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10.1 Introduction

In the Explorer scenario we deal with the problems of modeling space, acting
in this space and reasoning about it. Comparing with the motivating example
in Section 1.3 the Explorer scenario focuses around issues related to the second
bullet in the example. The setting is that of Fido moving around in an initially
unknown (Fido was just unpacked from the box), large scale (it is a whole
house so the sensors do not perceive all there is from one spot), environment
inhabited by humans (the owners of Fido and possible visitors). These humans
can be both users and bystanders. The version of Fido that we work with in the
Explorer scenario can move around but interaction with the environment is
limited to non-physical interaction such as “talking”. The main sensors of the
system are a laser scanner and a camera mounted on a pan-tilt enabling Fido
to look around by turning its “neck”. Figure 10.1 shows a typical situation
from the Explorer scenario.

The construction of spatial models from sensor data in the context of
mobile robotics has been studied extensively in the literature. Simultaneous
localization and mapping (SLAM) is by now a mature technology and it is
not primarily in this field that the Explorer makes contributions. The kind of
maps typically created by SLAM are, as discussed in Chapter 5, focused on
providing the robot with means to localize and determine how to move from
one place to another. While this is still required by the robot in the Explorer
scenario, it is not the primary focus. Besides the obvious challenges in creating
an integrated system, one of the motivations for the Explorer, as with the
PlayMate, is to study the problems that occur when an intelligent robot must
interact with humans in a rich and complex environment. In this case we focus
on the design of models of space that are able to facilitate such interactions.
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Fig. 10.1. The user shows the Explorer robot where the living room is. The robot’s
visualization of a similar situation can be seen on the right-hand side.

In order to do this, the representation used by the robot must support the
anchoring of spatial concepts shared between the robot and humans. Such
spatial concepts may not be needed by and may not, for that matter, be
available to a robot acting on its own. However, when communicating with a
human, they play a key role in generating a shared understanding of space.
For example, instead of the robot talking about an area delimited by a certain
polygon it is more natural to talk about a certain room.

In the Explorer scenario spatial models are built using input from sensors
such as laser scanners and cameras but equally importantly also based on hu-
man input. It is this combination that enables the creation of a spatial model
that can support low level tasks such as navigation, as well as interaction.
Even combined, the inputs only provide a partial description of the world.
By combining this knowledge with a reasoning system and a common sense
ontology, further information can be inferred to make the description of the
world more complete. Unlike the PlayMate system, all the information that is
needed to build the spatial models are not available to it sensors at all times.
The Explorer need to move around, i.e. explorer space, to gather information
and integrate this into the spatial models. Two main modes for this explo-
ration of space have been investigated within the Explorer scenario. In the
first mode the robot explores space together with a user in a home tour fash-
ion. That is, the user shows the robot around their shared environment (Fido
needs to know where things are and what stuff is called in his new home). This
is what we call the Human Augmented Mapping paradigm. The second mode
is fully autonomous exploration where the robot moves with the purpose of
covering space. In practice the two modes would both be used interchangeably
to get the best trade-off between autonomy, shared representation and speed.

Another important aspect of the Explorer scenario is the ability to perform
tasks autonomously. If robots like Fido is ever going to take the steps from
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toys to utilities they need to do something for us besides providing entertain-
ment. Since the Explorer system does not have manipulation skills tasks are
somewhat limited. The focus in the Explorer is not on performing a particular
task to perfection, but rather acting within a flexible framework that alleviates
the need for scripting and hardwiring. We want to investigate two problems
within this context: what information must be exchanged by different parts
of the system to make this possible, and how the current state of the world
should be represented during such exchanges.

One particular interaction which encompasses a lot of the aforementioned
issues is giving the robot the ability to talk about space. This interaction
raises questions such as: how can we design models that allow the robot and
human to talk about where things are, and how do we link the dialogue and
the mapping systems?

10.1.1 Related work

There are a number of systems that permit a robot to interact with humans
in their environment. Rhino [1] and Robox [2] are robots that work as tour
guides in museums. Both robots rely on accurate metric representations of
the environment, and both have quite limited communicative capabilities. In
the Explorer the communication with humans and reasoning about space are
central elements. Examples of robots with more elaborate dialogue capabilities
are RoboVie [3], BIRON [4], GODOT [5], WITAS [6] and MEL [7]. BIRON is
endowed with a system that integrates spoken dialogue and visual localization
capabilities on a robotic platform. This system differs from ours in the degree
to which conceptual spatial knowledge and linguistic meaning are grounded in,
and contribute to, situation awareness. In contrast, in our system, information
from dialogue and situated contexts can be combined during processing of
utterances [8]. Furthermore, whereas RoboVie and BIRON use finite state
machines to model dialogue behavior, we combine information states [9], like
GODOT; together with a task-oriented perspective, as WITAS or MEL. One
more things that the sets the Explorer system aside from the above system
is that the integratation mechanisms themselves are as important or maybe
more important than the performance of the end product. That is, we want
to study how to integrate a large set of components in a cognitve system in
a flexible and scalable way rather then creating a system that can perform
certain tasks well.

10.1.2 Outline

The outline of the rest of this chapter is as follows. In Section 10.2 we give
an overview of the Explorer system, focusing mainly on outlining the dif-
ferences to the PlayMate instantiation presented in the previous chapter. In
Section 10.3 we describe how the spatial model is acquired, how it can be used
for conceptual reasoning and finally how cross-modal knowledge is represented
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and shared across the system. Section 10.4 details the specifics of planning in
the Explorer domain. Finally, in Section 10.5, we describe in detail an exam-
ple task and how different parts of the system contribute to the completion
of that task. We present some conclusions in Section 10.6.

10.2 System Overview

This section gives an overview of the system structure used in the Explorer
scenario. Figure 10.2 shows the subarchitectures (SAs) used and some of the
more important data structures published in the working memories of the
different SAs. Comparing with Figure 9.4, which describes the instantiation
of the PlayMate scenario, we see that the scenarios share four SAs: ComSys
SA for communication with the user, Binding SA for binding of information
between modalities, Motivation and Planning SA for motivation and planning
and the Conceptual map SA, for ontological representations and reasoning.

The SAs that have been removed from the PlayMate scenario are Manipu-
lation SA, Spatial SA and Vision SA. There is no manipulation in the explorer
scenario which eliminates the need for a dedicated SA. The Spatial SA in its
current form deals with spatial relations in a tabletop scene; in the Explorer
scenario the environment is large-scale and the Spatial SA is replaced by the
Navigation SA, which handles motion control and the three lowest levels of the
spatial model (see Chapter 5), and the Place SA which provides capabilities
for place recognition and categorization.The Conceptual Mapping SA takes a
more prominent role in the Explorer scenario than it does in the PlayMate
scenario. Here it is used to represent large-scale space at an abstract level,
allowing for natural language expressions to be related to places in the world
– and their respective representations in the robot’s lower level maps. The
requirements on the visual processing system also differ considerably between
the PlayMate and the Explorer. The camera is mobile in the Explorer which
violates some of the assumptions in the Vision SA. The Object SA, dealing
with object detection reuses some of the components from the Vision SA.

In the remainder of this section we will briefly outline the composition of
those SAs in the Explorer that do not exist in the PlayMate.

10.2.1 Navigation SA

The Navigation SA hosts the three lowest levels of the spatial model, i.e., the
metric map, produced by the SLAM Process; the navigation graph, and the
topological map; both of which are produced by the NavGraphProcess. The
metric map, represented as a line map, and the navigation graph are published
in the working memory for other components to use. The SLAM Process also
updates one structure for the current metric position and one for the current
topological position of the robot. Each node is assigned an AreaID representing
the topological area it belongs to. Some nodes are gateway nodes (doorways),
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Fig. 10.2. An overview of the Explorer System. There are 7 sub-architectures, each
of which corresponds to a functional and development unit.

and are connected to nodes with differing AreaID. This implicitly defines the
topological map: All navigation nodes with the same AreaID, taken together,
correspond to one node (area) in the topological map, and each gateway node
corresponds to an edge connecting two different areas.

Detecting and Tracking People

Detecting humans and keeping track of them is one of the key capabilities
of a robot that aspires to interact with humans. In the Explorer system we
use relatively simple means to realize this and make the assumption that
there are not too many people close to the robot. For people detection we
use a method similar to that used in [10, 11] which detects motion using
laser scanner data. A new person is hypothesized when motion occurs far
enough from any existing person. Each new person hypothesis is given a unique
PersonID. Association between detected motion and a hypothesis is based on
nearest neighbor matching. Tracking is accomplished by associating detected
motion to hypothesis and using these as measurements in a Kalman filter that
estimates the position and velocity of each person. Once a person disappears
from the field of view of the sensor the hypothesis is removed. If the same
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person reappears they will be given a new PersonID since the system is not
able to identify individual people. Using the camera in combination with the
pan-tilt for actively acquiring and using the appearance of the person could
possibly deal with the problem.

Motion Control

Mobility is one of the most significant differences between the Explorer and the
PlayMate. The Navigation Control module is based on the Nearness Diagram
method [12] and executes the low level “go-to” commands. The target location
is defined based on the current task which might be to follow a person, move
to a specific point in space, etc. This module uses the navigation graph for the
purpose of path planning by finding a path from the current robot position
via the closest node in the graph, through the graph to the node closest to
the goal and finally to the goal location.

10.2.2 Object SA

The Object SA collects the components involved in the finding of objects. It
consists of a module for view planning and one for visual search. The view
planning component creates a plan for which nodes to visit, in what order
and in what direction to look given the assumption that objects can be found
in places where the metric map registers obstacles. The visual search can
be performed using a pan-tilt-zoom camera where an attention mechanism
gradually guides the robot to zoom in closer and closer on object hypotheses
where finally a SIFT based method is used for recognition. In the absence of a
camera with zoom, the SIFT based matching algorithm can be used directly.

The Object SA can be used in two modes: one to perform active object
search in the current region, which engages the above-mentioned modules, and
another where the images are continuously processed to detect objects. In both
cases the objects that are found are published on the working memory. This
is detected by the Navigation SA, whereupon it in turn extends the spatial
model with the new objects. This then propagates the information onwards
to the Conceptual Mapping SA.

10.2.3 Place SA

The Place SA is responsible for assigning nodes and areas to one of predefined
semantic place categories (e.g. an office, a corridor etc.) as described in Chap-
ter 5. It gathers sensory data from a laser scanner and a camera and processes
them in parallel using dedicated visual and laser processing components. The
results for both sensors are integrated by a cue integration component, which
provides beliefs about a place category for the current viewpoint. This in-
formation is, in turn, integrated temporally and spatially in a component
responsible for assigning place labels to the nodes and areas.
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Each area is initially categorized as unknown until the Place SA delivers
a reliable classification result. The place categorization information is pulled
from Place SA by the Navigation SA whenever the current node is changed
in the navigation graph. The interaction with the Navigation SA is carried
out via the structure NodePlaceInfo which contains the established place
category for an area (and a node).

The area categorization provides important information when reasoning
about space. As an example, object search is expensive and the place cat-
egorization can help to speed it up by allowing for a more selective search
for objects. If the task is to populate the map with objects and it is known
that the current area is a kitchen the search can be focused on typical kitchen
objects.

10.2.4 Conceptual Mapping SA

The subarchitecture for Conceptual Mapping maintains a symbolic represen-
tation of space suitable for situated action and interaction. It represents spa-
tial areas, objects in the environment, and abstract properties of persons in a
combined A-Box and T-Box reasoning framework. Section 5.6 gives details on
the underlying knowledge representation and knowledge processing principles.

For our implementation, we use the Jena reasoning framework5 with its
built-in OWL reasoning and rule inference facilities. Internally, Jena stores the
facts of the A-Box and the T-Box of the ontology reasoner as RDF triples.6

The knowledge base can be queried through SPARQL queries.7 This reasoning
framework is wrapped inside a CAST component, the Reasoner, which handles
all necessary communication with the reasoning framework through SPARQL
queries. There are a number of other components that mainly manage the
interaction with other subarchitectures, namely the Nav SA Map Monitor, the
On Demand Binding Monitor and the Concept Comparator. In Section 10.3.2
we will describe the run-time behaviour of the individual components of this
subarchitecture.

10.2.5 The robot platforms

The Explorer system was developed and tested on two similar mobile robot
platforms, Minnie from KTH and Robone from DFKI, seen in Figure 10.3.
Both platforms are equipped with a SICK laser scanner, Minnie with an LMS
200 and Robone with an LMS 291. The laser scanner is the main sensor for the
Navigation SA. Both robots also have a pan-tilt unit with a camera. Though
Robone has a Videre stereo camera setup, only one of the cameras was used
in the scenario.

5 http://jena.sourceforge.net
6 http://www.w3.org/RDF
7 http://www.w3.org/TR/rdf-sparql-query
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Fig. 10.3. The mobile platforms on which the Explorer scenario was developed and
tested. Left: Minnie from KTH, Right: Robone from DFKI.

10.3 Spatial Modeling and Reasoning

In this section we will look closer at spatial modelling, spatial reasoning and
maintaining relations between entities in the spatial model.

10.3.1 Map Acquisition

When building spatial models for human-robot interaction it is natural to
adopt an interactive scheme for the acquisition process as well. We use the
paradigm of Human-Augmented Mapping (HAM) [13, 14].

Human Augmented Mapping

The acquisition process using HAM can be described as a guided tour scenario.
The user takes the robot on a tour of the environment and provides labels for
areas and objects of importance. Wizard-of-Oz studies have investigated the
interaction between human and robot in HAM [15, 16]. The findings concern,
for example, the type of dialogue typically used and strategies to introduce
new locations.

In a typical HAM scenario, the user walks up to the robot and initiates the
mapping process with a command like “follow me!”. The robot continuously
tracks the position of the user and follows them through the environment. As
the robot moves, the spatial model is built from the sensor data.

One important aspect of our implementation of HAM is that the inter-
action is not master/slave-like, with the user initiating all interactions. The
robot is also able to engage in, for example, clarification dialogues when it
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encounters contradictory or ambiguous information. In [17] we describe in de-
tail a HAM case study. In the example illustrated there, the robot detects a
false door when passing by a table and a trash bin placed close together (see
Figure 10.4). This makes the robot segment space into a new area. However,
as it moves on it finds itself reentering a part of space classified as belonging to
the previous area. This should not be possible without passing a door which
leads to a contradiction; the robot can then ask if it really passed through a
door recently.

Fig. 10.4. Left: The user activates the robot at its recharging station. Right: The
robot passes through an opening between a table and a trash bin interpreting the
narrow opening as a door.

Throughout the HAM session, the user can query the spatial knowledge of
the robot. The robot will be able to provide more and more precise descrip-
tions of space as more information comes in. Although the HAM paradigm is
very useful for acquiring a shared representation for spatial knowledge, it is
rather time-consuming for the user. It is therefore natural that the user walks
through the environment relatively quickly and introduces the main features.
The robot could then revisit the environment later when not assigned a spe-
cific task and extend the model with more detected objects, better covered
space, etc.

Autonomous Exploration

In addition to the HAM scheme for map acquisition, the Explorer also pos-
sesses the ability to do autonomous exploration. The Explorer uses a frontier-
based strategy [18] for autonomous exploration. Briefly put, the algorithm
maintains a representation of the world where space is classified as FREE,
OCCUPIED and UNKNOWN. The frontiers are defined as the borders between
FREE and UNKNOWN space.
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Exploration is considered complete when there are no more reachable fron-
tiers. Exploration can be configured to be confined to one area. In this case,
the exploration frontiers are considered unreachable if they require passing a
door, i.e., changing area. When detecting a door, the robot will back up into
the area from which it came and select a new frontier to explore.

Because the way the navigation graph is built requires the robot to move,
exploration is not only about having the sensor see all parts of the room, but
the robot needs to move there as well. The rationale behind requiring the
robot to travel a path to make it part of the navigable space, i.e. a part of the
navigation graph, is that some obstacles may not be detected by a sensor such
as a laser scanner. Upward-facing IR-sensors for detecting tables are examples
of sensors that could detect obstacles which the laser cannot see. Hence, in
order to force the robot to actually visit all the space physically, we limit the
range of the sensor for the purposes of updating the occupancy grid, which
is used to define the frontiers, to 2m. This way, the robot will move across a
large part of a room, even if it is able to see all parts of it from the door.

10.3.2 Acquiring the conceptual map

Upon start-up, the system comes with a rich conceptual ontology consisting of
taxonomies of indoor area types, of commonly found objects, and of different
spatio-topological relations that can hold between area instances and object
instances. Moreover, the ontology contains a concept for persons and a relation
that denotes ownership. This conceptual knowledge is held in the reasoner’s
T-Box. In case the system is started with a blank map, the A-Box of the
reasoner is empty. Otherwise, it will contain area, person and object instances,
and their relations, as contained in the loaded map. It is worth mentioning
that the exact positions of persons are not represented in the conceptual
map, just their ownership relations, which hold irrespectively of their current
whereabouts.

As the robot learns about the world (either through interaction with the
user, or through its autonomous map acquisition skills), this knowledge is
added to the A-Box of the reasoner. To this end, the subarchitecture for Con-
ceptual Mapping contains a component that constantly monitors the working
memory of the Navigation subarchitecture, the Nav SA Map Monitor (see
Figure 10.2). Whenever the Navigation subarchitecture identifies a new topo-
logical area, it creates a working memory entry for it. The working memory
entries for areas on the Navigation Working Memory include a field that con-
tains the most specific area category that can be autonomously extracted from
sensory data. Initially, the working memory entries for areas will contain the
neutral category “area”. As soon as the Place subarchitecture for place cat-
egorization has reliably determined a more specific category (e.g. “corridor”,
or “office” etc.), it will overwrite the corresponding working memory entry
for that area. The Nav SA Map Monitor is notified whenever an area work-
ing memory entry is created or an existing one is modified. In these cases, a



10 The Explorer System 411

(area0 rdf:type Corridor),

(area1 rdf:type Library),

(area2 rdf:type Office),

(area3 rdf:type Office),

(...)

(nick rdf:type Person),

(nick name Nick), (nick owns area2),

(...)

(obj1 rdf:type Book),

(obj2 rdf:type Mug),

(...)

Fig. 10.5. RDF triples in the A-Box of the conceptual map (namespace URIs
omitted).

new instance of the area’s category is created in the reasoner, or a given one
is modified respectively. A similar information flow is implemented for visu-
ally detected objects. Figure 10.5 shows a part of the A-Box in the Explorer
example scenario.

So far we have only described how the Conceptual Mapping Subarchitec-
ture reflects knowledge present elsewhere in the system, e.g. in the Navigation
Subarchitecture. However, one of the main roles of this subarchitecture is to
infer new or more specific knowledge based on partial information. The De-
scription Logic definitions of the concepts in the T-Box express properties that
form necessary and sufficient conditions for being instances of that concept.
By combining and reasoning over instances and their relations, the reasoner
can infer more specific concepts for those instances. In our current system,
the reasoner can infer subconcepts for room instances based on the objects
they contain, according to the principles described in Section 5.6.

The other components of the Conceptual Mapping SA, namely the On
Demand Binding Monitor and the Concept Comparator, are used to make
the information inside the Conceptual Mapping SA available to other subar-
chitectures. In the current system, the On Demand Binding Monitor registers
its competences with the Planning & Motivation Subarchitecture, and upon
request, contributes relevant data to the Binder working memory. The com-
petences offered are spatial reference resolution and the possibility to provide
typical locations for objects. We will detail the properties of these compe-
tences below. The Concept Comparator compares two Concept Binding Fea-
tures according to their taxonomical relation in the T-Box of the Reasoner.
The comparator will return true if the two concepts are ontologically equiv-
alent, or if the concepts are in a taxonomical subsumption relation. It will
return indeterminate if at least one of the concepts is unknown. Otherwise,
i.e. if and only if both concepts exists but are not hierarchically related, the
comparison result will be false.
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10.3.3 Cross-modal spatial knowledge sharing

To enable different modalities to support each other with high-level knowledge,
a number of protocols were implemented for the publishing of data on the
binder.

Current spatial context

The spatial context denotes high-level data on the spatial state of the robot
and of other entities in its current vicinity. This defines a class of binding
proxies that are used by the rest of the system to reason and plan. The
following proxies are always present on the binder:

• A robot proxy representing the physical robot itself
• An area proxy for the area the robot is currently in
• A position relation connecting the robot proxy with its area

In addition, the following are represented as appropriate:

• A person proxy for each person currently being tracked by the people
tracking module

• area proxies for each person
• position relation proxies between the above
• An object proxy for each object belonging to an Area that is being repre-

sented
• position proxies connecting each object and its corresponding Area
• Close relation proxies between the robot and persons that are near to it

The robot proxy

There is always exactly one robot proxy on the binder. The only feature of
this proxy is its Concept: robot. The proxy is designed to bind to proxies
generated by ComSys, representing the listener – the “You” in a dialogue –
and does so on the basis of its Concept feature (using concept comparators
provided by the Conceptual Mapping SA).

Area proxies

As described in Section 5.5.2, the navigation subsystem divides space into
areas, based on door nodes. At the level of planning and reasoning, these areas
constitute the basic units of spatial location. On the binder, the location of
objects, persons and the robot itself is represented by position relation proxies
connecting the entity with an area proxy.

Area proxies have the sole binding feature AreaID, a number that
uniquely identifies the area to the navigation subarchitecture. This feature
identifies the proxy as an area proxy, and also provides the information nec-
essary for another subarchitecture to create a navigation command to move
to the area in question.
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Object proxies

An object proxy has the feature Concept, describing the particular class
of object that it belongs to – for example, book or mug. The concept string
corresponds to the argument that is used to issue a search command to the
Object SA; thus, the feature can be used both for binding and for executing
a plan.

Person proxies

Person proxies store the following binding features:

• Concept: always set to person
• Location: last observed metric position
• PersonID: unique identifier

The Concept feature provides basic binding control, making sure (through
the Conceptual Mapping SA:s comparators) that only other types of person
bind to the proxy. The Location provides the planner with an exact target
for approaching a previously seen person in order to initiate a dialogue. It
also helps in binding: as the system is incapable of distinguishing between
individuals, it uses position to adjudicate binding. If a newly detected and
a previously detected person proxy have locations that are nearer than a
certain threshold, they are bound. Obviously, this makes the strong implicit
assumption that people are immobile.

Position relation proxies

The position proxy is a relational proxy, denoting the spatial relationship “X
is in Y”, where X is the proxy at the From side and Y the proxy at the To
side of the relation. It has the following features:

• Label: always set to position
• OtherSourceID: set to the ID of the navigation subarchitecture; negated

(see below)
• TemporalFrame: PERCEIVED for directly perceived entities; ASSERTED for

others

The OtherSourceID feature is compared to the SourceID feature of other
proxies on the binder, as one criterion on whether the proxies should bind or
not. Since it is negated, this prevents the relation proxy from binding to other
position proxies generated by the navigation subarchitecture.

TemporalFrame indicates the currency of the location information.
While a person is being tracked, its position is regarded as perceived; if it goes
out of perceptual context, yet remains on the binder (due to being bound to
another subsystem’s proxy), its status is changed to asserted.
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This is so that the system can clean up old person proxies: if the asserted
proxy binds to a perceived one (such as when the robot returns to a person it
has previously had a dialogue with), the newer proxy “takes over” from the
older one and the latter can be removed.

Objects’ positions are considered perceived indefinitely after they are de-
tected, since object detection is a discrete event, unlike the continuous tracking
of persons.

The robot’s position is always considered perceived.

Closeness relation proxies

Whenever a person is near to the robot, a relation proxy is created between
the two, with the features:

• Label: always set to close
• OtherSourceID: set to the ID of the navigation subarchitecture; negated
• TemporalFrame: always PERCEIVED

The closeness relation between robot and person is considered a prerequi-
site for initiating dialogue with the person. That is, if the planner is to plan a
dialogue action, it must first ensure that closeness holds, by moving the robot
up to the person if necessary.

As with position proxies, the “close” proxy has an OtherSourceID fea-
ture to prevent binding between the “close” proxies themselves. The relation
is also always considered perceived; if a person ceases to be tracked by the
robot, it is no longer considered “close” even though it may still be on the
binder (with an asserted position).

Supplementing non-spatial context

The preceding paragraphs define the current spatial context of the robot;
that is, the entities that are perceptually relevant to it. In addition, there
may be spatial proxies that are not part of this context, yet still remain
on the binder. This is done in order to supplement other contexts, such as
dialogue. Accordingly, any spatial proxies that are bound to proxies from
other modalities will not be removed as they go out of spatial context. Any
person or object that is thus sustained will also sustain its containing area
and the relation between the two. Similarly, sustained area proxies will also
sustain their contents in terms of objects.

For example, a person proxy will usually go out of context and will be
removed when the person is no longer being tracked (having passed from the
sensor scope of the robot). However, if this person proxy was bound to e.g. a
ComSys proxy representing the speaker in a conversation, the spatial person
proxy will not be removed. Consequently its position relation proxy and the
proxy of the area where the person was last seen also have their removal
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Concept: {"office"}
Concept: {"person"}

Name: {"Bob"}

RelationLabel: {"OwnedBy"}

Fig. 10.6. Proxy structure generated by ComSys for “Bob’s office”.

from the binder suspended. This allows e.g. the planner to access cross-modal
information relevant to its plan as it executes it or performs re-planning.

In addition to retaining spatial proxies that are bound to other modalities’
proxies, it is sometimes necessary to conversely supplement other modalities’
proxies by creating spatial proxies that will bind with them. For example,
when ComSys registers the mention of an area that is not currently part of
the spatial context, the Conceptual Mapping SA may resolve this mention
to a known area instance (see below). It will then provide a proxy of its
own, containing an AreaID feature of the known area; detecting this, the
Navigation SA will in turn create a proxy for that area (provided it hasn’t
already got one on the binder).

As in the case of the direct spatial context, an area that is put on the
binder in this manner will be accompanied by proxies for all objects known
to be in that area, as well as position relations linking the objects to the area.

Situated resolution of referring expressions

When the user gives the robot an order that involves a reference to a location,
ComSys will generate proxies that reflect the given verbal description. Fig-
ure 10.6 shows an example of such a proxy structure. The planner, however,
can only send a navigation command to the Navigation SA that contains a
goal location that is specified in terms of an Area-ID.

The On Demand Binding Monitor of the Conceptual Mapping SA of-
fers the competence to resolve such a structural description of a location to
an AreaID. Whenever the planner needs to resolve an AreaID feature for
a proxy structure, it will send a request for resolution to the On Demand
Binding Monitor. This component will then try to find an instance in the
conceptual map that matches the structural description represented by the
proxies. Internally, the proxy structure is translated into a SPARQL query
to the A-Box of the Reasoner. Figure 10.7 shows an example of a SPARQL
representation for “Bob’s office”.

The results of that query are then transformed into proxies and put on
the binder. The proxies generated by the On Demand Binding Monitor of the
Conceptual Mapping SA will contain the most specific concepts as Concept
features, any other additional information stored in the A-Box, such as name
information, and most importantly the Area-ID.
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SELECT ?x0 ?x1 WHERE {

?x0 rdf:type Office. ?x1 owns ?x0.

?x1 rdf:type Person. ?x1 name ’Bob’.

?x1 owns ?x0.

}

Fig. 10.7. SPARQL query for “Bob’s office”.

On the binder the original ComSys proxies and their counterparts from
the Conceptual Mapping SA are bound to a common union. The On Demand
Binding Monitor then reports task done back to the planner, which then can
continue to try to find a plan that satisfies the user’s command.

Providing default assumptions to the planner

Sometimes the user gives the robot a task that involves an object whose
current location is unknown to the robot. In such a case, the system can
make use of the conceptual knowledge represented in the Conceptual Mapping
SA. As mentioned earlier, the concepts in the ontology are defined through
necessary and sufficient conditions, mostly involving the existence of certain
objects in certain places. Here we make use of this encoded implicit knowledge
to form assumptions about where certain objects can typically be found. For
example, the concept of a library is defined as follows:

Class(Library complete Room

restriction(hasObject valuesFrom(LibraryObject) minCardinality(5))

)

SubClassOf(Library restriction(hasObject someValuesFrom(Book)))

This means that Library is equivalent to the anonymous concept that
fulfills the necessary and sufficient properties of being a subconcept of Room
and containing at least 5 LibraryObject instances. Moreover, a Library has
the necessary condition of containing Book instances. The latter one, however,
is not a defining (i.e. necessary and sufficient) property because books can also
be found elsewhere.

In any case, such a definition allows the system to form a hypothesis that
Books and other LibraryObjects can be expected in a Library. Consequently
the On Demand Binding Monitor registers its competence to provide typical
locations to the Planning & Motivation SA.

When queried by the planner to provide a typical location for a given
object, a SPARQL-query to the T-Box of the Reasoner is constructed and
executed. Figure 10.8 shows a query for the typical location of books.

If a typical location is found, the On Demand Binding Monitor creates a
proxy for the location that contains its most specific concepts. In our example
this would be Library. It also creates a proxy for the concept in question (Book
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SELECT DISTINCT ?defaultLoc WHERE {

?defaultLoc rdfs:subClassOf ?blankNode.

?defaultLoc rdfs:subClassOf oe:Area.

FILTER (!isBlank(?defaultLoc)).

FILTER (?defaultLoc != owl:Nothing).

FILTER (isBlank(?blankNode)).

?blankNode owl:someValuesFrom ?defaultObjClass.

Book rdfs:subClassOf ?defaultObjClass.

}

Fig. 10.8. SPARQL query for the typical locations of books.

in our example), and a Location relation between them with the additional
restriction that it has a TemporalFrame feature with value TYPICAL. This
denotes that the presence of such an object is not guaranteed to hold at a
specific point in time, but can be assumed to be typically the case. It is then
up to the planner to use this information to execute an action, e.g., a visual
search in such a place where the object in question is likely to be found, in
order to instantiate this “typical” knowledge with perceived information.

10.4 Planning

The Motivation and Planning Subarchitecture is general-purpose, and has
therefore been reused (with different configuration information) in both the
Explorer and PlayMate systems (see Chapter 9 for a more detailed descrip-
tion). The data the subarchitecture reasons about, however, is highly domain-
specific. In the Explorer scenario, this includes goals referring to spatial con-
cepts, beliefs about object positions and spatial relations, and actions to per-
ceive and manipulate the environment of a mobile robot. The goals, beliefs
and actions are represented in the symbolic planning language MAPL (see
Chapter 6). The symbols used are maintained by the Address-Variable Map
(AVM, see Chapter 9) such that they can be mapped back to binding prox-
ies and, consequently, to component-specific representations later during plan
execution.

In the Explorer scenarios described in this chapter, the main motivation
for the robot to act is usually provided by an extrinsic source, i.e. a human
user gives the robot a task. The ComSys generates appropriate proxies on the
Motive working memory which are then translated into a planning goal using
the AVM.

Planning starts with the creation of an initial planning state from the con-
tents of the current state of the binder. The task of the planner is then to
determine a sequence of actions whose execution from this state will achieve
the goal. Interestingly, the planning problems arising in the Explorer scenario
are characterised by a large degree of uncertainty and incompleteness in knowl-
edge: the map may still be incomplete, object locations might be unknown
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and the observability of the environment is severely limited. As explained in
Chapter 6, the planner actively tries to reduce such gaps in the robot’s knowl-
edge by using a continual planning approach: the planner repeatedly switches
from planning to execution in order to gather additional knowledge. Based
on the information gained, the planner first revises its current state and, sub-
sequently, its plan. It can then execute this plan further (possibly switching
back to planning later again) until a goal has been achieved.

A plan consists of both external (physical) actions and internal (i.e. pro-
cessing) actions. Physical actions are often scenario-specific. For the Explorer
they include:

• Follow person: Track and follow a human
• Approach person: Move to the proximity of a person
• Gain attention: Attract the attention of a human (e.g. say “Excuse me”)
• Move: Move to a given area in the map
• Object search: Perform object search for a given object
• Inform: Verbalize and transfer information on an object’s position to a

human that is close-by

Internal actions are mostly concerned with the task-driven extension of
the planning state, i.e. the querying of subarchitectures for additional infor-
mation that may be relevant for the problem at hand. In the current Explorer
scenario, it is mainly the Conceptual Mapping Subarchitecture that is queried
for default information, e.g. about where books are usually found. While this
kind of information could be provided to the planner in the initial state, this
would lead to an information overload: there is just too much information
that the different parts of the system could provide to the planner – often at
high processing costs, yet relevant only to few tasks (e.g. visual information
that has to be extracted from camera data). Thus, instead of generating all
this potentially irrelevant data in advance, the continual planner will deter-
mine possibly relevant sources of information on its own as part of the initial
planning phases in the continual planning process. When these information
gathering actions have been executed, a new plan is generated in the next
planning phase that exploits the new information.

If a subarchitecture provides some behaviour (sensing, acting, reasoning,
etc.) that is to be used by the planner, it needs to define two interfaces to this
action for the planner:

• A MAPL action in the planning domain including preconditions, param-
eters and effects

• An action dispatcher, which translates a request from the planner to ex-
ecute a specific MAPL action, i.e. with all parameters instantiated, into
whatever format is required to set the subarchitecture in action.

During plan execution, the planner calls the appropriate action dispatchers
to map the MAPL actions into the local representation used by the executing
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Human (H) approaches robot (R) who is idling in the corridor.

H: ’Find me the Borland book.’

R: ’OK.’

R turns and moves off, going to the door into the library. It

enters the door.

R moves about the room, turning to face different directions at

each location, searching for the Borland book.

R detects the book.

R moves back out into the corridor and up to H.

R: ’The Borland book is in the library.’

Fig. 10.9. An example of the Explorer performing an object localization task.

subarchitecture. For example, an action that in a MAPL plan is described as

PhysicalAction motmon0: approach-person motmon4 area id 0

contains the planner symbols motmon0, motmon4 and area id 0, which corre-
spond to the robot proxy, the user person proxy, and the area proxy on the
binder, respectively. The action dispatcher uses the AVM to find the proxy
corresponding to motmon4, extract the Location feature for the person and
issue a low-level movement command to the Navigation SA to move to that
location.

10.5 Scenario: Find object

Here, we describe in detail an example of a task performed by the robot, and
how the different parts of the system contribute to fulfilling this task.

The robot is ordered by a user to “Find me the Borland book”. It moves
off to look for the book, visually locates it, and returns to report its findings.
The externally apparent features of the task are described in Figure 10.9.

Initial binding state

Before the order “Find me the Borland book” is spoken, the following entities
are represented on the binder:

• The robot
• The area corresponding to the corridor (with AreaID #1)
• A person
• A Position relation connecting robot and area (TemporalFrame PERCEIVED)
• A Position relation connecting person and area (TemporalFrame PERCEIVED)
• A Close relation connecting robot and person (TemporalFrame PERCEIVED)

Note that no objects are present, nor are other areas except the current area.
A snapshot from a system run illustrates the initial state (Figure 10.10).
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Fig. 10.10. Initial binding state.

Processing utterance

As ComSys receives and interprets the user’s phrase “Find me the Borland
book”, it adds the following proxies to the binder, corresponding to the dif-
ferent parts of the utterance.

• The robot itself, being the recipient of an order, is represented by a proxy
with Concept addressee, which binds to the robot proxy already present.

• The word “me”, referring to the speaker, generates a “person” proxy iden-
tified by the Name feature I.

• The expression referring to the book is represented by a “Borland book”
proxy, which is not bound to any other proxies at this point.

Motive generation

The phrase “Find me the Borland book” is used to generate the motive that
will provide the planner with a goal state, as described in Chapter 9: Com-
Sys writes proxies to Motivation SA working memory corresponding to the
semantic interpretation of the command. The motive generator then creates
a motive structure, which the motive manager turns into a planning goal.

The planning goal resulting from the above command is an epistemic one,
saying, in words, that the user needs to know the position of the Borland
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book.8 In the planning language MAPL (see Chapter 6) this goal is represented
as follows:

(:goal (K motmon4 (perceived-position motmon6)))
where the symbols motmon4 and motmon6 represent the user and the book, re-
spectively. These symbols are maintained by the Address-Variable Map (AVM,
see Chapter 9) which allows the planner to refer back to their respective source
modalities during execution.

Continual plan creation

Planning starts with the creation of an initial planning state from the contents
of the current state of the binder. The planner will determine a sequence of
actions whose execution from this state will achieve the goal.

Planning in both the Explorer and the PlayMate system is a continual
process, i.e. the plan is revised repeatedly during its execution. Plan revision
occurs due to external reasons (exogenous events, unexpected execution re-
sults) or because internal state changes enable the planner to fill in details in
its plan that have been deliberately postponed before.

The early phases of continual planning in this Explorer scenario can be de-
scribed as means-end reasoning to determine necessary information for more
detailed planning. For example, the planner first forms a very abstract plan
which, in words, can be expressed as “determine the possible position of the
book by querying some person or subarchitecture who supposedly knows, then
verify this information by actually going there and identifying the book. Fi-
nally, go back and relate that information to the user.” The continual planning
process thus first queries the internal Conceptual Map Subarchitecture which
provides information about default locations of books. This new information
will trigger a plan revision (for details of this process, see Chapter 6) that
leads to a new, more detailed, plan that involves concrete movement to the
library and a search for the object there. If execution of this plan fails, e.g.
because the book is not in the library, this is detected during plan monitoring
and leads to another plan revision. The planner will then rely on sources of in-
formation other than Conceptual Mapping, e.g. humans (except the user). For
the planner, querying a human and querying another subarchitecture about
some information are identical. Both behaviours are planned as ask-val ac-
tions, the only difference to the planner being the addressee and the state
variable the query is about. Likewise, providing information to another agent
is realised by the same planning operator tell-val, regardless of whether this
agent is a human or another subarchitecture.

While humans and other external agents are mostly treated the same as
internal components, the planner makes one important distinction: external
agents will usually be given acknowledgements when requests have been ac-
cepted and when achieved. To that end, the planner implements the Continual
8 This is a convenient interpretation of “Find me the Borland book” because the

robot cannot pick anything up
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Collaborative Planning algorithm presented in Section 6.7. The realisation of
acknowledgements is not determined by the planner and is usually realised by
the ComSys.

The plan created initially upon receiving the order “Find me the Borland
book” consists of the following steps:

1. Acknowledge command acceptance to user
2. Have the Conceptual Mapping SA provide a default position for the book
3. Search the position provided for the book
4. Tell the user the perceived position of the book

Plan execution and revision

The first actions in the plan (acknowledging the new command and querying
for default information about the position of the book) are dispatched to
the appropriate execution modules (ComSys and Conceptual Mapping SA,
respectively). As a result, ComSys produces the utterance “OK” and the
Conceptual Mapping SA augments the binder state with the information that
the Borland Book, being a book, will typically be found in a library. This is
represented by a proxy of Concept borland book and a proxy of Concept
library, connected by a relation position, with TYPICAL status.

The Conceptual Mapping SA also volunteers the specific information it
has on libraries; namely, the fact that it knows about an area that is a library,
with a specific AreaID (#1). It publishes this information in the form of
another proxy with Concept library and AreaID #1. On the binder, this
information is bound together into a structure whose meaning is “The Borland
book will typically be in area #1” (see Figure 10.11).

The addition of this new knowledge to the planning state will lead to the
expansion of the assertion object-search-abstract which abstracted from
the actual position of the book as long as there was no hypothesis for its
position. When such a hypothesis exists, this assertion is no longer allowed to
be used (see Chapter 6), i.e. the planner is forced to reason in a more detailed
fashion with respect to the book position. After replanning, a more concrete
plan is produced:

1. Move to area #1
2. Search the current room for the book
3. Get back to user (area #0)
4. Tell the user the perceived position of the book

Note that by now, the planner also is certain that for finding the book the
robot must move away from the user. Thus it includes an action for getting
back to him later in the plan.

Using the correct AreaID, the planner issues a navigation command “Go
to area #1” to the Navigation SA, and the robot moves into the library. The
planner then proceeds to issue an object search command to the Object SA.
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Fig. 10.11. Binding representation of hypothetical position of Borland book.

The robot searches the room as described in Section 5.7.1. Once the object
is found, the Navigation SA adds it to the navigation graph. Since it is part
of the current spatial context, it is also exported to the binder in the form of
an object proxy, connected to the room’s proxy by a new position proxy. This
position proxy has PERCEIVED temporal frame.

The new proxies bind to the old complex, resulting in the structure in
Figure 10.12. Plan monitoring verifies that the search action was successful.
Because the perceived book proxy (with source ID nav.sa) has been bound
to the proxy from ComSys, the Planner can surmise that the position of the
former applies also to the latter. Thus, the robot now knows the position
of the Borland book that the user mentioned, which means the precondition
now holds for “Tell the user the perceived position of the book”. Consequently,
plan execution goes on to the “Move to the user” action. If object search had
failed, this would have invalidated the plan and triggered replanning.

The person proxy on the binder put there by the Navigation SA remains,
even though it is no longer being tracked, because it is bound to the user’s
ComSys proxy (see Figure 10.13). Thus, the planner can read the Location
feature of the person from the binder, and issue a navigation command to
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Fig. 10.12. Visually confirmed information about the book is added to the binder.

Fig. 10.13. Retained binding data about the user.

the Navigation SA to go to this location. Once there, it calls upon Com-
Sys to formulate a response to the user’s request, using the binder contents
(Figure 10.12) to do so.

10.6 Conclusions

In this chapter we have presented one more instantiation of the CAS architec-
ture schema in the form of the Explorer system. The same software framework
and many of the components are common with the PlayMate instatiation.
While the PlayMate and the Explorer share the underlying framework and
many components, the scenarios/tasks are in fact quite different. This pro-
vides evidence that CAS/CAST are general tools and can be used for a wide
variety of problems.

In this chapter we have also shown how we can share representations across
different modules by employing abstraction and various strategies for bind-
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ing knowledge, that is associating knowledge from one sub-system with that
from another. We showed how the system can bind not only with explicitly
perceived knowledge but also with ontological knowledge. This provides a
mechanism to, for example, fall back to knowledge about the typical location
of objects and thus provide a working hypothesis for a task even when the
location of an object is not known.

The abstraction of knowledge also provided the means to move away from
the hard-coded coupling between user input and action and use a much more
flexible solution using a planner.

With the Explorer system, we also wanted to investigate how to create
spatial representations which could bridge the gap between low-level robot
control, and the qualitative ways in which humans tend to understand space.
We approached this problem from a system point of view, looking at how the
combination of different information sources could help to bridge that gap –
building up a more comprehensive sense of space.

Following out that approach, we have found that integrating different
modalities leads to significant synergies in building up a more complete under-
standing of the spatial organization of an environment, particularly towards
a semantic understanding. Synergetic effects could be observed in informa-
tion sources complementing each other, and in disambiguating interpretations.
These synergies happen over time, and have highlighted an important require-
ment for spatial knowledge representation and reasoning. Namely, knowledge
must not, and cannot, be irrevocable. Spatial reasoning appears to be inher-
ently non-monotonic. The robot needs to be able to retract earlier inferences,
to prevent that erroneously acquired or asserted knowledge leads to irrecov-
erable errors in inferred knowledge.

Synergies only arise when we integrate many components. And that inte-
gration brings not only more complete knowledge and more capabilities, it also
increases complexity and presents problems due to the fact that the real world
is unpredictable to some extent. For example, in a scenario where the robot
continuously interacts with a user and is facing her/him most of the time, the
information content of the sensor input suffers as the user occupies a large
part of the field of view. In our case, the camera was mounted on a pan-tilt
unit and could have been used to actively look for objects and build a metric
map using visual information while following the user. However, this conflicts
with the use of the camera to indicate the focus of attention on the user. As
a result, most of the time the camera only sees the user and not the environ-
ment. The user’s presence not only disturbs the visual object recognition but
also influences the performance of the multi-modal place classification. From
this practical issue, we can derive again more fundamental issues too. Inte-
gration should not only lead to synergy, but also to robustness and plasticity.
In forming more complete interpretations, dependencies between modalities
should not be static. In situ, a robot should be able to resort to alternative
means for perception. And over time, a robot should be able to complete its
incomplete observations, e.g. through autonomous exploration.
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In addition to such practical issues, the experiments we ran in real envi-
ronments highlighted new requirements for the system. For example, spatial
referencing needs to be improved in both directions of the communication
and using several modalities. This would allow the user to indicate a specific
object through, e.g., gesture or gaze direction when saying “This is X”.
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