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Abstract. We introduce the self-similar sketch, a new method for the
extraction of intermediate image features that combines three princi-
ples: detection of self-similarity structures, nonaccidental alignment, and
instance-specific modelling. The method searches for self-similar image
structures that form nonaccidental patterns, for example collinear ar-
rangements. We demonstrate a simple implementation of this idea where
self-similar structures are found by looking for SIFT descriptors that map
to the same visual words in image-specific vocabularies. This results in
a visual word map which is searched for elongated connected compo-
nents. Finally, segments are fitted to these connected components, ex-
tracting linear image structures beyond the ones that can be captured
by conventional edge detectors, as the latter implicitly assume a specific
appearance for the edges (steps). The resulting collection of segments
constitutes a “sketch” of the image. This is applied to the task of es-
timating vanishing points, horizon, and zenith in standard benchmark
data, obtaining state-of-the-art results. We also propose a new vanish-
ing point estimation algorithm based on recently introduced techniques
for the continuous-discrete optimisation of energies arising from model
selection priors.

Key words: self-similarity, feature detector, vanishing point estimation,
UFL

1 Introduction

Almost all computer vision methods start by computing features of the image.
This is done in addressing geometric tasks such as three dimensional reconstruc-
tion from multiple views, as well as semantic tasks such as the recognition of
natural object categories. Useful features extract stable image structures which
are relevant to the task at hand, factoring the useful information from nuisances
of the imaging process. A typical example are the many co-variant image region
detectors [1–3] and the corresponding invariant descriptors [4] used in wide-
baseline matching to identify fragments of 3D dimensional scenes regardless of
viewpoint.

Due to the lack of a theory that can indicate what an optimal feature de-
sign should be, one usually looks for reasonable properties such as viewpoint
invariance [5], robustness, and speed. Standard feature detectors such as Har-
ris’ corners [6], Canny’s edges [7], the Laplacian and Hessian detectors [8], and
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Fig. 1. Self-similar sketches. The figure shows a few example images, the quantised
local descriptors, and the fitted line segments constituting the sketch. The calculation
is straightforward and relatively efficient.

their affine co-variant extensions [1, 2], look for simple structures such as cor-
ners, blobs, and steps. In these cases, the appearance of the detected structures
is defined analytically by looking at the extrema of one or more operators of the
image scale space. Alternatively, it can be learned from example data [9, 10] to
go past the restrictions of the analytical approach.

In this work we propose a novel design for feature detectors which does
not require defining (either analytically or through example data) the appear-
ance of the detected structures at all. Our approach, which we call self-similar
sketch, combines in a novel way three known principles: (i) self-similarity [11],
(ii) nonaccidental alignment [12–14], and (iii) instance-specific modelling [15].
The idea of self-similarity, as proposed by [11], is to abstract from the image
appearance by searching for occurrences of visually similar structures within an
image. Spatial arrangements of self-similar structures are then recorded and used
as feature descriptors. By contrast, the self-similar sketch looks for nonaccidental
arrangements (in the following examples straight line segments) of self-similar
structures and use these as a basis for feature detectors. Moreover, the method
used to detect the self-similar structures, i.e., computing an image-specific visual
vocabulary [16] (Sect. 2), can be seen as estimating an appearance model of each
detected structure on an instance-by-instance basis.
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Fig. 2. Construction of the self-simlar sketch. From left to right: input image,
label l(u, v) associated to each pixel (different colours correspond to different labels),
regions selected as elongated overlaid by the corresponding line segment, and the final
sketch.

The paper explores a particularly simple example of the self-similar sketch
construction that can be summarised in a few words: (i) local descriptors are
extracted densely from the image, (ii) these are discretised based on an image-
specific vocabulary, and (iii) the aligned occurrences of identical visual words
are extracted as line segments. The result can be thought of as a sketch of the
image abstracting away from the details of the local appearance while capturing
shape by coarse straight strokes (Fig. 1, 2, Sect. 2).

Compared to traditional feature designs, perhaps the most striking difference
is that the self-similar sketch does not attempt to characterise the appearance of
the detected structure (e.g., as blobs or steps). Instead, the feature appearance
is completely instance-dependent, and the features are defined solely based on a
nonaccidental alignment principle. The details of the construction are reported
in Sect. 2.

As an example application, Sect. 4 demonstrates using the self-similar sketch
for the extraction of vanishing points and the estimation of the horizon location
on standard benchmark data. For vanishing point estimation, a method inspired
by [17, 18] (Sect. 3) is used to simultaneously group of line segments into van-
ishing points, determine the number and locations of such points, and reject
potential line outliers. By carefully modelling the uncertainty of line detector
output (Sect 3.3), this method is competitive with state-of-the-art algorithms
even when standard edge detectors are used (Sect. 4). When the algorithm is
used in combination with the self-similar sketch, however, the performance is
improved significantly and results may exceed the state-of-the-art by a margin.

2 Self-similar sketch

This section describes in detail the extraction of the self-similar sketch outlined
in Sect. 1. Fig. 2 illustrates the main steps.

Given an input image I(u, v), (u, v) ∈ Ω, where Ω is a discrete set of pixel
locations, the construction starts by extracting a dense set of local appearance
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descriptors {Ψ(u, v), (u, v) ∈ Ω} from the image. While many different choices of
Ψ(u, v) are possible, in this paper we consider SIFT features [4] as these can be
extracted very efficiently at a dense set of locations if their orientation and scale
are fixed. Very low-contrast SIFT descriptors are mapped to the null vector to
avoid wasting resources by coding unstable image structures in the next step.

The descriptors {Ψ(u, v) : (u, v) ∈ Ω} are then quantised in a small image-
specific vocabulary {c1, . . . , ck} of k ≈ 100 visual words by using k-means clus-
tering. While the number of descriptors is potentially large, the small size of the
vocabulary means that even a simple implementation of the k-means algorithm
is usually sufficient to complete the computation quickly (it is also possible to
subsample the set of descriptors used to estimate the k-means centres).

After quantisation, line segments are efficiently extracted by using a method
analogous to [19]. First, each image pixel (u, v) is assigned the label l(u, v) cor-
responding to the visual word cl(u,v) closest to the local descriptor Ψ(u, v). Then
the connected components of the label map l(u, v) are extracted, in our example
using the standard 4-neighbours topology. The area A(R) and major µ1(R) and
minor µ2(R) axis of inertia of each connected component R ⊂ Ω are computed
(this can be done efficiently in a single pass over the image by using appropriate
accumulators), and the regions R that have sufficiently large area A(R) ≥ A0 and
aspect ratio µ1(R)/µ2(R) > r are deemed as elongated and marked as detected.

Once these elongated regions are extracted, a line segment is fitted to each of
them. The segment passes through the centroid of the region R, is aligned to the
major axis of inertia of the region, and extends to touch a bounding box tightly
containing the region itself. In the following, each segment will be represented
by the two extrema (x1,x2). The collection of all the segments extracted in this
manner constitutes the self-similar sketch. Example results are reported in Fig. 2
and Sect. 4.

3 Vanishing points from the self-similar sketch

This section discusses an example application of the self-similar sketch, namely
the automatic extraction of vanishing points and related geometric entities such
as the horizon. Recall that a vanishing point is an image point where the pro-
jection of parallel three dimensional lines converge. The estimation of the image
vanishing points [20–26] is a standard step in several geometry-based applica-
tions. For example, in a so-called Manhattan world one has ideally three groups
of three dimensional parallel lines, corresponding to the vertical direction (the
side of buildings) and two orthogonal ones, parallel to the ground (the bases of
buildings), forming an orthonormal system. Thus, by identifying these charac-
teristic directions, it is possible to estimate the camera orientation. In a slightly
more complex scenario, there are a number of directions that are parallel to
the ground but not necessarily orthogonal, corresponding to vertical structures
whose base may not be aligned. In this case, vanishing points can still be use-
ful to estimate other important geometric parameters, such as the location of
the horizon. In particular, the estimation of the horizon has been shown to be
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a useful cue for higher level tasks, including object categorisation and scene
interpretation [27].

3.1 Geometry

This section reviews briefly the geometry of vanishing points and the relative
equations. Given a point (u, v) ∈ Ω in the image reference frame, its coordinates
x ∈ R3 in the camera reference frame are given by

x =

ρ(u− cu)
ρ(v − cv)

1


where ρ is a pixel size in units of focal length and (uc, vc) are the coordinates
of the camera principal point (in pixels). When the pixel size and the principal
points are unknown, a sensible choice [21] is to assume that the principal point
lies at the centre of the image and that ρ = 2/W , where W is the image width
in pixels (this corresponds to assuming a field of view is of 90 degrees).

A line segment is defined by two extrema (x1,x2) in the image plane. The
corresponding line can be obtained by intersecting the image plane with the
plane π passing through x1,x2 and the camera centre 0. Therefore, the line can
be represented as the unit vector ` ∈ S2 normal to the plane π, where S2 denotes
the Gaussian (unit) sphere. This vector is given by

` =
x̂1x2

‖x̂1x2‖
(1)

where ·̂ denotes the hat operator (i.e., x̂1x2 = x1 × x2).
Let `1, . . . , `n be lines whose image converges to the same vanishing point.

Then the vectors `1, . . . , `n belong to a plane π′ passing through the camera
centre. If v ∈ S2 is the vector normal to π′, then all the vectors `i are orthogonal
to it, i.e., 〈`i,v〉 = 0. Moreover, the image of the vector v is the vanishing point.

Given n lines `1, . . . , `n, the goal is to associate them to m vanishing points
vi, . . .vm in such a way that the equations

〈vqi , `〉 = 0, i = 1, . . . , n (2)

are satisfied. Here qi ∈ {1, . . . ,m} are n label assignments mapping the n lines to
up to m vanishing points. In general, not only the associations qi and vanishing
points vi are unknown, but also the number m of the latter must be determined.
Moreover, measurements are affected by noise and can be contaminated by out-
liers. The next section introduces an effective statistical model that can handle
all this automatically.

3.2 Statistics and objective function

This section introduces a statistical model for associating lines to vanishing
points, estimating the number and location of these, and handling potential out-
liers in the measurements. The association is represented by n label assignments
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qi ∈ {1, . . . ,m,m+1}, where the additional label m+1 indicates that a line is an
outlier (by convention we set the corresponding vanishing point vector vm+1 = 0
to zero). The goal is to find a small number of vanishing points that can explain
all the lines that are inliers. This can be obtained by trading off the number
of vanishing point used to “explain” the lines and the likelihood of the fit, as
expressed by the minimisation of the energy function

E(q1, . . . , qn;v1, . . . ,vm) = −
n∑
i=1

log p(`i|vqi , σi) + γ

m+1∑
j=1

[∃i : qi = j]. (3)

The first term is the negative log-likelihood of the vanishing points given the
measured lines and the second term is the number of vanishing points that are
associated to at least one line. Choosing a large parameter γ discourages selecting
too many vanishing points, avoiding overfitting the data. This formulation is a
special case of, for example, [17].

The probability density p(`|v, σ) is the likelihood of the vanishing point v
given the measured line ` and accounts for the measurement error, including the
outlier case v = 0. According to (2), in the ideal case all the line vectors `i are
orthogonal to vqi . A simple model [21] is therefore to assume that 〈`i,v〉 has a
null mean Gaussian distribution, i.e.,

− log p(`|v, σ) =

{
1
2 〈`,v〉

2/σ2 + 1
2 log 2πσ, v 6= 0,

1
2 log 2πσ0, v = 0 (outlier).

(4)

Here the standard deviation σ should be proportional to the uncertainty induced
by measurement errors. The parameter σ0 is a nominal standard deviation corre-
sponding to the outlier case, expressed in this way to make tuning more intuitive.
The next section introduces a simple yet effective method for tuning σ based on
the uncertainty of each line segment.

3.3 Measurement model

This section suggests how to choose the standard deviations σi in (3) in order
to reflect the accuracy of the line segment detection. When the line segments
are obtained as discussed in Sect. 2, they are affected by an error x̃i = xi + ei,
where ei = (e1i, e2i, 0)> is a small displacement in the image plane. The modulus
of the error can be bounded by a parameter δ ≥ ‖ei‖ equal to half the width
of the elongated region R used to extract that segment, which for simplicity
is assumed to be proportional to its minor axis of inertia µ2(R) (Sect. 2). Let
˜̀ = ˆ̃x1x2/‖ˆ̃x1x2‖ be the line perturbed by the error at the extrema of the
segment. The uncertainty on the projection of the line ` on the vanishing point
vector v is then bounded by the Cauchy-Schwartz inequality:

|〈v, ˜̀〉 − 〈v, `〉| ≤ ‖v‖‖˜̀− `‖ = ‖˜̀− `‖.

The difference between the perturbed and exact line is given by

˜̀− ` =
ˆ̃x1x̃2

‖ˆ̃x1x̃2‖
− x̂1x2

‖x̂1x2‖
≈

ˆ̃x1x̃2 − x̂1x2

‖x̂1x2‖
=

x̂1e2 − x̂2e1 + ê2e1
‖x̂1x2‖

.
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Since x̂1e2 = (−e22, e12, x11e22 − x21e12)>, then, in the worst case, one obtains
that e12 = δx21/

√
x211 + x221 and e21 = −δx11/

√
x211 + x221, so that ‖x̂1e2‖2 <

δ2(1 + x211 + x221). Since ‖ê2e1‖2 ≤ δ4, one obtains

|〈v, ˜̀〉 − 〈v, `〉| ≤ ‖˜̀− `‖ ≤ δ
√
‖x1‖2 + ‖x2‖2 + δ2

‖x1 × x2‖
. (5)

It is then natural to set the standard deviation σ in the likelihood (4) propor-
tional to the right-hand side of (5).

3.4 Optimisation

The optimisation of the energy function (3) is quite challenging as one has to
simultaneously allocate vanishing points to lines as well as determine how many
should be used. This is the same problem addressed, for example, by the PEARL
algorithm of [17, 18], and in fact a special case which reduces to the uncapacitated
facility location (UFL [18]) algorithm as there are no pairwise terms in the energy.
While not explored here, pairwise terms could be used in the estimation of
vanishing points in order to encourage image lines that are nearly parallel and
spatially close to converge to the same vanishing point. The algorithm combines
four steps, initialisation, α-expansion, re-estimation, and re-sampling, as detailed
next.

Initialisation. The algorithm starts by considering a large set of candidate van-
ishing points v1, . . . ,vm. These can be sampled from data in various ways. In
our implementation, one vanishing point is generated from each line `i by setting
vi ∝ (0, 0, 1) × `i. This choice corresponds to initialising a vanishing point at
infinity in the direction of each line `i.

α-expansion. Given a label α ∈ {1, . . . ,m,m+ 1} to expand, one searches which
label assignments qi should switch to α in order to maximally decrease the energy
(3). There are two cases to be considered:

– If the label α is already active (i.e., ∃i : qi = α) switching any assignment qi
to α does not pay the cost γ of activating a new label. Given this observation,
there are two cases for which switching improves the likelihood. The first one
is that the likelihood of α for the line `i is better:

− log p(`i|vα, σi) < − log p(`i|vqi , σi). (6)

The second one is that switching all the current assignments I = {i : qj = β}
to some label β 6= α back to α lowers the energy accounting for the additional
reward γ obtained by making the label β inactive:

−
∑
i∈I

log p(`i|vα, σj) < −
∑
i∈I

log p(`i|vqi , σi) + γ, (7)
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– If on the contrarily α is inactive in the current labelling (i.e., ∀i : qi 6= α),
then conditions similar to (6) and (7) still apply, but one needs to check
whether the overall improvement is larger than the cost γ of activating the
new label α before switching.

Once a new assignment qα is obtained from q by using these rules, the move is
accepted if it lowers the energy:

E(qα1 , . . . , q
α
n ;v1, . . . ,vm) < E(q1, . . . , qn;v1, . . . ,vm).

Re-estimation. After labels have been reassigned by an α-expansion step, one can
further improve the energy by updating the vanishing points to optimally match
the lines currently assigned to them. Given the likelihood (4), this amounts to
calculating

v∗j = argmin
v∈S2

∑
i:qi=j

〈`i,v〉2

σ2
i

(8)

Then the vanishing point v∗j is obtained [21] as the unit eigenvector of M>M ,
where the columns of the matrix M are the vectors `i/σi, i : qi = j.

Re-sampling. After a few iterations of α-expansion and re-estimation, the algo-
rithm may converge to a locally optimal solution. This can be further improved
by proposing new candidate vanishing points. In practice, the next time an inac-
tive label α is expanded, rather than using the current value of vα, this can be
replaced by the vanishing point obtained by intersecting two lines `i, `j selected
at random, or by intersecting the lines {`i : qi = j∨qi = k} obtained by merging
two active labels j and k (in this case vα is computed using (8)).

4 Experiments

This section evaluates empirically the self-similar sketch applied to the task
of estimating vanishing points. The comparison includes: (i) the algorithm of
Sect. 3 with the self-similar sketch (Sect. 2), (ii) the algorithm of Sect. 3 with
lines obtained as in Sect. 2 but based on the image gradient (which reduces to [19]
and is used by Video Compass [21]), (iii) the current state-of-the-art geometric
parsing algorithm of [24, 28] based on Canny’s edges, (iv) Tardif’s method [23],
and (v) Video Compass [21].

Video Compass [21] is a carefully tuned expectation-maximisation (EM) al-
gorithm that, similarly to the method of Sect. 3.4, fits lines to vanishing points
on the Gauss sphere, hence using an algebraic error. Tardif ’s method [23] uses
J-Linkage to non-iteratively associate line segments to vanishing points and re-
fines the solution by using EM iterations, measuring errors directly on the image
plane. Geometric parsing [24] proposes and integrated energy formulation that
simultaneously groups edges into lines, lines into vanishing points, and use the
latter to estimate the horizon an zenith.
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Fig. 3. Quantitative evaluation of the horizon estimation. (a) York Urban and
(b) Eurasian Cities datasets. The figure compares our estimation algorithm combined
with the self-similar sketch, the same with gradient-based features, three competing
methods, and the baseline obtained by setting the horizon to be an horizontal line in
the image centre. See the text for details.

Datasets. The methods are evaluated on the same datasets and with the same
protocol of [24], and in fact we report their results for all but the proposed meth-
ods. The methods are evaluated on two datasets: (i) York Urban [22] consisting
of 102 images mostly following the Manhattan world assumption (three main or-
thogonal vanishing points) taken indoor and outdoor around the same location
and (ii) the significantly harder Eurasian dataset of [24], including scenes from
different parts of the world (hence with different appearance statistics), more
varied viewpoints, and poorer fit to the Manhattan assumption. Both datasets
come with a few accurately hand annotated systems of vanishing lines for each
image that are used to estimate the ground truth parameters during evaluation.
Images are split into validation and testing as explained in [24].

Task and performance metric. [24] proposes as performance metric the qual-
ity of the recovered horizon line, as the latter can be obtained directly from
un-calibrated images (camera calibration is not available for Eurasian Cities).
Following the protocol in [24], the horizon is estimated into two steps: first the
zenith (vertical direction) is used to estimate the orientation of the horizon (as
the zenith is orthogonal to it) and then the other vanishing points are used to
estimate the horizon offset. In principle, in estimating the horizon offset only the
vanishing points corresponding to three dimensional lines parallel to the ground
should be used. While the sophisticated model in [24] explicitly identifies such
vanishing points, here we use the simple heuristic of letting all the vanishing
points vote for the horizon based on their mass (number of line segments con-
verging to them). Performance is reported in term of the percentage of test
images that achieve an error smaller or equal than a given threshold, obtaining
corresponding performance curves as the threshold is varied (Fig. 3). We also
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Fig. 4. Vanishing points and horizon estimation. Example images, vanishing
points, and horizon (in solid blue the estimated one and in dashed green the ground
truth one) on the Eurasian Cities dataset. The coloured line segments correspond to
the self-similar sketch elements that converge to one of the vanishing points. Each
vanishing point is marked by a square along with the number of segments converging
to it. For the vanishing points outside the circle only the direction (with respect to the
image centre) is shown.

report a numerical value as the percentage of area under the curve in the subset
[0, 0.25]× [0, 1] (i.e., focusing on the low-error region of the plots).

4.1 Implementation details

For the fast extraction of dense SIFT features and k-means clustering we use
the public implementation of these two algorithms in VLFeat [29] with default
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Fig. 5. Vanishing points and horizon estimation. The same of Fig. 4 but for the
York Urban dataset.

values. No image smoothing is applied before extraction of the SIFT features and
the size of a spatial bin is set to two pixels. The number of visual words for each
image-dependent vocabulary was set to 100, although different values (e.g., 50
or 150) did not change results substantially. The minimum area of an elongated
connected component was set to 17 and 20 pixels respectively on the Eurasian
Cities and the York Urban dataset and the minimum ratio between minor and
major moment of inertia of the regions was set to 7 and 9 respectively. Increasing
such values may select a more reliable but smaller set of linear structures in the
images and can affect performance somewhat due to the limitations of the model
of Sect. 3.2 and the fact that the optimisation method of Sect. 3.4 might still
be confused by too many outliers and get stuck into a bad local optimum. The
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computation of the sketch requires only a few seconds on a standard laptop
computer with an un-optimised MATLAB implementation.

The self-similar sketch is compared to the method of [19] for the extraction
of line segments from an image. [19] can be implemented simply by changing
the generation of the label map l(u, v) in Sect. 2 to be the quantised gradient
orientation. The best parameters for the extraction of this feature amounted to
smooth the images by a Gaussian kernel of variance 0.5 pixels and to quantise
the gradient orientation in 12 bins. The optimal parameters for the selection
of the elongated connected components were found to be the same as for the
self-similar sketch.

4.2 Results

Fig. 4 reports example results on the Eurasian dataset and Fig. 5 on the York Ur-
ban dataset. Fig. 3 reports the quantitative comparison of the various methods.
The baseline method of Sect. 3 with the gradient-based line segments of [19]
is already quite competitive, demonstrating the effectiveness of the model of
Sect. 3.2 combined with the optimisation method of Sect. 3.4. The most im-
portant result, however, is that switching from the gradient-based edges to the
self-similar sketch significantly boosts performance. In particular, our complete
method outperforms more specialised techniques such as the geometric pars-
ing of [24] on the York Urban dataset and is very close to it on the Eurasian
Cities. The reason for the improved quality of these results is the fact that the
self-similar sketch is able to extract many additional linear image structures
beyond standard edge detectors. By looking at the gradient, these methods in
fact assume implicitly that edges correspond to steps of the intensity profile. By
contrast, the self-similar sketch does not make any particular assumption on the
local appearance of linear structures.

5 Summary and future work

We have introduced the idea of self-similar sketch, a method for detecting image
features without committing to their appearance beforehand. The self-similar
sketch looks for self-similar structures in an image that happen to be arranged
in a non-accidental manner. A simple implementation of this idea was obtained
by clustering SIFT features with an image-dependent vocabulary and looking
for collinear occurrences of identical visual words. The resulting linear struc-
tures are more reliable than standard gradient-based edge extraction methods
when applied to the task of estimating vanishing points, zenith, and horizon in
natural images. As part of this evaluation, recent methods for the optimisation
of discrete-continuous energies arising from automatic model selection problems
have been found to perform very well.

This paper has examined only a simple example of self-similar sketch. Future
directions include exploring different ways of computing self similarity and the
use of other type of nonaccidental cues. Particularly interesting cases include
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the extraction of curved structures and of groups of collinear, parallel ones.
Most importantly, we plan to explore the use of the sketch in semantic image
analysis tasks such as object detection and image categorisation. A simple way
to do so is to compute descriptors on top of the detected sketch features. By
enabling abstracting from instance-specific details, this would be similar to the
original self-similar sketch descriptors [11], while incorporating the notion of
alignment/non-accidentally. The qualitative examples of Fig. 1 suggest that this
may be a promising direction.
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