
ICASE

NASA Contractor Report 195080

ICASE Report No. 95-31

Contract No. NAS1-19480
April 1995

Institute for Computer Applicationsin Science and Engineering
NASA Langley Research Center
Hampton, VA 23681-0001

Operated by Universities Space Research AssociationUSRA

PARALLEL RENDERING

Thomas W. Crockett

i

 Parallel Rendering

Thomas W. Crockett

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Abstract

In computer graphics, rendering is the process by which an abstract description of a scene is converted to

an image. When the scene is complex, or when high-quality images or high frame rates are required, the

rendering process becomes computationally demanding. To provide the necessary levels of performance,

parallel computing techniques must be brought to bear. Although parallelism has been exploited in

computer graphics since the early days of the field, its initial use was primarily in specialized

applications. The VLSI revolution of the late 1970’s and the advent of scalable parallel computers during

the late 1980’s changed this situation. Today, parallel hardware is routinely used in graphics

workstations, and numerous software-based rendering systems have been developed for general-purpose

parallel architectures.

This article provides a broad introduction to the subject of parallel rendering, encompassing both

hardware and software systems. The focus is on the underlying concepts and the issues which arise in the

design of parallel rendering algorithms and systems. We examine the different types of parallelism and

how they can be applied in rendering applications. Concepts from parallel computing, such as data

decomposition, task granularity, scalability, and load balancing, are considered in relation to the rendering

problem. We also explore concepts from computer graphics, such as coherence and projection, which

have a significant impact on the structure of parallel rendering algorithms. Our survey covers a number

of practical considerations as well, including the choice of architectural platform, communication and

memory requirements, and the problem of image assembly and display. We illustrate the discussion with

numerous examples from the parallel rendering literature, representing most of the principal rendering

methods currently used in computer graphics.

This work was supported in part by the National Aeronautics and Space Administration under Contract No. NAS1-19480 while

the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), M/S 132C, NASA

Langley Research Center, Hampton, VA 23681-0001.

E-mail: tom@icase.edu World Wide Web: http://www.icase.edu/~tom/

ii

iii

Table of Contents

I. INTRODUCTION ...1

A. HISTORICAL PERSPECTIVE...1

B. ORGANIZATION..2

II. APPLICATIONS OF PARALLEL RENDERING ...3

III. PARALLELISM IN THE RENDERING PROCESS..3

A. FUNCTIONAL PARALLELISM..5

B. DATA PARALLELISM ..5

C. TEMPORAL PARALLELISM ...7

D. HYBRID APPROACHES..8

IV. ALGORITHMIC CONCEPTS ...8

A. EMBARRASSINGLY PARALLEL ALGORITHMS..8

B. COHERENCE ...9

C. TASK AND DATA DECOMPOSITION ..10

D. GRANULARITY ...11

E. SCALABILITY..12

F. LOAD BALANCING..12

1. Static schemes ..14

2. Dynamic schemes ...14

3. Load balancing for ray-casting renderers ..15

G. OBJECT-SPACE TO IMAGE-SPACE MAPPING...17

1. Sorting classifications..17

V. DESIGN AND IMPLEMENTATION ISSUES...18

A. HARDWARE VERSUS SOFTWARE SYSTEMS..18

B. ARCHITECTURAL CONSIDERATIONS..20

1. Vector processing ...20

2. Shared vs. distributed memory...21

3. SIMD vs. MIMD ..22

C. COMMUNICATION ..24

D. MEMORY CONSTRAINTS ..27

E. IMAGE ASSEMBLY AND DISPLAY...28

1. Hardware solutions ...28

2. Considerations for general-purpose systems..29

3. Algorithmic approaches...29

iv

4. Remote image display ...31

VI. EXAMPLES OF PARALLEL RENDERING SYSTEMS ...32

A. POLYGON RENDERING AND MULTI-PURPOSE ARCHITECTURES ...32

B. VOLUME RENDERING AND RAY-TRACING ARCHITECTURES ..33

C. RADIOSITY RENDERERS...34

D. TERRAIN RENDERING...36

VII. SUMMARY...38

ACKNOWLEDGMENTS...38

REFERENCES ...38

FURTHER READING..45

v

List of Figures

FIGURE 1. The generic rendering problem. ...1

FIGURE 2. A typical polygon rendering pipeline..4

FIGURE 3. A data-parallel rendering system..5

FIGURE 4. A hybrid rendering architecture..7

FIGURE 5. Spatial coherence in image space. ..9

FIGURE 6. Image partitioning strategies..13

FIGURE 7. Hierarchical tree of bounding volumes. ..16

FIGURE 8. A three-phase rendering pipeline with two data redistribution steps....................................23

FIGURE 9. Two-step data redistribution. ...26

FIGURE 10. Binary-swap image compositing. ..30

vi

1

I. Introduction

In computer graphics, rendering is the process by which an abstract description of a scene is converted to

an image. Figure 1 illustrates the basic problem. For purposes of this discussion, a scene is a collection

of geometrically-defined objects in three-dimensional object space, with associated lighting and viewing

parameters. The rendering operation illuminates the objects and projects them into two-dimensional

image space , where color intensities of individual pixels are computed to yield a final image.

For complex scenes or high-quality images, the rendering process is computationally intensive, requiring

millions or billions of floating-point and integer operations for each image. The need for interactive or

real-time response in many applications places additional demands on processing power. The only

practical way to obtain the needed computational power is to exploit multiple processing units to speed up

the rendering task, a concept which has become known as parallel rendering.

A. Historical perspective

The incorporation of parallelism into rendering systems has been an evolutionary process, with its origins

in the early days of computer graphics. The pioneering Graphic 1 display system developed at Bell

Telephone Laboratories in the early 1960’s used its own internal processor to drive the display and handle

user interactions, allowing it to operate independently of its mainframe host (1). In 1968, Myer and

Scene Description
(3D Object Space)

Projection Plane
(2D Image Space)

Viewing Position

Light Sources

Figure 1. The generic rendering problem. A three-dimensional scene is projected onto an image
plane, taking into account the viewing parameters and light sources.

2

Sutherland (2) examined the allocation of graphics functionality in a multiprocessor configuration

composed of a host computer, display processor, and display channel1. They discussed the advantages

and disadvantages of using shared-memory to communicate between the central processor and the display

subsystem, and noted a trend toward increasingly complex display architectures. During this same time

period, more sophisticated graphics hardware began to appear, incorporating multiple function units and

low-level parallelism in the form of simultaneous logic operations. Sproull and Sutherland’s classic

“clipping divider” provides a modest example (3). The demands and budgets of real-time flight

simulation prompted more ambitious designs, including one by Schumacker et al. for the U.S. Air Force

(4). That architecture included multiple processors and a variety of specialized function units organized

into three distinct rendering subsystems, one for terrain, one for objects, and a third for point source

lights.

During the 1970’s, real-time flight simulation continued as a primary driver of high-performance graphics

systems. By the end of the decade, these systems routinely incorporated modest levels of parallelism (5),

but they were highly specialized and very expensive, making them ill-suited for more general rendering

tasks.

The VLSI revolution of the late 1970’s and early 1980’s marked an important turning point in the

development of computer graphics architectures. The availability of compact, low-cost processors and

high-capacity memory chips made high-performance systems practical for general-purpose use. The

relative simplicity of constructing systems by replicating off-the-shelf components encouraged additional

experimentation with parallel architectures. Early designs based on this new hardware paradigm included

z-buffered scan conversion systems by Fuchs and Johnson (6, 7) and Parke (8), and a pipelined polygon

rendering architecture by Clark (9, 10).

During the 1980’s, the use of multiple special-purpose hardware units became the standard approach for

achieving high rendering rates in graphics accelerators, graphics workstations, and specialized graphics

computers. The advent of “massively” parallel computer systems, containing from tens to thousands of

generic processing elements, added a new dimension to parallel rendering, promising added flexibility,

but raising numerous algorithmic and efficiency issues for software-based parallel renderers.

B. Organization

In the remainder of our discussion, we assume a passing familiarity with the basic principles and

1 The concept of channels was common in mainframe systems from the 1960’s and 1970’s. Channels are essentially

specialized co-processors used to offload I/O tasks from the central processing unit.

3

terminology of computer graphics. Parallel processing concepts are presented at a somewhat more

introductory level. We begin our examination of parallel rendering in Section II with a brief overview of

the applications to which it has most commonly been applied. Specific application areas will be

addressed in more detail in the context of subsequent sections. Section III explores different types of

parallelism and how they relate to the rendering problem. Section IV introduces a number of concepts

which are central to an understanding of parallel rendering algorithms. Building on this base, Section V

considers design and implementation issues for parallel renderers, with an emphasis on architectural

considerations and application requirements. Throughout Sections III , IV, and V, we illustrate our

discussion with examples from the parallel rendering literature, encompassing both hardware and

software systems. Section VI completes our survey of parallel rendering systems with an examination of

several parallel hardware architectures as well as radiosity and terrain rendering methods.

II. Applications of Parallel Rendering

Parallel techniques are appropriate whenever rendering performance is an issue. Demanding applications

such as real-time simulation, animation, virtual reality, photo-realistic imaging, and scientific

visualization all benefit from the use of parallelism to increase rendering performance. Indeed, these

applications have been primary motivators in the development of parallel rendering methods. Parallel

rendering has been applied to virtually every image generation technique used in computer graphics,

including surface and polygon rendering, terrain rendering, volume rendering, ray-tracing, and radiosity.

Although the requirements and approaches vary for each of these cases, there are a number of concepts

which are important in understanding how parallelism applies to the generic rendering problem. We

consider these in Sections III and IV.

III. Parallelism in the Rendering Process

Several different types of parallelism can be applied in the rendering process. These include functional

parallelism, data parallelism, and temporal parallelism . Some are more appropriate to specific

applications or specific rendering methods, while others have broader applicability. The basic types can

also be combined into hybrid systems which exploit multiple forms of parallelism. Each of these options

is discussed below.

4

R
as

te
ri

za
ti

o
n

 P
h

as
e

T
ra

n
sf

o
rm

at
io

n
 P

h
as

e

Modelling
Transformations

Scene
Description

Z-buffer
Compare & Store

Scan
Conversion

Clipping

Viewing
Transformations

Lighting
Calculations

Back-face
Culling

Display

Figure 2. A typical polygon rendering pipeline. The number of function units and their order varies
depending on details of the implementation.

5

A. Functional parallelism

One way to obtain parallelism is to split the rendering process into several distinct functions which can be

applied in series to individual data items. If a processing unit is assigned to each function (or group of

functions) and a data path is provided from one unit to the next, a rendering pipeline is formed (Figure 2).

As a processing unit completes work on one data item, it forwards it to the next unit, and receives a new

item from its upstream neighbor. Once the pipeline is filled, the degree of parallelism achieved is

proportional to the number of functional units.

The functional approach works especially well for polygon and surface rendering applications, where 3D

geometric primitives are fed into the beginning of the pipe, and final pixel values are produced at the end.

This approach has been mapped very successfully into the special purpose rendering hardware used in a

variety of commercial computer graphics workstations produced during the 1980’s and 1990’s. The

archetypal example is Clark’s Geometry System (9, 10), which replicated a custom VLSI geometry

processor in a 12-stage pipeline to perform transformation and clipping operations in two and three

dimensions.

Despite its success, the functional approach has two significant limitations. First, the overall speed of the

pipeline is limited by its slowest stage, so functional units must be designed carefully to avoid

bottlenecks. More importantly, the available parallelism is limited to the number of stages in the pipeline.

To achieve higher levels of performance, an alternate strategy is needed.

B. Data parallelism

Instead of performing a sequence of rendering functions on a single data stream, it may be preferable to

Display Buffer

P
0

Pn-1P2P1

Object Database

Figure 3. A data-parallel rendering system. Multiple data items are processed simultaneously and the
results are merged to create the final image.

6

split the data into multiple streams and operate on several items simultaneously by replicating a number

of identical rendering units (Figure 3). The parallelism achievable with this approach is not limited by the

number of stages in the rendering pipeline, but rather by economic and technical constraints on the

number of processing units which can be incorporated into a single system. Of particular importance is

the communication network which routes data among the processing units. As we will see in subsequent

sections, the characteristics of the communication network have a significant influence on the choice of

rendering algorithms, and vice versa.

Because the data-parallel approach can take advantage of larger numbers of processors, it has been

adopted in one form or another by most of the software renderers which have been developed for general-

purpose “massively parallel” systems. Data parallelism also lends itself to scalable implementations,

allowing the number of processing elements to be varied depending on factors such as scene complexity,

image resolution, or desired performance levels.

Two principal classes of data parallelism can be identified in the rendering process. Object parallelism

refers to operations which are performed independently on the geometric primitives which comprise

objects in a scene. These operations constitute the first few stages of the rendering pipeline (Figure 2),

including modeling and viewing transformations, lighting computations, and clipping. Image parallelism

occurs in the later stages of the rendering pipeline, and includes the operations used to compute individual

pixel values. Pixel computations vary depending on the rendering method in use, but may include

illumination, interpolation, composition, and visibility determination. Collectively we call the object-

level stages of the pipeline the transformation phase; the image-level stages are grouped together to form

the rasterization phase .

Potential levels of data parallelism can be quite high. The number of geometric primitives in a scene

typically ranges from a few hundred to a few million. The number of pixel values to be computed may

range from thousands to hundreds of millions, depending on image resolution, sampling frequency, and

depth complexity of the scene. In practice, geometric primitives and pixels are usually processed in

groups to take advantage of more efficient algorithms and to reduce communication requirements, but the

available parallelism normally exceeds the number of processing elements by a large factor.

To avoid bottlenecks, most data-parallel rendering systems must exploit both object and image

parallelism. Obtaining the proper balance between these two phases of the computation is difficult, since

the workloads involved at each level are highly dependent on factors such as the scene complexity,

average screen area of transformed geometric primitives, sampling ratio, and image resolution. One

approach is to define performance targets for each phase and construct the system to meet those goals.

This approach is generally preferred when separate hardware will be dedicated to object and image

7

computations. In systems where the object and image computations are performed using the same

processing units, performance targets must be based on the combined workloads. In either case, load

balancing is important in assuring efficient utilization of the hardware.

C. Temporal parallelism

In animation applications, where hundreds or thousands of high-quality images must be produced for

subsequent playback, the time to render individual frames may not be as important as the overall time

required to render all of them. In this case, parallelism may be obtained by decomposing the problem in

the time domain. The fundamental unit of work is a complete image, and each processor is assigned a

number of frames to render, along with the data needed to produce those frames.

Display Buffer

Object Database

Figure 4. A hybrid rendering architecture. Functional parallelism and data parallelism are both
exploited to achieve higher performance.

8

D. Hybrid approaches

It is certainly possible to incorporate multiple forms of parallelism in a single system. For example, the

functional- and data-parallel approaches may be combined by replicating all or part of the rendering

pipeline (Figure 4). An early example of this approach is the LINKS-1 system (11), which contained 64

identical microcomputers which could be dynamically reconfigured into multiple pipelines of varying

depth. A more recent example is Silicon Graphics’ RealityEngine (12), which uses multiple

transformation and rasterization units in a highly pipelined architecture to achieve rendering rates on the

order of one million polygons per second. In similar fashion, temporal parallelism may be combined with

the other strategies to produce systems with the potential for extremely high aggregate performance.

IV. Algorithmic Concepts

The design of effective parallel rendering algorithms can be a challenging task. In some cases, existing

sequential algorithms have straightforward parallel decompositions. In other cases, new algorithms must

be developed from scratch. Whatever their origin, most parallel algorithms introduce overheads which

are not present in their sequential counterparts. These overheads may result from some or all of the

following:

• communication among tasks or processors

• delays due to uneven workloads

• additional or redundant computations

• increased storage requirements for replicated or auxiliary data structures

To understand how these overheads arise in parallel rendering algorithms, we need to examine several

key concepts. Some of these concepts (task and data decomposition, granularity, scalability, and load

balancing) are common to most parallel algorithms, while others (coherence and object-space to image-

space data mapping) are specific to the rendering problem. Each of these topics is considered in detail in

the remainder of this section.

A. Embarrassingly parallel algorithms

Some problems can be parallelized trivially, requiring little or no interprocessor communication, and with

no significant computational overheads attributable to the parallel algorithm. Such applications are said

to be embarrassingly parallel, and efficient operation can be expected on a variety of platforms, ranging

from networks of personal computers or graphics workstations up to massively parallel supercomputers.

Rendering algorithms which exploit temporal parallelism typically fall into this category.

Rendering methods based on ray-casting (such as ray-tracing and direct volume rendering) also have

embarrassingly parallel implementations in certain circumstances. Because pixel values are computed by

9

shooting rays from each pixel into the scene, image-parallel task decompositions are very natural for these

problems. If every processor has fast access to the entire object database, then each ray can be processed

independently with no interprocessor communication required. This approach is practical for shared-

memory architectures, and also performs well on distributed-memory systems when sufficient memory is

available to replicate the object database on every processor.

B. Coherence

In computer graphics, coherence refers to the tendency for features which are nearby in space or time to

have similar properties (13). Many fundamental algorithms in the field rely on coherence in one form or

another to reduce computational requirements. Coherence is important to parallel rendering in two ways.

First, parallel algorithms which fail to preserve coherence will incur computational overheads which may

not be present in equivalent sequential algorithms. Secondly, parallel algorithms may be able to exploit

coherence to reduce communication costs or improve load balance.

Several types of coherence are important in parallel rendering. Frame coherence is the tendency of

objects, and hence resulting pixel values, to move or change shape or color slowly from one image to the

next in a related sequence of frames. This property can be used to advantage in load balancing and image

display, as we will discuss in subsequent sections.

Scanline coherence refers to the similarity of pixel values from one scanline to the next in the vertical

scanline
coherence

span

span coherence

Figure 5. Spatial coherence in image space. Pixel values tend to be similar from one scanline to the
next, and from pixel to pixel within spans. Sequential rendering algorithms exploit this property to
reduce computation costs during scan conversion.

10

direction. The corresponding property in the horizontal direction is called span coherence, which refers

to the similarity of nearby pixel values within a scanline (Figure 5). Sequential rasterization algorithms

rely on these two forms of spatial coherence for efficient interpolation of pixel values between the

vertices of geometric primitives. When an image is partitioned to exploit image parallelism, coherence

may be lost at partition boundaries, resulting in computational overheads. The probability that a primitive

will intersect a boundary depends on the size, shape, and number of image partitions (14, 15), and hence

is an important consideration in the design of parallel polygon renderers (16).

A related notion in ray-casting renderers2 is data or ray coherence . This is the tendency for rays cast

through nearby pixels to intersect the same objects in a scene. Ray coherence has been exploited in

conjunction with data-caching schemes to reduce communication loads in parallel volume rendering and

ray-tracing algorithms (17, 18).

C. Task and data decomposition

Data-parallel rendering algorithms may be further distinguished based on the way in which the problem is

decomposed into individual workloads or tasks. Since work is essentially defined as “operations on

data”, the choice of task decomposition has a direct impact on data access patterns. On distributed-

memory architectures, where remote memory references are usually much more expensive than local

memory references, the issues of task decomposition and data distribution are inseparable. Shared-

memory systems offer more flexibility, since all processors have equal access to the data. While data

locality is still important in achieving good caching performance, the penalties for global memory

references tend to be less severe, and static assignment of data to processors is not generally required.

There are two main strategies for task decomposition. In an object-parallel approach, tasks are formed by

partitioning either the geometric description of the scene or the associated object space. Rendering

operations are then applied in parallel to subsets of the geometric data, producing pixel values which must

then be integrated into a final image. In contrast, image-parallel algorithms reverse this mapping. Tasks

are formed by partitioning the image space, and each task renders the geometric primitives which

contribute to the pixels which it has been assigned.

The choice of image-parallel versus object-parallel algorithms is not clear-cut. Object-parallel algorithms

tend to distribute object computations evenly among processors, but since geometric primitives usually

vary in size, rasterization loads may be uneven. Furthermore, primitives assigned to different processors

2 We use the term ray-casting to include all rendering methods which project rays from the view point through screen pixels

into the scene. This encompasses both traditional ray-tracing algorithms as well as a large class of volume rendering methods.

11

may map to the same location in the image, requiring the individual contributions to be integrated to

produce the final image. With large numbers of processors this integration step can place heavy

bandwidth demands on memory busses or communication networks.

Image-parallel algorithms avoid the integration step, but have another problem: portions of a single

geometric primitive may map to several different regions in the image space. This requires that

primitives, or portions of them, be communicated to multiple processors, and the corresponding loss of

spatial coherence results in additional or redundant computations which are not present in equivalent

sequential algorithms.

To achieve a better balance among the various overheads, some algorithms adopt a hybrid approach,

incorporating features of both object- and image-parallel methods (16, 19, 20, 21). These techniques

partition both the object and image spaces, breaking the rendering pipeline in the middle and

communicating intermediate results from object rendering tasks to image rendering tasks.

D. Granularity

Related to the concept of task and data decomposition is the notion of granularity. Granularity refers to

the amount of computation in a basic unit of work. This workload unit may be defined to be an entire

task, or it may be some smaller quantum, such as the number of instructions executed between

communication events. A computation is fine-grained if workload units are small, or coarse-grained if

they involve substantial processing. Granularity may also refer to data decompositions. A fine-grained

decomposition includes one or a few data items in each partition, whereas a coarse-grained decomposition

uses larger blocks of data. In a rendering context, a fine-grained task might compute the value of a single

pixel, while a coarse-grained task might compute an entire frame in an animation sequence.

Granularity often has a direct bearing on the efficiency of a parallel computation. Fine-grained

computations generally incur more overhead for task scheduling and communication, but offer the

possibility of more precise load balancing. Coarse-grained computations tend to minimize

communication and scheduling overheads, but they are more susceptible to load imbalances and impose

tighter limits on the amount of available parallelism.

Granularity considerations are inseparably linked to performance parameters of the target architecture.

For example, fine-grained algorithms are not well-suited to systems which have high overheads for task

scheduling and communication, such as workstation networks. On the other hand, a coarse-grained

algorithm could not be expected to map well onto a SIMD architecture composed of thousands of simple

processing elements. A further discussion of SIMD versus MIMD architectures can be found in Section

V.B.3.

12

E. Scalability

Scalability of a parallel system refers to the ability to provide additional capacity by increasing the

number of processing elements. Two distinct types of scalability are important in parallel rendering.

Performance scalability is the ability to achieve higher levels of performance on a fixed-size problem.

Data scalability is the ability to accommodate larger problem sizes, e.g. , more complex scenes or higher

image resolutions.

Scalability considerations apply to both hardware architectures and software rendering algorithms. Either

may have bottlenecks which limit the performance levels which can be achieved or the problem sizes

which can be addressed. An important consideration in designing a parallel renderer is to ensure that the

architecture and algorithms will scale to the levels desired.

While traditional shared-memory systems offer the potential for low-overhead parallel rendering, their

performance scalability is limited by contention on the busses or switch networks which connect

processors to memory. Adding processors does not increase the memory bandwidth, so at some point the

paths to memory become saturated and performance stalls. For this reason, most parallel architectures

which are intended to scale to hundreds or thousands of processing elements employ a distributed-

memory model, in which each processor is tightly coupled to a local memory. The combined

processor/memory elements are then interconnected by a relatively scalable network or switch. The

advantage is that processing power and aggregate local memory bandwidth scale linearly with the number

of hardware units in the system. The disadvantage is that references to non-local data may be several

orders of magnitude slower than references to local data.

A number of recent systems combine elements of both architectures, using physically distributed

memories which are mapped into a global shared address space (22, 23, 24). The shared address space

permits the use of concise shared-memory programming paradigms, and is amenable to hardware support

for remote memory references. The result is that communication overheads can be significantly lower

than those found in traditional message-passing systems, allowing algorithms with fine-grained

communication requirements to scale to larger numbers of processors.

F. Load balancing

In any parallel computing system, effective processor utilization depends on distributing the workload

evenly across the system. In parallel rendering, there are many factors which make this goal difficult to

achieve. Consider a data-parallel polygon renderer which attempts to balance workloads by distributing

geometric primitives evenly among all of the processors. First, polygons may have varying numbers of

vertices, resulting in differing operation counts for illumination and transformation operations. If back-

13

face culling is enabled, different processors may discard different numbers of polygons, and the

subsequent clipping step may introduce further variations. The sizes of the transformed screen primitives

will also vary, resulting in differing operation counts in the rasterization routines. Depending on the

method being used, hidden surface elimination will also produce variations in the number of polygons to

be rasterized or the number of pixels to be stored in the frame buffer.

While this list may seem intimidating, we observe that if the number of input primitives is large (as it

usually is) and the primitives are randomly assigned to processors, the workload variations described

above will tend to even out. Unfortunately, a much more serious source of load imbalance arises due to

another factor: in real scenes, the distribution of primitives in image space is not uniform, but tends to

cluster in areas of detail. Thus processors responsible for rasterizing dense regions of the image will have

significantly more work to do than other processors which may end up with nothing more than

background pixels. To make matters worse, the mapping from object space to image space is view

dependent, which means the distribution of primitives in the image is subject to change from one frame to

the next, especially in interactive applications.

(a)

(d)

(b) (c)

(e)

Figure 6. Image partitioning strategies. Shading indicates the assignment of image regions to four
processors. (a) Blocks of contiguous scanlines; (b) square regions; (c) interleaved scanlines; (d) pixel
interleaving in two dimensions; (e) adaptive partitioning (loosely based on Ref. 26).

14

1. Static schemes

Strategies for dealing with this image-space load imbalance may be classified as either static or dynamic.

Static load balancing techniques rely on a fixed data partitioning to distribute local variations across large

numbers of processors. Figure 6 shows several different image partitioning strategies with different load

balancing characteristics. Large blocks of contiguous pixels (Figure 6a) usually result in poor load

balancing, while fine-grained partitioning schemes (Figure 6c,d) distribute the load better. However,

fine-grained schemes are subject to computational overheads due to loss of spatial coherence, as

discussed above. Analytical and experimental results (15, 25) indicate that square regions (Figure 6b)

minimize the loss of coherence since they have the smallest perimeter-to-area ratio of any rectangular

subdivision scheme.

2. Dynamic schemes

Dynamic load-balancing schemes try to improve on static techniques by providing more flexibility in

assigning workloads to processors. There are two principal strategies. The demand-driven approach

decomposes the problem into a large number of independent tasks, which are then assigned to processors

one-at-a-time or in small groups. When a processor completes one task, it receives another, and the

process continues until all of the tasks are complete. If tasks exhibit large variations in run time, the most

expensive ones must be started early so that they will have time to complete while other processors are

still busy with shorter tasks. Failure to observe this rule results in poor load balancing as processors

become idle waiting for long tasks to complete. Run time estimates for tasks are usually computed

heuristically in a pre-processing step, which introduces a computational overhead. The alternative is to

use large numbers of fine-grained tasks in order to minimize potential variations, but this approach suffers

increased overheads due to loss of coherence and more frequent task assignment operations.

The alternate adaptive strategy tries to minimize pre-processing overheads by deferring task partitioning

decisions until one or more processors becomes idle, at which time the remaining workloads of busy

processors are split and reassigned to idle processors. The result is that data partitioning is not

predetermined, but instead adapts to the computational load (Figure 6e). A good example is Whitman’s

image-parallel polygon renderer for the BBN TC2000 (26). Whitman’s renderer initially partitions the

image space into a relatively small number of coarse-grained tasks, which are then assigned to processors

using the demand driven model. When a processor becomes idle and no more tasks are available from the

initial pool, it searches for the processor with the largest remaining workload and “steals” half of its work.

The principal overheads in the adaptive approach arise in maintaining and retrieving non-local status

information, partitioning tasks, and migrating data.

While dynamic schemes offer the potential for more precise load balancing than static schemes, they are

15

successful only when the improvements in processor utilization exceed the overhead costs. For this

reason, dynamic schemes are easiest to implement on architectures which provide low-latency access to

shared memory. In message-passing systems, the high cost of remote memory references makes dynamic

task assignment, data migration, and maintenance of global status information more expensive, especially

for fine-grained tasks. Ellsworth (16) attempted to overcome this limitation by employing an inter-frame

load balancing scheme on Intel’s Touchstone Delta system. Rather than trying to balance the load within

a single frame of an image sequence (the intra-frame approach), his renderer uses the workload

distribution from one frame to reassign image regions for the next frame. This strategy assumes that the

distribution of geometric primitives will be similar in consecutive images, an example of frame

coherence. The advantage of this approach is that load balancing is performed at a higher level of

granularity, with less overhead. Nonetheless, Ellsworth’s experiments indicated that this technique was

only partially successful, encountering scalability problems in obtaining global workload information for

large numbers of processors.

3. Load balancing for ray-casting renderers

Although the above discussion is set in the context of polygon rendering algorithms, similar

considerations apply for other rendering techniques. In ray-cast volume rendering, for example, the

viewing angle, distribution of features within the volume, and optimizations such as early ray termination

all contribute to workload imbalances. Nieh and Levoy use a demand-driven scheme in an image-parallel

volume renderer for the Stanford DASH Multiprocessor (27). Their strategy uses an initial coarse-

grained static partitioning of the image, with dynamic reassignment of sub-tasks based on a finer-grained

second-level partitioning.

In ray-tracing, the majority of the execution time is used to compute the intersections of rays with objects

in the scene. Load imbalances arise because the cost of calculating ray/object intersections and evaluating

secondary rays varies depending on the type and distribution of objects within the scene. Caspary and

Scherson (28) and Salmon and Goldsmith (20) independently developed an innovative load balancing

scheme for ray-tracing on distributed-memory MIMD architectures. The method begins by organizing the

object data as a hierarchical tree of bounding volumes, a well-known technique employed by sequential

ray-tracers to reduce the search space for intersection testing. The basic idea in the parallel

implementation is to cut the tree at particular locations to produce a two-level object-space partitioning

(Figure 7). The upper portion of the tree (and its associated object data, which tends to be small) is

replicated on every processor, while the subtrees below the cuts (which comprise the bulk of the data) are

distributed among the processors. Two distinct types of tasks are spawned on each processor, one which

performs intersection calculations in the upper tree, and another which performs the same calculations for

local subtrees. Because the upper-level tree is available everywhere, any processor in the system can

16

perform the initial intersection tests on any ray, effectively decoupling the image-space and object-space

partitionings.

The upper-level task operates on one ray at a time, checking it for intersections against the volume extents

in the upper portion of the tree. When an intersection test descends to the level of a cut, a ray message is

sent to the subtree task on the appropriate processor, which completes the intersection calculations for that

subtree and returns the result to the processor which originated the request. Rather than waiting for the

result to come back, the upper-level task tries to stay busy by processing additional rays.

Caspary and Scherson’s method differs from Salmon and Goldsmith’s primarily in the way in which load

balancing is achieved. Salmon and Goldsmith adopt a static approach, partitioning the image space

among the processors and allocating subtrees to processors based on workload estimates derived from a

pre-processing step. Caspary and Scherson use a simpler random allocation strategy for subtrees, relying

fixed-level cuts

cuts based on workload estimates

Figure 7. Hierarchical tree of bounding volumes. Subtrees are pruned out and distributed among
processors. The upper portion of the tree is replicated on every processor. Cuts may be made at a fixed
level in the tree (Ref. 28) or at varying levels based on estimates of the subtree workloads (Ref. 20).

17

instead on a demand-driven assignment of rays to the upper-level tasks.3 In both cases, the location of the

cuts is an important consideration. If cuts are too high in the tree, the number of subtrees will be small,

and load balance will be poor. If cuts are too low in the tree, much of the object data will have to be

replicated, limiting the size of scenes which can be accommodated.

Additional load balancing strategies for parallel ray-tracing are described in Badouel et al. (18).

G. Object-space to image-space mapping

Since distributed-memory systems have the potential to scale to higher performance levels, and since they

are the current architecture of choice for parallel supercomputers, there is considerable interest in

rendering algorithms which are suitable for this environment. The key to high performance on these

systems is exploiting data locality to minimize remote memory references. At the same time, we want to

partition the image and object data among the processors to achieve both performance scalability and data

scalability. Unfortunately, these two goals are in conflict in parallel rendering algorithms.

To understand this conflict, we observe that, geometrically, rendering is a mapping from three-

dimensional object space to two-dimensional image space (Figure 1). This mapping is not fixed, but

instead depends on the modeling transformations and viewing parameters in use when a scene is rendered.

If we assume that both the object and image data structures are partitioned among the processors, then at

some point in the rendering pipeline data must be communicated among processors to satisfy the mapping

from object space to image space. Because of the complexity and dynamic nature of the mapping

function, the rendering algorithm perceives the communication pattern to be essentially arbitrary, with

each processor sending data to, and receiving data from, a large number of other processors.

1. Sorting classifications

Managing this object-space to image-space communication is one of the central issues for parallel

rendering algorithms on distributed-memory systems. To better understand this problem, Molnar et al.

(14) developed a taxonomy of parallel rendering algorithms based on the point in the rendering pipeline at

which the object-space to image-space mapping occurs. They classify algorithms as either sort-first, sort-

middle , or sort-last , depending on whether the communication step occurs at the beginning, middle, or

end of the rendering pipeline. Their analysis of the computation and communication costs of each

approach concludes that none of them is inherently superior in all circumstances.

3 Salmon and Goldsmith suggest a similar demand-driven strategy, but their emphasis is on the static subtree assignment

technique.

18

Sort-first

Because sort-first algorithms perform object-space to image-space mapping early in the rendering

process, they require an initial pre-processing step to assign primitives to the appropriate processors. This

pre-processing step adds computation or communication overheads which are not present in sort-middle

and sort-last methods. Sort-first is also subject to load imbalances due to uneven distribution of

primitives within the image. On the other hand, sort-first has lower communication requirements than the

other approaches when object primitives are tessellated into larger numbers of smaller polygons, or when

image sampling ratios are high. This is because the data generated by these operations has already been

mapped to the appropriate rasterization processor, and does not have to be relocated for subsequent

processing. Sort-first can also take advantage of frame coherence, making it potentially attractive in

animation applications.

Sort-middle

Sort-middle algorithms are straightforward since the communication step occurs at a natural break in the

rendering pipeline, between the transformation and rasterization phases. If tessellation is used,

communication costs can be high due to the large number of display primitives which are generated.

Sort-middle also incurs overheads for splitting primitives at image boundaries (loss of spatial coherence).

Like sort-first, sort-middle is susceptible to image-space load imbalances, but the impact is not as severe

because more work is performed before the data is mapped into image space.

Sort-last

Sort-last algorithms are less sensitive to the distribution of primitives within the image, since most of the

computations are performed using the initial object-space mapping of primitives to processors. However,

communication is performed at the pixel or sub-pixel level, implying that bandwidth requirements are

very high. Nonetheless, sort-last has been used in several commercial rendering systems (29, 30), and is

an active area of current research (31, 32).

V. Design and Implementation Issues

As the above discussion suggests, the design space for parallel rendering algorithms is large and replete

with trade-offs. How these trade-offs are resolved depends on a variety of factors, including application

requirements and characteristics of the target architecture. In the following sections, we examine some of

the issues which must be considered.

A. Hardware versus software systems

Perhaps the most fundamental distinction between parallel rendering designs is that of hardware-based

19

versus software-based systems. Hardware systems, ranging from specialized graphics computers to

graphics workstations and add-on graphics accelerator boards, all employ dedicated circuitry to speed up

the rendering task. In the simplest case, the graphics hardware may consist of a single microprocessor

coupled to a video memory system. In other cases, custom integrated circuits directly implement highly

parallel rendering pipelines in hardware. As a rule, the higher the target performance levels, the more

specialized and the more parallel the hardware becomes.

The dedicated-hardware approach has been very successful, although commercial systems to date have

been designed primarily for polygon rendering. Furthermore, the specialization which contributes to the

high performance and cost-effectiveness of dedicated hardware also tends to limit its flexibility.

Specialized lighting models, high-resolution imaging, and sophisticated rendering methods such as ray-

tracing and radiosity must be implemented largely in software, with a corresponding degradation in

performance.

One way to boost the performance of software-based renderers is to implement them on general-purpose

parallel platforms, such as scalable parallel supercomputers or networks of workstations. On these

systems, the processors are not specifically optimized for graphical operations, and communication

networks often have bandwidth limitations and software overheads which are not found in hardware-

based rendering systems. The challenge is to develop algorithms which can cope successfully with these

overheads in order to realize the performance potential of the underlying hardware. Some recent

examples indicate that this challenge can be met. Polygon renderers developed for Intel’s Touchstone

Delta system (16), Thinking Machines’ CM-200 and CM-5 (33), and Cray’s T3D (30) have achieved

performance levels that equal or exceed those obtained on contemporary high-end graphics workstations

such as Silicon Graphics’ RealityEngine (12).

Software-based renderers are of interest on massively parallel architectures for another reason: massive

data. The datasets produced by large-scale scientific applications can easily be hundreds of megabytes in

size, and time-dependent simulations may produce this much data for hundreds or thousands of time-

steps. Visualization techniques are imperative in exploring and understanding datasets of this size, but

the sheer volume of data may make the use of detached graphics systems impractical or impossible. The

alternative is to exploit the parallelism of the supercomputer to perform the visualization and rendering

computations in place, eliminating the need to move the data. This has motivated recent work on

software-based rendering systems which can be embedded in parallel applications to produce live visual

output at run time (30, 34).

Networks of workstations and personal computers provide another type of platform which can be used by

software-based parallel renderers. These systems are inexpensive and ubiquitous, and their processing

20

power and memory capacities are increasing dramatically. However, they tend to be connected by low-

bandwidth networks, and suffer from high communication latencies due to operating system overheads

and costly network protocols. For these reasons, they are best used in modest numbers for large

granularity computations where high frame rates are not an overriding consideration. They are also well-

suited for embarrassingly parallel applications which replicate the object database or exploit temporal

parallelism to render entire frames locally. Examples of network-based systems include volume renderers

(35, 36), radiosity renderers (37, 38), and Pixar’s photorealistic NetRenderMan system (39).

Hardware-based renderers have a distinct price-performance advantage over software-based systems

which run on massively parallel supercomputers. For similar levels of rendering performance, massively

parallel systems cost ten to one hundred times more than specialized graphics workstations. This is partly

due to the much larger component counts (including larger memories) in the massively parallel systems,

and partly due to the lower levels of performance which are achieved in a general-purpose system relative

to one that is specifically designed to perform graphics operations.

Specialized graphics hardware retains its price-performance advantage over networks of conventional

workstations as well. One reason for this is the expense of components other than the processor, such as

power supplies, backplanes, and network interfaces, which must be replicated in each workstation. More

importantly, the higher communication costs associated with network-based systems have significant

performance implications, giving specialized systems the edge for many applications.

B. Architectural considerations

The architecture of the target system, including the memory organization and programming paradigm, has

a major impact on the design of software renderers. We now turn our attention to these issues.

1. Vector processing

Vectorization is a simple form of pipelining which can be viewed algorithmically as a data-parallel

operation over individual elements of regular arrays. While vectorization has been used primarily in

high-performance computer systems to speed up floating-point operations in numerical applications, it

has also been applied to graphics at both the architectural and algorithmic level. Systems developed by

Ardent (40) and Stellar (41) in the late 1980’s coupled graphics display systems to floating-point vector

processors. The vector units were used for object-level computations on geometric primitives as well as

for general-purpose computation, while rasterization was performed using special-purpose hardware.

To take advantage of vectorization, standard rendering algorithms and data structures must be redesigned

to perform identical operations on long sequences of contiguous data elements. This ensures that pipeline

21

startup costs will be effectively amortized, and facilitates the high-speed memory accesses needed to keep

the pipeline running at full speed. Unfortunately, these requirements are sometimes at odds with the data

irregularities which are encountered in the rendering process (see Section IV.F).

Perhaps because of these difficulties, the literature contains relatively few examples of vectorized

renderers. Dyer and Whitman report on their experiences in vectorizing a z-buffered polygon renderer in

(42). While certain operations (surface normal calculations, edge and span interpolation, and shading)

vectorized well, others (clipping, edge extraction, sorting, and anti-aliasing) did not. In some cases, the

overhead required to set up a vector operation exceeded the benefits. Overall performance of their

vectorized implementation on a Convex C-1 was less than a factor of 2 better than an optimized scalar

renderer.

Plunkett and Bailey (43) report somewhat better results with a vectorized ray-tracer for the CDC Cyber

205. Speedup factors of 10–30 were achieved for the computationally intensive ray/surface intersection

calculations. Overall performance was approximately a factor of 6 better than a purely scalar

implementation. While the vector algorithm performs many more arithmetic operations than its scalar

counterpart, the higher speeds of the vector operations more than make up the difference. However, this

performance comes with a price: the vector intersection computations require additional memory in

proportion to the vector length, which in this case is 500. Another example of vectorization in a ray-

tracing application can be found in (44).

2. Shared vs. distributed memory

As we noted in Sections IV.E and IV.F, shared-memory systems provide relatively efficient access to a

global address space. This simple system model reduces the need to pre-partition major data structures,

simplifies processor coordination, and maximizes the range of practical algorithms. The chief

disadvantage is limited architectural scalability, which results in high memory latencies and contention

for shared resources as the number of processors increases. To minimize these problems, good shared-

memory algorithms must decompose the problem into tasks which avoid memory hot spots and keep

critical sections and synchronization operations to a minimum. Since most shared-memory systems are

augmented with processor caches and/or local memories, algorithms intended for these platforms must

also be structured to achieve good locality in their memory reference patterns.

Distributed-memory systems offer improved architectural scalability, but often with higher costs for

remote memory references. For this class of machines, managing communication is a primary

consideration. Since the rendering process tends to generate large volumes of intermediate data which

must be dynamically mapped from object space to image space, parallel renderers must pay special

attention to this issue. In the absence of special hardware support, global operations and synchronization

22

may be particularly expensive, and the higher cost of data migration may favor static assignment of tasks

and data.

3. SIMD vs. MIMD

In 1966, Flynn (45) proposed a taxonomy of computer architectures based on the number of instruction

and data streams in the system. General-purpose parallel architectures fall into one of two categories,

Single Instruction Multiple Data (SIMD), or Multiple Instruction Multiple Data (MIMD). In a pure

SIMD architecture, every processor executes the same instruction at every clock cycle, in lock step.

Conditionals are implemented by setting local mask bits which disable individual processors while some

set of instructions is executed. Systems in this class typically provide large numbers of simple processors

and instruction-level support for moving data on- and off-processor through the interconnection network.

Examples of commercial SIMD systems include Thinking Machines’ CM-2 and CM-200 and MasPar’s

MP-1 and MP-2.

By contrast, each processor in a MIMD architecture executes its own instruction stream, independently of

every other processor. Processors are free to take divergent paths through a program, or even to execute

completely different programs. Synchronization operations must be accomplished explicitly under

software control. Recent systems in this class include the Intel Paragon, nCUBE 3, Thinking Machines

CM-5, IBM SP2, and Cray Research T3D, among others.

Because they allow processors to respond to local differences in workload, MIMD architectures would

appear to be a good match for the highly variable operation counts and data access patterns which

characterize the rendering process (see Section IV.F). Furthermore, the MIMD environment lends itself

to demand-driven and adaptive load balancing schemes, where processors work independently on

relatively coarse-grained tasks. Numerous MIMD renderers have been implemented, on a variety of

hardware platforms. They encompass all of the major rendering methods, including polygon rendering

(16, 19, 26), volume rendering (17, 21, 27, 35, 46, 47), terrain rendering (48), ray-tracing (18, 20, 49, 50),

and radiosity (51, 52, 53, 54).

Despite the apparent mismatch between the variability of the rendering process and the tight

synchronization of SIMD architectures, a number of parallel renderers have demonstrated good

performance on SIMD systems (33, 55, 56, 57). There are several reasons for this. First of all, the

flexibility of MIMD systems imposes a burden on applications and operating systems, which must be able

to cope with the arrival of data from remote sources at unpredictable intervals and in arbitrary order. This

often results in complex communication and buffering protocols, particularly on distributed-memory

message-passing systems. The lock-step operation of SIMD systems virtually eliminates these software

overheads, resulting in communication costs which are much closer to the actual hardware speeds.

23

Secondly, it is often possible to structure algorithms as several distinct phases, each of which operates on

a uniform data type. The rendering pipeline maps naturally onto this structure, and the regularity of the

data structures within each phase leads to uniform operations, providing a good fit with the SIMD

programming paradigm.

Finally, SIMD architectures usually contains thousands of simple processing elements. Because of their

sheer numbers, good performance can often be achieved even though processors may not be fully utilized.

A data-parallel polygon renderer developed by Ortega, Hansen, and Ahrens for the CM-200 and CM-54

illustrates these principles (33). Instead of the single remapping step used by most algorithms (see

4 Although the CM-5 is a MIMD system, it has a number of hardware and software features which allow it to support SIMD-

style programs efficiently.

Phase 1
• transform
• illuminate
• interpolate edges

Phase 2
• interpolate spans

Phase 3
• z-buffer compare
 & store

Final Image

Redistribute Pixels

Redistribute Spans

Scene Description

Figure 8. A three-phase rendering pipeline with two data redistribution steps. The extra
communication step provides better load balancing and allows a SIMD implementation to operate on
uniform data structures within each phase. (Based on Ref. 33.)

24

Section IV.G), their algorithm breaks the rendering pipeline into three phases. Figure 8 shows a

simplified schematic of the basic approach. The first phase transforms and illuminates polygons,

interpolating in the vertical direction to produce spans (Figure 5). The spans are then reassigned to

processors in order to level the load prior to the horizontal scan-conversion phase, and the resulting pixels

are reassigned once more during the final z-buffering phase. This multi-phase approach provides uniform

operations within each phase, and efficient communication reduces the impact of the extra remapping

step. The algorithm also takes advantage of low-overhead global summations to evaluate processor

workloads at each iteration within the scan-conversion phase, an operation which would be prohibitively

expensive on most large MIMD systems. The workload information is used to adaptively repartition span

data when the imbalance becomes large enough to justify the expense. Despite these efforts, large

disparities in polygon size degrade performance, and the algorithm works best for scenes composed of

large numbers of small polygons, where variations in rasterization time are more tightly bounded.

SIMD architectures have also been used extensively for volume rendering. Hsu (56) developed an object-

parallel volume renderer which employs a three-phase algorithm to regularize the data structures. His

approach requires a single communication step for mapping partial ray segments to their image-space

destinations for final compositing. Other researchers have adopted image-parallel approaches, holding

the image data fixed and communicating object data instead (58, 59, 60).

C. Communication

For renderers which exploit both image and object parallelism, a high volume of interprocessor

communication is inherent in the process (see Section IV.G). Managing this communication is a central

issue in renderer design, and the choice of algorithm can have a significant impact on the timing, volume,

and patterns of communication (14, 19, 21, 61). There are three main factors which need to be

considered: latency, bandwidth, and contention. Latency is the time required to set up a communication

operation, irrespective of the amount of data to be transmitted. Bandwidth is simply the amount of data

which can be communicated over a channel per unit time. If a renderer tries to inject more data into a

network than the network can absorb, delays will result and performance will suffer. Contention occurs

when multiple processors are trying to route data through the same segment of the network

simultaneously and there is insufficient bandwidth to support the aggregate demand.

The time for one processor to send data to another can be expressed by the following simple formula,

t t t tcomm latency transfer delay= + +

where the total communication time, tcomm, is the sum of the latency (tlatency), data transfer time (ttransfer), and

contention delay (tdelay). The transfer time is simply the volume of data to be sent divided by the channel

25

bandwidth. Latency can be better understood as the sum of three components,

t t t tlatency send route recv= + +

where tsend is the time to initiate a transfer, troute is the latency through the network, and trecv is the time to

receive the data at the other end.

The values of these variables differ widely depending on the system in use. Hardware latencies for

sending, receiving, and routing messages are in the sub-microsecond range on many systems. However,

software layers can boost these times considerably—measured send and receive latencies on message-

passing systems often exceed the hardware times by a few orders of magnitude. Bandwidths exhibit

similar variations, ranging from hundreds of kilobytes/second on workstation networks up to several

gigabytes/second in dedicated graphics hardware. While latencies and bandwidths can usually be

determined with reasonable precision, contention delays are more difficult to characterize, since they

depend on dynamic traffic patterns which tend to be scene- and view-dependent.

A number of algorithmic techniques have been developed for coping with communication overheads in

parallel renderers. A simple way to reduce latency is to accumulate short messages into large buffers

before sending them, thereby amortizing the cost over many data items. Unfortunately, this technique

does not scale well for the common case of object- to image-space sorting, since the communication

pattern is generally many-to-many (16, 19). This implies that the number of messages generated per

processor is Ο(p), where p is the number of processors in the system. Assuming a fixed scene and image

resolution and a p-way partitioning of the object and image data, the number of data items per processor

is proportional to 1/p , and the number of data items per message decreases as 1/p 2. Hence overheads due

to latency increase linearly with the number of processors and amortization of these overheads becomes

increasingly ineffective.

One solution is to reduce the algorithmic complexity of the communication by using a multi-step delivery

scheme, as proposed by Ellsworth (16). With this method, the processors are divided into approximately

p groups, each containing roughly p processors. Data items intended for any of the processors

within a remote group are accumulated in a buffer and transmitted together as a single large message to a

forwarding processor within the destination group. The forwarding processor copies the incoming data

items in into a second set of buffers on the basis of their final destinations, merging them with

contributions from each of the other groups. The sorted buffers are then routed to their final destinations

within the local group. Figure 9 illustrates this process. The net effect is that the number of messages
generated per processor is reduced to Ο p() and message lengths decline more slowly (proportional to

1/p3/2 rather than 1/p 2), allowing latencies to be amortized more effectively. The algorithm does require

the bulk of the data to be examined, copied, and transmitted a second time, so the benefits are only

26

realized when latency is sufficiently high. Nonetheless, Ellsworth found the technique to be effective

when rendering small datasets with large numbers of processors.

While helpful in reducing latency, large message buffers can contribute to contention delays when

network bandwidth is insufficient, as Crockett and Orloff discovered in their experiments on an Intel

iPSC/860 (19). The problem arises when a large volume of data is injected into the network within a

short period of time. If the traffic fails to clear rapidly enough, processors must wait for data to arrive,

15

7

13

0 2

108 9

1 3

11

4

12 14

5 6

(a)

15

7

13

0 2

108 9

1 3

11

4

12 14

5 6

(b)

15

7

13

0 2

108 9

1 3

11

4

12 14

5 6

(c)

Figure 9. Two-step data redistribution. The image is partitioned into square regions which are
assigned to 16 processors. Shading indicates sets of communicating processors for the first step. Data
originating on processors 0, 2, or 10 which is destined for processors 9, 12, or 13 will pass through
processor 8 first. (a) Step 1: Destinations of processor 0. (b) Step 1: Sources for processor 8. (c) Step 2:
Final destinations of processor 8. (Based on Ref. 16.)

27

and performance suffers. The problem is most pronounced when workloads are evenly balanced, since

processors tend to be communicating at about the same time. By using a series of intermediate-sized

messages and asynchronous communication protocols, the load on the network can be spread out over

time, and data transfer can be overlapped with useful computation.

D. Memory constraints

Memory consumption is another issue which must be considered when designing parallel renderers.

Rendering is a memory-intensive application, especially with complex scenes and high-resolution images.

As a baseline, a full-screen (1280 x 1024), full-color (24 bits/pixel), z-buffered image requires on the

order of 10 MB of memory for the image data structures alone. The addition of features such as

transparency and antialiasing can push memory demands into the hundreds of megabytes, a regime in

which parallel systems or high-end graphics workstations are mandatory.

The structure of a parallel renderer can have a major impact on memory requirements, either facilitating

memory-intensive rendering by providing data scalability (Section IV.E), or exacerbating the problem by

requiring replicated or auxiliary data structures. Sort-middle polygon rendering is one example of an

approach which exhibits good data scalability, since object and image data structures can be partitioned

uniformly among the processing elements. The cost of image memory in these systems is essentially

fixed. By contrast, some sort-last algorithms require the entire image memory to be replicated on every

processor, increasing the cost in direct proportion to the number of processing elements in the system.

The issue of memory consumption involves many tradeoffs, and system designers must balance

application requirements, performance goals, and system cost. For example, replicating object data in an

image-parallel renderer can reduce or eliminate overheads for interprocessor communication, a strategy

which may work well for rendering moderately complex scenes in low-bandwidth, high-latency

environments, such as workstation networks. On the other hand, rendering algorithms which are

embedded in memory-intensive applications must be careful to limit their own resource requirements to

avoid undue interference with the application (34). In this case, data scalability may be a more important

consideration than absolute performance.

As another example, message-passing renderers can often achieve performance improvements by

aggregating data items into large buffers before sending them, as discussed in Section V.C. With fixed-

length buffers and direct communication, the total space needed for message buffers increases in

proportion to p 2, where p is the number of processors in the system. But as we observed in the previous

section, the average amount of data to be communicated from each processor to every other processor

decreases by the same factor, so a more intelligent strategy would scale the size of individual buffers by

1/p2, thereby holding the system-wide buffer space to a constant. However, latency amortization may

28

dictate that buffer sizes should not be allowed to drop below some efficiency threshold, so beyond a

certain number of processors, the buffer space would begin to grow again. If Ellsworth’s two-step

sending method (16) is used instead, the total number of buffers needed in the system is reduced to p3/2 ,

allowing this cross-over point to be deferred to larger system sizes.

Some renderers operate in distinct phases, requiring each phase to complete before the next phase begins.

This implies that intermediate results produced by each phase must be stored, rather than being passed

along for immediate consumption. The amount of intermediate storage needed for each phase depends on

the particular data items being produced, but in general is a function of the scene complexity. For

complex scenes the memory overheads may be substantial, but they do exhibit data scalability, assuming

the object data is partitioned initially.

E. Image assembly and display

High-performance rendering systems produce prodigious quantities of output in the form of an image

stream. For full-screen, full-color animation (1280 x 1024 resolution, 24 bits/pixel, 30 frames/sec), a

display bandwidth of 120 MB/s is required. Since most parallel renderers either partition or replicate the

image space, the challenge is to combine pixel values from multiple sources at high frame rates. Failure

to do so will create a bottleneck at the display stage of the rendering pipeline, limiting the amount of

parallelism which can be effectively utilized.

1. Hardware solutions

The display problem is best addressed at the architectural level, and hardware rendering systems have

adopted several different techniques. One approach is to integrate the frame buffer memory directly with

the pixel-generation processors (12, 62, 63). Highly parallel, multiported busses or other specialized

hardware mechanisms are then used to interface the distributed frame buffer to the video generation

subsystem. Alternatively, the rasterization engines and frame buffer may be distinct entities, with pixel

data being communicated from one to the other via a high-speed communication channel. One example

is the Pixel-Planes 5 system (64), which uses a 640 MB/s token ring network to interconnect system

components, including the pixel renderers and frame buffer. The PixelFlow system (31) pushes transfer

rates a step further, using a pipelined image composition network with an effective interstage bandwidth

in excess of 4 GB/s. The frame buffer resides at the terminus of the pipeline, acting as a sink for the final

composited pixel values.

29

2. Considerations for general-purpose systems

Sustaining high frame rates with general-purpose parallel computers is problematic, since these systems

typically lack specialized features for image integration and display. There are two principal issues,

assembling finished images from distributed components, and moving them out of the system and onto a

display. The bandwidth of the interprocessor communication network is an important consideration for

the image assembly phase, since high frame rates cannot be sustained unless image components can be

retrieved rapidly from individual processor memories. Several current systems, including the Intel

Paragon and Cray T3D, provide networks with transfer rates in excess of 100 MB/s, which is more than

adequate for interactive graphics. The challenge on these systems is to orchestrate the image retrieval and

assembly process so that the desired frame rates can be achieved. In the absence of multiported frame

buffers, the image stream must be serialized, perhaps with some ordering imposed, and forwarded to an

external device interface.

Assuming that the internal image assembly rate is satisfactory, the next bottleneck is the I/O interface to

the display. The typical configuration on current systems uses a HIPPI interface (65) attached to an

external frame buffer device. While many of the existing implementations fail to sustain the 100 MB/s

transfer rate of the HIPPI specification, the technology is improving, and either HIPPI or emerging

technologies such as ATM (66) are likely to provide sufficient external bandwidth in the near future.

3. Algorithmic approaches

Most software-based parallel renderers either partition the image memory across processors, or else

replicate it everywhere. In the first scenario, the image partitions must be assembled to produce a

complete image. This may be done either internally on the parallel machine, or externally in the display

system. Internal assembly implies that memory for a complete image must be allocated somewhere in the

system, a requirement which is potentially at odds with the desire for data scalability. External assembly

can occur in any of several places, including a host or front-end computer, an addressable external frame

buffer, or on secondary storage.

For renderers which replicate the image memory on every processor, generating the finished product

usually requires the individual contributions to be z-buffered or composited with a sort-last

communication phase. As we noted in Section IV.G.1, this works best on architectures with high-

bandwidth internal networks. The issue of memory allocation for the final result is moot, since renderers

which adopt this strategy have already incurred this cost many times over (once on each processor).

30

Several algorithmic strategies are available for image assembly and composition. The naive approach is

to have a designated processor or host accept the contributions from all of the other processors,

performing the appropriate z-buffering or compositing operations for each contribution. While this may

be acceptable with small numbers of processors, it results in poor utilization and does not scale well, since

P0 P3P2P1

Initial
distributed
image
buffers

First step:
P0 ↔ P1
P2 ↔ P3

Second step:
P0 ↔ P2
P1 ↔ P3

Assembled
image

Figure 10. Binary-swap image compositing. At each step, the image is partitioned and every processor
is responsible for compositing two image segments. (Based on Ref. 35.)

31

the receiving processor is a serial bottleneck. An obvious improvement is to merge image components in

a tree-structured fashion, combining contributions at each level in the tree. This results in somewhat

better utilization of both processors and the communication network, and runs in Ο(log p) time. Ma et al.

(34) observed that even with the tree-merging approach, processors are under-utilized, and those at higher

levels of the tree tend to have disproportionately high workloads. They devised an alternate scheme for

compositing images which also runs in logarithmic time, but keeps most or all of the processors busy at

every stage. The key idea in their binary-swap compositing method is to split the image at each step, with

pairs of processors operating on different subimages. At the end of the process, the image is partitioned

among all of the processors, requiring a final image assembly step to retrieve all of the pieces. Figure 10

illustrates this procedure with four processors.

The pipelined compositing strategy used in the PixelFlow system (31) can also be implemented in

software. Silva and Kaufman (67) adopt this approach in a distributed-memory volume renderer for the

Intel iPSC/860 and Paragon systems. In order to improve processor utilization, several frames of

animation are active in the system simultaneously (an example of temporal parallelism), with processors

alternating between rendering and compositing tasks. A potential difficulty with pipelined image

composition is high end-to-end latency as the system scales up and the length of the pipeline increases.

Applications which require rapid response times, such as virtual reality and real-time simulation, may

prefer to use a logarithmic image assembly method.

4. Remote image display

The utility of directly-attached frame buffers in conjunction with large-scale parallel systems is limited,

since users are often located at geographically remote sites. This has prompted a number of researchers to

examine the potential for transmitting images across local-area and wide-area networks. One example is

the display system used in the PGL graphics library (34). PGL partitions its image memory, assigning

scanlines to processors in interleaved fashion (Figure 6c). Image assembly occurs externally on the

receiving workstation, eliminating the need for a complete image buffer to be allocated within the parallel

system. To reduce the volume of output to a manageable level, each processor compresses its local

scanlines by determining which pixels have changed since the previous frame, and then run-length

encoding the differences. The resulting contributions from each processor are merged into large packets

which are sent across the network to a remote workstation for decompression, image assembly, and

display. While straightforward, this technique has several advantages, including exploitation of both

temporal and spatial image coherence, lossless encoding, embarrassingly parallel image compression, and

rapid sequential decompression. Although performance depends heavily on factors such as network

traffic and image resolution and content, this technique can provide up to a few frames per second across

Ethernet (68) and FDDI (69) networks.

32

VI. Examples of Parallel Rendering Systems

As we noted in Section I.A, virtually all current graphics systems incorporate parallelism in one form or

another. We have illustrated the preceding discussion with a number of examples. In this section, we

round out our survey by examining some additional representative systems, running the gamut from

specialized graphics computers to software-based terrain and radiosity renderers. Our coverage is by no

means complete—many more examples can be found in the literature. Readers are encouraged to explore

the references and the suggested readings at the end of this article for more information.

A. Polygon rendering and multi-purpose architectures

One of the earliest graphics architectures to exploit large-scale data parallelism was Fuchs and Poulton’s

classic Pixel-Planes system (62). Pixel-Planes parallelized the rasterization and z-buffering stages of the

polygon rendering pipeline by augmenting each pixel with a simple bit-serial processor which was

capable of computing color and depth values from the plane equations which described each polygon.

The pixel array operated in SIMD fashion, taking as input a serial stream of transformed screen-space

polygons generated by a conventional front-end processor. While Pixel-Planes provided massive image

parallelism, it suffered from poor processor utilization, since only those processors which fell within the

bounds of a polygon were active at any given time. The serial front-end processor also proved to be a

bottleneck as rasterization performance and scene complexities increased in subsequent generations of the

architecture.

The Pixel-Planes 5 architecture (64) rectifies these deficiencies. Instead of a single large array of image

processors, it incorporates several smaller ones which can be dynamically reassigned to screen regions in

demand-driven fashion. The serial front-end is replaced by a collection of general purpose transformation

processors which operate in MIMD mode. The transformation and rasterization units are connected by a

high-speed ring network, allowing data to flow in both directions. In addition to improved load balance

and higher performance, the flexibility of the architecture allows it to be applied to a broader range of

applications, including volume rendering and radiosity techniques. These architectural improvements are

not without cost, however. The dynamic assignment of rasterization units to screen space requires the

front-end processors to sort geometric primitives by screen region before initiating the rasterization phase.

This implies both a computational overhead and a memory penalty for storing the sorted primitives.

Pixel-Planes 5 is a classic example of a sort-middle architecture, with global communication occurring at

the break between the transformation and rasterization phases. By contrast, the newer PixelFlow design

(31) implements a sort-last architecture, in which each processing node incorporates a full graphics

pipeline. Object parallelism is achieved by distributing primitives across the nodes, while pixel

parallelism is provided by a Pixel-Planes-style SIMD rasterizer on each node. The sort-last strategy

33

necessitates a bandwidth-intensive image composition step to integrate the partial images from each

rasterizer, but this is accomplished using unidirectional nearest-neighbor communication in a 256-bit-

wide pipelined interconnect (see Section V.E.1).

AT&T’s Pixel Machine (63) combines pipelined parallelism with data parallelism in a programmable

MIMD architecture. The system includes one or two 9-stage pipelines for object-level processing and an

array of up to 64 pixel processors for image-level operations. Like Pixel-Planes, the frame buffer is

integrated with the pixel processors, but in the Pixel Machine each processor is responsible for multiple

pixels, distributed in a two-dimensional interleaved fashion. Each processing element is independently

programmable and capable of floating-point operations, resulting in an architecture which is adaptable to

a variety of rendering and image-processing tasks. As with Pixel-Planes, the limited parallelism provided

by the front-end pipelines has proven to be a bottleneck when rendering small primitives.

B. Volume rendering and ray-tracing architectures

Graphics architectures have also been developed specifically for volume rendering and ray-tracing

applications. In volume rendering, one of the keys to performance is providing high-bandwidth, conflict-

free access to the volume data. This has prompted the development of specialized volume memory

structures which allow simultaneous access to multiple data values. Kaufman and Bakalash’s Cube

system (70) introduced an innovative 3D voxel buffer which facilitates parallel access to cubes of

volumetric data. A linear array of simple SIMD comparators simultaneously evaluates a complete shaft

or “beam” of voxels oriented along any of the three principal axes (x, y, or z). The output of the

comparator network is a single voxel chosen on the basis of transparency, color, or depth values. By

iterating through the other two dimensions, the complete volume can be scanned at interactive rates. The

most recent version of the Cube architecture, Cube-3 (71), supports a more general ray-casting model, and

incorporates additional parallel and pipelined hardware to support arbitrary viewing angles, perspective

projections, and trilinear interpolation of ray samples.

Knittel and Straßer (72) adopt a somewhat different approach with a VLSI-based volume rendering

architecture intended for desktop implementation. Memory is organized into eight banks in order to

provide parallel access to the sets of neighboring voxels which are needed for trilinear interpolation and

gradient computations at sample points along rays. The basic design consists of a volume memory plus

four specialized VLSI function units arranged in a pipeline. One function unit performs ray-casting and

computes sample points along each ray, generating addresses into the volume memory. A second unit

accepts the eight data values in the neighborhood of each sample and performs trilinear interpolation and

gradient computations. A third unit computes color intensities for each sample point using a Phong

illumination model, while the fourth unit composites the samples along each ray to produce a final pixel

34

value. To obtain higher performance, the entire pipeline can be replicated, with subvolumes of the data

being stored in each volume memory.

The SIGHT architecture (73) was designed specifically to support image-parallel ray-tracing. The image

space is partitioned across processors, with each processor responsible for tracing those rays which

emanate from its local pixels. Interprocessor communication is largely avoided by replicating the object

database in each processor’s memory. An additional level of parallelism is achieved through the use of

multiple floating-point arithmetic units in each processing element to speed up the ray intersection

calculations.

C. Radiosity renderers

Radiosity methods produce exceptionally realistic illumination of enclosed spaces by computing the

transfer of light energy among all of the surfaces in the environment. Strictly speaking, radiosity is an

illumination technique, rather than a complete rendering method. However, radiosity methods are among

the most computationally-intensive procedures in computer graphics, making them an obvious candidate

for parallel processing.

Because the quality of a radiosity solution depends in part on the resolution used to compute energy

transfers, the polygons which describe objects are typically subdivided into small patches. Energy

transfers between patches are computed using geometric constructions known as form factors. In the

basic radiosity method, form factors must be computed from every patch in the environment to every

other patch. Because of this quadratic complexity, form factor computations constitute the primary

expense in radiosity methods. Hence, parallel implementations have focused on speeding up the

generation of form factors.

Although radiosity solutions can be computed directly by solving the system of equations which describes

the energy transfers between surfaces, all of the form factors must be generated first, resulting in lengthy

solution times which preclude interactive use. For this reason, an alternate iterative approach known as

progressive refinement (74) has become popular. In this technique, the patch with the highest energy

level at each iteration is selected as the shooting patch, and energy is transferred from it to other patches

in the environment. This process repeats until the maximum level of untransmitted energy drops below

some specified threshold. In this way, an initial approximation of the global illumination can be

computed relatively quickly, with subsequent refinements resulting in incremental improvements to the

image quality.

Many of the parallel radiosity methods described in the literature attempt to speed up the progressive

refinement process by computing energy transfers from several shooting patches in parallel (i.e., several

35

iterations are performed simultaneously) (37, 38, 51, 52, 53, 54). Because the time to complete an

iteration can vary considerably depending on the geometric relationships between patches, load imbalance

can seriously degrade overall performance. Several implementations compensate for this using a

demand-driven strategy in which multiple worker processes independently compute form factors for

different shooting patches (37, 38, 54). With this strategy, the complete patch database is usually

replicated on every processor, and a separate master process picks shooting patches and completes the

energy transfers using vectors of form factors generated by the workers. This approach has several

drawbacks, including a lack of data scalability for complex scenes and the tendency for the master

process to become a bottleneck as the number of workers increases.

The alternative is to distribute the patch database and radiosity computations across all of the processors.

This strategy necessitates global communication in order to compute form factors and complete the

energy transfers from shooting patches. Çapın et al. (53) use a simple ring network, circulating patch data

and local results from processor to processor in pipelined fashion to obtain global solutions. Because

performance is limited at each step of the computation by the slowest processor, load imbalances can

have a profound effect on overall performance. By ensuring that patches belonging to the same object are

scattered across processors, variations in workload due to spatial locality are minimized, and a rough

static load balance is maintained. Additional examples of radiosity renderers which use distributed

databases can be found in (51) and (52).

The strategy of processing multiple shooting patches in parallel perturbs the order of execution found in

the sequential version of the progressive refinement algorithm, and this can lead to slower convergence,

partially offsetting the benefits of parallel execution. While this effect is minimal when only a few

shooting patches are active (75), it becomes more pronounced as the number of processors increases and

the order of shooting patch selection deviates further from the optimum (53). In order to exploit massive

parallelism, a different approach is needed.

In contrast to the previous examples, which all target MIMD systems with modest numbers of processors,

Varshney and Prins describe a SIMD radiosity renderer implemented on a MasPar MP-1 with 4096 SIMD

processing elements (76). As in Çapın et al.’s algorithm, patches are distributed uniformly among the

processors. At each iteration, a global reduction operation is used to find the shooting patch with the

highest energy, thus maintaining the convergence properties of the sequential algorithm. Once the

shooting patch is selected, all of the other patches in the environment are projected onto the shooting

patch’s single-plane (38), where they are scan-converted and z-buffered to determine visibility from the

shooting patch. Form factors are obtained by accumulating contributions from the single-plane “pixels”,

and energy transfers are performed in parallel for each patch using the results from the form factor

computations. While this algorithm is able to exploit the massive parallelism of its target architecture,

36

load imbalances in the scan conversion phase are found to be significant, and further static or dynamic

load balancing measures appear to be in order.

D. Terrain rendering

In terrain rendering, the problem is to generate a plausible representation of a real or imaginary landscape

as viewed from some point on or above the surface. Typically the viewpoint will change over time, often

under interactive control, and in some applications additional objects such as vegetation, buildings, or

vehicles must be included in the scene. Terrain rendering techniques have been widely applied in areas

such as flight simulation, scientific data analysis and exploration, and the creation of virtual landscapes

for entertainment or artistic purposes. The need for high-quality images, high frame rates, rapid response

to changes in viewpoint, and the ability to navigate through large datasets has stimulated the development

of parallel terrain rendering techniques.

Although a variety of techniques can be used to render terrain, most of the parallel methods described in

the literature begin with an aerial or satellite image of an actual planetary surface. This image is

registered with a separate elevation dataset of the same region, typically represented by a two-

dimensional grid with an associated height field. The problem, then, is to assign an elevation value to

pixels in the input image and project them onto a display with hidden surfaces eliminated. This technique

is known as forward projection, in contrast to ray-casting methods which begin at the eye point and

project rays through display pixels into the scene. With the forward projection approach, care must be

taken to account for the mismatch between input and output image projections, filling in gaps in the

output image and compositing input pixels which map to the same location in screen space.

Kaba et al. (57, 77) have developed data-parallel terrain rendering techniques for the Princeton Engine, a

programmable SIMD system originally developed for real-time processing of digital video (78). Their

methods utilize an object-parallel task decomposition, distributing the input image and elevation datasets

among the processors by assigning complete columns of pixels to processors. Before projecting the data

onto the display, it must be rotated and scaled to account for the viewing direction and altitude. This is

accomplished by decomposing the necessary transformations into a sequence of simple shear and

shear/scale operations. To avoid costly interprocessor communication, horizontal shears (along pixel

rows) are decomposed into a transpose plus a vertical shear (which requires only local memory references

due to the column-wise data decomposition). The image transpose is performed efficiently using the

Princeton Engine’s specialized output sequencer and image feedback channel. Hidden surface

elimination is accomplished by scanning the transformed data from front-to-back, one horizontal scanline

at a time. As each scanline is processed, a horizon line is updated; only those pixels which lie above the

current horizon line will be visible. The column-oriented image partitioning assures that each horizontal

37

scan can be performed as a data-parallel operation. The system is capable of rendering terrain fly-overs at

30 frames/sec using 512 x 512 resolution and 8-bit color, or 15 frames/sec with 24-bit color.

At the Jet Propulsion Laboratory, Li and Curkendall (48) have developed techniques for rendering

planetary surfaces using a variety of large-scale distributed-memory architectures, including Intel’s

iPSC/860, Delta, and Paragon systems, and Cray’s T3D. Like Kaba, they use surface images registered

with elevation data, and project object-space pixels into screen space. While their initial methods

partitioned the input data by horizontal slices and assigned them to processors in interleaved fashion,

more recent implementations (79) decompose the data into square regions which are randomly assigned to

processors. The random assignment provides a measure of stochastic load balancing, reducing sensitivity

to hot spots in the data which may occur when the view zooms in on small terrain regions.

For hidden surface elimination, Li and Curkendall use a standard z-buffer technique, based on the

distance from the view point to individual terrain pixels. The output image memory is replicated on every

processor, with each processor projecting its local terrain pixels into its local output buffer. This

necessitates a sort-last image composition phase, which is performed using a logarithmic merge similar to

Ma et al.’s binary-swap method (see Section V.E.3). A final image assembly step is required to retrieve

completed sub-images from each processor and route them to secondary storage or an external display.

JPL’s parallel terrain renderers have been used to produce renowned fly-overs of Mars and Venus using

data from NASA’s planetary probes. Some of the datasets involved are quite large (in excess of a

gigabyte), making large-scale parallel systems particularly attractive for this application.

While the two previous examples both exploited data parallelism, other approaches are certainly possible.

Wright and Hsieh (80) describe a pipelined terrain rendering algorithm which has been implemented in

hardware. As in the other examples, a forward projection technique is used to map from object to image

space, but the surface data and objects in the scene are represented as specialized volume elements

(voxels). The architecture consists of two pipelines, one for voxel processing and one for pixel

processing. The output of the voxel pipeline feeds the pixel pipeline, so conceptually the system can be

viewed as one long pipeline. The voxel pipeline scans through the database, generating columns of

voxels which are illuminated, transformed into viewing coordinates, and rasterized into pixels. The pixel

pipeline projects pixels from polar viewing coordinates into screen space, performs haze, translucency,

and z-buffering calculations, and normalizes pixel intensities. A variety of techniques are applied at

different levels in the pipeline to reduce temporal and spatial aliasing. Objects in motion relative to the

terrain are rendered using additional passes through the pipeline. The hardware implementation is

capable of rendering 10 frames/sec at 384 x 384 resolution, a speedup of more than three orders of

magnitude over a software-based sequential implementation.

38

VII. Summary

As the above discussion illustrates, parallel processing techniques have been applied to virtually every

computationally-intensive task in computer graphics. Architectural platforms range from simple co-

processors to specialized VLSI circuitry to general-purpose parallel supercomputers. At every step, the

algorithm or architecture designer is faced with a wide range of implementation strategies and a complex

series of tradeoffs. A successful parallel rendering design must take into account application

requirements, architectural parameters, and algorithmic characteristics. As the rapidly growing

performance of rendering systems indicates, there have been numerous successes, but these are balanced

by other attempts which have stumbled. Many challenges remain, and the discipline of parallel rendering

is likely to be an active one for years to come.

Acknowledgments

The author would like to thank Tony Apodaca, Chuck Hansen, Scott Whitman, Craig Wittenbrink, Sam

Uselton, and the staff of NASA Langley’s Technical Library for their assistance in researching this

article. David Banks and John van Rosendale provided valuable feedback on a draft of the manuscript.

References

1. Ninke, W. H. Graphic 1 — A Remote Graphical Display Console System. 1965 Fall Joint

Computer Conference, AFIPS Conference Proceedings, Vol. 27, Part 1, 1965, 839-846.

2. Myer, T. H., and Sutherland, I. E. On the Design of Display Processors. Communications of the

ACM, Vol. 11, No. 6, June 1968, 410-414.

3. Sproull, R. F., and Sutherland, I. E. A Clipping Divider. 1968 Fall Joint Computer Conference,

AFIPS Conference Proceedings, Vol. 33, Part 1, December 1968, 765-775.

4. Schumacker, R., Brand, B., Gilliland, M., and Sharp, W. Study for Applying Computer-Generated

Images to Visual Simulation. Report AFHRL-TR-69-14, Air Force Human Resources Laboratory,

September 1969.

5. Schacter, B. J., ed. Computer Image Generation. Wiley-Interscience, 1983.

6. Fuchs, H. Distributing A Visible Surface Algorithm Over Multiple Processors. Proceedings ACM

National Conference , October 1977, 449-451.

39

7. Fuchs, H., and Johnson, B. W. An Expandable Multiprocessor Architecture for Video Graphics.

Proceedings of the 6th Annual ACM-IEEE Symposium on Computer Architecture, April 1979, 58-

67.

8. Parke, F. I. Simulation and Expected Performance Analysis of Multiple Processor Z-Buffer

Systems. Computer Graphics , Vol. 14, No. 3, July 1980, 48-56.

9. Clark, J. A VLSI Geometry Processor for Graphics. Computer, Vol. 13, No. 7, July 1980, 59-68.

10. Clark, J. The Geometry Engine: A VLSI Geometry System for Graphics. Computer Graphics,

Vol. 16, No. 3, July 1982, 127-133.

11. Nishimura, H., Ohno, H., Kawata, T., Shirakawa, I., and Omura, K. LINKS-1: A Parallel

Pipelined Multicomputer System for Image Creation. Proceedings 10th Annual International

Symposium on Computer Architecture, IEEE Computer Society Press, 1983, 387-394.

12. Akeley, K. RealityEngine Graphics. Computer Graphics Proceedings, Annual Conference Series,

1993, ACM SIGGRAPH, July 1993, 109-116.

13. Sutherland, I. E., Sproull, R. F., and Schumacker, R. A. A Characterization of Ten Hidden-Surface

Algorithms. Computing Surveys , Vol. 6, No. 1, March 1974, 1-55.

14. Molnar, S., Cox, M., Ellsworth, D., and Fuchs, H. A Sorting Classification of Parallel Rendering.

IEEE Computer Graphics and Applications , Vol. 14, No. 4, July 1994, 23-32.

15. Whitman, S. Multiprocessor Methods for Computer Graphics Rendering. Jones and Bartlett,

Boston, 1992.

16. Ellsworth, D. A New Algorithm for Interactive Graphics on Multicomputers. IEEE Computer

Graphics and Applications , Vol. 14, No. 4, July 1994, 33-40.

17. Mackerras, P., and Corrie, B. Exploiting Data Coherence to Improve Parallel Volume Rendering.

IEEE Parallel and Distributed Technology , Vol. 2, No. 2, Summer 1994, 8-16.

18. Badouel, D., Bouatouch, K., and Priol, T. Distributing Data and Control for Ray Tracing in

Parallel. IEEE Computer Graphics and Applications , Vol. 14, No. 4, July 1994, 69-77.

19. Crockett, T. W., and Orloff, T. Parallel Polygon Rendering for Message-Passing Architectures.

IEEE Parallel and Distributed Technology , Vol. 2, No. 2, Summer 1994, 17-28.

40

20. Salmon, J., and Goldsmith, J. A Hypercube Ray-tracer. Proceedings of the Third Conference on

Hypercube Concurrent Computers and Applications, Vol. II, Applications, G. C. Fox, ed., ACM

Press, January 1988, 1194-1206.

21. Neumann, U. Communication Costs for Parallel Volume-Rendering Algorithms. IEEE Computer

Graphics and Applications , Vol. 14, No. 4, July 1994, 49-58.

22. Lenoski, D., Laudon, J., Gharachorloo, K., Weber, W.-D., Gupta, A., Hennessy, J., Horowitz, M.,

and Lam, M. S. The Stanford Dash Multiprocessor. Computer, Vol. 25, No. 3, March 1992, 63-79.

23. Kessler, R. E., and Schwarzmeier, J. L. Cray T3D: A New Dimension for Cray Research. Digest

of Papers, COMPCON Spring ‘93, IEEE Computer Society Press, February 1993, 176-182.

24. Convex Computer Corporation. Convex Exemplar System Overview. 1994.

25. Whelan, D. S. Animac: A Multiprocessor Architecture for Real-Time Computer Animation. Ph.D.

dissertation, California Institute of Technology, 1985.

26. Whitman, S. Dynamic Load Balancing for Parallel Polygon Rendering. IEEE Computer Graphics

and Applications , Vol. 14, No. 4, July 1994, 41-48.

27. Nieh, J., and Levoy, M. Volume Rendering on Scalable Shared-Memory MIMD Architectures.

Proceedings of the 1992 Workshop on Volume Visualization, ACM Press, October 1992, 17-24.

28. Caspary, E., and Scherson, I. D. A Self-Balanced Parallel Ray-Tracing Algorithm. In Parallel

Processing for Computer Vision and Display, Addison-Wesley, 1989, 408-419.

29. Evans and Sutherland Computer Corporation. Freedom Series Technical Report. 1992.

30. Cray Research, Inc. Cray Animation Theater. 1994.

31. Molnar, S., Eyles, J., and Poulton, J. PixelFlow: High-Speed Rendering Using Image

Composition. Computer Graphics, Vol. 26, No. 2, July 1992, 231-240.

32. Cox, M., and Hanrahan, P. A Distributed Snooping Algorithm for Pixel Merging. IEEE Parallel

and Distributed Technology, Vol. 2, No. 2, Summer 1994, 30-36.

33. Ortega, F. A., Hansen, C. D., and Ahrens, J. P. Fast Data Parallel Polygon Rendering. Proceedings

Supercomputing ‘93 , IEEE Computer Society Press, November 1993, 709-718.

41

34. Crockett, T. W. Design Considerations for Parallel Graphics Libraries. ICASE Report No. 94-49

(NASA CR 194935), Institute for Computer Applications in Science and Engineering, Hampton,

Virginia, June 1994.

35. Ma, K.-L., Painter, J. S., Hansen, C. D., and Krogh, M. F. Parallel Volume Rendering Using

Binary-Swap Compositing. IEEE Computer Graphics and Applications, Vol. 14, No. 4, July 1994,

59-68.

36. Giertsen, C., and Petersen, J. Parallel Volume Rendering on a Network of Workstations. IEEE

Computer Graphics and Applications, Vol. 13, No. 6, November 1993, 16-23.

37. Puech, C., Sillion, F., and Vedel, C. Improving Interaction with Radiosity-based Lighting

Simulation Programs. Computer Graphics , Vol. 24, No. 2 (Proceedings of the 1990 Symposium on

Interactive 3D Graphics), March 1990, 51-57.

38. Recker, R. J., George, D. W., and Greenberg, D. P. Acceleration Techniques for Progressive

Refinement Radiosity. Computer Graphics , Vol. 24, No. 2 (Proceedings of the 1990 Symposium on

Interactive 3D Graphics), March 1990, 59-66.

39. Pixar. PhotoRealistic RenderMan Toolkit v3.5 Reference Manual. 1994.

40. Diede, T., Hagenmaier, C., Miranker, G., Rubinstein, J., and Worley, W. The Titan Graphics

Supercomputer Architecture. Computer, Vol. 21, No. 9, September 1988, 13-30.

41. Apgar, B., Bersack, B., and Mammem, A. A Display System for the Stellar Graphics

Supercomputer Model GS1000. Computer Graphics , Vol. 22, No. 4, August 1988, 255-262.

42. Dyer, S., and Whitman, S. A Vectorized Scan-Line Z-Buffer Rendering Algorithm. IEEE

Computer Graphics and Applications, Vol. 7, No. 7, July 1987, 34-45.

43. Plunkett, D. J., and Bailey, M. J. The Vectorization of a Ray-Tracing Algorithm for Improved

Execution Speed. IEEE Computer Graphics and Applications , Vol. 5, No. 8, August 1985, 52-60.

44. Max, N. L. Vectorized Procedural Models for Natural Terrain: Waves and Islands in the Sunset.

Computer Graphics , Vol. 15, No. 3, August 1981, 317-324.

45. Flynn, M. J. Very High-Speed Computing Systems. Proceedings of the IEEE, Vol. 54, 1966,

1901-1909.

42

46. Challinger, J. Scalable Parallel Volume Raycasting for Nonrectilinear Computational Grids.

Proceedings 1993 Parallel Rendering Symposium , ACM Press, October 1993, 81-88.

47. Camahort, E., and Chakravarty, I. Integrating Volume Data Analysis and Rendering on Distributed

Memory Architectures. Proceedings 1993 Parallel Rendering Symposium , ACM Press, October

1993, 89-96.

48. Li, P. P., and Curkendall, D. W. Parallel Three Dimensional Perspective Rendering. Proceedings

of the Second European Workshop on Parallel Computing , March 1992, 320-331.

49. Green, S. A., and Paddon, D. J. A Highly Flexible Multiprocessor Solution for Ray Tracing. The

Visual Computer , Vol. 6, No. 2, March 1990, 62-73.

50. Lefer, W. An Efficient Parallel Ray Tracing Scheme for Distributed Memory Parallel Computers.

Proceedings 1993 Parallel Rendering Symposium , ACM Press, October 1993, 77-80.

51. Feda, M. and Purgathofer, W. Progressive Refinement Radiosity on a Transputer Network.

Photorealistic Rendering in Computer Graphics: Proceedings of the Second Eurographics

Workshop on Rendering , Springer-Verlag, May 1991, 139-148.

52. Chalmers, A. G., and Paddon, D. J. Parallel Processing of Progressive Refinement Radiosity

Methods. Photorealistic Rendering in Computer Graphics: Proceedings of the Second

Eurographics Workshop on Rendering, Springer-Verlag, May 1991, 149-159.

53. Çapın, T. K., Aykanat, C., and Özgüç, B. Progressive Refinement Radiosity on Ring-Connected

Multicomputers. Proceedings 1993 Parallel Rendering Symposium , ACM Press, October 1993, 71-

76.

54. Ng, A., and Slater, M. A Multiprocessor Implementation of Radiosity. Computer Graphics Forum,

Vol. 12, No. 5, December 1993, 329-342.

55. Lin, T. T. Y., and Slater, M. Stochastic Ray Tracing Using SIMD Processor Arrays. The Visual

Computer, Vol. 7, No. 4, 1991, 187-199.

56. Hsu, W. M. Segmented Ray Casting for Data Parallel Volume Rendering. Proceedings 1993

Parallel Rendering Symposium, ACM Press, October 1993, 7-14.

57. Kaba, J., Matey, J., Stoll, G., Taylor, H., and Hanrahan, P. Interactive Terrain Rendering and

Volume Visualization on the Princeton Engine. Proceedings Visualization ‘92, IEEE Computer

Society Press, October 1992, 349-355.

43

58. Vézina, G., Fletcher, P. A., and Robertson, P. K. Volume Rendering on the MasPar MP-1.

Proceedings 1992 Workshop on Volume Visualization, ACM Press, October 1992, 3-8.

59. Schröder, P. and Salem, J. B. Fast Rotation of Volume Data on Data Parallel Architectures.

Proceedings Visualization ‘91, IEEE Computer Society Press, October 1991, 50-57.

60. Schröder, P., and Stoll, G. Data Parallel Volume Rendering as Line Drawing. Proceedings 1992

Workshop on Volume Visualization , ACM Press, October 1992, 25-31.

61. Jensen, D. W., and Reed, D. A. A Performance Analysis Exemplar: Parallel Ray Tracing.

Concurrency: Practice and Experience, Vol. 4, No. 2, April 1992, 119-141.

62. Fuchs, H., and Poulton, J. Pixel-Planes: A VLSI-Oriented Design for a Raster Graphics Engine.

VLSI Design , Third Quarter 1981, 20-28.

63. Potmesil, M., and Hoffert, E. M. The Pixel Machine: A Parallel Image Computer. Computer

Graphics , Vol. 23, No. 3, July 1989, 69-78.

64. Fuchs, H., Poulton, J., Eyles, J., Greer, T., Goldfeather, J., Ellsworth, D., Molnar, S., Turk, G.,

Tebbs, B., and Israel, L. Pixel-Planes 5: A Heterogeneous Multiprocessor Graphics System Using

Processor-Enhanced Memories. Computer Graphics, Vol. 23, No. 3, July 1989, 79-88.

65. Hughes, J. P. HIPPI. Proceedings 17th Conference on Local Computer Networks, IEEE Computer

Society Press, September 1992, 346-354.

66. Vetter, R. J. ATM Concepts, Architectures, and Protocols. Communications of the ACM, Vol. 38,

No. 2, February 1995, 30-38.

67. Silva, C. T., and Kaufman, A. E. Parallel Performance Measures for Volume Ray Casting.

Proceedings Visualization ‘94, IEEE Computer Society Press, October 1994, 196-203.

68. Shoch, J. F., Dalal, Y. K., and Redell, D. D. Evolution of the Ethernet Local Computer Network.

Computer, Vol. 15, No. 8, August 1982, 10-27.

69. Ross, F. E. An Overview of FDDI: The Fiber Distributed Data Interface. IEEE Journal on

Selected Areas in Communications, Vol. 7, No. 7, September 1989, 1043-1051.

70. Kaufman, A., and Bakalash, R. Memory and Processing Architecture for 3D Voxel-Based

Imagery. IEEE Computer Graphics and Applications , Vol. 8, No. 6, November 1988, 10-23.

44

71. Pfister, H., Kaufman, A., and Chiueh, T. Cube-3: A Real-Time Architecture for High-Resolution

Volume Visualization. Proceedings 1994 Symposium on Volume Visualization, ACM SIGGRAPH,

October 1994, 75-82.

72. Knittel, G., and Straßer, W. A Compact Volume Rendering Accelerator. Proceedings 1994

Symposium on Volume Visualization, ACM SIGGRAPH, October 1994, 67-74.

73. Naruse, T., Yoshida, M., Takahashi, T., and Naito, S. SIGHT – A Dedicated Computer Graphics

Machine. Computer Graphics Forum, Vol. 6, No. 4, December 1987, 327-334.

74. Cohen, M. F., Chen, S. E., Wallace, J. R., and Greenberg, D. P. A Progressive Refinement

Approach to Fast Radiosity Image Generation. Computer Graphics , Vol. 22, No. 4, August 1988,

75-84.

75. Baum, D. R., and Winget, J. M. Real Time Radiosity Through Parallel Processing and Hardware

Acceleration. Computer Graphics , Vol. 24, No. 2 (Proceedings 1990 Symposium on Interactive 3D

Graphics), March 1990, 67-75.

76. Varshney, A., and Prins, J. F. An Environment-Projection Approach to Radiosity for Mesh-

Connected Computers. Proceedings of the Third Eurographics Workshop on Rendering , Springer-

Verlag, May 1992, 271-281.

77. Kaba, J., and Peters, J. A Pyramid-based Approach to Interactive Terrain Visualization.

Proceedings 1993 Parallel Rendering Symposium , ACM Press, October 1993, 67-70.

78. Chin, D., Passe, J., Bernard, F., Taylor, H., and Knight, S. The Princeton Engine: A Real-Time

Video System Simulator. IEEE Transactions on Consumer Electronics , Vol. 34, No. 2, May 1988,

285-297.

79. Li, P., Curkendall, D., Duquette, W., and Henry, H. Interactive Scientific Visualization on

Massively Parallel Processors. CSCC Update : The Newsletter of the Concurrent Supercomputing

Consortium , Vol. 13, No. 7, Caltech CCSF, Pasadena, California, August 1994, 4-6.

80. Wright, J. R., and Hsieh, J. C. L. A Voxel-Based, Forward Projection Algorithm for Rendering

Surface and Volumetric Data. Proceedings Visualization ‘92, IEEE Computer Society Press,

October 1992, 340-348.

45

Further Reading

Dew, P. M., Earnshaw, R. A., and Heywood, T. R., eds. Parallel Processing for Computer Vision and

Display. Addison-Wesley, 1989.

Green, S. Parallel Processing for Computer Graphics. MIT Press, September 1991.

Hu, M.-C., and Foley, J. D. Parallel Processing Approaches to Hidden-Surface Removal in Image Space.

Computers and Graphics, Vol. 9, No. 3, 1985, 303-317.

Kaplan, M., and Greenberg, D. P. Parallel Processing Techniques for Hidden Surface Removal.

Computer Graphics , Vol. 13, No. 2, August 1979, 300-307.

Kaufman, A., Bakalash, R., Cohen, D., and Yagel, R. A Survey of Architectures for Volume Rendering.

IEEE Engineering in Medicine and Biology, Vol. 9, No. 4, December 1990, 18-23.

Lerner, E. J. Fast Graphics Use Parallel Techniques. IEEE Spectrum, Vol. 18, No. 3, March 1981, 34-38.

Molnar, S., and Fuchs, H. Advanced Raster Graphics Architecture. In Computer Graphics: Principles

and Practice , 2nd ed., J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Addison-Wesley,

1990, 855-922.

Singh, J. P., Gupta, A., and Levoy, M. Parallel Visualization Algorithms: Performance and Architectural

Implications. Computer, Vol. 27, No. 7, July 1994, 45-55.

Theoharis, T. Algorithms for Parallel Polygon Rendering. Lecture Notes in Computer Science, Vol. 373,

G. Goos and J. Hartmanis, eds., Springer-Verlag, 1989.

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Je�erson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the O�ce of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

April 1995 Contractor Report

4. TITLE AND SUBTITLE

PARALLEL RENDERING

6. AUTHOR(S)

Thomas W. Crockett

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23681-0001

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-0001

5. FUNDING NUMBERS

C NAS1-19480
WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 95-31

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA CR-195080
ICASE Report No. 95-31

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell
Final Report
To appear in The Encyclopedia of Computer Science and Technology

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Unclassi�ed{Unlimited

Subject Category 60, 61

13. ABSTRACT (Maximum 200 words)

This article provides a broad introduction to the subject of parallel rendering, encompassing both hardware and
software systems. The focus is on the underlying concepts and the issues which arise in the design of parallel
rendering algorithms and systems. We examine the di�erent types of parallelism and how they can be applied in
rendering applications. Concepts from parallel computing, such as data decomposition, task granularity, scalability,
and load balancing, are considered in relation to the rendering problem. We also explore concepts from computer
graphics, such as coherence and projection, which have a signi�cant impact on the structure of parallel rendering
algorithms. Our survey covers a number of practical considerations as well, including the choice of architectural
platform, communication and memory requirements, and the problem of image assembly and display. We illustrate
the discussion with numerous examples from the parallel rendering literature, representing most of the principal
rendering methods currently used in computer graphics.

14. SUBJECT TERMS 15. NUMBER OF PAGES

parallel rendering; computer graphics; survey 52

16. PRICE CODE

A04

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION

OF REPORT OF THIS PAGE OF ABSTRACT OF ABSTRACT

Unclassi�ed Unclassi�ed

NSN 7540-01-280-5500 Standard Form 298(Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

