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ABSTRACT

Although combinatorial auctions have received a great deal of at-
tention from the computer science community over the past decade,
research in this domain has focussed on settings in which a bidder
only has preferences over the bundles of goods they themselves
receive, and is indifferent about how other goods are allocated to
other bidders. In general, however, bidders in combinatorial auc-
tions will be subject to externalities: they care about how the goods
they are not themselves allocated are allocated to others. Our aim
in the present work is to study such combinatorial auctions with
externalities from a computational perspective. We first present
our formal model, and then develop a classification scheme for the
types of externalities that may be exhibited in a bidder’s valuation
function. We develop a bidding language for combinatorial auc-
tions with externalities, which uses weighted logical formulae to
represent bidder valuation functions. We then investigate the prop-
erties of this representation: we study the complexity of the winner
determination problem, and characterise the complexity of classi-
fying the properties of valuation functions. Finally, we consider
approximation methods for winner determination.
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1. INTRODUCTION

Combinatorial auctions have been closely studied over the past
decade [1, 3]. In a combinatorial auction, a number of goods are
simultaneously put to auction, and agents can submit bids for bun-
dles of goods. Within the computer science/Al literature, four main
aspects of combinatorial auctions have been considered: bidding
languages, where the goal is to design compact, expressive, nat-
ural, and computationally tractable languages for defining bidder
valuation functions; mechanism design, where the goal is typically
to design bidding, allocation, and payment schemes so that bidders
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are incentivised to truthfully report their valuation function; winner
determination, where the goal is typically to compute efficiently a
social welfare-maximising allocation of goods to bidders, given a
representation of bids/preferences [4]; and preference elicitation,
where the goal is to elicit efficiently a valuation function from a
potential bidder.

Although details differ, a common model for such combinatorial
auctions is the following. We have a set Z of goods to be auc-
tioned to agents N' = {a1,...,a,}, and each agent ¢; € N has
preferences represented by a valuation function, v; : 2% — R, as-
signing a numeric value to every possible bundle of goods. Implicit
within this framework is a rather significant (and arguably rather
unrealistic) assumption: that bidders only have preferences over
the allocation of goods that they receive, and are indifferent about
how other goods are allocated to other agents. This point is very
well-known in the economics literature, where the term externality
is used to describe the effect that a transaction has on an individual
that is not directly involved in the transaction. If the individual is
adversely affected by the transaction, then the externality is said to
be negative, while if the individual benefits from the transaction,
then the externality is positive. In a combinatorial auction with ex-
ternalities, bidders have preferences not just over the bundles of
goods they receive, but also over the way in which other goods are
allocated to others. This holds even in the extreme case where a
bidder is allocated no goods: they may still have preferences over
the way in which goods are allocated to others, and if the external-
ities are sufficiently severe, such a bidder may even be motivated
to pay the auctioneer to prevent another agent being allocated some
good, even though they themselves are allocated nothing. In this
work, we begin to consider the computational aspects of combina-
torial auctions with externalities.

2. THE FRAMEWORK

We start by assuming a finite, non-empty set Z = {z1,...,2m}
of atomic goods. We assume these goods are indivisible and that
each good is unique. Next, we assume a finite, non-empty set
N = {ao,ai,...,a,} of agents (ak.a. bidders). An allocation
is a function o : N' — 2% s.t. a(a1), . . ., a(a,) partitions Z. The
intended interpretation is that «(a;) is the set of goods allocated to
agent a; under allocation . Let A denote the set of all possible
allocations over N\, Z.

In the literature on combinatorial auctions, a valuation function
for an agent ¢; € N is usually understood as a function v; : 2%
R, i.e., a function that gives the value v;(Z) to agent a; € N of the
bundle of goods Z C Z. Implicit in such a definition of valuation
functions is the idea that a valuation depends only on the goods that
are allocated to a;, and not on the way that goods are allocated to
other agents. In the present paper, we will be concerned with valu-



ation functions for agents that take into account not just the goods
allocated to that agent, but also the way that goods are allocated to
others. Thus, for our purposes, a valuation for agent a; € N is a
functionv; : A — R.

Bringing the above components together, we say a combinatorial
auction with externalities is a tuple

<Z,N7V17...

where Z is the set of goods, AV is the set of agents, and v; € V) is
the valuation function for agent a; € N.

The WINNER DETERMINATION problem in this setting is anal-
ogous to conventional combinatorial auctions: the aim is to find an
allocation o* that maximizes social welfare:

7vﬂ>

* .
o = argmax Z vi(a).
a;eEN

3. OUR RESULTS: AN OVERVIEW

Classifying Valuation Functions: The first issue we considered
was the development of a classification scheme for assignments
and valuation functions. For example, a key property we consid-
ered was whether or not a valuation function v; for agent i could be
considered free of externalities. Intuitively, a valuation function v;
is externality free if it assigns the same value to all allocations in
which agent i receives the same goods. Formally, v; : A — R is
externality free iff:

Vai,az € A: ai(a;) = az(a;) implies vi(a1) = vi(az).

Our classification scheme considers a wide range of different prop-
erties of valuation functions, relating to the types of externalities
that might be present. For example, we considered valuation func-
tions that depend only on the goods that are allocated to a particular
group of agents, but not about how goods are allocated within that
group; and similarly, the idea of a valuation function depending on
who a particular set of goods is allocated to, and so on.

A Bidding Language: The next issue we considered was how to
succinctly represent valuation functions v; : 4 — R. We devel-
oped a weighted rule bidding language for combinatorial auctions
with externalities, which derives inspiration from the weighted for-

mula representations that have been used in other areas of Al (cf. [2]).

We specity agent a;’s valuation function v; as a set of rules R;, with
each rule taking the form (condition, value), where condition is a
logical predicate over allocations A, and value € R4. To obtain
the value of an allocation « given a set of rules R, we sum the val-
ues x of all the rules (¢, x) in R whose condition ¢ is satisfied by
o.

The conditions of our rules are essentially conventional propo-
sitional logic, with primitive propositions replaced by expressions
for referring to allocations. These expressions are of the form ¢; : z,
where a; € N is an agent and z € Z is a good. The intended inter-
pretation of the expression g; : z is, naturally enough, that agent a;
is allocated good z. These atomic expressions may be combined
with classical Boolean connectives to form complex conditions.
We write « = ¢ to mean that the allocation « satisfies the con-
dition ¢. A rule is a pair (y,x) where ¢ is a condition and x € R.
A set of rules R induces a valuation function v :

>

(pixi) ER&al=p;

vr(a) = Xi

Classifying Valuation Functions: Given that we have a classifica-
tion of properties of valuation functions for combinatorial auctions
with externalities, and a concrete representation for such valuation
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functions, it is natural to ask how hard it is to check whether a
particular valuation function exhibits a particular property. For ex-
ample, consider the decision problem EXTERNALITY FREENESS,
where we are given a rule set R (over Z,\), and we are asked
whether v is free of externalities, as defined above. We showed
that in general, it is co-NP-complete to check whether or not a val-
uation function is externality free. We then went on to consider the
other properties of valuation functions as considered in our classi-
fication scheme: it transpires that co-NP-completeness is the char-
acteristic complexity class of such classification problems.

Complexity of Winner Determination: Recall the winner deter-
mination problem, as defined above. The computational complex-
ity of this problem depends upon the choice of representation for
valuation functions. Assuming the weighted rule based bidding
language that we describe above, we proved that WINNER DETER-
MINATION can be solved in polynomial time with a polynomial
number of queries to an NP-oracle, and moreover that the problem
is as hard as any function problem that can be solved in polynomial
time with a polynomial number of queries to an NP-oracle. We also
identified a case where the number of NP-oracle queries required
to solve the problem is “small” compared to the input size (log, n
queries, where 7 is the total number of rules).

Winner Determination with ILPs: Since winner determination
for the weighted rule representation is an NP-hard optimisation prob-
lem, it is natural to consider approaches to solving such problems.
Integer Linear Programming (ILP) is one of the most successful
and widely-used practical approaches to solving computationally
complex optimization problems. We developed an ILP approach to
exact winner determination.

Approximation Algorithms: An obvious question is whether it
is possible to find a polynomial time approximation algorithm for
winner determination, assuming our rule-based representation of
valuation functions. We showed that, in general, such approxi-
mation algorithms are not possible for the weighted rule represen-
tation. However, we identified sub-classes of weighted rules for
which approximations are possible.
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