DP DC E1 E2
PG PS PW PR DP DC E1

PG PS PW PR DP DC
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multiply operation ( MPYDP ), available on the C67x, has nine delay slots, so that the 
execution phase takes a total of 10 phases. 

 The  functional unit latency , which represents the number of cycles that an instruc-
tion ties up a functional unit, is 1 for all instructions except double - precision instruc-
tions, available with the fl oating - point C67x. Functional unit latency is different from 
a delay slot. For example, the instruction MPYDP  has four functional unit latencies 
but nine delay slots. This implies that no other instruction can use the associated 
multiply functional unit for four cycles. A store has no delay slot but fi nishes its 
execution in the third execution phase of the pipeline. 

 If the outcome of a multiply instruction such as  MPY  is used by a subsequent 
instruction, a NOP  (no operation) must be inserted after the  MPY  instruction for the 
pipelining to operate properly. Four or fi ve  NOP s are to be inserted in case an instruc-
tion uses the outcome of a load or a branch instruction, respectively.  

3.6 REGISTERS

 Two sets of register fi les, each set with 16 registers, are available: register fi le A (A0 
through A15) and register fi le B (B0 through B15). Registers A0, A1, B0, B1, and 
B2 are used as conditional registers. Registers A4 through A7 and B4 through B7 
are used for circular addressing. Registers A0 through A9 and B0 through B9 
(except B3) are temporary registers. Any of the registers A10 through A15 and 
B10 through B15 used are saved and later restored before returning from a 
subroutine.

 A 40 - bit data value can be contained across a register pair. The 32 least signifi cant 
bits (LSBs) are stored in the even register (e.g., A2), and the remaining 8 bits are 
stored in the 8   LSBs of the next - upper (odd) register (A3). A similar scheme is used 
to hold a 64 - bit double - precision value within a pair of registers (even and odd). 

 These 32 registers are considered general - purpose registers. Several special -
 purpose registers are also available for control and interrupts: for example, the 
address mode register (AMR) used for circular addressing and interrupt control 
registers, as shown in  Appendix B .  

3.7 LINEAR AND CIRCULAR ADDRESSING MODES 

 Addressing modes determine how one accesses memory. They specify how data are 
accessed, such as retrieving an operand indirectly from a memory location. Both 
linear and circular modes of addressing are supported. The most commonly used 
mode is the indirect addressing of memory. 

3.7.1 Indirect Addressing 

 Indirect addressing can be used with or without displacement. Register R represents 
one of the 32 registers A0 through A15 and B0 through B15 that can specify or 



point to memory addresses. As such, these registers are pointers. Indirect addressing 
mode uses a  “  *  ”  in conjunction with one of the 32 registers. To illustrate, consider 
R as an address register. 

1.       * R.  Register R contains the address of a memory location where a data value 
is stored.  

2.       * R ++ (d).  Register R contains the memory address (location). After the 
memory address is used, R is postincremented (modifi ed) such that the new 
address is the current address offset by the displacement value d. If d   =   1 (by 
default), the new address is R   +   1, or R is incremented to the next higher 
address in memory. A double minus ( −   − ) instead of a double plus would 
update or postdecrement the address to R    −    d.  

3.       *  ++ R(d).  The address is preincremented or offset by d, such that the current 
address is R   +   d. A double minus would predecrement the memory address 
so that the current address is R    −    d.  

4.       *  + R(d).  The address is preincremented by d, such that the current address is 
R   +   d (as with the preceding case). However, in this case, R preincrements 
without modifi cation. Unlike the previous case, R is not updated or modifi ed.     

3.7.2 Circular Addressing 

 Circular addressing is used to create a circular buffer. This buffer is created in 
hardware and is very useful in several DSP algorithms, such as in digital fi ltering or 
correlation algorithms where data need to be updated. An example in Chapter  4  
illustrates the implementation of a digital fi lter in assembly code using a circular 
buffer to update the  “ delay ”  samples. Implementing a circular buffer using C code 
is less effi cient. 

 The C6x has dedicated hardware to allow a circular type of addressing. This 
addressing mode can be used in conjunction with a circular buffer to update samples 
by shifting data without the overhead created by shifting data directly. As a pointer 
reaches the end or  “ bottom ”  location of a circular buffer that contains the last 
element in the buffer, and is then incremented, the pointer is automatically wrapped 
around or points to the beginning or  “ top ”  location of the buffer that contains the 
fi rst element. 

 Two independent circular buffers are available using BK0 and BK1 within the 
AMR. The eight registers A4 through A7 and B4 through B7, in conjunction with 
the two .D  units, can be used as pointers (all registers can be used for linear address-
ing). The following code segment illustrates the use of a circular buffer using register 
B2 (only side B can be used) to set the appropriate values within AMR:

MVKL .S2 0x0004,B2 ;lower 16 bits to B2. Select A5 as pointer
MVKH .S2 0x0005,B2 ;upper 16 bits to B2. Select BK0, set N = 5
MVC .S2 B2,AMR ;move 32 bits of B2 to AMR 
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 The two move instructions  MVKL  and  MVKH  (using the  .S  unit) move  0x0004  into 
the 16   LSBs of register B2 and  0x0005  into the 16 most signifi cant bits (MSBs) of 
B2. The MVC  (move constant) instruction is the only instruction that can access the 
AMR and the other control registers (shown in  Appendix B ) and executes only on 
the B side in conjunction with the functional units and registers on side B. A 32 - bit 
value is created in B2, which is then transferred to AMR with the instruction MVC

to access AMR  [6] . 
 The value  0x0004 = (0100) b  into the 16   LSBs of AMR sets bit 2 (the third bit) 

to 1 and all other bits to 0. This sets the mode to 01  and selects register A5 as the 
pointer to a circular buffer using block BK0 (see Figure  B.1 ). 

 Table  3.4  shows the modes associated with registers A4 through A7 and B4 
through B7. The value 0x0005 = (0101) b  into the 16   MSBs of AMR sets bits 16 
and 18 to 1 (other bits to 0). This corresponds to the value of N  used to select the 
size of the buffer as 2 N +1    =   64 bytes using BK0. For example, if a buffer size of 128 
is desired using BK0, the upper 16 bits of AMR are set to (0110)b = 0x0006 . If 
assembly code is used for the circular buffer, as execution returns to a calling C 
function, AMR needs to be reinitialized to the default linear mode. Hence the 
pointer ’ s address must be saved.     

3.8 TMS320C6x INSTRUCTION SET 

3.8.1 Assembly Code Format 

 An assembly code format is represented by the fi eld

Label ||  [ ] Instruction Unit Operands ;comments 

A label, if present, represents a specifi c address or memory location that contains 
an instruction or data. The label must be in the fi rst column. The parallel bars ( || ) 
are there if the instruction is being executed in parallel with the previous instruction. 
The subsequent fi eld is optional to make the associated instruction conditional. Five 
of the registers — A1, A2, B0, B1, and B2 — are available to use as conditional regis-
ters. For example, [A2] specifi es that the associated instruction executes if A2 is not 
zero. On the other hand, with [!A2], the associated instruction executes if A2 is zero. 
All C6x instructions can be made conditional with the registers A1, A2, B0, B1, and 

TABLE 3.4 AMR Mode and Description 

Mode Description

0 0 For linear addressing (default on reset) 
0 1 For circular addressing using BK0 
1 0 For circular addressing using BK1 
1 1 Reserved



B2 by determining when the conditional register is zero. The instruction fi eld can 
be either an assembler directive or a mnemonic. An assembler directive is a command 
for the assembler. For example,

.word value

reserves 32 bits in memory and fi lls with the specifi ed  value . A mnemonic is an 
actual instruction that executes at run time. The instruction (mnemonic or assembler 
directive) cannot start in column 1. The Unit  fi eld, which can be one of the eight 
CPU functional units is optional. Comments starting in column 1 can begin with 
either an asterisk or a semicolon, whereas comments starting in any other columns 
must begin with a semicolon. 

 Code for the fl oating - point processors C3x/C4x is not compatible with code for 
the fi xed - point processors C1x, C2x, and C5x/C54x. However, the code for the fi xed -
 point processors C62x is compatible with the code for the fl oating - point C67x. C62x 
code is actually a subset of C67x code. Additional instructions to handle double -
 precision and fl oating - point operations are available only on the C67x processor. 
Also, some additional instructions are available only on the fi xed - point C64x 
processor.

 Several code segments are presented to illustrate the C6x instruction set. 
Assembly code for the C6x processors is very similar to C3x/C4x code. Single -
 task types of instructions available for the C6x make it easier to program than 
the previous generation of either fi xed -  or fl oating - point processors. This con-
tributes to an effi cient compiler. Additional instructions available on the C64x 
(but not on the C62x) resemble the multitask types of instructions for C3x/C4x 
processors. It is very instructive to read the comments in the programs discussed 
in this book.  Appendix A  contains a list of the instructions for the C62x/C67x 
processors.

3.8.2 Types of Instructions 

 The following illustrates some of the syntax of assembly code. It is optional to 
specify the eight functional units, although this can be useful during debugging and 
for code effi ciency and optimization, discussed in Chapter  8 . 

1.      Add/Subtract/Multiply

     (a)     The instruction

ADD .L1 A3,A7,A7   ;add A3   +   A7  →  A7 (accum in A7) 

adds the values in registers A3 and A7 and places the result in register 
A7. The unit .L1  is optional. If the destination or result is in B7, the unit 
would be .L2 .  
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(b)     The instruction

SUB .S1 A1,1,A1   ;subtract 1 from A1 

subtracts 1 from A1 to decrement it using the .S  unit.  

     (c)     The parallel instructions

MPY .M2 A7,B7,B6
||  MPYH .M1 A7,B7,A6 

  ;multiply 16 LSBs of A7, B7  →  B6 
 ;multiply 16 MSBs of A7, B7  →  A6  

multiplies the lower or least signifi cant 16 bits (LSBs) of both A7 and B7 
and places the product in B6, in parallel (concurrently within the same 
execution packet) with a second instruction that multiplies the higher or 
most signifi cant 16 bits (MSBs) of A7 and B7 and places the result in A6. 
In this fashion, two MAC operations can be executed within a single 
instruction cycle. This can be used to decompose a sum of products into 
two sets of sum of products: one set using the lower 16 bits to operate on 
the fi rst, third, fi fth,       .      .      .       number and another set using the higher 16 bits to 
operate on the second, fourth, sixth,       .      .      .       number. Note that the parallel 
symbol is not in column 1.    

2.      Load/Store

      (a)     The instruction

LDH .D2 *B2++,B7
||  LDH .D1 *A2++,A7 

  ;load (B2)  →  B7, increment B2 
 ;load (A2)  →  A7, increment A2 

loads into B7 the half - word (16 bits) whose address in memory is speci-
fi ed/pointed to by B2. Then register B2 is incremented (postincremented) 
to point at the next higher memory address. In parallel is another indirect 
addressing mode instruction to load into A7 the content in memory whose 
address is specifi ed by A2. Then A2 is incremented to point at the next 
higher memory address.  

  The instruction  LDW  loads a 32 - bit word. Two paths using  .D1  and  .D2
allow for the loading of data from memory to registers A and B using the 
instruction LDW . The double - word load fl oating - point instruction  LDDW  on 
the C6713 can simultaneously load two 32 - bit registers into side A and 
two 32 - bit registers into side B.  

(b)     The instruction

STW .D2 A1,*+A4[20]   ;store A1 → (A4) offset by 20 

stores the 32 - bit word A1 in memory whose address is specifi ed by A4 
offset by 20 words (32 bits) or 80 bytes. The address register A4 is prein-



cremented with offset, but it is not modifi ed (two plus signs are used if 
A4 is to be modifi ed).    

3.      Branch/Move . The following code segment illustrates branching and data 
transfer:

Loop

[A1]

MVKL
MVKH
.
.
.
SUB
B
NOP
STW

.S1

.S1

.S1

.S2

.D1

x,A4
x,A4

A1,1,A1
Loop
5
A3,*A7

;move 16 LSBs of x address → A4 
 ;move 16 MSBs of x address  → A4 

       ;decrement A1 
 ;branch to Loop if A1 != 0 
 ;fi ve no - operation instructions 
 ;store A3 into (A7) 

The fi rst instruction moves the lower 16 bits (LSBs) of address  x  into register 
A4. The second instruction moves the higher 16 bits (MSBs) of address x  into 
A4, which now contains the full 32 - bit address of  x . One must use the instruc-
tions MVKL/MVKH  in order to get a 32 - bit constant into a register.  

  Register A1 is used as a loop counter. After it is decremented with the 
SUB  instruction, it is tested for a conditional branch. Execution branches to 
the label or address Loop  if A1 is not zero. If A1   =   0, execution continues and 
data in register A3 are stored in memory whose address is specifi ed (pointed 
to) by A7.      

3.9 ASSEMBLER DIRECTIVES 

 An assembler directive is a message for the assembler (not the compiler) and is not 
an instruction. It is resolved during the assembling process and does not occupy 
memory space, as an instruction does. It does not produce executable code. Addresses 
of different sections can be specifi ed with assembler directives. For example, the 
assembler directive .sect “my_buffer”  defi nes a section of code or data named 
my_buffer . The directives  .text  and  .data  indicate a section for text and data, 
respectively. Other assembler directives, such as .ref  and  .def , are used for 
undefi ned and defi ned symbols, respectively. The assembler creates several sections 
indicated by directives such as .text  for code and  .bss  for global and static 
variables.

 Other commonly used assembler directives are: 

1.      .short : to initialize a 16 - bit integer.  

2.      .int : to initialize a 32 - bit integer (also  .word  or  .long ). The compiler treats 
a long data value as 40 bits, whereas the C6x assembler treats it as 32 bits.  

3.      .float : to initialize a 32 - bit IEEE single - precision constant.  

4.      .double : to initialize a 64 - bit IEEE double - precision constant.    
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 Initialized values are specifi ed by using the assembler directives  .byte , 
.short , or  .int . Uninitialized variables are specifi ed using the directive  .usect , 
which creates an uninitialized section (like the .bss  section), whereas the direc-
tive .sect creates an initialized section. For example, .usect “variable”, 128

designates an uninitialized section named variable  with a section size of 128 in 
bytes.

3.10 LINEAR ASSEMBLY 

 An alternative to C, or assembly code, is linear assembly. An assembler optimizer 
(in lieu of a C compiler) is used in conjunction with a linear assembly - coded source 
program (with extension .sa ) to create an assembly source program (with extension 
.asm ) in much the same way that a C compiler optimizer is used in conjunction with 
a C - coded source program. The resulting assembly - coded program produced by the 
assembler optimizer is typically more effi cient than one resulting from the C com-
piler optimizer. The assembly - coded program resulting from either a C - coded source 
program or a linear assembly source program must be assembled to produce an 
object code. 

 Linear assembly code programming provides a compromise between coding 
effort and coding effi ciency. The assembler optimizer assigns the functional unit and 
register to use (optional to be specifi ed by the user), fi nds instructions that can 
execute in parallel, and performs software pipelining for optimization (discussed in 
Chapter  8 ). Two programming examples at the end of this chapter illustrate a C 
program calling a linear assembly function. Parallel instructions are not valid in a 
linear assembly program. Specifying the functional unit is optional in a linear assem-
bly program as well as in an assembly program. 

 In recent years, the C compiler optimizer has become more and more effi cient. 
Although C code is less effi cient (speed performance) than assembly code, it typi-
cally involves less coding effort than assembly code, which can be hand - optimized 
to achieve 100 percent effi ciency but with much greater coding effort. 

 It is interesting to note that the C6x assembly code syntax is not as complex 
as that of the C2x/C5x or the C3x family of processors. It is actually simpler to 
 “ program ”  the C6x in assembly. For example, the C3x instruction

DBNZD AR4,LOOP 

decrements (due to the fi rst D) a loop counter AR4 and branches (B) conditionally 
(if AR4 is nonzero) to the address specifi ed by  LOOP , with delay (due to the second 
D). The branch instruction with delay effectively allows the branch instruction 
to execute in a single cycle (due to pipelining). Such multitask instructions are 
not available on the C62x and C67x processors, although they were recently intro-
duced on the C64x processor. In fact, C6x types of instructions are simpler. For 
example, separate instructions are available for decrementing a counter (with a SUB



instruction) and branching. The simpler types of instructions are more amenable for 
a more effi cient C compiler. 

 However, although it is simpler to program in assembly code to perform a desired 
task, this does not imply or translate into an effi cient assembly - coded program. It 
can be relatively diffi cult to hand - optimize a program to yield a totally effi cient (and 
meaningful) assembly - coded program. 

 Linear assembly code is a cross between assembly and C. It uses the syntax of 
assembly code instructions such as ADD ,  SUB , and  MPY , but with operands/registers as 
used in C. In some cases this provides a good compromise between C and assembly. 

 Linear assembler directives include

.cproc

.endproc

to specify a C - callable procedure or section of code to be optimized by the assem-
bler optimizer. Another directive, .reg , is used to declare variables and use descrip-
tive names for values that will be stored in registers. Programming examples with 
C calling an assembly function or a linear assembly function are illustrated later in 
this chapter.  

3.11 ASM STATEMENT WITHIN  C

 Assembly instructions and directives can be incorporated within a C program using 
the asm  statement. The  asm  statement can provide access to hardware features that 
cannot be obtained using C code only. The syntax is

asm ( “assembly code ”);

The assembly line of code within the set of quotation marks has the same format 
as a valid assembly statement. Note that if the instruction has a label, the fi rst char-
acter of the label must start after the fi rst quotation mark so that it is in column 1. 
The assembly statement should be valid since the compiler does not check it for 
syntax error but copies it directly into the compiled output fi le. If the assembly 
statement has a syntax error, the assembler would detect it. 

 Avoid using  asm  statements within a C program, especially within a linear assem-
bly program. This is because the assembler optimizer could rearrange lines of code 
near the asm  statements that may cause undesirable results.  

3.12 C-CALLABLE ASSEMBLY FUNCTION 

 Programming examples are included later in this chapter to illustrate a C program 
calling an assembly function. Register B3 is preserved and is used to contain the 
return address of the calling function. 
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 An external declaration of an assembly function called within a C program using 
extern  is optional. For example,

extern int func(); 

is optional with the assembly function func  returning an integer value.  

3.13 TIMERS

 Two 32 - bit timers can be used to time and count events or to interrupt the CPU. 
A timer can direct an external ADC to start conversion or the DMA controller 
to start a data transfer. A timer includes a time period register, which specifi es 
the timer ’ s frequency; a timer counter register, which contains the value of the 
incrementing counter; and a timer control register, which monitors the timer ’ s 
status.

3.14 INTERRUPTS

 An interrupt can be issued internally or externally. An interrupt stops the current 
CPU process so that it can perform a required task initiated by the interrupt. The 
program fl ow is redirected to an ISR. The source of the interrupt can be an ADC, 
a timer, and so on. On an interrupt, the conditions of the current process must be 
saved so that they can be restored after the interrupt task is performed. On inter-
rupt, registers are saved and processing continues to an ISR. Then the registers are 
restored.

 There are 16 interrupt sources. They include two timer interrupts, four external 
interrupts, four McBSP interrupts, and four DMA interrupts. Twelve CPU interrupts 
(INT4 – INT15) are available. An interrupt selector is used to choose among the 12 
interrupts.

3.14.1 Interrupt Control Registers 

 The interrupt control registers ( Appendix B ) are as follows: 

1.     CSR (control status register): contains the global interrupt enable (GIE) bit 
and other control/status bits  

2.     IER (interrupt enable register): enables/disables individual interrupts  

3.     IFR (interrupt fl ag register): displays the status of interrupts  

4.     ISR (interrupt set register): sets pending interrupts  

5.     ICR (interrupt clear register): clears pending interrupts  

6.     ISTP (interrupt service table pointer): locates an ISR  



7.     IRP (interrupt return pointer)  

8.     NRP (nonmaskable interrupt return pointer)    

 Interrupts are prioritized, with Reset having the highest priority. The reset inter-
rupt and nonmaskable interrupt (NMI) are external pins that have the fi rst and 
second highest priority, respectively. The interrupt enable register (IER) is used to 
set a specifi c interrupt and can check if and which interrupt has occurred from the 
interrupt fl ag register (IFR). 

 NMI is nonmaskable, along with Reset. NMI can be masked (disabled) by 
clearing the nonmaskable interrupt enable (NMIE) bit within CSR. It is set to 
zero only upon reset or upon a nonmaskable interrupt. If NMIE is set to zero, all 
interrupts INT4 through INT15 are disabled. The interrupt registers are shown in 
 Appendix B . 

 The reset signal is an active - low signal used to halt the CPU, and the NMI signal 
alerts the CPU to a potential hardware problem. Twelve CPU interrupts with lower 
priorities are available, corresponding to the maskable signals INT4 through INT15. 
The priorities of these interrupts are: INT4, INT5,       .      .      .       , INT15, with INT4 having the 
highest priority and INT15 the lowest priority. For an NMI to occur, the NMIE bit 
must be 1 (active high). On reset (or after a previously set NMI), the NMIE bit is 
cleared to zero so that a reset interrupt may occur. 

 To process a maskable interrupt, the GIE bit within the control status register 
(CSR) and the NMIE bit within the IER are set to 1. GIE is set to 1 with bit 0 of 
CSR set to 1, and NMIE is set to 1 with bit 1 of IER set to 1. Note that CSR can 
be ANDed with − 2 (using 2 ’ s complement, the LSB is 0, while all other bits are 1 ’ s) 
to set the GIE bit to 0 and disable maskable interrupts globally. 

 The interrupt enable (IE) bit corresponding to the desired maskable interrupt is 
also set to 1. When the interrupt occurs, the corresponding IFR bit is set to 1 to 
show the interrupt status. To process a maskable interrupt, the following apply: 

1.     The GIE bit is set to 1.  

2.     The NMIE bit is set to 1.  

3.     The appropriate IE bit is set to 1.  

4.     The corresponding IFR bit is set to 1.    

 For an interrupt to occur, the CPU must not be executing a delay slot associated 
with a branch instruction. 

 The interrupt service table (IST) shown in Table  3.5  is used when an interrupt 
begins. Within each location is an FP associated with each interrupt. The table con-
tains 16   FPs, each with eight instructions. The addresses on the right side correspond 
to an offset associated with each specifi c interrupt. For example, the FP for interrupt 
INT11 is at a base address plus an offset of 160   h. Since each FP contains eight 32 -
 bit instructions (256 bits) or 32 bytes, each offset address in the table is incremented 
by 20   h   =   32.   
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 The reset FP must be at address 0. However, the FPs associated with the other 
interrupts can be relocated. The relocatable address can be specifi ed by writing this 
address to the interrupt service table base (ISTB) register of the interrupt service 
table pointer (ISTP) register, shown in Figure  B.7 . On reset, ISTB is zero. For relo-
cating the vector table, the ISTP is used; the relocatable address is ISTB plus the 
offset.

3.14.2 Interrupt Acknowledgment 

 The signals IACK and INUMx (INUM0 through INUM3) are pins on the C6x that 
acknowledge that an interrupt has occurred and is being processed. The four INUMx 
signals indicate the number of the interrupt being processed. For example,

INUM3 = 1 (MSB), INUM2 = 0, INUM1 = 1, INUM0 = 1 (LSB) 

correspond to (1011)b = 11 , indicating that INT11 is being processed. 
 The IE11 bit is set to 1 to enable INT11. The IFR can be read to verify that bit 

IF11 is set to 1 (INT11 enabled). Writing a 1 to a bit in the interrupt set register 
(ISR) causes the corresponding interrupt fl ag to be set in IFR, whereas a 0 to a bit 
in the interrupt clear register (ICR) causes the corresponding interrupt to be 
cleared.

 All interrupts remain pending while the CPU has a pending branch instruction. 
Since a branch instruction has fi ve delay slots, a loop smaller than six cycles is 
noninterruptible. Any pending interrupt will be processed as long as there are 

TABLE 3.5 Interrupt Service Table 

Interrupt Offset

RESET 000h
NMI 020h
Reserved 040h
Reserved 060h
INT4 080h
INT5 0A0h
INT6 0C0h
INT7 0E0h
INT8 100h
INT9 120h
INT10 140h
INT11 160h
INT12 180h
INT13 1A0h
INT14 1C0h
INT15 1E0h



no pending branches to be completed. Additional information can be found in 
Ref.  6 .   

  3.15   MULTICHANNEL BUFFERED SERIAL PORTS 

 Two McBSPs are available. They provide an interface to inexpensive (industry 
standard) external peripherals. McBSPs have features such as full - duplex commu-
nication, independent clocking and framing for receiving and transmitting, and 
direct interface to AC97 and IIS compliant devices. They allow several data sizes 
between 8 and 32 bits. Clocking and framing associated with the McBSPs for input 
and output are discussed in Ref.  7 . 

 External data communication can occur while data are being moved internally. 
Figure  3.4  shows an internal block diagram of a McBSP. The data transmit (DX) 
and data receive (DR) pins are used for data communication. Control information 
(clocking and frame synchronization) is through CLKX, CLKR, FSX, and FSR. 
The CPU or DMA controller reads data from the data receive register (DRR) and 
writes data to be transmitted to the data transmit register (DXR). The transmit shift 

    FIGURE 3.4.     Internal block diagram of McBSP. ( Courtesy of Texas Instruments .)  
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register (XSR) shifts these data to DX. The receive shift register (RSR) copies the 
data received on DR to the receive buffer register (RBR). The data in RBR are 
then copied to DRR to be read by the CPU or the DMA controller.   

 Other registers — the serial port control register (SPCR), receive/transmit control 
register (RCR/XCR), receive/transmit channel enable register (RCER/XCER), 
pin control register (PCR), and sample rate generator register (SRGR) — support 
further data communication  [7] . 

 The two McBSPs are used for input and output through the onboard codec. 
McBSP0 is used for control and McBSP1 for transmitting and receiving data.  

3.16 DIRECT MEMORY ACCESS 

 Direct memory access (DMA) allows for the transfer of data to and from internal 
memory or external devices without intervention from the CPU  [7] . Sixteen 
enhanced DMA channels (EDMA) can be confi gured independently for data trans-
fer. DMA can access on - chip memory and the EMIF, as well as the HPI. Data of 
different sizes can be transferred: 8 - bit bytes, 16 - bit half - words, and 32 - bit words. 

 A number of DMA registers are used to confi gure the DMA: address (source 
and destination), index, count reload, DMA global data, and control registers. The 
source and destination addresses can be from internal program memory, internal 
data memory, an external memory interface, and an internal peripheral bus. DMA 
transfers can be triggered by interrupts from internal peripherals as well as from 
external pins. 

 For each resource, each DMA channel can be programmed for priorities with 
the CPU, with channel 0 having the highest priority. Each DMA channel can be 
made to start initiating block transfer of data independently. A block can contain a 
number of frames. Within each frame can be many elements. Each element is a single 
data value. The DMA count reload register contains the value to specify the frame 
count (16   MSBs) and the element count (16   LSBs).  

3.17 MEMORY CONSIDERATIONS 

3.17.1 Data Allocation 

 Blocks of code and data can be allocated in memory within sections specifi ed in the 
linker command fi le. These sections can be either initialized or uninitialized. The 
initialized sections are: 

1.      .cinit : for global and static variables  

2.      .const : for global and static constant variables  

3.      .switch : contains jump tables for large switch statements  

4.      .text : for executable code and constants    



 The uninitialized sections are: 

1.      .bss : for global and static variables  

2.      .far : for global and static variables declared far  

3.      .stack : allocates memory for the system stack  

4.      .sysmem : reserves space for dynamic memory allocation used by the  malloc , 
calloc , and  realloc  functions    

 The linker can be used to place sections such as text in fast internal memory for 
most effi cient operation.  

3.17.2 Data Alignment 

 The C6x always accesses aligned data that allow it to address bytes, half - words, 
and words (32 bits). The data format consists of four byte boundaries, two half - 
word boundaries, and one word boundary. For example, to assign a 32 - bit load 
with LDW , the address must be aligned with a word boundary so that the lower 2 bits 
of the address are zero. Otherwise, incorrect data can be loaded. A double - word 
(64 bits) also can be accessed. Both .S1  and  .S2  can be used to execute the double -
 word instruction  LDDW  to load two 64 - bit double words, for a total of 128 bits 
per cycle.  

3.17.3 Pragma Directives 

 The pragma directives tell the compiler to consider certain functions. Pragmas 
include DATA_ALIGN, DATA_SECTION , and so on. The  DATA_ALIGN  pragma has the 
syntax

#pragma DATA_ALIGN (symbol,constant); 

that aligns symbol  to a boundary. The constant is a power of 2. This pragma direc-
tive is used later in several examples (such as in FFT program examples) to align 
data in memory. 

 The  DATA_SECTION  pragma has the following syntax:

#pragma DATA_SECTION (symbol, “my_section”);

which allocates space for symbol  in the section named  my_section . This pragma 
directive is useful to allocate a section in external memory. For example,

#pragma DATA_SECTION (buffer, “.extRAM”)
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is used to place buffer  in the section  extRAM . In the linker command fi le, the fol-
lowing is specifi ed within SECTIONS  :

.extRAM : > SDRAM 

and within MEMORY, the following is specifi ed:

SDRAM: org = 0x80000000, len = 0x01000000 

where 0x80000000  is the address in external memory (CE0 space). Another useful 
pragma directive,

#pragma MUST_ITERATE (20,20) 

tells the compiler that the loop following will execute 20 times (a minimum and 
maximum of 20 times).  

3.17.4 Memory Models 

 The compiler generates a small memory model code by default. Every data object 
is handled as if declared near  unless it is specifi cally declared  far . If the  DATA_
SECTION  pragma is used, the object is specifi ed as a  far  variable. 

 How run - time support functions are called can be controlled by the option  −mr0
with the run - time support data and calls  near , or by the option  −mr1  with the run -
 time support data and calls  far . Using the  far  method to call functions does not 
imply that those functions must reside in off - chip memory. 

 Large - memory models can be generated with the linker options  −mlx  ( x    =   0 to 
4). If no level is specifi ed, data and functions default to  near . These models can be 
used for calling a function that is more than 1   M words   away.   

3.18 FIXED- AND FLOATING -POINT FORMAT 

 Some fi xed - point considerations are reviewed in  Appendix C . 

3.18.1 Data Types 

 Some data types are: 

1.      short : of size 16 bits represented as 2 ’ s complement with a range from  − 2 15

to (2 15     −    1)  

2.      int  or  signed int : of size 32 bits represented as 2 ’ s complement with a range 
from − 2 31  to (2 31     −    1)  



  3.       fl oat  : of size 32 bits represented as IEEE 32 - bit with a range from 2  − 126    =  
 1.175494    ×    10  − 38  to 2 +128    =   3.40282346    ×    10 38   

  4.       double  : of size 64 bits represented as IEEE 64 - bit with a range from 2  − 1022    =  
 2.22507385    ×    10  − 308  to 2 +1024    =   1.79769313    ×    10 +308     

 Data types such as  short  for fi xed - point multiplication can be more effi cient (fewer 
cycles) than using  int . Use of  const  can also increase code performance. Notations 
such as Uint16 and Uint32 are supported for casting 16 -  and 32 - bit unsigned 
integers, respectively.  

  3.18.2   Floating - Point Format 

 With a much wider dynamic range in a fl oating - point processor, scaling is not an 
issue. A fl oating - point number can be represented using single precision with 32 bits 
or double precision with 64 bits, as shown in Figure  3.5 . In single - precision format, 
bit 31 represents the sign bit, bits 23 through 30 represent the exponent bits, and 
bits 0 through 22 represent the fractional bits, as shown in Figure  3.5 a. Numbers as 
small as 10  − 38  and as large as 10 +38  can be represented. In double - precision format, 
more exponent and fractional bits are available, as shown in Figure  3.5 b. Since 64 
bits are represented, a pair of registers is used. Bits 0 through 31 of the fi rst register 
pair represent the fractional bits. Bits 0 through 19 of the second register pair also 
represent the fractional bits, with bits 20 through 30 representing the exponent bits 
and bit 31 the sign bit. As a result, numbers as small as 10  − 308  and as large as 10 +308  
can be represented.   

 Instructions ending in either  SP  or  DP  represent single and double precision, 
respectively. Some of the fl oating - point instructions (available on the C67x fl oating -
 point processor) have more latencies than do fi xed - point instructions. For example, 
the fi xed - point multiplication   MPY   requires one delay or   NOP  , whereas the single -
 precision   MPYSP   requires three delays and the double - precision instruction   MPYDP   
requires nine delays. 

 The single - precision fl oating - point instructions  ADDSP  and  MPYSP  have three 
delay slots and take four cycles to complete execution. The double - precision instruc-
tions  ADDDP  and  MPYDP  have six and nine delay slots, respectively. However, the 

31 30             23 22              0 
s e f 

                           (a) 

31 30    20 19  0 31  0 
s          e              f                          f 

(b) 

    FIGURE 3.5.     Data format: (a) single precision and (b) double precison.  
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fl oating - point double - word load instruction  LDDW  (with four delay slots, as with the 
fi xed - point  LDW ) can load 64 bits. Two  LDDW  instructions can execute in parallel 
through both units .S1  and  .S2  to load a total of 128 bits per cycle. 

 A single - precision fl oating - point value can be loaded into a single register, 
whereas a double - precision fl oating - point value is a 64 - bit value that can be loaded 
into a register pair such as A1   :   A0, A3   :   A2,       .      .      .       , B1   :   B0, B3   :   B2,       .      .      .       . The least signifi -
cant 32 bits are loaded into the even register pair, and the most signifi cant 32 bits 
are loaded into the odd register pair. 

 One may need to weigh the pros and cons of dynamic range and accuracy with 
possible degradation in speed when using fl oating - point types of instructions.  

3.18.3 Division

 The fl oating - point C6713 processor has a single - precision reciprocal instruction 
RCPSP. A division operation can be performed by taking the reciprocal of the 
denominator and multiplying the result by the numerator  [6] . There are no fi xed -
 point instructions for division. Code is available to perform a division operation by 
using the fi xed - point processor to implement a Newton – Raphson equation.   

3.19 CODE IMPROVEMENT 

 Several code optimization schemes are discussed in Chapter  8  using both fi xed -  and 
fl oating - point implementations and ASM code. 

3.19.1 Intrinsics

 C code can be optimized further by using many of the available  intrinsics  in the 
run - time library support fi le. Intrinsic functions are similar to run - time support 
library functions. Intrinsics  are available to multiply, to add, to fi nd the reciprocal 
of a square root, and so on. For example, in lieu of using the asterisk operator to 
multiply, the intrinsic _mpy  can be used.  Intrinsics  are special functions that map 
directly to inline C6x instructions. For example,

int _mpy() 

is equivalent to the assembly instruction MPY  to multiply the 16   LSBs of two numbers. 
The intrinsic function

int _mpyh() 

is equivalent to the assembly instruction MPYH  to multiply the 16   MSBs of two 
numbers.



3.19.2 Trip Directive for Loop Count 

 The linear assembly directive  .trip  is used to specify the number of times a loop 
iterates. If the exact number is known and used, the linear assembler optimizer can 
produce pipelined code (discussed in Chapter  8 ) and redundant loops are not gener-
ated. This can improve both code size and execution time. A .trip  count specifi ca-
tion, even if it is not the exact value, may improve performance: for example, when 
the actual number of iterations is a multiple of the specifi ed value. The intrinsic 
function _nassert()  can be used in a C program in lieu of  .trip .  

3.19.3 Cross-Paths

 Data and address cross - path instructions are used to increase code effi ciency. The 
instruction

MPY .M1x A2,B2,A4 

illustrates a data cross - path that multiplies the two sources A2 and B2 from two 
different sides, A and B, with the result in A4. If the result is in the B register fi le, 
a 2x  cross - path is used with the instruction

MPY .M2x A2,B2,B4 

with the result in B4. The instruction

LDW .D1T2 *A2,B2

illustrates an address cross - path. It loads the content in register A2 (from a register 
fi le A) into register B2 (register fi le B). Only two cross - paths are available on the 
C6x, so no more than two instructions using cross - paths are allowed within a 
cycle.

3.19.4 Software Pipelining 

 Software pipelining uses available resources to obtain effi cient pipelining code. The 
aim is to use all eight functional units within one cycle. However, substantial coding 
effort can be required when the software pipelining technique is used for more 
complex programs. There are three stages to a pipelined code: 

1.     Prolog  

2.     Loop kernel (or loop cycle)  

3.     Epilog    
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 The fi rst stage, prolog, contains instructions to build the second - stage loop cycle, and 
the epilog stage (last stage) contains instructions to fi nish all loop iterations. Soft-
ware pipelining is used by the compiler when the optimization option level −o2  or 
−o3  is invoked. The most effi cient software pipelined code has loop trip counters 
that count down: for example,

for (i = N; i != 0; i ––)

A dot product example with word - wide hand - coded pipelined code results in ( N /2)  
 +   8 cycles to obtain the sum of two arrays, with  N  numbers in each array. This trans-
lates to 108 cycles to fi nd the sum of products of 200 numbers, as illustrated in 
Chapter  8 . This effi ciency is obtained using instructions such as  LDW  to load a 32 - bit 
word and multiplying the lower and higher 16 - bit numbers separately with the two 
instructions mpy  and  mpyh , respectively. 

 Removing the epilog section can also reduce the code size. The available options 
−msn  ( n    =   0, 1, 2) direct the compiler to favor code size reduction over performance. 
Hand - coded software pipelined code can be produced by fi rst drawing a depen-
dency graph and setting up a scheduling table  [8] . In Chapter  8  we discuss software 
pipelining in conjunction with code effi ciency.   

3.20 CONSTRAINTS

3.20.1 Memory Constraints 

 Internal memory is arranged through various banks of memory so that loads and 
stores can occur simultaneously. Since each bank of memory is single ported, only 
one access to each bank is performed per cycle. Two memory accesses per cycle can 
be performed if they do not access the same bank of memory. If multiple accesses 
are performed to the same bank of memory (within the same space), the pipeline 
will stall. This causes additional cycles for execution to complete.  

3.20.2 Cross-Path Constraints 

 Since there is one cross - path in each side of the two data paths, there can be at most 
two instructions per cycle using cross - paths. The following code segment is valid 
since both available cross - paths are used:

 ADD .L1x A1,B1,A0
||  MPY .M2x A2,B2,B3 

whereas the following is not valid since one cross - path is used for both instructions:

 ADD .L1x A1,B1,A0
||  MPY .M1x A2,B2,A3 

The x  associated with the functional unit designates a cross - path.  



3.20.3 Load/Store Constraints 

 The address register to be used must be on the same side as the  .D  unit. The fol-
lowing code segment is valid:

 LDW .D1  *A1,A2
||  LDW .D2  *B1,B2

whereas the following is not valid:

 LDW .D1  *A1,A2
||  LDW .D2  *A3,B2

Furthermore, loading and storing cannot be from the same register fi le. A load (or 
store) using one register fi le in parallel with another load (or store) must use a dif-
ferent register fi le. For example, the following code segment is valid:

 LDW .D1  *A0,B1
||  STW .D2 A1, *B2

The following is also valid:

 LDW .D1  *A0,B1
||  LDW .D2  *B2,A1

However, the following is not valid:

 LDW .D1  *A0,A1
||  STW .D2 A2, *B2

3.20.4 Pipelining Effects with More Than One EP Within an  FP

 Table  3.3  shows a previous pipeline operation representing eight instructions in 
parallel within one FP. Table  3.6  shows the pipeline operation when there is more 
than one EP within an FP.   

 Consider the operation of six FPs (FP1 through FP6) through the pipeline. FP1 
contains three execute packets, and FP2, FP3,       .      .      .       , FP6 each contains one EP. In 
cycles 2 through 5, FP2 through FP5, each FP starts its program fetch phase. When 
the CPU detects that FP1 contains more than one EP, it forces the pipeline to stall 
so that EP2 and EP3, within FP1, can each start its dispatching (DP) phase in cycles 
6 and 7, respectively. Each instruction within an FP has a  “ p ”  bit to specify whether 
that instruction is in parallel with a subsequent instruction (if a 1, as shown in Figure 
 3.3 ). With a 0 in the LSB of an instruction, the chain is broken, and the subsequent 
instructions are placed in the next execute packet. 
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 During clock cycles 1 through 4, a program fetch phase occurs. The three EPs 
within the same FP cause a stall in the pipeline. This allows the DP phase to start 
at cycle 6 (not at cycle 5) for EP2 and at cycle 7 for EP3. The subsequent FP (FP2) 
with only one EP (with all eight instructions in parallel) is stalled so that each of 
the three EPs in the previous FP (FP1) can go through the DP phase. As a result, 
while the fetch phase for FP2 starts at cycle 2, its DP phase does not start until cycle 
8. The third FP (FP3), also with only one EP, starts its fetch stage at cycle 3, but its 
DP phase does not start until cycle 9, due to the pipeline stall. 

 The pipeline then stalls in cycles 6 and 7, as indicated with an  “ X. ”  Once EP3 
(within FP1) continues onto its decoding phase in cycle 8, the pipeline is released. 
FP2 can now continue to its DP phase in cycle 8. Since FP3 through FP6 also were 
stalled, each can now resume its program fetch phase in cycle 8. 

 Hence, with the three EPs within one FP, the pipeline stalls for two cycles. Table 
 3.6  illustrates the stalling pipeline effects. A pipeline stall would also take place if 
the fi rst FP had four EPs, each with two parallel instructions.   

3.21 PROGRAMMING EXAMPLES USING C, ASSEMBLY, 
AND LINEAR ASSEMBLY 

 Several programming examples are discussed in this section. They illustrate both 
assembly code and linear assembly code implementation: a C program calling an 
assembly function, a C program calling a linear assembly function, and an assembly -
 coded program calling an assembly - coded function. The focus here is on illustrating 
the syntax of both assembly and linear assembly code, and not necessarily on pro-
ducing optimized code. We discuss further optimization techniques in Chapter  8  in 
conjunction with code effi ciency and software pipelining. 

TABLE 3.6 Pipelining with Stalling Effects 

Clock Cycle 

1 2 3 4 5 6 7 8 9 10 11 12

PG PS PW PR DP DC E1 E2 E3 E4 E5 E6
DP DC E1 E2 E3 E4 E5

DP DC E1 E2 E3 E4
PG PS PW PR X X DP DC E1 E2 E3

PG PS PW X X PR DP DC E1 E2
PG PS X X PW PR DP DC E1

PG X X PS PW PR DP DC
X X PG PS PW PR DP
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     Example 3.1:   Sum of  n    +   ( n     -    1)   +   ( n     -    2)   +       ·        ·        ·       +   1, 
Using  C  Calling an Assembly Function ( sum ) 

 This example illustrates a C program calling an assembly function. The C source 
program   sum.c   shown in Figure  3.6  calls the assembly - coded function   sumfunc.asm   
shown in Figure  3.7 . It implements the sum of  n    +   ( n     −    1)   +   ( n     −    2)   +       ·        ·        ·       +   1. The 
value of  n  is set in the main C program. It is passed through register A4 (by conven-
tion). For example, the address of more than one value can be passed to the assem-
bly function through A4, B4, A6, B6, and so on. The resulting sum from the assembly 
( asm ) function is returned to   result   in the C program, which then prints this result-
ing sum.     

 The assembly function ’ s name is preceded by an underscore (by convention). 
The value  n  in register A4 in the  asm  function is moved to register A1 to set A1 as 
a loop counter since only A1, A2, B0, B1, and B2 can be used as conditional registers. 
A1 is then decremented. A loop section of code starts with the label or address  LOOP  
and ends with the fi rst branch statement B. The fi rst addition adds  n    +   ( n     −    1) with 

//Sum.c Finds n+(n-1)+...+1. Calls ASM function sumfunc

#include <stdio.h>

main()
{
 short n=6;        //set value
 short result;          //result from asm function
 result = sumfunc(n);        //call ASM function sumfunc
 printf("sum = %d", result); //print result from asm function
}

    FIGURE 3.6.     C program that calls an ASM function to fi nd  n    +   ( n     −    1)   +   ( n     −    2)   +       ·        ·        ·       +   1 
( sum.c )  .  

;Sumfunc.asm Assembly function to find n + (n-1) + ... + 1

     .def   _sumfunc  ;function called from C
_sumfunc: MV   .L1  A4,A1      ;setup n as loop counter
     SUB  .S1  A1,1,A1    ;decrement n
LOOP:     ADD  .L1  A4,A1,A4   ;accumulate in A4
          SUB  .S1  A1,1,A1   ;decrement loop counter
    [A1]  B    .S2  LOOP       ;branch to LOOP if A1#0
          NOP   5         ;five NOPs for delay slots
          B    .S2  B3        ;return to calling routine
          NOP   5          ;five NOPs for delay slots
          .end 

    FIGURE 3.7.     ASM function and called from C in the project  sum  ( sumfunc.asm )  .  
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the result in A4. A1 is again decremented to ( n     −    2). The branch statement is con-
ditional based on register A1, and since A1 is not zero, branching takes place and 
execution returns to the instruction at the address  LOOP , where A4   =    n    +   ( n     −    1) is 
added to A1   =   ( n     −    2). This process continues until register A1   =   0. 

 The second branch instruction is to the returning address B3 (by convention) of 
the C calling program. The resulting sum is contained or accumulated in A4, which 
is passed to   result   in the C program. The fi ve  NOP s (no operation) are used to 
account for the fi ve delay slots associated with a branch instruction. 

 The functional units  .S  and  .L  selected are shown but are not required in the 
program. They can be useful for debugging and analyzing which of the functional 
units are used in order to improve the effi ciency of the program. Similarly, the two 
colons after the label  LOOP  and the function name are not required. 

 Build and run this project as   sum  . With a value of   n   set to 6 in the C program, 
verify that   sum   and its value of 21 are printed.  

  Example 3.2:   Factorial of a Number Using  C  
Calling an Assembly Function ( factorial ) 

 This example fi nds the factorial of a number  n     ≤    7 with  n !   =    n ( n     −    1)( n     −    2)       ·        ·        ·       (1). 
It further illustrates the syntax of assembly code. It is very similar to  Example 3.1 . 
The value of  n  is set in the C source program   factorial.c  , shown in Figure  3.8 , 
which calls the assembly function   factfunc.asm  , shown in Figure  3.9 . It is instruc-
tive to read the comments.     

 Register A1 is again set as a loop counter. Within the loop section of code starting 
with the address  LOOP , the fi rst multiply is  n ( n     −    1) and accumulates in register A4. 
The initial value of  n  is passed to the  asm  function through A4. The  MPY    instruction 
has one delay slot, which accounts for the  NOP  following it. Processing continues 
within the loop section of code until A1   =   0. Note that the functional units are not 
specifi ed in this program. The resulting factorial is returned to the calling C program 
through A4. 

//Factorial.c Finds factorial of n. Calls function factfunc

#include <stdio.h>      //for print statement

void main()
{
 short n = 7;       //set value
 short result;               //result from asm function
 result = factfunc(n);            //call ASM function factfunc
 printf("factorial = %d", result);//print result from asm function
}

    FIGURE 3.8.     C program that calls an ASM function to fi nd the factorial of a number 
( factorial.c )  .  
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 Build and run this project as   factorial  . Verify that   factorial   and its value of 
5040 (7!) are printed. Note that the maximum value of  n  is 7, since  result  is cast 
as a short and 8! is greater than 2 15 .  

  Example 3.3:   32 -  bit  Pseudorandom Noise Generation Using  C  
Calling an Assembly Function ( Noisegen_casm ) 

 The C source program   Noisegen_casm.c   in Figure  3.10  calls the function   noise-
func   located in the fi le   Noisegen_casmfunc.asm   (Figure  3.11 ) to generate a 32 - bit 
pseudorandom noise sequence using the following scheme: 

  1.     A 32 - bit seed value such as  0x7E521603  is chosen.  

  2.     A modulo 2 summation is performed between bits 17, 28, 30, and 31.  

  3.     The LSB of the resulting summation is selected. This bit is either a 1 or a 0 
and is scaled accordingly to a positive or negative value.  

  4.     The seed value is shifted left by one, and the resulting bit from the previous 
step is placed in the LSB position and the process repeated with the new 
(shifted by one) seed value.        

 The 32 - bit noise generator diagram is shown in Figure  3.12 . Within the   asm   function, 
the seed value is moved from A4 to A1. Shifting this seed value right by 17 places 
bit 17 in the LSB position, where the addition is meaningful. The resulting summa-
tion is shifted right by 11 to place bit 28 (already shifted by 17) in the LSB position. 
This procedure is repeated, adding bits 17, 28, 30, and 31. The LSB, which is a 1 or 
a 0, is then placed into A4, and returned to the C calling function, where it is scaled 
as either a positive or a negative value, respectively. On each interrupt, this LSB bit, 
1 or 0, represents the noise sample.   

;Factfunc.asm Assembly function called from C to find factorial

          .def _factfunc  ;ASM function called from C
_factfunc: MV A4,A1       ;setup loop count in A1
       SUB A1,1,A1    ;decrement loop count
LOOP:    MPY   A4,A1,A4   ;accumulate in A4
            NOP              ;for 1 delay slot with MPY
            SUB   A1,1,A1     ;decrement for next multiply
    [A1]    B     LOOP        ;branch to LOOP if A1 # 0
       NOP 5           ;five NOPs for delay slots
            B    B3       ;return to calling routine
            NOP 5   ;five NOPs for delay slots
            .end

    FIGURE 3.9.     ASM function called from C that fi nds the factorial of a number 
( factfunc.asm )  .  
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    FIGURE 3.10.     C program that calls an ASM function to generate a 32 - bit noise sequence 
( noisegen_casm.c ).  

//Noisegen_casm.c Pseudorandom noise generation calling ASM function

#include "dsk6713_aic23.h"   //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_48KHZ;  //set sampling rate
int previous_seed;
short pos = 16000, neg = -16000;  //scaling noise level

interrupt void c_int11()
{
 previous_seed = noisefunc(previous_seed);     //call ASM function
 if(previous_seed & 0x01)   output_left_sample(pos);//positive scaling
 else                       output_left_sample(neg);//negative scaling
}

void main ()
{
 comm_intr();            //init DSK,codec,McBSP
 previous_seed = noisefunc(0x7E521603);        //call ASM function
 while (1);                //infinite loop
}

;Noisegen_casmfunc.asm Noise generation C-called function

  .def _noisefunc  ;ASM function called from C
_noisefunc ZERO A2  ;init A2 for seed manipulation
  MV A4,A1  ;seed in A1
  SHR A1,17,A1 ;shift right 17->bit 17 to LSB
  ADD A1,A2,A2 ;add A1 to A2 => A2
  SHR A1,11,A1 ;shift right 11->bit 28 to LSB
  ADD A1,A2,A2 ;add again
  SHR A1,2,A1 ;shift right 2->bit 30 to LSB
  ADD A1,A2,A2 ;
  SHR A1,1,A1 ;shift right 1->bit 31 to LSB
  ADD A1,A2,A2 ;
  AND A2,1,A2 ;Mask LSB of A2
  SHL A4,1,A4 ;shift seed left 1
  OR A2,A4,A4 ;Put A2 into LSB of A4
  B B3  ;return to calling function
  NOP 5  ;5 delays for branch 

    FIGURE 3.11.     ASM function called from C to generate a 32 - bit noise sequence ( noise-
gen_casmfunc.asm ).  
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 Build and run this project as   Noisegen_casm  . Sampling at 48   kHz, verify that the 
noise spectrum is fl at, with a bandwidth of approximately 23   kHz. Connect the 
output to a speaker to verify the generated noise. Change the scaling values to  ± 8000 
and verify that the level of the generated noise is reduced.  

  Example 3.4:   Code Detection Using  C  Calling an  ASM  Function 
( code_casm   ) 

 This example detects a four - digit code set initially in the main C source program. 
Figure  3.13  shows the main C source program   code_casm.c   that calls the   asm   func-
tion   code_casmfunc.asm  , shown in Figure  3.14 . The code is set with  code1 ,       .      .      .       , 
 code4  as 1, 2, 2, 4, respectively. The initial values of  digit1,       .      .      .       , digit4  set as 1, 1, 1, 1, 
respectively, are passed to the   asm   function to compare these four digit values with 
the four code values. Four sliders are used to change the digit values passed to the 
  asm   function. The C source program, the   asm   function, and the gel fi le for the sliders 
are included in the folder   code_casm  .     

 Build this project example as   code_casm  . Load and run the executable fi le. Press 
switch #0 (SW0) and verify that  “ no match ”  is continuously being printed (as long 
as SW0 is pressed). Load the gel fi le   code_casm.gel   and set the sliders  Digit1 ,       .      .      .       , 
 Digit4  to positions 1, 2, 2, 4, respectively. Press SW0 and verify that  “ correct match ”  
is being printed (with SW0 pressed). Change the slider  Digit2  from position 2 to 
position 3, and again press SW0 to verify that there is no longer a match. The 
program is in a continuous loop as long as switch #3 (SW3) is  not  pressed. Note that 
the initial value for the code (code1,       .      .      .       , code4) can readily be changed.  

  Example 3.5:   Dot Product Using Assembly Program 
Calling an Assembly Function ( dotp4a ) 

 This example takes the sum of products of two arrays, each array with four numbers. 
See also  Example 1.3 , which implements it using only C code, and  Examples 3.1 

    FIGURE 3.12.     A 32 - bit noise generator diagram.  
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;Code_casmfunc.asm ASM function->if code matches slider values

  .def _codefunc ;ASM function called from C
_codefunc: MV A8, A2 ;correct code
  MV    B8, B2
  MV A10, A7
  MV    B10, B7
  CMPEQ A2,A4,A1 ;compare 1st digit(A1=1 if A2=A4)
  CMPEQ A1,0,A1 ;otherwise A1=0
 [A1] B DONE  ;done if A1=0 since no match
  NOP 5
  MV    B2,A2
  CMPEQ A2,B4,A1 ;compare 2nd digit
  CMPEQ A1,0,A1
 [A1] B DONE
            NOP 5
  MV    A7,A2
  CMPEQ A2,A6,A1 ;compare 3rd digit
  CMPEQ A1,0,A1
 [A1] B DONE
            NOP   5
            MV    B7,A2
  CMPEQ A2,B6,A1 ;compare 4th digit
     CMPEQ A1,0,A1
DONE:  MV A1,A4  ;return 1 if complete match
  B B3  ;return to C program
       NOP 5
  .end 

    FIGURE 3.13.     C program that calls an ASM function to detect a four - digit code 
( code_casm.c )  .  

//Code_casm.c Calls ASM function.If code match slider values

#include <stdio.h>
short digit1=1,digit2=1,digit3=1,digit4=1;//init slider values

main()
{
 short code1=1,code2=2,code3=2,code4=4; //initialize code
 short result;
 DSK6713_init();     //init BSL
 DSK6713_DIP_init();      //init dip switches
 while(DSK6713_DIP_get(3) == 1)  //continue til SW #3 pressed
 {
  if(DSK6713_DIP_get(0) == 0)   //if DIP SW #0 is pressed
  {                                       //call ASM function
  result=codefunc(digit1,digit2,digit3,digit4,code1,code2,code3,code4);
  if(result==0) printf("correct match\n");//result from ASM function
  else      printf("no match\n"); //correct match or no match
  }
 }
}

    FIGURE 3.14.     ASM function called from C to detect a four - digit code ( code_casmfunc.asm )  .  
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through 3.4 , which introduced the syntax of assembly code. Figure  3.15  shows a 
listing of the assembly program   dotp4a_init.asm  , which initializes the two arrays 
of numbers and calls the assembly function   dotp4afunc.asm  , shown in Figure  3.16 , 
which takes the sum of products of the two arrays. It also sets a return address 
through register B3 and the result address to A0. The addresses of the two arrays 
and the size of the array are passed to the function   dotp4afunc.asm   through reg-
isters A4, A6, and B4, respectively. The result from the called function is  “ sent back ”  
through A4. The resulting sum of the products is stored in memory whose address 
is  result_addr . The instruction  STW  stores the resulting sum of the products in A4 
(in memory pointed by A0). Register A0 serves as a pointer with the address 
 result_addr .     

 The instruction  MVK  moves the 16   LSBs (equivalent to  MVKL ). If a 32 - bit address 
(or result) is required, then the pair of instructions  MVKL  and  MVKH  can be used to 
move both the lower and upper 16 bits of the address (or result). The starting 
address of the calling ASM program is defi ned as  init . The vector fi le is modifi ed 
and included in the folder   dotp4a   so that the reference to the entry address is 
changed from   _c_int00   to the entry address   init  . An alternative vector fi le 
  vectors_dotp4a.asm  , as shown in Figure  3.17 , specifi es a branch to that entry 
address. The called   asm   function   dotp4afunc.asm   calculates the sum of products. 
The loop count value was moved to A1 since A6 cannot be used as a conditional 
register (only A1, A2, B0, B1, and B2 can be used). The two  LDH  instructions load 

;Dotp4a_init.asm ASM program to init variables.Calls dotp4afunc

       .def   init       ;starting address
       .ref   dotp4afunc ;called ASM function
       .text         ;section for code
x_addr      .short  1,2,3,4    ;numbers in x array
y_addr      .short   0,2,4,6    ;numbers in y array
result_addr .short   0       ;initialize sum of products

init        MVK result_addr,A4    ;result addr -->A4
       MVK 0,A3         ;A3=0
       STH A3,*A4       ;init result to 0
       MVK x_addr,A4         ;A4 = address of x
       MVK y_addr,B4       ;B4 = address of y
            MVK 4,A6        ;A6 = size of array
       B dotp4afunc       ;B to function dotp4afunc
       MVK ret_addr,b3       ;B3=return addr from dotp4a
       NOP 3                 ;3 more delay slots(branch)
ret_addr    MVK result_addr,A0    ;A0 = result address
       STW A4,*A0       ;store result
wait       B wait        ;wait here
       NOP 5        ;delay slots for branch 

    FIGURE 3.15.     ASM program calling an ASM function to fi nd the sum of products 
( dotp4a_init.asm )  .  
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;Dotp4afunc.asm Multiply two arrays. Called from dotp4a_init.asm
;A4=x address,B4=y address,A6=count(size of array),B3=return address

   .def  dotp4afunc  ;dot product function
        .text         ;text section
dotp4afunc MV  A6,A1       ;move loop count -->A1
   ZERO   A7       ;init A7 for accumulation
loop   LDH   *A4++,A2    ;A2=content of x address
    LDH   *B4++,B2    ;B2=content of y address
       NOP  4       ;4 delay slots for LDH
       MPY  A2,B2,A3    ;A3 = x * y
       NOP         ;1 delay slot for MPY
       ADD  A3,A7,A7    ;sum of products in A7
            SUB  A1,1,A1     ;decrement loop counter
    [A1]    B  loop       ;branch back to loop till A1=0
       NOP  5       ;5 delay slots for branch
  MV  A7,A4       ;A4=result
       B  B3          ;return from func to addr in B3
       NOP   5       ;5 delay slots for branch 

    FIGURE 3.16.     ASM function called from an ASM program to fi nd the sum of products 
( dotp4afunc.asm )  .  

;vectors_dotp4a.asm Alternative vector file for dotp4a project

        .ref      init      ;starting addr in init file
        .sect  "vectors" ;in section vectors
rst:    mvkl .s2 init,b0   ;init addr 16 LSB -->B0
        mvkh .s2 init,b0   ;init addr 16 MSB -->B0
        b   b0        ;branch to addr init
        nop  5 

    FIGURE 3.17.     Alternative vector fi le that specifi es the entry address in the calling ASM 
program for the sum of products ( vectors_dotp4a.asm ).  

(half - word of 16 bits) the addresses of the two arrays starting at   x_addr   and   y_addr   
into registers A2 and B2, respectively. For example, the instruction

 LDH  * B4++,B2 

loads the content in memory (the fi rst value in the second array starting at   y_
address  ) pointed at by B4 (the address of the second array) into B2. Then register 
B4, used as a pointer, is postincremented to the next higher address in memory that 
contains the second value in the second array. Register A7 is used to accumulate 
and move the sum of products to register A4, since the result is passed to the calling 
function through A4. 
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 Support fi les for this project include (no library fi le is necessary): 

1.     dotp4a_init.asm  

2.     dotp4afunc.asm  

3.     vecs_dotp4a.asm    

 The vector fi le  vecs_dotp4a.asm  (modifi ed vector fi le) or the alternative vector 
fi le  vectors_dotp4a.asm  shown in Figure  3.17  are both included in the folder 
dotp4a . Build and run this project as  dotp4a . Modify the Linker Option (Project  
→    Options) to select  “ No Autoinitialization. ”  Otherwise, the warning  “ entry point 
symbol _c_int00  undefi ned ”  is displayed when this project is built (it can be 
ignored). This is because the  “ conventional ”  entry point is not used in this project, 
since there is no main  function in ASM.   

 Set a breakpoint at the fi rst branch instruction in the program  dotp4a_init.
asm :

B dotp4afunc 

Select View    →    Memory, set address to  result_addr , and use the 16 - bit signed 
integer. Right - click on the Memory window and deselect  “ Float in Main Window. ”  
This allows you to have a better display of the Memory window while viewing the 
source fi le  dotp4a_init.asm . 

 Select Run. Execution stops at the set breakpoint. The content in memory at 
the address result_addr  is zero (the called function  dotp4afunc.asm  is not yet 
executed). Run again, then halt, since execution is within the infi nite wait loop 
instruction:

wait B wait ;wait here 

 Verify that the resulting sum of products is A4   =    0x28    =   40. Note that A0 contains 
the result address ( result_addr ). Select View    →    Registers    →    Core Registers and 
verify this address (in hex). Figure  3.18  shows a CCS display of this project. Note 
from the disassembly fi le that execution was halted at the infi nite wait loop.    

Example 3.6: Dot Product Using C Function Calling a 
Linear Assembly Function ( dotp4clasm)

 Figure  3.19  shows a listing of the C source program  dotp4clasm.c , which calls the 
linear assembly function dotp4clasmfunc.sa , shown in Figure  3.20 .  Example 1.3  
introduced the dot product implementation using C code only. The previous fi ve 
examples introduced the syntax of assembly - coded programs.     

 The section of code invoked by the linear assembler optimizer starts and ends 
with the linear assembler directives, .cproc  and  .endproc , respectively. The name 
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    FIGURE 3.18.     CCS windows for the sum of products in the project  dotp4a .  

//Dotp4clasm.c Multiplies two arrays using C calling linear ASM func

short dotp4clasmfunc(short *a,short *b,short ncount);  //prototype
#include <stdio.h>                //for printing statement
#include "dotp4.h"                          //arrays of data values
#define  count 4                            //number of data values
short x[count] = {x_array};     //declare 1st array
short y[count] = {y_array};       //declare 2nd array
volatile int result = 0;              //result

main()
{
 result = dotp4clasmfunc(x,y,count);   //call linear ASM func
 printf("result = %d decimal \n", result);  //print result
}

    FIGURE 3.19.     C program calling a linear ASM function to fi nd the sum of products 
( dotp4clasm.c )  .  
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of the linear assembly function called is preceded by an underscore since the calling 
function is in C. The directive  .def  defi nes the function. 

 Functional units are optional as in an assembly - coded program. Registers   a  ,   b  , 
  prod  , and   sum   are defi ned by the linear assembler directive   .reg  . The addresses of 
the two arrays x and y and the size of the array ( count ) are passed to the linear 
assembly function through the registers   ap  ,   bp  , and   count  . Both   ap   and   bp   are 
registers used as pointers, as in C code. The instruction fi eld is seen to be as in an 
assembly - coded program, and the subsequent fi eld uses a syntax as in C program-
ming. For example, the instruction

 loop: ldh  * ap++,a 

(the fi rst time through the loop section of code) loads the content in memory, 
whose address is specifi ed by register  ap , into register   a  . Then the pointer register 
  ap   is postincremented to point to the next higher memory address, pointing at the 
memory location containing the second value of  x  within the  x  array. The value of 
the sum of the products is accumulated in  sum , which is returned to the C calling 
program. 

 Build and run this project as   dotp4clasm  . Verify that the following is printed: 
 result = 40 . You may wish to profi le the linear assembly code function and 
compare its execution time with that of the C - coded version in  Example 1.3 .  

  Example 3.7:   Factorial Using  C  Calling a Linear Assembly Function 
( factclasm ) 

 Figure  3.21  shows a listing of the C program   factclasm.c  , which calls the linear 
 asm  function   factclasmfunc.sa  , shown in Figure  3.22 , to calculate the factorial of 
a number less than 8. See also  Example 3.2 , which fi nds the factorial of a number 
using a C program that calls an asm function.  Example 3.6  illustrates a C program 

    FIGURE 3.20.     Linear ASM function called from C to fi nd the sum of products 
( dotp4clasmfunc.sa )  .  

;Dotp4clasmfunc.sa  Linear assembly function to multiply two arrays
       .ref   _dotp4clasmfunc ;ASM func called from C
_dotp4clasmfunc: .cproc   ap,bp,count     ;start section linear ASM
            .reg   a,b,prod,sum    ;asm optimizer directive
            zero     sum          ;init sum of products
loop:            ldh      *ap++,a         ;pointer to 1st array->a
            ldh      *bp++,b       ;pointer to 2nd array->b
            mpy      a,b,prod        ;product = a*b
                 add      prod,sum,sum    ;sum of products -->sum
            sub      count,1,count   ;decrement counter
  [count]        b        loop            ;loop back if count # 0
       .return  sum        ;return sum as result
       .endproc              ;end linear ASM function
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calling a linear ASM   function to fi nd the sum of products and is instructive for this 
project.  Examples 3.2  and  3.6  cover the essential background for this example.     

 Support fi les for this project include  factclasm.c ,  factclasmfunc.sa ,  rts6700.
lib , and  C6713dsk.cmd . Build and run this project as   factclasm  . Verify that the 
result of 7! is printed, or  factorial = 5040 .    

  3.22   ASSIGNMENTS 

    1.     Write a C program that calls an assembly function that takes input values  a  
and  b  from the C program to calculate the following: [ a  2    +   ( a    +   1) 2    +   ( a    +   2) 2   
 +             ·        ·        ·       +   (2 a     −    1) 2 ]    −    [ b  2    +   ( b    +   1) 2    +   ( b    +   2) 2    +       ·        ·        ·       +   (2 b     −    1) 2 ]. Set  a    =   3 and 
 b    =   2 in the C program and verify that the result is printed as 37.  

  2.     Write a C program that calls an assembly function to obtain the determinant 
of a 3    ×    3 matrix. Set the matrix values in the C program. The fi rst row values 
are {4, 5, 9}; the second row values are {8, 6, 5}, and the third row values are 
{2, 1, 2}. Verify that the resulting determinant is printed within CCS as  − 38.  

;Factclasmfunc.sa Linear ASM function called from C to find factorial

           .ref _factclasmfunc ;Linear ASM func called from C
_factclasmfunc: .cproc number    ;start of linear ASM function
      .reg a,b            ;asm optimizer directive
      mv number,b       ;setup loop count in b
      mv   number,a       ;move number to a
      sub     b,1,b          ;decrement loop counter
loop:      mpy a,b,a         ;n(n-1)
      sub b,1,b          ;decrement loop counter
   [b]      b  loop           ;loop back to loop if count #0
      .return a              ;result to calling function
      .endproc               ;end of linear ASM function 

    FIGURE 3.22.     Linear ASM function called from C that fi nds the factorial of a number 
( factclasmfunc.sa ).  

//Factclasm.c Factorial of number. Calls linear ASM function

#include <stdio.h>       //for print statement
void main()
{
 short number = 7;       //set value
 short result;                //result of factorial
 result = factclasmfunc(number);   //call ASM function factlasmfunc
 printf("factorial = %d", result); //result from linear ASM function
}

    FIGURE 3.21.     C program that calls a linear ASM function to fi nd the factorial of a number 
( factclasm.c ).  



    FIGURE 3.23.     Partial programs (C and ASM function) to multiply two numbers using the 
dip switches.  

Partial programs C/ASM function to multiply 2 numbers using switches
..
while(m == 100)                     //check for first SW pressed
{
 if(DSK6713_DIP_get(0)== 0)         //true if SW0 is pressed
 {
  m = 1;     //value if SW0 is pressed
  while(DSK6713_DIP_get(0)==0) DSK6713_LED_on(0);//ON until released
  for(delay=0; delay<5000000; delay++){}         //debounce of SW0
 }
 else if(DSK6713_DIP_get(1)==0)  //true if SW1 is pressed
 {
  m = 2;
 .
 .
  else m = 100;
 .
 .
  while(ii == 0)
   {
   result = values(n, m);   //result from ASM function in A4
   led0 = result0(result);    //returns a 0 or 1 to led0
   if(led0==1)   DSK6713_LED_on(0); //if led0 is 1 turn it on
   .
   .
;ASM function
  ..
_values: MV    A4,A5  ;setup n as loop counter
       MV    B4,B1
LOOP:      ADD   A5,A4,A4    ;accumulate in A4
           SUB   B1,1,B1     ;decrement loop counter
    [B1]   B     LOOP        ;branch to LOOP if B1#0
           NOP  5       ;five NOPs for delay slots
           SUB   A4,A5,A4    ;answer into A4
           B     B3       ;return to calling routine
           NOP   5  ;five NOPs for delay slots

_result0: SHL A4,31,A4 ;shift left 31 bits to keep LSB
       SHRU A4,31,A4 ;shift right 31 bits to make A4=0 or 1
            B  B3  ;return to calling routine
            NOP 5  ;five NOPs for delay slots 

  3.     Write a C program  multi_casm.c  that calls an assembly function  multi_
casmfunc.asm  to multiply two numbers using the onboard dip switches. The 
maximum product is 3    ×    4   =   12 or 4    ×    3   =   12. Note that 4    ×    4   =   16 cannot be 
represented with the four dip switches. Use delay loops for debouncing the 
switches. A partial program is included in Figure  3.23 . In the main C source 
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program, the values of  m    =   100 and  n    =   100 are to check when the fi rst and 
second switches are pressed. SW0 is tested and, if pressed,  m    =   1, representing 
the fi rst value. Similarly,  m    =   2, 3, 4 if SW1, SW2, or SW3 is pressed, respec-
tively. Then all LEDs are turned off. This process is repeated while  n    =   100 to 
check for the second value (when the second switch is pressed).  

  The function   values   performs the multiplication, adding  m  ( n  times) with  m  
and  n  passed to the  asm  function through A4 and B4, respectively. Note that 
 led0  is turned on if led0   =   1 (returned from the function  result0 ). Similarly for 
 led1 ,       .      .      .       ,  led3 . Then,  m  and  n  are reset to 100 and  ii  to 1. The   asm   function 
 multi_casmfunc.asm  includes the functions    values, result0,       .      .      .       , result3 . The 
functions  result1, result2, result3  are similar to  result0   , but A4 must be shifted 
fi rst by 1, by 2, and by 3, respectively, in each of these functions. Build and run 
this project example as   multi_casm  .   Press SW2, then SW3 to obtain  m    =   3 and 
 n    =   4, and verify that LED2 and LED3 turn on to represent the result of 12.  

  4.     Write a C program that calls a linear assembly or assembly function to gener-
ate a random noise sequence, based on the linear feedback shift register 
(LFSR) shown in Figure  3.24 . In lieu of starting with a 16 - bit seed value, 16 
integer values are used in an array as the seeds. In this fashion, each 32 - bit 
seed is treated as a theoretical bit. The  “ tap points ”  are chosen as shown (bits 
1, 2, 11, 15, and 16) to produce a large string of random numbers  [11] . Within 
the   asm   or   linear asm   function, each integer value is taken as a seed, and 
you can use instructions such as LDW/STW  , repeated 15 times, to move each 
seed  “ up. ”  XOR bits 1 and 2, the result of which is XORed with bit 11, and so 
on, as shown in Figure  3.24 . The resulting seed generated is placed at the 
 “ bottom ”  of the array, and the process is repeated. The output is a 32 - bit value. 

    FIGURE 3.24.     Pseudorandom noise generation diagram using LFSR.  

16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

X
O

R

X
O

R

X
O

R

X
O

R

Seed Array



Sampling at 8   kHz, verify that the generated noise spectrum is fl at until it rolls 
off at about 3.8   kHz, which is the cutoff frequency of the reconstruction fi lter 
on the codec.         
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   •      Introduction to the  z  - transform  

   •      Design and implementation of fi nite impulse response (FIR) fi lters  

   •      Programming examples using C and TMS320C6x code    

 The  z  - transform is introduced in conjunction with discrete - time signals. Mapping 
from the  s  - plane, associated with the Laplace transform, to the  z  - plane, associated 
with the  z  - transform, is illustrated. FIR fi lters are designed with the Fourier series 
method and implemented by programming a discrete convolution equation. Effects 
of window functions on the characteristics of FIR fi lters are covered.  

  4.1   INTRODUCTION TO THE  z  - TRANSFORM 

 The  z  - transform is utilized for the analysis of discrete - time signals, similar to the 
Laplace transform for continuous - time signals. We can use the Laplace transform 
to solve a differential equation that represents an analog fi lter or the  z  - transform 
to solve a difference equation that represents a digital fi lter. Consider an analog 
signal  x ( t ) ideally sampled,

    x t x t t kT
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=
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∑ δ

0

    (4.1)  
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where   d  ( t     −     kT ) is the impulse (delta) function delayed by  kT  and  T    =   1/ F s   is the 
sampling period. The function  x s  ( t ) is zero everywhere except at  t    =    kT . The Laplace 
transform of  x s  ( t ) is
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 From the property of the impulse function
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  X s  ( s ) in  (4.2)  becomes
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 Let  z    =    e sT   in  (4.3) , which becomes
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 Let the sampling period  T  be implied; then  x ( nT ) can be written as  x ( n ), and  (4.4)  
becomes
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which represents the  z  - transform ( ZT ) of  x ( n ). There is a one - to - one correspon-
dence between  x ( n ) and  X ( z ), making the  z  - transform a unique transformation. 

     Exercise 4.1:     ZT   of Exponential Function  x ( n )   =    e nk   

 The  ZT  of  x ( n )   =    e nk  ,  n     ≥    0 and  k  a constant, is
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 Using the geometric series, obtained from a Taylor series approximation
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 (4.6)  becomes
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for | e k z   − 1 |    <    1 or | z |    >    | e k  |. If  k    =   0, the  ZT  of  x ( n )   =   1 is  X ( z )   =    z /( z     −    1).  

  Exercise 4.2:     ZT   of Sinusoid  x ( n )   =   sin    n w T  

 A sinusoidal function can be written in terms of complex exponentials. From Euler ’ s 
formula  e ju     =   cos    u    +    j sin    u ,
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 Using the geometric series as in Exercise 4.1, one can solve for  X ( z ); or the results 
in  (4.7)  can be used with  k    =    j w T  in the fi rst summation of  (4.8)  and  k    =    −  j w T  in 
the second, to yield
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where  A    =   2   cos     w T ,  B    =    − 1, and  C    =   sin     w T . In Chapter  5  we generate a sinusoid 
based on this result. We can readily generate sinusoidal waveforms of different fre-
quencies by changing the value of   w   in  (4.9) . 

 Similary, using Euler ’ s formula for cos    n w T  as a sum of two complex exponentials, 
one can fi nd the  ZT  of  x ( n )   =   cos    n w T    =   ( e jn w T     +    e   −  jn w T  )/2, as
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  4.1.1   Mapping from  s  - Plane to  z  - Plane 

 The Laplace transform can be used to determine the stability of a system. If the 
poles of a system are on the left side of the  j w   axis on the  s  - plane, a time - decaying 
system response will result, yielding a stable system. If the poles are on the right 
side of the  j w   axis, the response will grow in time, making such a system unstable. 
Poles located on the  j w   axis, or purely imaginary poles, will yield a sinusoidal 
response. The sinusoidal frequency is represented by the  j w   axis, and   w     =   0 
represents dc (direct current). 

 In a similar fashion, we can determine the stability of a system based on the 
location of its poles on the  z  - plane associated with the  z  - transform, since we can 
fi nd corresponding regions between the  s  - plane and the  z  - plane. Since  z    =    e sT   and 
 s    =     s     +    j w  ,

    z e eT j T= σ ω     (4.12)   

 Hence, the magnitude of  z  is | z |   =    e  s T   with a phase of   q     =     w T    =   2  p f / F s  , where 
 F s   is the sampling frequency. To illustrate the mapping from the  s  - plane to the  z  -
 plane, consider the following regions from Figure  4.1 .   

    s      <    0 
 Poles on the left side of the  j w   axis (region 2) in the  s  - plane represent a stable 
system, and  (4.12)  yields a magnitude of | z |    <    1, because  e  s T      <    1. As   s   varies from 
 −  ∞  to 0  −  , | z | will vary from 0 to 1  −  . Hence, poles  inside  the unit circle within region 
2 in the  z  - plane will yield a stable system. The response of such a system will be a 
decaying exponential if the poles are real or a decaying sinusoid if the poles are 
complex.  

    FIGURE 4.1.     Mapping from the  s  - plane to the  z  - plane.  
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    s      >    0 
 Poles on the right side of the  j w   axis (region 3) in the  s  - plane represent an unstable 
system, and  (4.12)  yields a magnitude of | z |    >    1, because  e  s T      >    1. As   s   varies from 0 +  
to  ∞ , | z | will vary from 1 +  to  ∞ . Hence, poles  outside  the unit circle within region 3 
in the  z  - plane will yield an unstable system. The response of such a system will be 
an increasing exponential if the poles are real or a growing sinusoid if the poles are 
complex.  

    s     =   0 
 Poles on the  j w   axis (region 1) in the  s  - plane represent a marginally stable 
system, and  (4.12)  yields a magnitude of | z |   =   1, which corresponds to region 1. 
Hence, poles  on  the unit circle in region 1 in the  z  - plane will yield a sinusoid. 
In Chapter  5  we implement a sinusoidal signal by programming a difference 
equation with its poles  on  the unit circle. Note that from Exercise 4.2 the poles of 
 X ( s )   =   sin    n w T  in  (4.9)  or  X ( s )   =   cos    n w T  in  (4.11)  are the roots of  z  2     −    2 z cos     w T    +  
 1, or
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 The magnitude of each pole is

    p p T T1 2
2 2 1= = + =cos sinω ω     (4.14)   

 The phase of  z  is   q     =     w T    =   2  p f / F s  . As the frequency  f  varies from zero to  ±  F s  /2, the 
phase   q   will vary from 0 to   p  .   

  4.1.2   Difference Equations 

 A digital fi lter is represented by a difference equation in a similar fashion as an 
analog fi lter is represented by a differential equation. To solve a difference equation, 
we need to fi nd the  z  - transform of expressions such as  x ( n     −     k ), which corresponds 
to the  k th derivative  d k  x ( t )/ dt k   of an analog signal  x ( t ). The order of the difference 
equation is determined by the largest value of  k . For example,  k    =   2 represents a 
second - order derivative. From  (4.5) 

    X z x n z x x z x zn

n

( ) ( ) ( ) ( ) ( )= = + + + ⋅ ⋅ ⋅−

=

− −
∞
∑

0

1 20 1 2     (4.15)   



 Then the  z  - transform of  x ( n     −    1), which corresponds to a fi rst - order derivative  dx / dt , 
is

    

ZT x n x n z

x x z x z x z

n

n

[ ( )] ( )

( ) ( ) ( ) ( )

− = −

= − + + + + ⋅ ⋅

−

=
− − −

∞
∑1 1

1 0 1 2
0

1 2 3 ⋅⋅
= − + + + + ⋅ ⋅ ⋅[ ]
= − +

− − −

−

x z x x z x z
x z X z
( ) ( ) ( ) ( )
( ) ( )

1 0 1 2
1

1 1 2

1     (4.16)  

where we used  (4.15) , and  x ( − 1) represents the initial condition associated with a 
fi rst order difference equation. Similarly, the  ZT  of  x ( n     −    2), equivalent to a second 
derivative  d  2  x ( t )/ dt  2 , is

    

ZT x n x n z

x x z x z x z

n

n

[ ( )] ( )

( ) ( ) ( ) ( )

− = −

= − + − + + + ⋅

−

=
− − −

∞
∑2 2

2 1 0 1
0

1 2 3 ⋅⋅ ⋅
= − + − + + + ⋅ ⋅ ⋅
= − + − +

− − −

− −
x x z z x x z
x x z z
( ) ( ) [ ( ) ( ) ]
( ) ( )

2 1 0 1
2 1

1 2 1

1 22 X z( )     (4.17)  

where  x ( − 2) and  x ( − 1) represent the two initial conditions required to solve a second 
order difference equation. In general,

    ZT x n k z x m z z X zk m k

m

k

[ ( )] ( ) ( )− = − +−

=
∑

1

    (4.18)   

 If the initial conditions are all zero, then  x ( −  m )   =   0 for  m    =   1, 2,       .      .      .       ,  k , and  (4.18)  
reduces to

    ZT x n k z X zk[ ( )] ( )− = −     (4.19)     

  4.2   DISCRETE SIGNALS 

 A discrete signal  x ( n ) can be expressed as

    x n x m n m
m

( ) ( ) ( )= −
=−∞

∞
∑ δ     (4.20)  

where   d  ( n     −     m ) is the impulse sequence   d  ( n ) delayed by  m , which is equal to 1 for 
 n    =    m  and is 0 otherwise. It consists of a sequence of values  x (1),  x (2),       .      .      .       , where  n  
is the time, and each sample value of the sequence is taken one sample time apart, 
determined by the sampling interval or sampling period  T    =   1/ F s  . 
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152  Finite Impulse Response Filters

 The signals and systems that we deal with in this book are linear and time invari-
ant, where both superposition and shift invariance apply. Let an input signal  x ( n ) 
yield an output response  y ( n ), or  x ( n )    →     y ( n ). If  a  1  x  1 ( n )    →     a  1  y  1 ( n ) and  a  2  x  2 ( n )    →   
  a  2  y  2 ( n ), then  a  1  x  1 ( n )   +    a  2  x  2 ( n )    →     a  1  y  1 ( n )   +    a  2  y  2 ( n ), where  a  1  and  a  2  are constants. This 
is the superposition property, where an overall output response is the sum of the 
individual responses to each input. Shift invariance implies that if the input is 
delayed by  m  samples, the output response will also be delayed by  m  samples, or 
 x ( n     −     m )    →     y ( n     −     m ). If the input is a unit impulse   d  ( n ), the resulting output response 
is  h ( n ), or   d  ( n )    →     h ( n ), and  h ( n ) is designated as the impulse response. A delayed 
impulse   d  ( n     −     m ) yields the output response  h ( n     −     m ) by the shift - invariance 
property. 

 Furthermore, if this impulse is multiplied by  x ( m ), then  x ( m )  d  ( n     −     m )    →    
 x ( m ) h ( n     −     m ). Using  (4.20) , the response becomes

    y n x m h n m
m

( ) ( ) ( )= −
=−∞

∞
∑     (4.21)  

which represents a convolution equation. For a causal system,  (4.21)  becomes

    y n x m h n m
m

( ) ( ) ( )= −
=−∞

∞
∑     (4.22)   

 Letting  k    =    n     −     m  in  (4.22)  yields

    y n h k x n k
k

( ) ( ) ( )= −
=

∞
∑

0
    (4.23)    

  4.3    FIR  FILTERS 

 Filtering is one of the most useful signal processing operations  [1 – 47] . DSPs   are now 
available to implement digital fi lters in real time. The TMS320C6x instruction set 
and architecture makes it well suited for such fi ltering operations. An analog fi lter 
operates on continuous signals and is typically realized with discrete components 
such as operational amplifi ers, resistors, and capacitors. However, a digital fi lter, such 
as an FIR fi lter, operates on discrete - time signals and can be implemented with a 
DSP   such as the TMS320C6x. This involves use of an ADC to capture an external 
input signal, processing the input samples, and sending the resulting output through 
a DAC. 

 Within the last few years, the cost of DSPs has been reduced signifi cantly, 
which adds to the numerous advantages that digital fi lters have over their analog 
counterparts. These include higher reliability, accuracy, and less sensitivity to tem-
perature and aging. Stringent magnitude and phase characteristics can be achieved 
with a digital fi lter. Filter characteristics such as center frequency, bandwidth, and 
fi lter type can readily be modifi ed. A number of tools are available to design and 



implement within a few minutes an FIR fi lter in real time using the TMS320C6x -
 based DSK. The fi lter design consists of the approximation of a transfer function 
with a resulting set of coeffi cients. 

 Different techniques are available for the design of FIR fi lters, such as a com-
monly used technique that utilizes the Fourier series, as discussed in Section 4.4. 
Computer - aided design techniques such as that of Parks and McClellan are also 
used for the design of FIR fi lters  [5, 6] . 

 The convolution equation  (4.23)  is very useful for the design of FIR fi lters, since 
we can approximate it with a fi nite number of terms, or

    y n h k x n k
k

N

( ) ( ) ( )= −
=

−

∑
0

1

    (4.24)   

 If the input is a unit impulse  x ( n )   =     d  (0), the output impulse response will be 
 y ( n )   =    h ( n ). We will see in Section 4.4 how to design an FIR fi lter with  N  coeffi cients 
 h (0),  h (1),       .      .      .       ,  h ( N     −    1), and  N  input samples  x ( n ),  x ( n     −    1),       .      .      .       ,  x ( n     −    ( N     −    1)). The 
input sample at time  n  is  x ( n ), and the delayed input samples are  x ( n     −    1),       .      .      .       , 
 x ( n     −    ( N     −    1)). Equation  (4.24)  shows that an FIR fi lter can be implemented with 
knowledge of the input  x ( n ) at time  n  and of the delayed inputs  x ( n     −     k ). It is non-
recursive, and no feedback or past outputs are required. Filters with feedback 
(recursive) that require past outputs are discussed in Chapter  5 . Other names used 
for FIR fi lters are transversal and tapped - delay fi lters. 

 The  z  - transform of  (4.24)  with zero initial conditions yields

    Y z h X z h z X z h z X z h N z X zN( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) (( )= + + + ⋅ ⋅ ⋅ + −− − − −0 1 2 11 2 1 ))     (4.25)   

 Equation  (4.24)  represents a convolution in time between the coeffi cients 
and the input samples, which is equivalent to a multiplication in the frequency 
domain, or

    Y z H z X z( ) ( ) ( )=     (4.26)  

where  H ( z )   =    ZT [ h ( k )] is the transfer function, or

    

H z h k z h h z h z h N zk N

k

N

( ) ( ) ( ) ( ) ( ) ( ) ( )= = + + + ⋅ ⋅ ⋅ + −− − − − −

=

−

∑ 0 1 2 11 2 1

0

1

== + + + ⋅ ⋅ ⋅ + −− − −

−
h z h z h z h N

z

N N N

N

( ) ( ) ( ) ( )( )0 1 2 11 2 3

1
    (4.27)  

which shows that there are  N     −    1 poles, all of which are located at the origin. Hence, 
this FIR fi lter is inherently stable, with its poles located only inside the unit circle. 
We usually describe an FIR fi lter as a fi lter with  “ no poles. ”  Figure  4.2  shows an FIR 
fi lter structure representing  (4.24)  and  (4.25) .   
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 A very useful feature of an FIR fi lter is that it can guarantee  linear phase . The 
linear phase feature can be very useful in applications such as speech analysis, where 
phase distortion can be critical. For example, with linear phase, all input sinusoidal 
components are delayed by the same amount. Otherwise, harmonic distortion can 
occur. Linear phase fi lters are FIR fi lters; however, not all FIR fi lters have linear 
phase. 

 The Fourier transform of a delayed input sample  x ( n     −     k ) is  e   −  j w kT   X ( j w  ), 
yielding a phase of   q     =    −   w kT , which is a linear function in terms of   w  . Note that 
the group delay function, defi ned as the derivative of the phase, is a constant, or 
 d q  / d w     =    −  kT .  

  4.4    FIR  LATTICE STRUCTURE 

 The lattice structure is commonly used for applications in adaptive fi ltering and 
speech processing  [48, 49] , such as in a linear predictive coding (LPC) application. 
An  N th order lattice structure is shown in Figure  4.3 . The coeffi cients  k  1 ,  k  2 ,       .      .      .       ,  k N   
are commonly referred to as  refl ection coeffi cients  (or  k  - parameters). An advantage 
of this structure is that the frequency response is not as sensitive as the previous 
structure to small changes in the coeffi cients. From the fi rst section in Figure  4.3 , 
with  N    =   1, we have

    y n x n k x n1 1 1( ) ( ) ( )= + −     (4.28)  

    e n k x n x n1 1 1( ) ( ) ( )= + −     (4.29)     

    FIGURE 4.2.     FIR fi lter structure showing delays.  

    FIGURE 4.3.     FIR lattice structure.  



 From the second section (cascaded with the fi rst), using  (4.28)  and  (4.29) ,

    

y n y n k e n
x n k x n k k x n k x n
x

2 1 2 1

1 2 1 2

1
1 1 2

( ) ( ) ( )
( ) ( ) ( ) ( )
(

= + −
= + − + − + −
= nn k k k x n k x n) ( ) ( ) ( )+ + − + −1 1 2 21 2     (4.30)  

and

    

e n k y n e n
k x n k k x n k x n x n
k

2 2 1 1

2 2 1 1

2

1
1 1 2

( ) ( ) ( )
( ) ( ) ( ) ( )

= + −
= + − + − + −
= xx n k k k x n x n( ) ( ) ( ) ( )+ + − + −1 1 2 1 2     (4.31)   

 For a specifi c section  i ,

    y n y n k e ni i i i( ) ( ) ( )= + −− −1 1 1     (4.32)  

    e n k y n e ni i i i( ) ( ) ( )= + −− −1 1 1     (4.33)   

 It is instructive to see that  (4.30)  and  (4.31)  have the same coeffi cients but in 
reversed order. It can be shown that this property also holds true for a higher order 
structure. In general, for an  N th order FIR lattice system,  (4.30)  and  (4.31)  
become

    y n a x n iN i
i

N

( ) ( )= −
=
∑

0

    (4.34)  

and

    e n a x n iN N i
i

N

( ) ( )= −−
=
∑

0

    (4.35)  

with  a  0    =   1. If we take the  ZT  of  (4.34)  and  (4.35)  and fi nd their impulse 
responses,

    Y z a zN i
i

i

N

( ) = −

=
∑

0

    (4.36)  

    E z a zN N i
i

i

N

( ) = −
−

=
∑

0

    (4.37)   

 It is interesting to note that

    E z z Y zN
N

N( ) ( / )= − 1     (4.38)   
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 Equations  (4.36)  and  (4.37)  are referred to as image polynomials. For two sections, 
 k  2    =    a  2 ; in general,

    k aN N=     (4.39)   

 For this structure to be useful, it is necessary to fi nd the relationship between the 
 k  - parameters and the impulse response coeffi cients. The lattice network is highly 
structured, as seen in Figure  4.3  and as demonstrated through the previous differ-
ence equations. Starting with  k N   in  (4.39) , we can recursively (with reverse recur-
sion) compute the preceding  k  - parameters,  k N    − 1 ,       .      .      .       ,  k  1 . 

 Consider an intermediate section  r  and, using  (4.36)  and  (4.37) ,

    Y z Y z k z E zr r r r( ) ( ) ( )= +−
−

−1
1

1     (4.40)  

    E z k Y z z E zr r r r( ) ( ) ( )= +−
−

−1
1

1     (4.41)   

 Solving for  E r    − 1 ( z ) in  (4.41)  and substituting it into  (4.40) ,  Y r  ( z ) becomes

    Y z Y z k z
E z k Y z

zr r r
r r r( ) ( )
( ) ( )

= +
−

−
− −

−1
1 1

1     (4.42)   

 Equation  (4.42)  now can be solved for  Y r    − 1 ( z ) in terms of  Y r  ( z ), or

    Y z
Y z k E z

k
kr

r r r

r
r− =

−
−

=1 21
1( )

( ) ( )
,     (4.43)   

 Using  (4.38)  with  N    =    r ,  (4.43)  becomes

    Y z
Y z k z Y z

kr
r r

r
r

r
−

−

=
−

−1 2

1
1

( )
( ) ( / )     (4.44)   

 Equation  (4.44)  is an important relationship that shows that by using a reverse 
recursion procedure, we can fi nd  Y   r  − 1  from  Y r  , where 1    ≤     r     ≤     N . Consequently, we 
can also fi nd the  k  - parameters starting with  k r   and proceeding to  k  1 . For  r  sections, 
 (4.36)  can be written

    Y z a zr ri
i

i

r

( ) = −

=
∑

0

    (4.45)   

 Replacing  i  by  r     −     i , and  z  by 1/ z ,  (4.45)  becomes

    Y
z

a zr r r i
r i

i

r1

0





 = −

−

=
∑ ( )     (4.46)   



 Using  (4.45)  and  (4.46) , Equation  (4.44)  becomes
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from which

    a
a k a

k
i rr i

ri r r r i

r
( )

( ) , , , . . . ,−
−=

−
−

= −1 21
0 1 1     (4.49)  

with  r    =    N ,  N     −    1,       .      .      .       , 1, | k r  |    ≠    1,  i    =   0, 1,       .      .      .       ,  r     −    1, and

    k a r N Nr rr= = −, , , . . . ,1 1     (4.50)   

     Exercise 4.3:    FIR  Lattice Structure 

 This exercise illustrates the use of  (4.49)  and  (4.50)  to compute the  k  - parameters. 
Given that the impulse response of an FIR fi lter in the frequency domain is

    Y z z z2
1 21 0 2 0 5( ) . .= + −− −   

 Then, from  (4.45) , with  r    =   2,

    Y z a a z a z2 20 21
1

22
2( ) = + +− −  

where  a  20    =   1,  a  21    =   0.2, and  a  22    =    − 0.5. Starting with  r    =   2 in  (4.50) ,

    k a2 22 0 5= = − .   

 Using  (4.49) , for  i    =   0,
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and, for  i    =   1,
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 From  (4.50) ,

    k a1 11 0 4= = .   

 Note that the values for the  k  - parameters  k  2    =    − 0.5 and  k  1    =   0.4 can be verifi ed using 
 (4.30) .    

  4.5    FIR  IMPLEMENTATION USING FOURIER SERIES 

 The design of an FIR fi lter using a Fourier series method is such that the magnitude 
response of its transfer function  H ( z ) approximates a desired magnitude response. 
The transfer function desired is

    H C e nd n
jn T

n

( )ω ω= < ∞
=−∞

∞
∑     (4.51)  

where  C n   are the Fourier series coeffi cients. Using a normalized frequency variable 
  �   such that   �     =    f / F N  , where  F N   is the Nyquist frequency, or  F N     =    F s  /2, the desired 
transfer function in  (4.51)  can be written

    H C ed n
jn

n

( )ν πν=
=−∞

∞
∑     (4.52)  

where   w T    =   2  p f / F s     =     p  �   and |  �  |    <    1. The coeffi cients  C n   are defi ned as

    

C H e d

H n j n d

n d
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= −

−
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−

∫
∫

1
2 1

1

1
2 1

1
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( )(cos sin )

ν ν

ν πν πν ν

πν

    (4.53)   

 Assume that  H d  (  �  ) is an even function (frequency selective fi lter); then  (4.53)  
reduces to

    C H n d nn d= ∫ ( )cosν πν ν
0

1
0�     (4.54)  

since  H d  (  �  ) sin    n p  �   is an odd function and

    H n dd( )sinν πν ν =
−∫ 0

1

1
 



with  C n     =    C   −  n  . The desired transfer function  H d  (  �  ) in  (4.52)  is expressed in terms of 
an infi nite number of coeffi cients, and to obtain a realizable fi lter, we must truncate 
 (4.52) , which yields the approximated transfer function

    H C ea n
jn

n Q

Q

( )ν π=
=−
∑ �     (4.55)  

where  Q  is positive and fi nite and determines the order of the fi lter. The larger the 
value of  Q , the higher the order of the FIR fi lter and the better the approximation 
in  (4.55)  of the desired transfer function. The truncation of the infi nite series with 
a fi nite number of terms results in ignoring the contribution of the terms outside a 
rectangular window function between  −  Q  and + Q . In Section 4.6 we see how the 
characteristics of a fi lter can be improved by using window functions other than 
rectangular. 

 Let  z    =    e j p  �   ; then  (4.55)  becomes

    H z C za n
n

n Q

Q

( ) =
=−
∑     (4.56)  

with the impulse response coeffi cients  C   −  Q  ,  C   −  Q +1 ,       .      .      .       ,  C   − 1 ,  C  0 ,  C  1 ,       .      .      .       ,  C Q    − 1 ,  C Q  . The 
approximated transfer function in  (4.56) , with positive powers of  z , implies a non-
causal or not realizable fi lter that would produce an output before an input is 
applied. To remedy this situation, we introduce a delay of  Q  samples in  (4.56)  to 
yield

    H z z H z C zQ
a n

n Q

n Q

Q

( ) ( )= =− −

=−
∑     (4.57)   

 Let  n     −     Q    =    −  i ; then  H ( z ) in  (4.57)  becomes

    H z C zQ i
i

i

Q

( ) = −
−

=
∑

0

2

    (4.58)   

 Let  h i     =    C Q    −  i   and  N     −    1   =   2 Q ; then  H ( z ) becomes

    H z h zi
i

i

N

( ) = −

=

−

∑
0

1

    (4.59)  

where  H ( z ) is expressed in terms of the impulse response coeffi cients  h i  , and  h  0    =  
  C Q , h  1    =    C Q    − 1 ,       .      .      .       ,  h Q     =    C  0 ,  h Q   +1    =    C   − 1    =    C  1 ,       .      .      .       ,  h  2 Q     =    C   −  Q  . The impulse response 
coeffi cients are symmetric about  h Q  , with  C n     =    C   −  n  . 
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 The order of the fi lter is  N    =   2 Q    +   1. For example, if  Q    =   5, the fi lter will have 
11 coeffi cients  h  0 ,  h  1 ,       .      .      .       ,  h  10 , or

    h h C0 10 5= =  

    h h C1 9 4= =  

    h h C2 8 3= =  

    h h C3 7 2= =  

    h h C4 6 1= =  

    h C5 0=   

 Figure  4.4  shows the desired transfer functions  H d  (  �  ) ideally represented for the 
frequency selective fi lters: lowpass, highpass, bandpass, and bandstop for which the 
coeffi cients  C n     =    C   −  n   can be found.   

  1.      Lowpass: C  0    =     �   1 

    C H n d
n

nn d= ∫ ( )cos
sin

ν πν ν
ν

π0

11ν
=

π
    (4.60)    

    FIGURE 4.4.     Desired transfer function: ( a ) lowpass, ( b ) highpass, ( c ) bandpass, and 
( d ) bandstop.  
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  2.      Highpass: C  0    =   1    −      �   1 

    C H n d
n

nn d=
1

∑ ( )cos
sin

ν πν ν
πν

πν

1
1=     (4.61)    

  3.      Bandpass: C  0    =     �   2     −      �   1 

    C H n d
n n

nn d= −
∫ ( )cos

sin sin
�

�

�
πν ν ν ν

π1

2 2 1= π π
    (4.62)    

  4.      Bandstop: C  0    =   1    −    (  �   2     −      �   1 )

    C H n d H n d
n n

nn d d= + = −
∫ ∫( )cos ( )cos

sin sinν πν ν ν πν ν πν πν
π0

1 1 21

2

�

�
    (4.63)  

where   �   1  and   �   2  are the normalized cutoff frequencies shown in Figure  4.4 .    

 Several fi lter design packages are currently available for the design of FIR fi lters, 
as discussed later. When we implement an FIR fi lter, we develop a generic program 
such that the specifi c coeffi cients will determine the fi lter type (e.g., whether lowpass 
or bandpass). 

     Exercise 4.4:   Lowpass  FIR  Filter 

 We will fi nd the impulse response coeffi cients of an FIR fi lter with  N    =   11, a sampling 
frequency of 10   kHz, and a cutoff frequency  f c     =   1   kHz. From  (4.60) ,
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f

F
c

N
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    (4.64)   

 Since the impulse response coeffi cients  h i     =    C Q    −  i  ,  C n     =    C   −  n  , and  Q    =   5, the impulse 
response coeffi cients are
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 Note the symmetry of these coeffi cients about  Q    =   5. While  N    =   11 for an FIR fi lter 
is low for a practical design, doubling this number can yield an FIR fi lter with much 
better characteristics, such as selectivity. For an FIR fi lter to have linear phase, the 
coeffi cients must be symmetric, as in  (4.65) .    

  4.6   WINDOW FUNCTIONS 

 We truncated the infi nite series in the transfer function equation  (4.52)  to arrive at 
 (4.55) . We essentially put a rectangular window function with an amplitude of 1 
between  −  Q  and + Q  and ignored the coeffi cients outside that window. The wider 
this rectangular window, the larger  Q  is and the more terms we use in  (4.55)  to get 
a better approximation of  (4.52) . The rectangular window function can therefore be 
defi ned as

    w n
n Q

R( ) = ≤{1
0

for
otherwise     (4.66)   

 The transform of the rectangular window function  w R  ( n )   yields a sinc function in 
the frequency domain. It can be shown that
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which is a sinc function that exhibits high sidelobes or oscillations caused by the 
abrupt truncation, specifi cally, near discontinuities. 

 A number of window functions are currently available to reduce these high 
amplitude oscillations; they provide a more gradual truncation to the infi nite series 
expansion. However, while these alternative window functions reduce the amplitude 
of the sidelobes, they also have a wider mainlobe, which results in a fi lter with lower 
selectivity. A measure of a fi lter ’ s performance is a ripple factor that compares the 
peak of the fi rst sidelobe to the peak of the mainlobe (their ratio). A compromise 
or trade - off is to select a window function that can reduce the sidelobes while 
approaching the selectivity that can be achieved with the rectangular window func-
tion. The width of the mainlobe can be reduced by increasing the width of the 
window (order of the fi lter). Later, we will plot the magnitude response of an FIR 
fi lter that shows the undesirable sidelobes. 



 In general, the Fourier series coeffi cients can be written

    ′ =C C w nn n ( )     (4.68)  

where  w ( n ) is the window function. In the case of the rectangular window function, 
  ′ =C Cn n . The transfer function in  (4.59)  can then be written

    ′ = ′
=

−
−∑H z h zi

i

N
i( )

0

1

    (4.69)  

where

    ′= ′ ≤ ≤−h C i Qi Q i 0 2     (4.70)   

 The rectangular window has its highest sidelobe level, down by only  − 13   dB from 
the peak of its mainlobe, resulting in oscillations with an amplitude of considerable 
size. On the other hand, it has the narrowest mainlobe that can provide high selec-
tivity. The following window functions are commonly used in the design of FIR 
fi lters  [12] . 

  4.6.1   Hamming Window 

 The Hamming window function  [12, 25]  is

    w n
n Q n Q

H( )
. . cos( / )= + ≤{0 54 0 46

0
π for

otherwise
    (4.71)  

which has the highest or fi rst sidelobe level at approximately  − 43   dB from the peak 
of the main lobe.  

  4.6.2   Hanning Window 

 The Hanning or raised cosine window function is

    w n
n Q n Q

HA( )
. . cos( / )= + ≤{0 5 0 5

0
π for

otherwise
    (4.72)  

which has the highest or fi rst sidelobe level at approximately  − 31   dB from the peak 
of the mainlobe.  
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  4.6.3   Blackman Window 

 The Blackman window function is

    w n
n Q n Q n Q

B( )
. . cos( / ) . cos( / )= + + ≤{0 42 0 5 0 08 2

0
π π

otherwise
    (4.73)  

which has the highest sidelobe level down to approximately  − 58   dB from the peak 
of the mainlobe. While the Blackman window produces the largest reduction in the 
sidelobe compared with the previous window functions, it has the widest mainlobe. 
As with the previous windows, the width of the mainlobe can be decreased by 
increasing the width of the window.  

  4.6.4   Kaiser Window 

 The design of FIR fi lters with the Kaiser window has become very popular in recent 
years. It has a variable parameter to control the size of the sidelobe with respect to 
the mainlobe. The Kaiser window function is

    w n
I b I a n Q
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( )/ ( )= ≤{ 0 0
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    (4.74)  

where  a  is an empirically determined variable, and  b    =    a [1    −    ( n / Q ) 2 ] 1/2 .  I  0 ( x ) is the 
modifi ed Bessel function of the fi rst kind defi ned by
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which converges rapidly. A trade - off between the size of the sidelobe and the width 
of the mainlobe can be achieved by changing the length of the window and the 
parameter  a .  

  4.6.5   Computer - Aided Approximation 

 An effi cient technique is the computer - aided iterative design based on the Remez 
exchange algorithm, which produces equiripple approximation of FIR fi lters  [5, 6] . 
The order of the fi lter and the edges of both passbands and stopbands are fi xed, and 
the coeffi cients are varied to provide this equiripple approximation. This minimizes 
the ripple in both the passbands and the stopbands. The transition regions are left 
unconstrained and are considered  “ don ’ t care ”  regions, where the solution may fail. 
Several commercial fi lter design packages include the Parks – McClellan algorithm 
for the design of an FIR fi lter.   
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  4.7   PROGRAMMING EXAMPLES USING  C  AND  ASM  CODE 

 The following examples illustrate the implementation of FIR fi lters. Most of the 
programs are written in C. A few examples, using a combination of C and assembly 
language, illustrate the use of a circular buffer as a more effi cient way to update 
delay samples, with the circular buffer in internal or external memory. Several dif-
ferent methods of displaying the magnitude frequency response of a fi lter are 
presented. 

     Example 4.1:   Moving Average Filter ( average ) 

 The moving average fi lter is widely used in DSP and arguably is the easiest of all 
digital fi lters to understand. It is particularly effective at removing (high frequency) 
random noise from a signal or at  smoothing  a signal. 

 The moving average fi lter operates by taking the arithmetic mean of a number 
of past input samples in order to produce each output sample. This may be repre-
sented by the equation

    y n
N

x n i
i

N

( ) ( )= −
=

−

∑1

0

1

    (4.76)  

where  x ( n ) represents the  n th sample of an input signal and  y ( n ) the  n th sample of 
the fi lter output. The moving average fi lter is an example of  convolution  using a very 
simple  fi lter kernel  or  impulse response  comprising  N  coeffi cients each of value 1 /N . 
Equation  (4.76)  may be thought of as a particularly simple case of the more general 
convolution sum implemented by a fi nite impulse response fi lter, and introduced in 
Section 4.3; that is,

    y n h i x n i
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∑
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    (4.77)  

where the FIR fi lter coeffi cients  h ( i ) are samples of the fi lter impulse response and 
in the case of the moving average fi lter each is equal to 1 /N . As far as implementa-
tion is concerned, at the  n th sampling instant we could either: 

  1.     multiply  N  past input samples individually by 1 /N  and sum the  N  products,  

  2.     sum  N  past input samples and multiply the sum by 1 /N , or  

  3.     maintain a moving average by adding a new input sample (multiplied by 1/ N ) 
to and subtracting the ( n     −     N    +   1)th input sample (multiplied by 1/ N ) from a 
running total.    
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 The third method of implementation is recursive, that is, calculation of the output 
 y ( n ) makes use of a previous output value  y ( n   –  1). The recursive expression

    y n
N

x n
N

x n N y n( ) ( ) ( ) ( )= − − + −
1 1

1     (4.78)  

conforms to the general expression for a recursive or infi nite impulse response (IIR) 
fi lter:
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    (4.79)   

 Program  average.c , listed in Figure  4.5 , uses the fi rst of these options, even 
though it is not the most computationally effi cient. The value of  N  defi ned near the 
start of the source fi le determines the number of previous input samples to be 
averaged.   

 Source fi le  average.c  is stored in folder  average , which also contains project 
fi le  average.pjt . Build the project as   average   and run the progam. 

 Several different methods exist by which the characteristics of the fi ve point 
moving average fi lter may be demonstrated. A test fi le  mefsin.wav , stored in 
folder  average , contains a recording of speech corrupted by the addition of a 
sinusoidal tone. Listen to this fi le using  Goldwave, Windows Media Player , or 
similar. Then connect the PC soundcard output to the LINE IN socket on the DSK 
and listen to the fi ltered test signal (LINE OUT or HEADPHONE). You should 
fi nd that the sinusoidal tone has been blocked and that the voice sounds muffl ed. 
Both observations are consistent with the fi lter having a lowpass frequency 
response. 

 A more rigorous method of assessing the magnitude frequency response of 
the fi lter is to use a signal generator and an oscilloscope or spectrum analyzer 
to measure its gain at different individual frequencies. By using this method, 
it is straightforward to identify the distinct notches in the magnitude frequency 
response at 1600   Hz (corresponding to the tone in test fi le  mefsin.wav ) and at 
3200   Hz. 

 The theoretical frequency response of the fi lter can be found by taking the 
discrete time Fourier transform (DTFT) of its coeffi cients:
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    (4.80)   

 Evaluated over the frequency range   0 2≤ <ω̂ π ,where   ω̂ ω= Ts  and  T s   is the sam-
pling period. 
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 In this case,
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 Changing the summation limits from 0    ≤     n     ≤    4 to  − 2    ≤     n     ≤    2 changes the phase but 
not the magnitude of the frequency response of the fi lter. The theoretical magnitude 
frequency response of the fi lter is illustrated in Figure  4.6 .    

//average.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#define N 5                          //no of points averaged
float x[N];                          //filter input delay line
float h[N];                          //filter coefficients

interrupt void c_int11()             //interrupt service routine
{
  short i;
  float yn = 0.0;

  x[0]=(float)(input_left_sample()); //get new input sample
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  output_left_sample((short)(yn));   //output to codec
  return;
}

void main()
{
  short i;                           //index variable

  for (i=0 ; i<N ; i++)              //initialise coefficients
    h[i] = 1.0/N;
  comm_intr();                       //initialise DSK
  while(1);                          //infinite loop
}

    FIGURE 4.5.     Five point moving average fi lter program ( average.c ).  



168  Finite Impulse Response Filters

  Example 4.2:   Moving Average Filter with Internally Generated 
Pseudorandom Noise as Input ( averagen ) 

 Another method of assessing the magnitude frequency response of a fi lter is to use 
wideband noise as an input signal. Program  averagen.c  demonstrates this tech-
nique. A pseudorandom binary sequence (PRBS) is generated within the program 
(see program  prandom.c  in Chapter  2 ) and used as an input to the fi lter in lieu of 
samples read from the ADC. The fi ltered noise can be viewed on a spectrum ana-
lyzer and whereas the frequency content of the PRBS input is uniform across all 
frequencies, the frequency content of the fi ltered noise will refl ect the frequency 
response of the fi lter.  Goldwave  provides a low cost alternative to using a dedicated 
spectrum analyzer. Figure  4.8  shows the output of program  averagen.c  captured 
using the FFT function of an  Agilent 54621A  oscilloscope and using  Goldwave . 
Compare these plots with that of Figure  4.6 .      

  Example 4.3:   Identifi cation of Moving Average Filter 
Frequency Response Using a Second  DSK  ( sysid ) 

 In Chapter  2 , program  sysid.c  was used to identify the characteristics of the anti-
aliasing and reconstruction fi lters of the AIC23 codec. Here, the same program is 
used to identify the characteristics of the moving average fi lter. For this example 
you will require two DSKs connected as shown in Figure  4.9 . On one of the DSKs 
run program  average.c  and on the other run program  sysid.c . Strictly speaking, 
the latter program identifi es the characteristics of the system connected between 

    FIGURE 4.6.     Theoretical magnitude frequency response of fi ve point moving average fi lter 
(sampling rate 8   kHz).  
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    FIGURE 4.7.     Five point moving average fi lter program with internally generated pseudo-
random noise as input ( averagen.c ).    

//averagen.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "noise_gen.h"               //support file for noise
int fb;
shift_reg sreg;
#define NOISELEVEL 8000              //scale factor for noise
#define N 5                          //no of points averaged
float x[N];                          //filter input delay line
float h[N];                          //filter coefficients

int prand(void)                      //pseudo-random noise
{
  int prnseq;
  if(sreg.bt.b0)
    prnseq = -NOISELEVEL;            //scaled -ve noise level
  else
    prnseq = NOISELEVEL;             //scaled +ve noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);     //XOR bits 0,1 
  fb^=(sreg.bt.b11)^(sreg.bt.b13);   //with bits 11,13 -> fb
  sreg.regval<<=1;
  sreg.bt.b0=fb;                     //close feedback path
  return prnseq;
}

void resetreg(void)                  //reset shift register
{
  sreg.regval=0xFFFF;                //initial seed value
  fb = 1;                            //initial feedback value
}

interrupt void c_int11()             //interrupt service routine
{
  short i;
  float yn = 0.0;

  x[0] = (float)(prand());           //get new input sample
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  output_left_sample((short)(yn));   //output to codec
  return;
}

void main()
{
  short i;                           //index variable
  resetreg();
  for (i=0 ; i<N ; i++)              //initialise coefficients
    h[i] = 1.0/N;
  comm_intr();                       //initialise DSK
  while(1);                          //infinite loop
}
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    FIGURE 4.8.     Magnitude frequency response of fi ve point moving average fi lter illustrated 
using program  averagen.c  and displayed (a) using FFT function on oscilloscope and (b) 
using  GoldWave .  

(a)

(b)

points A and B in Figure  4.9 , including the codec DAC between point A and the 
LINE OUT socket and the codec ADC between the LINE IN socket and point B. 
In broad terms, it identifi es the system connected between LINE OUT and LINE 
IN sockets. After program  sysid.c  has run for a few seconds, halt the program and 
select  View    →    Graph . The  Graph Property  settings required are shown in Figure 
 4.10 . You should see something similar to that shown in Figure  4.11 . Figure  4.12  
shows the data illustrated in Figure  4.11  (exported from Code Composer as a text 
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    FIGURE 4.9.     Connection diagram for use of program  sysid.c  to identify characteristics of 
the moving average fi lter.  

fi le and imported to MATLAB) plotted on the same axes as the theoretical magni-
tude frequency response of the fi ve point moving average fi lter. Program  sysid.c  
gives a reasonably accurate indication of the magnitude frequency response of the 
fi lter. The discrepancy between theoretical and identifi ed responses at frequencies 
greater than 3.5   kHz is due to the characteristics of the antialiasing and reconstruc-
tion fi lters in the AIC23 codec.          

    FIGURE 4.10.      Graph Property  settings for use with program  sysid.c  to identify character-
istics of the moving average fi lter.  
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    FIGURE 4.11.     Magnitude frequency response of fi ve point moving average fi lter identifi ed 
by program  sysid.c .  

    FIGURE 4.12.     Magnitude frequency response identifi ed by program  sysid.c  plotted on 
same axes as theoretical magnitude frequency response (dotted). Experimentally identifi ed 
response has been multiplied by 4 to take into account resistor networks on codec inputs.  
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  Altering the Coeffi cients of the Moving Average Filter 
 The frequency response of the moving average fi lter can be changed by altering the 
number of previous input samples that are averaged. Modify program  averagen.c  
so that it implements an eleven point moving average fi lter; that is, change the line 
that reads

 #defi ne N 5 



 Programming Examples Using C and ASM Code  173

FIGURE 4.13.     Magnitude frequency response of eleven point moving average fi lter imple-
mented using program averagen.c  and displayed using  GoldWave .  

to read

#define N 11 

 Build and run the project and verify that the frequency response of the fi lter has 
changed to that shown in Figure  4.13 .   

 The frequency response of the eleven point moving average fi lter has the same 
basic form as that of the fi ve point moving average fi lter but the notches in the fre-
quency response occur at integer multiples of (8000/11)   Hz, that is, at 727, 1455, 2182, 
and 2909   Hz. 

 The frequency response of the fi lter can also be changed by altering the values of 
the coeffi cients. Modify program  averagen.c  again, changing the lines that read 

#define N 11
float h[N]; 

to read 

#define N 5
float h[N] = {0.0833, 0.2500, 0.3333. 0.2500, 0.0833}; 
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and comment out the following line

 for (i=0 ; i < N ; i++) h[i] = 1.0/N;  

 Build and run the project and observe the frequency content of the fi lter output 
using either a spectrum analyzer, an oscilloscope with an FFT function, or  Goldwave . 
You should fi nd that the high frequency components of the input signal (pseudoran-
dom noise) have been attenuated more than before (see Figure  4.14 ) and also that 
the  “ notches ”  at 1600 and 3200   Hz have disappeared. You have effectively applied a 
 Hann  window to the coeffi cients of the fi ve point moving average fi lter.   

 The  N  point Hann window is described by the equation

    w n
n

N
n N( ) . cos= −

−










 ≤ <0 5 1 2

1
0π     (4.82)   

 And hence for  n    =   0 and  n    =    N ,  w ( n )   =   0. Since there is no point in including two 
outlying zero value coeffi cients in the FIR fi ltering operation, in this example the 

    FIGURE 4.14.     Magnitude frequency response of fi ve point moving average fi lter with Hann 
window implemented using program  averagen.c  and displayed using  GoldWave .  
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fi ve nonzero values of a seven point Hann window function, rather than the fi ve 
values, including two zero values, of a fi ve point Hann window function, have been 
used. The magnitude frequency response of the fi lter is found by taking the DTFT 
of its coeffi cients:
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  Example 4.4:    FIR  Filter with Moving Average, Bandstop, 
and Bandpass Characteristics ( fi r ) 

 The mechanism used by program  fi r.c  (Figure  4.15 ) to calculate each output 
sample is identical to that employed by program  average.c . Function  c_int11()  
has exactly the same defi nition in both programs. Whereas program  average.c  
calculated the values of its coeffi cient in function  main() , program  fi r.c  reads the 
values of its coeffi cients from a separate fi le.    

  Five Point Moving Average ( ave5f.cof ) 
 Coeffi cient fi le  ave5f.cof  is listed in Figure  4.16 . Using that fi le, program  fi r.c  
implements the same fi ve point moving average fi lter implemented by program 
 average.c  in  Example 4.1 . The number of fi lter coeffi cients is specifi ed by the value 
of the constant  N , defi ned in the . cof  fi le and the coeffi cients are specifi ed as the 
initial values in an  N  element array,  h , of type fl oat.   

 Build the project as   fi r  . Run the program and verify that it implements a fi ve 
point moving average fi lter.  

  Bandstop, Centered at 2700   Hz ( bs2700f.cof ) 
 Edit fi le  fi r.c , changing the line that reads

 #include  “ ave5f.cof ”   

 To read

 #include  “ bs2700f.cof ”   

 Build and run this project as   fi r  . Input a sinusoidal signal and vary the input 
frequency slightly below and above 2700   Hz. Verify that the output is a minimum 
at 2700   Hz. The values of the coeffi cients for this fi lter were calculated using 
MATLAB ’ s fi lter design and analysis tool,  fdatool , as shown in Figure  4.17 .    
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//fir.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "ave5f.cof"                 //filter coefficient file
float x[N];                          //filter delay line

interrupt void c_int11()             //interrupt service routine
{
  short i;
  float yn = 0.0;

  x[0]=(float)(input_left_sample()); //get new input sample
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  output_left_sample((short)(yn));   //output to codec
  return;
}

void main()
{
  comm_intr();                       //initialise DSK
  while(1);                          //infinite loop
}

    FIGURE 4.15.     FIR fi lter program ( fi r.c ).  

  Bandpass, Centered at 1750   Hz ( bp1750f.cof ) 
 Edit program  fi r.c  again to include the coeffi cient fi le  bp1750f.cof  in place 
of  bs2700f.cof . File  bp1750f.cof  represents an FIR bandpass fi lter (81 coeffi -
cients) centered at 1750   Hz, as shown in Figure  4.18 . Again, this fi lter was designed 
using MATLAB ’ s  fdatool . Select  Project     →     Build , and the new coeffi cient fi le 

    FIGURE 4.16.     Coeffi cient fi le  ave5f.cof .  

// ave5f.cof
// this file was generated automatically using function dsk_fir67.m

#define N 5

float h[N] = {
2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001,2.0000E-001
};
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FIGURE 4.17.     MATLAB  fdatool  window corresponding to design of FIR bandstop fi lter 
centered at 2700   Hz.  

bp1750.cof  will automatically be included in the project. Run again and verify an 
FIR bandpass fi lter centered at 1750   Hz.    

Generating Filter Coeffi cient ( .cof) Files Using MATLAB
 If the number of fi lter coeffi cients is small, a coeffi cient ( .cof ) fi le can be edited by 
hand. For larger numbers of coeffi cients the MATLAB function  dsk_fir67() , sup-
plied on the CD accompanying this book as fi le  dsk_fir67.m , can be used. This 
function, listed in Figure  4.19 , expects to be passed a MATLAB vector of coeffi cient 
values and prompts the user for an output fi lename.   

 For example, the coeffi cient fi le  ave5f.cof  was created by typing the following 
at the MATLAB command prompt:

>> x = [0.2, 0.2, 0.2, 0.2, 0.2];
>> dsk_fir67(x)
enter filename for coefficients ave5f.cof 

 Note that the coeffi cient fi lename must be entered in full, including the suffi x  .cof . 
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 The MATLAB fi lter design and analysis tool  fdatool  can be used to calculate 
FIR fi lter coeffi cients and export them to the MATLAB workspace. Then function 
dsk_fir67()  can be used to create a coeffi cient fi le compatible with program 
fir.c . It is recommended that the fi lter coeffi cient value passed to function 
dsk_fir67().m  are normalized such that their sum is unity. 

 Also, it is recommended that the fi lenames used end in the character  “ f ”  in order 
to indicate that they contain fl oating - point coeffi cient values. Some of the programs 
described later in this chapter read their coeffi cients from a  .cof  fi le but expect 
array h  to be of type short.  

Example 4.5: FIR Implementation with a Pseudorandom 
Noise Sequence as Input to a Filter ( firprn)

 The program  firprn.c  (Figure  4.20 ) implements an FIR fi lter using an internally 
generated pseudorandom noise sequence as input to the fi lter. In all other respects 
it is similar to program fir.c . The coeffi cient fi le  bs2700f.cof  is used initially.   

 Build this project as  firprn . Run the program and verify that the output signal is 
pseudorandom noise fi ltered by an FIR bandpass fi lter centered at 2700   Hz. 

FIGURE 4.18.     MATLAB  fdatool  window corresponding to design of FIR bandpass fi lter 
centered at 1750   Hz.  
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 The output signal is shown using  Goldwave  and using the FFT function of an 
 Agilent 54621A  oscilloscope in Figure  4.21 .    

  Testing Different  FIR  Filters 
 Halt the program. Edit the C source fi le  fi rprn.c  to include and test different coef-
fi cient fi les that represent different FIR fi lters. Each of the following coeffi cient fi les 
contains 55 coeffi cients (except  comb14f.cof ). 

% DSK_FIR67.M
% MATLAB function to write FIR filter coefficients
% in format suitable for use in C6713 DSK programs
% firnc.c and firprn.c
% written by Donald Reay
%
function dsk_fir67(coeff)
%
coefflen=length(coeff);
fname = input('enter filename for coefficients ','s');
fid = fopen(fname,'wt');
fprintf(fid,'// %s\n',fname);
fprintf(fid,'// this file was generated automatically using function
dsk_fir67.m\n',fname);
fprintf(fid,'\n#define N %d\n',coefflen);
fprintf(fid,'\nfloat h[N] = { \n');
% j is used to count coefficients written to current line
% in output file
j=0;
% i is used to count through coefficients
for i=1:coefflen
% if six coeffs have been written to current line
% then start new line
  if j>5
    j=0;
    fprintf(fid,'\n');
  end
% if this is the last coefficient then simply write
% its value to the current line
% else write coefficient value, followed by comma
  if i==coefflen
   fprintf(fid,'%2.4E',coeff(i));
  else
    fprintf(fid,'%2.4E,',coeff(i));
    j=j+1;
  end
end
fprintf(fid,'\n};\n');
fclose(fid);

    FIGURE 4.19.     Listing of MATLAB function  dsk_fi r67.m .  
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    FIGURE 4.20.     FIR fi lter with internally generated pseudorandom noise as input ( fi rprn.c ).  

//firprn.c FIR with internally generated input noise sequence

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "bs2700f.cof"               //filter coefficient file
#include "noise_gen.h"               //support file for noise
int fb;                              //feedback variable
shift_reg sreg;                      //shift register
#define NOISELEVEL 8000              //scale factor for noise
float x[N];                          //filter delay line

int prand(void)                      //pseudo-random noise
{
  int prnseq;
  if(sreg.bt.b0)
    prnseq = -NOISELEVEL;            //scaled -ve noise level
  else 
    prnseq = NOISELEVEL;             //scaled +ve noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);     //XOR bits 0,1
  fb^=(sreg.bt.b11)^(sreg.bt.b13);   //with bits 11,13 -> fb
  sreg.regval<<=1;                   //shift register 1 bit left
  sreg.bt.b0=fb;                     //close feedback path
  return prnseq;
}

void resetreg(void)                  //reset shift register
{
  sreg.regval=0xFFFF;                //initial seed value
  fb = 1;                            //initial feedback value
}

interrupt void c_int11()             //interrupt service routine
{
  short i;                           //declare index variable
  float yn = 0.0;

  x[0] = (float)(prand());           //get new input sample
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  output_left_sample((short)(yn));   //output to codec
  return;                            //return from interrupt
}

void main()
{
  resetreg();                        //reset shift register
  comm_intr();                       //initialise DSK
  while (1);                         //infinite loop
}



 Programming Examples Using C and ASM Code  181

(a)

(b)

    FIGURE 4.21.     Output generated using program  fi rprn.c  and coeffi cient fi le  bs2700f.cof  
displayed using (a) an oscilloscope and (b)  Goldwave .  

  1.      bp55f.cof:  bandpass with center frequency  F  s /4  

  2.      bs55f.cof:  bandstop with center frequency  F  s /4  

  3.      lp55f.cof:  lowpass with cutoff frequency  F  s /4  

  4.      hp55f.cof:  highpass with bandwidth  F  s /4  

  5.      pass2bf.cof:  with two passbands  

  6.      pass3bf.cof:  with three passbands  

  7.      pass4bf.cof:  with four passbands  

  8.      comb14f.cof:  with multiple notches (comb fi lter)    
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 These fi lters were designed using MATLAB (see  Appendix D ). Figure  4.22 a 
shows the FFT of the output of an FIR fi lter with two passbands, using the coeffi -
cient fi le  pass2bf.cof.  Figure  4.22 b shows the FFT of the output of a highpass 
FIR fi lter using the coeffi cient fi le  hp55f.cof . These plots were obtained using the 
FFT function of an  Agilent 54621A  oscilloscope.    

  Example 4.6:    FIR  Filter with Internally Generated Pseudorandom Noise as 
Input to a Filter and Output Stored in Memory ( fi rprnbuf ) 

 This example builds on the previous one that generates a pseudorandom noise 
sequence as the input to an FIR fi lter, with the fi lter output also stored in a memory 
buffer. Figure  4.23  shows a listing of the program  fi rprnbuf.c , which implements 
this example.   

    FIGURE 4.22.     Output generated using program  fi rprn.c  and coeffi cient fi les (a)  pass2bf.
cof  and (b)  hp55f.cof  diplayed using an oscilloscope.  

(a)

(b)
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    FIGURE 4.23.     FIR fi lter with internally generated pseudorandom noise as input and output 
stored in memory ( fi rprnbuf.c ).  

//firprnbuf.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "pass4bf.cof"               //filter coefficient file
#include "noise_gen.h"               //support file for noise
int fb;                              //feedback variable
shift_reg sreg;                      //shift register
#define NOISELEVEL 8000              //scale factor for  noise
float x[N];                          //filter delay line
#define YNBUFLENGTH 1024
float yn_buffer[YNBUFLENGTH];
short ynbufindex = 0;

int prand(void)                      //pseudo-random noise
{
  int prnseq;
  if(sreg.bt.b0)  
    prnseq = -NOISELEVEL;            //scaled -ve noise level
  else
    prnseq = NOISELEVEL;             //scaled +ve noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);     //XOR bits 0,1
  fb^=(sreg.bt.b11)^(sreg.bt.b13);   //with bits 11,13 -> fb
  sreg.regval<<=1;                   //shift register 1 bit left
  sreg.bt.b0=fb;                     //close feedback path
  return prnseq;
}

void resetreg(void)                  //reset shift register
{
  sreg.regval=0xFFFF;                //initial seed value
  fb = 1;                            //initial feedback value
}

interrupt void c_int11()             //interrupt service routine
{
  short i;                           //declare index variable
  float yn = 0.0;

  x[0] = (float)(prand());           //get new input sample
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  output_left_sample((short)(yn));   //output to codec
  yn_buffer[ynbufindex++] = yn;
  if(ynbufindex >= YNBUFLENGTH) ynbufindex = 0;
  return;                            //return from interrupt
}

void main()
{
  resetreg();                        //reset shift register
  comm_intr();                       //initialise DSK
  while (1);                         //infinite loop
}
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FIGURE 4.24.      Graph Properties  for use with program  firprnbuf.c .  

 The coeffi cient fi le  bp41f.cof  represents a 41 - coeffi cient FIR bandpass fi lter 
centered at 1000   Hz. 

 Build and run this project as  firprnbuf . Verify that the output signal is band-
limited noise. Then halt the program, select View     →     Graph , and set the  Graph
Properties  as shown in Figure  4.24  in order to look at the frequency content of 1024 
stored output samples.   

 Figure  4.25  shows several Code Composer windows, including plots of the fi lter 
coeffi cients in the time and frequency domains and the magnitude FFT of the buffer 
contents.   

 Edit the program ( firprnbuf.c ), changing the lines that read

output_left_sample((short)(yn)); //output to codec 
yn_buffer[ynbufindex++] = yn; 

to read 

output_left_sample((short)(x[0])); //output to codec 
yn_buffer[ynbufindex++] = x[0]; 

 This effectively disables the FIR fi lter, passes the pseudorandom binary input signal 
directly to the DAC, and stores it in the circular buffer implemented using array 
yn_buffer . 

 Run the program again and plot the FFT magnitude of the noise sequence; that 
is, use the same Graphical Display  window as before. It does not appear perfectly 
fl at since the resulting plot is not averaged. An example is shown in Figure  4.26 . 
With the output to an oscilloscope with FFT function, verify that the noise spectrum 
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FIGURE 4.26.      Graphical Display  of magnitude FFT of PRBS used in program 
firprnbuf.c .  

FIGURE 4.25.     CCS windows showing operation of program  firprnbuf.c .  
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is quite fl at until about 3800   Hz, that is, the bandwidth of the codec reconstruction 
fi lter (it looks like a lowpass fi lter with a bandwidth of 3800   Hz). Figure  4.27  shows 
the spectrum of this noise sequence.     

 Develop a GEL slider to switch the DSK output between either the noise 
sequence generated internally, x[0] , or the fi lter output,  yn .  

Example 4.7: Effects on Voice or Music Using Three FIR Lowpass Filters 
(fir3LP)

 Figure  4.28    shows a listing of the program  fir3lp.c , which implements three FIR 
lowpass fi lters with cutoff frequencies at 600, 1500, and 3000   Hz, respectively. The 
three lowpass fi lters were designed using MATLAB.   

LP_number  selects the desired lowpass fi lter to be implemented. For example, if 
LP_number  is set to 0,  h[0][i]  is equal to  hlp600[i]  (within the for loop in func-
tion main() ), which is the address of the fi rst set of coeffi cients. The coeffi cient fi le 
LP600.cof  represents an 81 - coeffi cient FIR lowpass fi lter with a 600 - Hz cutoff fre-
quency, using the Kaiser window function. Figure  4.29  shows a listing of coeffi cient 
fi le  LP600.cof . That fi lter is then implemented. Note that the FIR fi lters in this 
example are implemented using fi xed - point arithmetic and use 16 - bit integer type 
coeffi cients. Coeffi cient fi les  LP600.cof ,  LP1500.cof , and  LP3000.cof  are incom-
patible with programs fir.c ,  firprn.c , and  firprnbuf.c .   

 The value of  LP_number  can be changed to 1 or 2 to implement the 1500 -  or 
3000 - Hz lowpass fi lter, respectively. With the GEL fi le  fir3lp.gel , the value of 
LP_number  can be varied while the program is running. 

 As supplied, the program uses the MIC input on the DSK and the effect of the 
three different lowpass fi lters can be tested while talking into a microphone. 
The effect of the fi lters is particularly striking if applied to a musical input. Change 
the line that reads

Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select MIC IN 

FIGURE 4.27.     PRBS noise generated using program  firprnbuf.c .  
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    FIGURE 4.28.     FIR program to implement three different lowpass fi lters using GEL slider 
for selection ( fi r3lp.c ).    

//fir3lp.c FIR using 3 lowpass coefficients with different BW

#include "lp600.cof"                //coeff file LP @ 600 Hz
#include "lp1500.cof"               //coeff file LP @ 1500 Hz
#include "lp3000.cof"               //coeff file LP @ 3000 Hz
#include "dsk6713_aic23.h"          //codec-dsk support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select MIC IN
short LP_number = 0;                //start with 1st LP filter
int yn = 0;                         //initialize filter output
short dly[N];                       //delay samples
short h[3][N];                      //filter characteristics

interrupt void c_int11()            //ISR
{
  short i;

  dly[0] = input_left_sample();     //newest input
  yn = 0;                           //initialize filter output
  for (i = 0; i< N; i++)
    yn +=(h[LP_number][i]*dly[i]);  //y(n) += h(LP#,i)*x(n-i)
  for (i = N-1; i > 0; i--)         //start @ bottom of buffer
    dly[i] = dly[i-1];              //update delays
  output_left_sample(yn >> 15);     //output filter
  return;                           //return from interrupt
}

void main()
{
  short i;

  for (i=0; i<N; i++)
  {
    dly[i] = 0;                     //init buffer
    h[0][i] = hlp600[i];            //start of LP600 coeffs
    h[1][i] = hlp1500[i];           //start of LP1500 coeffs
    h[2][i] = hlp3000[i];           //start of LP3000 coeffs
  }
  comm_intr();                      //init DSK, codec, McBSP
  while(1);                         //infinite loop
}
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    FIGURE 4.29.     Coeffi cient fi le for FIR lowpass fi lter with 600 - Hz cutoff frequency 
( LP600.cof ).  

//LP600.cof FIR lowpass filter coefficients using Kaiser window

#define N 81              //length of filter

short hlp600[N] = {0,-6,-14,-22,-26,-24,-13,8,34,61,80,83,63,
19,-43,-113,-171,-201,-185,-117,0,146,292,398,428,355,174,-99,
-416,-712,-905,-921,-700,-218,511,1424,2425,3391,4196,4729,
4915,4729,4196,3391,2425,1424,511,-218,-700,-921,-905,-712,
-416,-99,174,355,428,398,292,146,0,-117,-185,-201,-171,-113,
-43,19,63,83,80,61,34,8,-13,-24,-26,-22,-14,-6,0};   

to read

 Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select LINE IN  

and  Rebuild  the project. Use a CD or MP3 player as a source connected to the 
LINE IN socket on the DSK. With the lower bandwidth of 600   Hz, using the fi rst 
set of coeffi cients, the frequency components of the input signal above 600   Hz are 
suppressed. Connect the output to a speaker or a spectrum analyzer to verify such 
results, and listen to the effect of the different bandwidths of the three FIR lowpass 
fi lters. Alternatively, the effects of the fi lters can be illustrated using an oscilloscope 
and a signal generator set to input a 200 - Hz square wave to the LINE IN socket. 
Figure  4.30  shows a 200 - Hz square wave that has been passed through the three 
lowpass fi lters.    

  Example 4.8:   Implementation of Four Different Filters: 
Lowpass, Highpass, Bandpass, and Bandstop ( fi r4types )   

 This example illustrates the use of a GEL slider to step through four different types 
of FIR fi lters (Figure  4.31 ). Each fi lter has 81 coeffi cients, designed using MATLAB. 
The four coeffi cient fi les (on the accompanying CD) are: 

  1.      lp1500.cof:  lowpass with bandwidth of 1500   Hz  

  2.      hp2200.cof:  highpass with bandwidth of 2200   Hz  

  3.      bp1750.cof:  bandpass with center frequency at 1750   Hz  

  4.      bs790.cof:  bandstop with center frequency at 790   Hz      

 Program  fi r4types.c  implements this project. Build and run this project 
as   fi r4types  .   Load the GEL fi le  fi r4types.gel  and select  GEL     →     Filter 
Characteristics     →     Filter  to bring up a GEL slider to switch between the four differ-
ent FIR fi lters. This example could readily be expanded to implement more FIR 
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(a)

(b)

(c)

    FIGURE 4.30.     A 200 - Hz square wave passed through three different lowpass fi lters imple-
mented using program  fi r3lp.c .  
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//fir4types.c Lowpass, Highpass, bandpass, Bandstop FIR filters

#include "DSK6713_AIC23.h"
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "lp1500.cof"               //coeff file LP @ 1500 Hz
#include "hp2200.cof"               //coeff file HP @ 2200 Hz
#include "bp1750.cof"               //coeff file BP @ 1750 Hz
#include "bs790.cof"                //coeff file BS @  790 Hz
short FIR_number = 0;               //start with 1st LP filter
int yn = 0;                         //initialize filter output
short dly[N];                       //delay samples
short h[4][N];                      //filter characteristics

interrupt void c_int11()            //ISR
{
  short i;

  dly[0] = input_left_sample();     //new input @ top of buffer
  yn = 0;                           //initialize filter output
  for (i = 0; i< N; i++)
    yn +=(h[FIR_number][i]*dly[i]); //y(n) += h(LP#,i)*x(n-i)
  for (i = N-1; i > 0; i--)         //start @ bottom of buffer
    dly[i] = dly[i-1];              //update delays
  output_left_sample(yn >> 15);     //output filter
  return;                           //return from interrupt 
}

void main()
{
  short i;
  for (i=0; i<N; i++)
  {
    dly[i] = 0;                     //init buffer
    h[0][i] = hlp[i];               //start of lp1500 coeffs
    h[1][i] = hhp[i];               //start of hp2200 coeffs
    h[2][i] = hbp[i];               //start of bp1750 coeffs
    h[3][i] = hbs[i];               //start of bs790 coeffs
  }
  comm_intr();                      //init DSK, codec, McBSP
  while(1);                         //infinite loop
}          

    FIGURE 4.31.     FIR program to implement four different types of fi lter ( fi r4types.c ).      
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FIGURE 4.32.     Magnitude frequency response of bandstop fi lter implemented using program 
fir4types.c .  

fi lters. The effects of the four different fi lters on musical input are particularly strik-
ing. Figure  4.32  shows the magnitude frequency response of the FIR bandstop fi lter 
centered at 790   Hz, implemented using the coeffi cient fi le  bs790.cof .    

Example 4.9: Two Notch Filters to Recover a Corrupted Speech Recording 
(notch2)

 This example illustrates the use of two notch (bandstop) FIR fi lters in series to 
recover a speech recording corrupted by the addition of two sinusoidal signals at 
frequencies of 900 and 2700   Hz. Program  notch2.c  is listed in Figure  4.33 . Two 
coeffi cient fi les,  bs900.cof  and  bs2700.cof ,   each containing 89 coeffi cients and 
designed using MATLAB, are used by the program. They implement two FIR notch 
fi lters, centered at 900 and 2700   Hz, respectively. The output of the fi rst notch fi lter, 
centered at 900   Hz, is used as the input to the second notch fi lter, centered at 
2700   Hz.   

 Build this project as  notch2 . The fi le  corrupt.wav , stored in folder  notch2 , 
contains a recording of speech corrupted by the addition of 900 -  and 2700 - Hz sinu-
soidal tones. Listen to this fi le using  Goldwave, Windows Media Player , or similar. 
Then connect the PC soundcard output to the LINE IN socket on the DSK and 
listen to the fi ltered test signal (LINE OUT or HEADPHONE). 

 A GEL slider ( notch2.gel ) can be used to select either the output of the two 
cascaded notch fi lters (default) or the output of the fi rst notch fi lter. 

 Compare the results of this example with those obtained in  Example 4.1 , in 
which a notch in the magnitude frequency response of a moving average fi lter 
was exploited in order to fi lter out an unwanted sinusoidal tone. In this case, the 
fi ltered speech sounds brighter because the notch fi lters do not have a lowpass 
characteristic.
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    FIGURE 4.33.     Program implementing two FIR notch fi lters in cascade to remove two 
undesired sinusoidal signals ( notch2.c ).    

//notch2.c Two FIR notch filters to remove sinusoidal noise

#include "DSK6713_AIC23.h"          //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "bs900.cof"                //BS 900 Hz coefficient file
#include "bs2700.cof"               //BS 2700 Hz coefficient file
short dly1[N]={0};                  //delay for 1st filter
short dly2[N]={0};                  //delay for 2nd filter
int y1out = 0, y2out = 0;           //init output of each filter
short out_type = 2;                 //slider for output type

interrupt void c_int11()            //ISR
{
 short i;

 dly1[0] = input_left_sample();     //new input @ top of buffer
 y1out = 0;                         //init output of 1st filter
 y2out = 0;                         //init output of 2nd filter
 for (i = 0; i< N; i++)
  y1out += h900[i]*dly1[i];         //y1(n)+=h900(i)*x(n-i)
 dly2[0]=(y1out>>15);
 for (i = 0; i< N; i++)
  y2out += h2700[i]*dly2[i];        //y2(n)+=h2700(i)*x(n-i)
 for (i = N-1; i > 0; i--)          //from bottom of buffer
 {
  dly1[i] = dly1[i-1];              //update samples in buffers
  dly2[i] = dly2[i-1];
 }
 if (out_type==1)                   //if slider is in position 1
  output_left_sample((short)(y2out>>15)); //output of 1st filter
 if (out_type==2)
  output_left_sample((short)(y1out>>15)); //output of 2nd filter
 return;                            //return from ISR
}

void main()
{
 comm_intr();                       //init DSK, codec, McBSP
 while(1)                           //infinite loop
}
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  Example 4.10:    FIR  Implementation Using Two Different Methods 
( fi r2ways )   

 Figure  4.34  shows a listing of the program  fi r2ways.c , which implements an FIR 
fi lter using two alternative methods for convolving and updating the delay samples. 
This example extends  Example 4.3 , in which the fi rst method (method A) is used. 
In this fi rst method, using two for loops, the delay samples are stored in the  N  -
 element array  dly  with the newest sample at the beginning of the buffer  dly[0]  
and the oldest sample at the end of the buffer  dly[N - 1] . The convolution starts 
with the newest sample and the fi rst fi lter coeffi cient using  

      y n h x n h x n h N x n N( ) ( ) ( ) ( ) ( ) ( ) ( ( ))= + − + + − − −0 1 1 1 1�   

 In a second for loop, each sample value in array  dly  is shuffl ed such that, for 
example, the sample value  dly[i]  is shifted to become  dly[i+1] . 

 The second method (method B) uses pointers to implement a circular buffer in 
array  dly . In this case, the samples stored in the array are not shuffl ed or moved. 
Method B performs the convolution using one for loop. 

 Build and run this project as   fi r2ways  .   Verify that an FIR bandpass fi lter centered 
at 1   kHz is implemented. Change the method used, by editing the line in program 
 fi r2ways.c  that reads

 #defi ne method  ‘ A ’  

and verify that the resulting fi lter characteristic is the same as before.  

  Example 4.11:   Voice Scrambling Using Filtering and Modulation 
( scrambler ) 

 This example illustrates a voice scrambling/descrambling scheme. The approach 
makes use of basic algorithms for fi ltering and modulation. Modulation was intro-
duced in the AM example in Chapter  2 . 

 With voice as input, the resulting output is scrambled voice. The original descram-
bled voice is recovered when the output of the DSK is used as the input to a second 
DSK running the same program. 

 The scrambling method used is commonly referred to as frequency inversion. It 
takes an audio range, in this case 300   Hz to 3   kHz, and  “ folds ”  it about a 3.3 - kHz 
carrier signal. The frequency inversion is achieved by multiplying (modulating) the 
audio input by a carrier signal, causing a shift in the frequency spectrum with upper 
and lower sidebands. In the lower sideband that represents the audible speech range, 
the low tones are high tones, and vice versa. 

 Figure  4.35  is a block diagram of the scrambling scheme. At point A we have an 
input signal, bandlimited to 3   kHz. At point B we have a double - sideband signal 



194  Finite Impulse Response Filters

//fir2ways.c FIR with alternative ways of storing/updating samples

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "BP41.cof"                  //BP coeff centered at Fs/8
#define METHOD 'A'                   //or change to B
int yn = 0;                          //initialize filter's output
short dly[N];                        //delay samples array
#if METHOD == 'B'
short *start_ptr;
short *end_ptr;
short *h_ptr;
short *dly_ptr;
#endif
interrupt void c_int11()             //ISR
{
  short i;

  yn = 0;                            //initialize filter's output

#if METHOD == 'A'
  dly[0] = input_left_sample();
  for (i = 0; i< N; i++) yn += (h[i] * dly[i]);
  for (i = N-1; i > 0; i--) dly[i] = dly[i-1];
#elif METHOD == 'B'
  *dly_ptr = input_left_sample();
  if (++dly_ptr > end_ptr) dly_ptr = start_ptr;
  for (i = 0; i < N ; i++)
  {
    dly_ptr++;
    if (dly_ptr > end_ptr) dly_ptr = start_ptr;
    yn += *(h_ptr + i)* *dly_ptr;
  }
#endif
  output_left_sample((short)(yn>>15));
  return;
}

void main()
{
#if METHOD == 'B'
  dly_ptr = dly;
  start_ptr = dly;
  end_ptr = dly + N - 1;
  h_ptr = h;
#endif
  comm_intr();
  while(1);
}

    FIGURE 4.34.     FIR program using two alternative methods for convolution and updating of 
delay samples ( fi r2ways.c ).    
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    FIGURE 4.35.     Block diagram of scrambler system.  

with suppressed carrier. At point C the upper sideband and the section of the lower 
sideband between 3 and 3.3   kHz are fi ltered out. The scheme is attractive because 
of its simplicity. Only simple DSP algorithms — namely, fi ltering, sine wave genera-
tion, and amplitude modulation — are required for its implementation.   

 Figure  4.36  shows a listing of program  scrambler.c , which operates at a 
sampling rate,  fs , of 16   kHz. The input signal is fi rst lowpass fi ltered using an FIR 
fi lter with 65 coeffi cients,  h , defi ned in the fi le  lp3k64.cof . The fi ltering algorithm 
used is identical to that used in, for example, program  fi r.c . The fi lter delay line is 
implemented using array  x1  and the output is assigned to variable  yn1 . The fi lter 
output (at point A in Figure  4.36 ) is multiplied (modulated) by a 3.3 - kHz sinusoid 
stored as 160 samples (exactly 33 cycles) in array  sine160  (fi le  sine160.h ) . Finally, 
the modulated signal (at point B) is lowpass fi ltered again, using the same set of 
fi lter coeffi cients  h  ( lp3k64.cof ) but a different fi lter delay line implemented using 
array  x2  and the output variable  yn2 . The output is a scrambled signal (at point C). 
Using this scrambled signal as the input to a second DSK running the same algo-
rithm, the original descrambled input is recovered as the output of the second 
DSK.   

 Build and run this project as   scrambler  . First, test the program using a 2 - kHz 
sine wave as input. The resulting output is a lower sideband signal at 1.3   kHz. The 
upper sideband signal at 5.3   kHz is fi ltered out by the second lowpass fi lter. By 
varying the frequency of the sinusoidal input, you should be able to verify that input 
frequencies in the range 300 – 3000   Hz appear as output frequencies in the inverted 
range 3000 to 300   Hz. 

 A second DSK running the same program can be used to recover the original 
signal (simulating the receiving end). Use the output of the fi rst DSK as the input 
to the second DSK. 

 Change the input source used by the program from LINE IN to MIC IN and test 
the scrambler and descrambler using speech from a microphone as the input. Run 
exactly the same program on each DSK, that is, including the line

 Uint16 inputsource=DSK6713_AIC23_INPUT_MIC 

and connect LINE OUT on the fi rst DSK (scrambler) to MIC IN on the second 
DSK (descrambler). 
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 Interception of the speech signal could be made more diffi cult by changing the 
modulation frequency dynamically and by including (or omitting) the carrier fre-
quency according to a predefi ned sequence: for example, a code for no modulation, 
another for modulating at frequency  fc1 , and a third code for modulating at fre-
quency  fc2 .   

 This project was fi rst implemented using the TMS320C25  [50]  and also the 
TMS320C31 DSK.  

//scrambler.c

#include "DSK6713_AIC23.h"           // codec support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include "sine160.h"
#include "lp3k64.cof"                //filter coefficient file
float yn1, yn2;                      //filter outputs
float x1[N],x2[N];                   //filter delay lines
int index = 0;

interrupt void c_int11()
{
 short i;
                                     // first filter input
 x1[0]=(float)(input_left_sample()); //get input into delay line
 yn1 = 0.0;                          //initialise filter output
 for (i=0 ; i<N ; i++) yn1 += h[i]*x1[i];
 for (i=(N-1) ; i>0 ; i--) x1[i] = x1[i-1];
                                     // next mix with 3300Hz
 yn1 *= sine160[index++];
 if (index >= NSINE) index = 0;
                                     // now filter again
 x2[0] = yn1;                        //get input into delay line
 yn2 = 0.0;                          //initialise filter output
 for (i=0 ; i<N ; i++) yn2 += h[i]*x2[i];
 for (i=(N-1) ; i>0 ; i--) x2[i] = x2[i-1];
 output_left_sample((short)(yn2));   //output to codec
 return;
}

void main()
{
 comm_intr();                        //initialise McBSP, AD535
 while(1);                           //infinite loop
}

    FIGURE 4.36.     Scrambler program  scrambler.c .  



 Programming Examples Using C and ASM Code  197

  Example 4.12:    FIR  Implementation Using  C  Calling an  ASM  Function 
( FIRcasm )   

 The C program  FIRcasm.c  (Figure  4.37 ) calls the assembly language function 
 _fi rcasmfunc  defi ned in fi le  FIRcasmfunc.asm  (Figure  4.38 ), and which implements 
an FIR fi lter.     

 Build and run this project as   FIRcasm  . Verify that the program implements a 1 -
 kHz FIR bandpass fi lter. Two buffers are used by program  FIRcasm.c . Array  dly  
is used to store  N  previous input samples and array  h  stores  N  fi lter coeffi cients. The 
value of constant  N  is defi ned in the fi lter coeffi cient ( .cof ) fi le. On each interrupt, 
a new input sample is acquired and stored at the end (higher memory address) of 
the buffer  dly . The delay samples and the fi lter coeffi cients are arranged in memory 
as shown in Table  4.1 . The delay samples are stored in memory starting with the 
oldest sample stored at the lowest memory address. The newest sample is at the end 
of the buffer. The coeffi cients are arranged in memory with  h (0) at the beginning 
of the coeffi cient buffer and  h ( N     −    1) at the end.   

    FIGURE 4.37.     C program calling an ASM function for FIR implementation 
( FIRcasm.c ).      

//FIRcasm.c FIR C program calling ASM function fircasmfunc.asm

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#include "bp41.cof"              //BP @ Fs/8 coefficient file
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select mic in
int yn = 0;       //initialize filter's output
short dly[N];             //delay samples

interrupt void c_int11()         //ISR
{
 dly[N-1] = input_left_sample(); //newest sample @bottom buffer
 yn = fircasmfunc(dly,h,N); //to ASM func through A4,B4,A6
    output_left_sample((short)(yn>>15));   //filter's output
 return;      //return from ISR
}

void main()
{
  short i;

 for (i = 0; i<N; i++)
   dly[i] = 0;                //init buffer for delays
 comm_intr();               //init DSK, codec, McBSP
 while(1);                  //infinite loop
}
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 The addresses of the delay sample buffer, the fi lter coeffi cient buffer, and the size 
of each buffer are passed to the ASM function through registers A4, B4, and A6, 
respectively. The size of each buffer through register A6 is doubled since data in 
each memory location are stored as bytes. The pointers A4 and B4 are incremented 

    FIGURE 4.38.     FIR ASM function called from C ( FIRcasmfunc.asm ).      

;FIRcasmfunc.asm ASM function called from C to implement FIR
;A4 = Samples address, B4 = coeff address, A6 = filter order
;Delays organized as:x(n-(N-1))...x(n);coeff as h[0]...h[N-1]

  .def _fircasmfunc
_fircasmfunc:   ;ASM function called from C
  MV A6,A1       ;setup loop count
   MPY   A6,2,A6 ;since dly buffer data as byte
   ZERO  A8          ;init A8 for accumulation
  ADD   A6,B4,B4    ;since coeff buffer data as byte
  SUB   B4,1,B4     ;B4=bottom coeff array h[N-1]
loop:     ;start of FIR loop
  LDH  *A4++,A2    ;A2=x[n-(N-1)+i] i=0,1,...,N-1
  LDH  *B4--,B2    ;B2=h[N-1-i] i=0,1,...,N-1
  NOP 4

   NOP
   ADD  A6,A8,A8    ;accumlate in A8
    LDH  *A4,A7      ;A7=x[(n-(N-1)+i+1]update delays
    NOP 4       ;using data move "up"
   STH  A7,*-A4[1]  ;-->x[(n-(N-1)+i] update sample

    [A1] B    loop   ;branch to loop if count # 0
       NOP 5

  MV   A8,A4       ;result returned in A4
  B    B3       ;return addr to calling routine
  NOP 4 

 TABLE 4.1     Memory Organization of Coeffi cients and Samples for FIRcasm 

  Coeffi cients  

  Samples  

  Time  n         Time  n + 1   

     h(0)    A4  →   x(n  -  (N  -  1))         A4  →   x(n  -  (N  -  2))   
      h(1)         x(n  -  (N  -  2))             x(n  -  (N  -  3))   
      h(2)         x(n  -  (N  -  3))             x(n  -  (N  -  4))   
      ·         ·             ·   
      ·         ·             ·   
      ·         ·             ·   
      h(N  -  2)         x(n  -  1)             x(n)   
  B4  →  h (N  -  1)         x(n)      ←  newest  →         x(n + 1)   
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or decremented every 2 bytes (two memory locations). The end address of the coef-
fi cients ’  buffer is in B4, which is at 2 N     −    1. 

 The two 16 - bit load ( LDH ) instructions load the content in memory pointed to 
(whose address is specifi ed) by A4 and the content in memory at the address speci-
fi ed by B4. This loads the oldest sample and last coeffi cient,  x ( n     −    ( N     −    1)) and 
 h ( N     −    1), respectively. A4 is then postincremented to point at  x ( n     −    ( N     −    2)), and 
B4 is postdecremented to point at  h ( N     −    2). After the fi rst accumulation, the oldest 
sample is updated. The content in memory at the address specifi ed by A4 is loaded 
into A7, then stored at the preceding memory location. This is because A4 is post-
decremented without modifi cation to point at the memory location containing the 
oldest sample. As a result, the oldest sample,  x ( n     −    ( N     −    1)), is replaced (updated) 
by  x ( n     −    ( N     −    2)). The updating of the delay samples is for the next unit of time. As 
the output at time  n  is being calculated, the samples are updated or  “ primed ”  for 
time ( n    +   1). At time  n  the fi lter ’ s output is

    y n h N x n N h N x n N h x n( ) ( ) ( ( )) ( ) ( ( )) ( ) ( )= − − − + − − − + +1 1 2 2 0�   

 The loop is processed  N  times. For each time  n, n    +   1,  n    +   2,       .      .      .       , an output value 
is calculated, with each sample updated for the next unit of time. The newest 
sample is also updated in this process, with an invalid data value residing at the 
memory location beyond the end of the buffer. But this is remedied since for each 
unit of time, the newest sample, acquired through the ADC of the codec, over-
writes it. Accumulation is in A8 and the result, for each unit of time, is moved 
to A4 to be returned to the calling function. The address of the calling function is 
in B3.  

  Viewing Update of Samples in Memory 
    1.     Select  View  →  Memory  using a 16 - bit hex format and a  Starting Address  of 

 dly . The delay samples are within 82 (not 41) memory locations, each location 
specifi ed with a byte. The coeffi cients also occupy 82 memory locations in the 
buffer  h . You can verify the content in the coeffi cient buffer stored as a 16 - bit 
or half - word value. Right - click on the memory window and deselect  Float in 
Main Window  for a better display with both source program and memory.  

  2.     Select  View  →  Mixed C/ASM . Place a breakpoint within the function  FIR-
casmfunc.asm  at the move instruction

 MV A8,A4   

  You can either double - click on that line of code or right - mouse - click to  Toggle 
Breakpoint .  

  3.     Select  Debug  →  Animate . Execution halts at the set breakpoint for each unit 
of time. Observe the end (bottom) memory location of the delay samples ’  
buffer. Verify that the newest sample data value is placed at the end of the 



200  Finite Impulse Response Filters

buffer. This value is then moved up the buffer to a lower address. Observe 
after a while that the samples are being updated, with each value in the buffer 
moving up in memory. You can also observe the register (pointer) A4 incre-
menting by 2 (two bytes) and B4 decrementing by 2.     

  Example 4.13:    FIR  Implementation Using  C  Calling a Faster  ASM  Function 
( FIRcasmfast ) 

 The same C calling program,  FIRcasm.c , is used in this example as in  Example 4.12 . 
It calls the ASM function  _fi rcasmfunc  within the fi le  FIRcasmfuncfast.asm , as 
shown in Figure  4.39 . This ASM function executes faster than the function in the 
previous example by having parallel instructions and rearranging the sequence of 
instructions. There are two parallel instructions:  LDH/LDH  and  SUB/LDH . 

  1.     The number of  NOP s is reduced from 19 to 11.  

  2.     The  SUB  instruction to decrement the loop count is moved up the program.  

  3.     The sequence of some instructions is changed to fi ll some of the  NOP  slots. For 
example, the conditional branch instruction executes after the  ADD  instruction 

    FIGURE 4.39.     FIR ASM function with parallel instructions for faster execution ( FIRcasm-
funcfast.asm ).      

;FIRcasmfuncfast.asm C-called faster function to implement FIR
  .def _fircasmfunc
_fircasmfunc:   ;ASM function called from C
  MV A6,A1       ;setup loop count
   MPY   A6,2,A6 ;since dly buffer data as byte
   ZERO  A8          ;init A8 for accumulation
  ADD   A6,B4,B4    ;since coeff buffer data as byte
  SUB   B4,1,B4     ;B4=bottom coeff array h[N-1]
loop:     ;start of FIR loop
  LDH  *A4++,A2    ;A2=x[n-(N-1)+i] i=0,1,...,N-1
   ||       LDH  *B4--,B2    ;B2=h[N-1-i] i=0,1,...,N-1
  SUB A1,1,A1 ;decrement loop count
   ||   LDH  *A4,A7      ;A7=x[(n-(N-1)+i+1]update delays
  NOP 4
  STH  A7,*-A4[1]  ;-->x[(n-(N-1)+i] update sample
   [A1] B    loop   ;branch to loop if count # 0
  NOP 2
   MPY  A2,B2,A6    ;A6=x[n-(N-1)+i]*h[N-1-i]
   NOP
   ADD  A6,A8,A8    ;accumlate in A8

  B    B3       ;return addr to calling routine
  MV   A8,A4       ;result returned in A4
  NOP 4 
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to accumulate in A8, since branching has fi ve delay slots. Additional changes 
to make it faster would also make it less comprehensible due to further rese-
quencing of the instructions.      

 Build this project as   FIRcasmfast  , so that the linker option names the output 
executable fi le  FIRcasmfast.out . The resulting output is the same 1 - kHz bandpass 
fi lter as in the previous example.  

  Example 4.14:    FIR  Implementation Using C Calling an 
ASM Function with a Circular Buffer ( FIRcirc ) 

 The C program  FIRcirc.c  (Figure  4.40 ) calls the ASM function  FIRcircfunc.asm  
(Figure  4.41 ). This example expands  Example 4.12  to implement an FIR fi lter 
using a circular buffer. The coeffi cients within the fi le  bp1750.cof  were designed 
with MATLAB using a Kaiser window and represent a 128 - coeffi cient FIR band-
pass fi lter with a center frequency of 1750   Hz. Figure  4.42  shows the characteristics 
of this fi lter, obtained using MATLAB ’ s fi lter designer  fdatool  (described in 
 Appendix D ).       

    FIGURE 4.40.     C program calling an ASM function using a circular buffer ( FIRcirc.c ).  

//FIRcirc.c  C program calling ASM function using circular buffer

#include "DSK6713_AIC23.h" //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input source
#include "bp1750.cof"               //BP at 1750 Hz coeff file
int yn = 0;          //init filter's output

interrupt void c_int11()            //ISR
{
 short sample_data;

 sample_data = (input_sample());      //newest input sample data
 yn = fircircfunc(sample_data,h,N); //ASM func passing to A4,B4,A6
 output_sample((short)(yn>>15));       //filter's output
 return;          //return to calling function
}

void main()
{
 comm_intr();         //init DSK, codec, McBSP
 while(1);                        //infinite loop
}
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    FIGURE 4.41.     FIR ASM function using a circular buffer for updating samples 
( FIRcircfunc.asm ).  

;FIRcircfunc.asm ASM function called from C using circular addressing
;A4=newest sample, B4=coefficient address, A6=filter order
;Delay samples organized: x[n-(N-1)]...x[n]; coeff as h(0)...h[N-1]

            .def  _fircircfunc
            .def   last_addr
            .def   delays
       .sect "circdata"   ;circular data section
            .align 256         ;align delay buffer 256-byte boundary
delays      .space 256         ;init 256-byte buffer with 0's
last_addr   .int   last_addr-1 ;point to bottom of delays buffer
            .text         ;code section
_fircircfunc:    ;FIR function using circ addr
            MV    A6,A1      ;setup loop count
        MPY   A6,2,A6      ;since dly buffer data as byte
       ZERO  A8           ;init A8 for accumulation

       ADD   A6,B4,B4  ;since coeff buffer data as bytes
       SUB   B4,1,B4      ;B4=bottom coeff array h[N-1]

            MVKL 0x00070040,B6 ;select A7 as pointer and BK0
            MVKH 0x00070040,B6 ;BK0 for 256 bytes (128 shorts)

            MVC   B6,AMR       ;set address mode register AMR

       MVKL  last_addr,A9  ;A9=last circ addr(lower 16 bits)
       MVKH last_addr,A9  ;last circ addr (higher 16 bits)

            LDW   *A9,A7       ;A7=last circ addr
            NOP   4
            STH   A4,*A7++  ;newest sample-->last address

loop:      ;begin FIR loop
            LDH   *A7++,A2     ;A2=x[n-(N-1)+i] i=0,1,...,N-1
    ||      LDH   *B4--,B2     ;B2=h[N-1-i] i=0,1,...,N-1
            SUB   A1,1,A1  ;decrement count
    [A1]    B     loop      ;branch to loop if count # 0
            NOP   2
        MPY   A2,B2,A6     ;A6=x[n-(N-1)+i]*h[N-1+i]
            NOP
            ADD   A6,A8,A8     ;accumulate in A8

            STW   A7,*A9  ;store last circ addr to last_addr
            B     B3           ;return addr to calling routine
            MV    A8,A4        ;result returned in A4
            NOP   4 
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 In lieu of moving the data to update the delay samples, a pointer is used. The 16 
LSBs of the address mode register are set with a value of

0x0040 = 0000 0000 0100 0000 

 This selects A7 mode as the circular buffer pointer register. The 16 MSBs of AMR 
are set with N = 0x0007  to select the block BK0 as a circular buffer. The buffer 
size is 2 N    +   1    =   256. A circular buffer is used in this example only for the delay 
samples.

 It is also possible to use a second circular buffer for the coeffi cients. For example, 
using

0x0140 = 0000 0001 0100 0000 

would select two pointers, B4 and A7. 

FIGURE 4.42.     Frequency characteristics of a 128 - coeffi cient FIR bandpass fi lter centered at 
1750   Hz, designed using MATLAB fi lter design and analysis tool  fdatool .  
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 Within a C program, an inline assembly code can be used with the  asm  statement. 
For example,

 asm( “  MVK 0x0040,B6 ” )  

 Note the blank space after the fi rst quotation mark so that the instruction does not 
start in column 1. The circular mode of addressing eliminates the data move to 
update the delay samples, since a  pointer  can be moved to achieve the same results 
and much faster. Initially, the register pointer A7 points to the last address in the 
sample buffer. Consider for now the sample buffer only, since it is circular. (Note 
that the coeffi cient ’ s buffer is not made to be circular.) 

  1.      Time n . At time  n , A7 points to the end of the buffer, where the newest sample 
is stored. It is then postincremented to point to the beginning of the buffer, as 
shown in Table  4.2 . Then the section of code within the loop starts and 
calculates

    y n h N x n N h N x n N h x n( ) ( ) ( ( )) ( ) ( ( )) ( ) ( )= − − − + − − − + +1 1 2 2 0�    

  After the last multiplication,  h (0) x ( n ), A7 is postincremented to point to the 
beginning address of the buffer. The resulting fi lter ’ s output at time  n  is then 
returned to the calling function. Before the loop starts for each unit of time, 
A7 always contains the address where the newest sample is to be stored. While 
the newly acquired sample is passed to the ASM function through A4 at each 
unit of time  n, n    +   1,  n    +   2,       .      .      .       , A4 is stored in A7, which always contains the 
 “ last ”  address where the subsequent new sample is to be stored.  

  2.      Time n   +    1. At time ( n    +   1), the newest sample,  x ( n    +   1), is passed to the ASM 
function through A4. The 16 - bit store ( STH ) instruction stores that sample into 

 TABLE 4.2     Memory Organization of Coeffi cients and Samples Using a Circular Buffer 

  Coeffi cients  

  Samples  

  Time n    Time  n + 1     Time  n + 2   

   h(0)     A7  →   x(n  -  (N  -  1))     newest  →   x(n + 1)      x(n + 1)   
   h(1)         x(n  -  (N  -  1))     A7  →   x(n  -  (N  -  2))     newest  →   x(n + 2)   
   h(2)         x(n  -  (N  -  1))         x(n  -  (N  -  3))     A7  →   x(n  -  (N  -  3))   
   ·         ·         ·         ·   
   ·         ·         ·         ·   
   ·         ·         ·         ·   
   h(N  -  2)         x(n  -  1)         x(n  -  1)         x(n  -  1)   
   h(N  -  1)     newest  →   x(n)         x(n)         x(n)   
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memory whose address is in A7, which is at the beginning of the buffer. It is 
then postincremented to point at the address containing  x ( n     −    ( N     −    2)), as 
shown in Table  4.2 . The output is now

    
y n h N x n N h N x n N

h x n h x
( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ) ( ) (
+ = − − − + − − − +

+ +
1 1 2 2 3

1 0
�

nn + 1)    

  The last multiplication always involves  h (0) and the newest sample.  

  3.      Time n    +   2. At time ( n    +   2), the fi lter ’ s output is

    
y n h N x n N h N x n N

h x n h
( ) ( ) ( ( )) ( ) ( ( ))

( ) ( ) ( )
+ = − − − + − − − +

+ + +
2 1 3 2 4

1 1 0
�

xx n( )+ 2    

  Note that for each unit of time, the newly acquired sample overwrites 
the oldest sample at the previous unit of time. At each time  n, n    +   1,       .      .      .       , the 
fi lter ’ s output is calculated within the ASM function and the result is sent 
to the calling C function, where a new sample is acquired at each sample 
period.      

 The conditional branch instruction was moved up, as in  Example 4.13 . Branching 
to loop takes effect (due to fi ve delay slots) after the  ADD  instruction to accumulate 
in A8. One can save the content of AMR at the end of processing one buffer and 
restore it before using it again with a pair of MVC instructions:  MVC AMR,Bx  and 
 MVC Bx,AMR  using a B register. 

 Build and run this project as   FIRcirc  . Verify an FIR bandpass fi lter centered at 
1750   Hz.  Halt , and  Reload  the program. 

 Place a breakpoint within the ASM function  FIRcircfunc.asm  at the 
branch instruction to return to the calling C function ( B B3 ).View memory at the 
address  delays  and verify that this buffer of size 256 is initialized to zero. Right -
 click on the memory window to toggle  Float in Main Window  (for a better display). 
Run the program. Execution stops at the breakpoint. Verify that the newest sample 
(16 bits) is stored at the end (higher address) of the buffer (at  0x31FE  and  0x31FF ). 
Memory location  0x3200  (in A9) contains the address  0x3101 , where the subse-
quent new sample is to be stored. This address represents the starting address of 
the buffer. 

 View the core registers and verify that A7 contains this address. 
 Run the program again and observe the new sample stored at the beginning of 

the buffer. This 16 - bit data sample is stored at  0x3100  and  0x3101 . Animate now 
and observe where each new sample is being stored in memory. Note that A7 is 
incremented to  0x3103 ,  0x3105 ,      .       .      .      .       The circular method of updating the delays is 
more effi cient. It is important that the buffer is aligned on a boundary with a power 
of 2. While a buffer may be  “ naturally aligned, ”  one must make sure that it is (an 
address with LSBs as zeros) if such buffer is to be used as circular.  
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  Example 4.15:    FIR  Implementation Using  C  Calling an  ASM  Function 
Using a Circular Buffer in External Memory ( FIRcirc_ext ) 

 This example implements an FIR fi lter using a circular buffer in external memory. 
The same C source program  FIRcirc.c  and ASM function  FIRcircfunc.asm  as 
in the previous example are used, but with a modifi ed linker command fi le. This 
linker command fi le  FIRcirc_ext.cmd  is listed in Figure  4.43 . The section  circ-
data  designates the memory section  buffer_ext , which starts in external memory 
at  0x80000000 .   

 Build this project as   FIRcirc_ext  . Load the executable fi le and view the memory 
at the address delays. This should display the external memory section that starts at 
 0x80000000 . Verify that the circular buffer is in external memory, where all the 
delay samples are initialized to zero. Place a breakpoint as in  Example 4.14 , run the 
program up to the breakpoint, and verify that the newest input sample is stored at 
the end of the circular buffer at  0x800000FE  and  0x800000FF . Register A9 contains 
the last address, and register A7 contains the address where the subsequent 16 - bit 
input sample is to be stored ( 0x80000001 ). Run the program again (to the set 

/*FIRcirc_ext.cmd Linker command file for external memory*/

MEMORY
{
  IVECS:     org =          0h,  len =      0x220
  IRAM:      org =  0x00000220,  len = 0x0002FFFF
  SRAM_EXT1: org =  0x80000000,  len = 0x00000110
  SRAM_EXT2: org =  0x80000110,  len = 0x00100000
  FLASH:     org =  0x90000000,  len = 0x00020000
}

SECTIONS
{
  circdata :> SRAM_EXT1 /*buffer in external mem*/
  .vecs    :> IVECS /*Created in vectors file*/
  .text    :> IRAM /*Created by C Compiler*/
  .bss     :> IRAM
  .cinit   :> IRAM
  .stack   :> IRAM
  .sysmem  :> IRAM
  .const   :> IRAM
  .switch  :> IRAM
  .far     :> IRAM
  .cio     :> IRAM
  .csldata :> IRAM
}

    FIGURE 4.43.     Linker command fi le for a circular buffer in external memory 
( FIRcirc_ext.cmd ).  



breakpoint) and verify that the subsequent acquired sample is stored at the begin-
ning of the buffer at the address 0x80000001 . Remove the breakpoint, restart/run, 
and verify that the output is the same FIR bandpass fi lter centered at 1750   Hz, as 
in  Example 4.14 .    

4.8 ASSIGNMENTS

1.      (a)    Design a 65 - coeffi cient FIR lowpass fi lter, using a Hamming window, with 
a cut - off frequency of 2500   Hz and a sampling frequency of 8   kHz. Imple-
ment it in real time using program firprnbuf.c .  

(b)     Compare the characteristics of the fi lter designed using a Hamming 
window with those of fi lters designed using Hann and Kaiser windows.    

2.     The coeffi cient fi le  LP1500_256.cof  (stored in folder  fir ) contains the 256 
coeffi cients of an FIR lowpass fi lter, with a bandwidth of 1500   Hz when sam-
pling at 48   kHz. Implement this fi lter in real time. The C - coded examples in 
this chapter may not be effi cient enough to implement this fi lter at a sampling 
rate of 48   kHz. Consider using an ASM - coded FIR function with a circular 
buffer.

3.     Design and implement an FIR fi lter with two passbands, one centered at 2500 
and the other at 3500   Hz. Use a sampling frequency of 16   kHz.  

4.     Rather than using an internal noise generator coded in C as input to a C - coded 
FIR function (see program firprn.c ), generate the noise using ASM code (see 
program noisegen_casm.asm  in Chapter  3 ).     
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   •      Infi nite impulse response fi lter structures: direct form I, direct form II, cascade 
and parallel  

   •      Bilinear transformation for fi lter design  

   •      Sinusoidal waveform generation using difference equation  

   •      Filter design and utility packages  

   •      Programming examples using TMS320C6X and C code    

 The FIR fi lter discussed in Chapter  4  has no analog counterpart. In this chapter we 
discuss the infi nite impulse response (IIR) fi lter that makes use of the vast knowl-
edge already acquired with analog fi lters. The design procedure involves the conver-
sion of an analog fi lter to an equivalent discrete fi lter using the bilinear transformation 
(BLT) technique. As such, the BLT procedure converts a transfer function of an 
analog fi lter in the  s  - domain into an equivalent discrete - time transfer function in 
the  z  - domain.  

  5.1   INTRODUCTION 

 Consider a general input – output equation of the form

    y n b x n k a y n l
k

M

k
l

N

l( ) ( ) ( )= − − −
= =

∑ ∑
0 1

    (5.1)  
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or equivalently,

    y n b x n b x n b x n b x n M
a y n a y n

M( ) ( ) ( ) ( ) ( )
( ) ( )

= + − + − + + −
− − − −

0 1 2

1 2

1 2
1 2

�
−− − −� a y n NN ( )

    (5.2)   

 This recursive type of equation represents an IIR fi lter. The output depends on the 
inputs as well as past outputs (with feedback). The output  y ( n ), at time  n , depends 
not only on the current input  x ( n ), at time  n , and on past inputs  x ( n     −    1),  x ( n     −   
 2),       .      .      .       ,  x ( n    −    M ), but also on past outputs  y ( n     −    1),  y ( n     −    2),       .      .      .         ,  y ( n    −    N ). 

 If we assume all initial conditions to be zero in  (5.2) , the  z  - transform of  (5.2)  
becomes

    Y z b b z b z b z X z a z a z a z Y zN
N

M
M( ) ( ) ( ) ( ) (= + + + + − + + +− − − − − −

0 1
1

2
2

1
1

2
2� � ))     (5.3)  

Let  N   =   M  in  (5.3) ; then the transfer function  H ( z ) is

    H z
Y z
X z

b b z b z b z
a z a z a z

N
N

N
N

( )
( )
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= = + + + +
+ + + +

=
− − −

− − −
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1
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2
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�
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NN z
D z
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    (5.4)  

where  N ( z ) and  D ( z ) represent the numerator and denominator polynomial, respec-
tively. Multiplying and dividing by  z n , H ( z ) becomes

    H z
b z b z b z b
z a z a z a

C
zN N N

N
N N N

N i

N

( ) = + + + +
+ + + +

= −− −

− −
=
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2
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1
1

2
2
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zz
p p

i

i−
    (5.5)  

which is a transfer function with  N  zeros and  N  poles. If all the coeffi cients  a l   in  (5.5)  
are zero, this transfer function reduces to the transfer function with  N  poles at the 
origin in the  z  - plane representing the FIR fi lter discussed in Chapter  4 . For a system 
to be stable, all the poles must reside inside the unit circle, as discussed in Chapter 
 4 . Hence, for an IIR fi lter to be stable, the magnitude of each of its poles must be 
less than 1 or: 

  1.     If | p i  |    <    1, then   h ( n )  →  0 , as   n   →   ∞  , yielding a stable system.  

  2.     If | p i  |    >    1, then   h ( n )  →   ∞  , as   n   →   ∞  , yielding an unstable system.    

 If | p i  |   =   1, the system is marginally stable, yielding an oscillatory response. Fur-
thermore, multiple - order poles on the unit circle yield an unstable system. Note 
again that with all the coeffi cients  a l     =   0, the system reduces to a nonrecursive and 
stable FIR fi lter.  

  5.2   IIR FILTER STRUCTURES 

 There are several different structures that may be used to represent an IIR fi lter, 
as discussed next. 
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x(n) y(n)

y(n–1)

y(n–2)

x(n–1)

+

+

+

+

+ +

+ +

b0

z–1 z–1

b1 –a1

–a2b2

z–1 z–1

x(n–2)
+

+

+

+

–aN y(n–N)bNx(n–N)

  5.2.1   Direct Form I Structure 

 With the direct form I structure shown in Figure  5.1 , the fi lter in  (5.2)  can be real-
ized. For an  N th order fi lter, this structure has 2 N  delay elements, represented by 
 z   − 1 . For example, a second order fi lter with  N    =   2 will have four delay elements.    

  5.2.2   Direct Form II Structure 

 The direct form II structure shown in Figure  5.2  is one of the most commonly used 
structures. It requires half as many delay elements as the direct form I. For example, 
a second order fi lter requires two delay elements  z   − 1 , as opposed to four with the 
direct form I.   

 From the block diagram of Figure  5.2  it can be seen that

    w n x n a w n a w n a w n NN( ) ( ) ( ) ( ) ( )= − − − − − − −1 21 2 �     (5.6)  

and that

    y n b w n b w n b w n b w n NN( ) ( ) ( ) ( ) ( )= + − + − + + −0 1 21 2 �     (5.7)  

Taking  z  - transforms of equations  (5.6)  and  (5.7) , we fi nd

    W z X z a z W z a z W z a z W zN
N( ) ( ) ( ) ( ) ( )= − − − −− − −

1
1

2
2 �     (5.8)  

    FIGURE 5.1.     Direct form I IIR fi lter structure.  



and hence

    X z a z a z a z W zN
N( ) ( ) ( )= + + + +− − −1 1

1
2

2 �     (5.9)  

and

    Y z b b z b z b z W zN
N( ) ( ) ( )= + + + +− − −

0 1
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2
2 �     (5.10)  

Thus,
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that is, the same as equation  (5.4) . 
 The direct form II structure can be represented by difference equations  (5.6)  and 

 (5.7)  taking the place of equation  (5.2) . 
 Equations  (5.6)  and  (5.7)  are used to program an IIR fi lter. Initially,  w ( n     −    1), 

 w ( n     −    2),       .      .      .       are set to zero. At time  n , a new sample  x ( n ) is acquired, and  (5.6)  is 
used to solve for  w ( n ); then the output  y ( n ) is calculated using  (5.7) .  

x(n) y(n)

w(n–1)

w(n–2)

w(n)+

+

+

+

++

+ +

b0

z-1

z-1

b1–a1

–a2 b2

–aN bN

w(n–N)

z-1

    FIGURE 5.2.     Direct form II IIR fi lter structure.  
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x(n) y(n)

w0(n)

wN-1(n)

+

+

+

+

+

+

+

+

b0

z-1

z-1

b1 –a1

–a2b2

–aNbN

z-1

w1(n)

+ +

  5.2.3   Direct Form II Transpose 

 The direct form II transpose structure shown in Figure  5.3  is a modifi ed version of 
the direct form II and requires the same number of delay elements.   

 From inspection of the block diagram, the fi lter output can be computed using

    y n b x n w n( ) ( ) ( )= + −0 0 1     (5.12)  

Subsequently, the contents of the delay line can be updated using

    w n b x n w n a y n0 1 1 11( ) ( ) ( ) ( )= + − −     (5.13)  

    w n b x n w n a y n1 2 2 21( ) ( ) ( ) ( )= + − −     (5.14)  

and so on until fi nally

    w n b x n a y nN N N− = −1( ) ( ) ( )     (5.15)  

Using equation  (5.13)  to fi nd  w  0 ( n     −    1),

    w n b x n w n a y n0 1 1 11 1 2 1( ) ( ) ( ) ( )− = − + − − −  

    FIGURE 5.3.     Direct form II transpose IIR fi lter structure.  



equation  (5.12)  becomes

    y n b x n b x n w n a y n( ) ( ) [ ( ) ( ) ( )]= + − + − − −0 1 1 11 2 1  

Similarly, using equation  (5.14)  to fi nd  w  1 ( n     −    2),

    w n b x n w n a y n1 2 2 22 2 3 2( ) ( ) ( ) ( )− = − + − − −  

equation  (5.12)  becomes

    y n b x n b x n b x n w n a y n a y n( ) ( ) [ ( ) [ ( ) ( ) ( )] ( )= + − + − + − − − − −0 1 2 2 2 11 2 3 2 1 ]]     (5.16)     

 Continuing this procedure until equation  (5.15)  has been used, it can be shown that 
equation  (5.12)  is equivalent to equation  (5.2)  and hence that the block diagram of 
Figure  5.3  is equivalent to that of Figures  5.1  and  5.2 . The transposed structure 
implements the zeros fi rst and then the poles, whereas the direct form II structure 
implements the poles fi rst.  

  5.2.4   Cascade Structure 

 The transfer function in  (5.5)  can be factorized as

    H z CH z H z H zr( ) ( ) ( ) ( )= 1 2 �     (5.17)  

in terms of fi rst or second order transfer functions. The cascade (or series) 
structure is shown in Figure  5.4 . An overall transfer function can be represented 
with cascaded transfer functions. For each section, the direct form II structure 
or its transpose version can be used. Figure  5.5  shows a fourth order IIR struc-
ture in terms of two direct form II second order sections in cascade. The trans-
fer function  H ( z ), in terms of cascaded second order transfer functions, can be 
written

    H z
b b z b z

a z a zi

N
i i i

i i

( )
/

= + +
+ +=

− −

− −∏
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    (5.18)  

y(n)
H1(z) H2(z) H3(z)

x(n)
Hr(z)

    FIGURE 5.4.     Cascade form IIR fi lter structure.  
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    where the constant  C  in  (5.17)  is incorporated into the coeffi cients, and each differ-
ent section is represented by  i . For example,  N    =   4 for a fourth order transfer func-
tion, and  (5.18)  becomes
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21)( )+ +− −a z a z
    (5.19)  

as can be verifi ed in Figure  5.5 . From a mathematical standpoint, proper ordering 
of the numerator and denominator factors does not affect the output result. However, 
from a practical standpoint, proper ordering of each second order section can mini-
mize quantization noise  [1 – 5] . Note that the output of the fi rst section,  y  1 ( n ), becomes 
the input to the second section. With an intermediate output result stored in one of 
the registers, a premature truncation of the intermediate output becomes negligible. 
A programming example later in this chapter will illustrate the implementation of 
an IIR fi lter cascaded into second order direct form II sections.  

  5.2.5   Parallel Form Structure 

 The transfer function in  (5.5)  can be represented as

    H z C H z H z H zr( ) ( ) ( ) ( )= + + + +1 2 1�     (5.20)  

which can be obtained using a partial fraction expansion (PFE) on  (5.5) . This paral-
lel form structure is shown in Figure  5.6 . Each of the transfer functions  H  1 ( z ), 
 H  2 ( z ),       .      .      .       can be either fi rst or second order functions. As with the cascade structure, 
the parallel form can effi ciently be represented in terms of second order direct form 
II structure sections.  H ( z ) can be expressed as
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    (5.21)  
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    FIGURE 5.5.     Fourth order IIR fi lter with two direct form II sections in cascade.  



  For example, for a fourth order transfer function,  H ( z ) in  (5.21)  becomes
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    (5.22)  

This fourth order parallel structure is represented in terms of two direct form II 
sections as shown in Figure  5.7 . From that fi gure, the output  y ( n ) can be expressed 
in terms of the output of each section, or

    y n Cx n y n
i

N

i( ) ( ) ( )
/

= +
=
∑

1

2

    (5.23)     

 The quantization error associated with the coeffi cients of an IIR fi lter depends on 
the amount of shift in the position of its poles and zeros in the complex plane. This 
implies that the shift in the position of a particular pole depends on the positions 
of all the other poles. To minimize this dependency of poles, an  N th order IIR fi lter 
is typically implemented as cascaded second order sections.   

  5.3   BILINEAR TRANSFORMATION 

 The BLT is the most commonly used technique for transforming an analog fi lter 
into a discrete fi lter. It provides one - to - one mapping from the analog  s  - plane to the 
digital  z  - plane, using
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+
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+

+

    FIGURE 5.6.     Parallel form IIR fi lter structure.  
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    s K
z
z

= −
+

( )
( )

1
1

    (5.24)   

 The constant  K  in  (5.24)  is commonly chosen as  K    =   2/ T , where  T  represents the 
sampling period, in seconds, of the digital fi lter. Other values for  K  can be selected, 
as described in Section  5.3.1 . 

 This transformation allows the following: 

  1.     The left region in the  s  - plane, corresponding to   σ      <    0, maps  inside  the unit 
circle in the  z  - plane.  

  2.     The right region in the  s  - plane, corresponding to   σ      >    0, maps  outside  the unit 
circle in the  z  - plane.  

  3.     The imaginary  j w   axis in the  s  - plane maps  on  the unit circle in the  z  - plane.    
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    FIGURE 5.7.     Fourth order IIR fi lter with two direct form II sections in parallel.  



 Let   w  A   and   w  D   represent analog and digital frequencies, respectively. With  s   =   j w  A   
and   z e j TD= ω ,  (5.24)  becomes
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Using Euler ’ s expressions for sine and cosine in terms of complex exponential func-
tions,   w  A   from  (5.25)  becomes

    ω ω
A

DK
T= ( )tan

2
    (5.26)  

which relates the analog frequency   w  A   to the digital frequency   w  D  . This relationship 
is plotted in Figure  5.8  for positive values of   w  A  . The nonlinear compression of the 
entire analog frequency range into the digital frequency range from zero to   w  s  /2 is 
referred to as frequency warping (  w  s     =   2  p  / T ).   

  5.3.1    BLT  Design Procedure 

 The BLT design procedure for transforming an analog fi lter design expressed as a 
transfer function  H ( s ) into a  z  - transfer function  H ( z ) representing a discrete - time 
IIR fi lter is described by

    H z H s s z T z( ) ( ) ( )/ ( )= = − +2 1 1     (5.27)  

 H ( s ) can be chosen according to well - documented analog fi lter design theory (e.g., 
Butterworth, Chebyshev, Bessel, or elliptic). 
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    FIGURE 5.8.     Relationship between analog and digital frequencies.  
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 It is common to choose  K    =   2/ T . Alternatively, it is possible to prewarp the analog 
fi lter frequency response in such a way that the bilinear transform maps an analog 
frequency   w  A    =    w  c  , in the range 0 to   w  s  /2, to exactly the same digital frequency 
  w  D    =    w  c  . This is achieved by choosing

    K c

c S

=
( )

ω
πω ωtan /

    (5.28)     

  5.4   PROGRAMMING EXAMPLES USING C AND ASM CODE 

 The examples in this section introduce and illustrate the implementation of infi nite 
impulse response (IIR) fi ltering. Many different approaches to IIR fi lter design are 
possible and most often IIR fi lters are designed with the aid of software tools. 
Before using such a design package, and in order to appreciate better what such 
design packages do, a simple example will be used to illustrate some of the basic 
principles of IIR fi lter design. 

     Design of a Simple  IIR  Lowpass Filter 
 Traditionally, IIR fi lter design is based on the concept of transforming a continu-
ous - time, or analog, design into the discrete - time domain. Butterworth, Chebyshev, 
Bessel, and elliptical classes of analog fi lter are widely used. For our example we 
will choose a  second order, type 1 Chebyshev, lowpass fi lter with 2   dB of passband 
ripple and a cutoff frequency of 1500   Hz  (9425   rad/s). 

 The continuous - time transfer function of such a fi lter is

    H s
s s

( ) =
+ +

58072962
7576 731095272

    (5.29)  

and its frequency response is shown in Figure  5.9 .   
 This transfer function can be generated by typing

  >  >  [b,a] = cheby1(2,2,2 * pi * 1500, ’ s ’ ); 

at the MATLAB command line. 
 Our task is to transform this design into the discrete - time domain. One method 

of achieving this is the  impulse invariance  method.  

  Impulse Invariance Method 
 This method is based on the concept of mapping each  s  - plane pole of the continu-
ous - time fi lter to a corresponding  z  - plane pole using the substitution (  1 1− − −e zp tk s ) 
for ( s    +    p k  ) in  H ( s ). This can be achieved by several different means. Partial fraction 
expansion of  H ( s ) and substitution of (  1 1− − −e zp tk s ) for ( s    +    p k  ) can involve a lot of 
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algebra. An equivalent method of making the transformation is to use tables of 
Laplace and  z  - transforms as follows. 

 In our example, starting with the fi lter transfer function  (5.29) , we can make use 
of the Laplace transform pair

    L Ae t
A

s s
t{ ( )}

( )
− =

+ + +
α ω ω

α α ω
sin

2 2 22
    (5.30)  

(a)

(b)

    FIGURE 5.9.     (a) Magnitude frequency response of fi lter  H ( s ) and (b) phase response of 
fi lter  H ( s ).  
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(the fi lter ’ s transfer function is equal to the Laplace transform of its impulse 
response) and use the values

    α = =7576 2 3787 9/ .  

    ω = − =73109527 3787 9 7665 62. .  

    A = =58072962 7665 6 7575 8/ . .  

Hence, the impulse response of the fi lter in this example is given by

    h t e tt( ) . ( . )= −7575 8 7665 63788 sin     (5.31)  

The  z  - transform pair
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    (5.32)  

yields the following discrete - time transfer function when we substitute for   w , A , and 
  α   and set  t s     =   0.000125 in equation  (5.32) :

    H z
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From  H ( z ), the following difference equation may be derived:

    y n x n y n y n( ) . ( ) . ( ) . ( )= − + − − −0 48255 1 0 71624315 1 0 38791310 2     (5.34)   

 In terms of equation  (5.1) , we can see that  a  1    =   0.71624315,  a  2    =    − 0.38791310, 
 b  0    =   0.0000, and  b  1    =   0.48255. 

 In order to apply the impulse invariant method using MATLAB, type 

   >  >  [bz,az] = impinvar(b,a,8000);  

 This discrete - time fi lter has the property that its discrete - time impulse response, 
 h ( n ), is exactly equal to samples of the continuous - time impulse response,  h ( t ), as 
shown in Figure  5.10 .   

 Although it is evident from Figure  5.10  that the discrete - time impulse response 
 h ( n ) decays almost to zero, this sequence is not fi nite. Whereas the impulse response 
of an FIR fi lter is given explicitly by its fi nite set of coeffi cients, the coeffi cients of 
an IIR fi lter are used in a recursive equation  (5.1)  to determine its impulse response 
 h ( n ).  
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  Example 5.1:   Implementation of  IIR  Filter Using Cascaded 
Second Order Direct Form II Sections ( iirsos ) 

 Program  iirsos.c , stored in folder  iirsos  and listed in Figure  5.11 , implements a 
generic IIR fi lter using cascaded direct form II second order stages (sections) and 
coeffi cient values stored in a separate fi le. The program uses the following two 
expressions:

    w n x n a w n a w n( ) ( ) ( ) ( )= − − − −1 21 2  

    y n b w n b w n b y n( ) ( ) ( ) ( )= + − + −0 1 21 2    

implemented by the lines

 wn = input  -  a[section][0] * w[section][0]  -  [section][1]
 * w[section][1];

yn = b[section][0] * wn + b[section][1] * w[section][0] + 
a[section][2] * w[section][1];  

 With reference to Figure  5.5  and to equation  (5.18) , the coeffi cients  a  1 i  ,  a  2 i  ,  b  0 i  ,  b  1 i  , 
and  b  2 i   are stored as

 a[i][0], a[i][1], b[i][0], b[i][1] and b[i][2] respectively. 
w[i][0] and w[i][1] correspond to  w i  ( n   −  1) and  w i  ( n   −  2).  

 The impulse invariant fi lter is implemented using program  iirsos.c  by including 
the coeffi cient fi le  impinv.cof , listed in Figure  5.12 . The number of cascaded second 
order sections is defi ned as  NUM_SECTIONS  in that fi le.   
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    FIGURE 5.10.     Impulse responses  h ( t ) and  h ( n ) of continuous - time fi lter and its impulse 
invariant digital implementation.  
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//iirsos.c iir filter using cascaded second order sections

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

interrupt void c_int11()             //interrupt service routine
{
  int section;                       //index for section number
  float input;                       //input to each section
  float wn,yn;                       //intermediate and output
                                     //values in each stage

  input = ((float)input_left_sample());

  for (section=0 ; section< NUM_SECTIONS ; section++)
  {
    wn = input - a[section][0]*w[section][0]
         - a[section][1]*w[section][1];
    yn = b[section][0]*wn + b[section][1]*w[section][0]
         + b[section][2]*w[section][1];
    w[section][1] = w[section][0];
    w[section][0] = wn;
    input = yn;                      //output of current section
                                     //will be input to next
  }
  output_left_sample((short)(yn));   //before writing to codec
  return;                            //return from ISR
}

void main()
{
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
}

    FIGURE 5.11.     IIR fi lter program using second order stages in cascade ( iirsos.c ).  

 Build and run the project as   iirsos  . 
 You can use a signal generator and oscilloscope to measure the magnitude fre-

quency response of the fi lter and you will fi nd that the attenuation of frequencies 
above 2500   Hz is not very pronounced. That is due to the low order of the fi lter and 
to inherent shortcomings of the impulse invariant transformation method. A number 
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// impinv.cof
// second order type 1 Chebyshev LPF with 2dB passband ripple
// and cutoff frequency 1500Hz

#define NUM_SECTIONS 1

float b[NUM_SECTIONS][3]={ {0.0, 0.48255, 0.0} };
float a[NUM_SECTIONS][2]={ {-0.71624, 0.387913} }; 

    FIGURE 5.12.     Listing of coeffi cient fi le  impinv.cof .  

of alternative methods of assessing the magnitude frequency response of the fi lter 
will be described in the next few examples.  

  Example 5.2:   Implementation of  IIR  Filter Using Cascaded Second Order 
Transposed Direct Form II Sections ( iirsostr ) 

 A transposed direct form II structure can be implemented using program  iirsos.
c  by replacing the lines that read

  wn = input  -  a[section][0] * w[section][0]  -  
a[section][1] * w[section][1];
 yn = b[section][0] * wn + b[section][1] * w[section][0] + 
b[section][2] * w[section][1];
 w[section][1] = w[section][0];
 w[section][0] = wn; 

with the following:

  yn = b[section][0] * input + w[section][0]; w[section][0] = 
b[section][1] * input + w[section][1]  -  a[section][0] * yn; 
w[section][1] = b[section][2] * input  -  a[section][1] * yn; 

(variable  wn  is not required in the latter case). This substitution has been made in 
program  iirsostr.c , stored in folder  iirsos . You should not notice any difference 
in the fi lter characteristics implemented using program  iirsostr.c .  

  Example 5.3:   Estimating the Frequency Response of an 
 IIR  Filter Using Pseudorandom Noise as Input ( iirsosprn ) 

 Program  iirsosprn.c  is closely related to program  fi rprn.c , described in Chapter 
 4 . In real time, it generates a pseudorandom binary sequence and uses this wideband 
noise signal as the input to an IIR fi lter (Figure  5.13 ). The output of the fi lter is 
written to the DAC in the AIC23 codec and the resulting analog signal (fi ltered 
noise) can be analyzed using an oscilloscope, spectrum analyzer,  Goldwave  (Figure 
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// iirsosprn.c iir filter using cascaded second order sections
// input from PRBS generator function, output to line out
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

#include "noise_gen.h"               //support file for noise
int fb;                              //feedback variable
shift_reg sreg;                      //shift register
#define NOISELEVEL 8000              //scale factor for  noise

int prand(void)                      //pseudo-random noise
{
  int prnseq;
  if(sreg.bt.b0)
    prnseq = -NOISELEVEL;            //scaled -ve noise level
  else
    prnseq = NOISELEVEL;             //scaled +ve noise level
  fb =(sreg.bt.b0)^(sreg.bt.b1);     //XOR bits 0,1
  fb^=(sreg.bt.b11)^(sreg.bt.b13);   //with bits 11,13 -> fb
  sreg.regval<<=1;                   //shift register 1 bit left
  sreg.bt.b0=fb;                     //close feedback path
  return prnseq;
}

void resetreg(void)                  //reset shift register
{
  sreg.regval=0xFFFF;                //initial seed value
  fb = 1;                            //initial feedback value
  return;
}

interrupt void c_int11()             //interrupt service routine
{
  int section;                       //index for section number
  float input;                       //input to each section
  float wn,yn;                       //intermediate and output
                                     //values in each stage
  input = (float)(prand());          //get new input sample

      FIGURE 5.13.     IIR fi lter program using second order stages in cascade and internally gener-
ated pseudorandom noise as input ( iirsosprn.c ).  
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   for (section=0 ; section< NUM_SECTIONS ; section++)
 {
   wn = input - a[section][0]*w[section][0]
        - a[section][1]*w[section][1];
   yn = b[section][0]*wn + b[section][1]*w[section][0]
        + b[section][2]*w[section][1];
   w[section][1] = w[section][0];
   w[section][0] = wn;
   input = yn;                      //output of current section
                                    //will be input to next
 } 
 output_left_sample((short)(yn));   //before writing to codec
 return;                            //return from ISR
}

void main()
{
 resetreg();
 comm_intr();                       //init DSK, codec, McBSP
 while(1);                          //infinite loop
}

FIGURE 5.13. (Continued)

 5.15 ), or other instrument. The frequency content of the fi lter output gives an indica-
tion of the fi lter ’ s magnitude frequency response.   

 Figure  5.14  shows the output of the example fi lter (using coeffi cient fi le  impinv.
cof ) displayed using the FFT function of an  Agilent 54621A  oscilloscope. In Figure 
 5.14  the vertical scale is 10   dB per division and the horizontal scale is 500   Hz per divi-
sion. The lowpass characteristics of the example fi lter are evident in the left - hand half 

    FIGURE 5.14.     Output from program  iirsosprn.c , using coeffi cient fi le  impinv.cof , 
viewed using the FFT function of an  Agilent 54621A  oscilloscope.  
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FIGURE 5.15.     Output from program  iirsosprn.c , using coeffi cient fi le  impinv.cof , 
viewed using Goldwave .  

of the fi gure between 0 and 2.5   kHz. The steeper roll - off beyond 3.5   kHz, in the right -
 hand third of the fi gure, is due to the reconstruction fi lter in the AIC23 codec.      

Example 5.4: Estimating the Frequency Response of an 
IIR Filter Using a Sequence of Impulses as Input ( iirsosdelta)

 Instead of a pseudorandom binary sequence, program  iirsosdelta.c  generates a 
sequence of discrete - time impulses as the input to an IIR fi lter. The resultant output 
is an approximation to a repetitive sequence of fi lter impulse responses. This relies 
on the fi lter impulse response decaying practically to zero within the period between 
successive input impulses. The fi lter output is written to the DAC in the AIC23 codec 
and the resulting analog signal can be analyzed using an oscilloscope, spectrum 
analyzer, Goldwave , or other instrument. In addition, program  iirsosdelta.c
stores BUFSIZE  samples of the fi lter output,  y ( n ), in buffer  response  and we can 
use the View→ Graph  facility in Code Composer to view that data in both time and 
frequency domains (Figure  5.16 ).   
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// iirsosdelta.c iir filter using cascaded second order sections
// input internally generated delta sequence, output to line out
// and save in buffer
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#define BUFSIZE 256
#define AMPLITUDE 20000
#include "impinv.cof"

float w[NUM_SECTIONS][2] = {0};

float dimpulse[BUFSIZE];
float response[BUFSIZE];
int index = 0;

float w[NUM_SECTIONS][2] = {0};

interrupt void c_int11()             //interrupt service routine
{
  int section;                       //index for section number
  float input;                       //input to each section
  float wn,yn;                       //intermediate and output
                                     //values in each stage

  input = dimpulse[index];           //input to first section is
                                     //read from impulse sequence

  for (section=0 ; section< NUM_SECTIONS ; section++)
  {
    wn = input - a[section][0]*w[section][0]
         - a[section][1]*w[section][1];
    yn = b[section][0]*wn + b[section][1]*w[section][0]
         + b[section][2]*w[section][1];
    w[section][1] = w[section][0];
    w[section][0] = wn;
    input = yn;                      //output of current section
                                     //will be input to next
  }
  output_left_sample((short)(yn));   //before writing to codec
  return;                            //return from ISR
}

void main()
{
  int i;

  for (i=0 ; i< BUFSIZE ; i++) dimpulse[i] = 0.0;
  dimpulse[0] = 1.0;
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
}

    FIGURE 5.16.     IIR fi lter program using second order stages in cascade and internally gener-
ated impulses as input ( iirsosdelta.c ).  
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FIGURE 5.17.     Output from program  iirsosdelta.c , using coeffi cient fi le  impinv.cof , 
viewed using the FFT function of an Agilent 54621A  oscilloscope.  

 Build and run the project as  iirsosdelta . The necessary fi les are stored in folder 
iirsosdelta . 

 Figure  5.17  shows the analog output signal generated by the program, captured 
using an Agilent 54621A  oscilloscope. The upper trace shows the time domain 
impulse response of the fi lter (2   ms per division) and the lower trace shows the FFT 
of that impulse response over a frequency range of 0 – 5   kHz. The output waveform 
is shaped both by the IIR fi lter and by the AIC23 codec reconstruction fi lter. In the 
frequency domain, the codec reconstruction fi lter is responsible for the steep roll - off 
of gain at frequencies above 3500   Hz and the ac coupling of the codec output is 
responsible for the steep roll - off of gain at frequencies below 100   Hz. In the time 
domain, the characteristics of the codec reconstruction fi lter are evident in the 
ringing that precedes the greater part of the impulse response waveform.   

 Halt the program and select  View→ Graph . Set the Graph Properties as indicated 
in Figure  5.18  and you should see something similar to the right - hand graph shown 
in Figure  5.19 .      

Aliasing in the Impulse Invariant Method 
 There are signifi cant differences between the magnitude frequency response of the 
analog prototype fi lter used in this example (Figure  5.9 ) and that of its impulse 
invariant digital implementation (Figure  5.19 ). The gain of the analog prototype has 
a magnitude of − 15   dB at 3000   Hz, whereas, according to Figure  5.19 , the gain of the 
digital fi lter at that frequency has a magnitude closer to  − 11   dB. This difference is 
due to aliasing . Whenever a signal is sampled, the problem of aliasing should be 
addressed and in order to avoid aliasing, the signal to be sampled should not contain 
any frequency components at frequencies greater than or equal to half the sampling 
frequency. In this case, the impulse invariant transformation is equivalent to sam-
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pling the continuous - time impulse response of the analog prototype  h ( t ) . However, 
this transformation does not in itself consider the frequency content of h ( t ) . The 
impulse invariant method will be completely free of aliasing effects only  if the 
impulse response h ( t ) contains no frequency components at frequencies greater 
than or equal to half the sampling frequency. 

FIGURE 5.18.      Graph Property  settings for use with program  iirsosdelta.c .  

FIGURE 5.19.     Impulse and magnitude frequency response of example fi lter captured using 
Code Composer and program iirsosdelta.c .  
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 In our example, the magnitude frequency response of the analog prototype fi lter 
will be folded back on itself about the 4000 - Hz point. 

 This can be verifi ed using MATLAB function  freqz() , which assesses the fre-
quency response of a digital fi lter. Type

  >  >  freqz(bz,az);  

 An alternative method of transforming an analog fi lter design to a discrete - time 
implementation that eliminates this effect is the use of the  bilinear transform .  

  Bilinear Transform Method of Digital Filter Implementation 
 The bilinear transform method of converting an analog fi lter design to discrete time 
is relatively straightforward, often involving less algebraic manipulation than the 
impulse invariant method. It is achieved by making the substitution

    s
z

T z
= −

+
2 1

1
( )
( )

    (5.35)  

in  H ( s ), where  T  is the sampling period of the digital fi lter; that is,

    H z H s s z T z( ) ( ) ( )/ ( )= = − +2 1 1     (5.36)  

Applying the bilinear transform to the example fi lter results in the following 
 z  - transfer function:
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From  H ( z ), the following difference equation may be derived:
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This can be achieved in MATLAB by typing

  >  >  [bd,ad] = bilinear(b,a,8000);  

 The characteristics of the fi lter can be examined by changing the coeffi cient fi le used 
by programs  iirsos.c ,  iirsosprn.c , and  iirsosdelta.c  from  impinv.cof  to 
 bilinear.cof . In each case, change the line that reads

 #include  “ impinv.cof ”  
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to read

 #include  “ bilinear.cof ”  

before building, loading, and running the programs. 
 Figures  5.20 – 5.23  show results obtained using programs  iirsosprn.c  and 

 iirsosdelta.c  with coeffi cient fi le  bilinear.cof . The attenuation provided by 
this fi lter at high frequencies is much greater than in the impulse invariant case. In 
fact, the attenuation at frequencies higher than 2   kHz is signifi cantly greater than 
that of the analog prototype fi lter.          

  Frequency Warping in the Bilinear Transform 
 The concept behind the bilinear transform is that of compressing the frequency 
response of an analog fi lter design such that its response over the entire range of 
frequencies from zero to infi nity is mapped into the frequency range zero to half 
the sampling frequency of the digital fi lter. This may be represented by

    f
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    FIGURE 5.20.     Output from program  iirsosprn.c , using coeffi cient  fi le bilinear.cof , 
viewed using the FFT function of an  Agilent 54621A  oscilloscope.  



234 Infi nite Impulse Response Filters

FIGURE 5.22.     Output from program  iirsosdelta.c , using coeffi cient fi le  bilinear.cof , 
viewed using the FFT function of an Agilent 54621A  oscilloscope.  

FIGURE 5.21.     Output from program  iirsosprn.c , using coeffi cient fi le  bilinear.cof , 
viewed using Goldwave .  
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    FIGURE 5.23.     Impulse and magnitude frequency response of example fi lter captured using 
Code Composer and program  iirsosdelta.c  and coeffi cient fi le  bilinear.cof .  

where   w  D   is the frequency at which the complex gain of the digital fi lter is equal to 
the complex gain of the analog fi lter at frequency   w  A  . This relationship between   w  D   
and   w  A   is illustrated in Figure  5.24 . Consequently, there is no problem with aliasing, 
as seen in the case of impulse invariant transformation.   

 However, as a result of the frequency warping inherent in the bilinear transform, 
in this example, the cutoff frequency of the discrete - time fi lter obtained is not 
1500   Hz but 1356   Hz. Figure  5.24  also shows that the gain of the analog fi lter at a 
frequency of 4500   Hz is equal to the gain of the digital fi lter at a frequency of 2428   Hz 
and that the digital frequency 1500   Hz corresponds to an analog frequency of 
1702   Hz. 

 If we had wished to create a digital fi lter having a cutoff frequency of 1500   Hz, 
we could have applied the bilinear transform of equation  (5.35)  to an analogue 
prototype having a cutoff frequency of 1702   Hz. 

 This technique is referred to as  prewarping  the prototype analog design and is 
used by default in the MATLAB fi lter design and analysis tool  fdatool , described 
in the next section. A digital fi lter with a cutoff frequency of 1500   Hz may be 
obtained by applying the bilinear transform to the analog fi lter

    H s
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    FIGURE 5.24.     Effect of bilinear transform on magnitude frequency response of example 
fi lter.  

 The analog fi lter represented by equation  (5.40)  can be produced using the MATLAB 
command

  >  >  [bb, aa] = cheby1(2,2,2 * pi * 1702, ’ s ’ ); 

and the bilinear transformation applied by typing

  >  >  [bbd, aad]   =   bilinear(bb,aa,8000); 

to yield the result given by equation  (5.41) . 
 Alternatively, prewarping of the analog fi lter design considered previously can 

be combined with application of the bilinear transform by typing

  >  >  [bbd, aad]=bilinear(b, a, 8000,1500); 

at the MATLAB command line. 
 Coeffi cient fi le  bilinearw.cof , stored in folder  iirsos , contains the coeffi cients 

obtained as described above.  
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Using MATLAB ’s Filter Design and Analysis Tool 
 MATLAB provides a fi lter design and analysis tool,  fdatool , that makes the design 
of IIR fi lter coeffi cients simple. Coeffi cients can be exported in direct form II, 
second order section format and a MATLAB function dsk_sos_iir67() , supplied 
on the CD as fi le  dsk_sos_iir67.m , can be used to generate coeffi cient fi les com-
patible with the programs in this chapter.  

Example 5.5 Fourth Order Elliptical Lowpass IIR Filter 
Designed Using fdatool

 To invoke the  Filter Design and Analysis Tool  window, type

>> fdatool 

in the MATLAB command window. Enter the parameters for a fourth order ellipti-
cal lowpass IIR fi lter with a cutoff frequency of 800   Hz and 1   dB of ripple in the 
passband and 50   dB of stopband attenuation . Click on  Design Filter  and then look 
at the characteristics of the fi lter using options from the  Analysis  menu (Figure 
 5.25 ).   

 This example illustrates the steep transition from passband to stopband possible 
even with relatively few fi lter coeffi cients. 

 Select  Filter Coeffi cients  from the  Analysis  menu.  fdatool  automatically designs 
fi lters as cascaded second order sections. Each section is similar to those shown in 
block diagram form in Figure  5.5  and each section is characterised by six parameter 
values a0 ,  a1 ,  a2 ,  b0 ,  b1 , and  b2 . 

 By default,  fdatool  uses the bilinear transform method of designing a digital 
fi lter starting from an analog prototype. Figure  5.26  shows the use of  fdatool  to 
design the Chebyshev fi lter considered in the preceding examples. Note that the 
magnitude frequency response decreases more and more rapidly with frequency, 
approaching half the sampling frequency. This is characteristic of fi lters designed 
using the bilinear transform. Compare this with Figure  5.23 .    

Implementing a Filter Designed Using fdatool on the C6713  DSK
 In order to implement a fi lter designed using  fdatool  on the C6713 DSK, carry out 
the following steps. 

1.     Design the IIR fi lter using  fdatool .  

2.     Click on  Export  in the  fdatool   File  menu.  

3.     Select  Workspace, Coeffi cients, SOS , and  G  and click  Export .  

4.     At the MATLAB command line, type  dsk_sos_iir67(SOS,G)  and enter a 
fi lename (e.g.,  elliptic.cof ).    
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FIGURE 5.25.     MATLAB  fdatool  window showing magnitude frequency response of 
fourth order elliptical lowpass fi lter.  

 Figure  5.27  shows an example of a coeffi cient fi le produced using  dsk_sos_iir67()
(Figure  5.28 ).     

 Program  iirsos.c  is a generic IIR fi lter program that uses cascaded second 
order sections and reads the fi lter coeffi cients from a separate  .cof  fi le. In order to 
implement your fi lter, edit the line in program  iirsos.c  that reads

#include “bilinear.cof”

to read

#include “elliptic.cof”

and Build, Load Program , and  Run . 
 Figures  5.29  and  5.30  show results obtained with programs  iirsosdelta.c  and 

iirsosprn.c  using coeffi cient fi le  elliptic.cof .      
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    FIGURE 5.26.     MATLAB  fdatool  window showing magnitude frequency response of a 
second order Chebyshev lowpass fi lter.  

// elliptic.cof
// this file was generated automatically using function
dsk_sos_iir67.m

#define NUM_SECTIONS 2

float b[NUM_SECTIONS][3] = {
{1.00494714E-002, 7.90748088E-003, 1.00494714E-002},
{1.00000000E+000, -7.76817178E-001, 1.00000000E+000} };

float a[NUM_SECTIONS][2] = {
{-1.52873456E+000, 6.37031997E-001},
{-1.51375640E+000, 8.68676718E-001} }; 

    FIGURE 5.27.     Listing of coeffi cient fi le  elliptic.cof .  
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% DSK_SOS_IIR67.M
% MATLAB function to write SOS IIR filter coefficients
% in format suitable for use in C6713 DSK programs
% iirsos.c, iirsosprn.c and iirsosdelta.c
% assumes that coefficients have been exported from
% fdatool as two matrices
% first matrix has format
% [ b10 b11 b12 a10 a11 a12
%   b20 b21 b22 a20 a21 a22
%   ...
% ]
% where bij is the bj coefficient in the ith stage
% second matrix contains gains for each stage
%
function dsk_sos_iir67(coeff,gain)
%
num_sections=length(gain)-1;
fname = input('enter filename for coefficients ','s');
fid = fopen(fname,'wt');
fprintf(fid,'// %s\n',fname);
fprintf(fid,'// this file was generated automatically using ');
fprintf(fid,'function dsk_sos_iir67.m\n',fname);
fprintf(fid,'\n#define NUM_SECTIONS %d\n',num_sections);
% first write the numerator coefficients b
% i is used to count through sections
fprintf(fid,'\nfloat b[NUM_SECTIONS][3] = { \n');
for i=1:num_sections
  if i==num_sections
      fprintf(fid,'{%2.8E, %2.8E, %2.8E} };\n',...
      coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
  else
      fprintf(fid,'{%2.8E, %2.8E, %2.8E},\n',...
      coeff(i,1)*gain(i),coeff(i,2)*gain(i),coeff(i,3)*gain(i));
  end
end
% then write the denominator coefficients a
% i is used to count through sections
fprintf(fid,'\nfloat a[NUM_SECTIONS][2] = { \n');
for i=1:num_sections
  if i==num_sections
      fprintf(fid,'{%2.8E, %2.8E} };\n',coeff(i,5),coeff(i,6));
  else
      fprintf(fid,'{%2.8E, %2.8E},\n',coeff(i,5),coeff(i,6));
  end
end
fclose(fid);

    FIGURE 5.28.     Listing of MATLAB fi le  dsk_sos_iir67.m .    
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FIGURE 5.29.     Impulse and magnitude frequency response of example fi lter captured using 
CCS and program iirsosdelta.c  and coeffi cient fi le  elliptic.cof .  

FIGURE 5.30.     Output from program  iirsosdelta.c , using coeffi cient fi le  elliptic.cof , 
viewed using the FFT function of an Agilent 54621A  oscilloscope.  

Example 5.6: Bandpass Filter Designed Using fdatool

 Figure  5.31  shows  fdatool  being used to design an 18th order Chebyshev type 2 
IIR bandpass fi lter centered at 2   kHz. The fi lter coeffi cient fi le  bp2000.cof   , stored 
in folder iirsosprn , is compatible with programs  iirsos.c ,  iirsosdelta.c , and 
iirsosprn.c . Figure  5.32    shows a frequency - domain representation of the output 
from program iirsosprn.c  using these coeffi cients.      
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FIGURE 5.31.     MATLAB  fdatool  window showing magnitude frequency response of 18th 
order bandpass pass fi lter centered on 2000   Hz.  

FIGURE 5.32.     Output from program  iirsosprn.c , using coeffi cient fi le  bp2000.cof , 
viewed using the FFT function of an Agilent 54621A  oscilloscope.  
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  Example 5.7:   Fixed - Point Implementation of  IIR  Filter ( iir ) 

 Program  iir.c , listed in Figure  5.33 , implements a generic IIR fi lter using cascaded 
second order stages (sections) and fi xed - point (integer) coeffi cients. The program 
implements each second order stage as a direct form II structure using the following 
two expressions:

    FIGURE 5.33.     IIR fi lter program using second order sections in cascade ( iir.c ).  

// iir.c filter using cascaded second order sections
// 16-bit integer coefficients read from .cof file

#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "bs1800int.cof"
short w[NUM_SECTIONS][2] = {0};

interrupt void c_int11()           //interrupt service routine
{
  short section;                   //index for section number
  short input;                     //input to each section
  int wn,yn;                       //intermediate and output
                                   //values in each stage
  input = input_left_sample();

  for (section=0 ; section< NUM_SECTIONS ; section++)
  {
    wn = input - ((a[section][0]*w[section][0])>>15)
         - ((a[section][1]*w[section][1])>>15);
    yn = ((b[section][0]*wn)>>15)
         + ((b[section][1]*w[section][0])>>15)
         + ((b[section][2]*w[section][1])>>15);
    w[section][1] = w[section][0];
    w[section][0] = wn;
    input = yn;                    //output of current section
                                   //will be input to next
  }

  output_left_sample((short)(yn)); //before writing to codec
  return;                          //return from ISR
}

void main()
{
  comm_intr();                     //init DSK, codec, McBSP
  while(1);                        //infinite loop
}
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// bs1800int.cof
// this file was generated automatically using function
dsk_sos_iir67int.m

#define NUM_SECTIONS 3

int b[NUM_SECTIONS][3] = {
{11538, -4052, 11538},
{32768, 599, 32768},
{32768, -22852, 32768} };

int a[NUM_SECTIONS][2] = {
{-5832, 450},
{17837, 26830},
{-35076, 27634} }; 

    FIGURE 5.34.     Coeffi cient fi le for a sixth order IIR bandstop fi lter designed using MATLAB 
as described in Appendix  D  ( bs1800int.cof ).  

    w n x n a w n a w n( ) ( ) ( ) ( )= − − − −1 21 2  

    y n b w n b w n b y n( ) ( ) ( ) ( )= + − + −0 1 21 2    

implemented by the lines

 wn = input  –  ((a[section][0] * w[section][0]) >  > 15)  –  
((a[section][1] * w[section][1]) >  > 15);
yn = ((b[section][0] * wn) >  > 15) + ((b[section][1] * w[section][0])
 >  > 15) + ((b[section][2] * w[section][1]) >  > 15);  

 The values of the coeffi cients in the fi les  bs1800int.cof  (Figure  5.34 ) and 
 ellipint.cof  were calculated using MATLAB ’ s  fdatool  and function  dsk_sos_
iir67int() , an integer version of function  dsk_sos_iir67() , which multiplies the 
fi lter coeffi cients generated using  fdatool  by 32768 and casts them as integers. 
Build and run this project as   iir  . Verify that an IIR bandstop fi lter centered at 
1800   Hz is implemented if coeffi cient fi le  bs1800int.cof  is used.    

  Example 5.8:   Generation of a Sine Wave Using a Difference Equation 
( sinegenDE ) 

 In Chapter  4  it was shown that the  z  - transform of a sinusoidal sequence  y ( n )   =  
 sin( n w T ) is given by

    Y z
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    (5.42)   
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 Comparing this with the  z  - transfer function of the second order fi lter of  Example 
5.1 ,

    H z
Y z
X z

b z
z a z a

( )
( )
( )

= =
+ +

1
2

1 2

    (5.43)   

 It is apparent that by appropriate choice of fi lter coeffi cients we can design that 
fi lter to act as a sine wave generator, that is, to have a sinusoidal impulse 
response. 

 Choosing  a  2    =   1.0 and  a  1    =    – 2cos(  w T ), the denominator of the transfer function 
becomes  z  2     −    2cos(  w T ) z     −    1, which corresponds to a pair of complex conjugate poles 
located  on  the unit circle in the  z  - plane. The fi lter can be set oscillating by applying 
an impulse to its input. Rearranging equation  (5.43)  and setting  x ( n )   =     d  ( n )( X ( z )   =  
 1.0) and  b  1    =   sin(  w T ),
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    (5.44)   

 Equation  (5.44)  is equivalent to equation  (5.42) , implying that the fi lter impulse 
response is  y ( n )   =   sin( n w T ). Equation  (5.44)  corresponds to the difference 
equation

    y n T x n T y n y n( ) ( ) ( ) ( ) ( ) ( )= − + − − −sin cosω ω1 2 1 2     (5.45)  

which is illustrated in Figure  5.35 .   
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–a2

z-1

x(n) = d(n)

    FIGURE 5.35.     Block diagram representation of equation  (5.44) .  
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 Since the input,  x ( n )   =     d  ( n ), to the fi lter is nonzero only at sampling instant  n    =  
 0, for all other  n , the difference equation is

    y n T y n y n( ) ( ) ( ) ( )= − − −2 1 2cos ω     (5.46)  

and the sine wave generator may be implemented as shown in Figure  5.36 , using no 
input signal but using nonzero initial values for  y ( n     −    1) and  y ( n     −    2). The initial 
values used determine the amplitude of the sinusoidal output.   

 Since the frequency of oscillation,   w  , is fi xed by the choice of  a  1    =    – 2cos(  w T ) and 
 a  2    =   1, the initial values chosen for  y ( n     −    1) and  y ( n     −    2) represent two samples of 
a sinusoid of frequency   w   that are one sampling period, or  T  seconds, apart in time; 
that is,

    y n A t( ) ( )− = +1 sin ω φ  

    y n A t T( ) ( ( ) )− = + +2 sin ω φ   

 The initial values of  y ( n     −    1) and  y ( n     −    2) determine the amplitude,  A , of the sine 
wave generated. Assuming that an output amplitude  A    =   1 is desired, a simple solu-
tion to the equations implemented in program  sinegenDE.c  is

    y n( )− =1 0  

    y n T( ) ( )− =2 sin ω   

 Build and run this project as   sinegenDE  . Verify that the output is a 2 - kHz tone. 
Change the value of the constant  FREQ ; build and run and verify the generation of 
a tone of the frequency selected (Figure  5.37 ).    

    FIGURE 5.36.     Block diagram representation of equation  (5.45) .  
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    FIGURE 5.37.     Program to generate a sine wave using a difference equation 
( sinegenDE.c ).  

//sinegenDE.c generates sinusoid using difference equations

#include "DSK6713_AIC23.h"  //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define FREQ 2000
#define SAMPLING_FREQ 8000
#define AMPLITUDE 10000
#define PI 3.14159265358979

float y[3] = {0.0, 0.0, 0.0};
float a1;

interrupt void c_int11()            //ISR
{
  y[0] =(y[1]*a1)-y[2];
  y[2] = y[1];                             //update y1(n-2)
  y[1] = y[0];                             //update y1(n-1)
  output_left_sample((short)(y[0]*AMPLITUDE));  //output result
  return;     //return to main
}

void main()
{
  y[1] = sin(2.0*PI*FREQ/SAMPLING_FREQ);
  a1 = 2.0*cos(2.0*PI*FREQ/SAMPLING_FREQ);
  comm_intr();                  //init DSK, codec, McBSP
  while(1);                      //infinite loop
}

  Example 5.9:   Generation of  DTMF  Signal Using Difference Equations 
( sinegenDTMF ) 

 Program  sinegenDTMF.c , listed in Figure  5.39 , uses the same difference equation 
method as program  sinegenDE.c  to generate two sinusoidal signals of different 
frequencies, which, added together, form a DTMF tone (see also  Example 2.12 , 
which used a table lookup method). Build this example as   sinegenDTMF  . The DTMF 
tone is output via the codec only while DIP switch #0 is pressed down. The program 
incorporates a buffer that is used to store the 256 most recent output samples. 
Figure  5.38  shows the contents of that buffer in time and frequency domains, plotted 
using Code Composer.      
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    FIGURE 5.38.     The 256 samples of waveform generated by program  sinegenDTMF.c  dis-
played using Code Composer.  

  Example 5.10:   Generation of a Swept Sinusoid Using a 
Difference Equation ( sweepDE ) 

 Figure  5.40  shows a listing of the program  sweepDE.c , which generates a sinu soidal 
signal, sweeping in frequency. The program implements the difference equation

    y n T y n y n( ) ( ) ( ) ( )= − − −2 1 2cos ω  

  where  A    =   2cos(  w T ) and the initial conditions are  y ( n     −    1)   =   sin(  w T ) and  y ( n     −    2)  
 =   0.  Example 5.8  illustrated the generation of a sine wave using this difference 
equation. 

 Compared with the lookup table method of  Example 2.11 , making step changes 
in the frequency of the output signal generated using a difference equation is slightly 
more problematic. Each time program  sweepDE.c  changes its output frequency it 
reinitializes the stored values of previous output samples  y ( n     −    1) and  y ( n     −    2). These 
values determine the amplitude of the sinusoidal output at the new frequency and 
must be chosen appropriately. Using the existing values, left over from the genera-
tion of a sinusoid at the previous frequency, might cause the amplitude of the output 
sinusoid to change. In order to avoid discontinuities, or glitches, in the output wave-
form, a further constraint on the parameters of the program must be observed. Since 
at each change in frequency the output waveform starts at the same phase in its 
cycle, it is necessary to ensure that each different frequency segment is output for 
an integer number of cycles. This can be achieved by making the number of samples 
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    FIGURE 5.39.     Program to generate DTMF tone using difference equations 
( sinegenDTMF.cof ).  

//sinegenDTMF.c generates DTMF tone using difference equations

#include "DSK6713_AIC23.h"  //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define FREQLO 770
#define FREQHI 1336
#define SAMPLING_FREQ 8000
#define AMPLITUDE 5000
#define BUFSIZE 256
#define PI 3.14159265358979

float ylo[3] = {0.0, 0.0, 0.0};
float yhi[3] = {0.0, 0.0, 0.0};
float a1lo, a1hi;
float out_buffer[BUFSIZE];
int bufindex = 0;
float output;
float DIP0pressed = 0;

interrupt void c_int11()            //ISR
{
  ylo[0] =(ylo[1]*a1lo)-ylo[2];
  ylo[2] = ylo[1];                             //update y1(n-2)
  ylo[1] = ylo[0];                             //update y1(n-1)
  yhi[0] =(yhi[1]*a1hi)-yhi[2];
  yhi[2] = yhi[1];                             //update y1(n-2)
  yhi[1] = yhi[0];                             //update y1(n-1)
  output = (yhi[0]+ylo[0])*AMPLITUDE;
  out_buffer[bufindex++] = output;
  if (bufindex >= BUFSIZE) bufindex = 0;
  if (DIP0pressed) output_left_sample((short)(output));
  else output_left_sample(0);             //output result
  return;    //return to main
}

void main()
{
  ylo[1] = sin(2.0*PI*FREQLO/SAMPLING_FREQ);
  a1lo = 2.0*cos(2.0*PI*FREQLO/SAMPLING_FREQ);
  yhi[1] = sin(2.0*PI*FREQHI/SAMPLING_FREQ);
  a1hi = 2.0*cos(2.0*PI*FREQHI/SAMPLING_FREQ);
  DSK6713_DIP_init();
  comm_intr();                       //init DSK, codec, McBSP
  while(1)                         //infinite loop
  {
    if (DSK6713_DIP_get(0) == 0) DIP0pressed = 1;
    else DIP0pressed = 0;
  }
} 
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//sweepDE.c generates sweeping sinusoid using difference equations

#include "DSK6713_AIC23.h"  //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input
#include <math.h>
#define MIN_FREQ 200
#define MAX_FREQ 3800
#define STEP_FREQ 20
#define SWEEP_PERIOD 400
#define SAMPLING_FREQ 8000
#define AMPLITUDE 5000
#define PI 3.14159265358979

float y[3] = {0.0, 0.0, 0.0};
float a1;
float freq = MIN_FREQ;
short sweep_count = 0;

void coeff_gen(float freq)
{
  a1 = 2.0*cos(2.0*PI*freq/SAMPLING_FREQ);
  y[0] = 0.0;
  y[1] = sin(2.0*PI*freq/SAMPLING_FREQ);
  y[2] = 0.0;
  return;
}

interrupt void c_int11()            //ISR
{
  sweep_count++;
  if (sweep_count >= SWEEP_PERIOD)
  {
    if (freq >= MAX_FREQ) freq = MIN_FREQ;
    else freq += STEP_FREQ;
    coeff_gen(freq);
    sweep_count = 0;
  }
  y[0] =(y[1]*a1)-y[2];
  y[2] = y[1];                             //update y1(n-2)
  y[1] = y[0];                             //update y1(n-1)
  output_left_sample((short)(y[0]*AMPLITUDE));  //output result
  return;     //return to main
}

void main()
{
  y[1] = sin(2.0*PI*freq/SAMPLING_FREQ);
  a1 = 2.0*cos(2.0*PI*freq/SAMPLING_FREQ);
  comm_intr();                //init DSK, codec, McBSP
  while(1);                         //infinite loop
}

    FIGURE 5.40.     Program to generate a sweeping sinusoid using a difference equation 
( sweepDE.c ).  
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output between step changes in frequency equal to the sampling frequency divided 
by the frequency increment. As listed in Figure  5.40 , the frequency increment is 
20   Hz and the sampling frequency is 8000   Hz. Hence, the number of samples output 
at each different frequency is equal to 8000/20   =   400. Different choices for the values 
of the constants  STEP_FREQ  and  SWEEP_PERIOD  are possible. 

 Build and run this project as   sweepDE  . Verify that the output is a swept sinusoidal 
signal starting at frequency 200   Hz and taking  (SWEEP_PERIOD/SAMPLING_
FREQ) * (MAX_FREQ - MIN_FREQ)/STEP_FREQ  seconds to increase in frequency to 
3800   Hz. Change the values of  MIN_FREQ  and  MAX_FREQ  to 2000 and 3000, respec-
tively. Build the project again, load and run program  sweepDE.out , and verify that 
the frequency sweep is from 2000 to 3000   Hz.  

  Example 5.11:   Sine Wave Generation Using a Difference Equation with C 
Calling an ASM Function ( sinegencasm ) 

 This example is based on  Example 5.8  but uses an assembly language function to 
generate a sine wave using a difference equation. Program  sinegencasm.c , listed 
in Figure  5.41 , calls the assembly language function  sinegencasmfunc , defi ned in 

    FIGURE 5.41.     C source program that calls an ASM function to generate a sine wave using 
a difference equation ( sinegencasm.c ).    

//Sinegencasm.c Sine gen using DE with asm function

#include "dsk6713_aic23.h"   //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select input source

short y[3] = {0, 15137, 11585};  //y(1)=sinwT (f=1.5kHz)
short A = 12540;    //A=2*coswT * 2^14
short n = 2;

interrupt void c_int11()  //interrupt service routine
{

sinegencasmfunc(&y[0], A); //calls ASM function
output_sample(y[n]);
return;

}

void main()
{
 comm_intr();                   //init DSK, codec, McBSP
 while(1);    //infinite loop
}
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fi le  sinegencasmfunc.asm  (Figure  5.42 ). The C source program shows the array 
 y[3] , which contains the values  y (0),  y (1), and  y (2) and the coeffi cient  A    =  
 2cos(  w T ), calculated to generate a 1.5 - kHz sine wave. The address of the array 
 y[3]  and the value of the coeffi cient  A  are passed to the ASM function using reg-
isters A4 and B4, respectively. The values in the array  y[3]  and the coeffi cient  A  
were scaled by 2 14  to allow for a fi xed - point implementation. As a result, within 
the ASM function, A8 initially containing  Ay ( n     −    1) is scaled back (shifted right) 
by 2 14 . 

 Build this project as   sinegencasm  . Verify that a 1.5 - kHz sine wave is generated. 
Verify that changing the initial contents of the array to  y[3] ={0, 16384, 0}  and 
setting  A = 0  yields a 2 - kHz sine wave.        

  5.5   ASSIGNMENTS 

    1.     Design and implement in real time a 12th order Chebyshev type 2 lowpass 
IIR fi lter with a cutoff frequency of 1700   Hz, using a sampling frequency of 
8   kHz. Compare the characteristics of this fi lter with those of comparable 
elliptical and Butterworth designs.  

  2.     Modify program  sweepDE.c  to generate a swept sine wave that decreases in 
frequency, starting at 3200   Hz and resetting when it reaches 400   Hz.  

    FIGURE 5.42.     ASM function called from C to generate a sine wave using a difference equa-
tion ( sinegencasmfunc.asm ).    

;Sinegencasmfunc.asm ASM func to generate sine using DE
;A4 = address of y array, B4 = A

           .def  _sinegencasmfunc   ;ASM function called from C
_sinegencasmfunc: 
           LDH       *+A4[0], A5    ;y[n-2]-->A5
           LDH       *+A4[1], A2    ;y[n-1]-->A2
           LDH       *+A4[2], A3    ;y[n]-->A3
           NOP       3              ;NOP due to LDH
           MPY       B4, A2, A8     ;A*y[n-1]
           NOP       1              ;NOP due to MPY
           SHR       A8, 14, A8     ;shift right by 14
           SUB       A8, A5, A8     ;A*y[n-1]-y[n-2]
           STH       A8, *+A4[2]    ;y[n]=A*y[n-1]-y[n-2]
           STH       A2, *+A4[0]    ;y[n-2]=y[n-1]
           STH       A8, *+A4[1]    ;y[n-1] = y[n]
           B         B3             ;return addr to call routine
           NOP       5              ;delays to to branching
           .end 



3.     Three sets of coeffi cients corresponding to fourth, sixth, and eighth order IIR 
fi lters implemented as cascaded second order stages are shown below. Use 
programs iirsos.c ,  iirsosprn.c , and  iirsosdelta.c  (use a sampling 
frequency of 8   kHz) in order to determine the characteristics of these three 
fi lters. 

   Filter (a) 

      First Stage     Second Stage  

  b0    0.894858606    1.00000000  
  b1    0.687012957    0.767733531  
  b2    0.894858606    1.00000000  
  a1    0.626940111    0.823551047  
  a2    0.892574561    0.897182915  

  Filter (b) 

      First Stage    Second Stage    Third Stage  

  b0    4.22434573E – 003    1.00000000    1.00000000  
  b1  − 7.40347363E – 003     − 7.51020138E – 001     − 2.42042682E – 001  
  b2    4.22434573E – 003    1.00000000    1.00000000  
  a1    1.38530785E+000    1.08202283    8.72945011E – 001  
  a2    5.49723350E – 001      7.24171197E – 001    9.12022866E – 001  

 Filter (c) 

      First Stage    Second Stage    Third Stage    Fourth Stage  

  b0    0.0799986548    1.00000000    1.00000000    1.00000000  
  b1    0.159997310  − 2.00000000    2.00000000  − 2.00000000  
  b2    0.0799986548    1.00000000    1.00000000    1.00000000  
  a1    0.131667585  − 1.11285289    0.568937617  − 1.56515908  
  a2    0.112608874    0.365045225    0.582994098    0.767928609  
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 •      The fast Fourier transform using radix - 2 and radix - 4  
 •      Decimation or decomposition in frequency and in time  
 •      Programming examples    

 The fast Fourier transform (FFT) is an effi cient algorithm that is used for converting 
a time - domain signal into an equivalent frequency - domain signal, based on the dis-
crete Fourier transform (DFT). Several real - time programming examples on FFT 
are included.  

6.1 INTRODUCTION

 The DFT converts a time - domain sequence into an equivalent frequency - domain 
sequence. The inverse DFT performs the reverse operation and converts a 
frequency - domain sequence into an equivalent time - domain sequence. The FFT is 
a very effi cient algorithm technique based on the DFT but with fewer computa-
tions required. The FFT is one of the most commonly used operations in digital 
signal processing to provide a frequency spectrum analysis  [1 – 6] . Two different 
procedures are introduced to compute an FFT: the decimation - in - frequency and 
the decimation - in - time. Several variants of the FFT have been used, such as the 
Winograd transform  [7, 8] , the discrete cosine transform (DCT)  [9] , and the dis-
crete Hartley transform  [10 – 12] . The fast Hartley transform (FHT) is described in 
Appendix  E . Transform methods such as the DCT have become increasingly 
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popular in recent years, especially for real - time systems. They provide a large com-
pression ratio.  

  6.2   DEVELOPMENT OF THE  FFT  ALGORITHM WITH RADIX - 2 

 The FFT reduces considerably the computational requirements of the DFT. The 
DFT of a discrete - time signal  x ( nT ) is

    X k x n W k Nnk

n

N

( ) ( ) , , . . . ,= = −
=

−

∑
0

1

0 1 1     (6.1)  

where the sampling period  T  is implied in  x ( n ) and  N  is the frame length. The 
constants  W  are referred to as  twiddle constants  or  factors , which represent the 
phase, or

    W e j N= − 2π/     (6.2)  

and are a function of the length  N . Equation  (6.1)  can be written for  k    =   0, 1,       .      .      .       , 
 N     −    1, as

    X k x x W x W x N Wk k N k( ) ( ) ( ) ( ) . . . ( ) ( )= + + + + − −0 1 2 12 1     (6.3)   

 This represents a matrix of  N    ×    N  terms, since  X ( k ) needs to be calculated for  N  
values for  k . Since  (6.3)  is an equation in terms of a complex exponential, for each 
specifi c  k  there are ( N     −    1) complex additions and  N  complex multiplications. This 
results in a total of ( N  2     −     N ) complex additions and  N  2  complex multiplications. 
Hence, the computational requirements of the DFT can be very intensive, espe-
cially for large values of  N . FFT reduces computational complexity from  N  2  to  N  
log  N . 

 The FFT algorithm takes advantage of the periodicity and symmetry of the 
twiddle constants to reduce the computational requirements of the FFT. From the 
periodicity of  W ,

    W Wk N k+ =     (6.4)  

and from the symmetry of  W ,

    W Wk N k+ = −/ 2     (6.5)   

 Figure  6.1  illustrates the properties of the twiddle constants  W  for  N    =   8. For 
example, let  k    =   2, and note that from  (6.4) ,  W  10    =    W  2 , and from  (6.5) ,  W  6    =    −  W  2 .   

 For a radix - 2 (base 2), the FFT decomposes an  N  - point DFT into two ( N /2) -
 point or smaller DFTs. Each ( N /2) - point DFT is further decomposed into two 



    FIGURE 6.1.     Periodicity and symmetry of twiddle constant  W .  

( N /4) - point DFTs, and so on. The last decomposition consists of ( N /2) two - point 
DFTs. The smallest transform is determined by the radix of the FFT. For a radix - 2 
FFT,  N  must be a power or base of 2, and the smallest transform or the last decom-
position is the two - point DFT. For a radix - 4, the last decomposition is a four - point 
DFT.  

  6.3   DECIMATION - IN - FREQUENCY  FFT  ALGORITHM WITH RADIX - 2 

 Let a time - domain input sequence  x ( n ) be separated into two halves:

    x x x
N

( ), ( ), . . . ,0 1
2

1−



     (6.6)  

and

    x
N

x
N

x N
2 2

1 1



 +



 −, , . . . , ( )     (6.7)   

 Taking the DFT of each set of the sequence in  (6.6)  and  (6.7)  gives us
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Let  n   =   n    +    N /2 in the second summation of  (6.8) ;  X ( k ) becomes
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where  W kN   /2  is taken out of the second summation because it is not a function of  n . 
Using

    W e e jkN jk j k k k/ ( ) (cos sin ) ( )2 1= = = − = −− −π π π π  

in  (6.9) ,  X ( k ) becomes
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N

Wk

n

N
nk( ) ( ) ( )

( / )

= + − +









=

−

∑ 1
20

2 1

    (6.10)   

 Because ( − 1)  k     =   1 for even  k  and  − 1 for odd  k ,  (6.10)  can be separated for even and 
odd  k , or 

  1.     For even  k :
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  2.     For odd  k :
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 Substituting  k    =   2 k  for even  k , and  k    =   2 k    +   1 for odd  k ,  (6.11)  and  (6.12)  can be 
written for  k    =   0, 1,       .      .      .       , ( N /2)    −    1:
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 Because the twiddle constant  W  is a function of the length  N , it can be represented 
as  W N  . Then   WN

2  can be written as  W N   /2 . Let

    a n x n x n N( ) ( ) ( / )= + + 2     (6.15)  

    b n x n x n N( ) ( ) ( / )= − + 2     (6.16)   



 Equations  (6.13)  and  (6.14)  can be written more clearly as two ( N /2) - point 
DFTs, or
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 Figure  6.2  shows the decomposition of an  N  - point DFT into two ( N /2) - point 
DFTs for  N    =   8. As a result of the decomposition process, the  X  ’ s in Figure  6.2  
are even in the upper half and odd in the lower half. The decomposition process 
can now be repeated such that each of the ( N /2) - point DFTs is further decom-
posed into two ( N /4) - point DFTs, as shown in Figure  6.3 , again using  N    =   8 to 
illustrate.     

 The upper section of the output sequence in Figure  6.2  yields the sequence  X (0) 
and  X (4) in Figure  6.3 , ordered as even.  X (2) and  X (6) from Figure  6.3  represent 
the odd values. Similarly, the lower section of the output sequence in Figure  6.2  
yields  X (1) and  X (5), ordered as the even values, and  X (3) and  X (7) as the odd 
values. This scrambling is due to the decomposition process. The fi nal order of the 
output sequence  X (0),  X (4),       .      .      .       , in Figure  6.3  is shown to be scrambled. The output 
needs to be resequenced or reordered. Programming examples presented later in 
this chapter include the appropriate function for resequencing. The output sequence 
 X ( k ) represents the DFT of the time sequence  x ( n ). 

    FIGURE 6.2.     Decomposition of an  N  - point DFT into two ( N /2) - point DFTs for  N    =   8.  
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 This is the last decomposition, since we now have a set of ( N /2) two - point DFTs, 
the lowest decomposition for a radix - 2. For the two - point DFT,  X ( k ) in  (6.1)  can be 
written

    X k x n W knk
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∑
0

1

0 1     (6.19)  

or

    X x W x W x x( ) ( ) ( ) ( ) ( )0 0 1 0 10 0= + = +     (6.20)  

    X x W x W x x( ) ( ) ( ) ( ) ( )1 0 1 0 10 0= − = −     (6.21)  

since  W  1    =    e   −  j 2  p  /2    =    − 1. Equations  (6.20)  and  (6.21)  can be represented by the 
fl ow graph in Figure  6.4 , usually referred to as a  butterfl y . The fi nal fl ow graph of an 
eight - point FFT algorithm is shown in Figure  6.5 . This algorithm is referred to as 
 decimation - in - frequency  (DIF) because the output sequence  X ( k ) is decomposed 
(decimated) into smaller subsequences, and this process continues through  M  stages 

    FIGURE 6.3.     Decomposition of two ( N /2) - point DFTs into four ( N /4) - point DFTs for 
 N    =   8.  

    FIGURE 6.4.     Two - point FFT butterfl y.  



or iterations, where  N    =   2  M  . The output  X ( k ) is complex with both real and imaginary 
components, and the FFT algorithm can accommodate either complex or real input 
values.     

 The FFT is not an approximation of the DFT. It yields the same result as the 
DFT with fewer computations required. This reduction becomes more and more 
important with higher - order FFT. 

 There are other FFT structures that have been used to illustrate the FFT. An 
alternative fl ow graph to that in Figure  6.5  can be obtained with ordered output and 
scrambled input. 

 An eight - point FFT is illustrated through the following exercise. We will see that 
fl ow graphs for higher order FFT (larger  N ) can readily be obtained. 

     Exercise 6.1:   Eight - Point  FFT  Using  DIF  

 Let the input  x ( n ) represent a rectangular waveform, or  x (0)   =    x (1)   =    x (2)   =    x (3)   =  
 1 and  x (4)   =    x (5)   =    x (6)   =    x (7)   =   0. The eight - point FFT fl ow graph in Figure  6.5  
can be used to fi nd the output sequence  X ( k ),  k    =   0, 1,       .      .      .       , 7. With  N    =   8, four twiddle 
constants need to be calculated, or

    W 0 1=  

    W e j jj1 2 8 4 4 0 707 0 707= = − = −− π π π/ cos( / ) sin( / ) . .  

    W e jj2 4 8= = −− π/  

    W e jj3 6 8 0 707 0 707= = − −− π/ . .   

 The intermediate output sequence can be found after each stage. 

    FIGURE 6.5.     Eight - point FFT fl ow graph using DIF.  
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  Stage 1  
    x x x( ) ( ) ( )0 4 1 0+ = → ′  

    x x x( ) ( ) ( )1 5 1 1+ = → ′  

    x x x( ) ( ) ( )2 6 1 2+ = → ′  

    x x x( ) ( ) ( )3 7 1 3+ = → ′  

    [ ( ) ( )] ( )x x W x0 4 1 40− = → ′  

    [ ( ) ( )] . . ( )x x W j x1 5 0 707 0 707 51− = − → ′  

    [ ( ) ( )] ( )x x W j x2 6 62− = − → ′  

    [ ( ) ( )] . . ( )x x W j x3 7 0 707 0 707 73− = − − → ′  

where  x  ′ (0),  x  ′ (1),       .      .      .       ,  x  ′ (7) represent the intermediate output sequence after the 
fi rst iteration, which becomes the input to the second stage.  

  Stage 2  
    ′ + ′ = → ′′x x x( ) ( ) ( )0 2 2 0  

    ′ + ′ = → ′′x x x( ) ( ) ( )1 3 2 1  

    [ ( ) ( )] ( )′ − ′ = → ′′x x W x0 2 0 20  

    [ ( ) ( )] ( )′ − ′ = → ′′x x W x1 3 0 32  

    x x j x′ + ′ = − → ″( ) ( ) ( )4 6 1 4  

    x x j j j x′ + ′ = − + − − = − → ″( ) ( ) ( . . ) ( . . ) . ( )5 7 0 707 0 707 0 707 0 707 1 41 5  

    [ ( ) ( )] ( )x x W j x′ − ′ = + → ″4 6 1 60  

    [ ( ) ( )] . ( )x x W j x′ − ′ = − → ″5 7 1 41 72   

 The resulting intermediate, second - stage output sequence  x ″  (0),  x ″  (1),       .      .      .       ,  x ″  (7) 
becomes the input sequence to the third stage.  

  Stage 3  
    X x x( ) ( ) ( )0 0 1 4= ″ + ″ =  

    X x x( ) ( ) ( )4 0 1 0= ″ − ″ =  

    X x x( ) ( ) ( )2 2 3 0= ″ + ″ =  

    X x x( ) ( ) ( )6 2 3 0= ″ − ″ =  

    X x x j j j( ) ( ) ( ) ( ) ( . ) .1 4 5 1 1 41 1 2 41= ″ + ″ = − + − = −  

    X x x j( ) ( ) ( ) .5 4 5 1 0 41= ″ − ″ = +  



    X x x j j j( ) ( ) ( ) ( ) ( . ) .3 6 7 1 1 41 1 0 41= ″ + ″ = + + − = −  

    X x x j( ) ( ) ( ) .7 6 7 1 2 41= ″ − ″ = +   

 We now use the notation of  X  ’ s to represent the fi nal output sequence. The values 
 X (0),  X (1),       .      .      .       ,  X (7) form the scrambled output sequence. We show later how to 
reorder the output sequence and plot the output magnitude.   

  Exercise 6.2:   Sixteen - Point  FFT  

 Given  x (0)   =    x (1)   =       ·        ·        ·       =    x (7)   =   1, and  x (8)   =    x (9)   =       ·        ·        ·       =    x (15)   =   0, which represents 
a rectangular input sequence, the output sequence can be found using the 16 - point 
fl ow graph shown in Figure  6.6 . The intermediate output results after each stage are 
found in a manner similar to that in  Exercise 6.1 . Eight twiddle constants  W  0 ,  W  1 ,       .      .      .       , 
 W  7  need to be calculated for  N    =   16.   

 Verify the scrambled output sequence  X  ’ s as shown in Figure  6.6.  Reorder this 
output sequence and take its magnitude. Verify the plot in Figure  6.7 , which repre-
sents a sinc function. The output  X (8) represents the magnitude at the Nyquist 
frequency.      

  6.4   DECIMATION - IN - TIME  FFT  ALGORITHM WITH RADIX - 2 

 Whereas the DIF process decomposes an output sequence into smaller subse-
quences,  decimation - in - time  (DIT) is a process that decomposes the input sequence 
into smaller subsequences. Let the input sequence be decomposed into an even 
sequence and an odd sequence, or

    x x x x n( ), ( ), ( ), . . . , ( )0 2 4 2  

and

    x x x x n( ), ( ), ( ), . . . , ( )1 3 5 2 1+   

 We can apply  (6.1)  to these two sequences to obtain

    X k x n W x n Wnk n k

n

N

n

N

( ) ( ) ( ) ( )
( / )( / )

= + + +

=

−

=

−

∑∑ 2 2 12 2 1

0

2 1

0

2 1

    (6.22)   

 Using   W WN N
2

2= /  in  (6.22)  yields

    X k x n W W x n WN
nk

N
k

N
nk

n

N

n

N

( ) ( ) ( ) /

( / )( / )

= + +
=

−

=

−

∑∑ 2 2 12 2
0

2 1

0

2 1

    (6.23)  
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    FIGURE 6.7.     Output magnitude for 16 - point FFT.  

which represents two ( N /2) - point DFTs. Let

    C k x n WN
nk

n

N

( ) /

( / )

= ( )
=

−

∑ 2 2
0

2 1

    (6.24)  

    D k X n WN
nk

n

N

( ) ( ) /

( / )

= +
=

−

∑ 2 1 2
0

2 1

    (6.25)   

 Then  X ( k ) in  (6.23)  can be written

    X k C k W D kN
k( ) ( ) ( )= +     (6.26)   

 Equation  (6.26)  needs to be interpreted for  k     >    ( N /2)    −    1. Using the symmetry 
property  (6.5)  of the twiddle constant,  W k   + N /2    =    −  W k  ,

    X k N C k W D k k Nk( / ) ( ) ( ) , , . . . , ( / )+ = − = −2 0 1 2 1     (6.27)   

 For example, for  N    =   8,  (6.26)  and  (6.27)  become

    X k C k W D k kk( ) ( ) ( ) , , ,= + = 0 1 2 3     (6.28)  

    X k C k W D k kk( ) ( ) ( ) , , ,+ = − =4 0 1 2 3     (6.29)   

 Figure  6.8  shows the decomposition of an eight - point DFT into two four - point DFTs 
with the DIT procedure. This decomposition or decimation process is repeated so 
that each four - point DFT is further decomposed into two two - point DFTs, as shown 
in Figure  6.9 . Since the last decomposition is ( N /2) two - point DFTs, this is as far as 
this process goes.     
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 Figure  6.10  shows the fi nal fl ow graph for an eight - point FFT using a DIT process. 
The input sequence is shown to be scrambled in Figure  6.10  in the same manner as 
the output sequence  X ( k ) was scrambled during the DIF process. With the input 
sequence  x ( n ) scrambled, the resulting output sequence  X ( k ) becomes properly 
ordered. Identical results are obtained with an FFT using either the DIF or the DIT 
process. An alternative DIT fl ow graph to the one shown in Figure  6.10 , with ordered 
input and scrambled output, can also be obtained.   

 The following exercise shows that the same results are obtained for an eight - point 
FFT with the DIT process as in  Exercise 6.1  with the DIF process. 

    FIGURE 6.8.     Decomposition of eight - point DFT into four - point DFTs using DIT.  

    FIGURE 6.9.     Decomposition of two four - point DFTs into four two - point DFTs using 
DIT.  



     Exercise 6.3:   Eight - Point  FFT  Using  DIT  

 Given the input sequence  x ( n ) representing a rectangular waveform as in  Exercise 
6.1 , the output sequence  X ( k ), using the DIT fl ow graph in Figure  6.10 , is the same 
as in  Exercise 6.1 . The twiddle constants are the same as in  Exercise 6.1 . Note that 
the twiddle constant  W  is multiplied with the second term only (not with the fi rst). 

  Stage 1  
    x W x x( ) ( ) ( )0 4 1 0 1 00+ = + = → ′  

    x W x x( ) ( ) ( )0 4 1 0 1 40− = − = → ′  

    x W x x( ) ( ) ( )2 6 1 0 1 20+ = + = → ′  

    x W x x( ) ( ) ( )2 6 1 0 1 60− = − = → ′  

    x W x x( ) ( ) ( )1 5 1 0 1 10+ = + = → ′  

    x W x x( ) ( ) ( )1 5 1 0 1 50− = − = → ′  

    x W x x( ) ( ) ( )3 7 1 0 1 30+ = + = → ′  

    x W x x( ) ( ) ( )3 7 1 0 1 70− = − = → ′  

where the sequence  x  ′  represents the intermediate output after the fi rst iteration 
and becomes the input to the subsequent stage.  

  Stage 2  
    x W x x′ + ′ = + = → ″( ) ( ) ( )0 2 1 1 2 00  

    x W x j j x′ + ′ = + − = − → ″( ) ( ) ( ) ( )4 6 1 1 42  

    FIGURE 6.10.     Eight - point FFT fl ow graph using DIT.  
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    x W x x′ − ′ = − = → ″( ) ( ) ( )0 2 1 1 0 20  

    x W x j j x′ − ′ = − − = + → ″( ) ( ) ( ) ( )4 6 1 1 62  

    x W x x′ + ′ = + = → ″( ) ( ) ( )1 3 1 1 2 10  

    x W x j j x′ + ′ = + − = − → ″( ) ( ) ( )( ) ( )5 7 1 1 1 52  

    x W x x′ − ′ = − = → ″( ) ( ) ( )1 3 1 1 0 30  

    x W x j j x′ − ′ = − − = + → ″( ) ( ) ( )( ) ( )5 7 1 1 1 72  

where the intermediate second - stage output sequence  x ″   becomes the input sequence 
to the fi nal stage.  

  Stage 3  
    X x W x( ) ( ) ( )0 0 1 40= ″ + ″ =  

    X x W x j( ) ( ) ( ) .1 4 5 1 2 4141= ″ + ″ = −  

    X x W x( ) ( ) ( )2 2 3 02= ″ + ″ =  

    X x W x j( ) ( ) ( ) .3 6 7 1 0 4143= ″ + ″ = −  

    X x W x( ) ( ) ( )4 0 1 00= ″ − ″ =  

    X x W x j( ) ( ) ( ) .5 4 5 1 0 4141= ″ − ″ = +  

    X x W x( ) ( ) ( )6 2 3 02= ″ − ″ =  

    X x W x j( ) ( ) ( ) .7 6 7 1 2 4143= ″ − ″ = +  

which is the same output sequence found in  Exercise 6.1 .     

  6.5   BIT REVERSAL FOR UNSCRAMBLING 

 A bit - reversal procedure allows a scrambled sequence to be reordered. To illus-
trate this bit - swapping process, let  N    =   8, represented by three bits. The fi rst and 
third bits are swapped. For example, (100) b  is replaced by (001) b . As such, (100) b  
specifying the address of  X (4) is replaced by or swapped with (001) b  specifying the 
address of  X (1). Similarly, (110) b  is replaced/swapped with (011) b , or the addresses 
of  X (6) and  X (3) are swapped. In this fashion, the output sequence in Figure  6.5  
with the DIF, or the input sequence in Figure  6.10  with the DIT, can be 
reordered. 

 This bit - reversal procedure can be applied for larger values of  N . For example, 
for  N    =   64, represented by six bits, the fi rst and sixth bits, the second and fi fth bits, 
and the third and fourth bits are swapped. 

 Several examples in this chapter illustrate the FFT algorithm, incorporating 
algorithms for unscrambling.  



  6.6   DEVELOPMENT OF THE  FFT  ALGORITHM WITH RADIX - 4 

 A radix - 4 (base 4) algorithm can increase the execution speed of the FFT. FFT 
programs on higher radices and split radices have been developed. We use a DIF 
decomposition process to introduce the development of the radix - 4 FFT. The last 
or lowest decomposition of a radix - 4 algorithm consists of four inputs and four 
outputs. The order or length of the FFT is 4  M  , where  M  is the number of stages. For 
a 16 - point FFT, there are only two stages or iterations, compared with four stages 
with the radix - 2 algorithm. The DFT in  (6.1)  is decomposed into four summations 
instead of two as follows:

    X k x n W x n W x n Wnk nk

n N

N

n

N
nk

n N
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( / )( / )
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 Let  n   =   n    +    N /4,  n   =   n    +    N /2, and  n   =   n    +   3 N /4 in the second, third, and fourth sum-
mations, respectively. Then  (6.30)  can be written
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    (6.31)  

which represents four ( N /4) - point DFTs. Using

    W e e jkN j N kN jk k/ / / /( ) ( )4 2 4 2= = = −− −π π  

    W ekN jk k/ ( )2 1= = −− π  

    W jkN k3 4/ ( )=  

 (6.31)  becomes

   X k x n j x n N x n N j x n N Wk k k nk

n

( ) [ ( ) ( ) ( / ) ( ) ( / ) ( ) ( / )]= + − + + − + + +
=

4 1 2 3 4
00

4 1( / )N −

∑     (6.32)  

Let   W WN N
4

4= / . Equation  (6.32)  can be written
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for  k    =   0, 1,       .      .      .       , ( N /4)    −    1. Equations  (6.33)  through  (6.36)  represent a decomposi-
tion process yielding four four - point DFTs. The fl ow graph for a 16 - point radix - 4 
DIF FFT is shown in Figure  6.11 . Note the four - point butterfl y in the fl ow graph. 
The  ±  j  and  − 1 are not shown in Figure  6.11 . The results shown in the fl ow graph are 
for the following exercise.   

     Exercise 6.4:   Sixteen - Point  FFT  with Radix - 4 

 Given the input sequence  x ( n ) as in  Exercise 6.2 , representing a rectangular sequence 
 x (0)   =    x (1)   =       ·        ·        ·       =    x (7)   =   1, and  x (8)   =    x (9)   =       ·        ·        ·       =    x (15)   =   0, we will fi nd the output 
sequence for a 16 - point FFT with radix - 4 using the fl ow graph in Figure  6.11 . The 
twiddle constants are shown in Table  6.1 .   

    FIGURE 6.11.     Sixteen - point radix - 4 FFT fl ow graph using DIF.  



 The intermediate output sequence after stage 1 is shown in Figure  6.11 . For 
example, after stage 1:
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For example, after stage 2:

    X j j j j j( ) ( ) ( . . ) ( . ) ( . . ) .3 1 1 307 0 541 1 414 1 307 0 541 1 1 4= + + − + − + − − = − 996  

and

    
X j j j j

j
( ) ( )( ) ( . . )( ) ( . )( )

( . .
15 1 1 1 307 0 541 1 414 1

1 307 0
= + + − − + −

+ − − 5541 1 5 028)( ) .− = +j j   

 The output sequence  X (0),  X (1),       .      .      .       ,  X (15) is identical to the output sequence 
obtained with the 16 - point FFT with the radix - 2 in Figure  6.6 . 

 The output sequence is scrambled and needs to be resequenced or reordered. 
This can be done using a digit - reversal procedure, in a similar fashion as a bit 

 TABLE 6.1     Twiddle Constants for 16 - Point FFT 
with Radix - 4 

   m       WN
m       WN/4

m   

  0    1    1  
  1    0.9238    −     j    0.3826     −  j   
  2    0.707    −     j    0.707     − 1  
  3    0.3826    −     j    0.9238    + j   
  4     0    −    j     1  
  5     − 0.3826    −     j    0.9238     −  j   
  6     − 0.707    −     j    0.707     − 1  
  7     − 0.9238    −     j    0.3826    + j   
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reversal in a radix - 2 algorithm. The radix - 4 (base 4) uses the digits 0, 1, 2, 3. For 
example, the addresses of  X (8) and  X (2) need to be swapped because (8) 10  in base 
10 or decimal is equal to (20) 4  in base 4. Digits 0 and 1 are reversed to yield (02) 4  
in base 4, which is also (02) 10  in decimal. 

 Although mixed or higher radices can provide a further reduction in computa-
tion, programming considerations become more complex. As a result, radix - 2 is still 
the most widely used, followed by radix - 4. Two programming examples are included 
in Section  6.8 , and two projects are described in Chapter  10 .    

  6.7   INVERSE FAST FOURIER TRANSFORM 

 The inverse discrete Fourier transform (IDFT) converts a frequency - domain 
sequence  X ( k ) into an equivalent sequence  x ( n ) in the time domain. It is 
defi ned as

    x n
N

X k W n Nnk

k

N

( ) ( ) , , . . . ,= = −−

=

−

∑1
0 1 1

0

1

    (6.37)   

 Comparing  (6.37)  with the DFT equation defi nition in  (6.1) , we see that the FFT 
algorithm (forward) described previously can be used to fi nd the inverse FFT 
(IFFT) with the two following changes: 

  1.     Adding a scaling factor of 1/ N   

  2.     Replacing  W nk   by its complex conjugate  W  − nk      

 With the changes, the same FFT fl ow graphs can be used for the IFFT. We also 
develop programming examples to illustrate the inverse FFT. 

 A variant of the FFT, such as the FHT, can be obtained readily from the FFT. 
Conversely, the FFT can be obtained from the FHT  [10, 11] . A development of the 
FHT with fl ow graphs and exercises for 8 -  and 16 - point FHTs can be found in 
Appendix  E . 

     Exercise 6.5:   Eight - Point  IFFT  

 Let the output sequence  X (0)   =   4,  X (1)   =   1    −     j 2.41,       .      .      .       ,  X (7)   =   1   +    j 2.41 obtained 
in  Exercise 6.1  become the input to an eight - point IFFT fl ow graph. Make the two 
changes (scaling and complex conjugate of  W ) to obtain an eight - point IFFT 
(reverse) fl ow graph from an eight - point FFT (forward) fl ow graph. The resulting 
fl ow graph becomes an IFFT fl ow graph similar to Figure  6.5 . Verify that the result-
ing output sequence is  x (0)   =   1,  x (1)   =   1,       .      .      .       ,  x (7)   =   0, which represents the rectan-
gular input sequence in  Exercise 6.1 .    
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  6.8   PROGRAMMING EXAMPLES 

     Example 6.1:    DFT  of a Sequence of Real Numbers with 
Output in the  CCS  Graphical Display Window ( dft ) 

 This example illustrates the DFT of an  N  - point, real - valued sequence. Program 
 dft.c , listed in Figure  6.12 , calculates the complex DFT:
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1

0 1 1π     (6.38)  

  Using Euler ’ s relation to represent a complex exponential

    e t j tj t− = −ω ω ωcos( ) sin( )     (6.39)  

the real and imaginary parts of  X ( k ) are computed by the program:

    Re{ ( )} (Re{ ( )}cos( / ) Im{ ( )}sin( / ))X k x n kn N x n kn N
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    Im{ ( )} (Im{ ( )}cos( / ) Re{ ( )}sin( / ))X k x n kn N x n kn N
n
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= −
=

−

∑ 2 2
0

1

π π     (6.41)   

 A structured data type  COMPLEX  is used by the program to represent the complex 
valued time -  and frequency - domain values of  X ( k ) and  x ( n ). 

 The function  dft()  has been written such that it replaces the input samples  x ( n ), 
stored in array  samples  with their frequency - domain representation  X ( k ). 

 As supplied, the time - domain sequence  x ( n ) consists of exactly 10 cycles of a 
real - valued cosine wave (assuming a sampling frequency of 8   kHz, the frequency of 
the cosine wave is 800   Hz). The DFT of this sequence,  X ( k ), is equal to zero for all 
 k , except at  k    =   10 and at  k    =   90. These two real values correspond to frequency 
components at  ± 800   Hz. Different time - domain input sequences can be used in the 
program, most readily by changing the value of the constant  TESTFREQ . Build this 
project as   dft  . 

 To test the program, open the project  dft , load the executable fi le  dft.out , and 
then: 

  1.     Place a breakpoint at the line

 printf(“\n”); // place breakpoint here 

in the source fi le  dft.c .  
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//dft.c N-point DFT of sequence read from lookup table

#include <stdio.h>
#include <math.h>

#define PI 3.14159265358979
#define N 100
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

typedef struct
{
  float real;
  float imag;
} COMPLEX;

COMPLEX samples[N];

void dft(COMPLEX *x)
{
  COMPLEX result[N];
  int k,n;

  for (k=0 ; k<N ; k++)
  {
    result[k].real=0.0;
    result[k].imag = 0.0;

    for (n=0 ; n<N ; n++)
    {
      result[k].real += x[n].real*cos(2*PI*k*n/N) +
x[n].imag*sin(2*PI*k*n/N);
      result[k].imag += x[n].imag*cos(2*PI*k*n/N) -
x[n].real*sin(2*PI*k*n/N);
    }
  }
  for (k=0 ; k<N ; k++)
  {
    x[k] = result[k];
  }
}

void main()
{
  int n;

  for(n=0 ; n<N ; n++)
  {
  samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
  samples[n].imag = 0.0;
  }
  printf("real input data stored in array samples[]\n");
  printf("\n"); // place breakpoint here
  dft(samples);          //call DFT function
  printf("done!\n");
}

    FIGURE 6.12.     Listing of program  dft.c .  



 Programming Examples  275

2.     Select  View→ Graph → Time/Frequency  and set the  Graph Properties  as shown 
in Figure  6.13 . Note that this will display only the real part of the complex 
values stored in array samples . The  Graph Property Data Plot Style  is set to 
Bar  in order to emphasize that the DFT operates on discrete data.    

3.     Select  Debug→  Run . The program should halt at the breakpoint just before 
calling function dft()  and at this point the initial, time - domain contents of 
array samples  will be displayed in the  Graphical Display  window.  

4.     Select  Debug→ Run  again. The program should run to completion at which 
point the contents of array samples  will be equal to the frequency - domain 
representation X ( k ) of the input data  x ( n ). The real part of  X ( k ) will now be 
displayed in the Graphical Display  window and you should be able to see two 
distinct spikes at k    =   10 and  k    =   90, representing frequency components at 
± 800   Hz, as shown in Figure  6.14 .      

 Change the frequency of the input waveform to 900   Hz ( #define TESTFREQ 

900.0 ) and repeat the procedure listed above. You should see a number of nonzero 
values in the frequency - domain sequence  X ( k ), as shown in Figure  6.15 . This effect 
is referred to as spectral leakage and is due to the fact that the N  sample time -
 domain sequence stored in array  samples  does not now contain an integer number 

FIGURE 6.13.      Graph Properties  used to display real part of array  samples  in program 
dft.c .  
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of cycles of a sinusoid. Correspondingly, the frequency of that sinusoid is not exactly 
equal to one of the N  discrete frequency components, spaced at intervals of (8000.0/ N ) 
Hz in the frequency - domain representation  X ( k ).   

 The nature of the structured data type  COMPLEX  is such that array  samples
comprises 2 N  values of type  float  ordered so that the fi rst value is the real part of 
X (0), the second is the imaginary part of  X (0), the third is the real part of  X (1), 

FIGURE 6.14.      Graphical Display  of real part of array  samples  produced by program 
dft.c  ( TESTFREQ = 800 ).  

FIGURE 6.15.      Graphical Display  of real part of array  samples  produced by program 
dft.c  ( TESTFREQ = 900 ).  
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and so on. The real parts of X ( k ) are displayed by setting the  DSP Data Type  to 
32 - bit fl oating point, the  Index Increment  to 2, and the  Start Address  to  samples , 
that is, the address of the fi rst value of type  float  in the array  samples , in the  Graph
Property Dialog  window. In order to display the imaginary (rather than the real) 
parts of the sequence X ( k ), the  Start Address  must be set to the address of the 
second value of type float  in the array  samples . That address can be found by 
moving the cursor over an occurrence of the identifi er  samples  in the source fi le 
dft.c . Its hexadecimal address will appear in a pop - up box as shown in Figure 
 6.16 . Entering this value in the  Start Address  fi eld of the  Graph Property Dialog
window in place of the identifi er  samples  will result in the same  Graphical Display . 
Adding four (the number of bytes used to store one 32 - bit fl oating point value) to 
the Start Address  value will result in the imaginary parts of the sequence of complex 
values being displayed.    

Twiddle Factors 
 Whereas the radix - 2 FFT is applicable if  N  is an integer power of 2, the DFT can 
be applied to an arbitrary length sequence (e.g., N    =   100), as illustrated by program 
dft.c . However, the FFT is widely used because of its computational effi ciency. 
Part of that effi ciency is due to the use of precalculated twiddle factors, stored in a 
lookup table, rather than the repeated evaluation of sin()  and  cos()  functions 
during computation of the FFT. The use of precalculated twiddle factors can be 
applied to the function dft()  to give signifi cant effi ciency improvements to program 
dft.c . Calls to the math library functions  sin()  and  cos()  are computationally 
very expensive and are made a total of 4 N2  times in function  dft()  (listed in Figure 
 6.12 ). In program  dftw.c , listed in Figure  6.17 , these function calls are replaced by 
reading precalculated twiddle factors from array twiddle .   

 The source fi le  dftw.c  is stored in folder  dft  and can be substituted for source 
fi le  dft.c  in project  dft . Verify that program  dftw.c  gives similar results. (Change 
the Output Filename  to  dftw.out .)  

FIGURE 6.16.     Pop - up window showing address in memory of array  samples .  
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//dftw.c N-point DFT of sequence read from lookup table
//using pre-computed twiddle factors

#include <stdio.h>
#include <math.h>

#define PI 3.14159265358979
#define N 100
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

typedef struct
{
  float real;
  float imag;
} COMPLEX;

COMPLEX samples[N];
COMPLEX twiddle[N];

void dftw(COMPLEX *x, COMPLEX *w)
{
  COMPLEX result[N];
  int k,n;

  for (k=0 ; k<N ; k++)
  {
    result[k].real=0.0;
    result[k].imag = 0.0;

    for (n=0 ; n<N ; n++)
    {
      result[k].real += x[n].real*w[(n*k)%N].real -
x[n].imag*w[(n*k)%N].imag;
      result[k].imag += x[n].imag*w[(n*k)%N].real +
x[n].real*w[(n*k)%N].imag;
    }
  }
  for (k=0 ; k<N ; k++)
  {
    x[k] = result[k];
  }
}

void main()
{
  int n;

  for(n=0 ; n<N ; n++)
  {
    twiddle[n].real = cos(2*PI*n/N);
    twiddle[n].imag = -sin(2*PI*n/N);
  }
  for(n=0 ; n<N ; n++)
  {
  samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
  samples[n].imag = 0.0;
  }
  printf("real input data stored in array samples[]\n");
  printf("\n"); // place breakpoint here
  dftw(samples,twiddle);                  //call DFT function
  printf("done!\n");
} 

    FIGURE 6.17.     Listing of program  dftw.c .  
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Example 6.2: Estimating Execution Times for DFT and 
FFT Functions ( fft)

 The computational expense of function  dft()  can be illustrated using Code Com-
poser ’ s  Profi le Clock  (see  Example 1.3 ). In this example, the functions  dft()  and 
dftw()  used in  Example 6.1  are compared with a third function,  fft() , which 
implements the FFT in C. 

 Edit the lines in programs  dft.c  and  dftw.c  that read

#define N 100 

to read

#define N 128 

 Then 

1.     Ensure that source fi le  dft.c  and not  dftw.c  is present in the project.  

2.     Select  Project→ Build Options . In the  Compiler  tab in the  Basic  category set 
the Opt Level  to  Function(− o2)  and in the  Linker  tab set the  Output Filename
to .\Debug\dft.out .  

3.      Build  the project and load  dft.out .  

4.      Open  source fi le  dft.c  by double - clicking on its name in the  Project
View  window and set breakpoints at the lines  dft(samples);  and 
printf(“done!\n”); .  

5.     Select  Profi le → Clock → Enable .  

6.     Select  Profi le → Clock View.

7.     Run the program. It should halt at the fi rst breakpoint.  

8.     Reset the  Profi le Clock  by double - clicking on its icon in the bottom right - hand 
corner of the CCS window.  

9.     Run the program. It should stop at the second breakpoint.    

 The number of instruction cycles counted by the  Profi le Clock  (23,828,053) gives 
an indication of the computational expense of executing function dft() . On a 
225 - MHz C6713, 23,828,053 instruction cycles correspond to an execution time of 
105   ms. 

 Repeat the preceding experiment substituting fi le  dftw.c  for fi le  dft.c . The 
modifi ed DFT function using twiddle factors,  dftw() , uses 89,407 instruction cycles, 
corresponding to 0.397   ms, and representing a decrease in execution time by a factor 
of 266. At a sampling rate of 8   kHz, 0.397   ms corresponds to just over three sampling 
periods.

 Finally, repeat the experiment using fi le  fft.c  (also stored in folder  dft ) (see 
Figure  6.18 ). This program computes the FFT using a function written in C and 
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//fft.c N-point FFT of sequence read from lookup table

#include <stdio.h>
#include <math.h>
#include "fft.h"

#define PI 3.14159265358979
#define N 128
#define TESTFREQ 800.0
#define SAMPLING_FREQ 8000.0

COMPLEX samples[N];
COMPLEX twiddle[N];

void main()
{
 int n;
 for (n=0 ; n<N ; n++)         //set up DFT twiddle factors
 {
   twiddle[n].real = cos(PI*n/N);
   twiddle[n].imag = -sin(PI*n/N);
 }

 for(n=0 ; n<N ; n++)
 {
 samples[n].real = cos(2*PI*TESTFREQ*n/SAMPLING_FREQ);
 samples[n].imag = 0.0;
 }
 printf("real input data stored in array samples[]\n");
 printf("\n"); // place breakpoint here
 fft(samples,N,twiddle);                  //call DFT function
 printf("done!\n");
} 

defi ned in the fi le  fft.h  (Figure  6.19 ). Function  fft()  takes 24,089 instruction cycles, 
or 0.107   ms (less than one sampling period at 8   kHz) to execute. The advantage, in 
terms of execution time, of the FFT over the DFT should increase with the number 
of points,  N , used. Repeat this example using different values of  N  (e.g., 256 or 512).       

  6.8.1   Frame - Based Processing 

 Rather than processing one sample at a time, the DFT and the FFT algorithms 
process blocks, or frames, of samples. Using the FFT in a real - time program there-
fore requires a slightly different approach from that used for input and output in 
previous chapters. 

 Frame - based processing divides continuous sequences of input and output 
samples into frames of  N  samples. Rather than processing one input sample at each 

    FIGURE 6.18.     Listing of program  fft.c .  
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//fft.h complex FFT function taken from Rulph's C31 book
//this file contains definition of complex dat structure also

struct cmpx                //complex data structure used by FFT
{
 float real;
 float imag;
};
typedef struct cmpx COMPLEX;

void fft(COMPLEX *Y, int M, COMPLEX *w)
{
 COMPLEX temp1,temp2;      //temporary storage variables
 int i,j,k;                //loop counter variables
 int upper_leg, lower_leg; //index of upper/lower butterfly leg
 int leg_diff;             //difference between upper/lower leg
 int num_stages=0;         //number of FFT stages, or iterations
 int index, step;          //index and step between twiddle factor
 i=1;                      //log(2) of # of points = # of stages
 do
 {
  num_stages+=1;
  i=i*2;
 } while (i!=M);

 leg_diff=M/2;             //difference between upper & lower legs
 step=2;                   //step between values in twiddle.h
 for (i=0;i<num_stages;i++)
 {
  index=0;
  for (j=0;j<leg_diff;j++)
  {
   for (upper_leg=j;upper_leg<M;upper_leg+=(2*leg_diff))
   {
    lower_leg=upper_leg+leg_diff;
    temp1.real=(Y[upper_leg]).real + (Y[lower_leg]).real;
    temp1.imag=(Y[upper_leg]).imag + (Y[lower_leg]).imag;
    temp2.real=(Y[upper_leg]).real - (Y[lower_leg]).real;
    temp2.imag=(Y[upper_leg]).imag - (Y[lower_leg]).imag;
    (Y[lower_leg]).real=temp2.real*(w[index]).real
    -temp2.imag*(w[index]).imag;
    (Y[lower_leg]).imag=temp2.real*(w[index]).imag
    +temp2.imag*(w[index]).real;
    (Y[upper_leg]).real=temp1.real;
    (Y[upper_leg]).imag=temp1.imag;
   }
   index+=step;
  }
  leg_diff=leg_diff/2; 

      FIGURE 6.19.     Listing of header fi le  fft.h .  
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  step*=2;
 }
 j=0;
 for (i=1;i<(M-1);i++)   //bit reversal for resequencing data
 {
  k=M/2;
  while (k<=j)
  {
   j=j-k;
   k=k/2;
  }
  j=j+k;
  if (i<j)
  {
   temp1.real=(Y[j]).real;
   temp1.imag=(Y[j]).imag;
   (Y[j]).real=(Y[i]).real;
   (Y[j]).imag=(Y[i]).imag;
   (Y[i]).real=temp1.real;
   (Y[i]).imag=temp1.imag;
  }
 }
 return;
}                        //end of fft()

FIGURE 6.19. (Continued)

sampling instant, a new frame of  N  input samples must be processed every  N  sam-
pling instants. In the context of real - time applications, frame - based processing con-
sists of three distinct activities. While a new frame of input samples is being collected, 
a previously collected frame of input samples must be processed and a frame of 
previously processed samples must be output. The basic rate of one sample per 
sampling instant must be observed by both the input and output activities. 

 Effectively, input, output, and processing activities must take place concurrently 
and each must operate on a different frame of samples. A widely used method of 
implementing this is to use three separate buffers — one for input, another for pro-
cessing, and a third for output. 

 An important real - time constraint on the three activities is that input and output 
activities must take place on a sample - by - sample basis at each and every sampling 
instant. In between dealing with this, the processor can process the intermediate 
frame of samples. 

 Another real - time constraint is that in the time taken to collect a complete frame 
of input samples, and to output a complete frame of previously processed samples 
(i.e.,  N  sampling instants), processing of the intermediate frame of samples must be 
completed. 

 Each time a new frame of input samples has been collected (i.e., every  N  sampling 
instants), the frames exchange roles. The frame of input samples that has just been 
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collected becomes the intermediate frame of samples to be processed during the 
next N  sampling instants. The intermediate frame of samples processed during the 
previous N  sampling instants becomes the frame of samples to be output during 
the next N  sampling instants and the frame of samples output during the previous 
N  sampling instants becomes the frame into which new input samples will be written 
during the next N  sampling instants. Typically, frames of samples are represented 
within a C program as arrays. Rather than dedicating the use of particular arrays to 
each of the three activities — input, processing, and output — which would necessitate 
transferring or copying the contents of one array to another every N  sampling 
instants, it is effi cient to dedicate pointers to each of the three activities and to 
exchange their values every N  sampling instants. 

 In real time, input and output operations can be implemented particularly effi -
ciently using direct memory access (DMA). The frame - based processing examples 
in this chapter use the less effi cient mechanism of sample - by - sample input and 
output in an interrupt service routine while processing takes place in the main body 
of the program. 

 The following examples introduce the mechanisms required to implement the 
FFT (or DFT) in real time. 

Example 6.3: Frame-Based Processing ( frames)

 The basic mechanism of triple - buffered frame - based processing is illustrated by 
program frames.c , listed in Figure  6.20 .   This program is used as the basis of later 
examples in this chapter. In this case, however, the only processing carried out is to 
apply a scalar gain of 0.5 to the input signal. 

 For clarity, three arrays  A ,  B , and  C  are declared explicitly. These are used as 
the three buffers to store frames of samples. However, apart from when initializing 
the values of pointers input_ptr ,  process_ptr , and  output_ptr , the identifi ers  A , 
B , and  C  are not used. An alternative approach would be to allocate memory 
dynamically to these three pointers at the start of the program, using the 
statements

input_ptr = (float *)malloc(N*sizeof(float));
output_ptr = (float *)malloc(N*sizeof(float));
process_ptr = (float *)malloc(N*sizeof(float));

 The pointer  temp_ptr  is used only to facilitate the rotation of the values of the 
other three pointers. 

 Build the project as  frames . Load and run the program and verify its operation 
using a signal source and oscilloscope or headphones. Recall that there is a potential 
divider circuit connecting the LINE IN socket to the codec input and therefore an 
inbuilt gain of 0.5 in addition to the gain applied by program frames.c .  
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    FIGURE 6.20.     Listing of program  frames.c .  

// frames.c - basic illustration of triple-buffered
// N sample frame-based processing

#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate

#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#define N 128

short buffercount = 0;             //no of input samples in buffer
short bufferfull = 0;              //indicates buffer full
float A[N], B[N], C[N];
float *input_ptr, *output_ptr, *process_ptr, *temp_ptr;

interrupt void c_int11(void)       //ISR
{
  output_left_sample((short)(*(output_ptr + buffercount)));
  *(input_ptr + buffercount++) = (float)(input_left_sample());
  if (buffercount >= N)
  {
    buffercount = 0;
    bufferfull = 1;
  }
}

main()
{
  int i;

  input_ptr = A;
  output_ptr = B;
  process_ptr = C;
  comm_intr();                     //initialise DSK, codec, McBSP
  while(1)                         //frame processing loop
  {
    while(bufferfull==0);          //wait until buffer is full
    bufferfull = 0;
    temp_ptr = process_ptr;        //rotate pointers to frames
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;
    //process the contents of the frame pointed to by process_ptr
    for (i=0 ; i<N ; i++)
    {
      *(process_ptr+i) *= 0.5;     //apply a scalar gain of 0.5
    }
  }                                //end of while(1)
}                                  //end of main() 
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Example 6.4: DFT of a Signal in Real -Time Using a DFT Function with 
Precalculated Twiddle Factors ( dft128c)

 Program  dft128c.c  combines the DFT function  dftw()  from program  dftw.c  and 
the triple buffering mechanism of program frames.c  in order to implement a 
simple form of spectrum analyzer (Figure  6.21 ).   

 In spite of its ineffi ciency compared with the FFT, the DFT implemented using 
function dftw()  from program  dftw.c  is capable of running in real time. 

 A frame of 128 real - valued samples is read from the codec ADC, its 128 - point 
complex DFT is computed using function dftw() , and then the real part of each of 
the frequency - domain samples is replaced with its magnitude. The 128 magnitude 
values are written to the codec DAC (and to buffer outbuffer  for plotting). 

 Build and run this project as  dft128c . Use a signal generator connected to the 
LINE IN input on the DSK to input a sinusoidal signal and connect an oscilloscope 
to the LINE OUT output. Vary the frequency of the input signal between 100 and 
5000   Hz. Figure  6.22  shows an example of what you should see on the oscilloscope 
screen. The two smaller peaks correspond to the frequency content of the input 
signal computed using the DFT. The larger, negative peaks correspond to impulses 
added to the output signal every 128 samples, replacing the magnitude of sample 
X (0), for the purpose of triggering the oscilloscope.   

 The data in the output frame is ordered such that the fi rst value corresponds to 
a frequency of 0   Hz. The next 64 ( N     −    1) values correspond to frequencies 62.5   Hz 
(fs / N ) to 4   kHz ( fs /2) inclusive in steps of 62.5   Hz. The following 63 values corre-
spond to frequencies of − 3937.5   Hz to  − 62.5   Hz inclusive. 

 Increase the frequency of the input signal and as it approaches 4   kHz you should 
see the two spikes move together toward a point halfway between successive oscil-
loscope trigger pulses. A slight degree of aliasing should be evident as the input 
signal frequency is increased past 4   kHz and the magnitude of the spikes diminishes. 
The magnitude frequency response of the AIC23 DAC reconstruction fi lter is only 
3   dB down at half the sampling frequency. 

 If the input signal is a 1750 - Hz sine wave, then the magnitude of the DFT of a 
frame of 128 input samples should be zero except at two points, corresponding to 
frequencies of ± 1750   Hz. Each frame output via the DAC will contain one other 
nonzero value; the trigger pulse inserted at X (0). These three impulses contained in 
each frame of samples appear on the oscilloscope as three pulses, each with the form 
of the impulse response of the DAC reconstruction fi lter. Compare the pulses shown 
in Figure  6.22  with that shown in Figure  2.32 .   

 Figure  6.23  shows the output signal corresponding to a 1750 - Hz input signal in 
more detail. Change the frequency of the input signal to 1781   Hz and you should 
see an output waveform similar to that shown in Figure  6.24 . As the frequency of 
the sinusoidal input signal is changed, the shape  as well as the  position  (relative to 
the trigger pulses) of the smaller pulses changes. The precise shape of the pulses is 
due to the characteristics of the reconstruction fi lter in the AIC23 codec. The fact 
that the pulse shape changes is due to the phenomenon of spectral leakage .   
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      FIGURE 6.21.     DFT program with real - time input ( dft128c.c ).  

//dft128c.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include <math.h>
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128
#include "hamm128.h"

typedef struct
{
  float real;
  float imag;
} COMPLEX;

short buffercount = 0;               //no of samples in iobuffer
short bufferfull = 0;                //indicates buffer full
COMPLEX A[N], B[N], C[N];
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
COMPLEX twiddle[N];
short outbuffer[N];

void dft(COMPLEX *x, COMPLEX *w)
{
 COMPLEX result[N];
 int k,n;

  for (k=0 ; k<N ; k++)
  {
    result[k].real=0.0;
    result[k].imag = 0.0;

    for (n=0 ; n<N ; n++)
    {
      result[k].real += x[n].real*w[(n*k)%N].real
                        - x[n].imag*w[(n*k)%N].imag;
      result[k].imag += x[n].imag*w[(n*k)%N].real
                        + x[n].real*w[(n*k)%N].imag;
    }
  }
  for (k=0 ; k<N ; k++)
  {
    x[k] = result[k];
  }
}
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interrupt void c_int11(void)         //ISR
{
  output_left_sample((short)((output_ptr + buffercount)->real));
  outbuffer[buffercount] =
                      -(short)((output_ptr + buffercount)->real);
  (input_ptr + buffercount)->real = (float)(input_left_sample());
  (input_ptr + buffercount++)->imag = 0.0;
  if (buffercount >= N)
  {
    buffercount = 0;
    bufferfull = 1;
  }
}

main()
{
  int n;

  for (n=0 ; n<N ; n++)              //set up twiddle factors
  {
    twiddle[n].real = cos(2*PI*n/N);
    twiddle[n].imag = -sin(2*PI*n/N);
  }
  input_ptr = A;
  output_ptr = B;
  process_ptr = C;
  comm_intr();                       //initialise DSK
  while(1)                           //frame processing loop
  {
    while(bufferfull==0);            //wait for new frame
    bufferfull = 0;                  //of input samples

    temp_ptr = process_ptr;          //rotate frame pointers
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;

    dft(process_ptr,twiddle);        //process contents of buffer

    for (n=0 ; n<N ; n++)            // compute magnitude
    {                                // and place in real part
      (process_ptr+n)->real =
             -sqrt((process_ptr+n)->real*(process_ptr+n)->real
             + (process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
    }
    (process_ptr)->real = TRIGGER;   // add oscilloscope trigger
  }                                  //end of while(1)
}                                    //end of main() 

FIGURE 6.21. (Continued)
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    FIGURE 6.24.     Detail of output signal from program  dft128c.c  for input sinusoid frequency 
1781   Hz.  

128 samples
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    FIGURE 6.22.     Oscilloscope display produced using program  dft128c.c .  

    FIGURE 6.23.     Detail of output signal from program  dft128c.c  for input sinusoid frequency 
1750   Hz.  
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FIGURE 6.25.     Detail of 128 - point magnitude DFT data calculated in program  dft128c.c
for input sinusoid frequency 1750   Hz.  

 Figure  6.25  shows the DFT magnitude (output) data corresponding to the oscil-
loscope trace of Figure  6.23 . The trigger pulse at the start of the block of data causes 
the impulse response of the reconstruction fi lter to appear on the oscilloscope. It 
can be deduced from Figure  6.25  that the frequency of the sinusoidal input signal 
was exactly equal to 1750   Hz, corresponding to 28  f0 , where  f0    =   62.5   Hz is the fun-
damental frequency associated with a block of 128 samples at a sampling rate of 
8   kHz. The solitary nonzero frequency - domain sample produces an output pulse 
shape very similar to that of the impulse response of the reconstruction fi lter.   

 In contrast, it may be deduced from Figure  6.26  that the frequency of the sinu-
soidal input that produced the DFT magnitude data and hence the oscilloscope 
trace of Figure  6.24  was between 28 f0  and 29 f0 , that is, between 1750 and 1812.5   Hz. 
Figure  6.26  illustrates spectral leakage and Figure  6.24  shows the result of the data 

FIGURE 6.26.     Detail of 128 - point magnitude DFT data calculated in program  dft128c.c
for input sinusoid frequency 1781   Hz.  
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shown in Figure  6.26 , regarded as time - domain samples, fi ltered by the reconstruc-
tion fi lter in the AIC23 codec.    

Modifying the Program to Reduce Spectral Leakage 
 One method of reducing spectral leakage is to multiply the blocks of input samples 
by a window function prior to computing the DFT. Effectively, a rectangular window 
has been applied previously. Alter the line of program dft128c.c  that reads

(input_ptr + buffercount) ->real =
(float)(input_left_sample());

to read

(input_ptr + buffercount) ->real = 
(float)(input_left_sample())*hamming[buffercount];

and add the line

#include “hamm128.h”

 File  hamm128.h  contains the declaration of an array  hamming  initialized to contain 
a 128 - point Hamming window. 

Rebuild All  and  Run  the program. Figure  6.27  shows the shape of output pulse 
you can expect to see, regardless  of the frequency of the sinusoidal input signal.    

Example 6.5: FFT of a Real -Time Input Signal Using an 
FFT Function in C ( fft128c.c)

 Program  fft128c.c , listed in Figure  6.28 , implements a 128 - point FFT in real time 
using an external input signal. It calls a generic FFT function fft()  written in C. 
That function is defi ned in the fi le  fft.h , which is included by program  fft128c.
c . The function was written originally for use with the C31 DSK and is described in 
Refs  13  and  14 . Program  fft128c.c  is similar to program  dft128c.c  in all respects 
other than its use of fft()  in place of the less computationally effi cient  dft() .   

 Build and run this project as  fft128c . Repeat the experiments carried out in 
 Example 6.4  and verify that the results are similar.  

Example 6.6: FFT of a Sinusoidal Signal from a Table Using TI ’s C 
Callable Optimized FFT Function ( FFTsinetable)

 Figure  6.29  shows a listing of the program  FFTsinetable.c , which illustrates a C 
program calling TI ’ s optimized fi oating - point FFT function  cfftr2 dit.sa , avail-
able at TI ’ s web site (also on CD). The twiddle constants are calculated within the 
program. The imaginary components of the twiddle constants are negated, as 
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(a)

(b)

    FIGURE 6.27.     (a) Detail of output signal from program  dft128c.c , modifi ed to apply 
Hamming window to blocks of input samples, for input sinusoid frequency 1750   Hz and 
(b) data that produced oscilloscope trace.  

required (assumed) by the FFT function. The FFT function also assumes  N /2 
complex twiddle constants. It is important to align the data in memory (on an 8 - byte 
boundary). Both the input data and the twiddle constants are of type  COMPLEX .   

 The input signal consists of sine data values set in a table as real input data. The 
imaginary components of the input sine data are set to zero. The input data are 
arranged in memory as successive real and imaginary number pairs, as required 
(assumed) by the FFT function. The resulting output is complex. 

 The FFT function  cfftr2_dit.sa  uses a DIT, radix 2, and takes the FFT of a 
complex input signal. Two support functions,  digitrev_index.c  and  bitrev.sa , 
are used in conjunction with the complex FFT function for bit reversal. These two 
support fi les are also available through TI ’ s web site (also on CD). The FFT function 
 cfftr2_dit.sa  assumes that the input data  x  are in normal order, while the FFT 
coeffi cients or twiddle constants are in reverse order. As a result, the support func-
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      FIGURE 6.28.     FFT program with real - time input calling a C - coded FFT function 
( fft128c.c ).  

//fft128c.c

#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128
#include "hamm128.h"

short buffercount = 0;               //no of samples in iobuffer
short bufferfull = 0;                //indicates buffer full
COMPLEX A[N], B[N], C[N];
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
COMPLEX twiddle[N];
short outbuffer[N];

interrupt void c_int11(void)         //ISR
{
  output_left_sample((short)((output_ptr + buffercount)->real));
  outbuffer[buffercount] =
                      -(short)((output_ptr + buffercount)->real);
  (input_ptr + buffercount)->real = (float)(input_left_sample());
  (input_ptr + buffercount++)->imag = 0.0;
  if (buffercount >= N)
  {
    buffercount = 0;
    bufferfull = 1;
  }
}

main()
{
  int n;

  for (n=0 ; n<N ; n++)              //set up twiddle factors
  { 
    twiddle[n].real = cos(PI*n/N);
    twiddle[n].imag = -sin(PI*n/N);
  }
  input_ptr = A;
  output_ptr = B;
  process_ptr = C;
  comm_intr();                       //initialise DSK
  while(1)                           //frame processing loop
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  {
    while(bufferfull==0);            //wait for new frame
    bufferfull = 0;                  //of input samples

    temp_ptr = process_ptr;          //rotate frame pointers
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;

    fft(process_ptr,N,twiddle);      //process contents of buffer

    for (n=0 ; n<N ; n++)            // compute magnitude
    {                                // and place in real part
      (process_ptr+n)->real =
             -sqrt((process_ptr+n)->real*(process_ptr+n)->real
             + (process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
    }
    (process_ptr)->real = TRIGGER;   // add oscilloscope trigger
  }                                  //end of while(1)
}                                    //end of main() 

FIGURE 6.28. (Continued)

tion  digitrev_index.c , to produce the index for bit reversal, and  bitrev.sa , to 
perform the bit reversal on the twiddle constants, are called before the FFT function 
is invoked. These two support fi les for bit reversal are again called to bit - reverse 
the resulting scrambled output. 

  N  is the number of complex input (note that the input data consist of 2 N  ele-
ments) or output data, so that an  N  - point FFT is performed.  FREQ  determines the 
frequency of the input sine data by selecting the number of points per cycle within 
the data table. With  FREQ  set at 8, every eighth point from the table is selected, 
starting with the fi rst data point. The modulo operator is used as a fi ag to reinitialize 
the index. The following four points (scaled) within one period are selected: 0, 1000, 
0, and  − 1000.  Example 2.10  ( sine2sliders ) illustrates this indexing scheme to 
select different numbers of data points within a table. 

 The magnitude of the resulting FFT is taken. The line of code

 output_sample (32000); 

outputs a negative spike. It is used to trigger an oscilloscope. The input data are 
scaled so that the output magnitude is positive. The sampling rate is achieved 
through polling. 

 Build and run this project as   FFTsinetable  . The two support fi les for bit reversal 
and the complex FFT function also are included in the project. Figure  6.30  shows a 
time - domain plot of the resulting output.   

 Since an output occurs every  T  s   , the time interval for 32 points corresponds 
to 32    T  s , or 32(0.125   ms)   =   4   ms. A negative spike is then repeated every 4   ms. This 



//FFTsinetable.c FFT{sine}from table. Calls TI FFT function

#include "dsk6713_aic23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include <math.h>
#define N 32                       //number of FFT points
#define FREQ 8                     //select # of points/cycle
#define RADIX 2                    //radix or base
#define DELTA (2*PI)/N             //argument for sine/cosine
#define TAB_PTS 32                 //# of points in sine_table
#define PI 3.14159265358979
short i = 0;
short iTwid[N/2];                  //index for twiddle constants
short iData[N];                    //index for bitrev X
float Xmag[N];                     //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[N/RADIX];                //array for twiddle constants
Complex x[N];                      //N complex data values
#pragma DATA_ALIGN(W,sizeof(Complex))   //align W
#pragma DATA_ALIGN(x,sizeof(Complex)) //align x

short sine_table[TAB_PTS] = {0,195,383,556,707,831,924,981,1000,
981,924,831,707,556,383,195,-0,-195,-383,-556,-707,-831,-924,-981,
-1000,-981,-924,-831,-707,-556,-383,-195};

void main()
{
 for( i = 0 ; i < N/RADIX ; i++ )
  {
   W[i].re = cos(DELTA*i);         //real component of W
   W[i].im = sin(DELTA*i);         //neg imag component
  }                                //see cfftr2_dit
 for( i = 0 ; i < N ; i++ )
  {
   x[i].re=sine_table[FREQ*i % TAB_PTS]; //wrap when i=TAB_PTS
   x[i].im = 0 ;                   //zero imaginary part
  }
 digitrev_index(iTwid, N/RADIX, RADIX); //get index for bitrev()
 bitrev(W, iTwid, N/RADIX);        //bit reverse W
 cfftr2_dit(x, W, N );             //TI floating-pt complex FFT

 digitrev_index(iData, N, RADIX);  //get index for bitrev()
 bitrev(x, iData, N);              //freq scrambled->bit-reverse X
 for(i = 0 ; i < N ; i++ )
  Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im ); //mag of X

 comm_poll( ) ;                    //init DSK,codec,McBSP
 while (1)                         //infinite loop
  {
   output_left_sample(32000);      //negative spike as reference
   for (i = 1; i < N; i++)
    output_left_sample((short)Xmag[i]); //output magnitude samples
  }
}

    FIGURE 6.29.     FFT program with input read from a lookup table and using TI ’ s optimized 
complex FFT function ( FFTsinetable.c ).  
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provides a reference, since the time interval between the two negative spikes cor-
responds to the sampling frequency of 8   kHz. The center of this time interval then 
corresponds to the Nyquist frequency of 4   kHz (2   ms from the negative spike). The 
fi rst positive spike occurs at 1   ms from the fi rst negative spike. This corresponds to 
a frequency of  f   =   F   s  /4   =   2   kHz. The second positive spike occurs at 3   ms from the 
fi rst negative spike and corresponds to the folding frequency of ( F s     −    f )   =   6   kHz. 

 Change  FREQ  to 4 in order to select eight sine data values within the table. Verify 
that the output is a 1 - kHz signal (obtain a plot similar to that in Figure  6.30  from 
an oscilloscope). A  FREQ  value of 12 produces an output of 3   kHz. A  FREQ  value of 
15 shows the two positive spikes at the center (between the two negative spikes). 
Note that aliasing occurs for frequencies larger than 4   kHz. To illustrate that, change 
 FREQ  to a value of 20. Verify that the output is an aliased signal at 3   kHz, in lieu of 
5   kHz. A  FREQ  value of 24 shows an aliased signal of 2   kHz in lieu of 6   kHz. 

 The number of cycles is documented within the function  cfftr2_dit.sa  (by 
TI) as

    Cycles = + +(( ) ) log ( )2 23 2 6N N   

 For a 1024 - point FFT, the number of cycles would be (2071) (10)   +   6   =   20,716. 
This corresponds to a time of  t    =   20,716 cycles/(225   MHz)   =   92     µ  s. That is consider-
ably less time than would be available to process a frame of 1024 samples collected 
at a sampling rate of 8   kHz (i.e., 1024/8000   =   128   ms).  

  Example 6.7:    FFT  of Real - Time Input Using TI ’ s C Callable Optimized 
Radix - 2  FFT  Function ( FFTr2 ) 

 This example extends  Example 6.6    for real - time external input in lieu of a sine 
table as input. Figure  6.31  shows a listing of the C source program  FFTr2.c  that 

32 samples

trigger
pulse

0 Hz 4 kHz 0 Hz

positive frequency
components

negative frequency
components

    FIGURE 6.30.     Time - domain plot representing the magnitude of the FFT of a 2 - kHz input 
signal read from a lookup table and using TI ’ s optimized complex FFT function.  



296  Fast Fourier Transform

//FFTr2.c FFT using TI optimized FFT function and real-time input

#include "dsk6713_aic23.h"
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in
#include <math.h>
#define N 256                       //number of FFT points
#define RADIX 2                     //radix or base
#define DELTA (2*PI)/N              //argument for sine/cosine
#define PI 3.14159265358979
short i = 0;
short iTwid[N/2];                   //index for twiddle constants
short iData[N];                     //index for bitrev X
float Xmag[N];                      //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[N/RADIX];                 //array for twiddle constants
Complex x[N];                       //N complex data values
#pragma DATA_ALIGN(W,sizeof(Complex)) //align W on boundary
#pragma DATA_ALIGN(x,sizeof(Complex)) //align input x on boundary

void main()
{
 for( i = 0 ; i < N/RADIX ; i++ )
  {
   W[i].re = cos(DELTA*i);          //real component of W
   W[i].im = sin(DELTA*i);          //neg imag component
  }                                 //see cfftr2_dit
 digitrev_index(iTwid,N/RADIX,RADIX); //get index for bitrev() W
 bitrev(W, iTwid, N/RADIX);         //bit reverse W

 comm_poll();                       //init DSK,codec,McBSP
 for(i=0; i<N; i++)
  Xmag[i] = 0;                      //init output magnitude
 while (1)                          //infinite loop
 {
  for( i = 0 ; i < N ; i++ )
   {
    x[i].re = (float)((short)input_left_sample()); //get input
    x[i].im = 0.0;                  //zero imaginary part
    if(i==0) output_sample(32000);  //negative spike for reference
    else
     output_left_sample((short)Xmag[i]); //output magnitude
   }
  cfftr2_dit(x, W, N );             //TI floating-pt complex FFT
  digitrev_index(iData, N, RADIX);  //produces index for bitrev()
  bitrev(x, iData, N);              //bit-reverse x
  for (i =0; i<N; i++)
    Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im)/32; //mag X
 }
}

    FIGURE 6.31.     FFT program with real - time input using TI ’ s optimized complex FFT 
function ( FFTr2.c ).  
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implements this project. The same FFT support fi les are used as in  Example 6.6   , 
that is, TI ’ s radix - 2 optimized FFT function ( cfftr2_dit ), the function for generat-
ing the index for bit reversal ( digitrev_index ), and the function for the bit - rever-
sal procedure ( bitrev ). Since the FFT function assumes that the twiddle constants 
are in reverse order while the input data are in normal order, the index generation 
and bit reversal associated with the twiddle constants are performed (as in  Example 
6.6   ) before the complex FFT function is invoked.   

 Build this project as  FFTr2 . Input a 2 - kHz sinusoidal signal with an amplitude of 
approximately 2   V p - p and verify the results shown in Figure  6.32 . These results are 
similar to those in  Example 6.4  except that in this case  N    =   256.   

 A project application in Chapter  10  makes use of this example to display a 
spectrum to a bank of LEDs connected to the DSK through the EMIF 80 - pin 
connector.

Example 6.8: Radix-4 FFT of Real -Time Input Using TI ’s C Callable 
Optimized FFT Function ( FFTr4)

 Figure  6.33  shows the C source program  FFTr4.c  that calls a radix - 4 FFT function 
to take the FFT of a real - time input signal.   

 Build this project as  FFTr4 . Input a 2 - kHz sinusoidal signal with an amplitude of 
approximately 2   V p - p. Verify an output similar to that shown in Figure  6.34 . These 
results are similar to those obtained with the radix - 2 FFT function in  Example 6.7 .     

6.8.2 Fast Convolution 

 A major use of frame - based processing and of the FFT is the effi cient implementa-
tion of FIR fi lters. 

FIGURE 6.32.     Output waveform generated by program  FFTr2.c .  
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    FIGURE 6.33.     FFT program that calls TI ’ s optimized radix - 4 FFT function using real - time 
input ( FFTr4.c ).  

//FFTr4.c FFT using TI optimized FFT function and real-time input

#include "dsk6713_aic23.h"   //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include <math.h>
#define N 256                       //no of complex FFT points
unsigned short JIndex[4*N];         //index for digit reversal
unsigned short IIndex[4*N];         //index for digit reversal
int i, count;
float Xmag[N];                      //magnitude spectrum of x
typedef struct Complex_tag {float re,im;}Complex;
Complex W[3*N/2];                   //array for twiddle constants
Complex x[N];                       //N complex data values
double delta = 2*3.14159265359/N;
#pragma DATA_ALIGN(x,sizeof(Complex)); //align x on boundary
#pragma DATA_ALIGN(W,sizeof(Complex)); //align W on boundary

void main()
{
 R4DigitRevIndexTableGen(N,&count,IIndex,JIndex); //for digit rev
 for(i = 0; i < 3*N/4; i++)
  {
   W[i].re = cos(delta*i);          //real component of W
   W[i].im = sin(delta*i);          //Im component of W
  }
 comm_poll();                       //init DSK, codec, McBSP
 for(i=0; i<N; i++)
 Xmag[i] = 0;                       //init output magnitude
 while (1)                          //infinite loop
 {
  output_left_sample(32000);        //-ve spike for reference
  for( i = 0 ; i < N ; i++ )
  {
   x[i].re = (float)((short)input_left_sample()); //get input
   x[i].im = 0.0;                   //zero imaginary part
   if(i>0) output_left_sample((short)Xmag[i]);//output magnitude
  }
  cfftr4_dif(x, W, N);              //radix-4 FFT function
  digit_reverse((double *)x,IIndex,JIndex,count);//unscramble
  for (i =0; i<N; i++)
   Xmag[i] = -sqrt(x[i].re*x[i].re+x[i].im*x[i].im)/32; //mag X
 }
}
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    FIGURE 6.34.     Output waveform generated by program  FFTr4.c .  

  Note that in the following examples, the number of samples in a frame is desig-
nated  PTS/2  and the number of coeffi cients in an FIR fi lter is designated  N .  

  Example 6.9:   Frame - Based Implementation of  FIR  Filters Using 
Time - Domain Convolution ( timeconvdemo ) 

 Program  timeconvdemo.c , listed in Figure  6.35 , illustrates frame - based implemen-
tation of an FIR fi lter.   

 The operation of an FIR fi lter is described by the convolution sum

      y n h i x n i
i

N

( ) ( ) ( )= −
=

−

∑
0

1

    (6.42)  

  where  h ( i ) is the  i th out of  N  fi lter coeffi cients and  x ( n ) is the  n th input sample. In 
a sample - by - sample implementation, the  n th output sample  y ( n ) is computed at the 
 n th sampling instant using the convolution sum and a store of past input samples. 
In a frame - based approach the convolution sum is applied to a frame of  PTS/2  
samples every  PTS/2  sampling instants. 

 The result of convolving a length  PTS/2  sequence of input samples with a length 
 N  sequence of fi lter coeffi cients is a length ( PTS/2    +    N     −    1) sequence of output 
samples. That is a response (output sequence) that is longer than the frame of  PTS/2  
input samples from which it was computed and, as it stands, the basic frame process-
ing mechanism used in programs  frames.c ,  dft128c.c , and  fft128c.c  cannot be 
used. That was suited to situations in which each frame of input samples could be 
processed independently of the frames immediately preceding and succeeding it. 

 The solution to this problem is to store the section of the response that 
extends beyond the  PTS/2  samples of the current frame and to add that section 
of the response to the output computed during processing of the next frame of 
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      FIGURE 6.35.     Program illustrating frame - based implementation of FIR fi lter using time -
 domain convolution ( timeconvdemo.c ).  

//timeconvdemo.c overlap-add convolution demonstration program

#include <math.h>
#include <stdio.h>
#include "lp55f.cof"               //low pass filter coeffs
#define PI 3.14159265358979
#define PTS 128                    //frame size is PTS/2

float coeffs[PTS/2];               //zero-padded filter coeffs
float A[PTS], B[PTS], C[PTS];      //buffers
float *input_ptr, *output_ptr, *temp_ptr, *process_ptr;
float result[PTS];                 //temporary storage
char in_buffer, proc_buffer, out_buffer, temp_buffer;
short  i;
int wt = 0;

// convolution function - z = conv(x,y)
void conv(float *x, float *y, float *z, int n)
{
  int i, n_lo, n_hi;
  float *xp, *yp;
  for(i=0;i<(2*n-1);i++)
  {
    *z=0.0;
    n_lo=i-(n)+1;
    if(n_lo<0)n_lo=0;
    n_hi=i;
    if(n_hi>(n-1))n_hi=(n-1);
    for(xp=x+n_lo,yp=y+i-n_lo;xp<=x+n_hi;xp++,yp--)
      *z+=*xp * *yp;
    z++;
  }
  *z=0.0;                          //final value in result array
}

main()
{
  input_ptr = A;                   //initialise pointers
  output_ptr = B;
  process_ptr = C;
  in_buffer = 'A';                 //initialise names of buffers
  out_buffer = 'B';                //for diagnostic messages
  proc_buffer = 'C';

  for (i=0 ; i<PTS/2 ; i++) coeffs[i] = 0.0; //zero pad filter
  for (i=0 ; i<N ; i++) coeffs[i] = h[i];    //in array coeffs

  for (i=0 ; i<PTS ; i++)          //zero all buffer contents
  {  
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    *(output_ptr + i) = 0.0;
    *(process_ptr + i) = 0.0;
    *(input_ptr + i) = 0.0;
  }
  while (1)                        //loop forever
  {
    conv(process_ptr,coeffs,result,PTS/2); //convolve contents
    for (i=0 ; i<PTS ; i++)                //of process buffer
      *(process_ptr+i)=*(result+i);        //with filter coeffs
    for (i=0 ; i<PTS/2 ; i++)              //read new input
    {
      *(input_ptr + i) = (float)(sin(2*PI*wt/50))
                         + 0.25*sin(2*PI*wt/3);
      wt++;
    }
    printf("convolution completed in process buffer (%c)\n"
           ,proc_buffer);
    printf("new input samples read into input buffer (%c)\n"
           ,in_buffer);
    printf("output written from first part");
    printf(" of output buffer (%c)\n",out_buffer);
    printf("\n");                  //insert breakpoint here
    for (i=0 ; i<PTS/2 ; i++)      //add overlapping output
    {                              //sections in process buffer
      *(process_ptr + i) += *(output_ptr + i + PTS/2);
    }
 printf("second part of output buffer (%c) ", out_buffer);
 printf("has been added to first part");
 printf(" of process buffer (%c)\n",proc_buffer);
    printf("\n");                  //insert breakpoint here
    temp_ptr = process_ptr;        //rotate input, output,
    process_ptr = input_ptr;       //and process buffers
    input_ptr = output_ptr;
    output_ptr = temp_ptr;
    temp_buffer = proc_buffer;     //rotate names of buffer
 proc_buffer = in_buffer;
 in_buffer = out_buffer;
 out_buffer = temp_buffer;
 printf("buffer pointers rotated - ");
 printf("for next section of input\n");
 printf("input buffer is (%c), process buffer is (%c)"
        , in_buffer, proc_buffer);
 printf(", output buffer is (%c)\n", out_buffer);
 printf("\n");
  }                                // end of while(1)
}                                  //end of main()

FIGURE 6.35. (Continued)
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T U V W X
PTS/2

convolution of input section
T to U with filter coefficients

input x(n)

output y(n)

convolution of input section
U to V with filter coefficients

convolution of input section
V to W with filter coefficients

    FIGURE 6.37.     Overlapping sections of output samples, corresponding to successive frames 
of input samples are summed to form a continuous output sequence.  

input samples. Two alternative forms of this approach are named  overlap - save  and 
 overlap - add . Program  timeconvdemo.c  illustrates the overlap - add approach. 

 The basic mechanism of frame - based, overlap - add, FIR fi ltering is illustrated in 
Figures  6.36  and  6.37 . Successive  PTS / 2  - sample sections of the input sequence  x ( n ) 
are convolved with the FIR fi lter coeffi cients (zero - padded to length  PTS / 2 ) to 
produce overlapping sections of the output sequence  y ( n ). Each overlapping con-
volution result contains ( PTS     −    1) samples. The overlapping sections are summed, 
point by point, to form the overall output sequence  y ( n ).     

 The complementary overlap - save method achieves the same result by convolving 
overlapping sections of the input sequence  x ( n ) with the fi lter coeffi cients and dis-
carding parts of the result. 

    FIGURE 6.36.     Convolution of one frame of  PTS / 2  input samples and  N  fi lter coeffi cients 
(zero - padded to length  PTS / 2 ) results in length ( PTS     −    1) section of output samples.  

PTS/2 input samples

*

N FIR filter coefficients
(zero-padded to length PTS/2)

PTS – 1 output samples
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A[PTS]

B[PTS]

C[PTS]

input_ptr

output ptr

process_ptr

    FIGURE 6.38.     Contents of buffers  A ,  B , and  C  at instant  X  in Figure  6.37 .  

 Using the triple - buffering technique introduced in  Example 6.3 , it is convenient 
to use three buffers each of length  PTS  samples, each capable of storing a length 
( PTS     −    1) convolution result. The roles of the three buffers are exchanged after each 
new frame of  PTS / 2  input samples has been collected. 

 At the same time as  PTS / 2  input samples are being collected and stored in one 
buffer (input buffer), and a previously collected set of  PTS / 2  input samples is being 
convolved with the fi lter coeffi cients to give a length ( PTS     −    1) response (process 
buffer), the overlapping sum of  PTS / 2  samples from two previously computed con-
volution operations are output. 

 Assuming the use of three  PTS  - sample buffers  A ,  B , and  C  and three pointers 
 input_ptr ,  process_ptr , and  output_ptr  (as in program  timeconvdemo.c ), 
Figure  6.38  shows the contents of those buffers corresponding to Figure  6.37  at 
instant  X , just prior to exchanging pointer values. Over the previous  PTS / 2  sampling 
instants: 

  1.      PTS / 2  input samples (section  W  to  X ) have been stored in the fi rst  PTS / 2  ele-
ments of buffer  A  (pointed to by  input_ptr ).  

  2.      PTS / 2  previously collected input samples (section  V  to  W ) have been con-
volved with the fi lter coeffi cients and the result stored in the  PTS  elements of 
buffer  C  (pointed to by  process_ptr ).  

  3.      PTS / 2  samples have been output, formed by summing values from the 
fi rst  PTS / 2  values stored in buffer  B  (pointed to by  output_ptr ) and the 
second  PTS / 2  values stored in buffer  A .      

 The buffer contents at instant  X  are: 

  1.      buffer  A   ( input_ptr )  PTS / 2  input samples (section  W  to  X ) and the last  PTS / 2  
samples of the convolution result corresponding to input samples in section  T  
to  U .  
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    FIGURE 6.39.     Contents of buffers  A ,  B , and  C  at instant  Y  in Figure  6.37 .  

  2.      buffer  B   ( output_ptr ) length ( PTS     −    1) convolution result corresponding to 
input samples in section  U  to  V .  

  3.      buffer  C   ( process_ptr ) length ( PTS     −    1) convolution result corresponding to 
input samples in section  V  to  W .    

 At this point the pointer values are exchanged so that the new value of  output_ptr  
is equal to the old value of  process_ptr , the new value of  process_ptr  is equal 
to the old value of  input_ptr , and the new value of  input_ptr  is equal to the old 
value of  output_ptr . 

 Figure  6.39  shows the buffer contents corresponding to Figure  6.37   PTS / 2  sam-
pling instants later at instant  Y , just prior to exchanging pointer values. Over the 
previous  PTS / 2  sampling instants: 

  1.      PTS / 2  input samples (section  X  to  Y ) have been stored in the fi rst  PTS / 2  ele-
ments in buffer  B  (pointed to by  input_ptr ).  

  2.      PTS / 2  previously collected input samples (section  W  to  X ) have been con-
volved with the fi lter coeffi cients and the result stored in the  PTS  elements of 
buffer  A  (pointed to by  process_ptr ).  

  3.      PTS / 2  samples have been output, formed by summing values from the 
fi rst  PTS / 2  values stored in buffer  C  (pointed to by  output_ptr ) and the 
second  PTS / 2  values stored in buffer  B .      

 The buffer contents at instant  Y  are: 

  1.      buffer  A   ( process_ptr ) length  PTS  convolution result corresponding to input 
samples in section  W  to  X .  

  2.      buffer  B   ( input_ptr )  PTS / 2  input samples (section  X  to  Y ) and the last  PTS / 2  
samples of the convolution result corresponding to input samples in section 
 U  to  V .  

  3.      buffer  C   ( output_ptr ) length  PTS  convolution result corresponding to input 
samples in section  V  to  W .    
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 Between instants  X  and  Y  ( PTS / 2  sampling instants) the contents of buffer  C  and 
the second half of buffer B  have not changed. Meanwhile, the fi rst  PTS / 2  samples 
in buffer B  have been overwritten with new input samples and the  PTS  samples in 
buffer A  have been replaced by a new convolution result. 

 The process is illustrated by program  timeconvdemo.c , which applies a lowpass 
fi lter to an internally generated input signal comprising the sum of two sinusoids of 
different frequencies. 

 Select  File→ Workspace → Load Workspace  and open the fi le  timeconvdemo.wks
(in folder timeconvdemo ). Note that the saved workspace fi le will load correctly 
only if folder timeconvdemo  is stored in folder  c:\CCStudio_v3.1\MyProjects . 
Load and Run timeconvdemo.out . Ignore any warning messages warning that 
identifi ers  A ,  B , and  C  have not been found, and close the  Disassembly  window that 
appears. A number of breakpoints have been set so that the evolution of the con-
tents of buffers A ,  B , and  C  can be observed. Repeatedly clicking on the running man 
will step through the program from breakpoint to breakpoint. At each breakpoint 
the Graphical Display  of the contents of each of the three buffers is updated and 
explanatory messages are displayed in the Stdout  window. The Code Composer 
window should appear as shown in Figure  6.40 .   

FIGURE 6.40.     CCS window during execution of program  timeconvdemo.c .  
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 The fi lter implemented is a lowpass fi lter with a cutoff frequency of 2   kHz and a test 
input signal comprising the sum of 160 - Hz and 2667 - Hz sinusoids is used. The expected 
output signal is a sinusoid of frequency 160   Hz. In this example,  PTS    =   128 and  N    =   55. 
Each frame consists of PTS / 2    =   64 samples and each buffer is of length 128. 

 You should see successive frames of  PTS / 2  input values (recognizable as the sum 
of low and high frequency sinusoids) appear in each buffer in turn. As the next 
buffer in sequence is being fi lled with input samples, the most recently collected 
frame of PTS / 2  input samples is convolved with the  N  fi lter coeffi cients, zero - padded 
to length PTS / 2 . Function  conv()  zero - pads the ( PTS     −    1) result of the convolution 
operation to length PTS .  

Example 6.10: Real-Time Frame -Based Implementation of FIR Filters 
Using Time -Domain Convolution ( timeconv)

 Program  timeconv.c  combines the frame - based fi ltering operation of 
timeconvdemo.c  with the real - time mechanism of  frames.c  in order to implement 
frame - based FIR fi ltering in real - time (Figure  6.41 ).   

 Build the project as  timeconv . Load and Run program  timeconv.out  and use 
a signal generator and oscilloscope to verify its operation as a lowpass fi lter.  

Example 6.11: Frame-Based Implementation of FIR Filters Using 
Frequency-Domain Convolution ( fastconvdemo)

 The FFT provides an alternative method of implementing frame - based FIR fi lters. 
Its advantage is that it is computationally more effi cient for long fi lters. 

 Program  fastconvdemo.c , listed in Figure  6.42 , is functionally equivalent to 
program timeconvdemo.c . The same frame - based, overlap - add technique is used 
but instead of computing the length PTS  overlapping output sections using the 
convolution sum, the fi lter coeffi cients and  PTS / 2  sample sections of input sequence 
are transformed into the frequency domain using the FFT, multiplied together point 
by point, and the result transformed back to the time domain using the inverse FFT. 
A number of changes to program timeconvdemo.c  are necessary in order to accom-
modate this procedure. Although the input to and output from the fi lter in this 
example comprise real - valued samples, the FFT operates on complex data and 
therefore all three buffers used are declared to be of type COMPLEX .   

 By setting up  Graphical Display  windows showing the real parts of the 
three COMPLEX  buffers and placing breakpoints at the lines indicated in 
fastconvdemo.c , the operation of the program can be followed. As in  Example 
6.10 , a Code Composer workspace fi le is provided in order to set up the  Graphical
Display  windows and breakpoints. 

 Select  File→ Workspace → Load Workspace  and open the fi le  fastconvdemo.wks
(in folder fastconvdemo ). Load and Run  fastconvdemo.out . Ignore any warning 
messages warning that identifi ers  A ,  B , and  C  have not been found, and close the  Dis-
assembly  window that appears. A number of breakpoints have been set so that the 
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//timeconv.c

#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "lp55f.cof"

#include <math.h>
#define PI 3.14159265358979
#define PTS 128

short buffercount = 0;             //index into frames
short bufferfull=0;
float A[PTS], B[PTS], C[PTS];      //three buffers used
float coeffs[PTS];                 //zero padded filter coeffs
float *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
float result[PTS];                 //temporary storage

interrupt void c_int11(void)       //ISR
{
  output_left_sample((short)(*(output_ptr + buffercount)));
  *(input_ptr + buffercount++) = (float)(input_left_sample());
  if (buffercount >= PTS/2)
  {
    bufferfull = 1;
    buffercount = 0;
  }
}

// convolution function - z = conv(x,y)
void conv(float *x, float *y, float *z, int n)
{
  int i, n_lo, n_hi;
  float *xp, *yp;

  for(i=0;i<(2*n-1);i++)
  {
    *z=0.0;
    n_lo=i-(n)+1;
    if(n_lo<0)n_lo=0;
    n_hi=i;
    if(n_hi>(n-1))n_hi=(n-1);
    for(xp=x+n_lo,yp=y+i-n_lo;xp<=x+n_hi;xp++,yp--)
      *z+=*xp * *yp;
    z++;
  }
  *z=0.0;                          //final value in result array
}

       FIGURE 6.41.     Real - time frame - based FIR program using time - domain convolution ( time-
conv.c ).  
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void main()
{
  int i;
  for (i=0 ; i<PTS/2 ; i++) coeffs[i] = 0.0; //zero pad filter
  for (i=0 ; i<N ; i++) coeffs[i] = h[i];    //in array coeffs
  input_ptr = A;                   //initialise pointers
  output_ptr = B;
  process_ptr = C;
  comm_intr();
  while(1)                         //frame processing loop
  {
    while (bufferfull == 0);       //wait for buffer full
    bufferfull = 0;
    temp_ptr = process_ptr;
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;
    conv(process_ptr,coeffs,result,PTS/2); //convolve contents
    for (i=0 ; i<PTS ; i++)                //of process buffer
      *(process_ptr+i)=*(result+i);        //with filter coeffs
    for (i=0 ; i<PTS/2 ; i++)      //add overlapping output
    {                              //sections in process buffer
      *(process_ptr + i) += *(output_ptr + i + PTS/2);
    } 
  }                                //end of while
}                                  //end of main()

FIGURE 6.41. (Continued)

evolution of the contents of buffers  A ,  B , and  C  can be observed. Repeatedly clicking 
on the running man will step through the program from breakpoint to breakpoint. 
At each breakpoint the  Graphical Display  of the contents of each of the three buffers 
is updated and explanatory messages are displayed in the  Stdout  window. 

 The basic difference between program  fastconvdemo.c  and program  timecon-
vdemo.c  is the method used to compute the overlapping sections of output samples. 
The triple - buffering and overlap - add mechanisms used by the two programs are 
identical. The FFT method of convolution comprises more distinct stages than time -
 domain convolution and breakpoints have been placed so that the buffer contents 
after each stage are displayed. Figure  6.43  illustrates the stage at which a sequence of 
zero - padded input samples in the process buffer ( B ) have just been transformed into 
the frequency domain. Although only the real part of the frequency - domain repre-
sentation is displayed, it is possible to discern two distinct frequency components 
corresponding to the 160 - Hz and 2667 - Hz sine waves that make up the input signal.    

  Example 6.12:   Real - Time Frame - Based Fast Convolution ( fastconv ) 

 This program (Figure  6.44 ) is the functional equivalent of  timeconv.c  but uses the 
FFT method of convolution used in program  fastconvdemo.c . Build the project 
as   fastconv   and verify the implementation of a lowpass fi lter. The program has 
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        FIGURE 6.42.     Program illustrating frame - based implementation of FIR fi lter using fast 
convolution ( fastconvdemo.c ).  

//fastconvdemo.c overlap-add convolution demonstration program

#include <math.h>
#include <stdio.h>
#include "lp55f.cof"               //time domain FIR coefficients
#define PI 3.14159265358979

#define PTS 128                    //number of points used in FFT
#define FREQHI 2666.67
#define FREQLO 156.25
#define SAMPLING_FREQ 8000

#include "fft.h"

short buffercount = 0;             //no of new samples in buffer
COMPLEX twiddle[PTS];              //twiddle factors stored in w
COMPLEX coeffs[PTS];               //zero padded freq coeffs
COMPLEX A[PTS], B[PTS], C[PTS];
short i;                           //general purpose index
float a,b;                         //used in complex multiply
COMPLEX *input_ptr, *output_ptr, *temp_ptr, *process_ptr;
char in_buffer, proc_buffer, out_buffer, temp_buffer;
int wt = 0;

main()
{
  input_ptr = A;                   //initialise pointers
  output_ptr = B;
  process_ptr = C;
  in_buffer = 'A';                 //initialise names of buffers
  out_buffer = 'B';                //for diagnostic messages
  proc_buffer = 'C';

  for (i=0 ; i<PTS ; i++)          //set up twiddle factors
  {
    twiddle[i].real = cos(PI*(i)/PTS);
    twiddle[i].imag = -sin(PI*(i)/PTS);
  }
  for (i=0 ; i<PTS ; i++)          //set up freq domain coeffs
  {
    coeffs[i].real = 0.0;
    coeffs[i].imag = 0.0;
  }
  for (i=0 ; i<N ; i++)
  {
    coeffs[i].real = h[i];
  }
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  fft(coeffs,PTS,twiddle);         //transform filter coeffs
                                   //to freq domain
  for (i=0 ; i<PTS ; i++)          //zero all buffer contents
    {
      (output_ptr + i)->real = 0.0;
      (output_ptr + i)->imag = 0.0;
      (process_ptr + i)->real = 0.0;
      (process_ptr + i)->imag = 0.0;
      (input_ptr + i)->real = 0.0;
      (input_ptr + i)->imag = 0.0;
    }
while (1)
{
    for(i=0 ; i< PTS ; i++)
      (process_ptr + i)->imag = 0.0;
    for(i=PTS/2 ; i< PTS ; i++)
      (process_ptr + i)->real = 0.0;
    fft(process_ptr,PTS,twiddle);  //transform samples into
                                   //frequency domain
    printf("frequency domain representation of ");
    printf("zero padded input data");
    printf(" in process buffer (%c) \n", proc_buffer);
    printf("\n");                  //insert breakpoint
    for (i=0 ; i<PTS ; i++)        //filter in frequency domain
    {                              //i.e. complex multiply
      a = (process_ptr + i)->real; //samples by coeffs
      b = (process_ptr + i)->imag;
      (process_ptr + i)->real = coeffs[i].real*a
                                - coeffs[i].imag*b;
      (process_ptr + i)->imag = -(coeffs[i].real*b
                                + coeffs[i].imag*a);
    }
    printf("frequency domain result of ");
    printf("multiplying by filter response");
    printf(" in process buffer (%c) \n", proc_buffer);
    printf("\n");                  //insert breakpoint
    fft(process_ptr,PTS,twiddle);
    for (i=0 ; i<PTS ; i++)
    {
      (process_ptr + i)->real /= PTS;
      (process_ptr + i)->imag /= -PTS;
    }
    printf("time domain result of processing now");
    printf(" in process buffer (%c) \n", proc_buffer);
    printf("\n");                  //insert breakpoint

FIGURE 6.42. (Continued)
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    for (i=0 ; i<PTS/2 ; i++)      //read new input into buffer
    {
      (input_ptr + i)->real =
        (float)(sin(2*PI*wt*FREQLO/SAMPLING_FREQ))
        + 0.25*sin(2*PI*wt*FREQHI/SAMPLING_FREQ);
      wt++;
    }
    printf("new input samples read into input buffer ");
    printf("(%c)\n",in_buffer);
    printf("output written from first part of output buffer ");
    printf("(%c)\n",out_buffer);
    printf("\n");                  //insert breakpoint here

    for (i=0 ; i<PTS/2 ; i++)      //overlap add (real part only)
    {
      (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
    }
    printf("second part of output buffer (%c) ", out_buffer);
    printf("has been added to first part of process buffer ");
    printf("(%c)\n", proc_buffer);
    printf("\n");                  //insert breakpoint here

    temp_ptr = process_ptr;        //rotate input, output
    process_ptr = input_ptr;       //and process buffers
    input_ptr = output_ptr;
    output_ptr = temp_ptr;
    temp_buffer = proc_buffer;     //rotate names of buffer
    proc_buffer = in_buffer;
    in_buffer = out_buffer;
    out_buffer = temp_buffer;
    printf("buffer pointers rotated - ");
    printf("for next section of input\n");
    printf("input buffer is (%c)", in_buffer);
    printf(" process buffer is (%c)", proc_buffer);
    printf(", output buffer is (%c)\n", out_buffer);
    printf("\n");
  }                                // end of while(1)
}                                  //end of main() 

FIGURE 6.42. (Continued)

been written so that different FIR fi lter coeffi cient ( .cof ) fi les can be used simply 
by changing the line that reads

 #include  “ lp55f.cof ”     

 Note that the maximum possible value of  N  (the number of fi lter coeffi cients) is 
 PTS / 2 . For longer FIR fi lter impulse responses, the value of PTS will have to be 
increased by changing the line that reads

 #defi ne PTS 128   
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FIGURE 6.43.     Code Composer window during execution of program  fastconvdemo.c .  

Example 6.13: Graphic Equalizer ( graphicEQ)

 Figure  6.45  shows a listing of the program  graphicEQ.c , which implements a three -
 band graphic equalizer. TI ’ s fl oating - point complex radix - 2 FFT and IFFT support 
functions are used again in this project (see also Examples  6.5  and  6.6 ). The coeffi -
cient fi le  graphicEQcoeff.h  contains three sets of coeffi cients: lowpass at 1.3   kHz, 
bandpass between 1.3 and 2.6   kHz, and highpass at 2.6   kHz, designed with MAT-
LAB ’ s function  fir1 . Both the input samples and the three sets of coeffi cients are 
transformed into the frequency domain. The fi ltering is performed in the frequency 
domain based on the overlap - add scheme used in Examples  6.9 – 6.12   [15, 16]   . Note 
that an alternative arrangement to the triple buffering used in those examples has 
been employed.   

 An array of  PTS / 2  fl oating - point values,  iobuffer , is used for both input and 
output. New input samples replace previously computed output samples as they are 
written to the DAC. Once iobuffer  has been fi lled with  PTS / 2  new input samples, 
these are copied to an intermediate buffer (array samples ) and replaced by  PTS / 2
output samples. Build this project as graphicEQ  (use the optimization level  - o1). 
Test the project using music or wideband noise as an input. 
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//fastconv.c

#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include "lp55f.cof"

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define PTS 128

short buffercount = 0;             //index into frames
short bufferfull=0;
COMPLEX A[PTS], B[PTS], C[PTS];    //three buffers used
COMPLEX twiddle[PTS];              //twiddle factors
COMPLEX coeffs[PTS];               //zero padded freq coeffs
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
float a,b;                         //used in complex multiply

interrupt void c_int11(void)       //ISR
{
  output_left_sample((short)((output_ptr + buffercount)->real));
  (input_ptr + buffercount)->real = (float)(input_left_sample());
  (input_ptr + buffercount++)->imag = 0.0;
  if (buffercount >= PTS/2)
  {
    bufferfull = 1;
    buffercount = 0;
  }
}

void main()
{
  int n,i;
  for (n=0 ; n<PTS ; n++)          //set up twiddle factors
  {
    twiddle[n].real = cos(PI*n/PTS);
    twiddle[n].imag = -sin(PI*n/PTS);
  }
  for (n=0 ; n<PTS ; n++)          //set up freq domain coeffs
  { 
    coeffs[n].real = 0.0;
    coeffs[n].imag = 0.0;
  }
  for (n=0 ; n<N ; n++)
  {
    coeffs[n].real = h[n]; 

      FIGURE 6.44.     Real - time frame - based FIR program using fast convolution ( fastconv.c ).  
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  }
  fft(coeffs,PTS,twiddle);         //transform filter coeffs
                                   //to freq domain
  input_ptr = A;                   //initialise frame pointers
  process_ptr = B;
  output_ptr = C;
  comm_intr();
  while(1)                         //frame processing loop
  {
    while (bufferfull == 0);       //wait for buffer full
    bufferfull = 0;
    temp_ptr = process_ptr;
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;

    for (i=0 ; i< PTS ; i++) (process_ptr + i)->imag = 0.0;
    for (i=PTS/2 ; i< PTS ; i++) (process_ptr + i)->real = 0.0;
    fft(process_ptr,PTS,twiddle);  //transform samples
                                   //into frequency domain
    for (i=0 ; i<PTS ; i++)        //filter in frequency domain
    {                              //i.e. complex multiply
      a = (process_ptr + i)->real; //samples by coeffs
      b = (process_ptr + i)->imag;
      (process_ptr + i)->real = coeffs[i].real*a
                                - coeffs[i].imag*b;
      (process_ptr + i)->imag = -(coeffs[i].real*b
                                + coeffs[i].imag*a);
    }
    fft(process_ptr,PTS,twiddle);
    for (i=0 ; i<PTS ; i++)
    {
      (process_ptr + i)->real /= PTS;
      (process_ptr + i)->imag /= -PTS;
    }
    for (i=0 ; i<PTS/2 ; i++)      //overlap add (real part only)
    {
      (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
    }
  }                                // end of while
}                                  //end of main()

FIGURE 6.44. (Continued)

 Verify that the low and high frequency components are accentuated, while the 
midrange frequency components are attenuated. This is because the fi lter coeffi -
cients are scaled in the program by  bass_gain  and  treble_gain , initially set to 1, 
and by  mid_gain , initially set to 0. The slider fi le  graphicEQ.gel  allows you to 
control the three frequency bands independently. Figure  6.46  shows the output 
spectrum obtained with a signal analyzer using noise as input and three different 
gain settings.      
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      FIGURE 6.45.     Equalizer program using TI ’ s fl oating - point FFT support functions 
( graphicEQ.c ).    

//graphicEQ.c Graphic Equalizer using TI floating-point FFT functions

#include "DSK6713_AIC23.h"  //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;  //set sampling rate
#include <math.h>
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; // select mic in
#include "GraphicEQcoeff.h"       //time-domain FIR coefficients
#define PI 3.14159265358979
#define PTS 256                   //number of points for FFT
//#define SQRT_PTS 16
#define RADIX 2
#define DELTA (2*PI)/PTS
typedef struct Complex_tag {float real,imag;} COMPLEX;
#pragma DATA_ALIGN(W,sizeof(COMPLEX))
#pragma DATA_ALIGN(samples,sizeof(COMPLEX))
#pragma DATA_ALIGN(h,sizeof(COMPLEX))
COMPLEX W[PTS/RADIX] ;      //twiddle array
COMPLEX samples[PTS];
COMPLEX h[PTS];
COMPLEX bass[PTS], mid[PTS], treble[PTS];
short buffercount = 0;            //buffer count for iobuffer samples
float iobuffer[PTS/2];            //primary input/output buffer
float overlap[PTS/2];      //intermediate result buffer
short i;                          //index variable
short flag = 0;                   //set to indicate iobuffer full
float a, b;                       //variables for complex multiply
short NUMCOEFFS = sizeof(lpcoeff)/sizeof(float);
short iTwid[PTS/2] ;
float bass_gain = 1.0;            //initial gain values
float mid_gain = 0.0;             //change with GraphicEQ.gel
float treble_gain = 1.0;

interrupt void c_int11(void)      //ISR
{
 output_left_sample((short)(iobuffer[buffercount]));
 iobuffer[buffercount++] = (float)((short)input_left_sample());
 if (buffercount >= PTS/2)        //for overlap-add method iobuffer
  {                               //is half size of FFT used
   buffercount = 0;
   flag = 1;
  }
}

main()
{
 digitrev_index(iTwid, PTS/RADIX, RADIX);
 for( i = 0; i < PTS/RADIX; i++ )
  {
   W[i].real = cos(DELTA*i);
   W[i].imag = sin(DELTA*i);
  }
 bitrev(W, iTwid, PTS/RADIX);     //bit reverse W

 for (i=0 ; i<PTS ; i++)
  {
   bass[i].real = 0.0;
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   bass[i].imag = 0.0;
   mid[i].real = 0.0;
   mid[i].imag = 0.0;
   treble[i].real = 0.0;
   treble[i].imag = 0.0;
  }
 for (i=0; i<NUMCOEFFS; i++)      //same # of coeff for each filter
  {
   bass[i].real = lpcoeff[i];     //lowpass coeff
   mid[i].real =  bpcoeff[i];     //bandpass coeff
   treble[i].real = hpcoeff[i];   //highpass coef
  }

 cfftr2_dit(bass,W,PTS);          //transform each band
 cfftr2_dit(mid,W,PTS);     //into frequency domain
 cfftr2_dit(treble,W,PTS);

 comm_intr();                     //initialise DSK, codec, McBSP
 while(1)         //frame processing infinite loop
  {
   while (flag == 0);             //wait for iobuffer full
          flag = 0;
   for (i=0 ; i<PTS/2 ; i++)      //iobuffer into samples buffer
    {
     samples[i].real = iobuffer[i];
     iobuffer[i] = overlap[i];    //previously processed output
    }         //to iobuffer
   for (i=0 ; i<PTS/2 ; i++)
    {                             //upper-half samples to overlap
     overlap[i] = samples[i+PTS/2].real;
     samples[i+PTS/2].real = 0.0; //zero-pad input from iobuffer
    }
   for (i=0 ; i<PTS ; i++)
     samples[i].imag = 0.0;       //init samples buffer

   cfftr2_dit(samples,W,PTS);

   for (i=0 ; i<PTS ; i++)        //construct freq domain filter
    {                             //sum of bass,mid,treble coeffs
    h[i].real = bass[i].real*bass_gain + mid[i].real*mid_gain
    + treble[i].real*treble_gain;
    h[i].imag = bass[i].imag*bass_gain + mid[i].imag*mid_gain
    + treble[i].imag*treble_gain;
    }
   for (i=0; i<PTS; i++)          //frequency-domain representation
    {                             //complex multiply samples by h
     a = samples[i].real;
     b = samples[i].imag;
     samples[i].real = h[i].real*a - h[i].imag*b;
     samples[i].imag = h[i].real*b + h[i].imag*a;
    }

   icfftr2_dif(samples,W,PTS);

   for (i=0 ; i<PTS ; i++)
      samples[i].real /= PTS;
   for (i=0 ; i<PTS/2 ; i++)      //add 1st half to overlap
      overlap[i] += samples[i].real;
  }                               //end of infinite loop
}                                 //end of main()

FIGURE 6.45. (Continued)
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      FIGURE 6.46.     Output spectrum of a graphic equalizer obtained with a signal analyzer: 
( a )  bass_gain    =    treble_gain    =   1,  mid_gain    =   0; ( b )  bass_gain    =    treble_gain    =   0, 
 mid_gain    =   1; ( c )  bass_gain    =    mid_gain    =   1,  treble_gain    =   0.  

(a)

(b)

(c)



318 Fast Fourier Transform

REFERENCES

   1.       J. W.   Cooley   and   J. W.   Tukey  ,  An algorithm for the machine calculation of complex 
Fourier series , Mathematics of Computation , Vol.  19 , pp.  297  –  301 ,  1965 .  

   2.       J. W.   Cooley  ,  How the FFT gained acceptance , IEEE Signal Processing , pp.  10  –  13 , Jan. 
 1992 .  

   3.       J. W.   Cooley  ,  The structure of FFT and convolution algorithms, from a tutorial , 
IEEE 1990 International Conference on Acoustics, Speech, and Signal Processing , Apr. 
 1990 .  

   4.       C. S.   Burrus   and   T. W.   Parks  ,  DFT/FFT and Convolution Algorithms: Theory and Imple-
mentation ,  Wiley ,  Hoboken, NJ ,  1988 .  

   5.       G. D.   Bergland  ,  A guided tour of the fast Fourier transform ,  IEEE Spectrum , Vol.  6 , 
pp.  41  –  51 ,  1969 .  

   6.       E. O.   Brigham  ,  The Fast Fourier Transform ,  Prentice Hall ,  Upper Saddle River, NJ ,
 1974 .  

   7.       S.   Winograd  ,  On computing the discrete Fourier transform , Mathematics of Computa-
tion , Vol.  32 , pp.  175  –  199 ,  1978 .  

   8.       H. F.   Silverman  ,  An introduction to programming the Winograd Fourier transform 
algorithm (WFTA) , IEEE Transactions on Acoustics, Speech, and Signal Processing , 
Vol.  ASSP - 25 , pp.  152  –  165 , Apr.  1977 .  

   9.       P. E.   Papamichalis  , Ed.,  Digital Signal Processing Applications with the TMS320 Family: 
Theory, Algorithms, and Implementations, Vol. 3 ,  Texas Instruments ,  Dallas, TX ,  1990 .  

  10.       R. N.   Bracewell  ,  Assessing the Hartley transform , IEEE Transactions on Acoustics, 
Speech, and Signal Processing , Vol.  ASSP - 38 , pp.  2174  –  2176 ,  1990 .  

  11.       R. N.   Bracewell  ,  The Hartley Transform ,  Oxford University Press ,  New York ,  1986 .  

  12.       H. V.   Sorensen  ,   D. L.   Jones  ,   M. T.   Heidman  , and   C. S.   Burrus  ,  Real - valued fast Fourier 
transform algorithms , IEEE Transactions on Acoustics, Speech, and Signal Processing , 
Vol.  ASSP - 35 , pp.  849  –  863 ,  1987 .  

  13.       R.   Chassaing  ,  Digital Signal Processing Laboratory Experiments Using C and the 
TMS320C31 DSK ,  Wiley ,  Hoboken, NJ ,  1999 .  

  14.       R.   Chassaing  ,  Digital Signal Processing with C and the TMS320C30 ,  Wiley ,  Hoboken, NJ ,
 1992 .  

  15.       A. V.   Oppenheim   and   R.   Schafer  ,  Discrete - Time Signal Processing ,  Prentice Hall ,  Upper 
Saddle River, NJ ,  1989 .  

  16.       J. G.   Proakis   and   D. G.   Manolakis  ,  Digital Signal Processing: Principles, Algorithms and 
Applications ,  Prentice Hall ,  Upper Saddle River, NJ ,  2002 .   



Adaptive Filters 

319

 •      Adaptive structures  
 •      The linear adaptive combiner  
 •      The least mean squares (LMS) algorithm  
 •      Programming examples for noise cancellation and system identifi cation using 

C code    

 Adaptive fi lters are best used in cases where signal conditions or system parameters 
are slowly changing and the fi lter is to be adjusted to compensate for this change. 
A very simple but powerful fi lter is called the  linear adaptive combiner , which is 
nothing more than an adjustable FIR fi lter. The LMS criterion is a search algorithm 
that can be used to provide the strategy for adjusting the fi lter coeffi cients. Program-
ming examples are included to give a basic intuitive understanding of adaptive 
fi lters.  

7.1 INTRODUCTION

 In conventional FIR and IIR digital fi lters, it is assumed that the process parameters 
to determine the fi lter characteristics are known. They may vary with time, but 
the nature of the variation is assumed to be known. In many practical problems, 
there may be a large uncertainty in some parameters because of inadequate prior 
test data about the process. Some parameters might be expected to change with 
time, but the exact nature of the change is not predictable. In such cases it is highly 
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desirable to design the fi lter to be self - learning so that it can adapt itself to the situ-
ation at hand. 

 The coeffi cients of an adaptive fi lter are adjusted to compensate for changes in 
input signal, output signal, or system parameters. Instead of being rigid, an adaptive 
system can learn the signal characteristics and track slow changes. An adaptive fi lter 
can be very useful when there is uncertainty about the characteristics of a signal or 
when these characteristics change. 

 Conceptually, the adaptive scheme is fairly simple. Most of the adaptive schemes 
can be described by the structure shown in Figure  7.1 . This is a basic adaptive fi lter 
structure in which the adaptive fi lter ’ s output  y  is compared with a desired signal  d  
to yield an error signal  e , which is fed back to the adaptive fi lter. The error signal is 
input to the adaptive algorithm, which adjusts the variable fi lter to satisfy some 
predetermined criteria or rules. The desired signal is usually the most diffi cult one 
to obtain. One of the fi rst questions that probably comes to mind is: Why are we 
trying to generate the desired signal at  y  if we already know it? Surprisingly, in 
many applications the desired signal does exist somewhere in the system or is 
known  a priori . The challenge in applying adaptive techniques is to fi gure out 
where to get the desired signal, what to make the output  y , and what to make the 
error  e .   

 The coeffi cients of the adaptive fi lter are adjusted, or optimized, using an LMS 
algorithm based on the error signal. Here we discuss only the LMS searching algo-
rithm with a linear combiner (FIR fi lter), although there are several strategies for 
performing adaptive fi ltering. The output of the adaptive fi lter in Figure  7.1  is

    y n w n x n kk
k

N

( ) ( ) ( )= −
=

−

∑
0

1

    (7.1)  

where  w k  ( n ) represent  N  weights or coeffi cients for a specifi c time  n . The convolu-
tion equation  (7.1)  was implemented in Chapter  4  in conjunction with FIR fi ltering. 
It is common practice to use the terminology of weights  w  for the coeffi cients associ-
ated with topics in adaptive fi ltering and neural networks. 

 A performance measure is needed to determine how good the fi lter is. This 
measure is based on the error signal,

    e n d n y n( ) ( ) ( )= −     (7.2)  

    FIGURE 7.1.     Basic adaptive fi lter structure.  



which is the difference between the desired signal  d ( n ) and the adaptive fi lter ’ s 
output  y ( n ). The weights or coeffi cients  w k  ( n ) are adjusted such that a mean squared 
error function is minimized. This mean squared error function is  E [ e  2 ( n )], where  E  
represents the expected value. Since there are  k  weights or coeffi cients, a gradient 
of the mean squared error function is required. An estimate can be found instead 
using the gradient of  e  2 ( n ), yielding

    w n w n e n x n k k Nk k( ) ( ) ( ) ( ) , , . . . ,+ = + − = −1 2 0 1 1β     (7.3)  

which represents the LMS algorithm  [1 – 3] . Equation  (7.3)  provides a simple but 
powerful and effi cient means of updating the weights, or coeffi cients, without the 
need for averaging or differentiating, and will be used for implementing adaptive 
fi lters. The input to the adaptive fi lter is  x ( n ), and the rate of convergence and accu-
racy of the adaptation process (adaptive step size) is   b  . 

 For each specifi c time  n , each coeffi cient, or weight,  w k  ( n ) is updated or replaced 
by a new coeffi cient, based on  (7.3) , unless the error signal  e ( n ) is zero. After the 
fi lter ’ s output  y ( n ), the error signal  e ( n ) and each of the coeffi cients  w k  ( n ) are 
updated for a specifi c time  n , a new sample is acquired (from an ADC) and the 
adaptation process is repeated for a different time. Note that from  (7.3) , the weights 
are not updated when  e ( n ) becomes zero. 

 The linear adaptive combiner is one of the most useful adaptive fi lter structures 
and is an adjustable FIR fi lter. Whereas the coeffi cients of the frequency - selective 
FIR fi lter discussed in Chapter  4  are fi xed, the coeffi cients, or weights, of the adap-
tive FIR fi lter can be adjusted based on a changing environment such as an input 
signal. Adaptive IIR fi lters (not discussed here) can also be used. A major problem 
with an adaptive IIR fi lter is that its poles may be updated during the adaptation 
process to values outside the unit circle, making the fi lter unstable. 

 The programming examples developed later will make use of equations  (7.1) –
 (7.3) . In  (7.3)  we simply use the variable   b   in lieu of 2  b  .  

  7.2   ADAPTIVE STRUCTURES 

 A number of adaptive structures have been used for different applications in adap-
tive fi ltering. 

  1.      For noise cancellation .   Figure  7.2  shows the adaptive structure in Figure  7.1  
modifi ed for a noise cancellation application. The desired signal  d  is corrupted 
by uncorrelated additive noise  n . The input to the adaptive fi lter is a noise  n  ′  
that is correlated with the noise  n . The noise  n  ′  could come from the same 
source as  n  but modifi ed by the environment. The adaptive fi lter ’ s output  y  is 
adapted to the noise  n . When this happens, the error signal approaches the 
desired signal  d . The overall output is this error signal and not the adaptive 
fi lter ’ s output  y . If  d  is uncorrelated with  n , the strategy is to minimize  E ( e  2 ), 
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    FIGURE 7.2.     Adaptive fi lter structure for noise cancellation.  

where  E ( ) is the expected value. The expected value is generally unknown; 
therefore, it is usually approximated with a running average or with the instan-
taneous function itself. Its signal component,  E ( d  2 ), will be unaffected and only 
its noise component  E [( n     −     y ) 2 ] will be minimized. A more complete discussion 
is found in Widrow and Stearns  [1] . This structure will be further illustrated 
with programming examples using C code.    

  2.      For system identifi cation .   Figure  7.3  shows an adaptive fi lter structure that can 
be used for system identifi cation or modeling. The same input is to an unknown 
system in parallel with an adaptive fi lter. The error signal  e  is the difference 
between the response of the unknown system  d  and the response of the adap-
tive fi lter  y . This error signal is fed back to the adaptive fi lter and is used to 
update the adaptive fi lter ’ s coeffi cients until the overall output  y    =    d . When 
this happens, the adaptation process is fi nished, and  e  approaches zero. If the 
unknown system is linear and not time varying, then after the adaptation is 
complete, the fi lter ’ s characteristics no longer change. In this scheme, the adap-
tive fi lter models the unknown system. This structure is illustrated later with 
three programming examples.    

  3.      Adaptive predictor .   Figure  7.4  shows an adaptive predictor structure that can 
provide an estimate of an input. This structure is illustrated later with a pro-
gramming example.  

  4.     Additional structures have been implemented, such as:  

     (a)      Notch with two weights , which can be used to notch or cancel/reduce a 
sinusoidal noise signal. This structure has only two weights or coeffi cients. 
It is shown in Figure  7.5  and is illustrated in Refs.  1 ,  3 , and  4 .  

    FIGURE 7.3.     Adaptive fi lter structure for system identifi cation.  



     (b)      Adaptive channel equalization , used in a modem to reduce channel distor-
tion resulting from the high speed of data transmission over telephone 
channels.          

 The LMS is well suited for a number of applications, including adaptive echo and 
noise cancellation, equalization, and prediction. 

 Other variants of the LMS algorithm have been employed, such as the sign – error 
LMS, the sign – data LMS, and the sign – sign LMS. 

  1.     For the sign – error LMS algorithm,  (7.3)  becomes

    w n w n e n x n kk k( ) ( ) sgn[ ( )] ( )+ = + −1 β     (7.4)  

where sgn is the signum function,

    sgn u
u

u
( ) =

− <{ 1 0

1 0

if

if

�
    (7.5)    

  2.     For the sign – data LMS algorithm,  (7.3)  becomes

    w n w n e n x n kk k( ) ( ) ( )sgn[ ( )]+ = + −1 β     (7.6)    

    FIGURE 7.4.     Adaptive predictor structure.  

    FIGURE 7.5.     Adaptive notch structure with two weights.  
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  3.     For the sign – sign LMS algorithm,  (7.3)  becomes

    w n w n e n x n kk k( ) ( ) sgn[ ( )]sgn ( )+ = + −[ ]1 β     (7.7)  

which reduces to

    w n
w n e n x n k

w n
k

k

k

( )
( ) sgn[ ( )] sgn[ ( )]

( )
+ =

+ = −
−{1

β
β

if

otherwise
    (7.8)  

which is more concise from a mathematical viewpoint because no multiplica-
tion operation is required for this algorithm.    

 The implementation of these variants does not exploit the pipeline features of 
the TMS320C6x processor. The execution speed on the TMS320C6x for these vari-
ants can be slower than for the basic LMS algorithm due to additional decision - type 
instructions required for testing conditions involving the sign of the error signal or 
the data sample. 

 The LMS algorithm has been quite useful in adaptive equalizers, telephone can-
celers, and so forth. Other methods, such as the recursive least squares (RLS) algo-
rithm  [4] , can offer faster convergence than the basic LMS but at the expense of 
more computations. The RLS is based on starting with the optimal solution and then 
using each input sample to update the impulse response in order to maintain that 
optimality. The right step size and direction are defi ned over each time sample. 

 Adaptive algorithms for restoring signal properties become useful when an 
appropriate reference signal is not available. The fi lter is adapted in such a way as 
to restore some property of the signal lost before reaching the adaptive fi lter. 
Instead of the desired waveform as a template, as in the LMS or RLS algorithms, 
this property is used for the adaptation of the fi lter. When the desired signal is avail-
able, a conventional approach such as the LMS can be used; otherwise,  a priori  
knowledge about the signal is used.  

  7.3   ADAPTIVE LINEAR COMBINER 

 We will consider one of the most useful adaptive fi lter structures — the linear adap-
tive combiner. Two cases occur when using the linear combiner: (1) multiple inputs 
and (2) a single input. 

     Multiple Inputs 
 The case of multiple inputs is described in Figure  7.6 . The confi guration consists of 
 K  independent input signals, each of which is weighted by  w ( k ) and combined to 
form the output,

    y n w k n x k n
k

K

( ) ( , ) ( , )=
=

∑
0

    (7.9)     



 The input can be represented as a ( K    +   1) - dimensional vector,

    X n x n x n x K n( ) = ⋅ ⋅ ⋅[ ( , ) ( , ) ( , )]0 1 T     (7.10)  

where  n  is the time index and the transpose T is used so that the vector can be 
written on one line.  

  Single Input 
 In the case of a single input, the structure reduces to a ( K    +   1) - tap FIR fi lter with 
adjustable coeffi cients as shown in Figure  7.7 . Each delayed input is weighted and 
summed to produce the output,

    y n w k n x n k
k

K

( ) ( , ) ( )= −
=

∑
0

    (7.11)     

x (0) w (0,n)

x (1) w (1,n) y (n)

x (K ) w (K,n)

+

    FIGURE 7.6.     Linear combiner with multiple inputs.  

x (n)

y (n)

x (n – 1) x (n – 2) x (n – K)

w (0, n) w (1, n) w (1, n) w (K, n)

Z 
–1 Z 

–1 Z 
–1

+

    FIGURE 7.7.     Adaptive linear combiner with single input.  
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x (n)

y (n)

x (n – 1)
Z 

–1

w (0) w (1)

+

 The single input and the weights can also be written as vectors,

    X( ) [ ( ) ( ) ( )]n x n x n x n K= − ⋅ ⋅ ⋅ −1 T     (7.12)  

    W( ) [ ( , ) ( , ) ( , ) ( , )]n w n w n w n w K n= ⋅ ⋅ ⋅0 1 2 T     (7.13)  

where  n  is the time index, which will frequently be dropped from the notation for 
both  w  and  x . 

 Using the vector notation,  (7.11)  is cast as

    y n n n n n( ) ( ) ( ) ( ) ( )= =X W W XT T     (7.14)   

 Equations  (7.9) ,  (7.11) , and  (7.14) , as well as Figures  7.6  and  7.7 , all contain the same 
information. To become more familiar with the notation, let us examine a fi lter with 
two weights and a single input.  

  Exercise 7.1:   Two Weights 

 Verify that equations  (7.11)  and  (7.14)  and Figure  7.8  give the same  y  for a two -
 weight fi lter.    

  Solution 
 For  K    =   1, equation  (7.11)  reduces to

    y n w k n x n k w n x n w n x n
k

( ) ( , ) ( ) ( , ) ( ) ( , ) ( )= − = + −
=

∑
0

1

0 1 1  

    FIGURE 7.8.     Two - weight linear combiner.  



or with the time index  n  implied on the weights,

    y n w x n w x n( ) ( ) ( ) ( ) ( )= + −0 1 1   

 The equation above can also be obtained using  (7.14) ,

    y n x n x n
w

w
w w

x n

x n
( ) [ ( ) ( )]

( )

( )
[ ( ) ( )]

( )

( )
= − 





=
−







1
0

1
0 1

1
 

which reduces to

    y n x n w x n w( ) ( ) ( ) ( ) ( )= + −0 1 1  

which can also be obtained by summing the signals at the node of the two - weight 
diagram shown in Figure  7.8 . 

 As can be seen in Figure  7.8 , the linear combiner with a single input is just an 
FIR fi lter with adjustable coeffi cients. Although this is a very simple confi guration, 
it can handle many of the adaptive applications.    

  7.4   PERFORMANCE FUNCTION 

 In the preceding section we provided a structure for the fi lter whose characteristics 
may be changed by adjusting the weights. However, we still need a way to judge 
how well the fi lter is operating — a performance measure is needed. The perfor-
mance function will be based on the error, which is obtained from the block diagram 
in Figure  7.1 , with the time index incorporated:

    e n d n y n( ) ( ) ( )= −     (7.15)   

 The square of this function is

    e n d n d n y n y n2 2 2( ) ( ) ( ) ( ) ( )= − + 2     (7.16)  

which is the instantaneous squared - error function. In terms of the weights, it 
becomes

    e n d n d n n n n2 2 2( ) ( ) ( ) ( ) ( ) ( )= − +X W W X X WT T T     (7.17)  

where the time index on the  W  has been dropped. Equation  (7.17)  represents a 
quadratic surface in  W , which means that the highest power of the weights is the 
squared power. The strategy will be to adjust the weights so that the squared - error 
function will be a minimum. 
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 To understand the performance surface equation  (7.17) , consider the case of one 
weight. The error surface then becomes

    e n d n d n x n w x n w2 2 2 22 0 0( ) ( ) ( ) ( ) ( ) ( ) ( )= − +     (7.18)  

which is a second order function in  w (0). To fi nd the minimum, set the derivative of 
 (7.18)  with respect to  w (0) equal to zero, or

    
de n
dw

d n x n x n w
2

2

0
2 2 0 0

( )
( )

( ) ( ) ( ) ( )= − + =     (7.19)  

resulting in

    w
d n
x n

( )
( )
( )

0 =     (7.20)  

which is the value of  w (0) that yields the desired minimum. 
 Since the signals  d  and  x  are functions of time, the minimum and the performance 

surface also fl uctuate with the signals. This is not desirable; we would feel more 
comfortable with a rigid performance function. To eliminate this problem, we 
can take the expected value of the squared - error function, which for one weight 
becomes

    E e n E d n E d n x n w E x n w[ ( )] [ ( )] [ ( ) ( )] ( ) [ ( )] ( )2 2 2 22 0 0= − +     (7.21)   

 This performance function is called the  mean - squared error . 
 Note that the expected value of any sum is the sum of the expected values. The 

expected value of a product is the product of the expected values only if the variables 
are statistically independent. The signals  d ( n ) and  x ( n ) are generally not statistically 
independent. If the signals  d  and  x  are statistically time invariant, the expected values 
of the signal products of  d  and  x  are constants, and  (7.21)  is rewritten

    E e n A Bw Cw[ ( )] ( ) ( )2 22 0 0= − +     (7.22)  

where  A ,  B , and  C  are constants. 
 Using  (7.21)  as the performance function for one weight results in a fi xed 

minimum point on a rigid performance function,

    w B C( ) /0 =     (7.23)   

 A plot of the one - dimensional error function with respect to  w (0) is shown 
in Figure  7.9 . This is a simple second order curve in two dimensions ( E [ e  2 ], 



 w (0)) with a single minimum at  w (0)   =    B / C . If we examine two weights, a three - 
dimensional second order surface that resembles a bowl will result. With more 
weights, a higher - dimensional second order surface will result that cannot be visu-
alized by humans. In practice, the weights (the weight in this case) will start at 
some initial value  w i   and are adjusted in increments toward the minimum value 
of the performance function. The procedure for adjusting the weights is a subject 
of the next section.   

 Taking the mean of the general squared - error function,  (7.17) , results in a general 
mean squared error performance function:

    E e n E d n E d n n E n n[ ( )] [ ( )] [ ( ) ( )] [ ( ) ( )]2 2 2= − +X W W X X WT T T     (7.24)   

 Again note that the mean value of any sum is the sum of the mean values. The 
product values of  d  and  X  and  X  with  X  T  cannot be further reduced since the mean 
value of a product is the product of mean values only when the two variables are 
statistically independent;  d  and  X  are generally not independent. This is still the 
same second order performance surface as before, but now it is not fl uctuating with 
 d  and  X  but is rigid. However, if  d  and  X  are statistically time varying, the error 
surface will wiggle as the statistics of  d  and  X  change.  

  7.5   SEARCHING FOR THE MINIMUM 

 In this section we deal with how the weights should be adjusted to fi nd the minimum 
in a reasonably effi cient fashion. Of course, the weights could be adjusted ran-
domly, but life is too short. Since we will be dealing with real - time events and 
changes that must be tracked, we need a relatively fast way of reaching the 
minimum. 

 Consider the one - weight system again to get an idea of how this search can be 
conducted. Initially, the weight will equal some arbitrary value  w (0,  n ), and it will 

B/C w (0)0

min

E [e 

2 (n)]

    FIGURE 7.9.     One - weight performance curve.  
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w  (0)

w  (0, n)

w  (0, n + 1)

wmin (0)0

E [e 

2 (n)]
Negative

slope

Positive
slope

    FIGURE 7.10.     Minimum search on one weight.  

be adjusted in a stepwise fashion until the minimum is reached (Figure  7.10 ), The 
size and direction of the step are the two things that must be chosen when making 
a step. Each step will consist of adding an increment to  w (0,  n ). Note that if the 
current value of  w (0,  n ) is to the right of the minimum, the step must be negative 
(but the derivative of the curve is positive); similarly, if the current value is to the 
left of the minimum, the increment must be positive (but the derivative is negative). 
This observation leads to the conclusion that the negation of the derivative indicates 
the proper direction of the increment. Since the derivative vanishes at the minimum, 
it can also be used to adjust the step size. With these observations we conclude that 
the step size and direction can be made proportional to the negative of the deriva-
tive and the iteration for the weights can be expressed as

    w n w n
dE e
dw

( , ) ( , )
[ ]
( )

0 1 0
0

2

+ = − β     (7.25)  

where   b   is an arbitrary positive constant. As shown in Figure  7.10 , repeated applica-
tion of  (7.25)  will cause  w (0) to move by steps from its initial value until it reaches 
the minimum.   

 The derivative of the function used in the one - dimensional search can be extended 
to an  N  - dimensional surface by replacing it with the gradient of the function. The 
gradient is a vector of fi rst derivatives with respect to each of the weights:
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 The gradient points in the direction in which the function, in this case  P , increases 
most rapidly. Therefore, the step size and direction can be made proportional to the 
gradient of the performance function. 



 Similarly, the minimum of the  N  - dimensional performance curve occurs when 
the gradient vanishes,

    grad{ }P = 0     (7.27)  

or when the partial derivative with respect to each weight vanishes,
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 Replacing the single weight with a vector of weights and the derivative with the 
gradient in  (7.25)  gives the multiple weight iteration rule,

    W W( ) ( ) { }n n P+ = −1 β grad     (7.29)   

 The only issue left to resolve is how to fi nd grad{ P }. To get a simple yet practical 
way to fi nd grad{ P }, we will use an estimate for it rather than the exact gradient. 
Instead of using the gradient of the expected squared error, we will approximate it 
with the grad{ e  2 }:

    grad grad{ } { }P e� 2     (7.30)   

 To get a workable expression, let us perform the gradient operation on the squared -
 error function,

    grad grad{ } { }e e e2 2=     (7.31)  

where

    e n d n n n( ) [ ( ) ( ) ( )]= − X WT     (7.32)   

 Substitution yields

    grad grad T{ } [ ( ) ( ) ( )]e e d n n n2 2= − X W     (7.33)   

 Expanding the gradient term gives
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and

    grad{ ( )} ( ) ( )e n e n n2 2= − X     (7.35)   

 Substituting this result for grad{ P } in equation  (7.29)  results in

    W W X( ) ( ) ( ) ( )n n e n n+ = +1 2β     (7.36)   

 The time index  n  has been included in the last two equations, implying that  e  will 
be updated every sample time. Note that if  e  goes to zero, then  W ( n    +   1)   =    W ( n ) 
and the weights remain constant. 

 Equation  (7.36)  forms the single most important result of this chapter, and it is 
the basis for the LMS algorithm. This equation allows the weights to be updated 
without squaring, averaging, or differentiating, yet it is powerful and effi cient. This 
equation, as in  (7.3) , will be used in the following examples.  

  7.6   PROGRAMMING EXAMPLES FOR NOISE CANCELLATION AND 
SYSTEM IDENTIFICATION 

 The following programming examples illustrate adaptive fi ltering using the LMS 
algorithm. 

     Example 7.1:   Adaptive Filter Using  C  Code ( adaptc ) 

 This example applies the LMS algorithm using a C - coded program. It illustrates the 
following steps for the adaptation process using the adaptive structure shown in 
Figure  7.1 : 

  1.     Obtain new samples of the desired signal  d  and the reference input to the 
adaptive fi lter  x , which represents a noise signal.  

  2.     Calculate the adaptive FIR fi lter ’ s output  y , applying  (7.1)  as in Chapter  4  with 
an FIR fi lter. In the structure of Figure  7.1 , the overall output is the same as 
the adaptive fi lter ’ s output  y .  

  3.     Calculate the error signal applying  (7.2) .  

  4.     Update/replace each coeffi cient or weight applying  (7.3) .  

  5.     Update the input data samples for the next time  n  with the data move 
scheme used in Chapter  4 . Such a scheme moves the data instead of a 
pointer.  

  6.     Repeat the entire adaptive process for the next output sample point.     
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 Figure  7.11  shows a listing of the program  adaptc.c , which implements the 
LMS algorithm for the adaptive fi lter structure in Figure  7.1 . A desired signal is 
chosen as 2cos(2 n π f / Fs ), and a reference noise input to the adaptive fi lter is chosen 
as sin(2 n π f / Fs ), where  f  is 1   kHz and  Fs    =   8   kHz.The adaptation rate, fi lter order, 
and number of samples are 0.01, 21, and 60, respectively.   

 The overall output is the adaptive fi lter ’ s output  y , which adapts or converges to 
the desired cosine signal  d . 

    FIGURE 7.11.     Adaptive fi lter program( adaptc.c ).  

//adaptc.c - non real-time adaptation demonstration
#include <stdio.h>
#include <math.h>
#define beta 0.01                      //convergence rate
#define N  21                          //order of filter
#define NS  60                         //number of samples
#define Fs  8000                       //sampling frequency
#define pi  3.1415926
#define DESIRED 2*cos(2*pi*T*1000/Fs)  //desired signal
#define NOISE sin(2*pi*T*1000/Fs)      //noise signal

float desired[NS], Y_out[NS], error[NS];

void main()
{
  long I, T;
  float D, Y, E;
  float W[N+1] = {0.0};
  float X[N+1] = {0.0};

  for (T = 0; T < NS; T++)            //start adaptive algorithm
  {
    X[0] = NOISE;                     //new noise sample
    D = DESIRED;                      //desired signal
    Y = 0;                            //filter'output set to zero
    for (I = 0; I <= N; I++)
      Y += (W[I] * X[I]);             //calculate filter output
    E = D - Y;                        //calculate error signal
    for (I = N; I >= 0; I--)
    {
       W[I] = W[I] + (beta*E*X[I]);   //update filter coefficients
       if (I != 0) X[I] = X[I-1];     //update data sample
    }
    desired[T] = D;
    Y_out[T] = Y;
    error[T] = E;
  }
  printf("done!\n");
}
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(a)

(b)

(c)

    FIGURE 7.12.     Plots of adaptive fi lter output, desired output, and error using program 
 adaptc.c .  

 Build the project as   adaptc  . Because the program does not use any real - time 
input or output, it is not necessary to add the fi les  c6713dskinit.c  or  vectors_
intr.asm  to the project. 

 Figure  7.12  shows a plot of the adaptive fi lter output  Y_out , desired output 
 desired , and error  error , plotted using CCS. The fi lter output converges to the 
desired cosine signal. Change the adaptation or convergence rate  beta  to 0.02 and 
verify a faster rate of adaptation.    
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Example 7.2: Adaptive Filter for Sinusoidal Noise Cancellation 
(adaptnoise)

 This example illustrates the application of the LMS criterion to cancel an undesir-
able sinusoidal noise. Figure  7.13  shows a listing of the program  adaptnoise.c , 
which implements an adaptive FIR fi lter using the structure in Figure  7.2 .   

 A desired sine wave of 1500   Hz with an additive (undesired) sine wave noise of 
312   Hz forms one of two inputs to the adaptive fi lter structure. A reference (tem-
plate) cosine signal, with a frequency of 312   Hz, is the input to a 30 - coeffi cient 
adaptive FIR fi lter. The 312 - Hz reference cosine signal is correlated with the 312 - Hz 
additive sine noise but not with the 1500 - Hz desired sine signal. 

 At each sampling instant, the output of the adaptive FIR fi lter is calculated and 
the 30 weights or coeffi cients are updated along with the delay samples. The error 
signal E  is the overall desired output of the adaptive structure. This error signal is 
the difference between the desired signal and additive noise ( dplusn ) and the 
adaptive fi lter output,  yn . 

 All signals used are from a lookup table generated using MATLAB. No exter-
nal inputs are used in this example. Figure  7.14  shows the MATLAB m - fi le   
adaptnoise.m  (a more complete version is on the CD) used to calculate the 
data values for the desired sine signal of 1500   Hz, the additive noise as a sine of 
312   Hz, and the reference signal as a cosine of 312   Hz.The fi les generated are: 

1.      dplusn.h:  sine(1500   Hz)   +   sine(312   Hz)  

2.      refnoise.h:  cosine(312   Hz)    

 Figure  7.15  shows the fi le  dplusn.h  with data values that represent the desired 
1500 - Hz sine wave signal plus additive noise. The constant  beta  determines the 
rate of convergence. 

 Build and run this project as  adaptnoise . Verify the following output result: 
The undesired 312 - Hz sinusoidal signal is being gradually reduced (canceled), while 
the desired 1500 - Hz signal remains. Note that in this application the output desired 
is the error signal E , which adapts (converges) to the desired signal. A faster rate of 
cancellation can be observed with a larger value of beta . However, if  beta  is too 
large, the adaptation may become unstable. A GEL slider ( adaptnoise.gel ) is 
provided that allows either the error signal or the 1500 - Hz sine wave with additive 
noise signal to be output.      

Example 7.3: Adaptive FIR Filter for Noise Cancellation 
Using External Inputs ( adaptnoise_2IN)

 This example extends the previous one to cancel undesired sinusoidal noise using 
external inputs. Figure  7.16  shows the source program  adaptnoise_2IN.c  that 



336  Adaptive Filters

    FIGURE 7.13.     Adaptive FIR fi lter program for sinusoidal noise cancellation 
( adaptnoise.c ).    

//adaptnoise.c  Adaptive FIR filter for noise cancellation

#include "DSK6713_AIC23.h"
Uint32 fs= DSK6713_AIC23_FREQ_8KHZ;
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "refnoise.h"    //cosine 312 Hz
#include "dplusn.h"            //sin(1500) + sin(312)
#define beta 1E-9          //rate of convergence
#define N 30                   //# of weights (coefficients)
#define NS 128                 //# of output sample points
float w[N];                         //buffer weights of adapt filter
float delay[N];                     //input buffer to adapt filter
short output;              //overall output
short out_type = 1;                //output type for slider

interrupt void c_int11()       //ISR
{
 short i;
 static short buffercount=0;  //init count of # out samples
 float yn, E;                 //output filter/"error" signal

 delay[0] = refnoise[buffercount];  //cos(312Hz) input to adapt FIR
 yn = 0;                            //init output of adapt filter
 for (i = 0; i < N; i++)            //to calculate out of adapt FIR
     yn += (w[i] * delay[i]);       //output of adaptive filter

 E = dplusn[buffercount] - yn;      //"error" signal=(d+n)-yn

 for (i = N-1; i >= 0; i--)         //to update weights and delays
   {
     w[i] = w[i] + beta*E*delay[i]; //update weights
     delay[i] = delay[i-1];         //update delay samples
   }
 buffercount++;                     //increment buffer count
 if (buffercount >= NS)       //if buffercount=# out samples
     buffercount = 0;             //reinit count

 if (out_type == 1)        //if slider in position 1

     output = ((short)E*10);        //"error" signal overall output
 else if (out_type == 2)         //if slider in position 2
     output=dplusn[buffercount]*10; //desired(1500)+noise(312)
 output_left_sample(output);             //overall output result
 return;     //return from ISR
}

void main()
{
 short T=0;
 for (T = 0; T < 30; T++)
   {
     w[T] = 0;         //init buffer for weights
     delay[T] = 0;        //init buffer for delay samples
   }
 comm_intr();                       //init DSK, codec, McBSP
 while(1);                          //infinite loop
}



 Programming Examples for Noise Cancellation and System Identifi cation  337

%adaptnoise.m Generates: dplusn.h (s312+s1500), refnoise.h
cos(312),and sin1500.h

for i=1:128
  desired(i) = round(100*sin(2*pi*(i-1)*1500/8000)); %sin(1500)
  addnoise(i) = round(100*sin(2*pi*(i-1)*312/8000)); %sin(312)
  refnoise(i) = round(100*cos(2*pi*(i-1)*312/8000)); %cos(312)
end
dplusn = addnoise + desired;
%sin(312)+sin(1500)

fid=fopen('dplusn.h','w');
%desired + noise
fprintf(fid,'short dplusn[128]={');
fprintf(fid,'%d, ' ,dplusn(1:127));
fprintf(fid,'%d' ,dplusn(128));
fprintf(fid,'};\n');
fclose(fid);

fid=fopen('refnoise.h','w');
   %reference noise
fprintf(fid,'short refnoise[128]={');
fprintf(fid,'%d, ' ,refnoise(1:127));
fprintf(fid,'%d' ,refnoise(128));
fprintf(fid,'};\n');
fclose(fid);

fid=fopen('sin1500.h','w');
   %desired sin(1500)
fprintf(fid,'short sin1500[128]={');
fprintf(fid,'%d, ' ,desired(1:127));
fprintf(fid,'%d' ,desired(128));
fprintf(fid,'};\n');
fclose(fid);

    FIGURE 7.14.     MATLAB m - fi le used to generate data values for sine(1500   Hz), sine(1500   Hz)  
 +   sine(312   Hz), and cosine(312   Hz) ( adaptnoise.m ).      

short dplusn[128]={0, 116, 118, 29, -17, 56, 170, 191, 93, -11,
-7, 81, 120, 34, -100, -143, -70, 7, -24, -138, -198, -129, -7,
32, -39, -108, -62, 71, 155, 111, 17, 5, 100, 189, 160, 37, -43,
-3, 82, 79, -37, -150, -147, -52, 2, -62, -167, -179, -72, 39,
40, -45, -82, 3, 133, 171, 92, 7, 29, 133, 184, 107, -22, -65,
3, 70, 26, -103, -182, -131, -28, -7, -93, -174, -137, -7, 78,
40, -45, -43, 68, 176, 166, 62, -1, 54, 150, 154, 41, -74, -77,
8, 47, -34, -157, -188, -100, -6, -19, -115, -159, -75, 57, 103,
34, -36, 4, 127, 197, 138, 26, -4, 74, 147, 104, -29, -115, -77,
11, 15, -90, -190, -171, -58, 14, -33, -122, -121}; 

    FIGURE 7.15.     MATLAB header fi le generated for sine(1500   Hz)   +   sine(312   Hz) with 128 
points ( dplusn.h ).  
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    FIGURE 7.16.     Adaptive fi lter program for noise cancellation using external inputs 
( adaptnoise_2IN.c ).    

//adaptnoise_2IN.c Adaptive FIR for sinusoidal noise interference

#include "DSK6713_AIC23.h"         //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#define beta 1E-12                 //rate of convergence
#define N 30                       //# of weights (coefficients)
#define LEFT 0                     //left channel
#define RIGHT 1                    //right channel
float w[N];                        //weights for adapt filter
float delay[N];                    //input buffer to adapt filter
short output;                      //overall output
short out_type = 1;                //output type for slider
volatile union{unsigned int uint; short channel[2];}AIC23_data;

interrupt void c_int11()           //ISR
{
 short i;
 float yn=0, E=0, dplusn=0, desired=0, noise=0;

 AIC23_data.uint = input_sample(); //input from both channels
 desired =(AIC23_data.channel[LEFT]); //input left channel
 noise = (AIC23_data.channel[RIGHT]); //input right channel

 dplusn = desired + noise;         //desired+noise
 delay[0] = noise;                 //noise as input to adapt FIR

 for (i = 0; i < N; i++)           //calculate out of adapt FIR
  yn += (w[i] * delay[i]);         //output of adaptive filter
 E = (desired + noise) - yn;       //"error" signal=(d+n)-yn
 for (i = N-1; i >= 0; i--)        //to update weights and delays
  {
   w[i] = w[i] + beta*E*delay[i];  //update weights
   delay[i] = delay[i-1];          //update delay samples
  }
 if(out_type == 1)                 //if slider in position 1
  output=((short)E);               //error signal as output
 else if(out_type==2)              //if slider in position 2
  output=((short)dplusn);          //output (desired+noise)
 output_left_sample(output);       //overall output result
 return;
}

 void main()
{
 short T=0;
 for (T = 0; T < 30; T++)
 {
  w[T] = 0;                        //init buffer for weights
  delay[T] = 0;                    //init delay sample buffer
 }
 comm_intr();                      //init DSK, codec, McBSP
 while(1);                         //infinite loop
}
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allows two external inputs: a desired signal and a sinusoidal interference. The program 
uses the function input_sample()  to return both left -  and right - hand channels of 
input as 16 - bit signed integer components of a 32 - bit structure. The desired signal is 
input through the left channel and the undesired noise signal through the right 
channel. A stereo 3.5 - mm jack plug to dual RCA jack plug cable and RCA to BNC 
adapters are useful for implementing this example. The basic adaptive structure 
shown in Figure  7.2  is applied here along with the LMS algorithm.   

 Build this project as  adaptnoise_2IN . 

1.     Desired: 1.5   kHz; undesired: 2   kHz. Input a desired sinusoidal signal (with a 
frequency of 1.5   kHz) into the left channel and an undesired sinusoidal 
noise signal of 2   kHz into the right channel. Run the program. Verify that the 
2 - kHz noise signal is being canceled gradually. You can adjust the rate of 
convergence by changing beta  by a factor of 10 in the program. Load the 
GEL slider program adaptnoise_2IN.gel  and change the slider position 
from 1 to 2.  

  Verify the output as the two original sinusoidal signals at 1.5 and at 2   kHz.  

2.     Desired: wideband random noise; undesired: 2   kHz. Input random noise (from 
a noise generator, Goldwave , etc.) as the desired wideband signal into the left 
input channel and the undesired 2 - kHz sinusoidal noise signal into the right 
input channel. Restart/run the program. Verify that the 2 - kHz sinusoidal 
noise signal is being canceled gradually, with the wideband random noise 
signal remaining.With the slider in position 2, observe that both the unde-
sired and desired input signals are as shown in Figure  7.17 a. Figure  7.17 b 
shows only the desired wideband random noise signal after the adaptation 
process.       

Example 7.4: Adaptive FIR Filter for System  ID of a Fixed  FIR as 
an Unknown System ( adaptIDFIR)

 Figure  7.18  shows a listing of the program  adaptIDFIR.c , which uses an adaptive 
FIR fi lter to identify an unknown system. See also  Examples 7.2  and  7.3 , which 
implement an adaptive FIR fi lter for noise cancellation. A block diagram of the 
system used in this example is shown in Figure  7.19 .     

 The unknown system to be identifi ed is an FIR bandpass fi lter with 55 coeffi cients 
centered at Fs /4   =   2   kHz. The coeffi cients of this fi xed FIR fi lter are read from the 
fi le  bp55f.cof , previously used in Example  4.5 .   A 60 - coeffi cient adaptive FIR fi lter 
is used to identify the fi xed (unknown) FIR bandpass fi lter. 

 A pseudorandom binary noise sequence, generated within the program (see 
also Examples  2.16  and  4.4 ), is input to both the fi xed (unknown) and the adap-
tive FIR fi lters and an error signal is formed from their outputs. The adaptation 
process seeks to minimize the variance of that error signal. It is important to use 
wideband noise as an input signal in order to identify the characteristics of the 
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(a)

(b)

    FIGURE 7.17.     Plots illustrating the adaptation process obtained using program  adapt-
noise_2IN.c : (a) 2 - kHz undesired sinusoidal interference and desired wideband noise 
signal before adaptation; and (b) cancellation of 2 - kHz interference after adaptation.  

unknown system over the entire frequency range from zero to half the sampling 
frequency. 

 An extra memory location is used in each of the two delay sample buffers (fi xed 
and adaptive FIR). These are used to update the delay samples. 

 Build and run this project as   adaptIDFIR  . Load the GEL fi le  adaptIDFIR.
gel  and bring up a GEL slider by selecting  GEL → Output Type . The slider can 
be used to select  fi r_out  (the output from the fi xed (unknown) FIR fi lter), 
 adaptfi r_out  (the output from the adaptive FIR fi lter), or  E  (the error) as the 
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//adaptIDFIR.c Adaptive FIR for system ID of an FIR 

#include "DSK6713_AIC23.h"         //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "bp55f.cof"               //fixed FIR filter coefficients
#include "noise_gen.h"             //noise generation support file
#define beta 1E-12                 //rate of convergence
#define WLENGTH 60                 //# of coefffor adaptive FIR
float w[WLENGTH+1];                //buffer coeff for adaptive FIR
int dly_adapt[WLENGTH+1];          //adaptive FIR samples buffer
int dly_fix[N+1];                  //buffer samples of fixed FIR
short out_type = 1;                //output for adaptive/fixed FIR
int fb;                            //feedback variable
shift_reg sreg;                    //shift register

int prand(void)                    //pseudo-random sequence {-1,1}
{
 int prnseq;
 if(sreg.bt.b0)
  prnseq = -8000;                  //scaled negative noise level
 else
  prnseq = 8000;                   //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1);    //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13);  //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb;                    //close feedback path
 return prnseq;                    //return noise sequence
}

interrupt void c_int11()           //ISR
{
 int i;
 int fir_out = 0;                  //init output of fixed FIR
 int adaptfir_out = 0;             //init output of adapt FIR
 float E;                          //error=diff of fixed/adapt out

 dly_fix[0] = prand();             //input noise to fixed FIR
 dly_adapt[0]=dly_fix[0];          //as well as to adaptive FIR
 for (i = N-1; i>= 0; i--)
  {
   fir_out +=(h[i]*dly_fix[i]);    //fixed FIR filter output
   dly_fix[i+1] = dly_fix[i];      //update samples of fixed FIR
  }
 for (i = 0; i < WLENGTH; i++)
   adaptfir_out +=(w[i]*dly_adapt[i]); //adaptive FIR output

      FIGURE 7.18.     Program to implement an adaptive FIR fi lter that models (identifi es) a fi xed 
FIR fi lter ( adaptIDFIR.c ).    
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    FIGURE 7.19.     Block diagram representation of system identifi cation scheme implemented 
by program  adaptIDFIR.c .  

adaptive
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 E = fir_out - adaptfir_out;       //error signal

 for (i = WLENGTH-1; i >= 0; i--)
  {
   w[i]=w[i]+(beta*E*dly_adapt[i]);//update adaptive FIR weights
   dly_adapt[i+1] = dly_adapt[i];  //update adaptive FIR samples
  }
 if (out_type == 1)                //slider position for adapt FIR
   output_left_sample((short)adaptfir_out); //output adaptive FIR
 else if (out_type == 2)           //slider position for fixed FIR
   output_left_sample((short)fir_out); //output fixed FIR filter
 else if (out_type == 3)           //slider position for fixed FIR
   output_left_sample((short)E);   //output of fixed FIR filter
 return;
}

void main()
{
 int T=0, i=0;
 for (i = 0; i < WLENGTH; i++)
  {
   w[i] = 0.0;                     //init coeff for adaptive FIR
   dly_adapt[i] = 0;               //init buffer for adaptive FIR
  }
 for (T = 0; T < N; T++)
  dly_fix[T] = 0;                  //init buffer for fixed FIR
 sreg.regval=0xFFFF;               //initial seed value
 fb = 1;                           //initial feevack value
 comm_intr();                      //init DSK, codec, McBSP
 while (1);                        //infinite loop
}

FIGURE 7.18. (Continued)
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signal written to the LINE OUT and HEADPHONE connectors. Verify that the 
output of the adaptive FIR fi lter ( adaptfir_out ) converges to bandlimited noise 
similar in frequency content to the output of the fi xed FIR fi lter ( fir_out ) and that 
the variance of the error signal ( E ) gradually diminishes. Reload and run the program 
in order to view the adaptation process again and to observe a different signal 
(fir_out ,  adaptfir_out , or  E ) during the adaptation process. 

 Edit the program to include the coeffi cient fi le  bs55f.cof  (in place of  bp55f.
cof ), which represents an FIR bandstop fi lter with 55 coeffi cients centered at 2   kHz. 
The FIR bandstop fi lter represents the unknown system to be identifi ed. 

 Rebuild and run the program and verify that the output of the adaptive FIR fi lter 
(with the slider in position 1) is almost identical to that of the FIR bandstop fi lter 
(with the slider in position 2). Increase (decrease) the value of beta  by a factor of 
10 to observe a faster (slower) rate of convergence. Change the number of weights 
(coeffi cients) from 60 to 40 and verify a slight degradation of the identifi cation 
process.

Example 7.5: Adaptive FIR for System  ID of a Fixed  FIR as an 
Unknown System with Weights of an Adaptive Filter 
Initialized as an FIR Bandpass ( adaptIDFIRw)

 In this example, program  adaptIDFIR.c  is modifi ed slightly to create the program 
adaptIDFIRW.c  (Figure  7.20 ). This new program initializes the weights,  w , of the 
adaptive FIR fi lter with the coeffi cients of an FIR bandpass fi lter centered at 3   kHz, 
read from the coeffi cient fi le  bp3000.cof  rather than initializing the weights to 
zero.   

 Build this project as  adaptIDFIRw . Initially, the frequency content of the output 
of the adaptive FIR fi lter is centered at 3   kHz. Then, gradually, as the adaptive fi lter 
identifi es the fi xed (unknown) FIR bandpass fi lter ( bp55.cof ), its output changes 
to bandlimited noise centered on frequency 2   kHz. 

 The adaptation process is illustrated in Figures  7.21  and  7.22 . Figure  7.21  shows 
the frequency content of the output of the adaptive fi lter at different stages in the 
adaptation process (captured using an oscilloscope) and Figure  7.22  shows the 
magnitude FFT of the adaptive fi lter coeffi cients at corresponding points in time.      

Example 7.6: Adaptive FIR for System  ID of Fixed  IIR as an 
Unknown System ( iirsosadapt)

 An adaptive FIR fi lter can be used to identify the characteristics not only of other 
FIR fi lters but of IIR fi lters (provided that the substantial part of the IIR fi lter 
impulse response is shorter than that possible using the adaptive FIR fi lter). Program 
iirsosadapt.c  (Figure  7.23 ) combines parts of programs  iirsos.c  (Example 
 5.1 )   and  adaptIDFIR.c  in order to illustrate this.   
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      FIGURE 7.20.     Program to implement an adaptive FIR fi lter that models (identifi es) a fi xed 
FIR fi lter with initialised coeffi cients ( adaptIDFIRw.c ).    

//adaptIDFIRW.c Adaptive FIR for system ID of an FIR

#include "DSK6713_AIC23.h"         //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015 
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;
#include "bp55.cof"               //fixed FIR filter coefficients
#include "bp3000.cof"
#include "noise_gen.h"             //noise generation support file
#define beta 1E-12                 //rate of convergence
#define WLENGTH 60                 //# of coefffor adaptive FIR
float w[WLENGTH+1];                //buffer coeff for adaptive FIR
int dly_adapt[WLENGTH+1];          //adaptive FIR samples buffer
int dly_fix[N+1];                  //buffer samples of fixed FIR
short out_type = 1;                //output for adaptive/fixed FIR
int fb;                            //feedback variable
shift_reg sreg;                    //shift register

int prand(void)                    //pseudo-random sequence {-1,1}
{
 int prnseq;
 if(sreg.bt.b0)
  prnseq = -8000;                  //scaled negative noise level
 else
  prnseq = 8000;                   //scaled positive noise level
 fb =(sreg.bt.b0)^(sreg.bt.b1);    //XOR bits 0,1
 fb^=(sreg.bt.b11)^(sreg.bt.b13);  //with bits 11,13 -> fb
 sreg.regval<<=1;
 sreg.bt.b0=fb;                    //close feedback path
 return prnseq;                    //return noise sequence
}

interrupt void c_int11()           //ISR
{
 int i;
 int fir_out = 0;                  //init output of fixed FIR
 int adaptfir_out = 0;             //init output of adapt FIR 
 float E;                          //error=diff of fixed/adapt out

 dly_fix[0] = prand();             //input noise to fixed FIR
 dly_adapt[0]=dly_fix[0];          //as well as to adaptive FIR
 for (i = N-1; i>= 0; i--)
  {
   fir_out +=(h[i]*dly_fix[i]);    //fixed FIR filter output
   dly_fix[i+1] = dly_fix[i];      //update samples of fixed FIR
  }
 for (i = 0; i < WLENGTH; i++)
   adaptfir_out +=(w[i]*dly_adapt[i]); //adaptive FIR output
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 E = fir_out - adaptfir_out;       //error signal

 for (i = WLENGTH-1; i >= 0; i--)
  {
   w[i]=w[i]+(beta*E*dly_adapt[i]);//update adaptive FIR weights
   dly_adapt[i+1] = dly_adapt[i];  //update adaptive FIR samples
  }
 if (out_type == 1)                //slider position for adapt FIR
   output_left_sample((short)adaptfir_out); //output adaptive FIR
 else if (out_type == 2)           //slider position for fixed FIR
   output_left_sample((short)fir_out); //output fixed FIR filter
 return;
}

void main()
{
 int T=0, i=0;
 for (i = 0; i < WLENGTH; i++)
  {
   w[i] = coeffs[i];               //init coeff for adaptive FIR
   dly_adapt[i] = 0;               //init buffer for adaptive FIR
  }
 for (T = 0; T < N; T++)
  dly_fix[T] = 0;                  //init buffer for fixed FIR
 sreg.regval=0xFFFF;               //initial seed value
 fb = 1;                           //initial feevack value
 comm_intr();                      //init DSK, codec, McBSP
 while (1);                        //infinite loop
}

FIGURE 7.20. (Continued)

 The IIR fi lter coeffi cients used are those of a fourth order lowpass elliptic fi lter 
(see  Example 5.5 ) and are read from fi le  elliptic.cof . 

 Build and run this project as   iirsosadapt  . Verify that the adaptive fi lter con-
verges to a state in which the frequency content of its output matches that of the 
(unknown) IIR fi lter. Figure  7.24  shows the fi ltered noise at the output of the adap-
tive fi lter (displayed using the FFT function of an  Agilent 54621A  oscilloscope) and 
the magnitude FFT of the coeffi cients of the adaptive FIR fi lter (displayed using 
CCS).    

  Example 7.7:   Adaptive  FIR  Filter for System Identifi cation of System 
External to  DSK  ( sysid ) 

 Program  sysid.c  (Figure  7.25 ) extends the previous examples to allow the iden-
tifi cation of a system external to the DSK, connected between the LINE OUT and 
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    FIGURE 7.21.     Frequency content of output of adaptive fi lter implemented using program 
 adaptIDFIRw.c  at three different instants. Captured using FFT function of  Agilent 54621A  
oscilloscope.  

(a)

(b)

(c)
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(a)

(b)

(c)

      FIGURE 7.22.     Magnitude FFT of coeffi cients of adaptive fi lter implemented using program 
 adaptIDFIRw.c  at three different instants. Plotted using CCS.  



348  Adaptive Filters

      FIGURE 7.23.     Listing of program  iirsosadapt.c .  

// iirsosadapt.c iir filter using cascaded second order sections
// characteristic identified using adaptive FIR filter
// float coefficients read from included .cof file

#include "DSK6713_AIC23.h"         //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE;

#include "noise_gen.h"
#include "elliptic.cof"            //contains a and b coefficient
                                   //values and defines
                                   //NUM_SECTIONS
float w[NUM_SECTIONS][2] = {0};
#define beta 1.0E-11               //learning rate
#define WLENGTH 256                //# of coeff for adaptive FIR
float h[WLENGTH+1]={0.0};          //buffer adaptive FIR coeffs
float dly_adapt[WLENGTH+1]={0.0};  //buffer adaptive FIR samples
short fb;                          //feedback variable
shift_reg sreg;

short prn(void)                    //pseudorandom noise generation
{
 short prnseq;                     //for pseudorandom sequence

 if(sreg.bt.b0)                    //sequence {1,-1}
  prnseq = -4000;                  //scaled negative noise level
 else
  prnseq = 4000;                   //scaled positive noise level
 fb  =(sreg.bt.b0)^(sreg.bt.b1);   //XOR bits 0,1
 fb ^=(sreg.bt.b11)^(sreg.bt.b13); //with bits 11,13 ->fb
 sreg.regval<<=1;                  //shift register 1 bit to left
 sreg.bt.b0 = fb;                  //close feedback path
 return prnseq;                    //return sequence
}

interrupt void c_int11()           //interrupt service routine
{
  int section;                     //index for section number
  float input;                     //input to each section
  float wn,yn;                     //intermediate and output
  int i;
  float adaptfir_out=0.0;          //init output of adaptive FIR
  float E;                         //error signal

  input = (float)(prn());          //PRBS in to first iir section
  dly_adapt[0] = input;            //copy input value to fir
  for (section=0 ; section< NUM_SECTIONS ; section++)
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  {
    wn = input - a[section][0]*w[section][0]
         - a[section][1]*w[section][1];
    yn = b[section][0]*wn + b[section][1]*w[section][0]
         + b[section][2]*w[section][1];
    w[section][1] = w[section][0];
    w[section][0] = wn;
    input = yn;                    //output of current section
  }                                //will be input to next
  for (i = 0; i < WLENGTH; i++)
    adaptfir_out +=(h[i]*dly_adapt[i]); //output of adaptive FIR
  E = yn - adaptfir_out;           //error as output difference
  for (i = WLENGTH-1; i >= 0; i--)
  {
    h[i] = h[i]+(beta*E*dly_adapt[i]); //update adaptive FIR
    dly_adapt[i+1] = dly_adapt[i];
  }
  output_left_sample((short)adaptfir_out);
  return;                          //return from ISR
}

void main()
{
  int i=0;
  for (i = 0; i < WLENGTH; i++)
    {
       h[i] = 0.0;                 //init coeff of adaptive FIR
       dly_adapt[i] = 0.0;         //init samples of adaptive FIR
    }
  sreg.regval = 0xFFFF;            //initialise shift register
  fb = 1;                          //initial feedback value
  comm_intr();                     //init DSK, codec, McBSP
  while(1);                        //infinite loop
}

FIGURE 7.23. (Continued)

LINE IN sockets. In  Example 4.3 , program  sysid.c  was used to identify the char-
acteristics of a moving average fi lter implemented using a second DSK. Other fi lter 
programs, for example,  fi r.c  or  iirsos.c , could be run in place of  average.c  
on the second DSK.   

 Alternatively, a purely analog system or a fi lter implemented using different DSP 
hardware could be connected between LINE OUT and LINE IN and its character-
istics identifi ed. 

 The following example requires the use of two DSKs. In Example  2.22 , the 
number of adaptive fi lter coeffi cients used in program  sysid.c  was 128. For this 
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    FIGURE 7.25.     Use of program  sysid.c  to identify unknown system.  

C6713 DSK
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LINE  OUT

program sysid.c

adaptive
filter
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random
noise

unknown
system

(a)

(b)

    FIGURE 7.24.     (a) Frequency content of adaptive fi lter output and (b) magnitude FFT of 
adaptive fi lter coeffi cients after adaptation in program  iirsosadapt.c .  
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example, change the number of coeffi cients to 256 by changing the line that 
reads

 #defi ne WLENGTH 128 

to read

 #defi ne WLENGTH 256  

 Connect the two DSKs as shown in Figure  7.26 . Load and run program  iirsos.
c , including coeffi cient fi le  elliptic.cof  on the fi rst DSK. Close CCS and discon-
nect the USB cable from the DSK. Program  iirsos.c  will continue to run on the 
DSK as long as the board is powered up. Connect the USB cable to the second 
DSK, start CCS, and then load program  sysid.c . (If you have two host computers 
running CCS there is no need to disconnect the USB on the fi rst DSK.) Run 
program  sysid.c  on the second DSK. Halt the program after a few seconds and 
select  View → Graph  in order to examine the coeffi cients of the adaptive fi lter. Figure 
 7.27  shows typical results. A number of features of the plots shown in Figure  7.27  
are worthy of note. Compare Figure  7.27 b with Figure  7.24 b. As noted in Chapter 
 4 , the characteristics of the codec reconstruction and antialiasing fi lters, the ac cou-
pling between codec and jack sockets, and the potential divider between the LINE 
IN socket and the codec input are all included in the signal path identifi ed using 
 sysid.c .     

 The magnitude frequency response shown in Figure  7.27 b rolls off at low frequen-
cies (due to the ac coupling) and in the passband has a gain of less than unity (due 
to the potential divider circuits). Less clear, since in this case the gain of the fi lter 
at frequencies greater than 3800   Hz is designed to be low, the magnitude frequency 
response in Figure  7.27 b rolls off signifi cantly beyond 3800   Hz (due to the antialias-

    FIGURE 7.26.     Connection diagram for  Example 7.7 .  
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ing and reconstruction fi lters in the codecs). Nonetheless, program  sysid.c  has 
successfully given an indication of the characteristics of the IIR fi lter implemented 
on the fi rst DSK.    
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 •      Optimization techniques for code effi ciency  
 •      Intrinsic C functions  
 •      Parallel instructions  
 •      Word - wide data access  
 •      Software pipelining    

 In this chapter we illustrate several schemes that can be used to optimize and 
drastically reduce the execution time of your code. These techniques include the use 
of instructions in parallel, word - wide data, intrinsic functions, and software 
pipelining.

8.1 INTRODUCTION

 Begin at a workstation level; for example, use C code on a PC. While code written 
in assembly (ASM) is processor specifi c, C code can readily be ported from one 
platform to another. However, optimized ASM code runs faster than C and requires 
less memory space. 

 Before optimizing, make sure that the code is functional and yields correct results. 
After optimizing, the code can be so reorganized and resequenced that the optimi-
zation process makes it diffi cult to follow. One needs to realize that if a C - coded 
algorithm is functional and its execution speed is satisfactory, there is no need to 
optimize further. 

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc. 
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 After testing the functionality of your C code, transport it to the C6x platform. 
A fl oating - point implementation can be modeled fi rst, then converted to a fi xed -
 point implementation if desired. If the performance of the code is not adequate, use 
different compiler options to enable software pipelining (discussed later), reduce 
redundant loops, and so on. If the performance desired is still not achieved, you can 
use loop unrolling to avoid overhead in branching. This generally improves the 
execution speed but increases code size. You also can use word - wide optimization 
by loading/accessing 32 - bit word ( int ) data rather than 16 - bit half - word ( short ) 
data. You can then process lower and upper 16 - bit data independently. 

 If performance is still not satisfactory, you can rewrite the time - critical section of 
the code in linear assembly, which can be optimized by the assembler optimizer. The 
profi ler can be used to determine the specifi c function(s) that need to be optimized 
further.

 The fi nal optimization procedure that we discuss is a software pipelining scheme 
to produce hand - coded ASM instructions  [1, 2] . It is important to follow the proce-
dure associated with software pipelining to obtain an effi cient and optimized 
code.

8.2 OPTIMIZATION STEPS 

 If the performance and results of your code are satisfactory after any particular step, 
you are done. 

1.     Program in C. Build your project without optimization.  

2.     Use intrinsic functions when appropriate as well as the various optimization 
levels.

3.     Use the profi ler to determine/identify the function(s) that may need to be 
further optimized. Then convert these function(s) to linear ASM.  

4.     Optimize code in ASM.    

8.2.1 Compiler Options 

 When the optimizer is invoked, the following steps are performed. A C - coded 
program is fi rst passed through a parser that performs preprocessing functions and 
generates an intermediate fi le ( .if ) that becomes the input to an optimizer. The 
optimizer generates an .opt  fi le that becomes the input to a code generator for 
further optimizations and generates an ASM fi le. 

 The options are as follows: 

1.      -o0  optimizes the use of registers.  

2.      -o1  performs a local optimization in addition to the optimizations performed 
by the previous option: -o0 .  
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3.      -o2  performs a global optimization in addition to the optimizations performed 
by the previous options: -o0  and  -o1 .  

4.      -o3  performs a fi le optimization in addition to the optimizations performed 
by the three previous options: -o0 ,  -o1 , and  -o2 .    

 The options  -o2  and  -o3  attempt to do software optimization.  

8.2.2 Intrinsic C Functions 

 There are a number of available C intrinsic functions that can be used to increase 
the effi ciency of code: 

1.      int_mpy( )  has the equivalent ASM instruction  MPY , which multiplies the 16 
LSBs of a number by the 16 LSBs of another number.  

2.      int_mpyh( )  has the equivalent ASM instruction  MPYH , which multiplies the 
16 MSBs of a number by the 16 MSBs of another number.  

3.      int_mpylh( )  has the equivalent ASM instruction  MPYLH , which multiplies 
the 16 LSBs of a number by the 16 MSBs of another number.  

4.      int_mpyhl( )  has the equivalent instruction  MPYHL , which multiplies the 16 
MSBs of a number by the 16 LSBs of another number.  

5.      void_nassert(int)  generates no code. It tells the compiler that the expres-
sion declared with the assert function is true. This conveys information to the 
compiler about alignment of pointers and arrays and of valid optimization 
schemes, such as word - wide optimization.  

6.      uint_lo(double)  and  uint_hi(double)  obtain the low and high 32   bits of 
a double word, respectively (available on C67x or C64x).      

8.3 PROCEDURE FOR CODE OPTIMIZATION 

1.     Use instructions in parallel so that multiple functional units can be operated 
within the same cycle.  

2.     Eliminate  NOP s or delay slots, placing code where the  NOP s are located.  

3.     Unroll the loop to avoid overhead with branching.  

4.     Use word - wide data to access a 32 - bit word ( int ) in lieu of a 16 - bit half - word 
(short ).  

5.     Use software pipelining, illustrated in Section  8.5 .     

8.4 PROGRAMMING EXAMPLES USING CODE 
OPTIMIZATION TECHNIQUES 

 Several examples are developed to illustrate various techniques to increase the 
effi ciency of code. Optimization using software pipelining is discussed in Section  8.5 . 



//twosum.c Sum of Products with separate accumulation of even/odd terms
//with word-wide data for fixed-point implementation

int dotp (short a[ ], short b [ ])
{
   int suml, sumh, sum, i;
   suml = 0;
   sumh = 0;
   sum = 0;
   for (i = 0; i < 200; i +=2)
     {
 suml  += a[i] * b[i];  //sum of products of even terms
 sumh += a[i + 1] * b[i + 1];  //sum of products of odd terms
     }
    sum = suml + sumh;   //final sum of odd and even terms
    return (sum);
}

The dot product is used to illustrate the various optimization schemes. The dot 
product of two arrays can be useful for many DSP algorithms, such as fi ltering and 
correlation. The examples that follow assume that each array consists of 200 numbers. 
Several programming examples using mixed C and ASM code, which provide neces-
sary background, were given in Chapter  3 . 

     Example 8.1:   Sum of Products with Word - Wide Data Access for 
Fixed - Point Implementation Using  C  Code ( twosum ) 

 Figure  8.1  shows the C code   twosum.c  , which obtains the sum of products of two 
arrays accessing 32 - bit word data. Each array consists of 200 numbers. Separate 
sums of products of even and odd terms are calculated within the loop. Outside the 
loop, the fi nal summation of the even and odd terms is obtained.   

 For a fl oating - point implementation, the function and the variables   sum  ,   suml  , 
and   sumh   in Figure  8.1  are cast as   fl oat   in lieu of   int  :

 fl oat dotp (fl oat a[ ], fl oat b [ ])
{

fl oat suml, sumh, sum;
int i;
.
.
.

}   

    FIGURE 8.1.     C code for sum of products using word - wide data access for separate accumu-
lation of even and odd sum of product terms ( twosum.c ).  

 Programming Examples Using Code Optimization Techniques  357



358  Code Optimization

//dotpintrinsic.c Sum of products with C intrinsic functions using C

for (i = 0; i < 100; i++)
 {
  suml = suml + _mpy(a[i], b[i]);
  sumh = sumh + _mpyh(a[i], b[i]);
 }
return (suml + sumh); 

    FIGURE 8.2.     Separate sum of products using C intrinsic functions ( dotpintrinsic.c ).  

;twosumlasmfix.sa Sum of Products. Separate accum of even/odd terms
;With word-wide data for fixed-point implementation using linear ASM

loop:    LDW *aptr++, ai   ;32-bit word ai
    LDW *bptr++, bi   ;32-bit word bi
    MPY ai, bi, prodl  ;lower 16-bit product
    MPYH ai, bi, prodh  ;higher 16-bit product
    ADD prodl, suml, suml  ;accum even terms
    ADD prodh, sumh, sumh  ;accum odd terms
         SUB count, 1, count  ;decrement count
 [count] B  loop    ;branch to loop 

    FIGURE 8.3.     Separate sum of products using linear ASM code for fi xed - point implementa-
tion ( twosumlasmfi x.sa ).  

  Example 8.2:   Separate Sum of Products with  C  Intrinsic Functions 
Using  C  Code ( dotpintrinsic ) 

 Figure  8.2  shows the C code   dotpintrinsic.c   to illustrate the separate sum of 
products using two C intrinsic functions,  _ mpy   and  _ mpyh  , which have the equivalent 
ASM instructions  MPY  and  MPYH , respectively. Whereas the even and odd sums of 
products are calculated within the loop, the fi nal summation is taken outside the 
loop and returned to the calling function.    

  Example 8.3:   Sum of Products with Word - Wide Access for Fixed - Point 
Implementation Using Linear  ASM  Code ( twosumlasmfi x.sa ) 

 Figure  8.3  shows the linear ASM code   twosumlasmfi x.sa  , which obtains two sepa-
rate sums of products for a fi xed - point implementation. It is not necessary to specify 
the functional units. Furthermore, symbolic names can be used for registers. The  LDW  
instruction is used to load a 32 - bit word - wide data value (which must be word -
 aligned in memory when using  LDW ). Lower and upper 16 - bit products are calculated 
separately. The two  ADD  instructions accumulate separately the even and odd sum 
of products.    



  Example 8.4:   Sum of Products with Double - Word Load for Floating - Point 
Implementation Using Linear  ASM  Code ( twosumlasmfl oat ) 

 Figure  8.4  shows the linear ASM code   twosumlasmfl oat.sa   used to obtain two 
separate sums of products for a fl oating - point implementation. The double - word 
load instruction  LDDW  loads a 64 - bit data value and stores it in a pair of registers. 
Each single - precision multiply instruction  MPYSP  performs a 32    ×    32 multiplication. 
The sums of products of the lower and upper 32   bits are performed to yield a sum 
of both even and odd terms as 32   bits.    

  Example 8.5:   Dot Product with No Parallel Instructions for Fixed - Point 
Implementation Using  ASM  Code ( dotpnp ) 

 Figure  8.5  shows the ASM code   dotpnp.asm   for the dot product with no instructions 
in parallel for a fi xed - point implementation. A fi xed - point implementation can be 

;twosumlasmfloat.sa Sum of products.Separate accum of even/odd terms
;Using double-word load LDDW for floating-point implementation

loop:    LDDW *aptr++, ai1:ai0  ;64-bit word ai0 and ai1
    LDDW *bptr++, bi1:bi0  ;64-bit word  bi0 and bi1
    MPYSP ai0, bi0, prodl  ;lower 32-bit product
    MPYSP ai1, bi1, prodh  ;higher 32-bit product
    ADDSP prodl, suml, suml  ;accum 32-bit even terms
    ADDSP prodh, sumh, sumh  ;accum 32-bit odd terms
    SUB count, 1, count  ;decrement count
 [count] B  loop    ;branch to loop

    FIGURE 8.4.     Separate sum of products with  LDDW  using ASM code for fl oating - point imple-
mentation ( twosumlasmfl oat.sa ).  

;dotpnp.asm ASM Code, no parallel instructions, fixed-point

     MVK .S1 200, A1 ;count into A1
     ZERO .L1 A7  ;init A7 for accum
LOOP      LDH .D1 *A4++,A2 ;A2=16-bit data pointed by A4
     LDH  .D1 *A8++,A3 ;A3=16-bit data pointed by A8
     NOP  4  ;4 delay slots for LDH
     MPY .M1 A2,A3,A6 ;product in A6
     NOP    ;1 delay slot for MPY
     ADD .L1 A6,A7,A7 ;accum in A7
     SUB .S1 A1,1,A1 ;decrement count
   [A1]   B  .S2  LOOP  ;branch to LOOP
     NOP  5  ;5 delay slots for B 

    FIGURE 8.5.     ASM code with no parallel instructions for fi xed - point implementation 
( dotpnp.asm ).  
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performed with all C6x devices, whereas a fl oating - point implementation requires 
a C67x platform such as the C6713 DSK.   

 The loop iterates 200 times. With a fi xed - point implementation, each pointer 
register A4 and A8 increments to point at the next half - word (16   bits) in each buffer, 
whereas with a fl oating - point implementation, a pointer register increments the 
pointer to the next 32 - bit word. The load, multiply, and branch instructions must use 
the  .D ,  .M , and  .S  units, respectively; the add and subtract instructions can use any 
unit (except  .M ). The instructions within the loop consume 16 cycles per iteration. 
This yields 16    ×    200   =   3200 cycles. Table  8.4  shows a summary of several optimiza-
tion schemes for both fi xed -  and fl oating - point implementations.  

  Example 8.6:   Dot Product with Parallel Instructions for Fixed - Point 
Implementation Using  ASM  Code ( dotpp ) 

 Figure  8.6  shows the ASM code   dotpp.asm   for the dot product with a fi xed - point 
implementation with instructions in parallel. With code in lieu of  NOP s, the number 
of  NOP s is reduced.   

 The  MPY  instruction uses a cross - path (with  .M1x ) since the two operands are 
from different register fi les or different paths. The instructions  SUB  and  B  are moved 
up to fi ll some of the delay slots required by  LDH . The branch instruction occurs after 
the  ADD  instruction. Using parallel instructions, the instructions within the loop now 
consume eight cycles per iteration, to yield 8    ×    200   =   1600 cycles.  

  Example 8.7:   Two Sums of Products with Word - Wide (32 - bit) Data for 
Fixed - Point Implementation Using  ASM  Code ( twosumfi x ) 

 Figure  8.7  shows the ASM code   twosumfi x.asm  , which calculates two separate 
sums of products using word - wide access of data for a fi xed - point implementation. 
The loop count is initialized to 100 (not 200) since two sums of products are 
obtained per iteration. The instruction  LDW  loads a word or 32 - bit data. The 

;dotpp.asm ASM Code with parallel instructions, fixed-point

      MVK   .S1 200, A1 ;count into A1
   || ZERO .L1 A7 ;init A7 for accum
LOOP LDH .D1   *A4++,A2 ;A2=16-bit data pointed by A4
   || LDH .D2   *B4++,B2 ;B2=16-bit data pointed by B4
      SUB .S1 A1,1,A1 ;decrement count
 [A1] B .S1  LOOP ;branch to LOOP (after ADD)
      NOP 2 ;delay slots for LDH and B
      MPY .M1x  A2,B2,A6 ;product in A6
      NOP                     ;1 delay slot for MPY
      ADD .L1 A6,A7,A7 ;accum in A7,then branch
;branch occurs here

    FIGURE 8.6.     ASM code with parallel instructions for fi xed - point implementaition.  



multiply instruction  MPY  fi nds the product of the lower 16    ×    16 data, and  MPYH  fi nds 
the product of the upper 16    ×    16 data. The two  ADD  instructions accumulate sepa-
rately the even and odd sums of products. Note that an additional  ADD  instruction 
is needed outside the loop to accumulate A7 and B7. The instructions within the 
loop consume eight cycles, now using 100 iterations (not 200), to yield 8    ×    100   =   800 
cycles.    

  Example 8.8:   Dot Product with No Parallel Instructions for Floating - Point 
Implementation Using  ASM  Code ( dotpnpfl oat ) 

 Figure  8.8  shows the ASM code   dotpnpfl oat.asm   for the dot product with a fl oat-
ing - point implementation using no instructions in parallel. The loop iterates 200 

;twosumfix.asm ASM code for two sums of products with word-wide data
;for fixed-point implementation

       MVK    .S1 100, A1 ;count/2 into A1
     || ZERO  .L1 A7  ;init A7 for accum of even terms
     || ZERO  .L2 B7  ;init B7 for accum of odd terms
LOOP  LDW  .D1  *A4++,A2 ;A2=32-bit data pointed by A4
     || LDW  .D2  *B4++,B2 ;A3=32-bit data pointed by B4
       SUB  .S1 A1,1,A1 ;decrement count
 [A1] B  .S1 LOOP  ;branch to LOOP (after ADD)
       NOP     2  ;delay slots for both LDW and B
       MPY  .M1x A2,B2,A6 ;lower 16-bit product in A6
     ||   MPYH  .M2x A2,B2,B6 ;upper 16-bit product in B6
  NOP    ;1 delay slot for MPY/MPYH
  ADD  .L1  A6,A7,A7 ;accum even terms in A7
     || ADD  .L2 B6,B7,B7 ;accum odd terms in B7
;branch occurs here 

    FIGURE 8.7.     ASM code for two sums of products with 32 - bit data for fi xed - point imple-
mentation ( twosumfi x.asm ).  
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;dotpnpfloat.asm ASM Code with no parallel instructions for floating-pt

 MVK   .S1 200, A1 ;count into A1
 ZERO     .L1 A7  ;init A7 for accum
LOOP LDW  .D1 *A4++,A2 ;A2=32-bit data pointed by A4
 LDW     .D1  *A8++,A3 ;A3=32-bit data pointed by A8
 NOP   4  ;4 delay slots for LDW
 MPYSP    .M1   A2,A3,A6 ;product in A6
 NOP   3  ;3 delay slots for MPYSP
 ADDSP     .L1 A6,A7,A7 ;accum in A7
 SUB    .S1 A1,1,A1 ;decrement count
 [A1] B      .S2  LOOP  ;branch to LOOP
 NOP   5  ;5 delay slots for B 

    FIGURE 8.8.     ASM code with no parallel instructions for fl oating - point implementation 
( dotpnpfl oat.asm ).  



362  Code Optimization

times. The single - precision fl oating - point instruction  MPYSP  performs a 32    ×    32 mul-
tiply. Each  MPYSP  and  ADDSP  requires three delay slots. The instructions within the 
loop consume a total of 18 cycles per iteration (without including three  NOP s associ-
ated with  ADDSP ). This yields a total of 18    ×    200   =   3600 cycles. (See Table  8.4  for a 
summary of several optimization schemes for both fi xed -  and fl oating - point 
implementations.)    

  Example 8.9:   Dot Product with Parallel Instructions for Floating - Point 
Implementation Using  ASM  Code ( dotppfl oat ) 

 Figure  8.9  shows the ASM code   dotppfl oat.asm   for the dot product with a fl oat-
ing - point implementation using instructions in parallel. The loop iterates 200 times. 
By moving the  SUB  and  B  instructions up to take the place of some  NOP s, the number 
of instructions within the loop is reduced to 10. Note that three additional  NOP s 
would be needed outside the loop to retrieve the result from  ADDSP . The instructions 
within the loop consume a total of 10 cycles per iteration. This yields a total of 
10    ×    200   =   2000 cycles.    

  Example 8.10:   Two Sums of Products with Double - Word - Wide (64 -  bit ) 
Data for Floating - Point Implementation Using  ASM  Code ( twosumfl oat ) 

 Figure  8.10  shows the ASM code   twosumfl oat.asm  , which calculates two separate 
sums of products using double - word - wide access of 64 - bit data for a fl oating - point 
implementation. The loop count is initialized to 100 since two sums of products are 
obtained per iteration. The instruction  LDDW  loads a 64 - bit double - word data value 
into a register pair. The multiply instruction  MPYSP  performs a 32    ×    32 multiply. The 
two  ADDSP  instructions accumulate separately the even and odd sums of products. 
The additional  ADDSP  instruction is needed outside the loop to accumulate A7 and 

;dotppfloat.asm  ASM Code with parallel instructions for floating-point

  MVK    .S1  200, A1 ;count into A1
       || ZERO  .L1  A7  ;init A7 for accum
LOOP  LDW  .D1   *A4++,A2 ;A2=32-bit data pointed by A4
       || LDW  .D2   *B4++,B2 ;B2=32-bit data pointed by B4
  SUB  .S1  A1,1,A1 ;decrement count
            NOP   2  ;delay slots for both LDW and B
     [A1] B  .S2   LOOP  ;branch to LOOP (after ADDSP)
            MPYSP  .M1x  A2,B2,A6 ;product in A6
  NOP      3  ;3 delay slots for MPYSP
  ADDSP  .L1  A6,A7,A7 ;accum in A7,then branch
;branch occurs here 

    FIGURE 8.9.     ASM code with parallel instructions for fl oating - point implementation 
( dotppfl oat.asm ).  
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    FIGURE 8.10.     ASM code with two sums of products for fl oating - point implementation 
( twosumfl oat.asm ).  

;twosumfloat.asm ASM Code with two sums of products for floating-pt

  MVK .S1 100, A1 ;count/2 into A1
       || ZERO .L1 A7  ;init A7 for accum of even terms
       || ZERO .L2 B7  ;init B7 for accum of odd terms
LOOP  LDDW .D1   *A4++,A3:A2 ;64-bit-> register pair A2,A3
       || LDDW  .D2  *B4++,B3:B2 ;64-bit-> register pair B2,B3
  SUB .S1 A1,1,A1 ;decrement count
  NOP     2  ;delay slots for LDW
      [A1] B .S2 LOOP  ;branch to LOOP
            MPYSP .M1x A2,B2,A6 ;lower 32-bit product in A6
       ||   MPYSP .M2x A3,B3,B6 ;upper 32-bit product in B6
  NOP  3  ;3 delay slot for MPYSP
  ADDSP .L1 A6,A7,A7 ;accum even terms in A7
       || ADDSP .L2 B6,B7,B7 ;accum odd terms in B7
;branch occurs here
  NOP  3  ;delay slots for last ADDSP
  ADDSP .L1x A7,B7,A4 ;final sum of even and odd terms
  NOP  3  ;delay slots for ADDSP 

B7. The instructions within the loop consume a total of 10 cycles, using 100 iterations 
(not 200), to yield a total of 10    ×    100   =   1000 cycles.      

  8.5   SOFTWARE PIPELINING FOR CODE OPTIMIZATION 

 Software pipelining is a scheme to write effi cient code in ASM so that all the func-
tional units are utilized within one cycle. Optimization levels   - o2  and   - o3  enable 
code generation to generate (or attempt to generate) software - pipelined code. 

 There are three stages associated with software pipelining: 

  1.      Prolog (warm - up).    This stage contains instructions needed to build up the 
loop kernel (cycle).  

  2.      Loop kernel (cycle).    Within this loop, all instructions are executed in parallel. 
The entire loop kernel can be executed in  one  cycle, since all the instructions 
within the loop kernel stage are in parallel.  

  3.      Epilog (cool - off).    This stage contains the instructions necessary to complete 
all iterations.    

  8.5.1   Procedure for Hand - Coded Software Pipelining 

    1.     Draw a dependency graph.  

  2.     Set up a scheduling table.  

  3.     Obtain code from the scheduling table.     
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  8.5.2   Dependency Graph 

 Figure  8.11  shows a dependency graph. A procedure for drawing a dependency 
graph follows. 

  1.     Draw the nodes and paths.  

  2.     Write the number of cycles to complete an instruction.  

  3.     Assign functional units associated with each node.  

  4.     Separate the data path so that the maximum number of units are utilized.      

 A node has one or more data paths going into and/or out of the node. The numbers 
next to each node represent the number of cycles required to complete the associated 
instruction. A parent node contains an instruction that writes to a variable, whereas 
a child node contains an instruction that reads a variable written by the parent. 

 The  LDH  instructions are considered to be the parents of the  MPY  instruction since 
the results of the two load instructions are used to perform the  MPY  instruction. 
Similarly, the  MPY  is the parent of the  ADD  instruction. The  ADD  instruction is fed 
back as input for the next iteration; similarly with the  SUB  instruction. 

 Figure  8.12  shows another dependency graph associated with two sums of prod-
ucts for a fi xed - point implementation. The length of the prolog section is the longest 
path from the dependency graph in Figure  8.12 . Since the longest path is 8, the length 
of the prolog is 7 before entering the loop kernel (cycle) at cycle 8.   

 A similar dependency graph for a fl oating - point implementation can be obtained 
using  LDDW ,  MPYSP , and  ADDSP  in lieu of  LDW ,  MPY/MPYH , and  ADD , respectively, in 
Figure  8.12 . Note that the single - precision instructions  ADDSP  and  MPYSP  both take 
four cycles to complete (three delay slots each).  

    FIGURE 8.11.     Dependency graph for dot product: (a) initial stage and (b) fi nal stage.  
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    FIGURE 8.12.     Dependency graph for two sums of products per iteration.  

  8.5.3   Scheduling Table 

 Table  8.1  shows a scheduling table drawn from the dependency graph. 

  1.      LDW  starts in cycle 1.  

  2.      MPY  and  MPYH  must start fi ve cycles after the  LDW s due to the four delay slots. 
Therefore,  MPY  and  MPYH  start in cycle 6.  

 TABLE 8.1     Schedule Table of Dot Product Before Software Pipelining for 
Fixed - Point Implementation 

  Cycles 
Units    1, 9,  .      .      .     2, 10,  .      .      .     3, 11,  .      .      .     4, 12,  .      .      .     5, 13,  .      .      .     6, 14,  .      .      .     7, 15,  .      .      .     8, 16,  .      .      .   

   .D1      LDW                               
   .D2      LDW                               
   .M1                          MPY           
   .M2                          MPYH           
   .L1                                  ADD   
   .L2                                  ADD   
   .S1          SUB                           
   .S2              B                       
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  3.      ADD  must start two cycles after  MPY/MPYH  due to the one delay slot of  MPY / MPYH . 
Therefore,  ADD  starts in cycle 8.  

  4.      B   has fi ve delay slots and starts in cycle 3, since branching occurs in cycle 9, 
after the  ADD  instruction.  

  5.      SUB  instruction must start one cycle before the branch instruction, since the 
loop count is decremented before branching occurs. Therefore,  SUB  starts in 
cycle 2.      

 From Table  8.1 , the two  LDW  instructions are in parallel and are issued in cycles 1, 
9, 17,       .      .      .       . The  SUB  instruction is issued in cycles 2, 10, 18,       .      .      .       . This is followed by the 
branch ( B ) instruction issued in cycles 3, 11, 19,       .      .      .       . The two parallel instructions 
 MPY  and  MPYH  are issued in cycles 6, 14, 22,       .      .      .       . The  ADD  instructions are issued in 
cycles 8, 16, 24,       .      .      .       . 

 Table  8.1  is extended to illustrate the different stages: prolog (cycles 1 through 
7), loop kernel (cycle 8), and epilog (cycles 9, 10,       .      .      .       not shown), as shown in Table 
 8.2 . The instructions within the prolog stage are repeated until and including the 
loop kernel (cycle) stage. Instructions in the epilog stage (cycles 9, 10,  … ) complete 
the functionality of the code. 

 From Table  8.2 , an effi cient optimized code can be obtained. Note that it is pos-
sible to start processing a new iteration before previous iterations are fi nished. 
Software pipelining allows us to determine when to start a new loop iteration.   

     Loop Kernel (Cycle) 
 Within the loop kernel, in cycle 8, each functional unit is used only once. The 
minimum iteration interval is the minimum number of cycles required to wait before 
the initiation of a successive iteration. This interval is 1. As a result, a new iteration 
can be initiated every cycle. 

 Within loop cycle 8, multiple iterations of the loop execute in parallel. In cycle 
8, different iterations are processed at the same time. For example, the  ADD s add 

 TABLE 8.2     Schedule Table of Dot Product After Software Pipelining for 
Fixed - Point Implementation 

  Cycles Units  

  Prolog    Loop Kernel  

  1    2    3    4    5    6    7    8  

   .D1      LDW      LDW      LDW      LDW      LDW      LDW      LDW      LDW   
   .D2      LDW      LDW      LDW      LDW      LDW      LDW      LDW      LDW   
   .M1                          MPY      MPY      MPY   
   .M2                          MPYH      MPYH      MPYH   
   .L1                                  ADD   
   .L2                                  ADD   
   .S1          SUB      SUB      SUB      SUB      SUB      SUB      SUB   
   .S2              B      B      B      B      B      B   



 Software Pipelining for Code Optimization  367

data for iteration 1, while MPY  and  MPYH  multiply data for iteration 3,  LDW s load data 
for iteration 8, SUB  decrements the counter for iteration 7, and   B   branches for 
iteration 6. Note that the values being multiplied are loaded into registers fi ve cycles 
prior to the cycle when the values are multiplied. Before the fi rst multiplication 
occurs, the fi fth load has just completed. This software pipeline is eight iterations 
deep.   

Example 8.11: Dot Product Using Software Pipelining for 
a Fixed -Point Implementation 

 This example implements the dot product using software pipelining for a fi xed - point 
implementation. From Table  8.2 , one can readily obtain the ASM code  dotpipedfi x.
asm  shown in Figure  8.13 . The loop count is 100 since two multiplies and two 
accumulates are calculated per iteration. The following instructions start in the fol-
lowing cycles: 

Cycle 1 :  LDW ,  LDW  (also initialization of count and accumulators A7 and B7)  

Cycle 2 :  LDW ,  LDW ,  SUB

Cycles 3 – 5 :  LDW ,  LDW ,  SUB ,  B

Cycles 6 – 7 :  LDW ,  LDW ,  MPY ,  MPYH ,  SUB ,  B

Cycles 8 – 107 :  LDW ,  LDW ,  MPY ,  MPYH ,  ADD ,  ADD ,  SUB ,  B

Cycle 108 :  LDW ,  LDW ,  MPY ,  MPYH ,  ADD ,  ADD ,  SUB ,  B

 The prolog section is within cycles 1 through 7; the loop kernel is in cycle 8, where 
all the instructions are in parallel; and the epilog section is in cycle 108. Note that 
SUB  is made conditional to ensure that Al is no longer decremented once it reaches 
zero.

Example 8.12: Dot Product Using Software Pipelining for 
a Floating -Point Implementation 

 This example implements the dot product using software pipelining for a fl oating -
 point implementation. Table  8.3  shows a fl oating - point version of Table  8.2 .  LDW
becomes LDDW ,  MPY/MPYH  become  MPYSP , and  ADD  becomes  ADDSP . Both  MPYSP  and 
ADDSP  have three delays slots. As a result, the loop kernel starts in cycle 10 in lieu 
of cycle 8. The SUB  and  B  instructions start in cycles 4 and 5, respectively, in lieu of 
cycles 2 and 3. ADDSP  starts in cycle 10 in lieu of cycle 8. The software pipeline for 
a fl oating - point implementation is 10 deep.   

 Figure  8.14  shows the ASM code  dotpipedfloat.asm , which implements 
the fl oating - point version of the dot product. Since  ADDSP  has three delay slots, the 
accumulation is staggered by four. The accumulation associated with one of the 
ADDSP  instructions at each loop cycle follows:
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    FIGURE 8.13.     ASM code using software pipelining for fi xed - point implementation 
( dotpipedfi x.asm ).  

;dotpipedfix.asm  ASM code for dot product with software pipelining
;For fixed-point implementation
;cycle 1
  MVK  .S1 100,A1  ;loop count
      ||    ZERO.        L1 A7  ;init accum A7
      ||    ZERO  .L2 B7  ;init accum B7
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
;cycle 2
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
;cycle 3
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
      || [A1]     B  .S2 LOOP  ;branch to LOOP
;cycle 4
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count    
      || [A1]     B  .S2 LOOP  ;branch to LOOP
;cycle 5
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
      || [A1] B  .S2 LOOP  ;branch to LOOP
;cycle 6
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
      || [A1] B  .S2 LOOP  ;branch to LOOP
      ||    MPY  .M1x A2,B2,A6 ;lower 16-bit product into A6
      ||    MPYH  .M2x A2,B2,B6 ;upper 16-bit product into B6
;cycle 7
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
      || [A1] B  .S2 LOOP  ;branch to LOOP
      ||    MPY  .M1x A2,B2,A6 ;lower 16-bit product into A6
      ||    MPYH  .M2x A2,B2,B6 ;upper 16-bit product into B6
;cycles 8-107 (loop cycle)
      ||    LDW  .D1 *A4++,A2 ;32-bit data in A2
      ||    LDW  .D2 *B4++,B2 ;32-bit data in B2
      || [A1] SUB  .S1 A1,1,A1 ;decrement count
      || [A1] B  .S2 LOOP  ;branch to LOOP
      ||    MPY .M1x A2,B2,A6 ;lower 16-bit product into A6
      ||    MPYH .M2x A2,B2,B6 ;upper 16-bit product into B6
      ||    ADD .L1 A6,A7,A7 ;accum in A7
      ||    ADD .L2 B6,B7,B7 ;accum in B7
;branch occurs here
;cycle 108 (epilog)
            ADD .L1x A7,B7,A4 ;final accum of odd/even
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 TABLE 8.3     Schedule Table of Dot Product After Software Pipelining for 
Floating - Point Implementation 

  Cycle Units  

  Prolog    Loop Kernel  

  1    2    3    4    5    6    7    8    9    10  

   .D1      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW   
   .D2      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW      LDDW   
   .M1                          MPYSP      MPYSP      MPYSP      MPYSP      MPYSP   
   .M2                          MPYSP      MPYSP      MPYSP      MPYSP      MPYSP   
   .L1                                          ADDSP   
   .L2                                          ADDSP   
   .S1                  SUB      SUB      SUB      SUB      SUB      SUB      SUB   
   .S2                      B      B      B      B      B      B   

  Loop 
Cycle    Accumulator (one  ADDSP )      

     1     0       
     2     0       
     3     0       
     4     0       
     5     p0     ;fi rst product  
     6     p1     ;second product  
     7     p3       
     8     p4       
     9     p0 + p4     ;sum of fi rst and fi fth products  
     10     p1 + p5     ;sum of second and sixth products  
     11     p2 + p6       
     12     p3 + p7       
     13     p0 + p4 + p8     ;sum of fi rst, fi fth, and ninth  p roducts  
     14     p1 + p5 + p9       
     15     p2 + p6 + p10       
     16     p3 + p7 + p11       
     17     p0 + p4 + p8 + p12       
     .    .      
     .    .      
     .    .      
     99     p2 + p6 + p10 +  .      .      .        + p94       
  100     p3 + p7 + p11 +   .      .      .         + p95       

 This accumulation is shown associated with the loop cycle. The actual cycle is 
shifted by 9 (by the cycles in the prolog section). Note that the fi rst product,  p0 , is 
obtained (available) in loop cycle 5 since the fi rst  ADDSP  starts in loop cycle 1 and 
has three delay slots. The fi rst product,  p0 , is associated with the lower 32 - bit term. 
The second  ADDSP  (not shown) accumulates the upper 32 - bit sum of products. 
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;dotpipedfloat.asm  ASM code for dot product with software pipelining
;For floating-point implementation
;cycle 1
              MVK  .S1 100,A1   ;loop count
      ||    ZERO  .L1 A7   ;init accum A7
      ||    ZERO  .L2 B7   ;init accum B7
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
;cycle 2
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
;cycle 3
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
;cycle 4
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
      || [A1] SUB  .S1 A1,1,A1  ;decrement count
;cycle 5
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
      || [A1] SUB  .S1 A1,1,A1  ;decrement count
      || [A1] B  .S2 LOOP   ;branch to LOOP
;cycle 6
      ||    LDDW  .D1 *A4++,A3:A2  ;64-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;64-bit data in B2 and B3
      || [A1] SUB  .S1 A1,1,A1  ;decrement count
      || [A1] B  .S2 LOOP   ;branch to LOOP
      ||    MPYSP .M1x A2,B2,A6  ;lower 32-bit product into A6
      ||    MPYSP .M2x A3,B3,B6  ;upper 32-bit product into B6
;cycle 7
      ||    LDDW  .D1 *A4++,A3:A2  ;32-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;32-bit data in B2 and B3
      || [A1] SUB  .S1 A1,1,A1  ;decrement count
      || [A1] B  .S2 LOOP   ;branch to LOOP
      ||    MPYSP .M1x A2,B2,A6  ;lower 32-bit product into A6
      ||    MPYSP .M2x A3,B3,B6  ;upper 32-bit product into B6
;cycle 8
      ||    LDDW  .D1 *A4++,A3:A2  ;32-bit data in A2 and A3
      ||    LDDW  .D2 *B4++,B3:B2  ;32-bit data in B2 and B3
      || [A1] SUB  .S1 A1,1,A1  ;decrement count
      || [A1] B  .S2 LOOP   ;branch to LOOP
      ||    MPYSP .M1x A2,B2,A6  ;lower 32-bit product into A6
      ||    MPYSP .M2x A3,B3,B6  ;upper 32-bit product into B6
;cycle 9
      ||    LDDW  .D1 *A4++,A3:A2  ;32-bit data in A2 and A3
      ||    LDDW .D2 *B4++,B3:B2  ;32-bit data in B2 and B3
      || [A1] SUB .S1 A1,1,A1  ;decrement count
      || [A1] B .S2 LOOP ;branch to LOOP
      ||    MPYSP .M1x A2,B2,A6  ;lower 32-bit product into A6
      ||    MPYSP .M2x A3,B3,B6  ;upper 32-bit product into B6

      FIGURE 8.14.     ASM code using software pipelining for fl oating - point implementation 
( dotpipedfl oat.asm ).  
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;cycles 10-109 (loop kernel)
     ||    LDDW .D1 *A4++,A3:A2  ;32-bit data in A2 and A3
     ||    LDDW .D2 *B4++,B3:B2  ;32-bit data in B2 and B3
     || [A1] SUB .S1 A1,1,A1  ;decrement count
     || [A1] B .S2 LOOP ;branch to LOOP
     ||    MPYSP .M1x A2,B2,A6  ;lower 32-bit product into A6
     ||    MPYSP .M2x A3,B3,B6  ;upper 32-bit product into B6
     ||    ADDSP .L1 A6,A7,A7  ;accum in A7
     ||    ADDSP .L2 B6,B7,B7  ;accum in B7

;branch occurs here
;cycles 110-124 (epilog)
           ADDSP .L1x A7,B7,A0  ;lower/upper sum of products
           ADDSP .L2x A7,B7,B0  ;
           ADDSP .L1x A7,B7,A0  ;
           ADDSP .L2x A7,B7,B0  ;
           NOP                            ;wait for 1

st
 B0

           ADDSP .L1x A0,B0,A5  ;1st two sum of products
           NOP                            ;wait for 2

nd
 B0

           ADDSP .L2x A0,B0,B5  ;last two sum of products
           NOP 3 ;3 delay slots for ADDSP
           ADDSP .L1x A5,B5,A4  ;final sum
           NOP 3 ;3 delay slots for final sum

 A6 contains the lower 32 - bit products and B6 contains the upper 32 - bit products. 
The sums of the lower and upper 32 - bit products are accumulated in A7 and B7, 
respectively. 

 The epilog section contains the following instructions associated with the actual 
cycle (not loop cycles), as shown in Figure  8.14 .

  Cycle    Instruction      

  110     ADDSP       
  111     ADDSP       
  112     ADDSP       
  113     ADDSP       
  114     NOP       
  115     ADDSP       
  116     NOP       
  117     ADDSP       
  118 – 120     NOP      3   
  121     ADDSP       
  122 – 124     NOP      3   

 In cycles 113 through 116, A7 contains the lower 32 - bit sum of products and B7 
contains the upper 32 - bit sum of products, or:

FIGURE 8.14. (Continued)
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  Cycle    A7 for Lower 32 Bits (B7 for Upper 32 Bits)  

  113     p0 + p4 + p8 + .      .      .       + p96
  114     p1 + p5 + p9 + .      .      .       + p97
  115     p2 + p6 + p10 + .      .      .       + p98
  116     p3 + p7 + p11 + .      .      .       + p99

 In cycle 114,  A0 = A7 + B7  is available.  A0  accumulates the lower and the upper 
sum of products, where

A7 = p0 + p4 + p8 +  .      .      .       + p96 (lower 32 bits)
B7 = p0 + p4 + p8 + .      .      .       + p96 (upper 32 bits) 

In cycle 115, B0 = A7 + B7  is available, where

A7 = pl + p5 + p9 +  .      .      .       + p97 (lower 32 bits)
B7 = p1 + p5 + p9 + .      .      .       + p97 (upper 32 bits) 

Similarly, in cycles 116 and 117, A0  and  B0  are obtained (available) as

A0 = sum of lower/upper 32 bits of (p2 + p6 + p10 + .      .      .       + p98)
B0 = sum of lower/upper 32 bits of (p3 + p7 + p11 + .      .      .       + p99) 

In cycle 119, A5 = A0 + B0  (obtained from cycles 114 and 115). In cycle 121,  B5
= A0 + B0  (obtained from cycles 116 and 117). 

 The fi nal sum accumulates in A4 and is available after cycle 124.    

8.6 EXECUTION CYCLES FOR DIFFERENT OPTIMIZATION SCHEMES 

 Table  8.4  shows a summary of the different optimization schemes for both fi xed -  and 
fl oating - point implementations, for a count of 200. The number of cycles can be 

TABLE 8.4 Number of Cycles with Different Optimization Schemes for Both 
Fixed- and Floating -Point Implementations (Count = 200)

Optimization Scheme 

Number of Cycles 

Fixed-Point Floating-Point

1. No optimization 2 + (16 × 200) = 3202 2 + (18 × 200) = 3602
2. With parallel instructions 1 + (8 × 200) = 1601 1 + (10 × 200) = 2001
3. Two sums per iteration 1 + (8 × 100) = 801 1 + (10 × 100) + 7 = 1008
4. With software pipelining 7 + (100) + 1 = 108 9 + (100) + 15 = 124



obtained for different array sizes, since the number of cycles in the prolog and epilog 
stages remain the same.   

 Note that for a count of 1000, the fi xed -  and fl oating - point implementations with 
software pipeling take: 

Fixed - point :      7   +   (count/2)   +   1   =   508 cycles  

Floating - point :   9   +   (count/2)   +   15   =   524 cycles     
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 A number of examples in this chapter illustrate the use of the DSP/BIOS real - time 
operating system and the real - time data exchange module RTDX. 

 DSP/BIOS provides real - time scheduling, analysis, and data transfer capabilities 
for an application running on a Texas Instruments DSP. RTDX allows the exchange 
of data, in real time, between a DSP and an application running on a host computer. 
Examples are given of host applications using MATLAB, Visual C++, Visual Basic, 
and LabVIEW.  

9.1 INTRODUCTION TO DSP/BIOS

 The following examples introduce some of the real - time scheduling and real - time 
analysis features of DSP/BIOS. Example programs from previous chapters are 
adapted to run as DSP/BIOS applications. 

DSP/BIOS Threads 
 At the heart of DSP/BIOS is a preemptive real - time scheduler. This determines 
which one of a number of different threads is executed by the DSP at any given 
time. Threads are DSP/BIOS objects that contain program code (functions). The 
scheduler determines which thread to execute according to its type, priority, and 
other object properties. There are several different types of thread that can be used 
in a DSP/BIOS application. 

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc. 
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 •       Hardware interrupts  (HWIs) have the highest priority in a DSP/BIOS applica-
tion. Their execution is triggered by interrupts from on - chip peripherals or 
external devices and they always run to completion. HWI threads are not pre-
empted by any other threads. For that reason, HWIs should be used for the most 
time - critical activities within an application and the code associated with them 
(i.e., the interrupt service routines) should ideally be kept as short as possible.  

 •       Software interrupts  (SWIs) are triggered (posted) from within a program. The 
priority of a SWI object can be set to one of a number of different levels. SWIs 
run to completion unless preempted by a higher priority SWI or by a HWI. The 
code associated with a SWI is effectively an interrupt service routine. Typically, 
SWIs are posted by HWIs. That way more time - consuming interrupt processing 
can be carried out in an SWI without blocking or disabling other HWIs.  

 •       Periodic functions  (PRDs) are a special type of SWI triggered by a dedicated 
hardware timer. PRDs are preempted by higher priority SWIs and by HWIs.  

 •       Tasks  (TSKs) are used for less time - critical activities. They run to completion 
but may be preempted by HWIs, SWIs, PRDs, and higher priority TSKs. Tasks 
can be created dynamically within a DSP/BIOS application, in which case they 
will be executed starting at the time at which they are created. Otherwise, TSKs 
will start execution at the start of the DSP/BIOS application. However, TSKs 
cannot be created from within HWIs or SWIs. A number of different priority 
levels can be set for TSKs.  

 •       Idle functions  (IDLs) are executed repeatedly as part of the lowest priority 
thread in a DSP/BIOS application. The idle loop runs continuously but is pre-
empted by HWIs, SWIs, PRDs, and TSKs. By default, the idle loop contains 
functions that communicate real - time analysis data from the DSP to a host.     

DSP/BIOS Confi guration Tool 
 The DSP/BIOS Confi guration Tool is used to create and set the properties of the 
DSP/BIOS objects that make up an application. It is a visual editor for confi guration 
fi les ( .cdb ) that can be added to a CCS project. In addition, it generates assembly 
language and header and linker command fi les and adds these to a CCS project 
automatically. A confi guration fi le is central to a DSP/BIOS application since it 
defi nes all of the objects used and their parameter settings. In order to create a 
DSP/BIOS application, program source fi les, defi ning the functions used in the 
threads, must be added to a CCS project. Figure  9.1  shows an example of a  Confi gu-
ration Tool  window.    

DSP/BIOS Startup Sequence 
 At the start of the execution of a DSP/BIOS application, the following sequence of 
steps is followed. 

1.     Initialize the DSP hardware. Initially, all interrupts are disabled.  

2.     Initialize the DSP/BIOS modules.  
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3.     Call the function  main() , defi ned in a user - supplied source fi le included in the 
project. At this point, interrupts are still disabled and application - specifi c ini-
tialization functions (defi ned in user - supplied source fi les) can be called. Func-
tion main()  runs to completion.  

4.     Start DSP/BIOS. At this point hardware and software interrupts are enabled, 
the clock that is used by PRD threads is started, and TSKs are enabled. Execu-
tion of the highest priority TSK will start and all TSKs will eventually be run 
to completion.  

5.     When all TSKs have been completed or are blocked, and when no HWI, SWI, 
or PRD is running, the DSP/BIOS idle loop is entered.    

 More detailed information about DSP/BIOS can be found in the  TMS320C6000
DSP/BIOS User ’ s Guide   [1] . 

 The following examples illustrate the use of different types of DSP/BIOS threads.   

9.1.1 Periodic Functions 

Example 9.1: Blinking of LEDs at Different Rates Using 
DSP/BIOS PRDs ( bios_LED)

 This example illustrates the steps involved in the creation of a simple DSP/BIOS 
application. The source fi le  bios_LED.c , listed in Figure  9.2 , is stored in folder 
bios_LED  but no project fi le is supplied. We will create the project from scratch. 

1.     Create a new project by selecting  Project    →    New  and typing the  Project Name
bios_LED  and set the  Target  as TM320C67XX. A new project fi le  bios_LED.
pjt  will be created in the existing folder  bios_LED .  

FIGURE 9.1.     DSP/BIOS  Confi guration Tool  window.  



//bios_LED.c DSP/BIOS application to flash LEDs

void blink_LED0()

{
 DSK6713_LED_toggle(0);
}
void blink_LED1()
{
 DSK6713_LED_toggle(1);
}
void blink_LED2()

{
    DSK6713_LED_toggle(2);
}
void blink_LED3()

{
   DSK6713_LED_toggle(3);
}

void main()
{
  DSK6713_LED_init();
  return;
}

     2.     Add the source fi le  bios_LED.c  to the project using  Project    →    Add Files to 
Project .  

     3.     Add a confi guration fi le to the project . Select  File    →    New    →    DSP/BIOS 
Confi guration  and select  dsk6713.cdb  as the confi guration template.  

     4.     Expand on  Scheduling  in the confi guration fi le window and right - click on 
 PRD — Periodic Function Manager    →    Insert PRD . This adds a periodic func-
tion,  PRD0 , to the application. Rename the periodic function  PRDblink_LED0  
by right - clicking on its icon in the confi guration fi le window and choosing 
 Rename .  

     5.     Right - click on  PRDblink_LED0  and select  Properties  to set the  period (ticks)  
to 250 and the  function  to  _blink_LED0 . Note the underscore prefi xing the 
function name. By convention, this identifi es it as a C function. Function 
 blink_LED0()  is defi ned in fi le  bios_LED.c . Click on  OK  to accept the 
default settings for all other properties. The properties you have set for peri-
odic function  PRDblink_LED0  should now appear at the right - hand side of 
the confi guration   fi le window.  

    FIGURE 9.2.     Listing of program  bios_LED.c .  
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6.     Repeat steps 4 and 5 three times, substituting fi rst  PRDblink_LED1  for 
PRDblink_LED0 ,  _blink_LED1  for  _blink_LED0 , and 500 for 250, and then 
PRDblink_LED2  for  PRDblink_LED0 ,  _blink_LED2  for  _blink_LED0 , and 
1000 for 250, and fi nally  PRDblink_LED3  for  PRDblink_LED0 ,  _blink_LED3
for _blink_LED0 , and 2000 for 250.  

7.     Save the confi guration fi le in folder  bios_LED  as  bios_LED.cdb .  

8.     Add the confi guration fi le to the project (selecting  Project    →    Add Files to 
Project ). Note that it is a ( .cdb ) type fi le. Verify that the fi le has been added 
to the project by expanding DSP/BIOS Confi g  in the  Project View  window.  

9.     Expand on  Generated Files  in the  Project View  window and you will fi nd that 
when the confi guration fi le was added to the project, three more fi les,  bios_
LEDcfg.cmd ,  bios_LEDcfg.s62 , and  bios_LEDcfg_c.c , were generated 
and added to the project automatically.  

10.     Select  Project    →    Build Options  and in the  Basic  category in the  Compiler
tab set the Target Version  to  C671x . In the  Preprocessor  category, set the  Pre -
 Defi ne Symbol  option to  CHIP_6713  and the  Include Search Path     option 
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . In the  Linker    tab, set the 
Include Libraries  option to  DSK6713bsl.lib  and the  Library Search Path     to 
c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib .      

 Build the project as  bios_LED . Load and run  bios_led.out  and verify that the 
four LEDs on the DSK fl ash at rates of 2, 1, 0.5, and 0.25   Hz. 

 Figure  9.3  shows the confi guration settings for the DSP/BIOS application  bios_
LED . The application comprises four PRD objects scheduled to execute at intervals 
of 250, 500, 1000, and 2000 PRD clock ticks (by default, one PRD clock tick is equal 
to 1   ms). The functions called at these instants,  blink_LED0() ,  blink_LED1() , 
blink_LED2() , and  blink_LED3() , are defi ned in the source fi le  bios_led.c . Each 
function toggles the state of one of the LEDs on the DSK. Also defi ned in that 
source fi le is the function  main() . This function is called at the start of execution of 
the DSP/BIOS application following DSP/BIOS initialization. In this example, func-
tion main()  does very little, simply initializing the LEDs on the DSK by calling a 
function from the Board Support Library DSK6713bsl.lib . When function  main()
fi nishes execution, the application falls into the idle loop, which is then preempted, 
periodically, by the four PRDs. There is nothing in the source fi le  bios_LED.c  to 
indicate the real - time operation of the application. All of the scheduling is handled 
by DSP/BIOS, as confi gured using the confi guration tool. Source fi le  bios_LED.c
simply defi nes the functions executed by DSP/BIOS objects.     

9.1.2 Hardware Interrupts 

 Many of the example programs in previous chapters made use of hardware inter-
rupts generated by the AIC23 codec in order to perform in real - time. The following 
example illustrates the use of hardware interrupts in a DSP/BIOS application. 



Example 9.2: Sine Wave  Generation Using  DSP/BIOS
Hardware Interrupts ( HWIs) ( bios_sine8_intr)

 This example modifi es program  sine8_intr.c , introduced in Chapter  2 , to run as 
a DSP/BIOS application. That program, listed in Figure  2.14 , is quite simple. After 
calling the initialization function comm_intr() , function  main()  enters an endless 
idle loop ( while(1) ). The interrupt service routine  c_int11()  is assigned to the 
codec ADC (McBSP_0 receive) interrupt INT11 by means of the interrupt service 
table in fi le  vectors_intr.asm . (See Figure  9.4 .)   

 The following modifi cations to program  sine8_intr.c  and settings in the DSP/
BIOS confi guration fi le  bios_sine8_intr.cdb  make it suitable for use in a DSP/
BIOS application. 

 •      Delete the program statement  while(1) ; in function  main() . There is no need 
to supply an explicit idle loop since in a DSP/BIOS application, after function 
main()  has completed execution, the application will enter the DSP/BIOS idle 
loop (IDL).  

 •      HWI objects corresponding to all hardware interrupt sources are present by 
default in the DSP/BIOS confi guration template  dsk6713.cdb . Also by default, 
most have their function     property set to  HWI_unused .  

 •      Set the  function     property of HWI object HWI_INT11 to  _c_int11 .  

FIGURE 9.3.     DSP/BIOS confi guration settings for  bios_LED  application.  
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//bios_sine8_intr.c DSP/BIOS application to generate sine wave
#include "DSK6713_AIC23.h"             // codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;     //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select mic in

#define LOOPLENGTH 8        // size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,-7071,-10000,-
7071};
short loopindex = 0;        // look up table index

void c_int11(void)
{
  output_left_sample(sine_table[loopindex++]);
  if (loopindex >= LOOPLENGTH ) loopindex = 0;
  return;
}

void main()
{
  comm_intr();
}

    FIGURE 9.4.     Listing of Program  bios_sine8_intr.c .  

   •      Delete the word  interrupt  preceding  void c_int11()  and set the HWI_
INT11 object property  Use Dispatcher  to  True .    

 The fi le  vectors_intr.asm  is not required in this example since the mapping of 
interrupts to interrupt service routines is defi ned in the confi guration fi le and the 
fi les it generates. However, routines  comm_intr()  and  output_left_sample()  
defi ned in  fi le c6713dskinit.c  are used and that source fi le must be added to the 
project. As in the previous example, source  fi le bios_sine8_intr.c  is supplied 
in folder  bios_sine8_intr  but no project or confi guration fi le has been provided. 
In order to create a DSP/BIOS application: 

  1.     Create a new project by selecting  Project    →    New  and typing the  Project 
Name   bios_sine8_intr  and set the  Target  as TM320C67XX. A new 
project fi le  bios_sine8_intr.pjt  will be created in the existing folder 
 bios_sine8_intr .  

  2.     Add the source fi le  bios_sine8_intr.c  and the initialization and communi-
cation fi le  c6713dskinit.c  (from folder  Support ) to the project using  Project  
  →    Add Files to Project .  

  3.     Create and add a confi guration fi le to the project . Select  File    →    New    →    DSP/
BIOS Confi guration . Select  dsk6713.cdb  as the confi guration template. By 
default, this confi guration fi le contains HWI objects corresponding to all hard-
ware interrupt sources.  



4.     Expand  Scheduling  and HWI —  Hardware Interrupt Service Routine Manager
in the confi guration tool window and click on HWI _INT11. Verify that, among 
the HWI_INT11 properties, by default the interrupt source  is  MCBSP_0_
Receive  and the  function  is  HWI_unused .  

5.     Right - click on HWI_INT11 and select  Properties  to set the  function  to  _c_
int11 , the interrupt service routine defi ned in  bios_sine8_intr.c . Under 
the Dispatcher  tab, check  Use Dispatcher . Click on  OK  to accept the default 
settings for all other properties.  

6.     Save the confi guration fi le in folder  bios_sine8_intr  as  bios_sine8_intr.
cdb .  

7.     Add the confi guration fi le to the project (selecting  Project    →    Add Files to 
Project ).  

8.     Select  Project    →    Build Options  and in the  Basic  category in the  Compiler  tab 
set the Target Version  to  C671x . In the  Preprocessor  category, set the  Pre -
 Defi ne Symbol  option to  CHIP_6713  and the  Include Search Path     option 
to c:\ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . In the  Linker     tab, set the 
Include Libraries  option to  DSK6713bsl.lib  and the  Library Search Path     to 
c:\  CCStudio_v3.1 \ C6000 \ dsk6713 \ lib . In the  Advanced  category of compiler 
options set the Memory Model  option to  Far . (See Figure  9.5 .)      

 Build the project as  bios_sine8_intr . Load and run  bios_sine8_intr.out
and verify that a 1 - kHz tone is generated.   

FIGURE 9.5.      Project View  window for  Example 9.2 .
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9.1.3 Real-Time Analysis with DSP/BIOS

 The following example illustrates how data or diagnostic messages from a DSP/BIOS 
application can be logged, without interfering with its real - time operation. Calls to 
the C function printf()  are computationally too expensive to be used within a real -
 time program. A LOG object inserted into a DSP/BIOS application sets up a buffer 
to which the function LOG_printf()  can be used to append messages.  LOGprintf()
uses signifi cantly less computational effort than  printf() . The buffer contents are 
sent to a host computer in real time as part of the idle loop. Fixed or circular LOG 
object buffers of different lengths can be set up using the Confi guration Tool  . 

Example 9.3: Using LOG_printf() Within a Sine Wave 
Generation Program ( bios_sine8_intr_LOG)

 Return to the  bios_sine8_intr  project of the previous example and replace the 
source fi le  bios_sine8_intr.c  with the modifi ed fi le  bios_sine8_intr_LOG.c
(also stored in folder bios_sine8_intr ). (See Figure  9.6 .) The modifi cations made 
to bios_sine8_intr.c  are: 

 •      The line  #include <log.h>  has been added. This header fi le contains function 
prototypes and the LOG object structure defi nition.  

 •      The line  extern LOG_Obj LOG_sine8_intr ; has been added. This enables the 
LOG object LOG_sine8_intr , added to the application, to be used by functions 
defi ned in fi le  bios_sine8_intr_LOG.c .  

 •      The line  LOG_printf(&LOG_sine8_intr, “c_int_11: output value %d \n”,
sine_table[loopindex] ; will append a message to the LOG object buffer.      

 In the Confi guration Tool, using the existing fi le  bios_sin8_intr.cdb , expand 
Instrumentation , right - click on  LOG — Event Log Manager , and select  Insert LOG . 
Rename the new LOG object LOG_sine8_intr  (the identifi er referred to in source 
fi le  bios_sine8_intr_LOG.c ). The default LOG object properties of a circular 
buffer of 64 words are suitable for this example. 

 Build, load, and run  bios_sine8_intr_LOG . Verify that a 1 - kHz sine wave is gen-
erated as before. Select DSP/BIOS    →    Message Log  and halt the program. You should 
see something similar to that shown in the lower part of Figure  9.7 . The output values 
listed in the Message Log  window are the same as the values written to the codec. The 
messages, including the text  “ c_int11: output value ”  have been appended to the 
Message Log in real time, without compromising the generation of the sine wave.     

9.1.4 Software Interrupts 

 Because HWI threads have the highest priority in DSP/BIOS, run to completion, 
and are not preempted by any other threads, it is advisable to minimize the amount 
of processing performed by an HWI function. In general, it is recommended that 



//bios_sine8_intr_LOG.c DSP/BIOS application to generate sine wave
#include "DSK6713_AIC23.h"            //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;    //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select mic in

#define LOOPLENGTH 8                   //size of look up table
short sine_table[LOOPLENGTH]={0,7071,10000,7071,0,
                              -7071,-10000,-7071};
short loopindex = 0;                   //look up table index

#include <log.h>

extern LOG_Obj LOG_sine8_intr;

void c_int11(void)
{
  LOG_printf(&LOG_sine8_intr,"c_int11: output value %d\n"
             ,sine_table[loopindex]);
  output_left_sample(sine_table[loopindex++]);
  if (loopindex >= LOOPLENGTH ) loopindex = 0;
  return;
}

void main()
{
  comm_intr();
}

    FIGURE 9.6.     Listing of modifi ed program  bios_sine_intr_LOG.c .  

HWI threads deal only with time - critical data transfers and post software interrupts 
that trigger SWI threads to perform lower priority processing. This technique is 
illustrated by the following example. 

  Example 9.4:    FIR  Filter Using  DSP / BIOS  Hardware Interrupts ( HWI  s ) and 
Software Interrupts ( SWI  s ) ( bios_fi r_SWI ) 

 In this example, the FIR fi lter program  fi r.c , introduced in Chapter  4 , is adapted 
for use with DSP/BIOS. Whereas in program  fi r.c  the fi lter output was computed 
within the hardware interrupt service routine  c_int11() , in program  bios_fi r_
SWI.c  (Figure  9.8 ) that computation is performed by a separate function  fi r_isr() . 
Function  c_int11() , executed as HWI object HWI_INT11, simply reads a new 
input sample from the codec ADC, writes a new output sample to the codec DAC, 
and posts a software interrupt in order to trigger execution of SWI object  SWI_fi r_
isr . That object runs function  fi r_isr()  in which a new fi lter output sample is 
calculated.   
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 The specifi c modifi cations made to program  fir.c  are: 

 •      The program statement  while(1)  in function  main()  has been deleted. After 
function main()  has completed execution, the application will enter the DSP/
BIOS idle loop (IDL).  

 •      The word  interrupt  preceding  void c_int11()  has been deleted.  
 •      The lines  #include <std.h>  and  #include <swi.h>  have been added. These 

header fi les contain function prototypes and structure defi nitions used by SWI 
threads.

 •      The line  extern far SWI_Obj SWI_fir_isr;  has been added. This enables 
the SWI object SWI_fi r_isr, added to the application, to be used by functions 
defi ned in fi le  bios_fir_SWI.c .    

 The program is stored in folder  bios_fir_SWI  along with a project fi le and a 
complete set of confi guration fi les. Open  bios_fir_SWI.cdb  and note that the  HWI_
INT11  object  function  has been set to  _c_int11  and that  Use Dispatcher  has been 
set to True . Note also the presence of a SWI object named  SWI_fi r_isr  with the 
function  set to  _fir_isr . 

 Build, load, and run the program. Use a signal generator and oscilloscope 
connected to LINE IN and LINE OUT to verify that the lowpass FIR fi lter is 
operational.

FIGURE 9.7.      Message Log  window after running program  bios_sine8_intr_LOG.c .  



  Example 9.5:    fft128 c . c   Using  SWI  Object for Buffer Processing 
( bios_fft128c_SWI ) 

 This example provides another illustration of the use of SWI objects in a DSP/BIOS 
application. Program  fft128c.c , introduced in Chapter  6 , is modifi ed to run as a 
DSP/BIOS application. The program implements triple - buffered frame - based pro-
cessing using a hardware interrupt service routine ( c_int11() ) to read and write 
sample values to and from input and output buffers at every sampling instant. In 
the background, intermediate frames of samples are processed. 

//bios_fir_SWI.c
#include <std.h>
#include <swi.h>
#include "DSK6713_AIC23.h"           //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select line in

#include "lp33.cof"                  //filter coefficient file
float yn;                            //filter output
float x[N];                          //filter delay line

extern far SWI_Obj SWI_fir_isr;

void c_int11()                       //ISR
{
  x[0]=(float)(input_left_sample()); //get input into delay line
  output_left_sample((short)(yn));   //output to codec
  SWI_post(&SWI_fir_isr);
  return;
}

void fir_isr(void)
{
  short i;

  yn = 0.0;                          //initialise filter output
  for (i=0 ; i<N ; i++)              //calculate filter output
    yn += h[i]*x[i];
  for (i=(N-1) ; i>0 ; i--)          //shift delay line contents
    x[i] = x[i-1];
  return;
}

void main()
{
  comm_intr();                       //initialise DSK, codec
}

    FIGURE 9.8.     Listing of program  bios_fi r_SWI.c .  
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 In the DSP/BIOS application, the time - critical and relatively simple input and 
output functions are handled on a sample - by - sample basis by an HWI. When the 
input buffer is full and is ready to be processed, the processing function process_

buffer()  is initiated by posting a software interrupt. In this way, software interrupts 
are posted N    =   128 times less frequently than hardware interrupts occur. Function 
process_buffer()  becomes in effect an SWI interrupt service routine. 

 All of the fi les required for this example are stored in folder  bios_fft128c_SWI . 
Build, load, and run the project and use a signal generator and oscilloscope to verify 
its operation. Refer to  Example 6.5  for details of its expected performance. (See 
Figure  9.9 .)    

Example 9.6: fastconv.c Using  TSK Object for Buffer Processing 
(bios_fastconv_TSK)

 This example is closely related to the previous one in that it implements a frame -
 based processing algorithm. It modifi es program  fastconv.c , described in Chapter 
 6 , to run as a DSP/BIOS application (Figure  9.10 ). Unlike  Example 9.5 , it uses a 
DSP/BIOS TSK object in order to carry out background buffer processing. When, 
in the HWI interrupt service routine, the input buffer becomes full, instead of 
posting a software interrupt, a fl ag is set. That fl ag is tested within a TSK object and 
acts as a signal to initiate the exchange of buffer pointers and the processing of 
another frame of samples.   

 Initialization procedures related specifi cally to the DSK and codec are carried 
out in function main() . The buffer processing function, which can take place in the 
background, although it must complete within 128 sampling instants, is associated 
with a TSK object. Whereas in the previous example, the buffer processing function 
was called repeatedly (every time a software interrupt was posted), in this example, 
the buffer processing task is executed only once and hence an endless loop must 
explicitly be programmed into the buffer processing function. That function can also 
include initialization statements that, in the previous example, were placed in func-
tion main() . 

 Open  biosfastconv_TSK.cdb  and note that the  HWI_INT11  object  function
has been set to _c_int11  and that  Use Dispatcher  has been set to  True . Note also 
the presence of a TSK object named TSK_process  with the  function  set to 
_process_buffer .      

9.2 RTDX USING MATLAB TO PROVIDE INTERFACE 
BETWEEN PC AND  DSK

 Three examples illustrate RTDX using MATLAB to provide an interface between 
the PC host and the DSK target. The following software tools are required: 

1.     The Embedded Target for TI C6000 DSP (2.0)  

2.     MATLAB Link for CCS   
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//bios_fft128c_SWI.c FFT implementation calling a C-coded FFT
//function uses triple buffering for frame-based processing
//BIOS SWI version
#include <std.h>
#include <swi.h>

#include "DSK6713_AIC23.h"         //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input

#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define N 128

short buffercount = 0;             //index into frames
COMPLEX A[N], B[N], C[N];          //three buffers used
COMPLEX twiddle[N];                //twiddle factors
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
short ok=0;
short bufferfull=0;

extern far SWI_Obj SWI_process;

// attach to HWI
void c_int11(void)                 //ISR
{
  output_left_sample((short)((output_ptr + buffercount)->real));
  (input_ptr + buffercount)->real=(float)(input_left_sample());
  (input_ptr + buffercount++)->imag = 0.0;
  if (buffercount >= N)
  {
    SWI_post(&SWI_process);
    buffercount = 0;
  }
}

void process_buffer()
{
  int n;

  temp_ptr = process_ptr;          //rotate pointers to frames
  process_ptr = input_ptr;
  input_ptr = output_ptr;
  output_ptr = temp_ptr;
  fft(process_ptr,N,twiddle);      //transform into freq domain

      FIGURE 9.9.     Listing of program  bios_fft128c_SWI.c .  
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  for (n=0 ; n<N ; n++)            //compute magnitude
  {                                //and place in real part
    (process_ptr+n)->real =
    -sqrt((process_ptr+n)->real*(process_ptr+n)->real
    +(process_ptr+n)->imag*(process_ptr+n)->imag)/16.0;
  }
  (process_ptr)->real = TRIGGER;   //add oscilloscope trigger
  return;
}

void main()
{
  int n;

  for (n=0 ; n<N ; n++)            //set up twiddle factors
  {
    twiddle[n].real = cos(PI*n/N);
    twiddle[n].imag = -sin(PI*n/N);
  }
  input_ptr = A;                   //initialise frame pointers
  process_ptr = B;
  output_ptr = C;
  comm_intr();                     //initialise DSK,codec,McBSP
  return;
}                                  //end of main()

FIGURE 9.9. (Continued)

and they are available from MathWorks  [2]   . The required version supports the 
C6713 DSK (as well as platforms C6711DSK, C6416DSK, and C6701EVM). The 
examples and projects in this book were implemented using MATLAB ’ s Version 
6.5, Revision 13. 

     Example 9.7:    MATLAB  –  DSK  Interface Using  RTDX  ( rtdx_matlab_sim ) 

 This example illustrates the interface between MATLAB and the DSK using RTDX. 
A buffer of data created from MATLAB (running on the host PC) is sent to the 
C6x processor (running on the DSK).The C source program (running on the DSK) 
increments each data value in the buffer and sends the buffer of data back to 
MATLAB. There is no real - time input or output in this simulation example. The 
following support fi les are used for this example and provided by TI: (1)  c67 13dsk.
cmd  , the linker command fi le; (2)   intvecs.asm  , the vector fi le; (3)   rtdx.lib  , the 
library support fi le; and (4)   target.h  , a header fi le to enable interrupt. They are 
included in the folder  rtdx_matlab_sim . 

 Figure  9.11  shows the C source program   rtdx_matlab_sim.c     to illustrate the 
interface. It creates two channels through RTDX: an input channel to transfer data 
from the MATLAB on the PC to the C6x on the DSK and an output channel to 
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      FIGURE 9.10.     Listing of program  bios_fastconv_TSK.c .  

//bios_fastconv_TSK.c

#include <std.h>
#include <tsk.h>
#include "DSK6713_AIC23.h"         //codec-DSK interface support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_LINE; //select input
#include "lp55.cof"
#include <math.h>
#include "fft.h"
#define PI 3.14159265358979
#define TRIGGER 32000
#define PTS 128

short buffercount = 0;             //index into frames
COMPLEX A[PTS], B[PTS], C[PTS];    //three buffers used
COMPLEX twiddle[PTS];              //twiddle factors
COMPLEX coeffs[PTS];               //zero padded filter coeffs
COMPLEX *input_ptr, *output_ptr, *process_ptr, *temp_ptr;
short bufferfull=0;
float a,b;                         //used in complex multiply

void process_buffer()
{
  int n,i;
  for (n=0 ; n<PTS ; n++)          //set up twiddle factors
  {
    twiddle[n].real = cos(PI*n/PTS);
    twiddle[n].imag = -sin(PI*n/PTS);
  }
  for (n=0 ; n<PTS ; n++)          //set up freq domain coeffs
  {
    coeffs[n].real = 0.0;
    coeffs[n].imag = 0.0;
  }
  for (n=0 ; n<N ; n++)
  {
    coeffs[n].real = h[n];
  }
  fft(coeffs,PTS,twiddle);         //transform coeffs
  input_ptr = A;                   //initialise frame pointers
  process_ptr = B;
  output_ptr = C;
  comm_intr();
  while(1)                         //frame processing loop
  {

    while (bufferfull == 0);       //wait for buffer full
    bufferfull = 0;
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    temp_ptr = process_ptr;
    process_ptr = input_ptr;
    input_ptr = output_ptr;
    output_ptr = temp_ptr;

    for (i=0 ; i< PTS ; i++) (process_ptr + i)->imag = 0.0;
    for (i=PTS/2 ; i< PTS ; i++) (process_ptr + i)->real = 0.0;

    fft(process_ptr,PTS,twiddle);  //transform into freq domain

    for (i=0 ; i<PTS ; i++)        //filter in frequency domain
    {                              //i.e. complex multiply
      a = (process_ptr + i)->real; //samples by coeffs
      b = (process_ptr + i)->imag;
      (process_ptr+i)->real=coeffs[i].real*a-coeffs[i].imag*b;
      (process_ptr+i)->imag=-(coeffs[i].real*b+coeffs[i].imag*a);
    }
    fft(process_ptr,PTS,twiddle);
    for (i=0 ; i<PTS ; i++)
    {
      (process_ptr + i)->real /= PTS;
      (process_ptr + i)->imag /= -PTS;
    }
    for (i=0 ; i<PTS/2 ; i++)      //overlap add (real part only)
    {
      (process_ptr + i)->real += (output_ptr + i + PTS/2)->real;
    }
  }                                // end of while
}

// attach to HWI
void c_int11(void)                 //ISR
{
  output_left_sample((short)((output_ptr + buffercount)->real));
  (input_ptr + buffercount)->real = (float)(input_left_sample());
  (input_ptr + buffercount++)->imag = 0.0;
  if (buffercount >= PTS/2)
  {
    bufferfull = 1;
    buffercount = 0;
  }
}

void main()
{
  return;
}                                  //end of main()

FIGURE 9.10. (Continued)
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transfer data from the target DSK to the PC host.When the input channel is enabled, 
data are  read  (received as input to the DSK) from MATLAB. After each data value 
in the buffer is incremented by 1, an output channel is enabled to  write  the data 
(sent as output from the DSK) to MATLAB. Note that the input (read) and output 
(write) designations are from the target DSK.   

 Figure  9.12  shows the MATLAB - based program   rtdx_matlab_sim.m  . This 
program creates a buffer of data values 1, 2,       .      .      .       , 10. It requests board information, 
opens CCS, and enables RTDX.It also loads the executable fi le   rtdx_matlab_sim.
out   within CCS and runs the program on the DSK. Two channels are opened 
through RTDX: an input channel to write/send the data from MATLAB (PC) to 
the DSK and an output channel to read/receive the data from the DSK.   

 Build this project as   rtdx_matlab_sim   within CCS. The appropriate support fi les 
are included in the folder  rtdx_matlab_sim . Add the necessary support fi les: the 
C source fi le   rtdx_matlab_sim.c  , the vector fi le   intvecs.asm   (from TI),   c6713dsk.
cmd   (from TI),   rtdx.lib   (located in   CCStudio_v3.1 \ c6000 \ rtdx \ lib  ), and the 
interrupt support header fi le   target.h   (from MATLAB). This process creates the 
executable fi le   rtdx_matlab_sim.out  . 

    FIGURE 9.11.     C program that runs on the DSK to illustrate RTDX with MATLAB. The 
buffer of data is incremented by one on the DSK and sent back to MATLAB ( rtdx_matlab_
sim.c ).    

//RTDX_MATLAB_sim.c MATLAB-DSK interface using RTDX between PC & DSK

#include <rtdx.h>               //RTDX support file
#include "target.h"                  //for init interrupt
short buffer[10] = {0};    //init data from PC
RTDX_CreateInputChannel(ichan);     //data transfer PC-->DSK
RTDX_CreateOutputChannel(ochan);    //data transfer DSK-->PC

void main(void)
{
 int i;

 TARGET_INITIALIZE();                //init for interrupt
 while(!RTDX_isInputEnabled(&ichan)) //for MATLAB to enable RTDX
      puts("\n\n Waiting to read "); //while waiting
 RTDX_read(&ichan,buffer,sizeof(buffer));//read data by DSK
 puts("\n\n Read Completed");
 for (i = 0; I < 10; i++)
  buffer[i]++;                    //increment by 1 data from PC
 while(!RTDX_isOutputEnabled(&ochan)) //for MATLAB to enable RTDX
  puts("\n\n Waiting to write "); //while waiting
 RTDX_write(&ochan,buffer,sizeof(buffer));//send data from DSK to PC
 puts("\n\n Write Completed");
 while(1) {}      // infinite loop
}
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    FIGURE 9.12.     MATLAB program that runs on the host PC to illustrate RTDX with 
MATLAB. Buffer of data sent from MATLAB to the DSK ( rtdx_matlab_sim.m ).    

%RTDX_MATLAB_sim.m MATLAB-DSK interface using RTDX. Calls CCS
%loads .out file.Data transfer from MATLAB->DSK,then DSK->MATLAB

indata(1:10) = [1:10];    %data to send to DSK
ccsboardinfo     %board info
cc = ccsdsp('boardnum',0);   %set up CCS object
reset(cc)                            %reset board
visible(cc,1);     %for CCS window
enable(cc.rtdx);     %enable RTDX
if ~isenabled(cc.rtdx)
    error('RTDX is not enabled')
end
cc.rtdx.set('timeout', 20);   %set 20sec time out for RTDX
open(cc,'rtdx_matlab_sim.pjt');     %open project
load(cc,'./debug/rtdx_matlab_sim.out'); %load executable file
run(cc);      %run
configure(cc.rtdx,1024,4);   %configure two RTDX channels
open(cc.rtdx,'ichan','w');   %open input channel
open(cc.rtdx,'ochan','r');   %open output channel
pause(3)      %wait for RTDX channel to
open
enable(cc.rtdx,'ichan');   %enable channel TO DSK
if isenabled(cc.rtdx,'ichan')
    writemsg(cc.rtdx,'ichan', int16(indata)) %send 16-bit data to DSK
    pause(3)
else
    error('Channel ''ichan'' is not enabled')
end
enable(cc.rtdx,'ochan');   %enable channel FROM DSK
if isenabled(cc.rtdx,'ochan')
    outdata=readmsg(cc.rtdx,'ochan','int16') %read 16-bit data from DSK
    pause(3)
else
    error('Channel ''ochan'' is not enabled')
end
if isrunning(cc), halt(cc);      %if DSP running halt
processor
end
disable(cc.rtdx);     %disable RTDX
close(cc.rtdx,'ichan');         %close input channel
close(cc.rtdx,'ochan');         %close output channel 

 Access MATLAB and make the following directory (path) active:

  CCStudio_v3.1 \ myprojects \ rtdx_matlab_sim  

Within MATLAB, run the (  .m  ) fi le, typing   rtdx_matlab_sim  . Verify that the exe-
cutable fi le is being loaded (through the CCS window) and run. Within the CCS 
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window, the following messages should be printed:Waiting to read, Read completed, 
Waiting to write, and Write completed.Then, within MATLAB, the following should 
be printed: outdata    =   2 3 4       .      .      .       11, indicating that the values (1, 2,       .      .      .       , 10) in the buffer
indata  sent initially to the DSK were each incremented by 1 due to the C source 
program line of code: buffer[i]++ ; executed on the C6x (DSK). 

  Example 9.8  further illustrates RTDX through MATLAB, acquiring external 
real - time input data (from the DSK) and sending them to MATLAB for further 
processing (FFT, plotting).  

Example 9.8: MATLAB–DSK Interface Using  RTDX,
with MATLAB for  FFT and Plotting ( rtdx_matlabFFT)

 This example illustrates the interface between MATLAB and the DSK using RTDX. 
An external input signal is acquired from the DSK, and the input samples are stored 
in a buffer on the C6x processor. Using RTDX, data from the stored buffer are 
transferred from the DSK to the PC host running MATLAB. MATLAB takes the 
FFT of the received data from the DSK and plots it, displaying the FFT magnitude 
on the PC monitor. The same support tools as in  Example 9.7  are required, including 
The Embedded Target for TI C6000 DSP (2.0) and MATLAB Link for CCS, avail-
able from MathWorks. The following support fi les are also used for this example 
and provided by TI: (1) the linker command fi le  c6713dsk.cmd ; (2) the vector fi le 
intvecs.asm ; and (3) the library support fi le  rtdx.lib . In the init/comm fi le 
c6713dskinit.c , the line of code to point at the IRQ vector table is bypassed since 
the support fi le  intvecs.asm  handles that. 

 Figure  9.13  shows the program  rtdx_matlabFFT.c  to illustrate the interface. It 
is a loop program as well as a data acquisition program, storing 256 input samples. 
Even though the program is polling - based, interrupt is used for RTDX. An  output
channel is created to provide the real - time data transfer from the C6x on the DSK 
to the PC host.   

 Figure  9.14  shows the MATLAB - based program  rtdx_matlabFFT.m . This 
program provides board information, opens CCS, and enables RTDX. It also loads 
the executable fi le ( rtdx_matlabFFT.out ) within CCS and runs the program on 
the DSK. Note that the output channel for RTDX is opened and data are read  (from 
MATLAB running on the PC).A 256 - point FFT of the acquired input data is taken, 
sampling at 16   kHz.The program obtains a total of 2048 buffers, and execution stops 
afterwards.   

 Build this project as  rtdx_matlabFFT  within CCS. The necessary support fi les 
are included in the folder rtdx_matlabFFT . Add the necessary support fi les, includ-
ing rtdx_matlabFFT.c ,  c6713dskinit.c ,  intvecs.asm  (from TI),  c6713dsk.cmd
(from TI), and rtdx.lib  (located in  c6713\c6000\rtdx\lib ). Use the following 
compiler options: -g –ml3 . The option  –ml3  (from the Advanced Category) allows 
for Memory Models: Far Calls and Data. This process yields the executable .out

fi le. 
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//RTDX_MATLABFFT.c RTDX-MATLAB for data transfer PC->DSK(with loop)

#include "dsk6713_aic23.h"     //codec-DSK support file
#include <rtdx.h>              //RTDX support file
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
RTDX_CreateOutputChannel(ochan);  //create out channel C6x-->PC

void main()
{
 short i, input_data[256]={0};      //input array size 256
 comm_poll();    //init DSK, codec, McBSP
 IRQ_globalEnable();     //enable global intr for RTDX
 IRQ_nmiEnable();            //enable NMI interrupt
 while(!RTDX_isOutputEnabled(&ochan)) //wait for PC to enable RTDX
     puts("\n\n Waiting... "); //while waiting
 while(1)     // infinite loop
 {
  i=0;
  while (i<256)                   //for 256 samples
   {
    input_data[i] = input_sample(); //defaults to left channel
    output_sample(input_data[i++]); //defaults to left channel
   }
  RTDX_write(&ochan,input_data,sizeof(input_data));//send 256 samples
 }
}

    FIGURE 9.13.     C program that runs on the DSK to illustrate RTDX with MATLAB. Input 
from the DSK is sent to MATLAB ( rtdx_matlabFFT.c ).    

 Access MATLAB and make the following directory (path) active:

  CCStudio_v3.1 \ myprojects \ rtdx_matlabFFT  

This folder contains the necessary fi les associated with this project. Within 
MATLAB, run the ( .m ) fi le   rtdx_matlabFFT  . Verify that the executable (.out) fi le 
is being loaded and run within CCS. Input a sinusoidal signal with a frequency of 
2   kHz and verify that the output is the delayed (attenuated) input signal (a loop 
program). Within MATLAB the plot shown in Figure  9.15  is displayed on the PC 
monitor, which is the FFT magnitude of the input sinusoidal signal.Vary the fre-
quency of the input signal to 3   kHz and verify the FFT magnitude displaying a 
spike at 3   kHz.   

 The FFT is executed on the PC host. As a result, on an older/slower PC, changing 
the input signal frequency will not yield a corresponding FFT magnitude plot 
immediately.  Note : If it is desired to transfer data from the PC to the DSK, an input 
channel would be created using
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%RTDX_MATLABFFT.m MATLAB-DSK interface with loop. Calls CCS,
%loads .out file. Data from DSK‡MATLAB for FFT and plotting

ccsboardinfo       %board info
cc=ccsdsp('boardnum',0);     %setup CCS object
reset(cc);                             %reset board
visible(cc,1);       %for CCS window
enable(cc.rtdx);       %enable RTDX
if ~isenabled(cc.rtdx);
    error('RTDX is not enabled')
end
cc.rtdx.set('timeout', 20);     %set 20sec timeout for RTDX
open(cc,'rtdx_matlabFFT.pjt');         %open project
load(cc,'./debug/rtdx_matlabFFT.out'); %load executable file
run(cc);        %run program
configure(cc.rtdx,1024,1);     %configure one RTDX channel
open(cc.rtdx,'ochan','r');     %open output channel
pause(3)        %wait for RTDX channel to open
fs=16e3;        %set sample rate in MATLAB
fftlen=256;        %FFT length
fp=[0:fs/fftlen:fs/2-1/fftlen];    %for plotting within MATLAB
enable(cc.rtdx,'ochan');     %enable channel from DSK
isenabled(cc.rtdx,'ochan');
for i=1:2048       %obtain 2048 buffers then stop
  outdata=readmsg(cc.rtdx,'ochan','int16'); %read 16-bit data from DSK
  outdata=double(outdata);        %32-bit data for FFT
  FFTMag=abs(fftshift(fft(outdata)));  %FFT using MATLAB
  plot(fp,FFTMag(129:256))
  title('FFT Magnitude of data from DSK');
  xlabel('Frequency');
  ylabel('Amplitude');
  drawnow;
end
halt(cc);                   %halt processor
close(cc.rtdx,'ochan');      %close channel 
clear cc        %clear object 

    FIGURE 9.14.     MATLAB program that runs on the host PC to illustrate RTDX with 
MATLAB. MATLAB ’ s FFT and plotting functions are used ( rtdx_matlabFFT.m ).    

  RTDX_CreateInputChannel(ichan); 
 While(!RTDX_isInputEnabled( & ichan)); 
 RTDX_read( & ichan,       .      .      . )  

This creates an input channel, waits for the input channel to be enabled, and reads 
the data (input to the C6x on the DSK). In the MATLAB program, the following 
lines of code

  open(cc.rtdx, ’ ichan ’ ,  ’ w ’  ); 
 enable(cc.rtdx, ’ ichan ’  ); 
 writemsg( .      .      . );  
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FIGURE 9.15.     MATLAB ’ s plot of the FFT magnitude of data received from the DSK. 

open and enable an input channel and then write (send) the data from MATLAB 
running on the host PC to the C6x on the DSK. See  Example 9.7 .  

Example 9.9: MATLAB–DSK Interface Using  RTDX for 
FIR Filter Implementation ( rtdx_matlabFIR)

 This example further illustrates RTDX with MATLAB with the implementation 
of FIR fi lters. Figure  9.16  shows the C source program  FIR3LP_RTDX.c    that 
generates an input signal and implements an FIR fi lter on the DSK. The input 
signal consists of the product of random noise and a sine wave from a lookup 
table. This generated signal is the input to an FIR fi lter (see  Example 4.1 ). The 
output of the fi lter is stored in a buffer, the address of which is transferred to 
MATLAB through the output RTDX channel. Initially, the implemented fi lter is a 
lowpass FIR fi lter with a cutoff frequency at 600   Hz. The coeffi cients of this fi lter 
are in the fi le  LP600.cof . Two other FIR lowpass fi lter coeffi cients can also be 
selected in this example: LP1500.cof  and  LP3000.cof . These three sets of coeffi -
cients were used in  Example 4.2  (FIR3LP). The address of the specifi c fi lter to be 
implemented is read through the RTDX input channel. All the appropriate support 
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    FIGURE 9.16.     C program that implements FIR fi lters and runs on the DSK. It illustrates 
RTDX with MATLAB.  

//FIR3LP_RTDX.c FIR-3 Lowpass with different BWs using RTDX-MATLAB
#include "lp600.cof"     //coeff file LP @ 600 Hz
#include <rtdx.h>
#include <stdio.h>
#include "target.h"
int yn = 0;       //initialize filter's output
short dly[N];               //delay samples
short h[N];       //filter characteristics 1xN
short loop = 0;
short sine_table[32]={0,195,383,556,707,831,924,981,1000,981,924,831,
                  707,556,383,195,0,-195,-383,-556,-707,-831,-924,-981,
                -1000,-981,-924,-831,-707,-556,-383,-195};//sine values
short amplitude = 10;
#define BUFFER_SIZE 256
int buffer[BUFFER_SIZE];
int inputsample, outputsample;
short j = 0;
RTDX_CreateInputChannel(ichan);     //create input channel
RTDX_CreateOutputChannel(ochan);     //create output channel

void main()
{
 short i;
 TARGET_INITIALIZE();
 RTDX_enableInput(&ichan);    //enable RTDX channel
 RTDX_enableOutput(&ochan);    //enable RTDX channel
 for (i=0; i<N; i++)
  {
 dly[i] = 0;                   //init buffer
 h[i] = hlp600[i];         //start addr of LP600 coeff
  }
 while(1)                 //infinite loop
 {
   inputsample=rand()+amplitude*(sine_table[loop]);//generate  input
   if (loop < 31) ++loop;
   else loop = 0;
   dly[0]=inputsample;         //FIR filter section
   yn = 0;                           //initialize filter output
   if (!RTDX_channelBusy(&ichan))  {
  RTDX_readNB(&ichan,&h[0],N*sizeof(short));} //input coeff
   for (i = 0; i< N; i++)
  yn +=(h[i]*dly[i]);   //y(n) += h(LP#,i)*x(n-i)
   for (i = N-1; i > 0; i--)         //starting @ bottom of buffer
  dly[i] = dly[i-1];            //update delays
   outputsample = (yn >> 15);       //filter output
   buffer[j] = outputsample;   //store output -> buffer
   j++;
   if (j==BUFFER_SIZE) {
   j = 0;
   while (RTDX_writing != NULL) {}   //wait rtdx write to complete
 RTDX_write( &ochan, &buffer[0], BUFFER_SIZE*sizeof(int) );
   }
 }
}
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fi les for this example are in the folder   rtdx_matlabFIR  . The CCS project is already 
built. 

  1.     Access MATLAB, and set the path to  c: \ CCStudio_v3.1 \ myprojects \ RTDX_
MATLABFIR . Open the MATLAB program ( mwslider.m ) and set the appropri-
ate path (within the program). Within MATLAB, type  mwslider . This 
MATLAB program  mwslider.m  displays a slider to select among the three 
sets of fi lter coeffi cients, and plots both the fi ltered signal and its spectrum. 
You should obtain Figure  9.17  (without the plots). The slider is initially set to 
implement the lowpass fi lter with a cutoff frequency of 600   Hz.  

(a)

        FIGURE 9.17.     MATLAB plots with slider used to select one of three FIR lowpass fi lter 
coeffi cients. The upper and lower graphs show the fi ltered signal and its spectrum, respec-
tively: (a) selecting BW of 600   Hz; (b) selecting BW of 1500   Hz; and (c) selecting BW of 
3000   Hz.  
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(b)

FIGURE 9.17. (Continued)

  2.     Select the target (this must be done fi rst), and press  OK  to select the C6713 
DSK board. Press  Start  to run. This opens CCS and loads and runs the execut-
able fi le  rtdx_matlabFIR.out . Verify the results in Figure  9.17 a that shows 
the fi ltered signal (upper graph) as well as its spectrum (lower graph). From 
the lower graph, the bandwidth is at approximately 0.15, which represents 
the normalized frequency  v , where  v   =   f/FN  and  FN  is the Nyquist frequency, 
4   kHz. This corresponds to a cutoff frequency  f    =   0.15 FN    =   600   Hz. Change the 
slider to the middle position to select the 1500 - Hz lowpass fi lter for imple-
mentation and verify the results in Figure  9.17 b. Figure  9.17 c shows that the 
3000 - Hz fi lter was selected and implemented. Note that the normalized 
frequency is approximately 0.75, which corresponds to a cutoff frequency, 
 f    =   0.75 F N     =   3000   Hz.           
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(c)

FIGURE 9.17. (Continued)

  9.3    RTDX  USING VISUAL  C ++ TO INTERFACE WITH  DSK  

 Two examples are provided to illustrate the use of RTDX with Microsoft ’ s Visual 
C++, one of which makes use of MATLAB ’ s functions for fi nding and plotting the 
FFT magnitude (not for the RTDX interface).Three projects in Chapter  10  (DTMF, 
FIR, and Radix - 4 FFT) make use of RTDX with Visual C++ to obtain a PC - DSK 
interface. 

     Example 9.10:   Visual  C ++ –  DSK  Interface Using  RTDX  for 
Amplitude Control of the Sine Wave ( rtdx_vc_sine ) 

 This example illustrates the use of RTDX with Microsoft Visual C++. The applica-
tion running on the target DSK generates a sine wave.A procedure follows to 



illustrate the development of the host application with RTDX support — in particu-
lar, the development of a Visual C++ application with a slider control for adjusting 
the amplitude of the generated sine wave running on the C6x DSK. All the Visual 
C++ application fi les are on the CD in the folder   rtdx_vc_sine  . 

   CCS  Component 
 Figure  9.18  shows the C source program   rtdx_vc_sine.c   that implements the sine 
generation with amplitude control.This is the same C source program used to illus-
trate RTDX with Visual Basic in  Example 9.12    as well as with LabVIEW in  Example 
9.16   . An RTDX input channel is created and enabled in order to read the slider 
data from the PC host.   

 Create, save, and add the confi guration fi le   rtdx_vc_sine.cdb   to the project. 
Select INT11,  MCSP_1_Transmit  as the interrupt source and   _c_int11   as the 
function. See  Example 9.2 . Add the autogenerated linker command fi le and the 
BSL library support fi le.The run - time and the CSL library support fi les are included 

    FIGURE 9.18.     C program that runs on the DSK to illustrate RTDX with Visual C++. It 
generates a sine wave ( rtdx_vc_sine.C ).    

//RTDX_vc_sine.c Sine generation.RTDX using Visual C++(or VB/LABVIEW)

#include "rtdx_vc_sinecfg.h"          //generated by .cdb file
#include "dsk6713_aic23.h"                //codec-dsk support file
#include <rtdx.h>                         // for rtdx support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;       //set sampling rate
short loop = 0;
short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707};
int gain = 1;
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11()                  //ISR set in .cdb
{
 output_sample(sin_table[loop]*gain);
 if (++loop > 7) loop = 0;
}

void main()
{
 comm_intr();        //init codec,dsk,MCBSP
 RTDX_enableInput(&control_channel);     //enable input channel
 while(1)        //infinite loop
 {
  if(!RTDX_channelBusy(&control_channel)) //if channel not busy
      RTDX_read(&control_channel,&gain,sizeof(gain));//read from PC
 }
}

 RTDX Using Visual C++ to Interface with DSK  401



402 DSP/BIOS and RTDX Using MATLAB, Visual C++, Visual Basic, and LabVIEW

in the autogenerated linker command fi le. Add also the init and communication 
fi les, but not the vector fi le. The necessary fi les are included in the folder 
rtdx_vc_sine . 

 Build this project as  rtdx_vc_sine . Within CCS, load and run the executable fi le 
rtdx_vc_sine.out . Verify that a 2 - kHz sine wave is generated and outputted 
through the codec on the DSK. 

 Enable RTDX within CCS. Select  Tools    →    RTDX    →    Confi guration Control    →
 Enable RTDX  (activate/check it).  

Visual C++ Component 
 Run the Visual C++ application (executable fi le on the CD). The gain slider in 
Figure  9.19  should pop up. Vary the gain slider position and verify a corresponding 
change in the amplitude of the generated sine wave with the DSK output connected 
to a speaker or a scope.    

Procedure to Develop the Visual C++ Executable File 
 This proceduce is used to develop the necessary Visual C++ support fi les to create 
the executable ( .exe ) fi le (already on the CD in the folder   rtdx_vc_sine  ). 

1.     Launch Microsoft Visual C++ and select  File    →    New  to create a new project. 
Various types of C++ projects will be displayed in the new project dialog.  

2.     Select  MFCAPPWizard  ( exe ), and specify  rtdx_vc_sine  as the project name 
and c:\ccstudio_v3.1\myprojects\rtdx_vc_sine  as the location. Click 
OK .  

3.     This brings out the  MFCAPPWizard  dialog. Select the application type  dialog
based , then select  next . Click on  next  twice to accept the default settings. Then, 
click on Finish  and  OK . Three classes will be automatically generated and 
added to the project.  

4.     A dialog resource editor will be opened. Click on  TODO: Place dialog 
controls here  and delete it from the main dialog window by pressing the 

FIGURE 9.19.     Gain slider obtained with Visual C++ for the project  rtdx_vc_sine .  



delete key. Resize the main dialog window to an appropriate size (use 
the lower - right corner with the mouse). Select the  slider control  from the 
Control Toolbox (on the right). Draw the slider control in the main dialog 
window by holding it down with the left mouse button and moving it to the 
dialog window. Release the button when the control is of the appropriate 
size.

5.     Right - click on the  slider control  in the main dialog window, and select the 
properties  menu item. Click on the  styles tab  and select the  Tick Marks  and 
the Auto Ticks  options. From the  Point  list, select the  Top/Left  option. Close 
the slider control property dialog.  

6.     Click on the  ClassView  pane (bottom - left window) to expose the three classes 
that constitute the project, as shown in Figure  9.20 , along with the slider 
control. These classes are:  
 •      CaboutDlg   
 •      CtestprojectApp   
 •      CtestprojectDlg     

  where  testproject  is the project name specifi ed initially in step 2 ( rtdx_vc_
sine ). The class of interest is  CTestprojectDlg  since it is the class that 
controls the main dialog window. The CTestprojectApp  class is a standard 
class included in most projects to handle application startup, since there is 
no main  function, as in a typical C++ console application. The  CAboutDlg

FIGURE 9.20.     Visual C++ windows displaying the  classview  pane and the gain slider control 
for the project rtdx_vc_sine. 
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class is responsible for displaying an About  message dialog, as in most 
window - based applications.  

7.     From the main menu, select  View  and select the  ClassWizard  menu item. This 
pops up the MFCClassWizard  dialog window. (Make sure to select  CTestpro-
jectDlg  from the class name.) Select the  Member Variables  tab, and then select 
IDC_SLIDER1  from the list of control IDs.  

8.     Click the  Add Variable  button to display the  Add Member Variable  dialog. 
Choose an appropriate member variable name, such as m_slider , and make 
sure that the Category  fi eld is  Value  and the  Variable type  fi eld is  int . Click 
OK  to return to the  ClassWizard  dialog window.  

9.     Create a new class for RTDX. Click on the  Add Class  button and select  from a 
type library . Browse in the folder  c:\CCStudio_v3.1\cc\bin  and select (or 
type) the fi le  Rtdxint.dll . This pops up the  Confi rm classes  dialog. Click  OK
to return to the ClassWizard  dialog. Click  OK  again to dismiss the  ClassWizard
dialog. The new class IRtdxExp  has been added for the functionality of RTDX.  

10.     From the  ClassView  pane (lower - left window): 

      (a)     Select the class  CTestprojectDlg . Right - click on the class and select  Add
member variable . For variable type, use  IRtdxExp  *  (note the pointer 
notation), and for variable name use pRTDX  (or another name). Click 
OK  to dismiss the dialog. This creates a pointer that represents and 
manipulates the class IRtdxExp  created in the previous step.  

(b)     Right - click on the class  CTestprojectDlg  and select  Add Windows Message 
Handler . This will bring up the  New Windows Message  dialog. From the 
list, fi nd and select the message  WM_DESTROY . Click on the  Add and 
Edit  button to insert the new windows message. Add the following lines 
of code just after the function

CDialog::OnDestroy( ).
if(pRTDX->Close( ))

MessageBox(“Could not close the channel! ”, “Error”);

     (c)     Right - click on the class  CTestprojectDlg  and choose the  Add Windows 
Message Handler  to bring up again the  New Windows Message  dialog. 
Select the WM_HSCROLL  message and click on the  Add and Edit  button. 
Add the following lines of code just above the function CDialog::

OnHScroll(nSBCode, nPos, pScrollBar).  This is shown in Figure 
 9.21 .

long buffer;
UpdateData(TRUE);
pRTDX->WriteI4((long)m_slider, &buffer);
UpdateData(FALSE);



(d)     Select the class  CTestprojectDlg  and expand it. Locate the function 
OnInitDialog( )  and double - click on it. Add the following lines of code 
just above the return  instruction:

CSliderCrtl* pSliderCrtl = (CSliderCrtl *)
GetDlgItem(IDC_SLIDER1);

pSliderCrtl->SetRange(1,10);
pRTDX = new IRtdxExp;
pRTDX->CreateDispatch(_T(“RTDX”));
if(pRTDX->SetProcessor(_T(“C6713DSK”),_T(“CPU_1”)))
MessageBox(“Could not set the processor! ”,

“Error”);if(pRTDX->Open(“control_channel”, “W”))
MessageBox(“Could not open the channel! ”, “Error”);

     (e)     Double - click on the class  CTestprojectDlg  and add the following line of 
code just before the class defi nition statement:

#include “rtdxint.h”

FIGURE 9.21.     Visual C++ windows handler for the message  WM_HSCROLL .  
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     (f)     Select the class  CTestprojectApp  and expand it. Double - click on the func-
tion InitInstance( )  and add the following line of code:

AfxOleInit( );

just above the line CTestAppDlg dlg;.

 The added lines of code can be verifi ed from the fi le  rtdx_vc_sineDlg.cpp  (on 
the CD). Select Build  (menu item from the main project window)    →     Rebuild All  to 
create the application (executable) fi le.   

Example 9.11: Visual C++–DSK Interface Using  RTDX with  MATLAB
Functions for FFT and Plotting ( rtdx_vc_FFTmatlab)

 This example illustrates real - time data communication using RTDX with Microsoft 
Visual C++, invoking MATLAB ’ s FFT and plotting functions. MATLAB is not used 
in this example to provide the RTDX communication link between the PC and the 
DSK, as in  Examples 9.7 – 9.9 . Instead, only MATLAB ’ s functions for FFT and plot-
ting are invoked. 

 The folder  rtdx_vc_FFTmatlab  contains the Visual C++ support fi les, including 
the application/executable fi le  rtdx_vc_FFTmatlab.exe  (already built). See also 
 Example 9.10 . 

Running Executable from CCS
 The folder  rtdx_MatlabFFT  for  Example 9.8  includes the main C source program 
(Figure  9.13 )  rtdx_matlabFFT.c , which implements a loop program. It also creates 
and enables an output channel to write/send data acquired from the DSK to the 
PC. It illustrated RTDX with MATLAB in  Example 9.8 , and it can be used in this 
example to illustrate this Microsoft Visual C++ application. The ( .m ) MATLAB fi le 
that provides the RTDX communication link between the DSK and the PC in 
 Example 9.8  is  not  used in this example. Only MATLAB ’ s FFT and plotting func-
tions are used. 

 Input into the DSK a 2 - kHz sine wave with an approximate amplitude of 1   V p - p. 
Within the CCS window, select Tools    →    RTDX    →    Enable RTDX  (check it). Load 
and run rtdx_matlabFFT.out . The RTDX communication link is not yet produced, 
and  “ waiting ”  is printed continuously within the CCS window.  

Running Visual C++ Application 
 Run the Visual C++ application  rtdx_vc_FFTMatlab.exe  located in the folder 
rtdx_vc_FFTMatlab\debug  (double - click on it). 

 Verify a loop program with the DSK output to a scope, and an FFT plot of 
the 2 - kHz sine wave as shown in Figure  9.22 , obtained using MATLAB ’ s FFT and 



plotting functions (see also  Example 9.8 ). Change the input sine wave frequency to 
3   kHz and verify that the MATLAB plots 3 - kHz sine wave.   

 You can readily add the labels for the x and y axes in Figure  9.22  by modifying 
the fi le  rtdx_vc_FFTMatlabDlg.cpp . Find the section of code where the MATLAB 
functions are invoked for FFT and plotting. After the line of code for the fi gure ’ s 
title, insert the appropriate xlabel and ylabel functions. Launch Microsoft Visual 
C++. Select File  and open the workspace ( .dsw ) fi le located in the folder  rtdx_vc_
FFTmatlab . Select  Build    →    Rebuild All  to recreate a new application ( .exe ) fi le. 
Verify that the FFT plot now contains the x and y axis labels.  

Creation of Visual C++ Application and Support Files 
1.     Repeat steps 1 – 3 in  Example 9.10 . The Resource Dialog editor should be 

opened. Resize the main dialog window. Right - click on the  TODO:Place
dialog control here  and select the  Properties  menu item. From the resulting 
property dialog in the Caption  fi eld, enter any messages that you want dis-
played in the dialog window (such as RTDX with Visual C++ to  .      .      . ), and then 
close the property dialog window.  

FIGURE 9.22.     Plot of FFT magnitude (with MATLAB) to illustrate RTDX using Visual 
C++ for the project rtdx_vc_matlabFFT .  
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  2.     Click on the  ClassView  pane to expose the three classes:  CaboutDlg, CRtdx_
vc_fftMatlabApp , and  CRtdx_vc_fftMatlabDlg.  Figure  9.23 a shows the  Class-
View  pane displaying these classes and a message inserted by the user in step 
3. You can adjust the size of the dialog window so that it looks like Figure 
 9.23 , which will pop up when you run the executable fi le. (Delete the cancel 

    FIGURE 9.23.     (a)  ClassView  pane displaying the three classes, and a message inserted by 
the user, for the project  rtdx_vc_FFTmatlab;  and (b) message when application fi le is 
executed.  

(a)

(b)



button and change the text of the OK button to Exit, which is already 
done.)

3.     Select  View  from the main menu, then  ClassWizard.  This pops up the  MFC
ClassWizard  dialog window. Repeat step 9 in  Example 9.10 .  

4.     Repeat step 3, but select  New  (instead of  from a type library ). For the class 
name, enter CRTDXThread . Click on the  Base Class  list, select  CWinThread , 
and click OK . The newly created  CRTDXThread  class can be used to run a 
separate window thread that continuously polls the open RTDX channel for 
incoming real - time data. This is more effi cient than having the main program 
poll the RTDX channel.  

5.     From the  ClassView  pane, right - click on the class  CRtdx_vc_fftMatlabDlg  and 
select Add member variable . For the type, use  CRTDXThread  *  (note the 
pointer notation) and for the name, use pRTDXThread  (or another name) 
and click OK  to dismiss the dialog. Double - click on  CRtdx_vc_fftMatlabDlg
to open its class defi nition fi le, and add the following line of code (just before 
the class defi nition):

#include “RTDXThread.h”

6.     Create a class for the functionality with MATLAB:  

     (a)     Click on  Insert  from the main menu and select  New Class . For the class 
type, select Generic class  and for the name, type  CMatlabClass . Then click 
OK  to close the dialog.  

(b)     Select and double - click on the  CMatlabClass  (from the  ClassView  pane) 
to open its class defi nition fi le. Add the following lines of code (just above 
the class defi nition):

#include “Engine.h”
#pragma comment(lib, “libeng.lib”)
#pragma comment(lib, “libmx.lib”)

Right - click on  CMatlabClass  and select  Add member variable.  For the 
type, use Engine  *  (note the pointer notation) and for the name, use 
pEngine  (or another name), and then click  OK .  

     (c)     Double - click on  CMatlabClass  to reveal its class defi nition. Add the fol-
lowing lines of code below the defi nition for  pEngine (below Engine *  
pEngine):

public:
void OpenMatlab(LPCTSTR lpCommand);
. . . //already added
int CreateBuffer(char *pOutputBuffer, int nLength);
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(d)     Click on the  File View  pane (next to the  ClassView  pane), and expand 
Rtdx_vc_fftMatlab  to expose three folders. Expand on  Source Files , and 
double - click on  MatlabClass.cpp.  Add this section of code at the end of 
this fi le (after the pair of brackets):

void CMatlabClass::OpenMatlab(LPCTSTR lpCommand)
{
pEngine = engOpen(lpCommand);
. . .
return engOutputBuffer(pEngine, pOutputBuffer, nLength);
}

     (e)     Right - click on the class  CRtdx_vc_fftMatlabDlg  and select  Add Windows 
Message Handler . Find and select the message  WM_DESTROY , and click 
on Add and Edit  to insert the new windows message. Add the following 
lines of code beneath the function CDialog::OnDestroy( ):

nFlat = 0;
WaitForSingleObject(pRTDXThread->m_hThread,INFINITE);

     (f)     Right - click on the class  CRtdx_vc_fftMatlabDlg  and click on  Add member 
function . For the type, use UINT and for the declaration, type  static RTD
XThreadFunction(LPVOID lpVoid)  and then click  OK .  

     (g)     Expand the class  CRtdx_vc_fftMatlabDlg , double - click on the member 
function RTDXThreadFunction(LPVOID lpVoid) , and add the following 
lines of code in the function body (between the pair of brackets):

CMatlabClass* pMatlab;
IRtdxExp *pRtdx;
. . .
pMatlab->ExecuteLine(_T(“fs = 16e3; ”));
. . .
pMatlab->ExecuteLine (_T( “plot(fp, fftMag(129: 256)) ”));
. . .
return 0;

Scroll to the top of the fi le and add the following two  include  fi les and 
the global variable nflag :

#includee “MatlabClass.h”
#include “Rtdxint.h”
int nFlag = 1;

(h)     With the class  CRtdx_vc_fftMatlabDlg  expanded, double - click on the 
member function OnInitDialog( )  and add the following line of code just 
before the return instruction:



pRTDXThread = (CRTDXThread *)AfxBeginThread
(RTDXThreadFunction,m_hWnd);

7.     The path of MATLAB libraries and  include  fi les need to be added before 
building the project. Select Tools    →    Options  to display the  Options  dialog, 
and click on the Directories  tab. Select the  Include File s item from  Show
directories for . Click twice on the rectangle below the list of  Directories , then 
click on the  “  .      .      .  ”  displayed on the right. Browse in your MATLAB installa-
tion directory for the include  path  c:\ Matlab_folder \ extern \ include  (e.g., 
matlabR13  as the  Matlab_folder ). From the  Show directories for  list, select the 
library fi le  item. Click twice on the rectangle below the list of  Directories  and 
select the  “  .      .      .  ”  (as before). Browse in your MATLAB folder for the path 
c:\ Matlab_folder \ extern \ lib \ win32 \ microsoft \ msvc60 , and click on OK to save 
the changes.      

 Build the Visual C++ application project. Select  Build    →    Rebuild All  to create 
rtdx_vc_FFTMatlab.exe .     

9.4 RTDX USING VISUAL BASIC TO PROVIDE INTERFACE 
BETWEEN PC AND  DSK

 Two examples are provided to illustrate the interface between the PC host and the 
DSK with RTDX using Visual Basic. 

Example 9.12: Visual Basic –DSK Interface Using  RTDX for 
Amplitude Control of a Sine Wave ( rtdx_vbsine)

 This example generates a sine wave outputted through the codec on the DSK. It 
illustrates RTDX using Visual Basic (VB) to create a slider and control the ampli-
tude of the generated sine wave. 

CCS Component 
 Figure  9.24  shows the C source program  rtdx_vbsine.c  that implements the 
sine generation with amplitude control. This is the same C source program used to 
illustrate RTDX with Visual C++ in  Example 9.7  and LabVIEW in  Example 9.16 . 
An RTDX input channel is created and enabled in order to read the slider data 
from the PC host. This example is not meant to teach the reader VB, but rather to 
use it.   

 Create, save, and add a confi guration fi le  rtdx_vbsine.cdb  to the project. 
Select INT11, MCSP_1_Transmit  as the interrupt source, and  _c_int11  as the 
function (see  Example 9.2 ). Add the autogenerated linker command fi le and the 
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//rtdx_vbsine.c Sine generation.RTDX with Visual Basic(VC++/LABVIEW)

#include "rtdx_vbsinecfg.h"          //generated by .cdb file
#include "dsk6713_aic23.h"           //codec-dsk support file
#include <rtdx.h>                    // for rtdx support
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;  //set sampling rate
short loop = 0;
short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707};
int gain = 1;
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11()                  //ISR set in .cdb
{
 output_sample(sin_table[loop]*gain);
 if (++loop > 7) loop = 0;
}

void main()
{
 comm_intr();        //init codec,dsk,MCBSP
 RTDX_enableInput(&control_channel);      //enable input channel
 while(1)                                 //infinite loop
 {
  if(!RTDX_channelBusy(&control_channel)) //if channel not busy
      RTDX_read(&control_channel,&gain,sizeof(gain));//read from PC
 }
}

    FIGURE 9.24.     C program that generates a sine wave. It illustrates RTDX using VB to 
control the amplitude of the generated sine wave ( rtdx_vbsine.c ).  

BSL library support fi le. The run - time and the CSL library support fi les are 
included in the auto - generated linker command fi le. Add also the init and commu-
nication fi le, but not the vector fi le. The necessary fi les are included in the folder 
 rtdx_vbsine . 

 Build this project as   rtdx_vbsine  . Within CCS, load and run the executable fi le 
  rtdx_vbsine.out  . Verify that a 2 - kHz sine wave is generated and outputted through 
the codec on the DSK. 

 Enable RTDX within CCS. Select  Tools    →    RTDX    →    Confi guration Control    →   
 Enable RTDX  (activate/check it).  

   VB  Component 
 The folder   rtdx_vbsine   contains a subfolder PC that contains the support fi les 
associated with VB. Click on the ( .vbp ) VB project fi le to open VB. The project 
consists of the fi le   slider.frm   that describes the slider and the fi le   boardproc_
frm.frm   that describes the board information. These two fi les are included with 



CCS. The slider is the same as that used in an example (hostio1)  included with CCS. 
Within VB, select Run    →    Start . Press OK for the board information and the slider 
box shown in Figure  9.25  should pop up. Connect the DSK output to a scope. Vary 
the slider position and verify the change in the amplitude of the generated output 
sine wave (keep the mouse cursor on the slider button to change the slider value). 
Note that the Application ( .exe ) fi le, included on the CD, also can be used to run 
the VB project directly. This application fi le can be recreated within VB after loading 
the project fi le and selecting  File    →    Make   rtdx_vbsine.exe .   

 The next example implements a loop using RTDX with VB, where the amplitude 
of the output signal is changed using a gain value sent by the PC host to the C6x 
processor.   

Example 9.13: Visual Basic –DSK Interface Using  RTDX for Amplitude 
Control of Output in a Loop Program ( rtdx_vbloop)

 This example extends the previous example with a loop program using VB and 
RTDX to control the amplitude of an output signal. A window where the user can 
enter a gain value is built in VB. That gain value is sent from the PC host to the C6x 
processor. Figure  9.26  shows the C source program  rtdx_vbloop.c  that implements 
this project example. See also the previous example.   

 An RTDX input channel is created and enabled. When the RTDX channel is not 
busy, the C6x processor reads the data from the PC. Create and add a confi guration 
fi le to set the interrupt service function, and add similar support fi les to the project, 
as in the previous example. 

 Build this project as  rtdx_vbloop . Input a sine wave with an approximate ampli-
tude and frequency of 0.5   V p - p and 2   kHz, respectively. Verify that the DSK output 
exhibits the characteristics of a loop program, as in  Examples 2.1  and  2.2 . Enable 
RTDX within CCS as in the previous example. 

 The subfolder  PC  within the folder  rtdx_vbloop  contains the support fi les associ-
ated with VB. The VB project includes the board information fi le, as in the previous 
example, and gain.frm , a block where the user can enter a gain value to control 
the amplitude of the output sine wave. The object gain.frm  was created with VB. 

FIGURE 9.25.     Volume slider to control the amplitude of the DSK output signal. Object 
created with VB for the project rtdx_vbsine .  
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//rtdx_vbloop.c RTDX with Visual basic(or VC++)for loop gain control
#include "rtdx_vbloopcfg.h"   //generated by .cdb file
#include "dsk6713_aic23.h"
#include <rtdx.h>                         //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ;       //set sampling rate
int gain = 1;                             //initial gain value
RTDX_CreateInputChannel(control_channel); //create input channel

interrupt void c_int11()                  //ISR
{
 output_sample(gain*input_sample());      //output = scaled input
}

void main()
{
 comm_intr();     //init codec,DSK,MCBSP
 RTDX_enableInput(&control_channel);      //enable RTDX channel
 while(1)        //infinite loop
 {
 if(!RTDX_channelBusy(&control_channel))  //if channel not busy
   RTDX_read(&control_channel,&gain,sizeof(gain));//read gain from PC
 }
}

    FIGURE 9.26.     C program that implements a loop. It illustrates RTDX using VB to control 
the amplitude of an output signal from the DSK ( rtdx_vbloop ).  

    FIGURE 9.27.     Gain slider to control the amplitude of the DSK output signal. Loop gain 
object created with VB for the project  rtdx_vbloop .  

Run the application ( .exe ) fi le. Enter a gain value of 3 (see Figure  9.27 ) and verify 
the increase in amplitude of the output sine wave.   

 Note that instead of using   gain.frm   in the project, you can use   slider.frm   from 
the previous example to obtain the slider.    



9.5 RTDX USING  LABVIEW TO PROVIDE INTERFACE 
BETWEEN PC AND  DSK

 Three examples are provided to illustrate RTDX with LabVIEW for fi lter design 
and for adjusting the gain of a generated sinusoid. These examples are not intended 
to teach LabVIEW, but rather to illustrate the interface between the DSK and 
LabVIEW. The source fi les (LabVIEW Instrument  .vi ) are included on the CD. 
You can test these examples even if you do not have the LabVIEW tools. If you do, 
you can further open the source as a block diagram of a virtual instrument (VI) 
consisting of individual block components (as smaller VIs). VIs are available for 
signal generation, plotting, and so on. 

 The following tools are required: 

1.     LabVIEW Full Development System, V. 7.0  

2.     LabVIEW DSP Test Integration Toolkit for TI DSP, V. 2.0    

 and are available from National Instruments  [7] . The DSP test integration toolkit 
provides the RTDX link between LabVIEW and the DSK. To create the executable 
(application) fi le, the professional version is required. 

Example 9.14: LabVIEW–DSK Interface Using  RTDX for 
FIR Filtering ( rtdx_lv_filter)

 This example illustrates RTDX using LabVIEW to provide the communication link 
between the C6x running on the DSK and LabVIEW running on the host PC. 
LabVIEW is used for the design of an FIR fi lter, for the generation of a sine wave 
as input to the fi lter, and for plotting the fi ltered output. The FIR fi lter is imple-
mented on the DSK. All the necessary fi les for this example are included in the 
folder rtdx_lv_filter . 

1.     Click on the LabVIEW Instrument ( .vi ) fi le  rtdx_lv_filter  to open the 
(.vi ) window shown in Figure  9.28 . The initial fi lter settings are for an FIR 
bandpass fi lter design using a Hamming window, and with low and high cutoff 
frequencies of 500 and 1000   Hz, respectively. Select  Operate    →    Run . In Figure 
 9.28 , the upper graphs show both the input sine wave generated with LabVIEW 
and the output of the fi lter implemented on the DSK. The theoretical fre-
quency response of the designed fi lter is also plotted showing a center fre-
quency at 750   Hz. Vary the input signal frequency between 300 and 1200   Hz 
and verify that the fi lter ’ s output amplitude starts with zero, reaches a maximum 
at 750   Hz, and then decreases again toward zero.  

  Change the fi lter settings for a lowpass with a bandwidth (low cutoff fre-
quency) of 1500   Hz. Vary the frequency of the input signal between 0 and 
1600   Hz. Verify that the amplitude and frequency of the fi ltered output signal 
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FIGURE 9.28.     LabVIEW Instrument window for FIR fi lter design and plotting to illustrate 
RTDX for the project rtdx_lv_filter .  

are the same as those of the input signal for frequencies between 0 and 
1300   Hz. The output signal ’ s amplitude decreases toward zero for input fre-
quencies beyond 1300   Hz.  

  Various windows for the fi lter design are available, such as Hamming, 
Hanning, Blackman, and so on. Experiment with different fi lter characteristics.  

2.     From Figure  9.28 , select  Window    →    Show Block Diagram . The LabVIEW 
tools are required to view the block diagram (the source). Figure  9.29  shows 
a section of the block diagram that contains various components (smaller 
blocks). A full description and the function of different blocks can readily be 
obtained by highlighting each block.  

  CCS is invoked from LabVIEW to build the project and to load and run 
the ( .out ) fi le (from the current directory) on the DSK. (See the CPU status 
within CCS in Figure  9.28 .) Input and output arrays of data, specifi ed as 32 



bit integers ( cinput,coutput ), are transferred to the DSK through RTDX 
(Figure  9.29 ).  

3.     Figure  9.30  shows the C source program  rtdx_lv_filter.c  that runs on the 
DSK. It creates two input channels (for the sine wave data and the fi lter coef-
fi cients generated by LabVIEW) and one output channel for the fi ltered 
output data ( coutput ). Inputs to the DSK are obtained using  RTDX_read()
or RTDX_readNB()  to read/input the sine data ( cinput ) and the coeffi cients 
(ccoefs ). The fi lter is implemented on the DSK by the function  FIR Filter , 
and the fi ltered output ( coutput ) is sent to LabVIEW for plotting using 
RTDX_write() . If the fi lter characteristics are changed, a new set of coeffi -
cients ( ccoefs ) is calculated within LabVIEW and sent to the DSK through 
RTDX.           

Example 9.15: LabVIEW–DSK Interface Using  RTDX for Controlling 
the Gain of a Generated Sinusoid ( rtdx_lv_gain)

 In this example, LabVIEW is used to control the amplitude of a generated sine wave 
and to plot the scaled output sine wave. An array of data representing the generated 
sine wave and a gain value are sent from LabVIEW to the DSK. Through RTDX, 

FIGURE 9.29.     LabVIEW diagram for FIR fi lter design through RTDX for the project 
rtdx_lv_filter .  
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//rtdx_lv_filter.c RTDX with LABVIEW->filter design/plot DSK output
#include <rtdx.h>                    //RTDX support
#include "target.h"                  //init target
#define kBUFFER_SIZE 48              //RTDX read/write buffers
#define kTAPS 51
double gFIRHistory [kTAPS+1];
double gFIRCoefficients [kTAPS];
int input[kBUFFER_SIZE],output[kBUFFER_SIZE];
int gain;
double FIRFilter(double val,int nTaps,double* history,double* coefs);
int  ProcessData (int* output, int* input, int gain);
RTDX_CreateInputChannel(cinput);     //create RTDX input data channel
RTDX_CreateInputChannel(ccoefs);     //input channel for coefficients
RTDX_CreateOutputChannel(coutput);   //output channel DSK->PC(Labview)
void main()
{
int i;
TARGET_INITIALIZE();                 //init target for RTDX
RTDX_enableInput(&cinput);           //enable RTDX channels
RTDX_enableInput(&ccoefs);   //for input, coefficients, output
RTDX_enableOutput(&coutput);
gFIRCoefficients[0] = 1.0;
for (i = 1; i<kTAPS; i++)
   gFIRCoefficients[i] = 0.0;
for (;;)      //infinite loop
 {
  while(!RTDX_read(&cinput,input,sizeof(input)));//wait for new buffer
  if (!RTDX_channelBusy(&ccoefs))    //if new set of coefficients
     RTDX_readNB(&ccoefs,&gFIRCoefficients,sizeof(gFIRCoefficients));
  ProcessData (output, input, 1);           //filtering on DSK
  RTDX_write(&coutput,&output,szeof(output));//output from DSK->LABVIEW
 }
}
int ProcessData (int *output,int *input,int gain) //calls FIR filter
{
int i;
double filtered;
for(i=0; i<kBUFFER_SIZE; i++) {
  filtered=FIRFilter(input[i]*gain,kTAPS,gFIRHistory,gFIRCoefficients);
  output[i] = (int)(filtered + 0.5);}   //scale output
return 0;
}

double FIRFilter (double val,int nTaps,double* history,double* coefs)
{        //FIR Filter
 double temp, filtered_val, hist_elt;
 int i;
 hist_elt = val;
 filtered_val = 0.0;
 for (i = 0; i <  nTaps; i++)
  {
   temp = history[i];
   filtered_val += hist_elt * coefs[i];
   history[i] = hist_elt;
   hist_elt = temp;
  }
 return filtered_val;
}

    FIGURE 9.30.     C program running on the DSK that implements an FIR fi lter and illustrates 
RTDX with LabVIEW ( rtdx_lv_fi lter.c ).  

418



the C6x on the DSK scales the received sine wave input data and sends the resulting 
scaled output waveform to LabVIEW for plotting. The necessary fi les for this 
example are in the folder rtdx_lv_gain . 

1.     Click on the LabVIEW Instrument ( .vi ) fi le  rtdx_lv_gain  to obtain Figure 
 9.31 . Run it as in  Example 9.14 . The project  rtdx_lv_gain.pjt  is opened 
within CCS, and loaded and run on the DSK. See the Code Composer Status 
in Figure  9.31 . Verify that the amplitude of the output sine wave is fi ve times 
that of the input. You can vary the input signal frequency as well as the gain 
settings to control the scaled output amplitude waveform. The output fre-
quency is the same as the input frequency. You can readily change the input 
signal type to a square wave, a triangle, or a sawtooth.  

  From the block diagram, one can verify that the input and output data are 
transferred through RTDX as two arrays (using [I32]), whereas the gain is 
transferred as a single value (using I32).The brackets represent the array nota-
tion (using 32 - bit integer format).  

2.     Figure  9.32  shows the C source program  rtdx_lv_gain.c  that runs on the 
DSK. Through RTDX, the input and output channels are enabled and 
opened for the C6x on the DSK to read the generated sine wave data and the 
user set gain value and to write the scaled sine wave data to LabVIEW for 
plotting.         

FIGURE 9.31.     LabVIEW Instrument window to control the gain of a generated sine wave 
through RTDX for the project rtdx_lv_gain .  
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//rtdx_lv_gain.c RTDX with LABVIEW to control gain of generated sine

#include <rtdx.h>                        //RTDX support
#include "target.h"                      //init target
#define kBUFFER_SIZE 49
RTDX_CreateInputChannel(cinput);           //create RTDX input channel
RTDX_CreateInputChannel(cgain);            //input channel for gain
RTDX_CreateOutputChannel(coutput);         //channel for scaled output

void Gain(int *output,int *input,int gain) //scale array of input array
{
 int i;
 for(i=0; i<kBUFFER_SIZE; i++)
    output[i]=input[i]*gain;               //scaled output
}

void main()
{
 int input[kBUFFER_SIZE];
 int output[kBUFFER_SIZE];
 int gain = 5;                             //initial gain setting
 TARGET_INITIALIZE();                      //init target for RTDX
 RTDX_enableInput(&cgain);                 //enable RTDX channels
 RTDX_enableInput(&cinput);                //for input array
 RTDX_enableOutput(&coutput);              //for output array
 for (;;)       //infinite loop
  {
   if (!RTDX_channelBusy(&cgain))          //if new gain value
      RTDX_readNB(&cgain, &gain, sizeof(gain));   //read it
   while(!RTDX_read(&cinput,input,sizeof(input)));//wait for input
   Gain (output, input, gain);                 //function to scale
   RTDX_write(&coutput,&output,sizeof(input));    //output DSK-->host
  }
}

    FIGURE 9.32.     C program running on the DSK that generates a sine wave and illustrates 
RTDX with LabVIEW ( rtdx_lv_gain.c ).  

  Example 9.16:    L  ab  VIEW  –  DSK  Interface Using  RTDX  for Controlling 
the Amplitude of a Generated Sinusoid with Real - Time Output from 
the  DSK  ( rtdx_lv_sine ) 

 This example illustrates the use of LabVIEW to control the amplitude of a sine 
wave generated on the DSK.See also  Examples 9.14  and  9.15 . The sine wave is 
generated using the same C source program that illustrates RTDX with Visual C++ 
(Figure  9.18 ) and VB (Figure  9.24 )  . 

 Figure  9.33  shows the LabVIEW Instrument fi le  rtdx_lv_sine . Run it. Connect 
the output of the DSK to a scope and verify the change in the output sine wave by 
varying the Volume slider within LabVIEW.      
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 This chapter can be used as a source of experiments, projects, and applications, 
demonstrating how the examples in earlier chapters can be combined and extended. 
It describes a number of applications and projects carried out by students (at Roger 
Williams University, the University of Massachusetts – Dartmouth, and at Worcester 
Polytechnic Institute). The descriptions are accompanied by program listings, not all 
of which are complete, but which are intended to serve as a starting point for devel-
opment of further student projects. 

 Additional ideas for projects can be found in Refs.  1 – 6 . A wide range of projects 
has been implemented on the fl oating - point C30 and C31 processors  [7 – 21]  as well 
as on the fi xed - point TMS320C25  [22 – 28] . They range in topic from communications 
and controls to neural networks and also can be used as a source of ideas to imple-
ment other projects.  

10.1 DTMF SIGNAL DETECTION USING CORRELATION,  FFT, AND 
GOERTZEL ALGORITHM 

 This project implements the detection of a dual tone multifrequency (DTMF) tone 
and is decomposed into four smaller projects. The fi rst miniproject uses a correlation 
scheme and displays the detected DTMF signals with the onboard LEDs. The 
second miniproject expands on the fi rst one and uses RTDX that provides a PC –
 DSK interface to display on the PC monitor the detected DTMF signals by the C6x 
on the DSK. The third miniproject uses the FFT to estimate the DTMF signals. The 
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fourth miniproject uses Goertzel ’ s algorithm and implements the DTMF detection 
on the C6416 DSK (can be transported readily to the C6713 DSK). The complete 
executable fi les for all four subprojects are included on the CD. 

 A DTMF signal consists of two sinusoidal signals: one from a group (row) of four 
low frequencies and the other from a group (column) of three high frequencies. This 
is illustrated in Table  10.1 . When a key is pressed from a telephone, a DTMF signal 
is generated. For example, pressing button 6 generates a tone consisting of the sum-
mation of the two tones with frequencies of 770 and 1477   Hz, as shown in Table  10.1 . 
For easier detection, these frequencies are chosen so that the sum or difference of 
any two frequencies does not equal that of any of the other frequencies.   

 Various schemes can be used to decode DTMF signals: 

  1.     A correlation scheme, as described in this fi rst miniproject. An RTDX option 
in the second miniproject provides a PC – DSK interface displaying the dialed 
(received) numbers on the PC screen.  

  2.     The FFT (or the DFT) to detect the signals corresponding to the DTMF tones. 
The FFT is used in the third miniproject to estimate the weights associated 
with the seven frequencies.  

  3.     Use of a bank of FIR fi lters so that each fi lter passes only one of the frequen-
cies. The average power at the output of two of these fi lters should be larger 
than that at the other outputs, yielding the corresponding DTMF tone (not 
used in this project).  

  4.     Use of Goertzel ’ s algorithm      [2, 22, 28, 29]  in lieu of the FFT or DFT since only 
two frequencies need be detected/selected. This method (see Appendix  F   ) can 
be more effi cient than the FFT when a  “ small ”  number of spectrum points are 
required rather than the entire spectrum.      

 Each DTMF signal can be represented as

    u t A t t( ) (sin( ) sin( ))= + + +ω ϕ ω ϕ1 1 2 2  

where   w   1  and   w   2  are the two frequencies that need to be determined, and   j   1  and   j   2  
are unknown phases. Frequency  f  1  is one of the following frequencies: 697, 770, 852, 
or 941   Hz; and frequency  f  2  is one of the following frequencies: 1209, 1336, or 1477   Hz 
 [30, 31] . 

 TABLE 10.1     DTMF Encoding 

  Frequencies    1209   Hz    1336   Hz    1477   Hz  

  697   Hz    1    2    3  
  770   Hz    4    5    6  
  852   Hz    7    8    9  
  941   Hz     *     0    #  
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  10.1.1   Using a Correlation Scheme and Onboard  LED  s  for 
Verifying Detection 

 The correlation scheme is as follows. Let the input signal be  u ( t )   =    A (sin(2  p  697 t    +  
   j   1 )   +   sin(2  p  1209 t    +     j   2 )). Since the input signal includes sin(2  p  697 t    +     j   1 ), the correla-
tion of the input signal with sin(2  p  697 t    +     j   1 ) must be higher than the correlations 
with sin(2  p  770 t    +     j   1 ), sin(2  p  852 t    +     j   1 ), and sin(2  p  941 t    +     j   1 ). The Fourier transform 
 ∫  u ( t ) e   -  j w t   dt  has a peak at 697   Hz. Using Euler ’ s formula for the exponential function, 
it becomes a correlation of  u ( t ) with sine and cosine functions. As a result, the input 
frequency can be determined by correlating the input signal with the sine and cosine 
for each possible frequency. The algorithm is as follows: 

  1.     For each frequency, fi nd the following correlations:

    

W u t t W u t tn n n n
n

N

n
sin cos( )sin( ), ( )cos( )697 697

1

2 697 2 697= =
==

∑π π
11

1477 14772 1477 2 147

N

n n nW u t t W u t

∑

= =

. . .

( )sin( ), ( )cos(sin cosπ π 77
11

tn
n

N

n

N

)
==

∑∑
   

  2.     For each frequency, fi nd the maximum between sine weight and cosine 
weight:
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  3.     Among the fi rst four weights, choose the largest one; and among the last three 
weights, choose the largest one:

    W W W W W1 697 770 852 941= max( , , , )  

    W W W W2 1209 1336 1477= max( , , )    

  4.     The frequencies present in the input signal can then be obtained. If both  W  1  
and  W  2 , are larger than a threshold, turn on the appropriate LEDs correspond-
ing to each character, as shown in Table  10.2 .      

 Figure  10.1  shows the C source program  partial_dtmf.c  that can be completed 
readily. Build this project as DTMF. You can test this project fi rst since the complete 
executable fi le  DTMF.out  is included on the CD in the folder DTMF. It can be tested 
using one of the following: 

  1.     A phone to create the DTMF signals and a microphone to capture these 
signals as input to the DSK ’ s mic input. Alternatively, a microphone with the 



 TABLE 10.2     Characters and 
Corresponding LEDs 

  1    0001  
  2    0010  
  3    0011  
  4    0100  
  5    0101  
  6    0110  
  7    0111  
  8    1000  
  9    1001  
   *     1010  
  0    1011  
  #    1100  

      FIGURE 10.1.     Core C program using correlation to detect DTMF tones ( partial_dtmf.c ).    

//DTMF.c Core program to decode DTMF signals and turn on LEDs
#define N 100
#define thresh 40000
short i;short buffer[N]; short sin697[N],cos697[N],sin770[N],cos770[N];
...
long weight697,weight697_sin,weight697_cos; long ...weight1477_cos;
long weight1,weight2,choice1,choice2;
interrupt void c_int11()
{
 for (i = N-1; i > 0; i--)
 buffer[i]=buffer[i-1];               // initialize buffer
 buffer[0] = input_sample();       //input into buffer
 output_sample(buffer[0]*10);    //output from buffer
 weight697_sin=0;  weight697_cos=0;     //weight @ each freq
 ...
 weight1477_sin = 0;  weight1477_cos =  0;
 for (i = 0; i < N; i++)
 {
  weight697_sin = weight697_sin + buffer[i]*sin697[i];
  weight697_cos = weight697_cos + buffer[i]*cos697[i];
 ...
  weight1477_cos= weight1477_cos + buffer[i]*cos1477[i];
 }
 //for each freq compare sine and cosine weights and choose largest
 if(abs(weight697_sin)>abs(weight697_cos))   weight697=abs(weight697_sin);
 else weight697 = abs(weight697_cos);
 ...
 if(abs(weight1477_sin)>abs(weight1477_cos)) weight1477 = abs(weight1477_sin);
 else weight1477 = abs(weight1477_cos);
 weight1=weight697; choice1=1;//among weight697,..weight941->largest
 if(weight770 > weight1) {weight1 = weight770; choice1=2;} //...
 if(weight941 > weight1) {weight1 = weight941; choice1=4;}
 weight2=weight1209; choice2=1;//among weight1209,..weight1477->largest
 if(weight1336> weight2) {weight2 = weight1336; choice2=2;} 
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 if(weight1477> weight2) {weight2 = weight1477; choice2=3;}
 if((weight1>thresh)&&(weight2>thresh)) //set threshhold
 {  // depending on choices1 and 2 turn on corresponding LEDs
 if((choice1 == 1)&&(choice2 == 1)) { //button "1" -> 0001
   DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);}
 ... //for button "2","3",..,"*","0"
 if((choice1 == 4)&&(choice2 == 3))  //button "#" -> 1100
   {DSK6713_LED_on(0);DSK6713_LED_on(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 }  //end of if > threshold
 else { //weights below threshold, turn LEDs off
  DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 return;
}
void main()
{
DSK6713_LED_init();
DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
for (i = 0; i < N; i++)   //define sine/cosine for all 7 frequencies
 {
  buffer[i]=0;
  sin697[i]=1000*sin(2*3.14159*i/8000.*697);
  cos697[i]=1000*cos(2*3.14159*i/8000.*697);
  ...
  cos1477[i]=1000*cos(2*3.14159*i/8000.*1477);
 }
 comm_intr();  while(1); //init, infinite loop
}

FIGURE 10.1. (Continued)

necessary pre - amp can be used and connected directly to the line input on the 
DSK. For the threshold value set in the program, use 1,000,000 with the micro-
phone input option. Dial a few numbers and verify the corresponding LEDs 
turning on based on the number detected.  

  2.     Figure  10.2  shows the core of the MATLAB program   partial_dtmf.m   that 
generates/plays DTMF signals as input to the DSK. This program can be 
completed readily. Verify that all 12 DTMF signals 0, 1,       .      .      .       , # are consecutively 
generated by the MATLAB program, each lasting approximately 1.5 s. Also 
verify that the corresponding LEDs on the DSK are turned on for each 
detected DTMF signal. For the line input, use a threshold value of 40,000 in 
the program.  

  3.     A tone generator using DialpadChameleon (can be downloaded from the 
web). This provides a pad with keys to generate short DTMF signals that can 
be used as input to the DSK.        

 The length of the signal affects the reliability of detection. If the buffer size is 
too small, the probability of turning on the wrong LEDs increases because of the 
uncertainty in frequency associated with short signals. If the buffer is too long, it 
complicates the detection near the transmission points. The Dialpad signals have 
the shortest duration.  



%DTMF.m Core MATLAB file to generate DTMF signals

clear all
t = 1:8000;
t = t/8000;
num_1 = zeros(8000,1);
num_2 = zeros(8000,1);
...      ;also num_0, num_star
num_pound = zeros(8000,1);

for n = 1:8000
 num_1(n) = sin(2*pi*697*t(n)) + sin(2*pi*1209*t(n));
 num_2(n) = sin(2*pi*697*t(n)) + sin(2*pi*1336*t(n));
      ...
 num_pound(n)=sin(2*pi*941*t(n))+sin(2*pi*1477*t(n));
end

for i = 1:100000000
     soundsc(num_1);
     pause(1.5);
     soundsc(num_2);
     pause(1.5);
   ...
     soundsc(num_pound);
     pause(1.5);
end

    FIGURE 10.2.     Core MATLAB program to generate DTMF tones ( partial_dtmf.m ).    

  10.1.2   Using  RTDX  with Visual C++ to Display Detected 
 DTMF  Signals on the  PC  

 Figure  10.3 a shows the core of the C source program  DTMF_BIOS_RTDX.c  for the 
RTDX version to provide a PC – DSK interface for displaying the DTMF signals on 
the PC monitor. These signals are detected by the C6x on the DSK and transferred 
to the PC for display. Figure  10.3 a can be completed readily. The complete RTDX 
with Visual C++ support fi les are included on the CD.  Examples 9.10  and  9.11    and 
Sections  10.3  and  10.4    illustrate RTDX using Visual C++.   

 Build this project as   DTMF_BIOS_RTDX  .  Examples 9.1  –  9.3  introduce the use of 
the confi guration ( .cdb ) fi le. The interrupt is set within this confi guration fi le. The 
complete executable ( .out ) fi le is also on the CD. Load/run the executable ( .out ) 
fi le within CCS. Select  Tools  →  Confi guration Control  →  Enable RTDX  (check it). 
Use one of the three options (as in the non - RTDX version) to input the DTMF 
signals. 

 Run the application Visual C++ fi le  DTMF_BIOS_RTDX.EXE . Verify the corre-
sponding detected DTMF signals on the LEDs also displayed on the PC monitor, 
as shown in Figure  10.3 b. 
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//DTMF_BIOS_RTDX.c Addtl. code to DTMF.c for RTDX version using VC++

#include <rtdx.h>                         //RTDX support file
RTDX_CreateOutputChannel(ochan); //output channel for DSK->PC
#define thresh 80000                      //defines a threshold
short value = 0; short w = 0;  //used for RTDX version
.... see DTMF.c
if((weight1>thresh)&&(weight2>thresh)) //set threshold
 if((choice1 == 1)&&(choice2 == 1)) {  //button "1" -> 0001
   DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);
   value = 1;
 }
 . . . //for button "2", "3",..., "*", "0"
 if((choice1 == 4)&&(choice2 == 3)) { //button "#" -> 1100
   DSK6713_LED_on(0);DSK6713_LED_on(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
    value = 12;
 }
} //end of if > than the threshold value (see DTM
else { //weights below threshold, turn LEDs off
 DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);
 value = 0;
}
w = w + 1;
if w > 50;
{
 w = 0;
 RTDX_write(&ochan,&value,sizeof(value));//send value to PC
}
return;
}                                        //end of interrupt service routine
void main()
{
. . . as in DTMF.c
comm_intr();
while(!RTDX_isOutputEnabled(&ochan))
      puts("\n\n Waiting . . . ");       //wait for output channel->enabled
while(1);                                //infinite loop
}

(a)

(b)

    FIGURE 10.3.     (a) Core C program to detect DTMF signals with RTDX for PC – DSK inter-
face ( DTMF_BIOS_RTDX.c )  ; (b) PC screen displaying detected DTMF signals with RTDX for 
PC – DSK interface.  



Implementation Issues 
1.     A number is sent to the PC (through RTDX) every 50th time and can be 

changed.

2.     The threshold value can be adjusted.  

3.     A  “length”  of 15 is set in the fi le  numbersDlg.cpp . This is used to analyze 
the last 15 numbers and determine if a button was pressed. A smaller value 
can cause false detection due to noise, whereas it can be more diffi cult to rec-
ognize a short DTMF signal with a larger value of length .    

 If the number 1 is pressed using a Dialpad, dozens of 1 ’ s are transmitted through 
RTDX and appear in the data stream. With no button pressed, a stream of 0 ’ s is 
transmitted. The algorithm distinguishes the actual buttons that are pressed. An 
array of size length  stores the last  length  numbers. The number of 1 ’ s in the array 
goes into Weight1 , the number of 2 ’ s in the array goes into  Weight2 , and so on. If 
any of the weights is greater than 70% of length , then it is decided that the number 
corresponding to that weight was pressed. The character corresponding to this 
number is then added to the string shown in Figure  10.3 b. Note that each weight 
should be followed by Weight0  (except  Weight0 ).   

10.1.3 Using FFT and Onboard  LEDs for Verifying Detection 

 Figure  10.4  shows the core of the C source program that implements this mini -
 project using an FFT scheme to detect the DTMF signals.  Example 6.8    and Section 
 10.4    illustrates the radix - 4 FFT. The FFT is used to estimate the weights associated 
with the seven frequencies. For example, the 697 - Hz signal corresponds to a weight 
of 697(256/8000)    �    22, and we would use the 22nd value of the FFT array. A 256 -
 point FFT is used with a sampling frequency of 8000   Hz. Similarly, the 770 - Hz signal 
corresponds to a weight of 770(256/8000)    �    25, and we would use the 25th value of 
the FFT array, and so on for the other weights (28, 31, 39, 43, and 47). We then fi nd 
the largest weights associated with the fi rst four frequencies to determine the row 
frequency signal and the largest weights associated with the last three frequencies 
to determine the column frequency signal. For the largest weights, the corresponding 
LEDs are turned on (as in Section  10.1.1 ). As with the previous schemes, the same 
input (MATLAB, Dialpad, or microphone) can be used. Verify similar results.    

10.1.4 Using Goertzel Algorithm 

 The Goertzel algorithm described in Appendix  F  may be used for DTMF 
detection.   

10.2 BEAT DETECTION USING ONBOARD LEDs

 This miniproject implements a beat detection scheme using the onboard LEDs  [32] . 
Music visualization is a continuously progressing area in audio processing, not only 
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      FIGURE 10.4.     Core C program using FFT to detect DTMF tones ( partial_dtmf_bios_
FFT.c ).      

//DTMF_Bios_FFT.c Core program using radix-4 FFT and onboard LEDs
. . .                         //see radix-4 example in Chapter 6
short input_buffer[N] = {0}; //to store input samples...same as x
float output_buffer[7] = {0}; //to store magnitude of FFT
short buffer_count, i, J;
short nFlag;   //indicator to begin FFT
short nRow, nColumn;
double delta;
float tempvalue;
interrupt void c_int11()
{
 input_buffer[buffer_count] = input_sample();
 output_sample((short)input_buffer[buffer_count++]);
 if(buffer_count >= N)        //if accum more than N points->begin FFT
  {
   buffer_count = 0;  //reset buffer_count
   nFlag = 0;   //flag to signal completion
   for(i = 0; i < N; i++)
      {
   x[2*i] = (float)input_buffer[i];  //real part of input
   x[2*i+1] = 0;    //imaginary part of input
 }
  }
}
void main(void)
{
 nFlag = 1;
 buffer_count = 0;
 . . . //generate twiddle constants, then index for digit reversal
 comm_intr();
 while(1)                         //infinite loop
 {
  while(nFlag);  //wait for ISR to finish buffer accum samples
  nFlag = 1;
  //call radix-4 FFT, then digit reverse function
  output_buffer[0]=(float) sqrt(x[2*22]*x[2*22]+x[2*22+1]*x[2*22+1]);
  . . . //for weigths 25,28,31,39,43
  output_buffer[6]=(float) sqrt(x[2*47]*x[2*47]+x[2*47+1]*x[2*47+1]);
  tempvalue = 0;              //choose largest row frequency
  nRow = 0;
  for(j = 0; j < 4; j++)
   {
    if(tempvalue < output_buffer[j])
     {
 if(output_buffer[j] > 0.5e4)
  {
            nRow = j + 1;
    tempvalue = output_buffer[j];
  }
     }
   }      //end of for loop 



  tempvalue = 0;                    //choose largest column frequency
  nColumn = 0;
  for(j = 4; j < 7; j++)
   . . .      //as with the rows
            nColumn = j - 3;
   . . .      //as with the rows
   } //end of for loop
  if((nRow != 0) && (nColumn != 0))
  {
   if((nRow==1)&&(nColumn==1))      //for button 0001 ("1")
  {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_on(3);}
   if((nRow==1)&&(nColumn==2))     //for button 0010
  {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_on(2);DSK6713_LED_off(3);}
   //for button "3", "4", ..., "#"
  }
  else
 {DSK6713_LED_off(0);DSK6713_LED_off(1);DSK6713_LED_off(2);DSK6713_LED_off(3);}
 };        //end of while (1) infinite loop
}         //end of main 

FIGURE 10.4. (Continued)
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    FIGURE 10.5.     Spectrogram plot of a music sample for a beat detector project.  

for analysis of music but also for entertainment visualization purposes. The scheme 
is based on the idea that the drum is the most energy - rich component of the music. 
In this project, the beat of the music is the drum pattern or bass line of the piece 
of music. Figure  10.5 , obtained with MATLAB ’ s capability for plotting the spectro-
gram of an input  .wav  fi le, shows a representative sample section of a piece of music 
featuring a live drum, a voice, and other instruments. The beat pattern is visible in 
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the spectrogram of the music, and the energy plot shows that the beat of the drum 
can be the most energy - rich portion of the music.   

 Furthermore, it is advantageous to fi lter out any higher - frequency portions of the 
music that may also have high energy. This has the added advantage that the parts 
of the music containing no bass line will not  “ confuse ”  the algorithm. 

     Implementation 
 Figure  10.6  shows the partial C source program  beatdetector.c  that can be com-
pleted readily. The project can be tested fi rst using the executable ( .out ) fi le on the 
CD in the folder  beatdetector . The incoming music signal is continuously sampled 
at 8   kHz (with a 4 - kHz antialiasing fi lter on the codec) and stored in a buffer. The 
buffer has 4000 points and is decomposed into 20 chunks, each chunk consisting of 
200 points. The signal energy of a smaller portion of the buffer — a  “ chunk ”  of the 
larger buffer — consisting of the most recently collected samples is compared to the 
signal energy of the entire buffer. When this portion of the signal has a signifi cantly 
higher energy than the rest of the signal, it is considered to be a beat. The average 
algorithm is described by the following equations:
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  〈  E  〉  and  〈  e  〉  represent the average energy of the buffer and of each chunk, respec-
tively.  C  is the comparison factor (sensitivity),  B  is the buffer, and  i  0  is the start 
position in the chunk buffer.  N  and  n  represent the number of points in the buffer 
and in the chunk, respectively. The fi rst two equations represent the average for the 
entire buffer and for a chunk, respectively, and the third equation describes the 
actual beat detection logic.   

 To fi ne - tune this method, the following can be adjusted: (1) the length  N  of the 
larger buffer (the total signal being compared against), (2) the length  n  of the chunks 
(the  “ instantaneous ”  signal), and (3) the sensitivity  C  of the energy comparison. 
Values for  C  ranging from 0.5 to 2 were tested, and a value of 1.3 seems to be optimal 
for most types of music. 

 A larger buffer size can give a better energy average; however, this has several 
drawbacks: 

  1.     A larger chunk size means lower accuracy since the beat status can only be 
updated as often as a single chunk is fi lled and processed.  



  2.     The larger the buffer, the longer the processing time for calculating the average 
energy, so the buffer size is limited by the processing speed of the board.  

  3.     A larger buffer requires the use of external memory, which can mean a reduc-
tion in speed.    

 A buffer stored in internal memory with a length of half a second (4000 points) 
decomposed into 20 chunks seems to work best. The LEDs onboard the DSK are 

    FIGURE 10.6.     Core C program for beat detection ( beatdetector.c ).    

//Beatdetector.c Core program for beat detection project

const int chunks = 20;    //number of frames in buffer
const int instant_length = 200;  //length of 1 buffer
#define average_length 4000   //length of buffer
const float c = 1.3;    //confidence multiplier
double ae = 0, ie = 0;
short buffer[average_length];  //Buffer
void main()
{
 comm_poll();            //init DSK, codec, McBSP
 while(average_counter < average_length){ //sample entire buffer
 buffer[average_counter] = input_sample();
 average_counter++;
 }
 while(1) {     //infinite loop
  instant_counter = 0;
  while(instant_counter<instant_length){  //sample one frame and
   buffer[chunk_counter*instant_length+instant_counter]=input_sample();
   instant_counter++;               //move it to circular buffer
  }
 for (average_counter=0;average_counter<average_length;average_counter++) {
   ae=ae+buffer[average_counter]*buffer[average_counter];//av energy
 }                                                  //in entire buffer
 ae = ae / average_length;
for (instant_counter=0;instant_counter<instant_length;instant_counter++) {
   ie=ie+buffer[chunk_counter*instant_length+instant_counter]
    *buffer[chunk_counter*instant_length+instant_counter];
 }       //average energy in last few msec
 ie = ie / instant_length;
 if (ie > ae*c){//if energy in short buffer>whole buffer,turn on LEDs
 ..
 else {       //if not, turn off LEDs
 ..
 }
 chunk_counter++;    //incr position in chunk counter
 if(chunk_counter>=chunks) chunk_counter=0; //right point in buffer
 }       //end of while(1) infinite loop
}        //end of main 
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fl ashed whenever a beat is detected. To expand on this project, the beat information 
can be fed back (from the DSK output) as data or as an audio signal to control, for 
example, external light effects. Alternatively, it can be fed back to the host PC for 
further processing, such as calculating beats per minute. RTDX can then be used 
to provide an interface between the PC host and the DSK (see Chapter  9 ). 

 Build this project as  beatdetector  and verify that this detection scheme (with 
several different types of music) recognizes the drum in most cases, with very few 
false positives.    

10.3 FIR WITH RTDX USING VISUAL C++ FOR TRANSFER 
OF FILTER COEFFICIENTS 

 This project implements an FIR fi lter using VC++ with RTDX to transfer the coef-
fi cients. Chapters  4  and  9  discuss FIR fi lters and RTDX with VC++, respectively. 
All the appropriate fi les for this project are on the CD in the folder  rtdx_vc_FIR . 
Figure  10.7  shows the C source program  rtdx_vc_FIR.c  that runs on the DSK. 
It implements the FIR fi lter and creates and enables an input channel through 
RTDX to read a new set of coeffi cients. These coeffi cients are transferred through 
RTDX from the PC host to the C6x running on the DSK. 

1.     Build this project as  rtdx_vc_FIR . A confi guration ( .cdb ) fi le is created to 
set INT11. Note that the project includes several autogenerated support fi les 
including the linker command fi le. The init/comm. fi le is included in the project 
for real - time input and output. The vector fi le is not included since INT11 is 
set within the confi guration fi le. See  Example 9.2 .   

 Within CCS, load and run the executable fi le. Select  Tools →  RTDX  →
Confi guration Control  and  Enable RTDX  (check it).  

2.     Run the Visual C++ application fi le included in the folder  rtdx_vc_FIR\VC_
FIR_RTDX\Debug . A message for the user to load a coeffi cient fi le pops up, as 
shown in Figure  10.8 . Load the coeffi cient fi le  LP600.cof , looking in the folder 
rtdx_vc_FIR . This coeffi cient fi le was designed with MATLAB and used in 
 Example 4.7    to implement a lowpass FIR fi lter with a cutoff frequency at 
600   Hz. Verify this result. 

 Load  LP1500.cof  and  LP3000.cof , which represent FIR lowpass fi lters 
with 81 coeffi cients and with cutoff frequencies at 1500 and 3000   Hz, respec-
tively. Verify that these FIR fi lters can be implemented readily.        

 The coeffi cient fi les are transferred in real time to the C program running on the 
DSK, using the function RTDX_read( )  in Figure  10.7 . The coeffi cients are stored 
in the buffer RtdxBuffer , along with  N  that represents the number of coeffi cients 
(81) as the fi rst value in the coeffi cient fi le (the lowpass coeffi cient fi les in the 
example FIR3LP have been modifi ed for this project). Experiment with different 
sets of coeffi cients.  



  10.4   RADIX - 4  FFT  WITH  RTDX  USING VISUAL C++ AND 
MATLAB FOR PLOTTING 

 This project implements a radix - 4 FFT using TI ’ s optimized functions. The resulting 
FFT magnitude of a real - time input is sent to MATLAB for plotting. In real time, 
the output data are sent to the PC host using RTDX with Visual C++. Chapter  9  
includes two examples using RTDX with Visual C++, and Chapter  6  includes two 

    FIGURE 10.7.     C source program that runs on the DSK to implement an FIR fi lter 
using RTDX with Visual C++ to transfer the coeffi cients from the PC to the DSK 
( rtdx_vc_FIR.c ).  

//rtdx_vc_FIR.c FIR with RTDX using VC++ to transfer coefficients file
#include "dsk6713_aic23.h"
#include <rtdx.h>
#define RTDX_BUFFER_SIZE 256              //change for higher order
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;
RTDX_CreateInputChannel(control_channel); //create input channel
short* pFir;                            //->filter's Impulse response
short RtdxBuffer[RTDX_BUFFER_SIZE]={0}; //buffer for RTDX
short dly[RTDX_BUFFER_SIZE] = {0};      //buffer for input samples
short i;
short N;                                //order of filter
int yn;
interrupt void c_int11()
{
  dly[0] = input_sample();
  yn = 0;
  for(i = 0; i < N; i++)
 yn += pFir[i]*dly[i];
  for(i = N - 1; i > 0; i--)
 dly[i] = dly[i-1];
  output_sample(yn >> 15);
}
void main()
{
   N = 0;                                  //initial filter order
   pFir = &RtdxBuffer[1];               //-> 2nd element in buffer
   comm_intr();
   RTDX_enableInput(&control_channel);  //enable RTDX input channel
   while(1)                              //infinite loop
   {
    if(!RTDX_channelBusy(&control_channel)) //if free, read->buffer
    {                                      //read N and coefficients
     RTDX_read(&control_channel,&RtdxBuffer,sizeof(RtdxBuffer));
     N = RtdxBuffer[0];                  //extract filter order
    }
   }
}
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    FIGURE 10.8.     Visual C++ message to load a fi le with the FIR coeffi cients to be transferred 
through RTDX from the PC to the DSK.  

examples (one in real time) to implement a radix - 4 FFT. The necessary fi les are in 
the folder  rtdx_vc_FFTr4 . This includes the Visual C++ support and executable 
fi les in the folder  rtdx_vc_FFTr4\rtdxFFT . 

      CCS  Component 
 The C source program  rtdx_vc_FFTr4.c  runs on the DSK and is shown in Figure 
 10.9 a. An output RTDX channel is created and enabled to write (send) the resulting 
FFT magnitude data in the buffer  output_buffer  to MATLAB running on the 
PC host for plotting (only). RTDX is achieved using Visual C++. The radix - 4 FFT 
support functions for generating the index for digit reversal, and for digit reversal, 
were used in Chapter  6 . The complex radix - 4 FFT function  cfftr4_dif.c  is also 
on the CD (the ASM version was used in Chapter  6 ). Note that the real and imagi-
nary components of the input are consecutively arranged in memory (as required 
by the FFT function). Digit reversal is performed on the resulting FFT since it is 
scrambled and needs to be resequenced. After the FFT magnitude is calculated 
and stored in  output_buffer , it is sent to MATLAB through an output RTDX 
channel.   

 The project uses DSP/BIOS only to set interrupt INT 11 using the ( .cdb ) con-
fi guration fi le (see  Example 9.2   ). As a result, a vector fi le is not required. The BSL 
fi le needs to be added (the support fi les for RTDX and CSL are included in the 
autogenerated linker command fi le, which must be added to the project by the 
user). 

 Build this project within CCS as   rtdx_vc_FFTr4  . Within CCS, select  Tools  →  
RTDX  and confi gure the buffer size to 2048 (not 1024), and then enable RTDX 
(check it). From the confi guration ( .cdb ) fi le, select  Input/Output  →  RTDX . Right -
 click for properties to increase the buffer size from 1024 to 2056. Load and run the 
( .out ) fi le. Input a 2 - kHz sine wave with an approximate amplitude of   1

2    V p - p. The 
output from the DSK is like a loop program.  



    FIGURE 10.9.     (a) C program to implement radix - 4 FFT and illustrate RTDX with Visual 
C++, using MATLAB for FFT and plotting ( rtdx_vc_FFTr4.c ); (b) message when the VC++ 
application fi le is executed.  

//rtdx_vc_FFTr4.c Core r4-FFT using RTDX with VC++(MATLAB for plotting)
. . . N=256,16kHz rate,align x&w,... see Examples in Chapter 6
#include <rtdx.h>
short input_buffer[N] = {0};  //store input samples(same as x)
float output_buffer[N] = {0};  //store magnitude FFT
short buffer_count=0;
short nFlag=1;    //when to begin the FFT
short i, j;
RTDX_CreateOutputChannel(ochan); //output channel C6x->PC transfer
interrupt void c_int11()  //ISR
{
 input_buffer[buffer_count] = input_sample(); //input -->buffer
 output_sample(input_buffer[buffer_count++]); //loop
 if(buffer_count >= N)
  {      //if more than N pts, begin FFT
   buffer_count = 0;   //reset buffer_count
   nFlag = 0;    //flag to signal completion
   for(i = 0; i < N; i++)
    {
     x[2*i]=(float)input_buffer[i]; //real component of input
     x[2*i+1] = 0;   //imaginary component of input
    }
  }
}
void main(void)
{
 . . . //generate twiddle constants and digit reversal index
 comm_intr();      //init DSK
 while(!RTDX_isOutputEnabled(&ochan));//wait for PC to enable RTDX
 while(1)     //infinite loop
  {
   while(nFlag);       //wait to finish accum samples
   nFlag = 1;
   cfftr4_dif(x, w, N);       //call radix-4 FFT function
   digit_reverse((double *)x, IIndex, JIndex, count);
   for(j = 0; j < N; j++)
     output_buffer[j]=(float)sqrt(x[2*j]*x[2*j]+x[2*j+1]*x[2*j+1]);
   RTDX_write(&ochan,output_buffer,sizeof(output_buffer));//Send DSK>PC
  };
}

(a)

(b)
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Visual C++ Component 
 Execute/run the application fi le  rtdxFFT.exe  located in the VC++ folder  rtdx_vc_
FFTr4\rtdxFFT  (within  debug ). Figure  10.9 b will pop up, followed by the FFT 
magnitude plot from MATLAB. Verify that the FFT of the 2 - kHz sine wave output 
is plotted within MATLAB, as in  Example 9.8 . 

 The Visual C++ fi le  rtdxFFTDlg.cpp  includes the code section for MATLAB to 
set the sampling rate and plot the received data. It is located in the dialog class 
within the thread

UINT CRtdxFFTDlg::RTDXThreadFunction(LPVOID lpvoid)

 Recreate the executable (application) fi le. Launch Microsoft Visual C++ and select 
File →  Open Workspace  to open  rtdxFFT.dsw . Build and Rebuild All.    

10.5 SPECTRUM DISPLAY THROUGH EMIF USING A BANK OF 32  LEDs

 This miniproject takes the FFT of an input analog audio signal and displays the 
spectrum of the input signal through a bank of 32 LEDs. The specifi c LED that 
turns on depends on the frequency content of the input signal. The bank of LEDs 
is controlled through the external memory interface (EMIF) bus on the DSK. This 
EMIF bus is a 32 - bit data bus available through the 80 - pin connector J4 onboard 
the DSK. 

 The FFT program in Chapter  6  using TI ’ s optimized ASM - coded FFT function is 
extended for this project. Figure  10.10  shows the core of the program that imple-
ments this project — using a 64 - point radix - 2 FFT, sampling at 32   kHz — and does not 
output the negative spike (32,000) for reference. The executable ( .out ) fi le is on the 
CD in the folder graphic_FFT . and can be used fi rst to test this project. See also the 
project used to display the spectrum through EMIF using LCDs in Section  10.6 .   

EMIF Consideration 
 To determine whether the data is being outputted through the EMIF bus, the fol-
lowing program is used:

# define OUTPUT 0xA0000000 //output address (EMIF)
int *output = (int *) OUTPUT; //map memory location to variable
void main( )
{
*output = 0x00000001; //output 0x1 to the bus
}

 This program defi nes the output EMIF address and gives the capability to read and 
write to the EMIF bus. Test the EMIF by writing different values lighting different 
LEDs. The fi nal version of the program includes a header fi le to defi ne the output 
EMIF address.  



   EMIF  -  LED s 
 A total of 32 LEDs connect through four line drivers (74LS244). Current - limiting 
resistors of 300   ohms are connected between each LED and ground. The line drivers 
allow for the needed current to light up the LEDs. The current drawn by the LED 
is limited to 10   mA so that the line drivers are not overloaded. Figure  10.11  shows 
one of the line drivers. Pin 20 is connected to +5   V and pin 10 to ground. Pins 1 and 
19 are also connected to ground to enable the output of the line driver. Each line 
driver supports eight inputs and eight outputs. The pins labeled with  “ Y ”  are output 
pins. Each of the output pins (on a line driver) is connected to pins 33 – 40, which 
correspond to data pins 31 – 24 on the EMIF bus. The arrangement is the same with 
the other three line drivers connecting to pins 43 – 50 (data pins 23 – 16), pins 53 – 60 

//graphic_FFT.c Core program.Displays spectrum to LEDs through EMIF

#include "output.h"          //contains EMIF address
int *output = (int *)OUTPUT; //EMIF address in header file
. . .
while (1)          //infinite loop
 {
  .                          //same as in FFTr2.c
  .
  for(i = 0; i < N/2; i++)
   {
    if (Xmag[i] > 20000.0)   //if mag FFT >20000
     {
  out = out + 1 << i;   //shifts one to appropriate bit location
     }
   }
  *output = out;       //output to EMIF bus
  out = 0;        //reset out variable for next iteration
 } 

    FIGURE 10.10.     Core C program to implement radix - 2 FFT using TI ’ s optimized FFT support 
functions. It displays the spectrum to 32 LEDs through EMIF ( graphic_FFT.c ).  

    FIGURE 10.11.     Line driver used with external LEDs to display the spectrum in project 
 graphic_FFT .  
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(data pins 15 – 8), and pins 63 – 70 (data pins 7 – 0), respectively. Pin 79 on the EMIF 
bus is used for universal ground. See also the schematics of connectors J3 and J4 
shown in the fi le  c6713_dsk_schem.pdf , included with CCS. Table  10.3  shows the 
EMIF signals.     

Note : Pin 75 on J3 (not J4), the 80 - pin connector for the external peripheral 
interface, is to be connected to ground since it is an enable pin for the EMIF inter-
face and enables the output voltages on these pins.  

Implementation
 The real - time radix - 2 FFT program example in Chapter  6  is slightly modifi ed to 
check the amplitude of a specifi c frequency and determine whether or not it is above 
a set threshold value of 20,000. If so, the value of that specifi c frequency is sent to 
the EMIF output port to light the appropriate LED(s). From Figure  10.10 , when a 
value of the FFT magnitude is larger than the set threshold, the variable out  is 
output. This output corresponds to a bit that is shifted by the value of the index i
that is the corresponding frequency location in the FFT array. This bit shift moves 
a binary 1 to the appropriate bit location corresponding to the specifi c LED to be 
lit. This process is repeated for every value in the magnitude FFT array. If multiple 
values in the FFT array are larger than the set threshold of 20,000, then the appro-
priate bit - shifted value is accumulated. This process lights up all the LEDs that have 
frequencies with corresponding amplitudes above the set threshold value. Setting 
the threshold value at 20,000 creates a range of frequencies from about 150   Hz to 
15   kHz. 

 Build this project as  graphic_FFT  and verify that the lights adapt to the input 
audio signal in real time. You can also test this program with a signal generator as 
input to the DSK. Increase the frequency of the input signal and verify the sequence 
associated with the LEDs that turn on.    

10.6 SPECTRUM DISPLAY THROUGH EMIF USING  LCDs

 This project implements a graphical frequency display through the use of a 2    ×    16 
character liquid - crystal display (LCD) (LCM - S01602DTR/M from Lumex). Each 
LCD character is decomposed into two separate states to form a bar graph display-
ing the spectrum of an input signal. See also the previous project, which displays a 
spectrum through EMIF using a bank of 32 LEDs. Figure  10.12  shows the core of 
the program, EMIF_LCD.c , that implements this project. It uses the C - coded FFT 
function called from FFT128c.c  in Chapter  6  to obtain the spectrum (for the section 
of code that is excluded without outputting the negative spike for reference).   

FFT Component 
 One component of the program is based on the FFT program example in Chapter 
 6  that calls a C - coded FFT function (see  FFT128c.c ). The FFT component uses 256 



TABLE 10.3 EMIF Signals 

Pin Signal I/O Description Pin Signal I/O Description

1 5V Vcc 5V voltage supply pin 2 5V Vcc 5V voltage supply pin 
3 EA21 O EMIF address pin 21 4 EA20 O EMIF address pin 20 
5 EA19 O EMIF address pin 19 6 EA18 O EMIF address pin 18 
7 EA17 O EMIF address pin 17 8 EA16 O EMIF address pin 16 
9 EA15 O EMIF address pin 15 10 EA14 O EMIF address pin 14 

11 GND Vss System ground 12 GND Vss System ground 
13 EA13 O EMIF address pin 13 14 EA12 O EMIF address pin 12 
15 EA11 O EMIF address pin 11 16 EA10 O EMIF address pin 10 
17 EA9 O EMIF address pin 9 18 EA8 O EMIF address pin 8 
19 EA7 O EMIF address pin 7 20 EA6 O EMIF address pin 6 
21 5V Vcc 5V voltage supply pin 22 5V Vcc 5V voltage supply pin 
23 EA5 O EMIF address pin 5 24 EA4 O EMIF address pin 4 
25 EA3 O EMIF address pin 3 26 EA2 O EMIF address pin 2 
27 BE3# O EMIF byte enable 3 28 BE2# O EMIF byte enable 2 
29 BE1# O EMIF byte enable 1 30 BE0# O EMIF byte enable 0 
31 GND Vss System ground 32 GND Vss System ground 
33 ED31 I/O EMIF data pin 31 34 ED30 I/O EMIF data pin 30 
35 ED29 I/O EMIF data pin 29 36 ED28 I/O EMIF data pin 28 
37 ED27 I/O EMIF data pin 27 38 ED26 I/O EMIF data pin 26 
39 ED25 I/O EMIF data pin 25 40 ED24 I/O EMIF data pin 24 
41 3.3V Vcc 3.3V voltage supply pin 42 3.3V Vcc 3.3V voltage supply pin 
43 ED23 I/O EMIF data pin 23 44 ED22 I/O EMIF data pin 22 
45 ED21 I/O EMIF data pin 21 46 ED20 I/O EMIF data pin 20 
47 ED19 I/O EMIF data pin 19 48 ED18 I/O EMIF data pin 18 
49 ED17 I/O EMIF data pin 17 50 ED16 I/O EMIF data pin 16 
51 GND Vss System ground 52 GND Vss System ground 
53 ED15 I/O EMIF data pin 15 54 ED14 I/O EMIF data pin 14 
55 ED13 I/O EMIF data pin 13 56 ED12 I/O EMIF data pin 12 
57 ED11 I/O EMIF data pin 11 58 ED10 I/O EMIF data pin 10 
59 ED9 I/O EMIF data pin 9 60 ED8 I/O EMIF data pin 8 
61 GND Vss System ground 62 GND Vss System ground 
63 ED7 I/O EMIF data pin 7 64 ED6 I/O EMIF data pin 6 
65 ED5 I/O EMIF data pin 5 66 ED4 I/O EMIF data pin 4 
67 ED3 I/O EMIF data pin 3 68 ED2 I/O EMIF data pin 2 
69 ED1 I/O EMIF data pin 1 70 ED0 I/O EMIF data pin 0 
71 GND Vss System ground 72 GND Vss System ground 
73 ARE# O EMIF async read 

enable
74 AWE# O EMIF async write 

enable
75 AOE# O EMIF async output 

enable
76 ARDY I EMIF asynchronous 

ready
77 N/C — No connect 78 CE1# O Chip enable 1 
79 GND Vss System ground 80 GND Vss System ground 
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      FIGURE 10.12.     Core C program using a C - coded FFT function to display the spectrum to 
LCDs through EMIF ( EMIF_LCD.c ).  

//EMIF.LCD.c Core C program. Displays spectrum to LCDs through EMIF
#define IOPORT 0xA1111111  //EMIF address
int *ioport = (int *)IOPORT;  //pointer to get data out
int input, output;   //temp storage
void set_LCD_characters();  //prototypes
void send_LCD_characters();
void init_LCD();
void LCD_PUT_CMD(int data);
void LCD_PUT_CHAR(int data);
void delay();
float bandage[16];   //holds FFT array after downsizing
short k=0, j=0;
int toprow[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
int botrow[16] = {0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0};
short rowselect = 1;   //start on top row
short colselect = 0;   //start on left of LCD
#define LCD_CTRL_INIT 0x38  //initialization for LCD
#define LCD_CTRL_OFF 0x08
#define LCD_CTRL_ON 0x0C
#define LCD_AUTOINC 0x06
#define LCD_ON 0x0C
#define LCD_FIRST_LINE 0x80
#define LCD_SECOND_LINE 0xC0   //address of second line
main()
{
 ..
 init_LCD();    //init LCD
 while(1)         //infinite loop
  {
   for(k=0; k<16; k++){   //for 16 bands
  float sum = 0;  //temp storage
  for(j=0; j<8; j++) //for 8 samples per band
   sum += x1[8*k+j]; //sum up samples
  bandage[k] = (sum/8); //take average
   }
   set_LCD_characters();  //set up character arrays
   send_LCD_characters();  //put them on LCD
  }                                //end of infinite loop
}       //end of main
interrupt void c_int11()      //ISR
{
 output_sample(bandage[buffercount/16]); //out from iobuffer
 ..
}
void set_LCD_characters()  //to fill arrays with characters
{
 int n = 0;     //temp index variable
 for (n=0; n<16; n++)
  {
   if(bandage[n] > 40000)  //first threshold
    {
     toprow[n] = 0xFF;   //block character
     botrow[n] = 0xFF;
    } 



   else if(bandage[n] > 20000) //second threshold
    {
     toprow[n] = 0x20;   //blank space
     botrow[n] = 0xFF;
    }
   else      //below second threshold
    {
     toprow[n] = 0x20;
     botrow[n] = 0x20;
    }
  }
}
void send_LCD_characters()
{
 int m=0;
 LCD_PUT_CMD(LCD_FIRST_LINE);  //start address
 for (m=0; m<16; m++)   //display top row
   LCD_PUT_CHAR(toprow[m]);
 LCD_PUT_CMD(LCD_SECOND_LINE); //second line
 for (m=0; m<16; m++)   //display bottom row
   LCD_PUT_CHAR(botrow[m]);
}
void init_LCD()
{
 LCD_PUT_CMD(LCD_CTRL_INIT);  //put command
 LCD_PUT_CMD(LCD_CTRL_OFF);  //off display
 LCD_PUT_CMD(LCD_CTRL_ON);  //turn on
 LCD_PUT_CMD(0x01);   //clear display
 LCD_PUT_CMD(LCD_AUTOINC);  //set address mode
 LCD_PUT_CMD(LCD_CTRL_ON);  //set it
}
void LCD_PUT_CMD(int data)
{
 *ioport = (data & 0x000000FF); //RS=0, RW=0
 delay();
 *ioport = (data | 0x20000000); //bring enable line high
 delay();
 *ioport = (data & 0x000000FF);  //bring enable line low
 delay();
}
void LCD_PUT_CHAR(int data)
{
 *ioport = ((data & 0x000000FF)| 0x80000000);  //RS=1, RW=0
 *ioport = ((data & 0x000000FF)| 0xA0000000);  //enable high
 *ioport = ((data & 0x000000FF)| 0x80000000);  //enable Low
 delay();
}
void delay()    //create 1 ms delay
{
 int q=0, junk=2;
 for (q=0; q<8000; q++)
   junk = junk*junk;
}

FIGURE 10.12. (Continued)
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points and samples at 32   kHz to allow a frequency display range from 0 to 16   kHz. 
The second component of the program is associated with the EMIF - LCD.  

LCD Component 
 Since the LCD is 16 characters wide, each character is chosen to correspond to one 
band. The FFT range can then be decomposed linearly into sixteen 1 - kHz bands, 
with each band being determined in a nested  “ for loop. ”  The 256 - point FFT is then 
decomposed into 16 bands with eight samples per band. The average of the samples 
is taken and placed into an array of size 16. Using thresholds, this array is then 
parsed to determine which character (blank or fi lled) is to be displayed on the 
LCD.

 Each LCD character has two different states, either fully on or fully off (four 
states total). These characters are then placed in arrays, one array for the top row 
of the LCD and one for the bottom row. These arrays are accessed by the function 
that writes data to the appropriate LCD. Two functions are used to transfer data to 
the LCD: 

1.     The fi rst function,  LCD_PUT_CMD , is used primarily by an initialization func-
tion ( init_LCD ). It masks the proper data bits and confi gures the control 
lines. The LCD has setup and hold times that must be achieved for proper 
operation. The LCD_PUT_CMD  function sets the control lines, with delays to 
ensure that there are no timing glitches, and then pulses the enable control 
line. Clocking the data into the LCD occurs during the falling edge of the 
enable line.  

2.     The second function,  LCD_PUT_CHAR , sends the characters to the LCD and 
requires different control signals. The cursor address is autoincremented so 
that a character is sent to the proper position on the LCD.    

 With only one port to use, the two functions  LCD_PUT_CHAR  and  LCD_PUT_CMD
include bitwise AND and OR operations to mask and set only certain bits. 

 The delay function creates a 1 - ms delay to meet the timing requirements (setup 
and hold times) of the LCD for proper operation.  

EMIF-LCD Pins Description 
 Table  10.4  displays information of the LCD pins and the EMIF connector. EMIF 
pins information on connector J4 is shown in Table  10.3  (associated with the previ-
ous project) and contained in the fi le  c6713_dsk_schem.pdf , included with CCS. 
The least signifi cant data pins (ED0 – ED7) for the characters are selected, and the 
three most signifi cant data pins (ED29 – ED31) for the control lines are selected. 
The fi rst six pins on the LCD are used for power and control signals. To enable the 
data for output through the EMIF bus, pin 75 of the External Peripheral Interface 
connector J3 (not J4) is to be connected to ground (see also the previous 
project).   



 Build this project as  EMIF_LCD . Use either an input signal from a signal gener-
ator or an input audio signal. Verify the graphical frequency display on the 
LCDs.

 Some possible improvements to this project include: 

1.     More thresholds so that more levels of frequency intensities can be repre-
sented. More than four thresholds would better illustrate the frequency 
intensity.

2.     The bands can be displayed logarithmically instead of linearly. A logarithmic 
display would allow for a wider range of frequencies. An up - sampling scheme 
would then be used.       

10.7 TIME–FREQUENCY ANALYSIS OF SIGNALS WITH SPECTROGRAM 

 This project makes use of the short time Fourier transform (STFT) for the analysis 
of signals, resulting in a spectrogram plot  [33, 34] . A spectrogram is a plot of the 
frequencies that make up a particular signal. The magnitude of the frequency at a 
particular time is represented by the colors in the graph. This plot of frequency 
versus time provides information on the changing frequency content of a signal over 
time.

 The spectrogram is the square of the absolute value of the STFT of a signal. The 
STFT looks at a nonstationary signal as small blocks in time and takes the Fourier 
transform of each block to obtain the frequency content of the signal at that time. 
This involves multiplying the signal with a moving window to observe smaller seg-
ments of the signal and taking the Fourier transform of the product. The use of a 

TABLE 10.4 EMIF-LCD Pin Connections 

LCD
PinNumber Name Function

DSK (EMIF) 
Pin Connection J4 

1 Vss Ground Gnd
2 Vdd Supply +5V
3 Vee Contrast Gnd
4 RS Register select ED31
5 R/W Read/write ED30
6 E Enable ED29
7 D0 Data bit 0 ED0
8 D1 Data bit 1 ED1
9 D2 Data bit 2 ED2

10 D3 Data bit 3 ED3
11 D4 Data bit 4 ED4
12 D5 Data bit 5 ED5
13 D6 Data bit 6 ED6
14 D7 Data bit 7 ED7
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sliding window and its size needs to be determined. A large window size (length) 
can be chosen to enhance the frequency resolution, but at the expense of the time 
resolution, and vice versa. The window increment, which represents the distance 
between successive windows, also needs to be determined. 

 A spectrogram can be more useful than a plot of the spectrum since there can 
be a different spectrum for each time. The spectrogram is plotted as frequency 
versus time as a three - dimensional plot. Consider a musical scale consisting of eight 
musical notes representing the C scale major: C, D, E, F, G, A, B, C with the follow-
ing sinusoidal frequencies: 262, 294, 330,       .      .      .       , 523, respectively, starting with the 
middle C at a frequency of 262   Hz. The subsequent C is one octave higher at 523   Hz, 
which represents a doubling in frequency. A spectrogram plot of frequency versus 
time would identify each note as it is played. 

 Time – frequency analysis techniques include the STFT, Gabor expansion, and 
energy distribution - based techniques such as the Wigner – Ville distribution. These 
techniques are used to study the behavior of nonstationary signals such as music 
and speech signals. 

 The fi les for this project are in the folder  spectrogram  (with separate sub-
folders). The spectrogram project is decomposed into three separate sections 
(versions), all of which make use of MATLAB ’ s function  imagesc  to plot the 
spectrogram:

1.     Simulation using MATLAB to read a  .wav  fi le and plot its spectrogram  

2.     RTDX with MATLAB and use of a C - coded FFT function  

3.     RTDX with Visual C++ and a radix - 4 optimized FFT function    

10.7.1 Simulation Using MATLAB

 This is a simulated version using MATLAB. Figure  10.13 a shows the MATLAB fi le 
spectrogram.m  that plots a spectrogram, using the function  wavread  to read a 
.wav  fi le  chirp.wav  that is a swept sinusoidal signal. MATLAB ’ s FFT function is 
also used, as well as the function imagesc , to fi nd the spectrogram of the input 
.wav  fi le.   

 Run the MATLAB program and verify Figure  10.13 b as the spectrogram of a 
chirp signal. It illustrates the increase in frequency of the swept sinusoidal signal 
over time. You can readily test other .wav  fi les on the CD.  

10.7.2 Spectrogram with RTDX Using  MATLAB

 This version of the project makes use of RTDX with MATLAB for transferring 
data from the DSK to the PC host. Section  9.1  introduces the use of a confi guration 
(.cdb ) fi le and Section  9.2  illustrates RTDX with MATLAB. 



      FIGURE 10.13.     Spectrogram simulation with MATLAB: (a) MATLAB program to read 
and fi nd the spectrogram of an input  .wav  fi le and (b) spectrogram plot of an input chirp 
signal.  

(b)

%Spectrogram.m Reads .wav file,plots spectrogram using STFT with MATLAB

[x,fs,bits] = wavread('chirp.wav'); %read .wav file
N = length(x);
t=(0:N-1)/fs;
set(0,'DefaultAxesColorOrder',[0 0 0],...
      'DefaultAxesLineStyleOrder','-|-.|--|:');
figure(1); plot(t,x);   %plots time-domain signal
xlabel('Time (sec)'); ylabel('Amplitude'); title('Waveform of signal');
M=256;  B=floor(N/M);   %divide signal->blocks of M samples
x_mat=reshape(x(1:M*B),[M B]);  %reshape vector into MxB matrix 
win=hamming(M);     %Hamming window before FFT
win_mat=repmat(win,[1 B]);
x_fft=fft(x_mat.*win_mat);  %perform FFT
y=abs(x_fft(1:M/2,:));    %want positive freq and mag info
t=(1:B)*(M/fs);    %values for time and freq axes
f=((0:M-1)/(M-1))*(fs/2);
figure(2);
imagesc(t,f,dB(y));   %plot spectrogram
colormap(jet);   colorbar;   set(gca,'ydir','normal');
xlabel('Time (sec)');  ylabel('Frequency (Hz)');  title('Spectrogram');

(a)
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      FIGURE 10.14.     Spectrogram using RTDX with MATLAB: (a) core program to calculate 
FFT and transfer FFT data from the DSK to the PC; (b) spectrogram plot of an external 
chirp input signal; and (c) spectrogram plot of a 500 - Hz square wave input signal.  

//Partial_Spectrogram_rtdx_mtl.c Core program for Time-Frequency
//analysis with spectrogram using RTDX-MATLAB
. . . See FFT256c.c
#include <rtdx.h>      //RTDX support file
#include "hamming.cof"           //Hamming window coefficients
RTDX_CreateOutputChannel(ochan);   //create output channel C6x->PC

main()
{
 //. . . calculate twiddle constants
 comm_intr();           //init DSK, codec, McBSP
 while(!RTDX_isOutputEnabled(&ochan)) //wait for PC to enable RTDX
    puts("\n\n Waiting . . . ");    //while waiting
 while(1)            //infinite loop
  {
   . . .
   for (i = 0 ; i < PTS ; i++)        //swap buffers
    {
     samples[i].real=h[i]*iobuffer[i];//multiply by Hamming coeffs
     iobuffer[i] = x1[i];             //process frame to iobuffer
    }
   . . . use FFT magnitude squared
   RTDX_write(&ochan,x1,sizeof(x1)/2);//send 128 samples to PC
  }                                 //end of infinite loop
}         //end of main
interrupt void c_int11()        //ISR
{. . . as in FFT256c.c } 

(a)

 Figure  10.14 a shows the core source program  spectrogram_rtdx_mtl.c  that 
runs on the DSK and can readily be completed using the program  FFT128c.c  in 
Chapter  6  (the complete executable fi le is on the CD). It calls the C - coded FFT 
function used in Chapter  6  and enables an RTDX output channel to write/send the 
resulting FFT data to the PC running MATLAB for fi nding the spectrogram. A total 
of  N /2 (128 points) are sent (in lieu of 256) for better resolution (continuity). The 
( .cdb ) confi guration fi le is used to set interrupt INT11, as in Section  9.1 . From this 
confi guration fi le, select  Input/Output  →  RTDX . Right - click on properties and 
change the RTDX buffer size to 8200. Within CCS, select  Tools  →  RTDX  →  Con-
fi gure  to set the host buffer size to 2048 (from 1024).   

 An input signal is read in blocks of 256 samples. Each block of data is then multi-
plied with a Hamming window of length 256 points. The FFT of the windowed data is 
calculated and squared. Half of the resulting FFT of each block of 256 points is then 
transferred to the PC running MATLAB to fi nd the spectrogram. Build this project 
as   spectrogram_rtdx_mtl  . Within CCS, select  Tools  →  RTDX  →  Confi gure . 



(b)

(c)

FIGURE 10.14. (Continued)
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 Open MATLAB, select the appropriate path, and run  spectrogram_rtdx.m  (on 
the CD). Within MATLAB, CCS will enable RTDX and will load and run the COFF 
(.out ) executable fi le. Then MATLAB will plot the resulting spectrogram of an 
input signal. Input/play Chirp.wav  (output of a soundcard as input to the DSK) 
and verify the spectrogram of this input signal plotted by MATLAB, as shown in 
Figure  10.14 b. For a chirp input signal, the transfer of 128 points (in lieu of 256) 
yields a better spectrogram. 

 For a faster and accurate plot, delete the commands within the MATLAB fi le 
that include the labels ( x  and  y  axes, and title) in the spectrogram plot. 

 Use a 500 - Hz square wave as input and verify the spectrogram plot shown in 
Figure  10.14 c. A darker red strip is formed at the 500 - Hz fundamental frequency, 
and lighter red strips at the other harmonics of 1500, 2500, and 3500   Hz. For this 
type of input, you may choose to transfer the entire block of 256 - point FFT data at 
each time. 

 You can extend this project version using TI ’ s optimized FFT function (see 
Chapter  6 ).  

10.7.3 Spectrogram with RTDX Using Visual C++ 

 This project is also tested using RTDX with Visual C++ for data transfer from the 
DSK to the PC host. The program spectrogram_rtdx_r4.c  (on the CD) imple-
ments a 256 - point radix - 4 FFT using TI ’ s optimized FFT function and the associated 
support fi les for digit reversal. See also the two radix - 4 FFT examples in Chapter  7  
and Section  10.4 . As with the MATLAB version for RTDX, only 128 points are 
transferred at a time. 

 Change the buffer size to 8200 within the ( .cdb ) fi le, as with the previous 
MATLAB version. Within CCS, change the host buffer size from 1024 to 2048. 
Enable RTDX (there is no MATLAB fi le for doing so). Load/run the  .out  fi le. 

 The Visual C++ support fi les are on the CD. Access/run the VC++ application 
fi le  vc_spectrogram.exe . You should get the Visual C++ dialog message in Figure 
 10.15  until MATLAB plots the spectrogram of a real - time input signal. Input/play 

FIGURE 10.15.     Visual C++ dialog message for a spectrogram.  



the ( .wav ) chirp signal and verify that the results are identical to those achieved 
with the spectrogram in Figure  10.14 b, being continuously updated within MATLAB. 
The fi le  vc_spectrogramdlg.cpp  contains the MATLAB commands for plotting 
the spectrogram. However, MATLAB is not used in this version to provide the 
RTDX link.   

 As in Section  10.7.2 , you can obtain a fast and accurate plot by deleting the com-
mands for including the title and the labels within the spectrogram plot. These 
commands are in the fi le  vc_spectrogramdlg.cpp . 

 You can extend this project version using the radix - 2 FFT (in lieu of the radix - 4). 
Chapter  6  includes several examples based on the radix - 2 FFT.   

10.8 AUDIO EFFECTS (ECHO AND REVERB, HARMONICS, 
AND DISTORTION) 

 This project illustrates various audio effects such as distortion, echo and reverb, and 
harmonics  [35] . Figure  10.16  shows the core program  soundboard.c  (virtually 
complete) that implements this project. The overall program fl ow consists of pre-
amplifi cation, distortion, echo/reverb, harmonics, and postamplifi cation. Preamp and 
postamp are included to avoid overdriving the output. A sampling rate of 16   kHz is 
chosen, and a total of 10 sliders are used for the overall control. The slider gel fi le 
is on the CD in the folder soundboard .   

 The distortion effect is the simplest to implement. It requires overamplifying each 
sample and clipping it at maximum and minimum values. The acquired input sample 
is amplifi ed based on whether it is positive or negative. The amplifi cation polynomial 
used for the distortion component is used to amplify the signal in a nonlinear 
fashion. The result is scaled by a distortion magnitude controlled by a slider, then 
clipped so as not to overdrive the output. 

 The resulting output is processed for an echo/reverb effect (see  Examples 2.4  
and  2.5  on echo effects). The length of the echo is controlled by changing the 
buffer size where the samples are stored. A dynamic change of the echo length 
leads to a reverb effect. A fading effect with a decaying echo is obtained with a 
slider.

 The third effect is harmonics boost. A harmonics buffer is used for this effect. 
Two main loop sections are created to produce two separate sets of harmonics. The 
larger (outer) loop combines the input with samples from the harmonics buffer at 
twice the input frequency. The smaller (inner) loop produces the next harmonics at 
four times the input frequency. The magnitudes of the harmonics are controlled with 
a slider. 

 These effects were tested successfully using the input from a keyboard with the 
keyboard output to a speaker. The audio output is sent to both channels of the codec 
(see  Example 2.9 ), using the stereo capability of the onboard codec. The executable 
and gel fi les are included in the folder  soundboard . 

 A drum effect section is included in the program for expanding the project. The 
use of external memory must be considered when applying many effects.  
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//Soundboard.c  Core C program for sound effects
union {Uint32 uint; short channel[2];} AIC23_data;
union {Uint32 uint; short channel[2];} AIC23_input;
short EchoLengthB = 8000;  //echo delay
short EchoBuffer[8000];   //create buffer
short echo_type = 1;   //to select echo or delay
short Direction = 1;   //1->longer echo,-1->shorter
short EchoMin=0,EchoMax=0;  //shortest/longest echo time
short DistMag=0,DistortionVar=0,VolSlider=100,PreAmp=100,DistAmp=10;
short HarmBuffer[3001];   //buffer
short HarmLength=3000;   //delay of harmonics
float output2;
short DrumOn=0,iDrum=0,sDrum=0; //turn drum sound when = 1
int  DrumDelay=0,tempo=40000; //delay counter/drum tempo
short ampDrum=40;    //volume of drum sound
..                                  //addtl casting
interrupt void c_int11()       //ISR
{
AIC23_input.uint = input_sample(); //newest input data
input=(short)(AIC23_input.channel[RIGHT]+AIC23_input.channel[LEFT])/2;
input = input*.0001*PreAmp*PreAmp;
output=input;
output2=input;          //distortion section
if (output2>0)
output2=0.0035*DistMag*DistMag*DistMag*((12.35975*(float)input)
        - (0.359375*(float)input*(float)input));
else  output2 =0.0035*DistMag*DistMag*DistMag*(12.35975*(float)input
        + 0.359375*(float)input*(float)input);
output2/=(DistMag+1)*(DistMag+1)*(DistMag+1);
if (output2 > 32000.0)  output2 = 32000.0 ;
else if (output2 < -32000.0 )  output2 = -32000.0;
output= (output*(1/(DistMag+1))+output2); //overall volume slider
input = output;                           //echo/reverb section
iEcho++;                                  //increment buffer count
if (iEcho >= EchoLengthB) iEcho = 0;      //if end of buffer reinit
output=input + 0.025*EchoAmplitude*EchoBuffer[iEcho];//newest+oldest
if(echo_type==1) EchoBuffer[iEcho] = output; //for decaying echo
else EchoBuffer[iEcho]=input;   //for single echo (delay)
EchoLengthB += Direction;   //alter the echo length
if(EchoLengthB<EchoMin+100){Direction=1;} //echo delay is shortest->
if(EchoLengthB>EchoMax){Direction=-1;} //longer,if longest->shorter
input=output;     //output echo->harmonics gen
if(HarmBool==1) {     //everyother sample...
 HarmBool=0;     //switch the count
 HarmBuffer[iHarm]=input;   //store sample in buffer
 if(HarmBool2==1){     //everyother sample...
  HarmBool2=0;     //switch the count
  HarmBuffer[uHarm] += SecHarmAmp*.025*input;//store sample in buffer
 }
 else{HarmBool2=1; uHarm++;    //or just switch the count,
  if(uHarm>HarmLength) uHarm=0;  //and increment the pointer
 }
}

      FIGURE 10.16.     Core C program to obtain various audio effects ( soundboard.c ).    



else{HarmBool=1; iHarm++;    //or just switch the count
if(iHarm>HarmLength) iHarm=0;}  //and increment the pointer
output=input+HarmAmp*0.0125*HarmBuffer[jHarm];//add harmonics to output
jHarm++;      //and increment the pointer
if(jHarm>HarmLength) jHarm=0;   //reinit when maxed out
DrumDelay--;     //decrement delay counter
if(DrumDelay<1) {                    //drum section
  DrumDelay=50000-Tempo;   //if time for drumbeat
  DrumOn=1;     //turn it on
}
if(0){      //if drum is on
 output=output+(kick[iDrum])*.05*(ampDrum);//play next sample
 if((sDrum%2)==1) {iDrum++;}   //but play at Fs/2
 sDrum++;      //incr sample number
 if(iDrum>2500){iDrum=0; DrumOn=0;}  //drum off if last sample
}
output = output*.0001*VolSlider*VolSlider;
AIC23_data.channel[LEFT]=output;
AIC23_data.channel[RIGHT]=AIC23_data.channel[LEFT];
output_sample(AIC23_data.uint);     //output to both channels
}
main()          //init DSK,codec,McBSP and while(1) infinite loop 

FIGURE 10.16. (Continued)

  10.9   VOICE DETECTION AND REVERSE PLAYBACK 

 This project detects a voice signal from a microphone, then plays it back in the 
reverse direction. Figure  10.17  shows the block diagram that implements this project. 
All the necessary fi les are in the folder  detect_play . Two circular buffers are used: 
an input buffer to hold 80,000 samples (10 seconds of data) continuously being 
updated and an output buffer to play back the input voice signal in the reverse 
direction. The signal level is monitored, and its envelope is tracked to determine 
whether or not a voice signal is present.   

Buffer
#1 

HPF 
(DC-
block)

Rectify LPF 
Signal
level 
monitor 

Buffer
#2 

Input

Output

    FIGURE 10.17.     Block diagram for the detection of a voice signal from a microphone and 
playback of that signal in the reverse direction.  
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 When a voice signal appears and subsequently dies out, the signal - level monitor 
sends a command to start the playback of the accumulated voice signal, specifying 
the duration of the signal in samples. The stored data are transferred from the input 
buffer to the output buffer for playback. Playback stops when one reaches the end 
of the entire signal detected. 

 The signal - level monitoring scheme includes rectifi cation and fi ltering (using 
a simple fi rst order IIR fi lter). An indicator specifi es when the signal reaches 
an upper threshold. When the signal drops below a low threshold, the time differ-
ence between the start and end is calculated. If this time difference is less than a 
specifi ed duration, the program continues into a no - signal state (if noise only). 
Otherwise, if it is more than a specifi ed duration, a signal - detected mode is 
activated. 

 Figure  10.18  shows the DC   blocking fi lter as a fi rst - order IIR highpass fi lter. The 
coeffi cient  a  is much smaller than 1 (for a long time constant). The estimate of the 
DC   fi lter is stored as a 32 - bit integer. 

 The lowpass fi lter for the envelope detection is also implemented as a fi rst order 
IIR fi lter, similar to the DC blocking fi lter except that the output is returned directly 
rather than being subtracted from the input. The fi lter coeffi cient  a  is larger for this 
fi lter to achieve a short time contant.   

 Build and test this project as   detect_play  .  

  10.10   PHASE SHIFT KEYING —  BPSK  ENCODING AND 
DECODING WITH  PLL  

 See also the two projects on binary phase shift keying (BPSK) and modulation 
schemes in Sections  10.11  and  10.12 . This project is decomposed into smaller mini -
 projects as background for the fi nal project. The fi nal project is the transmission of 
an encoded BPSK signal with voice as input and the reception (demodulation) of 
this signal with phase - locked loop (PLL) support on a second DSK. All the fi les 
associated with these projects are located in separate subfolders within the folder 
 PSK . 

    FIGURE 10.18.     DC   blocking fi rst order IIR highpass fi lter for voice signal detection and 
reverse playback.  



10.10.1 BPSK Single -Board Transmitter/Receiver Simulation 

 BPSK is a digital modulation technique that separates bits by shifting the 
carrier 180 degrees. A carrier frequency signal is chosen that is known by both the 
transmitter and the receiver. Each bit is encoded as a phase shift in the carrier at 
some predetermined period. When a 0 is sent, the carrier is transmitted with no 
phase shift, and when a 1 is sent, the carrier is phase shifted by 180 degrees 
 [36 – 39] . 

CCS Component 
 The necessary fi les for this project are on the CD in  BPSK_sim  within the folder 
PSK . Figure  10.19  shows the C source program  BPSK_sim.c  that modulates a 
bit stream of 10 bits set in the program. Since there is no carrier synchro-
nization, demodulation is performed by the same program on the same DSK 
board.   

 Build this project as  BPSK_sim . Connect the DSK output to the input to verify 
the demodulation of the transmitted sequence. Run the program. The demodulator 
program prints the demodulated sequence within CCS. Verify that it is the same as 
the sequence set in the array encodeSeq  to be encoded. 

 The array  buffer  stores the entire received vector that can be plotted within 
CCS. Select View→ Graph → Time/Frequency . Use  buffer  as the address, 190 as the 
acquisition and display size, 8000 as the sample rate, and a 16 - bit signed integer 
format. Figure  10.20 a shows the CCS plot of the received sequence: {1, 0, 1, 1, 0, 0, 
0, 1, 0, 1} as set in the program. Note that when the received sequence changes from 
a 0 to a 1 or from a 1 to a 0, a change of phase is indicated in the positive and nega-
tive y  axis, respectively. Change the sequence to be encoded in the program to 
{0, 1, 0, 0, 1, 1, 1, 0, 1, 0} and verify the CCS plot in Figure  10.20 b.    

MATLAB Component 
 The MATLAB program  BPSK_sim.m  is also included on the CD. It simulates the 
modulation and demodulation of a random bit stream. Run this MATLAB fi le and 
verify the plots in Figures  10.21 a and  10.21 b for signal - to - noise ratios (SNRs) of 0.5 
and 5.0, respectively. They display the transmitted and received waveforms of a 
random bit stream. The SNR can be changed in the program. The MATLAB program 
also displays the decision regions and detection, as shown in Figures  10.22 a and 
 10.22 b, for SNRs of 0.5 and 5.0, respectively. With small values of SNR, the received 
signals fall outside the appropriate decision regions, resulting in errors in detection. 
The received signal is noisier, resulting in some false detection. This occurs when 
the correlator produces an incorrect phase for the incoming symbol. Correct detec-
tions are marked with blue ×  ’ s and incorrect detections with red circles. For larger 
values of SNR, there are no false detections and the correlated signals lie well within 
the detection region.       
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//BPSK.c BPSK Modulator/Demod. DSK Output sequence --> Input
#include "dsk6713_aic23.h"  //codec-DSK support file
#include <math.h>
#include <stdio.h>
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define PI 3.1415926
#define N 16    //# samples per symbol
#define MAX_DATA_LENGTH 10  //size of mod/demod vector
#define STABILIZE_LEN 10000  //# samples for stabilization
float phi_1[N];    //basis function
short r[N] = {0};    //received signal
int rNum=0,   beginDemod=0;       //# of received samples/demod flag
short encSeqNum=0,  decSeqNum=0; //# encoded/decoded bits
short encSymbolVal=0,decSymbolVal=0;//encoder/decoder symbol index
short encodeSeq[MAX_DATA_LENGTH]={1,0,1,1,0,0,0,1,0,1};//encoded seq
short decodeSeq[MAX_DATA_LENGTH]; //decoded sequence
short sigAmp[2] = {-10000, 10000};  //signal amplitude
short buffer[N*(MAX_DATA_LENGTH+3)];//received vector for debugging
short buflen=0,   stabilizeOutput=0;
interrupt void c_int11()            //interrupt service routine
{
 int i,  outval= 0;
 short X = 0;
 if(stabilizeOutput++ < STABILIZE_LEN) //delay start to Stabilize
 {
  r[0] = input_sample();
  output_sample(0);
  return;
  }
 if(encSeqNum < MAX_DATA_LENGTH)  //modulate data sequence
 {
  outval = (int) sigAmp[encodeSeq[encSeqNum]]*phi_1[encSymbolVal++];
  if(encSymbolVal>=N) {encSeqNum++;   encSymbolVal=0; }
  output_sample(outval);
 }
 else output_sample(0);   //0 if MAX_DATA_LENGTH exceeded
 r[rNum++] = (short) input_sample();//input signal
 buffer[buflen++] = r[rNum - 1];
 if(beginDemod)    //demod received signal
 {
  if(decSeqNum<2 && rNum==N)  { //account for delay in signal
 decSeqNum ++;   rNum = 0; }
  if(rNum == N)    //synchronize to symbol length
  {
   rNum = 0;
   for(i=0; i<N; i++)   //correlate with basis function
  X += r[i]*phi_1[i];
   decodeSeq[decSeqNum-2] = (X >= 0) ? 1: 0; //do detection
   if(++decSeqNum == MAX_DATA_LENGTH+2) //print received sequence 

      FIGURE 10.19.     C program that modulates a sequence of 10 numbers to illustrate BPSK, 
using a single DSK for modulation and demodulation ( BPSK.c ).  



   {
    for(i=0; i<decSeqNum-2; i++)
  printf("Received Value: %d\n", decodeSeq[i]);
    exit(0);
   }
  }
 }
 else  { beginDemod = 1; rNum = 0; }
}
void main()
{
  int i; comm_intr();           //init DSK, codec, McBSP
  for(i=0; i<=N; i++)
    phi_1[i] = sin(2*PI*i/N);  //basis function
  while(1);                    //infinite loop
}

FIGURE 10.19. (Continued)

    FIGURE 10.20.     CCS plot of a received sequence, representing a BPSK modulated signal: 
(a) sequence of {1, 0, 1, 1, 0, 0, 0, 1, 0, 1} and (b) sequence of {0, 1, 0, 0, 1, 1, 1, 0, 1, 0}.  

(a)

(b)
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(a) (b)

    FIGURE 10.21.     MATLAB plots simulating the modulation of a random bit stream showing 
the transmitted and received waveforms for (a) SNR   =   0.5 and (b) SNR   =   5.0.  

    FIGURE 10.22.     MATLAB plots displaying decision regions and detection for (a) SNR   =  
 0.5 and (b) SNR   =   5.0.  

(a) (b)



  10.10.2    BPSK  Transmitter/Voice Encoder 
with Real - Time Input 

   CCS  Component 
 Figure  10.23  shows the C source program  bpsk_ReIn.c  that implements a transmit-
ter/voice encoder with a real - time input signal. You can use your voice as input from 
a microphone connected to the mic input.   

 Build this project as   BPSK_ReIn  . All the necessary fi les for this project are on the 
CD in   BPSK_ReIn   within the folder   PSK  . Use voice as input to the DSK, with the 
DSK output to a scope. Verify that a representative segment of the encoded BPSK 
output signal from the DSK is as shown in Figure  10.24 .    

    FIGURE 10.23.     C program to illustrate a transmitter/voice encoder using a real - time input 
signal ( bpsk_ReIn.c ).   20   

//BPSK_ReIn.c Illustrates transmitter/voice encoder with Real IN
#include "dsk6713_aic23.h"       //codec-DSK support file
#include <math.h>
Uint32 fs=DSK6713_AIC23_FREQ_32KHZ; //set sampling rate
#define NUMSAMP 4    //# samples per symbol
#define MAX_DATA_LENGTH 10  //size of mod/demod vector
short encSeqNum=0, encSymbolVal=0;  //# encoded bits/symbol index
short sin_table[NUMSAMP]={0,10000,0,-10000};
short sample_data;  short bits[16]={0};  short outval=1;

interrupt void c_int11()            //interrupt service routine
{
 int i;
 short j=0;
 sample_data=(short)input_sample(); //input sample
 if(encSeqNum == 32)   //decimate 32kHz to 1kHZ
 {
  encSeqNum = 0;
  if((sample_data>1000)||(sample_data<-1000)) {//above noise threshold
  for(i=0;i<8;i++) bits[i]=(sample_data&(1<<i))?1:-1;} //8sig bits
  else {for(i=0;i<8;i++) bits[i]=0;} //get next bit
 }
 outval = (short) bits[j];
 output_sample(outval*sin_table[encSymbolVal++]);//output next sample
 if(encSymbolVal>=NUMSAMP) {encSymbolVal=0; j++;} //reset encSymbolVal
 encSeqNum++;
 if (j==8)   j=0;    //start next sample
}
void main()
{comm_intr();     while(1);}  //init DSK/infinite loop 
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FIGURE 10.24.     Plot of encoded DSK output using voice as input to the DSK. 

MATLAB Component 
 The corresponding MATLAB fi le for this project  bpsk_ReIn.m  is on the CD. Verify 
the resulting MATLAB plots in Figure  10.25 . The upper graph shows the received 
waveform signal segment. A .wav  fi le is used to model the input signal being 
encoded as a BPSK signal. The plots show successive samples being encoded and 
decoded. The .wav  sample is decimated to 1   kHz, converted to a bit stream, and 
then modulated to a BPSK signal that is then plotted. The upper graph shows which 
amplitude of the voice signal is being modulated into a BPSK signal. Note that as 
the circle moves along the received waveform in the upper graph, the corresponding 
BPSK signal and transmitted bits are displayed in the lower graph and are continu-
ously encoded (updated).     

10.10.3 Phase-Locked Loop 

 This project is a PLL receiver. In BPSK, the receiver must be able to lock onto the 
phase of a received signal in order to distinguish between 1 ’ s and 0 ’ s. A sinusoid of 



1   kHz, with varying phase, is used as the real - time input to the DSK. This input signal 
has eight unique phase shifts. The real - time output signal is the phase of the received 
signal. Two DSKs are required to implement this project. 

 To determine the phase of an incoming sinusoid, the maximum of the correla-
tion coeffi cient is calculated between the received sinusoid and a sinusoid offset 
by a phase estimate. The correlation coeffi cient,  Y , between two sinusoids is 
given by

    Y t t= + +∫ sin( )sin( )ω φ ω φ
π

carrier est
0

2

  

 The received sine wave has a phase of   f   carrier , and an estimate of the phase is 
  f   est . The correlation coeffi cient has a maximum Value when   f   carrier  and   f   est  are 
equal. 

    FIGURE 10.25.     MATLAB plots of an encoded voice signal (lower graph) and received 
segment (upper graph).  
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 To determine this maximum, begin with an initial estimate of   f   est . For every 
period of the incoming signal that is received, that signal is correlated with a sine 
wave that has a phase slightly larger and slightly smaller than   f   est . This yields two 
values for the correlation coeffi cient, one at   f   est    +     e   and the other at   f   est     −      e  . The 
difference between these two values gives an approximation of the derivative of the 
correlation coeffi cient. Using the difference between the correlation coeffi cients at 
  f   est    +     e   and   f   est     −      e   as an estimate of the derivative, a new value for   f   est  is calculated 
using

    φ φ ε εest est= + −+ −( )Y Y  

where

    Y t t+ = + + +∫ε

π

ω φ ω φ εsin( )sin( )carrier est
0

2

 

    Y t t− = + + −∫ε

π

ω φ ω φ εsin( )sin( )carrier est
0

2

  

 This process is repeated every time a full period of the incoming sine wave is 
received. Eventually,   f   carrier  and   f   est  will be equal and the derivative estimated by the 
difference in the correlation coeffi cient   f   est    +     e   and   f   est     −      e   will be 0. When this occurs, 
the receiver is considered locked onto the signal. 

  Implementation 

    1.     Figure  10.26  shows the C source program  sine8_phase_shift.c  used to 
generate a 1 - kHz sine wave with eight unique phase shifts as the output of the 
fi rst DSK. This output sine wave has varying phases but a constant frequency. 
Build this project as   sine8_phase_shift  . Verify that the DSK output con-
nected to a scope is as shown in Figure  10.27 . Every 50 periods of the sine 
wave, the loop index in the program is incremented by 1 to skip one of the 
lookup values set in  sine_table . This results in a transmitted sine wave with 
eight different phase values. Connect the output of the DSK into the input of 
the second DSK.      

  2.     Figure  10.28  shows the C source program  bpsk_demod.c  (on the CD) that 
implements a PLL demodulator on the second DSK. Note that the fi rst DSK 
is still running even though the USB port is unplugged and reconnected to 
the second DSK. See also the example  scrambler  in Chapter  4 . Figure  10.29 a 
shows a CCS plot of the demodulator output. Note that eight different ampli-
tude values are shown for each period of the received input sinusoid. This plot 
is obtained within CCS using  phiBuf  as the starting address, with 500 points 



//sin8_phase_shift.c Sine generation. Illustrates phase shift
#include "dsk6713_aic23.h"  //codec-DSK support file
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
short loop = 0;
short sine_table[8]={0,707,1000,707,0,-707,-1000,-707};//sine values
short phase_change_idx = 0;
interrupt void c_int11()            //interrupt service routine
{
  output_sample(sine_table[loop]);
  if (loop < 7)  ++loop;           //reinit index loop
  else  loop = 0;
  if (phase_change_idx++ >= 50*8) //phase shift every 50 periods
  {
   if (loop == 7)   loop = 0;       //skip a value
   else      loop++;
   phase_change_idx = 0;
  }
  return;
}
void main()
{
  comm_intr();  while(1);   //init DSK/infinite loop
}

    FIGURE 10.26.     C program the generates a sine wave with eight unique phase shifts 
( sine8_phase_shift.c ).  

    FIGURE 10.27.     DSK output of a generated 1 - kHz sine wave with a varying phase.  
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as the acquisition and display size. You can readily change the demodulator 
program so that the phase shift is every fi ve periods of the sine wave. You can 
further adjust the indexing through the sine values to create a phase shift 
showing four (or two) different amplitude values.     
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//BPSK_demod.c PLL demodulator. Input from 1st DSK
#include "dsk6713_aic23.h"  //codec-DSK support file
#include <math.h>
Uint32 fs=DSK6713_AIC23_FREQ_16KHZ; //set sampling rate
#define NUMSAMP 16   //# samples per symbol
#define PI 3.1415926
short sample_data;   //input sample
short ri=0,   r[10000]={0};  //buffer index/received data
short r_symbol[NUMSAMP];  //buffer to receive one period
short SBind=0,   phiBind=0;  //symbol/phi buffer index
float phiBuf[1000] = {0};  //buffer to view phi estimates
float y1, y2,  damp=1;   //correlation vectors,damping
float phi = PI;    //phase estimate

interrupt void c_int11()            //interrupt service routine
{
 int i,  max=1;
 sample_data=(short)input_sample(); //receive sample
 r[ri++] = sample_data;
 r_symbol[SBind++] = sample_data; //put sample in symbol buffer
 if(ri >= 10000)  ri = 0;    //reset buffer index
 if(SBind == NUMSAMP)   //after one period is received
 {      //then perform phi estimate
  SBind = 0;    //reset buffer index
  y1 = 0, y2 = 0;
  for(i=0; i<NUMSAMP; i++)  //correlate received symbol
   {
    y1 += r_symbol[i]*sin(2*PI*i/NUMSAMP + phi - 0.1);
    y2 += r_symbol[i]*sin(2*PI*i/NUMSAMP + phi + 0.1);
    if(r_symbol[i] > max)           max = r_symbol[i];
   }
  y1=y1/max;      y2=y2/max;  //normalize correlation coefs
  phi = phi + 0.4*(y2 - y1)*phi; //determine new estimate for phi
  if(phi < 1)         phi=phi+2*PI; //normalize phi
  if(phi >(2*PI+1))   phi=phi-2*PI;
  phiBuf[phiBind++]=phi;  //put phi in buffer for viewing
  if(phiBind >= 1000)  phiBind = 0; //reset buffer index
 }
output_sample(phi);
}
void main()
{
  comm_intr();   while(1);   //init DSK/infinite loop
}

    FIGURE 10.28.     C program implementing a PLL demodulator ( bpsk_demod.c ).    

 Figure  10.29 b shows a CCS plot of the PLL output buffer that receives only 
one period of the sine wave. Use a starting address of  r_symbol , an acquisition 
and display size of 16, and a 16 - bit signed integer (not a 32 - bit fl oat, as for 
 phiBuf ).      



  10.10.4    BPSK  Transmitter and Receiver with  PLL  

 The support fi les for this project are in the subfolders   transmitter   and   receiver  . 
This project is the fi nal product and includes the demodulation of a transmitted 
BPSK signal. It uses two DSKs: one to transmit a BPSK signal and the other to 
demodulate it. The  transmitter.c  program shown in Figure  10.30  uses the stereo 
capability of the AIC23 codec to transmit a 12 - kHz carrier signal through the right 
channel and the BPSK encoded voice signal through the left channel. In this case, 
you can use a stereo cable that connects the output of the fi rst DSK running the 
transmitter program to the input of the second DSK running  receiver.c . Use voice 

(b)

(a)

    FIGURE 10.29.     CCS plot of a PLL demodulator: (a) output showing eight different ampli-
tudes and (b) output buffer that receives only one period.  
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//transmitter.c Transmits voice as a BPSK signal
#include "dsk6713_aic23.h"  //codec-DSK support file
#include <math.h>
#include "lp1500.cof"   //1500 Hz coeff lowpass filter
Uint32 fs=DSK6713_AIC23_FREQ_48KHZ; //set sampling rate
#define NUMSAMP 4   //# samples per Symbol
#define MAX_DATA_LENGTH 10  //size of Mod/Demod vector
#define NUM_BITS 8   //number of bits per sample
#define SYNC_INTERVAL 100  //interval between sync bits
short encSeqNum = 8;   //number of encoded bits
short encSymbolVal = 0;   //encoder symbol index
short sin_table[NUMSAMP]={0,1000,0,-1000}; //for carrier
short bits[8];    //holds encoded sample
short sampleBuffer[2000];  //to view sample
short sIndex = 0;    //index sampleBuffer
short syncSequence[8]={1,1,1,-1,1,-1,-1,1};//synchronization sequence
short outval=1;    //bit value to be encoded
short encodeVal = 0;   //filtered input value
int yn = 0;        //init filter's output
short gain=10;    //gain on output
short syncTimer = 0;   //tracks time between syncs
#define LEFT  0    //setup left/right channel
#define RIGHT 1
union {Uint32 uint; short channel[2];} AIC23_data;

interrupt void c_int11()            //interrupt service routine
{
 int i;
 short sample_data;
 sample_data = input_sample();
 yn = fircircfunc(sample_data,h,N); //asm func passing to A4,B4,A6
 if(encSymbolVal >= NUMSAMP)  //increment through waveform
 {
  encSymbolVal = 0;
  encSeqNum++;
 }
 if(encSeqNum == NUM_BITS)  //when all 8 bits sent
 {         //get a new sample
  encSeqNum = 0;
  if(syncTimer++ >= SYNC_INTERVAL)  //determine whether
  {      //to send sync sequence
   syncTimer = 0;
   for(i=0; i<8; i++)   //put sync sequence in bit
      bits[i] = syncSequence[i];
  }
  else
  {      //get the bits
   encodeVal = (short) (yn >> 15);
   for(i=8; i<16; i++)   //encode input sequence
      bits[i-8]=(encodeVal&(1<<i)) ? 1 : -1; //shift
  }
  sampleBuffer[sIndex++] = encodeVal;
  if(sIndex >= 2000)  sIndex = 0;
 }
 outval = (short) bits[encSeqNum];
 AIC23_data.channel[RIGHT]=gain*sin_table[encSymbolVal];//carrier
 AIC23_data.channel[LEFT]=gain*outval*sin_table[encSymbolVal++];//data
 output_sample(AIC23_data.uint);  //output to both channels
}
void main(){
 comm_intr();   while(1); }         //init,infinite loop 

    FIGURE 10.30.     C program for BPSK transmission ( transmitter.c ).  



as input. Verify the successful reception (demodulation) of the transmitted BPSK 
signal, with the receiver output connected to a speaker.   

 See  Example 4.12  for the use of an FIR fi lter function implemented in ASM code. 
For this project,  N    =   8, so that the size of the circular buffer is 512 bytes (a 16 - bit 
value occupies two memory locations). 

 The input is lowpass - fi ltered, decimated, and converted to an 8 - bit stream. The 
bit stream is then modulated as a BPSK signal, and four output samples are gener-
ated for each bit. Each sample of the voice is a 16 - bit integer. Because of sampling 
rate limitations, only the most signifi cant 8 bits are used for transmission. This yields 
a resolution of 256 sample levels for the amplitude of the voice, which results in 
some degradation in the fi delity of the received signal. 

 The procedure is to sample the voice, get the most signifi cant 8 bits, then transmit 
one period of a sine wave for each bit. Each period of a sine wave is constructed 
by outputting to the D/A converter four values of the sine wave. Therefore, for one 
voice sample, 30 output samples are necessary. This is a severe limitation since the 
maximum sampling rate is 96   kHz. The maximum sampling rate of the voice that we 
can implement is then 96   kHz/32, or 3   kHz. 

 The receiver uses eight samples to determine the phase of the phase - locked loop 
component allowing for a 48 - kHz sampling rate by the transmitter. It can be verifi ed 
that the receiver ’ s voice bandwidth is approximately 3   kHz. To reconstruct a byte, 
the receiver must know where the frame starts for each byte. The transmitter peri-
odically sends a synchronization sequence that is 1 byte long. This occurs once every 
100 bytes. 

 To achieve frame synchronization, a synchronization sequence is sent periodically 
by the transmitter. This sequence is 8 bits long and is detected by the receiver by 
correlating the incoming bits with the expected sequence. A trigger variable looks 
over the previously received 8 bits and counts the number of bits that match the 
synchronization sequence. If the trigger variable is equal to 8, then the synchroniza-
tion sequence was detected. With 8 bits in the synchronization sequence, there are 
256 possible values, so that there is a 1/256 possibility that the sequence will occur 
randomly. This is too high a probability, and since we are receiving bits at 12   kHz 
(96   kHz/eight samples per bit), we would expect the sequence to occur randomly 
about 47 times a second (12   kHz/256). To lower this rate, we make sure that succes-
sive synchronization sequences are separated by the expected interval before declar-
ing that the sequence has actually been received. When a correlation is detected, 
the frame index is reset to zero. 

 Since the receiver is reconstructing voice samples at a rate of 64   kHz, it needs to 
interpolate received voice samples to provide the DAC with a sample every time 
the interrupt routine is invoked. The receiver uses Newton ’ s Forward interpolation 
with a third - degree polynomial to interpolate the sample values  [39] . The generic 
expansion follows for points  f  0  through  f n  :

    
p x f u f u u f u u u f

u u
( ) [ ( )/ !] [ ( )( )/ !]

[ (
= + + − + − − +

+ −
0 1 1 2 2 3 31 2 1 2 3∆ ∆ ∆ �

11 2 1)( ) ( )/ !]u u n n fn n− − + +� �∆  

 Phase Shift Keying—BPSK Encoding and Decoding with PLL  467



468  DSP Applications and Student Projects

where  u    =   [( x    −    x i  )/( x i   +1     −     x i  )] and  f i   is the value of the function  f ( n ) at  x i  . To inter-
polate, based on three points, this equation becomes

    p x f u f f u u f f f( ) ( ) [ ( )/ ]( )= + − + − − +0 1 0 2 1 01 2 2   

 Interpolating the output values signifi cantly increases the quality of the output 
voice. 

 Possible improvements include the following: 

  1.     At least a quadrature phase shift keying (QPSK) scheme can be used 
for the transmitter/receiver to allow much higher data rates across the 
channel.  

  2.     Noise can be added to the system to increase the practicality of the project.  

  3.     In addition to a phase estimator, a frequency estimator can be added to 
the receiver. Channels can sometimes introduce frequency distortion into 
a signal, and this would help the correlator to decode the modulated 
sequence.      

  10.11   BINARY PHASE SHIFT KEYING 

 This miniproject implements BPSK (see also Section  10.10 ). Two separate 
boards are used, one to modulate a signal simulating the transmitter component 
and the other to demodulate the received signal, simulating the receiver 
component. 

     Modulation 
 The modulation scheme transmits binary data using the polar nonreturn to zero 
(NRZ),  ± 1   V for the input data. The input is multiplied by a carrier signal with a 
frequency of  f c     =   8   kHz. For input data with values of  ± 1   V, the amplitude of the 
carrier remains the same, but not the phase. An input of +1   V yields a carrier output 
with a zero - phase shift, while an input of  − 1   V yields a carrier output that has been 
shifted by 180 ° . 

 A 100 - Hz square wave with an amplitude of  ± 1   V is chosen as the input data. 
Using a threshold detector at 0   V, it is determined from the input whether the output 
signal carrier is a positive or a negative cosine. An 8 - kHz cosine as the carrier is 
generated using a 4 - point lookup table, sampling at 32   kHz. If the sampled data are 
greater than zero, then the output carrier is the generated cosine multiplied by +1; 
if the sampled data are less than zero, then the output carrier is the generated cosine 
multiplied by  − 1. Whenever the input signal switches from +1 to  − 1, or vice versa, 
the phase of the cosine wave is scaled by 180 ° . This change in phase looks like an 
M or a W on an oscilloscope. Figure  10.31  shows the core of the C source code 



//BPSK_modulate.c Core program for BPSK modulation
. . . 
short cos_table[4] = {1000,0,-1000,0};
interrupt void c_int11()
{
  input_data  = ((short)input_sample());
  if(input_data>0) bpsk_signal = cos_table[i++];
  else bpsk_signal = -1*cos_table[i++];
  output_sample(bpsk_signal);
  if(i > 3) i=0;
}
void main()
{ comm_intr(); while(1); } 

  bpsk_modulate.c   for the modulation scheme. Build the modulation component of 
the project. Verify that the output is an 8 - kHz sinusoidal waveform, which becomes 
the input to the second DSK.    

  Demodulation 
 The second DSK simulates a pozar as a carrier recovery to demodulate the received 
signal. Demodulation can occur regardless of the input phase. The carrier recovery 
scheme is shown in Figure  10.32  and consists of a mixer, a bandpass fi lter centered 
at 16   kHz, a frequency divider by 2, a second mixer, and a lowpass fi lter with a cutoff 
frequency of 4   kHz. The output at each node is (with an input  m ( t )   =    ± 1   V,  f m     =  
 100   Hz):

    Node 1: s t m t f tc( ) ( )cos( )= +2π θ  

    Node 2: m t f t f tc c
2 2 1

2
1
22 2 2( )cos ( ) cos[ ( )]π θ π θ+ = + +  

    Node 3: 1
2 2 2cos[ ( )]π θf tc +  

    FIGURE 10.31.     Core C program for BPSK modulation ( bpsk_modulate.c ).  
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    FIGURE 10.32.     Carrier recovery block diagram for BPSK demodulation.    
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 For the demodulator, the sampling frequency is set at 48   kHz (in lieu of 32   kHz) to 
prevent aliasing and allow for the use of a bandpass fi lter at node 2, since the output 
of the fi rst mixer is at 16   kHz. 

 The signal at node 1 is the output of the modulator: a cosine wave (with an M 
or W) due to any phase shift. At node 2, it is a 16 - kHz signal with a DC   component. 
At node 3, the signal is fi ltered by a 30th order least squares FIR bandpass fi lter 
centered at 16   kHz. The FIR fi lter uses a least squares design with MATLAB ’ s 
SPTool. The 16 - kHz fi ltered signal is downsampled (decimated) to obtain an 8 - kHz 
signal at node 4. The downsampling is achieved by setting every other input value 
to zero. The last stage of demodulation uses a product detector — a combination of 
a mixer and a lowpass fi lter — to recover the original binary input. The mixer multi-
plies the 8 - kHz signal with the original input signal. This yields two signals: one at 
twice the carrier frequency and the other as a DC   component with the original  m ( t ) 
input signal. This signal is then lowpass fi ltered to yield the original binary signal, 
regardless of the input phase. The lowpass fi lter is a 30th order Kaiser FIR fi lter, 
also designed with MATLAB ’ s SPTool. The output at node 6 is then a 100 - Hz square 
wave, the same as the modulator input signal. Figure  10.33  shows the core of the C 
source program   bpsk_demodulate.c   for the demodulator.   

 Verify that the original input signal to the modulator is recovered as the output 
from the demodulator. Experiment with different sampling rates, fi lter characteris-
tics, and carrier frequencies to reduce the occasional output noise.    

  10.12   MODULATION SCHEMES —  PAM  AND  PSK  

 This project implements both pulse amplitude modulation and phase shift keying 
schemes. See also the projects in Sections  10.10  and  10.11 . The fi les for this project 
are included in the folder   modulation_schemes  . 

  10.12.1   Pulse Amplitude Modulation 

 In pulse amplitude modulation (PAM), the amplitude of the pulse conveys the 
information. The information symbols are transmitted at discrete and uniformly 
spaced time intervals. They are mapped to a train of pulses in the form of a carrier 
signal. The amplitude of these pulses represents a one - to - one mapping of the infor-



//BPSK_demodulate.c  Core C program for BPSK demodulation
...
double mixer_out, pd;
interrupt void c_int11()
{
 input_signal=((short)input_sample()/10);
 mixer_out = input_signal*input_signal;
 dly[0] = mixer_out;
 ..
 filter_output = (yn >> 15);    //output of 16 kHz BP filter
 x = 0;                        //init downsampled value
 if (flag == 0)             //discard input sample value
   flag = 1;                  //don't discard at next sampling
 else {
   x = filter_output;         //downsampled value is input value
   flag = 0;
 }
 pd = x * input_signal;        //product detector
 dly2[0] = ((short)pd);          //for 4 kHz LP filter
 ..
 m = (yn2 >> 15);              //output of LP filter
 output_sample(m);
 return;
}
void main()
{ comm_intr(); while(1); } 

mation symbols to the respective levels. For example, in binary PAM, bit 1 is repre-
sented by a pulse with amplitude A and bit 0 by  − A. 

 At the receiver, the information is recovered by obtaining the amplitude of each 
pulse. The pulse amplitudes are then mapped back to the information symbol. Figure 
 10.34  shows the block diagram of a typical PAM system. This is a simplifi ed version 

    FIGURE 10.33.     Core C program for BPSK demodulation ( bpsk_demodulate.c ).    
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    FIGURE 10.34.     PAM system.  
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without the introduction of adaptive equalizers or symbol clock recovery, which 
takes into account the effects of the channel. The incoming bit stream (output of 
the DSK) is parsed into  J  - bit words, with different lengths of parsing, resulting in 
different numbers of levels. For example, there are eight levels when  J    =   3. These 
levels are equidistant from each other on a constellation diagram and symmetric 
around the zero level, as shown in Figure  10.35 . The eight constellation points rep-
resent the levels, with each level coded by a sequence of 3 bits. Tables  10.5 – 10.7  
show the mapping levels.           

010 011 100 101 110 111000 001

d d 

    FIGURE 10.35.     Constellation diagram of an eight - level PAM.  

 TABLE 10.5     Four - Level PAM Lookup Table 
for Mapping 

  Symbol Block    Level (in hex)  

  0000    0x7FFF  
  0101    0x2AAA  
  1010     − 0x2AAB  
  1111     − 0x8000  

 TABLE 10.6     Eight - Level PAM Lookup Table 
for Mapping 

  Symbol Block    Level (in hex)  

  000    0x7FFF  
  001    0x5B6D  
  010    0x36DB  
  011    0x1249  
  100     − 0x1249  
  101     − 0x36DB  
  110     − 0x5B6D  
  111     − 0x7FFF  



Transmitter/Receiver Algorithm 
 An input sample is composed of 16 bits. Depending on the type of PAM, an appro-
priate masking is used. The same transmitter and receiver implementations apply 
to four - level and eight - level PAM with differences in masking, shifting, and lookup 
tables (see Tables  10.5 – 10.7 ). For the 8 - PAM, the LSB of the input sample is dis-
carded so that the remaining number of bits (15) is an integer multiple of 3, which 
does not have a noticeable effect on the modulated waveform and on the recovered 
voice.

 Consider the specifi c case of a 16 - PAM. In order to achieve the desired symbol 
rate, the input sample is decomposed into segments 4 bits long. Each input sample 
is composed of four segments. Parsing the input sample is achieved through the use 
of masking and shifting. The fi rst symbol block is obtained with masking of the four 
least signifi cant bits by  anding  the input sample with 0x000F. The second symbol 
block is obtained through shifting the original input sample by four to the right and 
masking the four LSBs. These steps are repeated until the end of the input sample 
length and produce four symbol blocks. Assume that the input sample is 0xA52E. 
In this case, 1110 (after masking the four LSBs) is mapped to − 0x6EEF, as shown 
in Table  10.7 . Each symbol block is composed of 4 bits mapped into the 16 uniformly 
spaced levels between − 0x8000 and 0x7FFF. The spacing between each level is 
0x1111, selected for uniform spacing. The selected level is then transmitted as a 
square wave. The period of the square wave is achieved by outputting the same level 
many times to ensure a smooth - looking square wave at the output of the 
transmitter.

TABLE 10.7 Sixteen-Level PAM Lookup Table 
for Mapping 

Symbol Block Level (in hex) 

0000 0x7FFF
0001 0x6EEE
0010 0x5DDD
0011 0x4CCC
0100 0x3BBB
0101 0x2AAA
0110 0x1999
0111 0x0888
1000 −0x0889
1001 −0x199A
1010 −0x2AAB
1011 −0x3BBC
1100 −0x4CCD
1101 −0x5DDE
1110 −0x6EEF
1111 −0x8000
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 The receiver is implemented with the assumption that the effects of the channel 
and noise are neglected. As a result, the received sample is composed of individual 
transmitted symbols or levels. Each transmitted symbol is a 4 - bit segment, demodu-
lated by mapping it back to the original sequence of bits. The demodulated symbols 
are then arranged in a buffer in order to reproduce the original transmitted sequence. 
The least signifi cant transmitted segment is placed in the least signifi cant received 
sequence (by adding and shifting). The fi rst segment is shifted by 12 to the left in 
order to place it at the most signifi cant segment, and subsequently shifted by 4 to 
the right. The process is repeated until the four segments are in the right order the 
way they were transmitted. The sample is then sent to the codec, and the original 
waveform is reconstructed.   

10.12.2 Phase Shift Keying 

 Phase shift keying (PSK) is a method of transmitting and receiving digital signals 
in which the phase of a transmitted signal is varied to convey information. Several 
schemes can be used to accomplish PSK, the simplest one being binary PSK (BPSK), 
using only two signal phases: 0 °  and 180 ° . If the phase of the wave is 0 ° , then the 
signal state is low, and if the phase of the wave is 180 °  (if phase reverses), the signal 
state is high ( biphase modulation ). More complex forms of PSK employ four -  or 
eight - wave phases, allowing binary data to be transmitted at a faster rate per phase 
change. In four - phase modulation, the possible phase angles are 0 ° , +90 ° ,  − 90 ° , and 
180 ° ; each phase shift can represent 2 bits per symbol. In eight - phase modulation, 
the possible phase angles are 0 ° , +45 ° ,  − 45 ° , +90 ° ,  − 90 ° , +135 ° ,  − 135 ° , and 180 ° ; each 
phase shift can represent 4 bits per symbol. 

Binary Phase Shift Keying 
 A single data channel modulates the carrier. A single bit transition, 1 to 0 or 0 to 1, 
causes a 180 °  phase shift in the carrier. Thus, the carrier is modulated by the data. 
Detection of a BPSK signal uses the following: (1) a squarer that yields a DC   com-
ponent and a component at 2 fc ; (2) a bandpass fi lter to extract the  fc  component; 
and (3) a frequency divider, the output of which is multiplied by the input. The result 
is lowpass fi ltered to yield a PCM signal.  

Quadrature Phase Shift Keying 
 Quadrature phase shift keying (QPSK) is a modulation scheme in which the phase 
is modulated while the frequency and the amplitude are kept fi xed. There are four 
phases, each of which is separated by 90 ° . These phases are sometimes referred to 
as states  and are represented by a pair of bits. Each pair is represented by a particular 
waveform, called a symbol , to be sent across the channel after modulating the 
carrier. The receiver demodulates the signal and looks at the recovered symbol to 
determine which pair of bits was sent. This requires a unique symbol for each pos-
sible combination of data bits in a pair. Because there are four possible combina-



tions of data bits in a pair, QPSK creates four different symbols, one for each pair, 
by changing an in - phase (I) gain and a quadrature (Q) gain. 

 The QPSK transmitter system uses both sine and cosine at the carrier frequency 
to transmit two separate message signals, sI[n] and sQ[n], referred to as the  in - phase
and quadrature  signals, respectively. Both the in - phase and quadrature signals can 
be recovered, allowing transmission with twice the amount of signal information at 
the same carrier frequency.   

Transmitter/Receiver Algorithm 
 An input sample is obtained and stored in a memory location, which contains 16 
bits. Depending on the type of PSK (two - level or four - level), appropriate masking 
is used. For BPSK, an input value is segmented into sixteen 1 - bit components; for 
QPSK, it is fractioned into 8 dibits. This is achieved by masking the input with the 
appropriate values, 0x0001 and 0x0003, respectively. In order to obtain the next 
segment to be processed, the previous input data is shifted once for BPSK or twice 
for QPSK. 

 Following the extraction of segments, values are assigned to sinusoids with cor-
responding phases. In BPSK, there are only two phases: 0 °  and 180 °  for bits 0 and 
1, respectively. However, for QPSK, we need four phases (0 ° , 90 ° , 180 ° , and 270 ° ) 
corresponding to 00, 01, 11, and 10. This mapping is used in accordance with gray
encoding.  This minimizes the error caused by interference during the transmission 
of the signal by maximizing the distance between symbols with the most different 
bits on the constellation diagram. Each input sample is represented with 16 bits. 
Every sampled data contains 16 segments for BPSK, and 8 segments for QPSK. 
Since each symbol is transmitted by a sinusoid generated digitally by four points, 
an input sample is acquired every 64 and 32 output samples for BPSK and QPSK, 
respectively.

 At the PSK receiver, each sinusoid is mapped into the corresponding symbols 
composed of 1 bit for BPSK or 2 bits for QPSK. The extracted symbols are then 
aligned in the newly constructed 16 - bit value by appropriate left shifts. The sample 
is then sent to the codec, and the original waveform is regenerated.  

Implementation Results 
 The necessary fi les are in the folder  modulation_schemes . The C source fi le 
modulation_scheme.c  contains all the schemes for both modulation and demodu-
lation, and a gel  fi le to select the specifi c case. The 10 cases implement the 4 - , 8 - , and 
16 - PAM, BPSK, and QPSK for both modulation and demodulation. For example, 
the slider in positions 1 and 2 implements the 4 - PAM scheme for modulation and 
demodulation, respectively.  

PAM
 Three PAM modulation and demodulation schemes are implemented, based on a 
lookup table and level assignment. The demodulation process is designed on the 
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same DSK, with the output of the modulator fed into the input of the demodulator. 
The modulation output for each PAM scheme is obtained using a 1.3 - kHz sinusoid 
as input, with the output to a scope. For the 4 - PAM scheme, the output is shown in 
Figure  10.36 a. The four levels are labeled to indicate the modulation process. The 
2 ’ s complement format of the codec reverses the negative and positive values. For 
example, − 0x8000 is shown as the most positive value. Figure  10.36 b shows the 
modulation levels for the 8 - PAM output with the same sinusoidal input. Figure 
 10.36 c shows the output of the 16 - PAM modulator, where 12 of the 16 levels are 
present. This describes the effect of increasing the number of levels. The spacing 
between levels is smaller than in the other two PAM schemes. The higher the 
number of levels, the harder it is to distinguish and demodulate the signal.    

BPSK
 The waveforms generated from the BPSK modulator are sinusoids phase - shifted by 
180 ° . Figure  10.37  shows the BPSK modulator output. When the sinusoid has a 0 °  
phase shift, it represents a binary 0, and when it is shifted by 180 ° , it represents a 
binary 1. Using the lookup table, the symbol is demodulated into  “ 0 ”  or  “ 1. ”  When 
similar symbols follow each other, the waveform is continuous; when different 
symbols follow each other, the waveform shows an abrupt shift at that point.    

QPSK
 The output of the QPSK modulator is shown in Figure  10.38 . The major drawback 
of the QPSK implementation on the DSK concerns interpolation. Since the phases 
are 90 °  phase - shifted with respect to each other, the waveforms are not continuous. 
As a result, when one waveform ends with a 0 and the other starts with a 0, there 
is a slight perturbation (in the case of 01 followed by 00 in Figure  10.38 ). The narrow 
spacings are transitions created by the interpolation fi lter. Note that 01 has a 180 °  
phase shift with respect to 10, and 00 is 90 °  out of phase with both of them.   

 Modulation and demodulation for each scheme were also tested using recorded 
speech as input. The quality of the output voice indicates a successful demodulator 
(with the output of the modulator as input to the demodulator).  

Implementation Issues 
 Each input sample was parsed into four levels. Each level was sent to the output of 
the codec 12 times (for an acceptable square wave). As a result, for each input 
sample there are 48 output samples (4    ×    12). The output sample rate is 48 times the 
input sample rate (using downsampling). For the PSK cases, the output waveform 
is a four - sample sinusoid with different phases. Each input sample is parsed into 
symbols, and each symbol is sent to the output of the codec four times. For BPSK, 
the symbol is 1 bit with an output - to - input ratio of 64 (4    ×    16), and for QPSK, the 
symbol consists of 2 bits with a ratio of 32 (4    ×    8). 

 For the PAM cases, a square wave pulse was chosen and implemented by output-
ting the level 12 times. For BPSK and QPSK, the output was a sinusoid composed 



(a)

(b)

      FIGURE 10.36.     PAM output obtained with a scope: (a) 4 - level, (b) 8 - level, and 
(c) 16 - level.  
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(c)

FIGURE 10.36. (Continued)

    FIGURE 10.37.     BPSK modulator output obtained with a scope.  



of four output samples with different phases (to represent the sinusoid appropri-
ately). It is more effi cient than the PAM case. 

 Transmitting from one DSK and receiving from another DSK involves synchro-
nization issues that require symbol clock recovery and an adaptive equalizer (using 
a PLL).    

  10.13   SELECTABLE  IIR  FILTER AND SCRAMBLING SCHEME USING 
ONBOARD SWITCHES 

 This miniproject implements one of several IIR fi lters using the onboard DIP 
switches to select a specifi c fi lter type. Furthermore, one of the switch options imple-
ments a scrambling scheme with voice as input. With the DSK output of the voice 
scrambler as the input to a second DSK to unscramble, the original voice signal can 
be recovered. 

 Four 10th order IIR Butterworth fi lters of varying bandwidths are designed using 
MATLAB as described in Appendix  D  (utilized for FIR and IIR fi lter designs in 
Chapters  4  and  5 ). Table  10.8  shows the assignments of the DIP switches and the 
corresponding implementations. A  “ 1 ”  represents a switch in the up position, while 
a  “ 0 ”  represents a switch in the down or pressed position. For example, the switch 
combinations of  “ 0011 ”  (binary 3) and 0101 (binary 5) select a 3 - kHz lowpass IIR 
fi lter and a voice scrambling scheme, respectively, for implementation.   

    FIGURE 10.38.     QPSK modulator output obtained with a scope.  
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TABLE 10.8 Dip Switch Assignments and 
Corresponding Implementations 

Dip Switch 
Combination Type fc or Bandwidth 

0000 Original signal N/A
0001 Lowpass 2kHz
0010 Highpass 2kHz
0011 Lowpass 3kHz
0100 Bandpass 1.5–3kHz
0101 Voice scrambler N/A
0110–1111 No output N/A

 Figure  10.39  shows the core of the C source program  IIR_ctrl.c  that imple-
ments the four IIR fi lters as well as the scrambling scheme. The code section of the 
program that implements the four IIR fi lters can be found in the program example 
IIR.c  in Chapter  5 . The complete code section for the scrambling scheme is included 
in IIR_ctrl.c . From Figure  10.39 , if  DIP_Mask  is 3 or 5, a 3 - kHz IIR lowpass fi lter 
or a voice - scrambling scheme is selected and implemented.   

Scrambling/Unscrambling
 By setting the sample rate to 16   kHz and taking every other input sample in the 
voice scrambler scheme, input samples are effectively acquired at 8   kHz and output 
samples intermittently at 16   kHz. The input samples are stored in a buffer. The 
samples from the buffer are output in quick bursts, independently of the input. 
When it is nearly full, the buffer is emptied by outputting a sample every sampling 
period. The buffer is then refi lled and the process is repeated. This results in an 
output that sounds as if the signal frequency had doubled. Table  10.9  illustrates the 
input and output scheme for a buffer size of 4. This is neither an upsampling (inter-
polating) nor a downsampling (decimating) scheme, since no data are added or 
ignored by the program. After period 8, the buffer is emptied and the cycle restarts 
at period 1. For a buffer size of 4, there is no pronounced difference between the 
input and output voice signals. However, for a buffer size of 512 or greater, the 
output voice signal is quite unrecognizable.   

 The scrambled output signal can be recovered. The complete unscrambling C 
source program IIR_recov.c  is on the CD. The output of the voice scrambler 
becomes the input to the second DSK running the program IIR_recov.c . (Chapter 
 4  includes an example using modulation and FIR fi ltering to scramble and unscram-
ble a voice signal.) The unscrambling program assumes that DIP_Mask  is equal to 5 
in the scrambler program. The buffer size of 512 used by the scrambler must be 
known in order to recover the original input voice signal. The samples are lowpass 
fi ltered by 4   kHz in order to reduce some high frequency noise incurred with the 
scrambling process before being outputted. There is still a small amount of high 



//IIR_ctrl.c Selectable IIR filter with scrambling option using DIP SW
. . .
short DIP_Mask = 20;   //any DIP SW value except 0-15
short BUFFER_SIZE = 512;  //size of buffer
short buffer[512];   //buffer for voice scrambler
short index=0,input_index=0,output_index=0;//index for sample #,buffer
interrupt void c_int11()
{
 short i, input;
 int un, yn;
 input = (short)input_sample(); //external input
 if (DIP_Mask == 0) {   //output = input (no filtering)
  {. . . yn=input; }   //like a loop program
 }else if (DIP_Mask == 1) {  //2kHz filter if DIP=1
   for(i=0;i<stages;i++) {un=input-... yn=...update delays- See IIR.c}
   ...
   }else if (DIP_Mask == 2) {...   //...for other filters
    }
    else if (DIP_Mask == 5){    //for voice scrambler
    if((index % 2) == 0) {    //every other sample
     buffer[input_index++] = input;   //input sample->buffer
     if(input_index==BUFFER_SIZE) {input_index=0;} //reset when full
    }
   if (index >= BUFFER_SIZE) { //if buffer is at least half full
     yn = buffer[output_index++];      //output next value
     if(output_index==BUFFER_SIZE) {output_index=0;} //reset if at end
   }
   index++;      //incr overall sample index
   if(index>=(BUFFER_SIZE*2)) {index=0; } //reinit sample index if end
 }else { yn = 0; }    //no output if other DIP #
 output_sample((short)(yn));    // output
 return;
}
void main()
{
  comm_intr();
  while(1) {
   short newMask = 0;
   newMask += DSK6713_DIP_get(3) * 1;
   newMask += DSK6713_DIP_get(2) * 2;
   newMask += DSK6713_DIP_get(1) * 4;
   newMask += DSK6713_DIP_get(0) * 8; //hex value of DIP switch
   if (DIP_Mask != newMask) {   //wait for change
    DIP_Mask = newMask;    //load DIP switch value
    if (DIP_Mask == 5) {
        DSK6713_LED_on(3);
        DSK6713_LED_off(2);
        DSK6713_LED_on(1);
        DSK6713_LED_off(0);
    } else if (DIP_Mask == 4) { ...  //for other SWs
      }      //and all LEDs off
   }       //end of 1

st
 if

 }               //end of while(1)
}         //end of main 

    FIGURE 10.39.     Core C program to select and implement IIR fi lters using the onboard 
switches with an optical scrambling scheme.  
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    FIGURE 10.40.     Hard - decision decoding setup.  

 TABLE 10.9     Input and Output Scheme for Voice Scrambler 

      Period 1    Period 2    Period 3    Period 4    Period 5    Period 6    Period 7    Period 8  

  Input    Sample 1    X    Sample 2    X    Sample 3    X    Sample 4    X  
  Output    X    X    X    X    Sample 1    Sample 2    Sample 3    Sample 4  

frequency noise in the output. Note that the scrambling scheme uses bit manipula-
tion that requires no external synchronization between the scrambling transmitter 
and the unscrambling receiver. 

 The (complete) executable fi le for the IIR and scrambling implementations is on 
the CD as  minimicro.out , and the unscrambling executable fi le is on the CD as 
 minimicrob.out . These executable fi les can be used fi rst to test the different imple-
mentations for IIR fi ltering and the scrambling/unscrambling scheme. The appropri-
ate support fi les are included in the folder   IIR_ctrl  . 

 DIP switch values 6 to 15 yield no output and can be used for expanding this 
project to implement additional IIR or FIR fi lters and/or another scrambling scheme. 
RTDX can be used to pass the designed coeffi cients (see the FIR project incorpo-
rating RTDX and Chapter  9 ).    

  10.14   CONVOLUTIONAL ENCODING AND VITERBI DECODING 

 Channel coding schemes widely used in communication systems mostly consist of 
the convolutional encoding and Viterbi decoding algorithms to reduce the bit errors 
on noisy channels. This project implements a 3 - output, 1 - input, 2 - shift register (3,1,2) 
convolutional encoder used for channel encoding and a channel decoder employing 
soft decision and basic Viterbi decoding techniques. 

     Soft Decision and Basic Viterbi Decoding 
 The system setups are used for soft decision and Viterbi decoding techniques. In 
Figures  10.40  and  10.41 , the channel encoder represents a (3,1,2) convolutional 
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Noise 

CHANNEL 
ENCODER 

BPSK
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Output
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    FIGURE 10.41.     Soft decision decoding setup.  
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encoding algorithm, and the channel decoder represents the Viterbi decoding 
algorithm.     

 In the Viterbi decoding setup shown in Figure  10.40 , a cosine signal is the input 
to the channel encoder algorithm. The encoded output is stored in a buffer. The 
elements of this buffer provide the input to the channel decoder algorithm that 
decodes it and returns the original cosine signal. Both the encoder and decoder 
outputs are displayed within CCS. 

 In the soft decision decoding setup shown in Figure  10.41 , a cosine signal is given 
as input to the channel encoder algorithm. The binary output of the channel encoder 
is modulated using the BPSK technique, whereby the 0 output of the channel 
encoder is translated into  − 1 and the 1 output is translated into +1. Additive white 
Gaussian noise (AWGN) is generated and added to the modulated output. The 
signal that is corrupted by the additive noise is fed to the channel decoder. Both 
the encoder and decoder outputs are displayed within CCS. The variance of AWGN 
is varied, and the decoder ’ s performance is observed.  

  (3,1,2) Convolutional Encoder 
 Convolutional coding provides error correction capability by adding redundancy 
bits to the information bits. The convolutional encoding is usually implemented by 
the shift register method and associated combinatorial logic that performs modulo -
 two addition, an XOR operation. A block diagram of the implemented (3,1,2) con-
volutional encoder is shown in Figure  10.42 , where  u  is the input,  v (1),  v (2),  v (3) are 
the outputs, and A, B are the shift registers. The outputs are

    v u( )1 =  

    v u b( )2 = ⊕  

    v u a b( )3 = ⊕ ⊕  

where  a  and  b  are the contents of the shift registers A and B, respectively. Initially 
the contents of the shift registers are 0 ’ s. The shift registers go through four different 

    FIGURE 10.42.     A (3,1,2) convolutional encoder.  
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states, depending on the input (0 or 1) received. Once all the input bits are processed, 
the contents of the shift registers are again reset to zero by feeding two 0 ’ s (since 
we have two shift registers) at the input.    

  State Diagram 
 The basic state diagram of the encoder is shown in Figure  10.43 , where  S  0 ,  S  1 ,  S  2 , 
and  S  3  represent the different states of the shift registers. Furthermore,  m/xyz  indi-
cates that on receiving an input bit  m , the output of the encoder is  xyz ; that is, if 
 u   =   m = >  v (1)   =    x, v (2)   =    y, v (3)   =    z  for that particular state of shift registers A and 
B. The arrows indicate the state changes on receiving the inputs.    

  Trellis Diagram 
 The corresponding trellis diagram for the state diagram is shown in Figure  10.44 . 
The four possible states of the encoder are shown as four rows of horizontal dots. 
There is one column of four dots for the initial state of the encoder and one for 
each time instant during the message. The solid lines connecting the dots in the 
diagram represent state transitions when the input bit is a 0. The dotted lines rep-
resent transitions when the input bit is a 1. For this encoding scheme, each encoding 
state at time  n  is linked to two states at time  n    +   1. The Viterbi algorithm is used 
for decoding the trellis - coded information bits by expanding the trellis over the 
received symbols. The Viterbi algorithm reduces the computational load by taking 
advantage of the special structure of the trellis codes.    

  Modulation and  AWGN  for Soft Decision 
 In the soft decision decoding setup, the 1/0 output of the convolutional encoder 
is mapped into an antipodal baseband signaling scheme (BPSK) by translating 
0 ’ s to  − 1 ’ s and 1 ’ s to +1 ’ s. This can be accomplished by performing the operation 

    FIGURE 10.43.     State diagram for encoding.  



 y    =   2 x     −    1 on each convolutional encoder output symbol, where  x  is the encoder 
output symbol and  y  is the output of the BPSK modulator. 

 AWGN is added to this modulated signal to create the effect of channel noise. 
AWGN is a noise whose voltage distribution over time has characteristics that can 
be described using a Gaussian distribution, that is, a bell curve. This voltage distribu-
tion has zero mean and a standard deviation that is a function of the SNR of the 
received signal. The standard deviation of this noise can be varied to obtain signals 
with different SNRs at the decoder input. 

 A zero - mean Gaussian noise with standard deviation   s   can be generated as 
follows. In order to obtain Gaussian random numbers, we take advantage of the 
relationships between uniform, Rayleigh, and Gaussian distributions. C only pro-
vides a uniform random number generator,   rand( )  . Given a uniform random 
variable  U , a Rayleigh random variable  R  can be obtained using

    R U U= − = −2 1 1 2 1 12σ σln( /( )) ln( /( ))  

where   s   2  is the variance of the Rayleigh random variable. Given  R  and a second 
uniform random variable  V , a Gaussian random variable  G  can be obtained using

    G R V= cos    

  Viterbi Decoding Algorithm 
 The Viterbi decoding algorithm uses the trellis diagram to perform the decoding. 
The basic cycle repeated by the algorithm at each stage into the trellis is: 

  1.      Add : At each cycle of decoding, the branch metrics enumerating from the 
nodes (states) of the previous stage are computed. These branch metrics are 
added to the previously accumulated and saved path metrics.  

    FIGURE 10.44.     Trellis diagram for encoding.  

000 000 000 000 000

011011011
111 111 111 111

111

100100100

001 001 001 001

110

010

110

010

110110

010

101 101 101 

 Convolutional Encoding and Viterbi Decoding  485



486 DSP Applications and Student Projects

2.      Compare : The path metrics leading to each of the encoder ’ s states are 
compared.

3.      Select : The highest - likelihood path (survivor) leading to each of the encoder ’ s 
states is selected, and the lower - likelihood paths are discarded.    

 A metric is a measure of the  “ distance ”  between what is received and all of the possi-
ble channel symbols that could have been received. The metrics for the soft decision 
and the basic Viterbi decoding techniques are computed using different methods. For 
basic Viterbi decoding, the metric used is the Hamming distance, which specifi es the 
number of bits by which two symbols differ. For the soft decision technique, the metric 
used is the Euclidean distance between the signal points in a signal constellation. 
More details of the decoding algorithm are presented elsewhere  [40, 41] .  

Implementation
 Build this project as  viterbi . The complete C source program and the executable 
(.out ) fi les are included on the CD in the folder  Viterbi . Several functions are 
included in the program to perform convolutional encoding and BPSK modulation, 
add white Gaussian noise, and implement the Viterbi decoding algorithm (the more 
extensive function). 

 The following time - domain graphs can be viewed within CCS — input, encoder 
output, and decoder output — using the addresses  input, enc_output , and  dec_output , 
respectively. For the graphs, use an acquisition buffer size of 128, a sampling fre-
quency of 8000, a 16 - bit signed integer for both input and decoder output, and a 
32 - bit fl oat for the encoder output. 

 Three gel fi les are used (included on the CD): 

1.      Input.gel:  to select one of the following three input signals:  cos666  (default), 
cos666    +    cos1500 , and  cos666    +    cos2200 , where 666 represents a 666 - Hz 
cosine.

2.      Technique.gel:  to select between soft decision and basic Viterbi decoding.  

3.      Noise.gel:  to select a suitable standard deviation for AWGN. One of fi ve 
different values (0, 0.3, 0.4, 2.0, 3.0) of the standard deviation of the AWGN 
can be selected.     

Results
 The following results are obtained: 

Case 1:    input   =   cosine 666   Hz, using soft decision  

Case 2:    input   =   cosine 666   Hz, standard deviation  s    =   0.4  

Case 3:    input   =   cosine 666   Hz, standard deviation  s    =   3.0  

Case 4:    input   =   cosine (666   +   1500) Hz, using basic Viterbi decoding (noise 
level 0)    



 With the default settings, the encoded output will appear between the +1 and  − 1 
voltage levels, as shown in Figure  10.45 a. The output of the Viterbi decoder is shown 
in Figure  10.45 b. With an increase in the noise level, slight variations will be observed 
around the +1 and  − 1 voltage levels at the encoder output. These variations will 
increase with an increase in noise level. It can be observed from the decoder outputs 
that it is able to recover the original cosine signal. With the noise level set at 0, 0.3, 
or 0.4 using the  noise.gel  slider, the decoder is still able to recover the original cosine 
signal, even though there is some degradation in the corresponding encoder output, 
as shown in Figure  10.46 . With further increase in the noise level with   s     =   3.0, the 
decoder output is degraded, as shown in Figure  10.47 .       

 Figure  10.48  illustrates case 4 using cosine (666   +   1500) as input. With the  tech-
nique.gel  slider selected for Viterbi decoding, the encoder output appears between 
the 0 and 1 voltage levels, as shown in Figure  10.48 b, since the input is of plain binary 
form. The decoded output is the restored input cosine signal shown in Figure  10.48 c. 
There is no additive noise added in this case.   

 This project can be extended for real - time input and output signals.  

  Illustration of the Viterbi Decoding Algorithm 
 Much of the material introduced here can be found in Ref. 41. To illustrate the 
Viterbi decoding algorithm, consider the basic Viterbi symbol inputs. Each time a 

(a)

(b)

    FIGURE 10.45.     CCS plots of output using case 1: (a) convolutional encoder varying between 
+1/ − 1 and (b) Viterbi decoder.  
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(a)

(b)

    FIGURE 10.46.     CCS plots of output using case 2: (a) convolutional encoder with AWGN 
(  s     =   0.4) and (b) Viterbi decoder.  

(a)

(b)

    FIGURE 10.47.     CCS plots of output using case 3: (a) convolutional encoder with AWGN 
(  s     =   0.3) and (b) Viterbi decoder.  



(a)

(b)

(c)

    FIGURE 10.48.     CCS plots using case 4: (a) input to convolutional encoder; (b) output from 
convolutional encoder (between 0 and 1); and (c) output from a Viterbi decoder.  

triad of channel symbols is received, a metric is computed to measure the  “ distance ”  
between what is received and all of the possible channel symbol triads that could 
have been received. Going from  t    =   0 to  t    =   1, there are only two possible channel 
symbol triads that could have been received: 000 and 111. This is because the con-
volutional encoder was initialized to the all - 0 ’ s state, and given one input bit   =   1 or 
0, there are only two states to transition to and two possible outputs of the encoder: 
000 and 111. 

 The metric used is the Hamming distance between the received channel symbol 
triad and the possible channel symbol triad. The Hamming distance is computed 
by simply counting how many bits are different between the received channel 
symbol triad and the possible channel symbol triad. The results can only be zero, 
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one, two, or three. The Hamming distance (or other metric) values computed at 
each time instant, for the paths between the states at the previous time instant and 
the states at the current time instant, are called branch metrics . For the fi rst time 
instant, these results are saved as accumulated error metric  values associated 
with states. From the second time instant on, the accumulated error metrics are 
computed by adding the previous accumulated error metrics to the current branch 
metrics.

 Consider that at  t    =   1, 000 is received at the input of the decoder.. The only pos-
sible channel symbol triads that could have been received are 000 and 111. The 
Hamming distance between 000 and 000 is zero. The Hamming distance between 
000 and 111 is three. Therefore, the branch metric value for the branch from State 
00 to State 00 is zero, and for the branch from State 00 to State 10 it is two. Since 
the previous accumulated error metric values are equal to zero, the accumulated 
metric values for State 00 and for State 10 are equal to the branch metric values. 
The accumulated error metric values for the other two states are undefi ned (in the 
program, this undefi ned value is initialized to be the maximum value for integer). 
The path history table is updated for every time instant. This table, which has an 
entry for each state, stores the surviving path for that state at each time instant. 
These results at t    =   1 are shown in Figure  10.49 a.   

 Consider that at  t    =   2, 110 is received at the input of the decoder. The possible 
channel symbol triads that could have been received in going from t    =   1 to  t    =   2 are 
000 going from State 00 to State 00, 111 going from State 00 to State 10, 001 going 
from State 10 to State 01, and 110 going from State 10 to State 11. The Hamming 
distance is two between 000 and 110, one between 111 and 110, three between 001 
and 110, and zero between 110 and 110. These branch metric values are added to 
the previous accumulated error metric values associated with each state that we 
came from to get to the current states. At t    =   1, we can only be at State 00 or State 
10. The accumulated error metric values associated with those states were 0 and 2, 
respectively. The calculation of the accumulated error metric associated with each 
state at t    =   2 is shown in Figure  10.49 b. 

 Consider that at  t    =   3, 010 is received. There are now two different ways that 
we can get from each of the four states that were valid at t    =   2 to the four states 
that are valid at t    =   3. To handle that, we compare the accumulated error metrics 
associated with each branch and discard the larger one of each pair of branches 
leading into a given state. If the members of a pair of accumulated error metrics 
going into a particular state are equal, that value is saved. The operation of 
adding the previously accumulated error metrics to the new branch metrics, com-
paring the results, and selecting the smaller accumulated error metric to be 
retained for the next time instant is called the add - compare - select  operation. The 
path history for a state is also updated by selecting the path corresponding to the 
smallest path metric for that state. This can be found by adding the current 
selected path transition to the path history of its previous state. The result for t    =  
 3 follows. 
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    FIGURE 10.49.     Trellis diagrams to illustrate Viterbi decoding: (a)  t    =   1; (b)  t    =   2; and 
(c)  t    =   3.  
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 At  t    =   3, the decoder has reached its steady state; that is, it is possible to 
have eight possible state transitions. For every other time instant from now on, 
the same process gets repeated until the end of input is reached. The last two 
inputs that are received in a Viterbi decoder are also considered special cases. At 
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the convolutional encoder, when the end of input is reached, we input two trailing 
zeros in order to reset the shift register states to zero. As a consequence of this, in 
a Viterbi decoder, in the last but one time instant, the only possible states in the 
Viterbi decoder are State 00 and State 01. Therefore, the expected inputs are 000, 
011, 001, and 010. And for the last time instant, the only possible state is 00. There-
fore, the expected inputs are only 000 and 011. This case is illustrated in Figure 
 10.49 c. 

 In the program, it is assumed that the decoder has a memory of only 16, meaning 
that at any one time, the path history can store only 16 paths. As soon as the fi rst 
16 channel symbol triads are read, the path history becomes full. The path history 
in this source code is an array named  path_history . Each variable of this array 
maintains the path history for a particular state, with each bit in the variable 
storing a selected path with the rightmost bit storing the most recent path. There-
fore, before processing the 17th channel symbol triad, the minimum branch metric 
state is found, and the leftmost bit in the path history of this state is output into a 
variable  dec_output . For every other time instant afterward, this process is repeated 
and the leftmost bit of the selected  path_history  variable is output to  dec_output . 
On completing the decoding algorithm,  dec_output  contains the desired decoder 
output. 

 A variable named  output_table  lists the output symbols for every input at a par-
ticular state, as shown in the following table:

  Current State  

  Output Symbols If:  

  Input   =   0    Input   =   1  

  00    000    111  
  01    011    100  
  10    001    110  
  11    010    101  

 The soft decision Viterbi algorithm functions in a similar fashion, except that the 
metric is computed in a different way. The metric is specifi ed using the Euclidean 
distance between the signal points in a signal constellation. In the soft decision 
algorithm, the output of the encoder is sent in the form of BPSK - modulated symbols, 
that is, 0 is sent as  − 1 and 1 is sent as +1. Before this distance is found, BPSK modu-
lation is performed on the possible channel symbol triad. Assume that a channel 
symbol triad containing { a 1,  a 2,  a 3} is received, and the expected input channel 
symbol triad is 001. After BPSK modulation, it can be written as { b 1,  b 2,  b 3}, where 
 b 1   =    − 1,  b 2   =    − 1, and  b 3   =   +1. Then, the distance between these two channel symbols 
is found using

    distance ( )= − + − + −abs b a abs b a abs b a1 1 2 2 3 3( ) ( )      



10.15 SPEECH SYNTHESIS USING LINEAR PREDICTION OF 
SPEECH SIGNALS 

 Speech synthesis is based on the reproduction of human intelligible speech through 
artifi cial means  [42 – 45] . Examples of speech synthesis technology include  text - 
to - speech  systems. The creation of synthetic speech covers a range of processes; and 
even though they are often lumped under the general term text - to - speech , a lot of 
work has been done to generate speech from sequences of the speech sounds. 
This would be a speech - sound (phoneme) to audio waveform synthesis, rather than 
going from text to phonemes (speech sounds) and then to sound. One of the fi rst 
practical applications of speech synthesis was a speaking clock. It used optical storage 
for phrases and words (noun, verb, etc.), concatenated to form complete sentences. 
This led to a series of innovative products such as vocoders, speech toys, and so on. 
Advances in the understanding of the speech production mechanism in humans, 
coupled with similar advances in DSP, have had an impact on speech synthesis tech-
niques. Perhaps the most singular factors that started a new era in this fi eld were the 
computer processing and storage technologies. While speech and language were 
already important parts of daily life before the invention of the computer, the equip-
ment and technology that developed over the last several years have made it possible 
to produce machines that speak, read, and even carry out dialogs. A number of 
vendors provide both recognition and speech technology. Some of the latest applica-
tions of speech synthesis are in cellular phones, security networks, and robotics. 

 There are different methods of speech synthesis based on the source. In a text -
 to - speech system, the source is a text string of characters read by the program to 
generate voice. Another approach is to associate intelligence in the program so that 
it can generate voice without external excitation. One of the earliest techniques was 
Formant synthesis . This method was limited in its ability to represent voice with high 
fi delity due to its inherent drawback of representing phonemes by three frequencies. 
This method and several analog technologies that followed were replaced by digital 
methods. Some early digital technologies were RELP (residue excited) and VELP 
(voice excited). These were replaced by new technologies, such as LPC (linear pre-
dictive coding), CELP (code excited), and PSOLA (pitch synchronous overlap - add). 
These technologies have been used extensively to generate artifi cial voice. 

Linear Predictive Coding 
 Most methods that are used for analyzing speech start by transforming acoustic data 
into spectral form by performing short time Fourier analysis of the speech wave. 
Although this type of spectral analysis is a well - known technique for studying 
signals, its application to speech signal suffers from limitations due to the nonsta-
tionary and quasiperiodic properties of the speech wave. As a result, methods based 
on spectral analysis often do not provide a suffi ciently accurate description of 
speech articulation. Linear predictive coding (LPC) represents the speech wave-
form directly in terms of time - varying parameters related to the transfer function 
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of the vocal tract and the characteristics of the source function. It uses the knowl-
edge that any speech can be represented by certain types of parametric information, 
including the fi lter coeffi cients (that model the vocal tract) and the excitation signal 
(that maps the source signals). The implementation of LPC reduces to the calcula-
tion of the fi lter coeffi cients and excitation signals, making it suitable for digital 
implementation. 

 Speech sounds are produced as a result of acoustical excitation of the human 
vocal tract. During production of the voiced sounds, the vocal chord is excited by a 
series of nearly periodic pulses generated by the vocal cords. In unvoiced sounds, 
excitation is provided by the air passing turbulently through constrictions in the 
tract. A simple model of the vocal tract is a discrete time - varying linear fi lter. Figure 
 10.50  is a diagram of the LPC speech synthesis. To reproduce the voice signal, the 
following are required: 

  1.     An excitation signal  

  2.     The LPC fi lter coeffi cients      

 The excitation mechanism can be approximated using a residual signal generator 
(for voiced signals) or a white Gaussian noise generator (for unvoiced signals) with 
adjustable amplitudes and periods. The linear predictor  P , a transversal fi lter with 
 p  delays of one sample interval each, forms a weighted sum of past samples as the 
input of the predictor. The output of the predictor at the  n th sampling instant is 
given by

    s a sn k m n
k

p

= ⋅ +
=

∑ ( ) δ
1

 

where  m   =   n    −    k  and   d  n   represents the  n th excitation sample.  

  Implementation 
 The input to the program is a sampled array of input speech using an 8 - kHz sam-
pling rate. The samples are stored in a header fi le. The length of the input speech 

    FIGURE 10.50.     Diagram of the speech synthesis process.  



array is 10,000 samples, translating into approximately 1.25 seconds of speech. The 
input array is segmented into a large number of frames, each 80   B long with an 
overlap of 40   B for each frame. Each frame is then passed to the following modules: 
windowing, autocorrelation, LPC, residual, IIR, and accumulate. External memory 
is utilized. A block diagram of the LPC speech synthesis algorithm with the various 
modules is shown in Figure  10.51 . 

  1.      Segmentation .   This module separates the input voice into overlapping seg-
ments. The length of the segment is such that the speech segment appears 
stationary as well as quasiperiodic. The overlap provides a smooth transition 
between consecutive speech frames.  

  2.      Windowing .   The speech waveform is decomposed into smaller frames 
using the Hamming window. This suppresses the sidelobes in the frequency 
domain.  

  3.      Levinson – Durbin algorithm .   To calculate the LPC coeffi cients, the auto-
correlation matrix of the speech frame is required. From this matrix, the LPC 
coeffi cients can be obtained using

    r i a r i kk
k

p

( ) = ⋅ −( )
=

∑
1

 

where  r ( i ) and  ak  represent the autocorrelation array and the coeffi cients, 
respectively.  

  4.      Residual signal .   For synthesis of the artifi cial voice, the excitation is given by 
the residual signal, which is obtained by passing the input speech frame 
through an FIR fi lter. It serves as an excitation signal for both voiced and 
unvoiced signals. This limits the algorithm due to the energy and frequency 
calculations required for making decisions about voiced/unvoiced excitation 
since, even for an unvoiced excitation that has a random signal as its source, 
the same principle of residue signal can still be used. This is because, in 
the case of unvoiced excitation, even the residue signal obtained will be 
random.  

    FIGURE 10.51.     Speech synthesis algorithm with various modules.  
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5.      Speech synthesis . With the representation of the speech frame in the form of 
the LPC fi lter coeffi cients and the excitation signal, speech can be synthesized. 
This is done by passing the excitation signal (the residual signal) through an 
IIR fi lter. The residual signal generation and the speech synthesis modules 
imitate the vocal chord and the vocal tract of the speech production system 
in humans.  

6.      Accumulation and buffering . Since speech is segmented at the beginning, the 
synthesized voice needs to be concatenated. This is performed by the accumu-
lation and buffering module.  

7.      Output . When the entire synthesized speech segment is obtained, it is played. 
During playback, the data are downsampled to 4   kHz to restore the intelligibil-
ity of the speech.       

Implementation
 The complete support fi les are on the CD in the folder  speech_syn . Generate a 
.wav  fi le of the speech sample to be synthesized. For example, include  goaway.wav
in the MATLAB fi le  input_read.m . The MATLAB fi le samples it for 8   kHz and 
stores the input samples array in the header fi le  input.h . Include this generated 
header fi le in the main C source program  speech.c . Build this project as  speech_
syn . Run the MATLAB program  input_read.m  to generate the two header fi les 
input.h  (containing the input samples) and  hamming.h  (for the Hamming coeffi -
cients). Load/run speech_syn.out  and verify the synthesized speech  “ go away ”  
from a speaker connected to the DSK output. Three other .wav  fi les are included 
in the folder and can be tested readily.  

Results
 Speech is synthesized for the following:  “ Go away, ”   “ Hello, professor, ”   “ Good 
evening, ”  and  “ Vacation. ”  The synthesized output voice is found to have consider-
able fi delity to the original speech. The voice/unvoiced speech phonemes are repro-
duced with considerable accuracy. This project can be improved with a larger buffer 
size for the samples and noise suppression fi lters. There is noise after each time the 
sentence is played. A speech recognition algorithm can be implemented in conjunc-
tion with the speech synthesis to facilitate a dialog.    

10.16 AUTOMATIC SPEAKER RECOGNITION 

 This project implements an automatic speaker recognition system  [46 – 50] .  Speaker
recognition  refers to the concept of recognizing a speaker by his/her voice or speech 
samples. This is different from speech recognition. In automatic speaker recognition, 
an algorithm generates a hypothesis concerning the speaker ’ s identity or authentic-
ity. The speaker ’ s voice can be used for ID and to gain access to services such as 
banking, voice mail, and so on. 



 Speaker recognition systems contain two main modules:  feature extraction  and 
 classifi cation . 

  1.     Feature extraction is a process that extracts a small amount of data from the 
voice signal that can be used to represent each speaker. This module converts 
a speech waveform to some type of parametric representation for further 
analysis and processing. Short - time spectral analysis is the most common 
way to characterize a speech signal. The Mel - frequency cepstrum coeffi cients 
(MFCCs) are used to parametrically represent the speech signal for the 
speaker recognition task. The steps in this process are shown in Figure  10.52 :  

     (a)     Block the speech signal into frames, each consisting of a fi xed number of 
samples.  

     (b)     Window each frame to minimize the signal discontinuities at the begin-
ning and end of the frame.  

     (c)     Use FFT to convert each frame from time to frequency domain.  

     (d)     Convert the resulting spectrum into a Mel - frequency scale.  

     (e)     Convert the Mel spectrum back to the time domain.    

  2.     Classifi cation consists of models for each speaker and a decision logic neces-
sary to render a decision. This module classifi es extracted features according 
to the individual speakers whose voices have been stored. The recorded voice 
patterns of the speakers are used to derive a classifi cation algorithm. Vector 
quantization (VQ) is used. This is a process of mapping vectors from a large 
vector space to a fi nite number of regions in that space. Each region is called 
a  cluster  and can be represented by its center, called a  codeword . The collection 
of all clusters is a  codebook . In the training phase, a speaker - specifi c VQ code-
book is generated for each known speaker by clustering his/her training acous-
tic vectors. The distance from a vector to the closest codeword of a codebook 
is called a  VQ distortion . In the recognition phase, an input utterance of an 
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    FIGURE 10.52.     Steps for speaker recognition implementation.  
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unknown voice is vector - quantized using each trained codebook, and the total 
VQ distortion is computed. The speaker corresponding to the VQ codebook 
with the smallest total distortion is identifi ed.      

 Speaker recognition can be classifi ed with identifi cation and verifi cation.  Speaker
identifi cation  is the process of determining which registered speaker provides a 
given utterance. Speaker verifi cation  is the process of accepting or rejecting the 
identity claim of a speaker. This project implements only the speaker identifi cation 
(ID) process. The speaker ID process can be further subdivided into closed set  and 
open set . The  closed set  speaker ID problem refers to a case where the speaker is 
known a priori  to belong to a set of  M  speakers. In the  open set  case, the speaker 
may be out of the set and, hence, a  “ none of the above ”  category is necessary. In 
this project, only the simpler closed set speaker ID is used. 

 Speaker ID systems can be either  text - independent  or  text - dependent . In the  text -
 independent  case, there is no restriction on the sentence or phrase to be spoken, 
whereas in the text - dependent  case, the input sentence or phrase is indexed for each 
speaker. The text - dependent system, implemented in this project, is commonly 
found in speaker verifi cation systems in which a person ’ s password is critical for 
verifying his/her identity. 

 In the  training phase , the feature vectors are used to create a model for each 
speaker. During the testing phase , when the test feature vector is used, a number 
will be associated with each speaker model indicating the degree of match with that 
speaker ’ s model. This is done for a set of feature vectors, and the derived numbers 
can be used to fi nd a likelihood score for each speaker ’ s model. For the speaker 
ID problem, the feature vectors of the test utterance are passed through all the 
speakers ’  models and the scores are calculated. The model having the best score 
gives the speaker ’ s identity (which is the decision component). 

 This project uses MFCC for feature extraction, VQ for classifi cation/training, and 
the Euclidean distance between MFCC and the trained vectors (from VQ) for 
speaker ID. Much of this project was implemented with MATLAB  [47] . 

Mel-Frequency Cepstrum Coeffi cients 
 MFCCs are based on the known variation of the human ear ’ s critical bandwidths. 
A Mel - frequency scale is used with a linear frequency spacing below 1000   Hz and 
a logarithmic spacing above that level. The steps used to obtain the MFCCs 
follow.

1.      Level detection . The start of an input speech signal is identifi ed based on a 
prestored threshold value. It is captured after it starts and is passed on to the 
framing stage.  

2.      Frame blocking . The continuous speech signal is blocked into frames of N
samples, with adjacent frames being separated by M  ( M <  N ). The fi rst frame 
consists of the fi rst  N  samples. The second frame begins  M  samples after the 



fi rst frame and overlaps it by  N    −    M  samples. Each frame consists of 256 
samples of speech signal, and the subsequent frame starts from the 100th 
sample of the previous frame. Thus, each frame overlaps with two other sub-
sequent frames. This technique is called  framing . The speech sample in one 
frame is considered to be stationary.  

  3.      Windowing .   After framing, windowing is applied to prevent spectral leakage. 
A Hamming window with 256 coeffi cients is used.  

  4.      Fast Fourier transform .   The FFT converts the time - domain speech signal into 
a frequency domain to yield a complex signal. Speech is a real signal, but its 
FFT has both real and imaginary components.  

  5.      Power spectrum calculation .   The power of the frequency domain is calculated 
by summing the square of the real and imaginary components of the signal to 
yield a real signal. The second half of the samples in the frame are ignored 
since they are symmetric to the fi rst half (the speech signal being real).  

  6.      Mel - frequency wrapping .   Triangular fi lters are designed using the Mel - 
frequency scale with a bank of fi lters to approximate the human ear. The 
power signal is then applied to this bank of fi lters to determine the frequency 
content across each fi lter. Twenty fi lters are chosen, uniformly spaced in the 
Mel - frequency scale between 0 and 4   kHz. The Mel - frequency spectrum is 
computed by multiplying the signal spectrum with a set of triangular fi lters 
designed using the Mel scale. For a given frequency  f , the mel of the frequency 
is given by

    B f f( ) [ / ]= +1125 1 700ln( ) mels   

 If  m  is the mel, then the corresponding frequency is

    B m m− = −1 700 1125 700( ) [ exp( / ) ] Hz   

 The frequency edge of each fi lter is computed by substituting the correspond-
ing mel. Once the edge frequencies and the center frequencies of the fi lter are 
found, boundary points are computed to determine the transfer function of 
the fi lter.  

  7.      Mel - frequency cepstrum coeffi cients .   The log mel spectrum is converted back 
to time. The discrete cosine transform (DCT) of the log of the signal yields 
the MFCCs.     

  Speaker Training —  VQ  
 VQ is a process of mapping vectors from a large vector space to a fi nite number of 
regions in that space. Each region is called a  cluster  and can be represented by its 
center, the codeword. As noted earlier, a codebook is the collection of all the clus-
ters. An example of a one - dimensional VQ has every number less than  − 2 approxi-
mated by  − 3; every number between  − 2 and 0 approximated by  − 1; every number 
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between 0 and 2 approximated by +1; and every number greater than 2 approxi-
mated by +3. These approximate values are uniquely represented by 2 bits, yielding 
a one - dimensional, 2 - bit VQ. An example of a two - dimensional VQ consists of 16 
regions and 16 stars, each of which can be uniquely represented by 4 bits (a two -
 dimensional 4 - bit VQ). Each pair of numbers that fall into a region are approxi-
mated by a star associated with that region. The stars are called codevectors , and 
the regions are called encoding regions . The set of all the codevectors is called the 
codebook , and the set of all encoding regions is called the  partition  of the space.  

Speaker Identifi cation (Using Euclidean Distances) 
 After computing the MFCCs, the speaker is identifi ed using a set of trained vectors 
(samples of registered speakers) in an array. To identify the speaker, the Euclidean 
distance between the trained vectors and the MFCCs is computed for each trained 
vector. The trained vector that produces the smallest Euclidean distance is identifi ed 
as the speaker.  

Implementation
 The design is fi rst tested with MATLAB. A total of eight speech samples from eight 
different people (eight speakers, labeled S1 to S8) are used to test this project. Each 
speaker utters the same single digit, zero , once in a training session (then also in a 
testing session). A digit is often used for testing in speaker recognition systems 
because of its applicability to many security applications. This project was imple-
mented on the C6711 DSK and can be transported to the C6713 DSK. Of the eight 
speakers, the system identifi ed six correctly (a 75% identifi cation rate). The identi-
fi cation rate can be improved by adding more vectors to the training codewords. 
The performance of the system may be improved by using two - dimensional or four -
 dimensional VQ (training header fi le would be 8    ×    20    ×    4) or by changing the 
quantization method to dynamic time wrapping or hidden Markov modeling. A 
readme  fi le to test this project is on the CD in the folder  speaker_recognition , 
along with all the appropriate support fi les. These support fi les include several 
modules for framing and windowing, power spectrum, threshold detection, VQ, and 
the Mel - frequency spectrum.    

10.17 m -LAW FOR SPEECH COMPANDING 

 An analog input such as speech is converted into digital form and compressed into 
8 - bit data.  m  - Law  encoding  is a nonuniform quantizing logarithmic compression 
scheme for audio signals. It is used in the United States to compress a signal into a 
logarithmic scale when coding for transmission. It is widely used in the telecommu-
nications fi eld because it improves the SNR without increasing the amount of 
data.

 The dynamic range increases, while the number of bits for quantization remains 
the same. Typically, m  - law compressed speech is carried in 8 - bit samples. It carries 



more information about smaller signals than about larger signals. It is based on the 
observation that many signals are statistically more likely to be near a low - signal 
level than a high - signal level. As a result, there are more quantization points closer 
to the low level. 

 A lookup table with 256 values is used to obtain the quantization levels from 0 
to 7. The table consists of a 16    ×    16 set of numbers: Two 0 ’ s, two 1 ’ s, four 2 ’ s, eight 
3 ’ s, sixteen 4 ’ s, thirty - two 5 ’ s, sixty - four 6 ’ s, and one hundred twenty - eight 7 ’ s. More 
higher - level signals are represented by 7 (from the lookup table). Three exponent 
bits are used to represent the levels from 0 to 7, 4 mantissa bits are used to represent 
the next four signifi cant bits, and 1 bit is used for the sign bit. 

 The 16 - bit input data are converted from linear to 8 - bit  m  - law (simulated for 
transmission), then converted back from m  - law to 16 - bit linear (simulated as receiv-
ing), and then output to the codec. 

 From the 16 - bit sample signal, the eight MSBs are used to choose a quantization 
level from the lookup table of 256 values. The quantization is from 0 to 7 so that 0 
and 1 range across 2 values,       .      .      .       , 2 ranges across 4 values, 3 ranges across 8 values,       .      .      .       , 
and 7 ranges across 128 values. This is a logarithmic companding scheme. 

 Build this project as  Mulaw . The C source fi le for this project,  Mulaw.c , is included 
on the CD.  

10.18 SB-ADPCM ENCODER/DECODER: IMPLEMENTATION OF 
G.722 AUDIO CODING 

 An audio signal is sampled at 16   kHz, transmitted at a rate of 64   kbits/s, and recon-
structed at the receiving end  [51, 52] . 

Encoder
 The subband adaptive differential pulse code - modulated (SB - ADPCM) encoder 
consists of a transmit quadrature mirror fi lter that splits the input signal into a low 
frequency band, 0 to 4   kHz, and a high frequency band, 4 to 8   kHz. The low and 
high frequency signals are encoded separately by dynamically quantizing an adap-
tive predictor ’ s output error. The low and high encoder error signals are encoded 
with 6 and 2 bits, respectively. As long as the error signal is small, a negligible 
amount of overall quantization noise and good performance can be obtained. The 
low and high band bits are multiplexed, and the result is 8 bits sampled at 8   kHz 
for a bit rate of 64   kbits/s. Figure  10.53  shows a block diagram of an SB - ADPCM 
encoder.    

Transmit Quadrature Mirror Filter 
 The transmit quadrature mirror fi lter (QMF) takes a 16 - bit audio signal sampled 
at 16   kHz and separates it into a low band and a high band. The fi lter coeffi cients 
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    FIGURE 10.53.     Block diagram of the ADPCM encoder.  

    FIGURE 10.54.     Block diagram of the ADPCM encoder.  

represent a 4 - kHz lowpass fi lter. The sampled signal is separated into odd and even 
samples, with the effect of aliasing the signals from 4 to 8   kHz. This aliasing causes 
the high frequency odd samples to be 180 °  out of phase with the high frequency 
even samples. The low frequency even and odd samples are in phase. When the odd 
and even samples are added after being fi ltered, the low frequency signals construc-
tively add, while the high frequency signals cancel each other, producing a low band 
signal sampled at 8   kHz. 

 The low subband encoder converts the low frequencies from the QMF into an 
error signal that is quantized to 6 bits.  

  Decoder 
 The decoder decomposes a 64 - kbits/s signal into two signals to form the inputs to 
the lower and higher SB - ADPCM decoder, as shown in Figure  10.54 . The receive 
QMF consists of two digital fi lters to interpolate the lower and higher subband 
ADPCM decoders from 8 to 16   kHz and produce output at a rate of 16   kHz. In the 
higher SB - ADPCM decoder, adding the quantized difference signal to the signal 
estimate produces the reconstructed signal.   

 Components of the ADPCM decoder include an inverse adaptive quantizer, 
quantizer adaptation, adaptive prediction, predicted value computation, and recon-
structed signal computation. With input from a CD player, the DSK reconstructed 
output signal sound quality was good. Buffered input and reconstructed output data 
also confi rmed successful results from the decoder. 

 Build this project as   G722  . The support fi les (encoder and decoder functions, etc.) 
to implement this project are included on the CD in the folder  G722 .    



  10.19   ENCRYPTION USING THE DATA ENCRYPTION 
STANDARD ALGORITHM 

 Cryptography is the art of communicating with secret data. In voice communication, 
cryptography refers to the encrypting and decrypting of voice data through a pos-
sibly insecure data line. The goal is to prevent anyone who does not have a  “ key ”  
from receiving and understanding a transmitted message. 

 The data encryption standard (DES) is an algorithm that was formerly 
considered to be the most popular method for private key encryption. DES is 
still appropriate for moderately secured communication. However, with current 
computational power, one would be able to break (decrypt) the 56 - bit key in a rela-
tively short period of time. As a result, for very secure communication, the DES 
algorithm has been modifi ed into the triple - DES or (AES) standards. DES is a very 
popular private - key encryption algorithm and was an industry standard until 1998, 
after which it was replaced by triple - DES and AES, two slightly more complex 
algorithms derived from DES  [53 – 56] . Triple - DES increases the size of the key and 
the data blocks used in this project, essentially performing the same algorithm three 
times before sending the ciphered data. AES encryption, known as the  Rijndael 
algorithm , is the new standard formally implemented by the National Institute 
of Standards and Technology (NIST) for data encryption in high - level security 
communications. 

 DES is a bit - manipulation technique with a 64 - bit block cipher that uses an effec-
tive key of 56 bits. It is an iterated Feistel - type cipher with 16 rounds. The general 
model of DES has three main components for (see Figure  10.55 ): (1) initial permu-
tation; (2) encryption — the core iteration/ f  - function (16 rounds); and (3) fi nal per-
mutation.  X  and  Y  are the input and output data streams in 64 - bit block segments, 
respectively, and  K 1 through  K 16 are distinct keys used in the encryption algorithm. 
The initial permutation is based on the predefi ned Table  10.10 . The value at each 
position is used to scramble the input before the encryption routine. For example, 
the 58th bit of data is moved into the fi rst position of a 64 - bit array, the 50th bit into 
position 2, and so on. The input stream is permutated using a nonrepetitive random 
table of 64 integers (1 – 64) that corresponds to a new position of each bit in the 64 -
 bit data block. The fi nal permutation is the reverse of the initial permutation to 
reorder the samples into the correct original formation. The initial permutation is 

    FIGURE 10.55.     DES model.  
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 TABLE 10.10     Initial Permutation 

  IP  

  58    50    42    34    26    18    10    2  
  60    52    44    36    28    20    12    4  
  62    54    46    38    30    22    14    6  
  64    56    48    40    32    24    16    8  
  57    49    41    33    25    17    9    1  
  59    51    43    35    27    19    11    3  
  61    53    45    37    29    21    13    5  
  63    55    47    39    31    23    15    7  

followed by the actual encryption. The permutated 64 - bit block is divided into a left 
and a right block of 32 bits each. Sixteen rounds take place, each undergoing a 
similar procedure, as illustrated in Figure  10.56 . The right block is placed into the 
left block of the next round, and the left block is combined with an encoded version 
of the right block and placed into the right block of the next round, or

    L Ri i= −1  

    R L f R ki i i i= ⊕− −1 1( , )  

where  L i    − 1  and  R i    − 1  are the left and right blocks, respectively, each with 32 bits, and 
 k i   is the distinct key for the particular round of encryption. The original key is sent 
through a key scheduler that alters the key for each round of encryption. The left 
block is not utilized until the very end, when it is XORed with the encrypted right 
block.       

 The  f  - function operating on a 32 - bit quantity expands these 32 bits into 48 bits 
using the expansion table (see Table  10.11 ). This expansion table performs a per-
mutation while duplicating 16 of the bits (the rightmost two columns). For example, 
the fi rst integer is 32, so that the fi rst bit in the output block will be bit 32; the second 
integer is 1, so that the second bit in the output block will be bit 1; and so on.   

L i- 1  R i- 1  

L i  R i  

f  

+  

K i  

    FIGURE 10.56.     Encryption process — one round.  



 The 48 - bit key transformations are XORed with these expanded data, and the 
results are used as the input to eight different S  - boxes. Each  S  - box takes 6 conse-
cutive bits and outputs only 4 bits. The 4 output bits are taken directly from the 
numbers found in a corresponding S  - box table. This process is similar to that of a 
decoder where the 6 bits act as a table address and the output is a binary represen-
tation of the value at that address. The zeroth and fi fth bits determine the row of 
the S  - box, and the fi rst through fourth bits determine which column the number is 
located in. For example, 110100 points to the third row (10) and 10th column (1010). 
The fi rst 6 bits of data correspond to the fi rst of eight  S  - box tables, shown in Table 
 10.12 . The 32 bits of output from the  S  - boxes are permutated according to the  P  - box 
shown in Table  10.13 , and then output from the  f  - function shown in Figure  10.57 . 
For example, from Table  10.13 , bits 1 and 2 from the input block will be moved to 
bits 16 and 7 in the output, respectively. After the 16 rounds of encryption, a fi nal 
permutation occurs, which reverses the initial permutation, yielding an encrypted 
data signal.     

 The signal output from the encryption algorithm is not decipherable by the 
human ear even if the signal is fi ltered in any way. For testing purposes, the fi rst 
three onboard switches were utilized: sw 0 for selecting different keys;  sw 1 to enable 
encryption only, or both encryption and decryption; and sw 2 as an on/off switch (a 
loop program). 

TABLE 10.11 Expansion of 32 bits to 48 

32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13

12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

TABLE 10.12 S-Box Example, S1

14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 14

TABLE 10.13 P-Box

16 7 20 21 29 12 28 17 1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9 19 13 30 6 22 11 4 25
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    FIGURE 10.57.     Core  f  - function of DES.  

 This project was successfully implemented on the C6711 DSK with a different 
onboard codec and can be transported to a C6713 DSK. All the necessary fi les are 
in the folder   encryption  . The sections of code associated with the onboard switches 
need to be modifi ed so that the corresponding available library support functions 
are utilized. The highest level of compiler optimization (  - o3 ) was utilized in building 
this project.  

  10.20   PHASE - LOCKED LOOP 

 The PLL project implements a software - based linear PLL. The basic PLL causes a 
particular system to track another PLL. It consists of a phase detector, a loop fi lter, 
and a voltage - controlled oscillator. The software PLL is more versatile. However, it 



is limited by the range in frequency that can be covered, since the PLL function 
must be executed at least once every period of the input signal  [57 – 59] . 

 Initially, the PLL was tested using MATLAB, then ported to the C6x using C. 
The PLL locks to a sine wave, generated either internally within the program or 
from an external source. Output signals are viewed on a scope or on a PC using 
RTDX. 

 Figure  10.58  shows a block diagram of the linear PLL implemented in two 
versions: 

  1.     Using an external input source, with the output of the digitally controlled 
oscillator (DCO) to an oscilloscope  

  2.     Using RTDX with an input sine wave generated from a lookup table and 
various signals viewed using Excel      

 The phase detector, from Figure  10.58 , multiplies the input sine wave by the 
square wave output of the DCO. The sum and difference frequencies of the two 
inputs to the phase detector produce an output with a high and a low frequency 
component, respectively. The low frequency component is used to control the loop, 

    FIGURE 10.58.     PLL block diagram.  
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while the high frequency component is fi ltered out. When the PLL is locked, the 
two inputs to the phase detector are at the same frequency but with a quadrature 
(90 ° ) relationship. 

 The loop fi lter is a lowpass fi lter that passes the low frequency output component 
of the phase detector while it attenuates the undesired high frequency component. 
The loop fi lter is implemented as a single - pole IIR fi lter with a zero to improve the 
loop ’ s dynamics and stability. The scaled output of the loop fi lter represents the 
instantaneous incremental phase step the DCO is to take. The DCO outputs a 
square wave as a Walsh function: +1 for phase between 0 and p  and  − 1 for phase 
between −p  and 0, with an incremental phase proportional to the number at its 
input.

RTDX for Real -Time Data Transfer 
 The RTDX feature was used to transfer data to the PC host using a sine wave from 
a lookup table as input. A single output channel was created to pass to CCS the 
input signal, the output of both the loop fi lter and the DCO, and time stamps. CCS 
buffers these data so that they can be accessed by other applications on the PC host. 
CCS has an interface that allows PC applications to access buffered RTDX data. 
Visual Basic Excel was used to display the results on the PC monitor. Chapter  9  
introduced RTDX with several examples using different schemes. 

 This project was implemented on the C6211 DSK and can be transported to the 
C6713 DSK. All the necessary fi les, including the MATLAB fi le to test the project, 
are on the CD in the folder PLL .    

10.21 MISCELLANEOUS PROJECTS 

 The following projects can also be used as a source of ideas to implement other 
projects.

10.21.1 Multirate Filter 

 With multirate processing, a fi lter can be realized with fewer coeffi cients than with 
an equivalent single - rate approach. Possible applications include a controlled noise 
source and background noise synthesis. 

Introduction
 Multirate processing uses more than one sampling frequency to perform a desired 
processing operation. The two basic operations are decimation , which is a sampling -
 rate reduction, and  interpolation , which is a sampling - rate increase. Decimation 
techniques have been used in fi ltering. Multirate decimators can reduce the compu-
tational requirements of the fi lter. Interpolation can be used to obtain a sampling -
 rate increase. For example, a sampling - rate increase by a factor of  K  can be achieved 
by padding K     −    1 zeros between pairs of consecutive input samples  xi  and  xi+1 . We 
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can also obtain a noninteger sampling - rate increase or decrease by cascading the 
decimation process with the interpolation process. For example, if a net sampling -
 rate increase of 1.5 is desired, we would interpolate by a factor of 3, padding 
(adding) two zeros between each input sample, and then decimate with the inter-
polated input samples shifted by 2 before each calculation. Decimating or interpo-
lating over several stages generally results in better effi ciency  [60 – 67] .  

  Design Considerations 
 A binary random signal is fed into a bank of fi lters that are used to shape the output 
spectrum. The functional block diagram of the multirate fi lter is shown in Figure 
 10.59 . The frequency range is divided into 10 octave bands, with each band   13  - octave 
controllable. The control of each octave band is achieved with three fi lters. The 
coeffi cients of these fi lters are combined to yield a composite fi lter with one set of 
coeffi cients for each octave. Only three unique sets of fi lter coeffi cients (low, middle, 
and high) are required, because the center frequency and the bandwidth are pro-
portional to the sampling frequency. Each of the   13  - octave fi lters has a bandwidth of 
approximately 23% of its center frequency, a stopband rejection of greater than 
45   dB, with an amplitude that can be controlled individually. This control provides 
the capability of shaping an output pseudorandom noise spectrum. The sampling 
rate of the output is chosen to be 16,384   Hz. Forty - one coeffi cients are used for the 
highest   13  - octave fi lter to achieve these requirements. The middle   13  - octave fi lter 
coeffi cients were used as  BP41.cof  in Chapter  4 .   

 In order to meet the fi lter specifi cations in each region with a  constant  sampling 
rate, the number of fi lter coeffi cients must be doubled from one octave fi lter to the 
next lower one. As a result, the lowest - octave fi lter would require 41    ×    2 9  coeffi cients. 
With 10 fi lters ranging from 41 to 41    ×    2 9  coeffi cients, the computational require-
ments would be considerable. To reduce these computational requirements, a mul-
tirate approach is used, as shown in Figure  10.59 . 

 The noise generator is a software - based implementation of a maximal length 
sequence technique used for generating pseudorandom numbers. This pseudo-
random noise generator was implemented in  Example 3.3 . The output of the 
noise generator provides uncorrelated noise input to each of the 10 sets of bandpass 
fi lters. The noise generation example in Chapter  3  uses the process shown in 
Figure  10.60 .   

 Because each   13  - octave fi lter can be scaled individually, a total of 30 levels can be 
controlled. The output of each octave bandpass fi lter (except the last one) becomes 
the input to an interpolation lowpass fi lter, using a 2   :   1 interpolation factor. The 
ripple in the output spectrum is minimized by having each adjacent   13  - octave fi lter 
with crossover frequencies at the 3 - dB points. 

 The center frequency and bandwidth of each fi lter are determined by the sam-
pling rate. The sampling rate of the highest - octave fi lter is processed at 16,384 
samples per second (you can use a sampling rate of 16   kHz, 48   kHz, etc.), and each 
successively lower - octave band is processed at half the rate of the next higher 
band. 
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 Only three separate sets of 41 coeffi cients are used for the lower, middle, and 
higher   13  - octave bands. For each octave band, the coeffi cients are combined as 
follows:

    
H H L H L H Lij lj i mj i hj i= + +− −( )( ) ( )( ) ( )( )3 2 3 1 3  

where  i    =   1, 2,       .      .      .       , 10 bands and  j    =   0, 1,       .      .      .       , 40 coeffi cients;  L  1 ,  L  2 ,       .      .      .       ,  L  30  represent 
the level of each   13  - octave band fi lter; and  H lj  ,  H mj  ,  H hj   represent the  j th coeffi cient 
of the lower, middle, and higher   13  - octave band FIR fi lter. For example, for the fi rst 
band ( i    =   1),

    

H H L H L H L

H H L H L H

l m h

l m h

0 0 1 0 2 0 3

1 1 1 1 2

= + +

= + +

( )( ) ( )( ) ( )( )

( )( ) ( )( ) ( 11 3

40 40 1 40 2 40 3

)( )

( )( ) ( )( ) ( )( )

L

H H L H L H Ll m h

�

= + +  

and for band 10 ( i    =   10),

    

H H L H L H L

H H L H L

l m h

l m

0 0 28 0 29 0 30

1 1 28 1 29

= + +

= +

( )( ) ( )( ) ( )( )

( )( ) ( )( )) ( )( )

( )( ) ( )( ) ( )( )

+

= + +

H L

H H L H L H L

h

l m h

1 30
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�

  

 For an effi cient design with the multirate technique, lower - octave bands are pro-
cessed at a lower sampling rate, then interpolated up to a higher sampling rate, by 
a factor of 2, to be summed with the next higher octave band fi lter output, as shown 
in Figure  10.59 . Each interpolation fi lter is a 21 - coeffi cient FIR lowpass fi lter, with 

    FIGURE 10.60.     A 32 - bit pseudorandom generator.  
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a cutoff frequency of approximately one - fourth of the sampling rate. For each input, 
the interpolation fi lter provides two outputs, or

    y x I I x I I x I1 0 0 1 1 2 3 10 200 0= + + + + ⋅ ⋅ ⋅ +  

    y I x I I x I x I2 0 0 1 2 1 3 9 190 0= + + + + ⋅ ⋅ ⋅ +  

where  y  1  and  y  2  are the fi rst and second interpolated outputs, respectively,  x n   are the 
fi lter inputs, and  I n   are the interpolation fi lter coeffi cients. The interpolator is pro-
cessed in two sections to provide the data - rate increase by a factor of 2. 

 For the multirate fi lter, the approximate number of multiplication operations 
(with accumulation) per second is

    

MAC S/ ( )( )
( )(

= + + + + + + + + +
+
41 21 32 64 128 256 512 1024 2048 4096 8192

41 116 384
1 686 106

, )
.� ×   

 The approximate number of multiplications/accumulation per second for an 
equivalent single - rate fi lter is then

    MAC S/ ( )= × + + + + ⋅ ⋅ ⋅ + = ×Fs 41 1 2 2 2 2 687 102 3 9 6  

which would considerably increase the processing time requirements. 
 A brief description (recipe) of the main processing follows, for the fi rst time 

through (using three buffers  B  1 ,  B  2 ,  B  3 ).

   Band 1  
  1.     Run the bandpass fi lter and obtain one output sample.  

  2.     Run the lowpass interpolation fi lter twice and obtain two outputs. The inter-
polator provides two sample outputs for each input sample.  

  3.     Store in buffer  B  2 , size 512, at locations 1 and 2 (in memory).    

    Band 2  
  1.     Run the bandpass fi lter two times and sum with the two previous outputs 

stored in  B  2  from band 1.  

  2.     Store the summed values in  B  2  at the same locations 1 and 2 (again).  

  3.     Pass the sample in  B  2  at location 1 to the interpolation fi lter twice and obtain 
two outputs.  

  4.     Store these two outputs in buffer  B  3 , size 256, at locations 1 and 2.  

  5.     Pass the sample in  B  2  at location 2 to the interpolation fi lter twice and obtain 
two outputs.  

  6.     Store these two outputs in buffer  B  3  at locations 3 and 4.    
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    Band 3  
  1.     Run the bandpass fi lter four times and sum with the previous four outputs 

stored in  B  3  from band 2.  

  2.     Store the summed values in  B  3  at locations 1 through 4.  

  3.     Pass the sample in  B  3  at location 1 to the interpolation fi lter twice and obtain 
two outputs.  

  4.     Store these two outputs in buffer  B  2  at locations 1 and 2.  

  5.     Pass the sample in  B  3  at location 2 to the interpolation fi lter twice and obtain 
two outputs.  

  6.     Store these two outputs in buffer  B  2  at locations 3 and 4.  

  7.     Repeat steps 3 and 4 for the other two samples at locations 3 and 4 in  B  3 . For 
each of these samples, obtain two outputs, and store each set of two outputs 
in buffer  B  2  at locations 5 through 8.    

    Band 10  
  1.     Run the bandpass fi lter 512 times and sum with the previous 512 outputs 

stored in  B  2  from band 9.  

  2.     Store the summed values in  B  2  at locations 1 through 512.    

 No interpolation is required for band 10. After all the bands are processed, wait 
for the output buffer  B  1 , size 512, to be empty. Then switch the buffers  B  1  and  B  2  —
 the last working buffer with the last output buffer. The main processing is then 
repeated. 

 The multirate fi lter was implemented on the C25 processor using 9 bands and on 
the C30 processor using 10 bands  [8]  and can be transported to the C6x. Using a 
total of 30 different levels, any specifi c   13  - octave fi lter can be turned on or off. For 
example, all the fi lter bands can be turned on except bands 2 and 5. Figure  10.61  
shows the frequency response of the three   13  - octave fi lters of band 9 implemented 
on the C30. Note that if a sampling rate of 8   kHz is set (for the highest band), the 
middle   13  - octave band 1 fi lter would have a center frequency of 4   Hz (one - fourth of 
the equivalent sampling rate for band 1).     

  10.21.2   Acoustic Direction Tracker 

 This project uses two microphones to capture an audio signal. From the delay associ-
ated with the signal reaching one of the microphones before the other, a relative 
angle where the source is located can be determined. A signal radiated at a distance 
from its source can be considered to have a plane wavefront, as shown in Figure 
 10.62 . This allows the use of equally spaced sensors (many microphones can be used 
as acoustical sensors) in a line to ascertain the angle at which the signal is radiating. 
Since one microphone is closer to the source than the other, the signal received by 
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the more distant microphone is delayed in time. This time shift corresponds to the 
angle where the source is located and the relative distance between the microphones 
and the source. The angle  c    =   arcsin( a / b ), where the distance  a  is the product of the 
speed of sound and the time delay (phase/frequency).   

 Figure  10.63  shows a block diagram of the acoustic signal tracker. Two 128 - point 
arrays of data are obtained, cross - correlating the fi rst signal with the second and 
then the second signal with the fi rst. The resulting cross - correlation data are decom-

    FIGURE 10.61.     Frequency response of the three   1
3

 - octave fi lters of band 9.  

    FIGURE 10.62.     Signal reception with two microphones.  
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posed into two halves, each transformed using a 128 - point FFT. The resulting phase 
is the phase difference of the two signals.   

 This project was implemented on the C30  [17]  and can be transported to the 
C6713 processor. To test this project, a speaker was positioned a few feet from the 
two microphones, which are separated by 1 foot. The speaker receives a 1 - kHz signal 
from a function generator. A track of the source speaker is plotted over time on 
the PC monitor. Plots of the cross - correlation and the magnitude of the cross - 
correlation of the two microphone signals were also displayed on the PC monitor.  

  10.21.3   Neural Network for Signal Recognition 

 The goal of this project is to recognize a signal. The FFT of a signal becomes the 
input to a neural network that is trained to recognize the signal using the back -
 propagation learning rule. 

  Design and Implementation 
 The neural network consists of three layers with a total of 90 nodes: 64 input nodes 
in the fi rst layer, 24 nodes in the middle or hidden layer, and 2 output nodes in the 
third layer. The 64 points as input to the neural network are obtained by retaining 
half of the 128 points resulting from a 128 - point FFT of the signal to be recognized. 
In recent years, many books and articles on neural networks have been published 
 [68, 69] . Neural network products are now available from many vendors. 

 Many different rules have been described in the literature for training a neural 
network. The back - error propagation is one of the most widely used for a wide range 
of applications. Given a set of input, the network is trained to give a desired 
response. If the network gives the wrong answer, then it is corrected by adjusting 
its parameters so that the error is reduced. During this correction process, one starts 

    FIGURE 10.63.     Block diagram of an acoustic signal tracker.  
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with the output nodes and propagation is backward to the input nodes (back propa-
gation). Then the propagation process is repeated. 

 To illustrate the procedure for training a neural network using the back - propaga-
tion rule, consider a simple three - layer network with seven nodes, as shown in Figure 
 10.64 . The input layer consists of three nodes, and the hidden layer and output layer 
each consist of two nodes. Given the following set of inputs — input No. 1   =   1 into 
node 0, input No. 2   =   1 into node 1, and input No. 3   =   0 into node 2 — the network 
is to be trained to yield the desired output 0 at node 0 and 1 at node 1. Let the sub-
scripts  i, j, k  be associated with the fi rst, second, and third layers, respectively. A set 
of random weights are initially chosen, as shown in Figure  10.64 . For example, the 
weight  w  11    =   0.9 represents the weight value associated with node 1 in layer 1 and 
node 1 in the middle or hidden layer 2. The weighted sum of the input value is

    s w xj ji i
i

=
=
∑

0

2

 

where  j    =   0, 1 and  i    =   0, 1, 2. Then

    s w x w x w x0 00 0 01 1 02 2 0 5 1 0 3 1 0 1 0 0 8= + + = + + =( . )( ) ( . )( ) ( . )( ) .     

    FIGURE 10.64.     Three - layer neural network with seven nodes.  
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 Similarly,  s  1    =   1.3. A function of the resulting weighted sum  f ( s j  ) is next computed. 
This transfer function  f  of a processing element must be differentiable. For this 
project,  f  is chosen as the hyperbolic tangent function tanh. Other functions, such 
as the unit step function or the smoother sigmoid function, also can be used. The 
output of the transfer function associated with the nodes in the middle layer is

    x f s s jj j j= = =( ) ( ), ,tanh 0 1  

The output of node 0 in the hidden layer then becomes

    x0 0 664= =tanh(0.8) .  

Similarly,  x  1    =   0.862. The weighted sum at each node in layer 3 is

    s w x kk kj j
j

= =
=
∑ , ,0 1

0

1

 

to yield

    s w x w x0 00 0 01 1 1 0 0 664 0 9 0 862 1 44= + = + =( . )( . ) ( . )( . ) .  

Similarly,  s  1    =   0.524. The output of the transfer function is associated with the output 
layer, and replacing  j  by  k ,

    x f s kk k= =( ), ,0 1  

Then  x  0    =   tanh(1.44)   =   0.894, and  x  1    =   tanh(0.524)   =   0.481. The error in the output 
layer can now be found using

    e d x f sk k k k= − ′( ) ( )  

where  d k     −    x k   refl ects the amount of error, and  f  ′ ( s ) represents the derivative of 
tanh( s ), or

    f x f s f s′ = + −( ) ( ( ))( ( ))1 1  

Then

    e0 0 0 894 1 1 0 18= − + − = −( . )( )( ) .tanh(1.44) tanh(1.44)  

Similarly,  e  1    =   0.399. Based on this output error, the contribution to the error by 
each hidden layer node is to be found. The weights are then adjusted based on this 
error using

    ∆w e xkj k j= η  
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where   h   is the network learning rate constant, chosen as 0.3. A large value of   h   can 
cause instability, and a very small one can make the learning process much too slow. 
Then

    ∆w00 0 3 0 18 0 664 0 036= − = −( . )( . )( . ) .  

Similarly,  ∆  w  01    =    − 0.046,  ∆  w  10    =   0.08, and  ∆  w  11    =   0.103. The error associated with the 
hidden layer is

    e f s e wj j k kj
k

= ′
=

∑( )
0

1

 

Then

    e0 1 1 0 18 1 0 0 399 0 4= + − − + = −( )( ){( . )( . ) ( . )( . )}tanh(0.8) tanh(0.8) 00 011.  

Similarly,  e  1    =    − 0.011. Changing the weights between layers  i  and  j ,

    ∆w e xji j i= η  

Then

    ∆w00 0 3 0 011 1 0 0033= − = −( . )( . )( ) .   

 Similarly,  ∆  w  01    =    − 0.0033,  ∆  w  02    =   0,  ∆  w  10    =    − 0.0033,  ∆  w  11    =    − 0.0033, and  ∆  w  12    =   0. This 
gives an indication of by how much to change the original set of weights chosen. 
For example, the new set of coeffi cients becomes

    w w w00 00 00 0 5 0 0033 0 4967= + = − =∆ . . .  

and  w  01    =   0.2967,  w  02    =   0.1, and so on. 
 This new set of weights represents only the values after one complete cycle. These 

weight values can be verifi ed using a training program for this project. For this pro-
cedure of training the network, readjusting the weights is continuously repeated 
until the output values converge to the set of desired output values. For this project, 
the training program is such that the training process can be halted by the user, who 
can still use the resulting weights. 

 This project was implemented on the C30 and can be transported to the C6x. 
Two sets of inputs were chosen: a sinusoidal and a square wave input. The FFT 
(128 - point) of each input signal is captured and stored in a fi le, with a total of 4800 
points: 200 vectors, each with 64 features (retaining one - half of the 128 points). 
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Another program scales each set of data (sine and square wave) so that the values 
are between 0 and 1. 

 To demonstrate this project, two output values for each node are displayed on 
the PC screen. Values of +1 for node 0 and  − 1 for node 1 indicate that a sinusoidal 
input is recognized, and values of  − 1 for node 0 and +1 for node 1 indicate that a 
square wave input is recognized. 

 This project was successful but was implemented for only the two sets of chosen 
data. Much work remains to be done, such as training more complex sets of data 
and examining the effects of different training rules based on the different signals 
to be recognized.   

  10.21.4   Adaptive Temporal Attenuator 

 An adaptive temporal attenuator (ATA) suppresses undesired narrowband signals 
to achieve a maximum signal - to - interference ratio. Figure  10.65  shows a block 
diagram of the ATA. The input is passed through delay elements, and the outputs 
from selected delay elements are scaled by weights. The output is

    y k k k ii
i

N

[ ] [ ] ( [ ])= ⋅ = ⋅ −
=

−

∑m r m rT

0

1

 

  where  m  is a weight vector,  r  a vector of delayed samples selected from the input 
signal, and  N  the number of samples in  m  and  r . The adaptive algorithm computes 
the weights based on the correlation matrix and a direction vector:

    C m D[ , ] [ ]k kδ λ= ⋅ =0  
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    FIGURE 10.65.     Block diagram of an adaptive temporal attenuator.  
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where  C  is a correlation matrix,  D  a direction vector, and   l   a scale factor. The cor-
relation matrix  C  is computed as an average of the signal correlation over several 
samples:

    C r r[ , ] ( [ ] [ ] )k
N

k k
i

n

δ δ= ⊗ −
=

−

∑1

0

1

AV

T  

where  N  AV  is the number of samples included in the average. The direction vector 
 D  indicates the signal desired:

    D = ⋅ ⋅ ⋅ −[ exp( )] exp[ ( ) ]1 1j j NT Tω τ ω τ T  

where   w  T   is the angular frequency of the signal desired,   t   the delay between samples 
that create the output, and  N  the order of the correlation matrix. 

 This procedure minimizes the undesired - to - desired ratio (UDR)  [70] . UDR 
is defi ned as the ratio of the total signal power to the power of the signal 
desired, or

    UDR= total
T

T T

P

P
k k k

P k P kd d d

=
⋅ ⋅

⋅
=

⋅
m C m

m D m D
[ ] [ , ] [ ]

( [ ] ) ( [ ] )
0 1

2  

where  P d   is the power of the signal desired.   
 MATLAB is used to simulate the ATA, then ported to the C6x for real - time 

implementation. Figure  10.66  shows the test setup using a fi xed desired signal of 
1416   Hz and an undesired signal of 1784   Hz (which can be varied). From MATLAB, 
and optimal value of   t   is found to minimize UDR. This is confi rmed in real time, 
since for that value of   t   (varying   t   with a GEL fi le), the undesired signal (initially 
displayed from an HP3561A analyzer) is greatly attenuated.    
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Implementing the
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Desired signal:
fd =1416 Hz fixed
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PC:
Slider control
for t

Output
signal

    FIGURE 10.66.     Test setup for an adaptive temporal attenuator.  
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10.21.5 FSK Modem 

 This project implements a digital modulator/demodulator. It generates 8 - ary FSK 
carrier tones. The following steps are performed in the program.

      1.     The sampled data are acquired as input.  

     2.     The 6 MSBs are separated into two 3 - bit samples.  

     3.     The most signifi cant portion of the sample data selects an FSK tone.  

     4.     The FSK tone is sent to a demodulator.  

     5.     The FSK tone is windowed using the Hanning window function.  

     6.     DFT (16 - point) results are obtained for the windowed FSK tone.  

     7.     DFT results are sent to the function that selects the frequency with the 
highest amplitude, corresponding to the upper 3 bits of the sampled data.  

     8.     The process is repeated for the lower 3 bits of the sampled data.  

     9.     The bits are combined and sent to the codec.  

10.     The gel program allows for an option to interpolate or upsample the recon-
structed data for a smoother output waveform.     

10.21.6 Image Processing 

 This project implements various schemes used in image processing: 

1.      Edge detection:  for enhancing edges in an image using Sobe ’ s edge detection  

2.      Median fi ltering:  nonlinear fi lter for removing noise spikes in an image  

3.      Histogram equalization:  to make use of the image spectrum  

4.      Unsharp masking:  spatial fi lter to sharpen the image, emphasizing its high 
frequency components  

5.      Point detection:  for emphasizing single - point features in the image    

 A major issue was using/loading the images as  .h  fi les in lieu of using real - time 
images (due to the course ’ s one - semester time constraint). During the course of this 
project, the following evolved: a code example for additive noise with a Gaussian 
distribution, with adjustable variance and mean, and a code example of histogram 
transformation to map the distribution of one set of numbers to a different distribu-
tion (used in image processing).  

10.21.7 Filter Design and Implementation Using 
a Modifi ed Prony ’s Method 

 This project designs and implements a fi lter based on a modifi ed Prony ’ s 
method  [71 – 74] . The method is based on the correlation property of the fi lter ’ s 
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representation and does not require computation of any derivatives or an initial 
guess of the coeffi cient vector. The fi lter ’ s coeffi cients are calculated recursively to 
obtain the fi lter ’ s impulse response.  

10.21.8 PID Controller 

 Both nonadaptive and adaptive controllers using the proportional, integral, and 
derivative (PID) control algorithm have been implemented    [17, 75, 76] .  

10.21.9 Four-Channel Multiplexer for Fast Data Acquisition 

 A four - channel multiplexer module was designed and built for this project, imple-
mented in C  [8] . It includes an 8 - bit fl ash ADC, a FIFO, a MUX, and a crystal oscil-
lator (2 or 20   MHz). An input is acquired through one of the four channels. The FFT 
of the input signal is displayed in real time on the PC monitor.  

10.21.10 Video Line Rate Analysis 

 This project is discussed in Refs.  8  and  77  and implemented using C and C30 
code. It analyzes a video signal at the horizontal (line) rate. Interactive algorithms 
commonly used in image processing for fi ltering, averaging, and edge enhance-
ment using C code are utilized for this analysis. The source of the video signal is a 
charge - coupled device (CCD) camera as input to a module designed and built 
for this project. This module includes fl ip - fl ops, logic gates, and a clock. Displays 
on the PC monitor illustrate various effects on one horizontal video line signal 
from either a 500 - kHz or a 3 - MHz IIR lowpass fi lter and from an edge enhance-
ment algorithm.   
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A.1 INSTRUCTIONS FOR FIXED - AND FLOATING -POINT OPERATIONS 

 Table  A.1  shows a listing of the instructions available for the C6x processors. The 
instructions are grouped under the functional units used by these instructions. These 
instructions can be used with both fi xed -  and fl oating - point C6x processors. Some 
additional instructions are available for the fi xed - point C64x processor  [2] .    

A.2 INSTRUCTIONS FOR FLOATING -POINT OPERATIONS 

 Table  A.2  shows a listing of additional instructions available with the fl oating - point 
processor C67x. These instructions handle fl oating - point type of operations and are 
grouped under the functional units used by these instructions (see also Table  A.1 ).    
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TABLE A.1 Instructions for Fixed - and Floating -Point Operations 

.L Unit .M Unit .S Unit .D Unit 

ABS MPY ADD ADD

ADD MPYH ADDK ADDAB

ADDU MPYHL ADD2 ADDAH

AND MPYHLU AND ADDAW

CMPEQ MPYHSLU B disp LDB

CMPGT MPYHSU B IRPa LDBU

CMPGTU MPYHU B NRPa LDH

CMPLT MPYHULS B reg LDHU

CMPLTU MPYHUS CLR LDW

LMBD MPYLH EXT LDB (15 -bit offset) b

MV MPYLHU EXTU LDBU (15 -bit offset) b

NEG MPYLSHU MV LDH (15 -bit offset) b

NORM MPYLUHS MVCa LDHU (15 -bit offset) b

NOT MPYSU MVK LDW (15 -bit offset) b

OR MPYU MVKH MV

SADD MPYUS MVKLH STB

SAT SMPY NEG STH

SSUB SMPYH NOT STW

SUB SMPYHL OR STB (15 -bit offset) b

SUBU SMPYLH SET STH (15 -bit offset) b

SUBC SHL STW (15 -bit offset) b

XOR SHR SUB

ZERO SHRU SUBAB

SSHL SUBAH

SUB SUBAW

SUBU ZERO

SUB2

XOR

ZERO

a S2 only. 
b D2 only. 

Source: Courtesy of Texas Instruments [1, 2] .

TABLE A.2 Instructions for Floating -Point Operations 

.L Unit .M Unit .S Unit .D Unit 

ADDDP MPYDP ABSDP ADDAD

ADDSP MPYI ABSSP LDDW

DPINT MPYID CMPEQDP

DPSP MPYSP CMPEQSP

DPTRUNC CMPGTDP

INTDP CMPGTSP

INTDPU CMPLTDP

INTSP CMPLTSP

INTSPU RCPDP

SPINT RCPSP

SPTRUNC RSQRDP

SUBDP RSQRSP

SUBSP SPDP

Source: Courtesy of Texas Instruments [1, 2] .
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 A number of special - purpose registers available on the C6x processor are shown in 
Figures  B.1 to B.8   [1] . 

1.     Figure  B.1  shows the address mode register (AMR) that is used for the circular 
mode of addressing. It is used to select one of eight register pointers (A4 
through A7, B4 through B7) and two blocks of memories (BK0, BK1) that 
can be used as circular buffers.  

2.     Figure  B.2  shows the control status register (CSR) with bit 0 for the global 
interrupt enable (GIE) bit.  

3.     Figure  B.3  shows the interrupt enable register (IER).  

4.     Figure  B.4  shows the interrupt fl ag register (IFR).  

5.     Figure  B.5  shows the interrupt set register (ISR).  

6.     Figure  B.6  shows the interrupt clear register (ICR).  

7.     Figure  B.7  shows the interrupt service table pointer (ISTP).  

8.     Figure  B.8  shows the serial port control register (SPCR).                    

 In Section  3.7.2  we discuss the AMR register and in Section  3.14  the interrupt 
registers.
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    FIGURE B.1.     Address mode register (AMR). ( Courtesy of Texas Instruments .)  

    FIGURE B.2.     Control status register (CSR). ( Courtesy of Texas Instruments .)  

    FIGURE B.3.     Interrupt enable register (IER). ( Courtesy of Texas Instruments .)  

    FIGURE B.4.     Interrupt fl ag register (IFR). ( Courtesy of Texas Instruments .)  
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    FIGURE B.5.     Interrupt set register (ISR). ( Courtesy of Texas Instruments .)  

    FIGURE B.6.     Interrupt clear register (ICR). ( Courtesy of Texas Instruments .)  

    FIGURE B.7.     Interrupt service table pointer (ISTP). ( Courtesy of Texas Instruments .)  

    FIGURE B.8.     Serial port control register (SPCR). ( Courtesy of Texas Instruments .)  
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 The C6713 is a fl oating - point processor capable of performing both integer 
and fl oating - point operations. Both the C6713 and the A1C23 codec support 2 ’ s -
 complement arithmetic. It is thus appropriate here to review some fi xed - point 
concepts  [1] . 

 In a fi xed - point processor, numbers are represented in integer format. In a 
fl oating - point processor, both fi xed -  and fl oating - point arithmetic can be handled. 
With the fl oating - point processor C6713, a much greater range of numbers can be 
represented than with a fi xed - point processor. 

 The dynamic range of an  N  - bit number based on 2 ’ s - complement representation 
is between  − (2  N  − 1 ) and (2  N  − 1     −    1), or between  − 32,768 and 32,767 for a 16 - bit system. 
By normalizing the dynamic range between  − 1 and 1, the range will have 2  N   sections, 
where 2  − ( N  − 1)  is the size of each section starting at  − 1 up to 1    −    2  − ( N  − 1) . For a 4 - bit 
system, there would be 16 sections, each of size   18  from  − 1 to   78 .  

  C.1   BINARY AND TWO ’ S - COMPLEMENT REPRESENTATION 

 To make illustrations more manageable, a 4 - bit system is used rather than a 32 - bit 
word length. A 4 - bit word can represent the unsigned numbers 0 through 15, as 
shown in Table  C.1 .   

 The 4 - bit unsigned numbers represent a modulo (mod) 16 system. If 1 is added 
to the largest number (15), the operation wraps around to give 0 as the answer. 
Finite bit systems have the same modulo properties as number wheels on combina-
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 TABLE C.1     Unsigned Binary Number 

  Binary    Decimal  

  0000    0  
  0001    1  
  0010    2  
  0011    3  
  .    .  
  .    .  
  .    .  
  1110    14  
  1111    15  

    FIGURE C.1.     Number wheel for unsigned integers.  

tion locks. Therefore, a number wheel graphically demonstrates the addition proper-
ties of a fi nite bit system. Figure  C.1  shows a number wheel with the numbers 0 
through 15 wrapped around the outside. For any two numbers  x  and  y  in the range, 
the operation amounts to the following procedure: 

  1.     Find the fi rst number  x  on the wheel.  

  2.     Step off  y  units in the clockwise direction, which brings you to the answer.      

 For example, consider the addition of the two numbers (5   +   7) mod 16, which yields 
12. From the number wheel, locate 5, then step 7 units in the clockwise direction to 
arrive at the answer, 12. As another example, (12   +   10) mod 16   =   6. Starting with 12 
on the number wheel, step 10 units clockwise, past zero, to 6. 

 Negative numbers require a different interpretation of the numbers on the wheel. 
If we draw a line through 8 cutting the number wheel in half, the right half will 
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represent the positive numbers and the left half the negative numbers, as shown in 
Figure  C.2 . This representation is the 2 ’ s - complement system. The negative numbers 
are the 2 ’ s complement of the positive numbers, and vice versa.   

 A 2 ’ s - complement binary integer,

    B b b bn= −1 1 0�  

is equivalent to the decimal integer

    I B b b bn
n( ) = − × + + × + ×−

−
1

1
1

1
0

02 2 2�  

where the  b  ’ s are binary digits. The sign bit has a negative weight; all the others have 
positive weights. For example, consider the number  − 2:

    1110 1 2 1 2 1 2 0 2 8 4 2 0 23 2 1 0= − × + × + × + × = − + + + = −  

To apply the graphical technique to the operation 6   +   ( − 2) mod 16   =   4, locate 6 on 
the wheel, then step off (1110) units clockwise to arrive at the answer 4. 

 The binary addition of these same numbers,

    

0110
1110

10100

_____

C       

    FIGURE C.2.     Number wheel for signed integers.  
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shows a carry in the most signifi cant bit, which in the case of fi nite register arithmetic 
will be ignored. This carry corresponds to the wraparound through zero on the 
number wheel. The addition of these two numbers results in correct answers, by 
ignoring the carry in the most signifi cant bit position, provided that the answer is 
in the range of representable numbers  − 2  n  − 1  to (2  n  − 1     −    1) in the case of an  n  - bit 
number, or between  − 8 and 7 for the 4 - bit number wheel example. When  − 7 is added 
to  − 8 in the 4 - bit system, we get an answer of +1 instead of the correct value of  − 15, 
which is out of range. When two numbers of like sign are added to produce an 
answer with opposite sign, overfl ow has occurred. Subtraction with 2 ’ s - complement 
numbers is equivalent to adding the 2 ’ s complement of the number being subtracted 
to the other number.  

  C.2   FRACTIONAL FIXED - POINT REPRESENTATION 

 Rather than using the integer values just discussed, a fractional fi xed - point number 
that has values between +0.99       .      .      .       and  − 1 can be used. To obtain the fractional  n  - bit 
number, the radix point must be moved  n     −    1 places to the left. This leaves one sign 
bit plus  n     −    1 fractional bits. The expression

    F B b b b bn
n( ) ( )= − × + × + × + + ×− −

−
− −

0
0

1
1

2
2

1
12 2 2 2�  

converts a binary fraction to a decimal fraction. Again, the sign bit has a weight of 
negative 1 and the weights of the other bits are positive powers of 1/2. The number 
wheel representation for the fractional 2 ’ s - complement 4 - bit numbers is shown in 
Figure  C.3 . The fractional numbers are obtained from the 2 ’ s - complement integer 
numbers of Figure  C.2  by scaling them by 2 3 . Because the number of bits in a 4 - bit 
system is small, the range is from  − 1 to 0.875. For a 16 - bit word, the signed integers 
range from  − 32,768 to +32,767. To get the fractional range, scale those two signed 
integers by 2  − 15  or 32,768, which results in a range from  − 1 to 0.999969 (usually taken 
as 1).    

  C.3   MULTIPLICATION 

 If one multiplies two  n  - bit numbers, the common notion is that a 2 n  - bit operand 
will result. Although this is true for unsigned numbers, it is not so for signed 
numbers. As shown before, sign numbers need one sign bit with a weight of  − 2  n  − 1 , 
followed by positive weights that are powers of 2. To fi nd the number of bits needed 
for the result, multiply the two largest numbers together:

    P n n n= − − =− − −( )( )2 2 21 1 2 2  

This number is a positive number representable in (2 n     −    1) bits. The MSB of this 
result occupies the (2 n     −    2) - bit position counting from 0. Since this number is posi-



tive, its sign bit, which would show up as a negative number (a power of 2), does 
not appear. This is an exceptional case, which is treated as an overfl ow in fractional 
representation. Since the fractional representation requires that both operand and 
resultant occupy the same range,  − 1    �    range    <    +1, the operation ( − 1)    ×    ( − 1) pro-
duces an unrepresentable number, +1. 

 Consider the next larger combination:

    P n n n n= − − + = −− − − −( )( )2 2 1 2 21 1 2 2 1  

Since the second number subtracts from the fi rst, the product will occupy up to the 
(2 n     −    3) - bit position, counting from 0. Thus, it is representable in (2 n     −    2) bits. With 
the exceptional case ruled out, this makes the bit position (2 n     −    2) available for the 
sign bit of the resultant. Therefore, (2 n     −    1) bits are needed to support an ( n    ×    n ) - bit 
signed multiplication. 

 To clarify the preceding equation, consider the 4 - bit case, or

    P = − − + = −( )( )2 2 1 2 23 3 6 3  

The number 2 6  occupies bit position 6. Since the second number is negative, the 
summation of the two is a number that will occupy only bit positions less than bit 
position 6, or

    2 2 64 8 56 001110006 3− = − = =  

    FIGURE C.3.     Number wheel for fi xed - point representation.  
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Thus, bit position 6 is available for the sign bit. The 8 - bit equivalent would have 2 
sign bits (bits 6 and 7). The C6x supports signed and unsigned multiplies and there-
fore provides 2 n  bits for the product. 

 Consider the multiplication of two fractional 4 - bit numbers, with each number 
consisting of 3 fractional bits and 1 sign bit. Let the product be represented by an 
8 - bit number. The fi rst number is  − 0.5 and the second number is 0.75; the multiplica-
tion is as follows:

    

− =
× =

0 50 1 100
0 75 0 110

11111000
111000

111 1

. .

. .
________

_________

. 001000

2 2 2 2 0 3751 0 1 3

C
= − + + + = −− − .  

The underlined bits of the multiplicand indicate sign extension. When a negative 
multiplicand is added to the partial product, it must be sign - extended to the left up 
to the limit of the product in order to give the proper larger bit version of the same 
number. To demonstrate that sign extension gives the correct expanded bit number, 
scan around the number wheel in Figure  C.2  in the counterclockwise direction from 
0. Write the codes for 5 - bit, 6 - bit, 7 - bit,       .      .      .       negative numbers. Note that they would 
be derived correctly by sign - extending the existing 4 - bit codes; therefore, sign exten-
sion gives the correct expanded bit number. The carry - out will be ignored; however, 
the numbers 111.101000 (9 - bit word), 11.101000 (8 - bit word), and 1.101000 (7 - bit 
word) all represent the same number:  − 0.375. Thus, the product of the preceding 
example could be represented by (2 n     −    1) bits, or 7 bits for a 4 - bit system. 

 When two 16 - bit numbers are multiplied to produce a 32 - bit result, only 31 bits 
are needed for the multiply operation. As a result, bit 30 is sign - extended to bit 31. 
The extended bits are frequently called  sign bits.  

 Consider the following example: to multiply (0101) 2  by (1110) 2 , which is equiva-
lent to multiplying 5 by  − 2 in decimal, which would result in  − 10. This result is 
outside the dynamic range { − 8, 7} of a 4 - bit system. Using a Q - 3 format, this corre-
sponds to multiplying 0.625 by  − 0.25, yielding a result of  − 0.15625, which is within 
the fractional range. 

 When two Q - 15 format numbers (each with a sign bit) are multiplied, the result 
is a Q - 30 format number with one extra sign bit. The MSB is the extra sign bit. One 
can shift right by 15 to retain the MSBs and only one of the 2 sign bits. By shifting 
right by 15 (dividing by 2 15 ) to be able to store the result into a 16 - bit system, this 
discards the 15 LSBs, thereby losing some precision. One is able to retain high preci-
sion by keeping the most signifi cant 15 bits. With a 32 - bit system, a left shift by 1 
bit would suffi ce to get rid of the extra sign bit. 



 Note that when two Q - 15 numbers, represented with a range of  − 1 to 1, are mul-
tiplied, the resulting number remains within the same range. However, the addition 
of two Q - 15 numbers can produce a number outside this range, causing overfl ow. 
Scaling would then be required to correct this overfl ow.  
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 This appendix gives a brief description of the use of MATLAB and  Goldwave  in 
support of the exercises in this book. Their use is also described at various other 
points in the preceding chapters.  

D.1 fdatool FOR  FIR FILTER DESIGN 

 MATLAB ’ s fi lter design and analysis tool  fdatool  makes use of MATLAB func-
tions, for example, cheby1()  (see Chapter  5 ), that can be called from the MATLAB 
command line but integrates them with a graphical user interface (GUI) for the 
design and analysis of fi lters. It is invoked by typing

>> fdatool 

at the MATLAB command line. 
 Three MATLAB functions  dsk_fir67() ,  dsk_sos_iir67() , and  dsk_sos_

iir67int()  are provided in the folder  Support  on the CD accompanying this book. 
These can be used in conjunction with fdatool  to create coeffi cient fi les for use 
with a number of example programs. 

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc. 
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Example D.1: Design of FIR Bandstop Filter Using  fdatool and 
dsk_fir67()

 This example describes how the fi lter coeffi cient fi le  bs2700f.cof , used in  Example 
4.4 , was created. 

 Enter the  fdatool  parameters shown in Figure  D.1  to design an FIR bandstop 
fi lter centered at 2700   Hz. The fi lter uses  N    =   89 coeffi cients and the Kaiser window 
function. Select File    →    Export  and then set the parameters  Export to, Export as , and 
Variable Names  to  Workspace, Coeffi cients , and  bs2700 , respectively. Click on  Export .   
At the MATLAB command line, type

>> dsk_fir67(bs2700)

and enter the fi lename  bs2700f.cof . 
 The resultant coeffi cient ( .cof ) fi le is listed in Figure  D.2 . This fi le is compatible 

with programs fir.c ,  firprn.c ,  firprnbuf.c ,  adaptidfir.c .   
 Figure  D.3  shows Code Composer  Graphical Displays  of the coeffi cients and 

their magnitude FFT.      

FIGURE D.1.     Characteristics of an FIR bandstop fi lter centered at 2700   Hz, designed using 
fdatool .  
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// bs2700f.cof
// this file was generated automatically using function dsk_fir67.m

#define N 89

float h[N] = {
-4.4230E-004,7.0433E-004,-2.6120E-004,-1.7972E-004,-6.9219E-
018,2.4316E-004,
4.7954E-004,-1.7657E-003,1.5295E-003,1.3523E-003,-4.4872E-
003,3.6368E-003,
2.0597E-003,-7.4813E-003,6.1048E-003,2.2005E-003,-9.5210E-
003,7.8501E-003,
1.6112E-003,-9.1250E-003,7.2785E-003,5.9684E-004,-5.0469E-
003,2.6733E-003,
-2.6271E-017,3.1955E-003,-7.2161E-003,1.0221E-003,1.4959E-002,-
2.2570E-002,
4.8135E-003,2.8456E-002,-4.2116E-002,1.1962E-002,4.1134E-002,-
6.3159E-002,
2.2081E-002,5.0364E-002,-8.2093E-002,3.3692E-002,5.4206E-002,-
9.5274E-002,
4.4497E-002,5.1989E-002,9.0000E-001,5.1989E-002,4.4497E-002,-9.5274E-
002,
5.4206E-002,3.3692E-002,-8.2093E-002,5.0364E-002,2.2081E-002,-
6.3159E-002,
4.1134E-002,1.1962E-002,-4.2116E-002,2.8456E-002,4.8135E-003,-
2.2570E-002,
1.4959E-002,1.0221E-003,-7.2161E-003,3.1955E-003,-2.6271E-
017,2.6733E-003,
-5.0469E-003,5.9684E-004,7.2785E-003,-9.1250E-003,1.6112E-
003,7.8501E-003,
-9.5210E-003,2.2005E-003,6.1048E-003,-7.4813E-003,2.0597E-
003,3.6368E-003,
-4.4872E-003,1.3523E-003,1.5295E-003,-1.7657E-003,4.7954E-
004,2.4316E-004,
-6.9219E-018,-1.7972E-004,-2.6120E-004,7.0433E-004,-4.4230E-004
};

  D.2    fdatool  FOR  IIR  FILTER DESIGN 

     Example D.2:   Design of  IIR  Bandstop Filter Using  fdatool  and 
 dsk_sos_iir67()  

 Figure  D.4  shows the  fdatool  window corresponding to the design of a sixth order 
IIR bandstop fi lter centered at 1800   Hz. The fi lter coeffi cients can be exported to 
the MATLAB workspace by selecting  File    →    Export  and then setting the parame-
ters  Export to, Export as , and  Variable Names SOS Matrix , and  Scale Values  to 
 Workspace, Coeffi cients, SOS , and  G , respectively. Click on  Export .   

    FIGURE D.2.     Listing of coeffi cient fi le  bs2700f.cof .  



FIGURE D.3.     Code Composer window showing fi lter coeffi cients read from fi le  bs2700f.
cof  and their magnitude FFT. 

 At the MATLAB command line, type

>> dsk_sos_iir67(SOS,G) 

and enter the fi lename  bs1800.cof , or type

>> dsk_sos_iir67int(SOS,G) 

and enter the fi lename  bs1800int.cof . 
 Coeffi cient fi le  bs1800.cof  should be compatible with programs  iirsos.c , 

iirsosprn.c ,  iirsosdelta.c , and  iirsosadapt.c . Coeffi cient fi le  bs1800int.
cof  should be compatible with program  iir.c . 

 Figure  D.5  shows the output produced by program  iirsosprn.c  using coeffi -
cient fi le  bs1800.cof .      

fdatool for IIR Filter Design  543
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D.3 MATLAB FOR  FIR FILTER DESIGN USING THE STUDENT VERSION 

 FIR fi lters can be designed using the Student Version  [2]  of MATLAB  [1] . 

Example D.3: Design of FIR Filters Using the Student Version of  MATLAB

 Figure  D.6  shows the listing of a MATLAB M - fi le script  mat33.m  that designs a 
33 - coeffi cient FIR bandpass fi lter using the Parks – McClellan algorithm based 
on the Remez exchange algorithm and Chebyshev approximation theory. The 
desired fi lter has a center frequency of 800   Hz (assuming a sampling frequency of 
8   kHz) and its magnitude frequency response is specifi ed in vectors  nfreq  and  mag . 
Vector nfreq  contains a set of normalized frequency points, in ascending order, in 
the range 0 to 1, where 1 corresponds to half the sampling frequency. Vector mag
contains a set of gain magnitudes corresponding to the frequencies specifi ed in 
vector nfreq .   

 Function  firpm()  returns the 33 coeffi cients of an FIR fi lter designed to meet the 
specifi ed magnitude frequency response as closely as possible. The coeffi cients are 

FIGURE D.4.     Characteristics of a sixth order IIR bandstop fi lter centered at 1800   Hz using 
fdatool .  



returned as vector  bp33  and both the desired magnitude frequency response (speci-
fi ed by vectors  nfreq  and  mag ) and the magnitude frequency response calculated 
using the fi lter coeffi cients  bp33  are plotted as shown in Figure  D.7   . Note that mag-
nitude is plotted on a linear scale.   

 The fi lter coeffi cients can be exported as fi le  bp33f.cof , for use by example 
program  fi r.c , by typing

  >  >  dsk_fi r67(bp33 ′ ) 

at the MATLAB command line and entering the fi lename  bp33f.cof .  

    FIGURE D.5.     Output generated by program  iirsosprn.c  using coeffi cient fi le  bs1800.
cof .  

%mat33.m M-file for 33-coefficient FIR bandpass filter design
nfreq=[0 0.1 0.15 0.25 0.3 1];    % normalized frequencies
mag = [0 0 1 1 0  0];             % magnitudes at normalized
frequencies
bp33 = firpm(32,nfreq,mag);       % use Parks-McClellan
[h,w]=freqz(bp33,1,512);          % compute frequency response
plot(nfreq,mag,'b-')              % plot desired and computed
hold on                           % frequency responses
plot(w/pi,abs(h),'r')
xlabel('normalized frequency');
ylabel('magnitude');

    FIGURE D.6.     Listing of M - fi le  mat33.m .  

 MATLAB for FIR Filter Design Using the Student Version  545



546  MATLAB and Goldwave Support Tools
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    FIGURE D.7.     Desired and calculated magnitude frequency responses of FIR bandpass fi lter 
designed using M - fi le  mat33.m .  

  Example D.4:   Multiband  FIR  Filter Design Using the Student Version 
of  MATLAB  

 This example extends the previous one to design an FIR fi lter with two passbands. 
M - fi le script  mat63.m  is similar in structure to  mat33.m  but contains a different 
magnitude frequency response specifi ed by vectors  nfreq  and  mag . In addition, it 
produces 63 rather than 33 fi lter coeffi cients in a vector  bp63 . Figure  D.8  shows the 
magnitude frequency response plot produced by  mat63.m .      

  D.4    MATLAB  FOR  IIR  FILTER DESIGN USING THE STUDENT VERSION 

     Example D.5:   Design of  IIR  Bandstop Filter Using the Bilinear Transform 
in  MATLAB  

 The analog fi lter having the transfer function

    H s
s

s s
( )

.
=

+
+ +

2

2

347311379
4324 75 347311379

    (D.1)  

is a low order IIR bandstop fi lter centered on 3000   Hz. 
 Assuming either that it has been entered by typing

  >  >  b = [1, 0, 347311379];
 >  >  a = [1, 4324.75, 347311379]; 



or that it has been designed using

  >  >  [b,a]=cheby1(1,2,[2 * pi * 2550,2 * pi * 3450], ‘ stop ’ , ‘ s ’ ); 

its frequency response can be displayed by typing

  >  >  freqs(b,a) 

at the MATLAB command line. 
 The bilinear transform method of creating an IIR fi lter based on this analog 

prototype can be implemented by typing

  >  > [bz,az]=bilinear(b,a,8000); 

where 8000 specifi es a sampling rate of 8   kHz, and the bilinear transform used is

    s
z
z

=
−
+

2
8000

1
1

( )
( )

    (D.2)  

yielding

    H z
z z

z z
( )

. . .
. .

=
+ +

+ +

− −

− −

0 8971 0 2716 0 8971
1 0 2716 0 7942

1 2

1 2
    (D.3)  
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    FIGURE D.8.     Desired and calculated magnitude frequency responses of FIR fi lter designed 
using M - fi le  mat63.m .  
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The frequency response of this fi lter can be displayed by typing

  >  >  freqz(bz,az) 

and should confi rm that its stopband is centered not at 3000   Hz (1.885e - 4   rad/s)   but 
at approximately 2200   Hz (1.382e - 4   rad/s)  . This is due to the frequency warping 
effect, described in Chapter  5 , of the bilinear transform. A digital fi lter having a 
stopband centered at 3000   Hz can be designed by prewarping the prototype analog 
fi lter design to match its gain at that frequency. In MATLAB, this is achieved by 
passing another parameter to function  bilinear() . Typing

  >  >  [bz,az]=bilinear(b,a,8000,3000); 

causes the bilinear transform used to be

    s
z
z

=
−
+

2 3000
3000 8000

1
1

π
πtan( / )

( )
( )

    (D.4)  

yielding

    H z
z z

z z
( )

. . .
. .

=
+ +

+ +

− −

− −

0 9236 1 2956 0 9236
1 1 2956 0 8472

1 2

1 2
    (D.5)  

Typing

  >  >  freqz(bz,az) 

should confi rm that equation  (D.5)  represents a bandstop fi lter centered at 3000   Hz 
as specifi ed by the analog prototype. Either fi lter (equation  (D.3)  or equation  (D.5) ) 
can be implemented as a single direct form II, second order stage. The MATLAB 
vectors  bz  and  az  can be written to a  .cof  fi le by typing

  >  >  dsk_sos_iir67([bz,az],[1;1]); 

and then used by programs  iirsos.c ,  iirsosprn.c ,  iirsosdelta.c , and 
 iirsosadapt.c .    

  D.5   USING THE  GOLDWAVE  SHAREWARE UTILITY 
AS A VIRTUAL INSTRUMENT 

  Goldwave  is a shareware utility software program that can turn a PC with a sound-
card into a virtual instrument. It can be downloaded from the Internet  [3] . One can 
create a function generator to generate different signals such as a sine wave and 



random noise. It can also be used as an oscilloscope and as a spectrum analyzer, and 
to record/edit a speech signal. Effects such as echo and fi ltering can be applied to 
stored sounds. Lowpass, highpass, bandpass, and bandstop fi lters can be imple-
mented on a soundcard with Goldwave  and their effects on a signal illustrated 
readily.

Goldwave  was used to record the speech contained in fi les  mefsin.wav  and 
corrupt.wav  used in Chapters  2  and  4  and to add the unwanted sine wave compo-
nents to those recordings.  
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 Whereas complex additions and multiplications are required for an FFT, the 
Hartley transform  [1 – 8]  requires only real multiplications and additions. The FFT 
maps a real function of time into a complex function of frequency, whereas the fast 
Hartley transform (FHT) maps the same real - time function into a real function of 
frequency. The FHT can be particularly useful in cases where the phase is not a 
concern. 

 The discrete Hartley transform (DHT) of a time sequence  x ( n ) is defi ned as

    H k x n
nk

N
k N
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where

    cas u u u= +cos sin     (E.2)  

In a similar development to the FFT,  (E.1)  can be decomposed as
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Let  n    =    n    +    N /2 in the second summation of  (E.3) :
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Using  (E.2)  and the identities
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for odd  k ,
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and, for even  k ,
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Using  (E.6)  and  (E.7) ,  (E.4)  becomes
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and
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Let  k    =   2 k  for even  k , and let  k    =   2 k    +   1 for odd  k . Equations  (E.8)  and  (E.9)  
become
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Furthermore, using  (E.5) 
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Equation  (E.11)  becomes
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Substituting  N /2    −     n  for  n  in the second summation,  (E.12)  becomes
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Let
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Equations  (E.10)  and  (E.13)  become
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A more complete development of the FHT can be found in Ref.  3 . We now illustrate 
the FHT with two exercises: an 8 - point FHT and a 16 - point FHT. We will then 
readily verify these results from the FFT exercises in Chapter  6 . 

     Exercise E.1:   Eight - Point Fast Hartley Transform 

 Let the rectangular sequence  x ( n ) be represented by  x (0)   =    x (1)   =    x (2)   =    x (3)   =   1, 
and  x (4)   =    x (5)   =    x (6)   =    x (7)   =   0. The fl ow graph in Figure  E.1  is used to fi nd  X ( k ). 
We will now use  X ( k ) instead of  H ( k ). The sequence is fi rst permuted and the inter-
mediate results after the fi rst two stages are as shown in Figure  E.1 . The coeffi cients 
C n  and S n  are (with  N    =   8)

    

C

S

n n N

n n N

=

=

cos( / )

sin( / )

2

2

π

π  

    FIGURE E.1.     Eight - point FHT fl ow graph.  
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The output sequence  X ( k ) after the fi nal stage 3 is also shown in Figure  E.1 . For 
example,

    

X

X

0 2 2 0 2 0 2 2 1 2 0 4

1 2 2 1 2 1 2 1 414 0 3 41

( ) = + + = + ( ) + ( ) =
( ) = + + = + + =

C S

C S . .

�
XX( ) ( ) .7 0 0 7 2 7 1 414= + + = −C S     (E.16)  

This resulting output sequence can be verifi ed from the  X ( k ) obtained with the FFT, 
using

    DHT{ } DFT[ ] Im{DFT[ ]}x n x n x n( ) Re{ ( ) } ( )= −     (E.17)  

For example, from the eight - point FFT in Exercise 6.1,  X (1)   =   1    −     j 2.41, and
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1 1

1 2 41

=
= −  

Using  (E.17) ,

    DHT{ }x X( ) ( ) ( . ) .1 1 1 2 41 3 41= = − − =  

as in  (E.16) . Conversely, the FFT can be obtained from the FHT using
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For example, using  (E.18)  to obtain  X (1)   =   1    −     j 2.41 from the FHT,
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1 7
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2)] { . . } .= − − = −     (E.19)  

where the left - hand side of  (E.18)  is associated with the FFT and the right - hand 
side with the FHT.      

  Exercise E.2: Sixteen - Point Fast Hartley Transform 

 Let the rectangular sequence  x ( n ) be represented by  x (0)   =    x (1)   =       .      .      .       =    x (7)   =   1, 
and  x (8)   =    x (9)   =       .      .      .       =    x (15)   =   0. A 16 - point FHT fl ow graph can be arrived at, 
building on the 8 - point FHT. The permutation of the input sequence before the fi rst 
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    FIGURE E.2.     Sixteen - point FHT fl ow graph.  

stage is as follows for the fi rst (upper) eight - point FHT:  x (0),  x (8),  x (4),  x (12),  x (2), 
 x (10),  x (6),  x (14) and for the second (lower) eight - point FHT:  x (1),  x (9),  x (5),  x (13), 
 x (3),  x (11),  x (7),  x (15). After the third stage, the intermediate output results for the 
upper and the lower eight - point FHTs are as obtained in the previous eight - point 
FHT example. Figure  E.2  shows the fl ow graph of the fourth stage for the 16 - point 
FHT. The intermediate output results from the third stage become the input to the 
fourth stage in Figure  E.2 . The output sequence  X (0),  X (1),       .      .      .       ,  X (15) from Figure 
 E.2  can be verifi ed using the results obtained with the 16 - point FFT in Exercise 6.2. 
For example, using
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with  N    =   16,  X (1) can be obtained from Figure  E.2   :

    X( ) . . . . . . .1 3 414 3 414 1 1 414 1 3 414 3 154 0 541 6 027= + − = + − =C S  
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Equation  (E.18)  can be used to verify  X (1)   =   1    −     j 5.028, as obtained using the FFT 
in Exercise  6.2 . Note that, for example,

    

X( ) . ( . ) ( . )
. . .
.

15 1 414 1 414 15 3 414 15
1 414 1 306 1 306
4

= − + − +
= − − −
= −

C S

00269  

as shown in Figure  E.2 .    
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 Goertzel ’ s algorithm performs a DFT using an IIR fi lter calculation. Compared to 
a direct  N  - point DFT calculation, this algorithm uses half the number of real 
multiplications, the same number of real additions, and requires approximately 1/ N  
the number of trigonometric evaluations. The biggest advantage of the Goertzel 
algorithm over the direct DFT is the reduction of the trigonometric evaluations. 
Both the direct method and the Goertzel method are more effi cient than the FFT 
when a  “ small ”  number of spectrum points is required rather than the entire spec-
trum. However, for the entire spectrum, the Goertzel algorithm is an  N  2  effort, just 
as is the direct DFT.  

  F.1   DESIGN CONSIDERATIONS 

 Both the fi rst order and the second order Goertzel algorithms are explained in 
several books  [1 – 3]  and in Ref.  4 . A discussion of them follows. Since

    W eN
kN j k− = =2 1π  

both sides of the DFT in  (6.1)  can be multiplied by it, giving

    X k W x k WN
kN

N
kr

r

N

( ) ( )= − +

=

−

∑
0

1

    (F.1)  
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which can be written

    X k x r WN
k N r
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    (F.2)  

Defi ne a discrete - time function as

    y n x r Wk N
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    (F.3)  

The discrete transform is then

    X k y nk n N( ) ( )= =     (F.4)  

Equation  (F.3)  is a discrete convolution of a fi nite - duration input sequence  x ( n ), 
0    <     n    <    N     −    1, with the infi nite sequence   WN

kn− . The infi nite impulse response 
is therefore

    h n WN
kn( ) = −     (F.5)  

The    z  - transform of  h ( n ) in  (F.5)  is
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Substituting  (F.5)  into  (F.6)  gives
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Thus, equation  (F.7)  represents the transfer function of the convolution sum in 
equation  (F.3) . Its fl ow graph represents the fi rst order Goertzel algorithm and is 
shown in Figure  F.1 . The DFT of the  k th frequency component is calculated by 

+

+

x (n) y (n)

Z 
–1

WN
–K

    FIGURE F.1.     First order Goertzel algorithm.  
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starting with the initial condition  y k  ( − 1)   =   0 and running through  N  iterations to 
obtain the solution  X ( k )   =    y k  ( N ). The  x ( n ) ’ s are processed in time order, and pro-
cessing can start as soon as the fi rst one comes in. This structure needs the same 
number of real multiplications and additions as the direct DFT but 1/ N  the number 
of trigonometric evaluations.   

 The second order Goertzel algorithm can be obtained by multiplying the numera-
tor and denominator of  (F.7)  by   1 1− − −W zN

kn  to give

    H z
W z

k N z z
N

k

( )
cos( / )

=
−

− +

+ −

− −

1

1 2 2

1

1 2π
    (F.8)  

The fl ow graph for this equation is shown in Figure  F.2 . Note that the left 
half of the graph contains feedback fl ows and the right half contains only feed-
forward terms. Therefore, only the left half of the fl ow graph must be evaluated 
each iteration. The feedforward terms need only be calculated once for  y k  ( N ). 
For real data, there is only one real multiplication in this graph and only one 
trigonometric evaluation for each frequency. Scaling is a problem for fi xed - point 
arithmetic realizations of this fi lter structure; therefore, simulation is extremely 
useful.   

 The second order Goertzel algorithm is more effi cient than the fi rst order Goertzel 
algorithm. The fi rst order Goertzel algorithm (assuming a real input function) 
requires approximately 4 N  real multiplications, 3 N  real additions, and two trigono-
metric evaluations per frequency component as opposed to  N  real multiplications, 
2 N  real additions, and two trigonometric evaluations per frequency component for 
the second order Goertzel algorithm. The direct DFT requires approximately 2 N  
real multiplications, 2 N  real additions, and 2 N  trigonometric evaluations per fre-
quency component. 

 This Goertzel algorithm is useful in situations where only a few points in the 
spectrum are necessary, as opposed to the entire spectrum. Detection of several 
discrete frequency components is a good example. Since the algorithm processes 
samples in time order, it allows the calculation to begin when the fi rst sample 
arrives. In contrast, the FFT must have the entire frame in order to start the 
calculation.  

x (n) y (n)

Z 
–12 cos (2pk /N)

Z 
–1

–WN
K

–1

    FIGURE F.2.     Second order Goertzel algorithm.  
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G.1 TMS320C64X PROCESSOR

 Another member of the C6000 family of processors is the C64x, which can operate 
at a much higher clock rate. The C6416 DSK operates at 1   GHz for a 1.00 - ns instruc-
tion cycle time. Features of the C6416 architecture include: four 16   ×    16 - bit multi-
pliers (each .M  unit can perform two multiplies per cycle), sixty - four 32 - bit 
general - purpose registers, more than 1   MB of internal memory consisting of 1   MB 
of L2 RAM/cache, and 16   kB of each L1P program cache and L1D data cache 
 [1 – 7] . 

 The C64x is based on the architecture VELOCITI.2, which is an extension of 
VELOCITI  [2] . The extra registers allow for packed data types to support four 8 -
 bit or two 16 - bit operations associated with one 32 - bit register, increasing parallel-
ism  [3] . For example, the instruction  MPYU4  performs four 8 - bit multiplications 
within a single instruction cycle time. Several special - purpose instructions have also 
been added to handle many operations encountered in wireless and digital imaging 
applications, where 8 - bit data processing is common. In addition, the  .M  unit (for 
multiply operations) can also handle shift and rotate operations. Similarly, the .D

unit (for data manipulation) can also handle logical operations. The C64x is a fi xed -
 point processor. Existing instructions are available to more units. Double - word 
load ( LDDW ) and store ( STDW ) instructions can access 64   bits of data, with up to a 
two double - word load or store instructions per cycle (read or write 128   bits per 
cycle).

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
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 A few instructions have been added for the C64x processor. For example, the 
instruction

BDEC LOOP,B0 

decrements a counter B0 and performs a conditional branch to LOOP based on B0. 
The branch decision is before the decrement, with the branch decision based on a 
negative number (not on whether the number is zero). This multitask instruction 
resembles the syntax used in the C3x and C4x family of processors. 

 Furthermore, with the intrinsic C function  _dotp2 , it can perform two 16    ×    16 
multiplies and adds the products together to further reduce the number of cycles. 
This intrinsic function in C has the corresponding assembly function DOTP2 . With 
two multiplier units, four 16    ×    16 multiplies per cycle can be performed, double the 
rate of the C62x or C67x. At 720   MHz, this corresponds to 2.88 billion multiply 
operations per second, or 5.76 billion 8    ×    8 multiplies per second.  

G.2 PROGRAMMING EXAMPLES USING THE C6416 DSK

 Nearly all of the program examples described in Chapters  1  –  9  of this book will 
run on the C6416 DSK provided that the appropriate support fi les are used. 
Files c6416dskinit.c  and  c6416dskinit.h  must be used in place of fi les 
c6713dskinit.c  and  c6713dskinit.h  and library fi les  csl6416.lib ,  dsk-
6416bsl.lib , and  rts6400.lib  must be used in place of  csl6713.lib ,  dsk-
6713bsl.lib , and  rts6700.lib . Slightly different compiler and linker build options 
are also required by the C6416 DSK. 

 Assuming that a C6416 DSK is being used in place of the C6713 DSK and that 
Code Composer Studio for that DSK has been installed, these issues can be resolved 
by copying the fi les supplied on the CD in folder  C6416  into folder  c:\CCStudio_
v3.1\MyProjects . Support fi les appropriate to the C6416 DSK are stored in folder 
c:\CCStudio_v3.1\MyProjects\support  and the project ( .pjt ) fi les provided 
have been set up to use those support fi les and with the appropriate compiler and 
linker options. 

 Three examples of the use of programs described earlier in this book are pre-
sented here. 

Example G.1: Sine Wave  Generation with  DIP Switch Control ( sine8_LED)

 This example is equivalent to Example  1.1 . Figure  G.1  shows a listing of program 
sine8_LED.c  provided for the C6416 DSK. The essential differences between this 
fi le and that listed in Figure  1.2  concern the header fi le included ( dsk6416_aic23.
h ), and the support library functions called (e.g.,  DSK6416_DIP_INIT() ). Figure  G.2  
shows the Preprocessor Compiler  and  Basic Linker  options for the project. Compare 
Figures  G.2 a and  G.2 b with Figures  1.7  and  1.8  and note, for example, that the 
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//sine8_LED.c  sine generation with DIP switch control

#include "dsk6416_aic23.h"             //codec support
Uint32 fs = DSK6416_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6416_AIC23_INPUT_MIC 0x0015
#define DSK6416_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6416_AIC23_INPUT_MIC; //select input
#define LOOPLENGTH 8
short loopindex = 0;                   //table index
short gain = 10;                       //gain factor
short sine_table[LOOPLENGTH]=
  {0,707,1000,707,0,-707,-1000,-707};  //sine values

void main()
{
  comm_poll();                         //init DSK,codec,McBSP
  DSK6416_LED_init();                  //init LED from BSL
  DSK6416_DIP_init();                  //init DIP from BSL
  while(1)                             //infinite loop
  {
    if(DSK6416_DIP_get(0)==0)          //if DIP #0 pressed
    {
      DSK6416_LED_on();                //turn LED #0 ON
      output_left_sample(sine_table[loopindex++]*gain); //output
      if (loopindex >= LOOPLENGTH) loopindex = 0; //reset index
    }
    else DSK6416_LED_off(0);           //else turn LED #0 OFF
  }                                    //end of while(1)
}                                      //end of main 

    FIGURE G.1.     Listing of program  sine8_LED.c .  

    FIGURE G.2.      Compiler  and  Linker  options for Example  G.1 .  

(a) (b)
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//loop_intr.c loop program using interrupts

#include "DSK6416_AIC23.h"        //codec support
Uint32 fs=DSK6416_AIC23_FREQ_8KHZ;   //set sampling rate
#define DSK6416_AIC23_INPUT_MIC 0x0015
#define DSK6416_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6416_AIC23_INPUT_MIC; //select input

interrupt void c_int11()             //interrupt service routine
{
  short sample_data;

  sample_data = input_left_sample(); //input data
  output_left_sample(sample_data);   //output data
  return;
}

void main()
{
  comm_intr();                       //init DSK, codec, McBSP
  while(1);                          //infinite loop
}

 Include  and  Library Search Paths , the  Include Libraries , and the  Pre - Defi ne Symbol  
options are different.     

 Project fi le  sine8_LED.pjt  has been provided so that in order to run the program 
 sine8_LED.c  it is necessary only to open that project, build, load, and run. 

 The functionality of the program, that is, a 1 - kHz tone is output via LINE OUT 
and HEADPHONE sockets while DIP switch #0 is pressed down, is the same as 
that described in Example  1.1 .  

  Example G.2:   Loop Program Using the  C 6416  DSK  ( loop_intr ) 

 Figure  G.3  shows the C source fi le  loop_intr.c  that implements a loop program. 
Compare this program with that listed in Figure  2.4 . Build the project as   loop_
intr   and verify that the results are similar to those described for Example  2.2 .    

  Example G.3:   Estimating Execution Times for  DFT  and  FFT  Functions 

 This example is similar to Example  6.2 . Three different methods of computing 
the DFT of 128 sample values are implemented in programs  dft.c ,  dftw.c , and 
 fft.c . Using Code Composer ’ s  Profi le Clock , an indication of the number of pro-
cessor instruction cycles used for the computation can be obtained. 

 One of the main differences between the C6416 and C6713 processors is the 
absence of fl oating - point hardware in the case of the C6416. The same C programs, 

    FIGURE G.3.     Listing of program  loop_intr.c .  
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using fl oating - point variables, can be compiled and run on the C6416 processor but 
it will use software routines in place of fl oating - point hardware in order to carry 
out fl oating - point arithmetic operations. In general, the C6416 will use more instruc-
tion cycles than the C6713 to carry out fl oating - point arithmetic. On the other hand, 
the processor on the C6416 DSK has a clock speed of 1   GHz whereas the C6713 
DSK processor uses a 225 - MHz clock. 

 As in the case of Example  6.2 , edit the lines in programs  dft.c  and  dftw.c that 
read

#define N 100 

to read

#define N 128 

Then:

1.     Ensure that source fi le  dft.c  and not  dftw.c  is present in the project.  

2.     Select  Project    →    Build Options . In the  Compiler  tab in the  Basic  category set 
the Opt Level  to  Function( – o2)  and in the  Linker  tab set the  Output Filename
to .\Debug\dft.out .  

3.      Build  the project and load  dft.out .  

4.      Open  source fi le  dft.c  by double - clicking on its name in the  Project
View  window and set breakpoints at the lines  dft(samples);  and 
printf(“done!\n”); .  

5.     Select  Profi le    →    Clock    →    Enable .  

6.     Select  Profi le    →    Clock View.

7.     Run the program. It should halt at the fi rst breakpoint.  

8.     Reset the  Profi le Clock  by double - clicking on its icon in the bottom right - hand 
corner of the CCS window.  

9.     Run the program. It should stop at the second breakpoint.    

 The number of instruction cycles counted by the  Profi le Clock  (271,966,152) gives 
an indication of the computational expense of executing function dft() . On a 
1 - GHz C6416, 271,966,152 instruction cycles correspond to an execution time 
of 272   ms. Repeat the preceding experiment substituting fi le  dftw.c  for fi le  dft.c . 
The modifi ed DFT function using twiddle factors,  dftw() , uses 6,256,266 instruction 
cycles, corresponding to 6.26   ms and representing a decrease in execution time by a 
factor of 43. At a sampling rate of 8   kHz, 6.26   ms corresponds to just over fi fty sam-
pling periods. 

 Finally, repeat the experiment using fi le  fft.c  (also stored in folder  dft ). This 
program computes the FFT using a function written in C and defi ned in the fi le 
fft.h . Function  fft()  takes 1,608,328 instruction cycles, or 1.61   ms (approximately 
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13 sampling periods at 8   kHz) to execute. The advantage, in terms of execution time, 
of the FFT over the DFT seen in Example  6.2  is repeated here. However, the 
fl oating - point computations take more than ten times longer on the C6416 
processor.    
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Accumulated error metric, 490
Accumulation and buffering module, in 

LPC speech synthesis, 496
Acoustic direction tracker, 513–515
adaptc project, 332–334
adaptIDFIR project, 339–343
adaptIDFIRw project, 343
Adaptive channel equalization, adaptive 

structures for, 321–322
Adaptive fi lters, 154, 319–353. See also 

Adaptive FIR fi lter
adaptive linear combiner, 319, 324–327
adaptive structures in, 321–324
performance function of, 320–321, 

327–329
search for minima of, 329–332
for sinusoidal noise cancellation, 335
two-weight, 326–327

Adaptive FIR fi lter
for noise cancellation, 335–339
for system ID of fi xed FIR, 339–343
for system ID of fi xed IIR, 343–345

Adaptive linear combiner, 319, 324–327
Adaptive predictor, adaptive structures for, 

322–323
Adaptive temporal attenuator (ATA), 

519–520

567

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK, 
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc. 

adaptnoise_2IN project, 335–339
adaptnoise project, 335
ADC, see Analog-to-digital converter
Add-compare-select operation, 490
Add instructions, 113
Additive white Gaussian noise (AWGN), 

for soft decision, 484
Addressing modes, linear and circular, 

110–112
Address mode register (AMR), 111, 

530
AES encryption standard, 503
AIC23 codec, 1, 20, 46–47

changing LINE IN gain of, 50
format of data, to and from, 52
identifi cation of bandwidth of, 85
impulse response of, 89, 92
settings defi ned in c6713dskinit.h,

33–34, 50
Aliasing, 74–75, 81–82, 82–85

in impulse invariance method, 230
aliasing project, 82–85
Amplitude modulation (AM), 92–95, 

470–474
am project, 92–95
Analog-to-digital converter (ADC), 4, 34, 

46, 102
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Animation, 29
Antialiasing fi lter, 82
Arithmetic operations, of TMS320C6x 

processors, 105
asm statement, within C, 117
ASM (assembly) code

optimizing, 354–373
syntax of, 112–113
TMS320C6x format for, 112

ASM (assembly) functions. See also Linear
assembly function

ASM program calling, 135–139
C calling, 131–135, 197–206, 251–252

Assembler directives, 115–116
Assembler optimizer, 355
Audio effects, 451–453
Automatic speaker recognition, 

496–500
average project, 165–167
averagen project, 168

Bandpass FIR fi lters, 161, 175–177, 343
implementation of, 188

Bandstop FIR fi lters, 161, 175
implementation of, 188

Beat detection, using onboard LEDs, 
429–434

beatdetector project, 434
Bilinear transformation (BLT), 217–220

design procedure using, 219
design using, 232–236
frequency warping in, 233
implementation method, 232

Binary phase-shift keying (BPSK), 454, 
468–470, 474, 476

demodulation, 469–470
encoding/decoding, 468–469
modulation, 468–469
single-board transmitter/receiver 

simulation, 455–458
Binary representation, 533–539
bios_fastconv_TSK project, 386
bios_fft128c_SWI project, 385–386
bios_fir_SWI project, 383–385
bios_LED project, 376–378
bios_sine8_intr_LOG project, 382
bios_sine8_intr project, 379–381
Bit reversal, 268
Blackman window function, 164
BPSK folder, 468
BPSK_ReIN project, 459–460

BPSK_sim project, 455–468
BPSK transmitter/receiver, with PLL, 

465–468
BPSK transmitter/voice encoder, with 

real-time input, 459–460
Branch instructions, 115
Branch metrics, 490
Build options, for CCS, 13–15
Butterfl y graph, 260

C6416 folder, 7, 562
C6713 folder, 7
c6713dsk.cmd linker command fi le, 12, 

34, 41
c6713dskinit.c initialization/

communication fi le, 12, 31–33, 48
c6713dskinit.h header fi le, 33, 

35–38
Cascade IIR fi lter structure, 215–216
C compiler, with CCS, 3, 6
.cdd fl ashburn utility, 99
Circular addressing, registers for, 530
Circular addressing mode, 111–112
Circular buffers, 111, 530

ASM functions with, 201–205
in external memory, 205–206

Classifi cation module, in automatic speaker 
recognition, 497

Closed set identifi cation, 498
Cluster, 497
Codebook, 497, 500
code_casm project, 135
Code Composer Studio (CCS), 1, 3, 6

build options for, 13–15
graphical displays with, 23
installation and support for, 6
memory window, 23, 26

Codec, see AIC23 codec
Code detection, using C calling an ASM 

function, 135
Code optimization, 354–373

compiler options for, 355–356
execution cycles for, 372–373
procedure for, 356
programming examples using, 356–363
software pipelining for, 363–372
steps in, 355–356

Codevectors, 500
Codeword, 497, 499
comm_intr() function, 33
comm_poll() function, 33, 48
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Compiler options
with CCS, 13–15
for code optimization, 355–356

Constellation diagram, 472
Control status register (CSR), 118, 500
Convolution, 146, 153, 165

frequency-domain, 306–312
time-domain, 299–306

Convolutional encoding, 482, 483
CPU functional units, of TMS320C6x 

processors, 105–106
Cross-path constraints, 128
Cross-path instructions, 127
Cross-paths, of TMS320C6x processors, 

106

DAC, see Digital-to-analog converter
Data alignment, 123
Data allocation, 122–123
Data types, 124–125
Decimation, 508
Decimation-in-frequency (DIF) algorithms, 

255
eight-point FFT using, 261–263
radix-2, 257–263

Decimation-in-time (DIT) algorithms, 255
eight-point FFT using, 267–268
radix-2, 263–268

Decode stage, 109
delay project, 53
Dependency graph, 363, 364–365
detect_play project, 453–454
dft128c project, 285–290
dft project, 273–277
dft.c program, 274, 564
dftw.c program, 277–278
fft.c program, 279, 564

Difference equations, 150–151
DTMF tone generation using, 247
sine generation using, 244–247
swept sinusoid generation using, 248–251

Digital-to-analog converter (DAC), 4, 46
dimpulse project, 78
DIP switch, 4, 9, 479–482
Direct form I IIR fi lter structure, 212
Direct form II IIR fi lter structure, 212–213, 

223–225
Direct form II transpose IIR fi lter structure, 

214–215
Direct memory access (DMA), 122
Discrete cosine transform (DCT), 255

Discrete Fourier transform (DFT), 255
of real-number sequence, 273–278
of real-time signal, 285–290

Discrete Hartley transform, 255
Division operation, 126
dotp4a project, 135–139
dotp4clasm project, 139–141
dotp4 project, 23–30
dotpintrinsic project, C code with, 358
dotpipedfix project, ASM code with, 367
dotpipedfloat project, ASM code with, 

367–372
dotpnpfloat project, ASM code with, 

361–362
dotpnp project, ASM code with, 359–360
dotppfloat project, ASM code with, 362
dotpp project, ASM code with, 360
Dot product, 23–30

code optimization examples using, 
357–372

double data type, 125
Double-precision (DP) data format, 125
DSK board, 3–5. See also DSP Starter Kit 

(DSK)
dsk_fir67.m program, 179
dsk_sos_iir67int.m program, 543
dsk_sos_iir67.m program, 240
DSP applications/student projects, 422–527

acoustic direction tracker, 513–515
adaptive temporal attenuator, 519–520
audio effects, 451–453
automatic speaker recognition, 496–500
beat detection using onboard LEDs, 

429–434
binary phase shift keying, 468–470
convolutional encoding and Viterbi 

decoding, 482–492
dual-tone multifrequency signal 

detection, 422–429
encryption, 503–506
fi lter coeffi cient transfer, 434–435
fi lter design and implementation, 521
four-channel multiplexer, 522
FSK modem, 521
G.722 audio coding implementation, 

501–502
IIR fi lter and scrambling scheme, 479–482
image processing, 521
modulation schemes, 470–479
mu-law for speech companding, 500–501
multirate fi lter, 508–513



570 Index

DSP applications/student projects 
(Continued)

neural network for signal recognition, 
515–519

phase-locked loop project, 506–508
phase shift keying, 454–468
PID controller, 522
radix-4 FFT with RTDX using Visual 

C++ and MATLAB for plotting, 
435–438

spectrum display, 438–445
speech synthesis, 493–496
time-frequency analysis of signals, 

445–451
video line rate analysis, 522
voice detection and reverse playback, 

453–454
DSP/BIOS, 374–421

hardware interrupts (HWI), 375, 
378–381

idle functions (IDL), 375
periodic functions (PRD), 375, 376–378
software interrupts (SWI), 375, 382–386
tasks (TSK), 375, 386
threads, 374

DSP Starter Kit (DSK), 1. See also DSK
entries

quick tests of, 7–9
DTMF_BIOS_RTDX project, 427–429
DTMF folder, 424
DTMF generation

using difference equations, 247
using lookup tables, 66–69

.D (data transfer) units, of TMS320C6x 
processors, 105

echo_control project, 54–57
echo project, 53–54
Edge detection, in image processing, 521
Eight-level PAM lookup table, 472
EMIF_LCD project, 440–445
Encoding regions, 500
Encryption, using data encryption standard 

algorithm, 503–506
encryption project, 503–506
Euclidean distances, speaker identifi cation 

using, 500
Execute packets (EPs), 106

multiple, 129
Execute stage, 109
External memory, using to record voice, 95

External memory interface (EMIF), in 
spectrum display, 438–445

factclasm project, 141–142
factorial project, 132–133
far declaration, 124
fastconvdemo project, 306–308
Fast convolution, 297–317

with overlap-add for FIR 
implementation, 308–312

with overlap-add simulation for FIR, 
306–308

fastconv project, 308–312
Fast Fourier transform (FFT), 255–318. See

also Inverse fast Fourier transform 
(IFFT)

bit reversal and, 268
butterfl y, 260
decimation-in-frequency algorithm for, 

255
decimation-in-time algorithm with 

radix-2, 263–268
eight-point using decimation-in-

frequency, 261–263
eight-point using decimation-in-time, 

267–268
radix-2, 256–257
radix-4, 269–272
of real-time input signal, 290

using an FFT function in C, 290
using TI optimized radix-2 function, 

295–297
using TI optimized radix-4 function, 

297
of a sinusoidal signal, 290–295
sixteen-point, 263, 270–272

Fast Hartley transform (FHT), 255, 550–556
FDATool fi lter designer, 178, 540–544

for bandpass IIR fi lter design, 241
for FIR fi lter design, 541–542
for IIR fi lter design, 542–544

Feature extraction module, in automatic 
speaker recognition, 497

Fetch packets (FPs), 106
multiple EPs in, 129

fft128c project, 290
FFTr2 project, 295–297
FFTr4 project, 297
FFTsinetable project, 290–295
f-function, in encryption, 504
File types, with CCS, 7
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Finite impulse response (FIR) fi lters, 146–
209. See also FIR entries; Infi nite 
impulse response (IIR) fi lters

discrete signals and, 151–152
implementation using Fourier series, 

158–162
with internally generated pseudorandom 

noise, 182–186
lattice structure of, 154–158
lowpass, 160, 161–162, 186–188
operation and design of, 152–154
programming examples using C and ASM 

code, 165–207
with RTDX using Visual C++ for fi lter 

coeffi cient transfer, 434–435
window functions for, 162–164

FIR2ways project, 193
FIR3LP project, 186–188
FIR4types project, 188–191
FIR bandpass fi lters, see Bandpass FIR 

fi lters
FIR bandstop fi lters, see Bandstop FIR 

fi lters
FIRcasmfast project, 200–201
FIRcasm project, 197–200
FIRcirc_ext project, 205–206
FIRcirc project, 201–205
FIR fi lter implementation

two different methods for, 193
using C calling a faster ASM function, 

200–201
using C calling an ASM function, 

197–200
with circular buffer, 201–205
with circular buffer in external 

memory, 205–206
using Fourier series, 158–162
using frequency-domain convolution, 

306–308
using real-time frequency-domain 

convolution, 308–312
using real-time time-domain convolution, 

299–306
using time-domain convolution, 306

FIRPRNbuf project, 182–186
FIRPRN project, 178–182
FIR project, 175–178
Fixed-point format, 124–125
Fixed-point operations, instructions for, 

528–529
Fixed-point processors, 103

Flashburn (.cdd) utility, 99
Flash memory, 105

erasing and programming, 99
using, 95–101

flash_sine project, 95–101
float data type, 125
Floating-point format, 125–126
Fourier series, FIR implementation using, 

158–162
Four-level PAM lookup table, 472
Fractional fi xed-point representation, 536
Frame-based processing, 280–297
Frame blocking, in determining MFCCs, 

498
frames project, 283–284
Frame synchronization, 467
Frequency-domain plot, 25
Frequency inversion, scrambling by, 193
Frequency warping, 233
Functional unit latency, 110
Functional units, of TMS320C6x processors, 

105–106

G.722 audio coding, implementation of, 
501–502

G722 project, 501–502
Gabor expansion, 446
GEL slider, 18–19, 63–65
General Extension Language (GEL), 18
Goertzel algorithm, 422–429, 557–560
Goldwave shareware utility, 548–549
graphicEQ project, 312–317
Graphic equalizer, 312–317
graphic_FFT project, 438–440
Graph Property Dialogs, 24–25
Gray encoding, 475

Hamming distance, 490
Hamming window function, 163, 490, 495
Hanning window function, 163
Hardware interrupts (HWI), in DSP/BIOS, 

375, 378–381
Header fi les, 7
hex6x.exe program, 98
.hex fi le, 98–99
Highpass FIR fi lter, 161

implementation, 188
Histogram equalization, in image 

processing, 521
HWI (DSP/BIOS Hardware interrupt), 375, 

378–381
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IDL (DSP/BIOS Idle function), 375
Idle functions (IDL), in DSP/BIOS, 375
IIR_ctrl folder, 482
IIR fi lter scheme, using onboard DIP 

switches, 479–482
iir project, 243–244
iirsosadapt project, 343–345
iirsosdelta project, 228–230
iirsosprn project, 225–228
iirsos project, 223–225
iirsostr.c program, 225
Image processing, 521
Impulse invariance method, 220–223
Impulse response, 78, 89, 92
Indirect addressing, 110
Infi nite impulse response (IIR) fi lters, 

210–254
second order sections, 216, 223

Initialization/communication fi le, 30–33
input_left_sample() function, 33, 

48
Instruction sets, for TMS320C6x processors, 

112–115
int data type, 124
Interrupt acknowledgment (IACK), 120
Interrupt clear register (ICR), 118, 530
Interrupt control registers, 118, 530
Interrupt enable register (IER), 118, 530
Interrupt fl ag register (IFR), 118, 530
Interrupt return pointer (IRP), 119
Interrupts, 118–121

registers for, 118, 530
Interrupt service table (IST), 120
Interrupt service table base (ISTB) register, 

120
Interrupt service table pointer (ISTP), 118, 

530
Interrupt set register (ISR), 118, 530
intrinsics, 126
INUMx signals, 120
Inverse discrete Fourier transform (IDFT), 

255, 272
Inverse fast Fourier transform (IFFT), 

272

Kaiser window function, 164
k-parameters, 154

LabVIEW, for PC/DSK interface, 415, 421
Laplace transform, 146, 147, 149, 221, 222
Lattice structure, of FIR fi lters, 154–158

Least mean squares (LMS) algorithms
for adaptive fi lters, 321, 323–324
sign-data algorithm, 323
sign-error algorithm, 323
sign-sign algorithm, 324
types of, 323–324

LED, 4, 9
Level detection, in determining MFCCs, 498
Levinson–Durbin algorithm, in LPC speech 

synthesis, 495
Linear adaptive combiner, see Adaptive

linear combiner
Linear addressing mode, 110
Linear assembly, 116–117
Linear assembly function, C function 

calling, 139–142
Linear phase, with FIR fi lters, 154
Linear prediction, of speech signals, 

493–496
Linear predictive coding (LPC), 493–494
Linker command fi les, 34–38
Linker options, with CCS, 15
Liquid-crystal displays (LCDs), in spectrum 

display, 440–445
Load instructions, 114–115
LOG object, in DSP/BIOS, 382
Lookup table

DTMF generation with, 66–69
impulse generation with, 78
sine wave generation with, 60
square-wave generation with, 75–77

Loop count, trip directive for, 127
loop_buf project, 57–60, 82
loop_intr project, 51–53, 564
loop_poll project, 48–51
Loop program

using C6416 DSK, 564
with input data stored in memory, 57–60
using interrupts, 51–53, 564
using polling, 48–51

Lowpass FIR fi lter, 160
implementation, 188

.L (logical) units, of TMS320C6x 
processors, 105

MATLAB, 540–548
MATLAB student version

for FIR fi lter design, 544–545
for IIR fi lter design, 546–548

Mean-squared error, 328
Median fi ltering, in image processing, 521
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Mel-frequency cepstrum coeffi cients 
(MFCCs), 497

Memory. See also Direct memory access 
(DMA); External memory; Flash 
memory

circular buffer in external, 205–206
fl ash, 105
internal, 105
for TMS320C6x processors, 104–105
viewing sample update in, 199–200

Memory constraints, 128
Memory data, viewing and saving, 23, 26
Memory map, of TMS320C6x processors, 

107
Memory models, 124
Memory window, in CCS, 23, 26
Modulation, 468–469, 470–479
modulation_schemes folder, 470
Move instructions, 115
Moving average fi lter, 165
mu-law, for speech companding, 500–501
mulaw project, 500–501
Multichannel buffered serial ports 

(McBSPs), 121
Multiple EPs, pipelining effects with, 

129–130
Multiplication, of n-bit numbers, 536–539
Multiply instructions, 113–114
Multirate fi lter, 508–513
.M (multiply) units, of TMS320C6x 

processors, 105
myprojects folder, 7

n-bit numbers, multiplication of, 536–539
near declaration, 124
Neural network, for signal recognition, 

515–519
Newton’s Forward interpolation, 467
Noise cancellation

adaptive FIR fi lter for, 335–339
adaptive structures for, 322

noisegen_casm program, 133–135
Noise generation, using C calling an 

assembly function, 133–135
Nonmaskable interrupt (NMI), 119
Nonmaskable interrupt return pointer 

(NRP), 119
notch2 project, 191–192
Notch fi lters, to recover corrupted input 

voice, 191–192
Number wheels, 534–535, 537

Open set identifi cation, 498
Optimization

benchmarking (profi ling) with, 30
benchmarking (profi ling) without, 29

output_left_sample() function, 10, 33, 
48

Overlap-add, 302
Overlap-save, 302

PAM lookup tables, 472–473
Parallel form IIR fi lter structure, 216–217
Parks–McClellan algorithm, 153, 164
PC/DSK interface

using LabVIEW, 415–421
using MATLAB, 386–399
using Visual Basic, 411–414
using Visual C++, 400–411

Performance function, 327–329
Periodic functions (PRD), in DSP/BIOS, 

375, 376–378
Phase-locked loop (PLL), 460, 506–508
Phase shift keying (PSK), 454–468, 474–479
PID (proportional, integral, derivative) 

controller, 522
Pipelining, 108–110. See also Software

pipelining
effects of, 109, 129
hand-coded software pipelining, 363
with stalling effects, 130

PLL project, 506–508
Plotting

with CCS, 23
with MATLAB, 393–396, 406–411

Point detection, in image processing, 521
Poles, 149–150
Ports, multichannel buffered serial, 121
POST program, 7

recovering, 99–101
pragma directives, 95, 123–124
prandom project, 78–82
PRD (DSP/BIOS Periodic function), 375, 

376–378
Prewarping, 235
Profi le clock, 29, 564
Profi ling

with optimization, 30
without optimization, 29

Program errors, correcting with CCS, 17
Program fetch stage, 108
Project creation, 11–13
Project view window 13
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Pseudorandom noise, 78–82
as input to FIR fi lter, 178–186
as input to IIR fi lter, 225–228
as input to moving average fi lter, 168
prandom.c program, 78–82
using C calling an assembly function, 

133–135
PSK folder, 454–468
PSOLA (pitch synchronous overlap-add) 

digital technology, 493
Pulse amplitude modulation (PAM), 

470–474

Quadrature mirror fi lter (QMF), 501
Quadrature phase-shift keying (QPSK), 

474, 476
Quantization error, 103

Radix-2 decimation-in-frequency FFT 
algorithm, 255

Radix-2 decimation-in-time FFT algorithm, 
263–268

Radix-2 fast Fourier transform, 256–257
Radix-4 fast Fourier transform, 269–272

of real-time input, 297
with RTDX using Visual C++ and 

MATLAB for plotting, 406–411
sixteen-point, 263, 270–272

ramp project, 92
Real-time data exchange (RTDX), 6

for amplitude control of loop program 
output, 413–414

for controlling generated sinusoid 
amplitude, 420–421

for controlling generated sinusoid gain, 
417–420

displaying detected DTMF signals with, 
427–429

in fi lter coeffi cient transfer, 434–435
for FIR fi lter implementation, 396–400, 

415–417
MATLAB–DSK interface using, 388–393
with MATLAB FFT and plotting 

functions, 406–411
for sine wave amplitude control, 400–406, 

411–413
spectrograms with, 446–450
using LabVIEW for PC/DSK interface, 

415–421
using MATLAB for PC/DSK interface, 

386–399

using Visual Basic for PC/DSK interface, 
411–414

using Visual C++ to interface with DSK, 
400–411

Real-time scheduler, 374
Real-time signal processing, 2
Reconstruction fi lter, 46, 76–82, 145
receiver folder, 465
record project, 95
Rectangular window function, 162
Refl ection coeffi cients, 154. See also 

k-parameters
Register fi les, 110
Registers

for circular addressing and interrupts, 
111, 530–532

in indirect addressing, 110
interrupt control, 118–120
supporting data communication, 121
for TMS320C6x processors, 110

RELP (residue excited) digital technology, 
493

Remez exchange algorithm, 164
Residual signal module, in LPC speech 

synthesis, 495
Rijndael algorithm, 503
rtdx_lv_filter project, 415–417
rtdx_lv_gain project, 417–420
rtdx_lv_sine project, 420–421
rtdx_matlabFFT project, 393–396
rtdx_matlabFIR project, 396–400
rtdx_matlab_sim project, 388–393
rtdx_vbloop project, 413–414
rtdx_vbsine project, 411–413
rtdx_vc_FFTmatlab folder, 406
rtdx_vc_FFTr4 project, 435–438
rtdx_vc_FIR project, 434–435
rtdx_vc_sine project, 400–406

Sample update, viewing in memory, 199
Sampling rate, 46
S-boxes, in encryption, 505
Scheduling tables, 363, 365–372
scrambler project, 193–196
Segmentation module, in LPC speech 

synthesis, 495
Serial port control register (SPCR), 33, 530
Serial ports, multichannel buffered, 121
short data type, 124
Short time Fourier transform (STFT), 445
Sigma–delta technology, 46
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Signal recognition, neural network for, 
515–519

Sign-data LMS algorithm, 323
signed int data type, 124
Sign-error LMS algorithm, 323
Sign-sign LMS algorithm, 324
sin1500MATL project, 70–72
sine2sliders project, 63–65
sine8_buf project, 21–23
sine8_intr project, 60–61
sine8_LED project, 9–21, 562–564
sine8_phase_shift project, 462
sineDTMF_intr project, 66–69
sinegencasm project, 251–252
sinegenDE project, 244–247
sinegenDTMF project, 247
sinegen_table project, 69–70
sine_intr project, 61–62
sine_led_ctrl project, 72–73
sine_stereo project, 62–63
sine wave generation

real-time, 60
sin1500.c program, 70–72
sine2sliders.c program, 63–65
sine8_intr.c program, 60
sine_intr.c program, 61
stereo output, 62–63
sweep8000.c program, 65–66
using lookup table, 60
using sin() function call, 61
using values generated in program, 69–70
with DIP switch control, 72–73

Single-precision (SP) data format, 125
Sinusoidal noise cancellation, adaptive fi lter 

for, 335
Sixteen-level PAM lookup table, 473
Sliders

for amplitude and frequency of sine 
wave, 63–65

GEL fi les for 18–19
Software interrupts (SWI), in DSP/BIOS, 

375, 382–384
Software pipelining, 127–128, 355, 363–372
soundboard folder, 451–453
Speaker identifi cation, 500
Speaker recognition, automatic, 496–500
speaker_recognition folder, 496–500
Spectral leakage, 275, 290
spectrogram folder, 445–451
spectrogram_rtdx_mtl project,

445–450

Spectrograms
with RTDX using MATLAB, 446–450
with RTDX using Visual C++, 450–451
time-frequency analysis of signals with, 

445–451
Spectrum display

through EMIF using LCDs, 440–445
through EMIF using 32 LEDs, 438–440

speech_syn project, 493–496
Speech synthesis, using linear prediction of 

speech signals, 493–496
squarewave project, 75–77
Stalling effects, 130
Stereo codec, 4, 40–42
Stereo output, sine generation with, 62–63
Store instructions, 114–115
Subtract instructions, 113–114
Sum of products. 357
sum project, 131–132
.S units, of TMS320C6x processors, 105
Support fi les, with CCS, 30

communication, 30–33
header, 33
initialization, 30–33
linker command, 34, 41
vector, 34, 39–40

sweep8000 project, 65–66
sweepDE project, 248–251
SWI (DSP/BIOS Software interrupt), 375, 

382–386
sysid project, 85, 168, 345–352
sysid16 project, 85–92
system identifi cation

adaptive structures for, 322
of codec antialiasing and reconstruction 

fi lters, 85–92

Tasks (TSK), in DSP/BIOS, 375, 386
Text-to-speech systems, 493
Threads, in DSP/BIOS, 374
timeconv project, 306
timeconvdemo project, 299–306
Time-domain plot, 24
Time-frequency analysis, of signals, 445–

451
TLV320AIC23 onboard stereo codec, 2, 4, 

46–47
TMS320C62xx fi xed-point processors, 4
TMS320C6416 digital signal processor, 1, 5
TMS320C6416 DSK, 1, 561–566
TMS320C64x processors, 4, 561–566
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TMS320C6713 digital signal processor, 1, 4, 
104

board for, 4
TMS320C67xx fl oating-point processors, 4
TMS320C6x instruction set, 528–529
TMS320C6x processors, 1–3, 102–145

addressing modes and, 110–112
architecture of, 104–105
asm statement and, 117
assembler directives and, 115–116
C callable assembly functions with, 

117–118
code improvement for, 126–128
constraints with, 128–130
CPU functional units of, 105–106
direct memory access and, 122
fetch and execute packets and, 106–108
fi xed- and fl oating-point format and, 

124–126
instruction set for, 112–115, 528–529
interrupts and, 118–121
linear assembly and, 116–117, 139–142
memory with, 122–124
multichannel buffered serial ports with, 

121–122
pipelining and, 108–110
register fi les and, 110
timers and, 118

transmitter folder, 465
Transmitter/receiver algorithm

for PAM, 473–474
for PSK, 475

Trellis diagram, 485
TSK (DSP/BIOS Task), 375, 386
Twiddle constants/factors, 256, 267, 271, 

277
Two’s-complement representation, 533–539
twosumfix project, ASM code with, 

360–361
twosumfloat project, 362–363
twosumlasmfix project, linear ASM code 

with, 358–359

twosumlasmfloat project, linear ASM 
code with, 359

twosum project, C code for, 357–358

Universal synchronous bus (USB) cable, 3
Unsharp masking, in image processing, 521

Variable Watch, implementing, 26
Vector fi les, 34
vectors_intr.asm fi le, 39
vectors_poll.asm fi le, 12, 40
VELOCITI architecture, 5, 106, 561
VELP (voice excited) digital technology, 

493
Very-long-instruction-word (VLIW) 

architecture, 5, 106
Video line rate analysis, 522
Visual Basic (VB), for PC/DSK interface, 

411–414
Visual C++, for PC/DSK interface, 400–411
Viterbi decoding algorithm, 482, 485

hard-decision decoding setup, 482
soft decision decoding setup, 482–483

viterbi project, 482–492
Voice detection, 453–454
Voice recording, using external memory, 95
Voice scrambling, using fi ltering and 

modulation, 193–196
VQ distortion, 497
VQ process, 499

Watch window, monitoring, 18–20
Wigner–Ville distribution, 446
Window functions, 162–164

Blackman, 164
Kaiser, 164
Hamming, 163
Hanning, 163
rectangular, 162

Windowing, in LPC speech synthesis, 495

z-transform (ZT), 146–150, 220–222
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