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AbstractNumerous e�orts have been made in developing \intelligent" programs based onthe Von Neumann's centralized architecture. However, these e�orts have not beenvery successful in building general-purpose intelligent systems. Inspired by biologicalneural networks, researchers in a number of scienti�c disciplines are designing arti�cialneural networks (ANNs) to solve a variety of problems in decision making, optimiza-tion, prediction, and control. Arti�cial neural networks can be viewed as parallel anddistributed processing systems which consist of a huge number of simple and massivelyconnected processors. There has been a resurgence of interest in the �eld of ANNs forseveral years. This article intends to serve as a tutorial for those readers with littleor no knowledge about ANNs to enable them to understand the remaining articles ofthis special issue. We discuss the motivations behind developing ANNs, basic networkmodels, and two main issues in designing ANNs: network architecture and learningprocess. We also present one of the most successful application of ANNs, namelyautomatic character recognition.1 IntroductionWhat are arti�cial neural networks (ANNs)? Why is there so much excitement aboutANNs? What are the basic models used in designing ANNs? What tasks can ANNs1



perform e�ciently? These are the main questions addressed in this tutorial article.Let us �rst consider the following classes of challenging problems of interest to computerscientists and engineers: (i) Pattern classi�cation, (ii) Clustering/categorization, (iii) Func-tion approximation, (iv) Prediction/forecasting, (v) Optimization, (vi) Retrieval by content,and (vii) Control. A number of successful attempts have been made to solve these prob-lems using a variety of ANN models. Because of these successes, ANNs have now become apopular tool for problem solving.Pattern classi�cation: The task of pattern classi�cation is to assign an input pattern(e.g., speech waveform or handwritten symbol) represented by a feature vector to one of pre-speci�ed classes. Discriminant functions or decision boundaries are constructed from a setof training patterns with known class labels to separate patterns from di�erent classes. Thedecision boundaries can be linear, piece-wise linear, or any arbitrary shape (see Figure 1(a)).Two important issues in a pattern classi�cation task are feature representation/extractionand decision making. Well-known applications of pattern classi�cation are character recog-nition, speech recognition, EEG waveform classi�cation, blood cell classi�cation, and printedcircuit board inspection.Clustering/categorization: In clustering, also known as unsupervised pattern classi-�cation, there are no training data with known class labels. A clustering algorithm exploresthe similarity between the patterns and places similar patterns in a cluster (see Figure 1(b)).The number of clusters is often not known a priori. Therefore, clustering is a more di�cultproblem than pattern classi�cation. Well-known clustering applications include data mining,data compression, and exploratory data analysis.Function approximation: Given a set of n labeled training patterns (input-outputpairs), f(x1; y1); (x2; y2); � � � ; (xn; yn)g, generated from an unknown function �(x) (subjectto noise), the task of function approximation is to �nd an estimate, say f , of the unknownfunction �. In the statistical literature, this problem is often referred to as regression. Theestimated function f can be made to �t the training data with an arbitrary accuracy byadjusting its complexity. An important issue here is to avoid over-�tting to the given noisytraining data (see Figure 1(c)). Pattern classi�cation can also be posed as a function ap-proximation problem. Various engineering and scienti�c modeling problems require function2



approximation.Prediction/forecasting: Given a set of n samples in a time sequence,fy(t1); y(t2); � � � ; y(tn)jt1 < t2 < � � � < tng, the task is to predict the sample y(tn+1) atsome future time tn+1. Prediction/forecasting has a signi�cant impact on decision makingin business, science and engineering, as well as our daily life. Stock market prediction andweather forecasting are typical applications of prediction/forecasting techniques (see Figure1(d)).Optimization: A wide variety of problems in mathematics, statistics, engineering, sci-ence, medicine, and economics can be posed as optimization problems. An optimizationproblem usually involves the following components: (i) a set of independent variables orparameters which is often referred to as the state of the process; (ii) an objective functionor cost/error function to be optimized, and (iii) a set of constraints if they exist. The goalof an optimization algorithm is to �nd a state satisfying the constraints such that the ob-jective function is maximized or minimized. A combinatorial optimization problem refers toa problem in which all the state variables are discrete and have a �nite number of possiblevalues. A classical combinatorial optimization problem is the Traveling Salesperson Problem(TSP), which is an NP-complete problem.Content-addressable memory: In the Von Neumann model of computation, an entryin memory is accessed only through its address which does not have any physical meaningin terms of the content in the memory. Moreover, if a small error is made in calculatingthe address, a completely di�erent item would be retrieved. Associative memory or content-addressable memory, as the name implies, can be accessed by its content. The content inthe memory can be recalled even by a partial input or distorted content (see Figure 1(f)).Associative memory is extremely desirable in building multimedia information databases.Control: Consider a dynamic system de�ned by a tuple fu(t); y(t)g, where u(t) is thecontrol input and y(t) is the resulting output of the system at time t. In model-referenceadaptive control, the goal is to generate a control input u(t) such that the system followsa desired trajectory determined by the reference model. An example of model referenceadaptive control is the engine idle speed control (Figure 1(g)). In this example, throttleangle is the control input, and engine speed is the output of the system. The reference3



input (throttle angle) sets the engine at the desired idle speed, when the load torque iszero. Without an adaptive control system, various load torque values would set the engineat di�erent idle speeds. The goal of the engine idle speed control system is to adaptivelygenerate the throttle angle such that the engine runs at the desired idle speed at all loadtorques. Many other engineering systems require an adaptive control.A large number of approaches have been proposed for solving the problems described inFigure 1. While successful applications of these approaches can be found in certain well-constrained environments, none of them is exible enough to perform well outside the domainfor which it is designed. The �eld of arti�cial neural networks has provided alternativeapproaches for solving these problems. It has been established that a large number ofapplications can bene�t from the use of ANNs [1, 9, 7].Arti�cial neural networks, which are also referred to as neural computation, network com-putation, connectionist models, and parallel distributed processing (PDP), are massivelyparallel computing systems consisting of an extremely large number of simple processorswith many interconnections between them. ANNs were designed with the goal of building\intelligent machines" to solve complex problems, such as pattern recognition and optimiza-tion, by mimicking the network of real neurons in the human brain (biological computation).Another goal of ANNs is to help us understand our brain through simulating and testinghypotheses about network architecture and learning.The purpose of this article is to serve as a tutorial for those readers with little or noknowledge about arti�cial neural networks. The rest of this article is organized as follows.Section 2 provides a brief introduction to biological neurons and neural networks, motiva-tions behind developing ANNs, relationship of ANNs to other scienti�c disciplines, and abrief historial note. In Section 3, we present the basic neuron model, and discuss the twomain issues in designing ANNs: (i) network architecture, and (ii) learning process. VariousANN models are organized according to their architecture and learning process. Sections 4- 7 provide more details about several well-known ANN models: Multilayer perceptron, Ko-honen's Self-Organizing Maps, ART models and Hop�eld network. In Section 8, we discusscharacter recognition, a popular domain for applying ANN models. Concluding remarks arepresented in Section 9. 4
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2 MotivationsThis tutorial article is about the fundamentals of arti�cial neural networks. However, wealso need to provide a brief introduction to biological neural networks for the followingreasons: (i) ANNs are inspired by biological neural networks; (ii) a network of massivelyconnected simple processors (PDP model) exhibits powerful computational capabilities; (iii)the biological neural network provides a benchmark for evaluating the performance of ANNs;(iv) biological neural networks are an existence proof of our goal of building intelligentmachines.2.1 Biological neuron/neural networksA neuron (or nerve cell) is a special biological cell, the essence of life, with informationprocessing ability. The introduction of neurons as basic structural constituents of the brainwas credited to Ramon y Cajal who won the 1906 Nobel prize for physiology and medicine(shared with Camillo Golgi) for the crucial discovery of the extensive interconnections withinthe cerebral cortex, the portion of the brain where approximately 90% of the neurons in thehuman are located.
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Cell bodyFigure 2: A sketch of a biological neuron.A schematic drawing of a neuron is shown in Figure 2. A neuron is composed of a cellbody, or soma, and two types of out-reaching tree-like branches: axon and dendrites. The6



cell body has a nucleus which contains information on hereditary traits and a plasma con-taining molecular equipment for the production of material needed by the neuron. The cellmembrane contains various types of electrochemical pumps which can maintain imbalancesin charge concentrations inside and outside the cell. A neuron receives signals (impulses)from other neurons through its dendrites (receivers), and transmits signals generated byits cell body along the axon (transmitter) which eventually branches into strands and sub-strands. At the terminals of these strands are the synapses. A synapse is a place of contactbetween two neurons (an axon strand of one neuron and a dendrite of another neuron).When the impulse reaches the synapse's terminal, certain chemicals, called neurotransmit-ters are released. The neurotransmitters di�use across the synaptic gap, and their e�ect isto either enhance or inhibit, depending on the type of the synapse, the receptor neuron'sown tendency to emit electrical impulses. The e�ectiveness of a synapse can be adjusted bythe signals passing through it so that synapses can learn from the activities in which theyparticipate. This dependence on past history acts as a memory which is possibly responsiblefor the human ability to remember.The cerebral cortex in humans is a large at sheet of neurons about 2 to 3 mm thick witha surface area of about 2,200 cm2, about twice the area of a standard computer keyboard.This is an amazing creation of nature because a sphere with a volume of about 1.5 liters, thetypical size of a human brain, has a surface area of only 634 cm2. It is the walnut appearanceof human brain that provides the cerebral cortex with a surface area three times larger thana simple smooth spherical surface. The cerebral cortex contains about 1011 neurons, whichis approximately the number of stars in the Milky Way! There are about 34 di�erent typesof neurons based solely on their shape, and as many as 100 types of functionally di�erentneurons. Neurons are massively connected, much more complex and denser than today'stelephone networks. Each neuron is connected to 103 � 104 other neurons. The numberof interconnections depends on the location of the neuron in the brain and the type of theneuron. In total, the human brain contains approximately 1014 � 1015 interconnections.Neurons communicate by a very short train of pulses, typically milliseconds in duration.The message is modulated on the frequency with which the pulses are transmitted. Thefrequency can vary from a few up to several hundred Hertz, which is a million times slower7



than the fastest switching speed in electronic circuits. However, complex perceptual deci-sions, such as face recognition, are made by a human at the brain very quickly, typicallywithin a few hundred milliseconds. These decisions are made by a network of neurons whoseoperational speed is a few milliseconds. This implies that computation involved cannot takemore than about one hundred serial stages. In other words, the brain runs parallel programsthat are about 100 steps long for such perceptual tasks. This is known as the hundred steprule [6]. The same timing considerations show that the amount of information sent fromone neuron to another must be very small (a few bits). This implies that critical informa-tion is not transmitted directly, but captured and distributed in the interconnections, thuscomes the name connectionist model. What is the magic that permits slow computing ele-ments to perform extremely complex tasks rapidly? The key is the parallel and distributedrepresentation and computation.Interested readers can �nd more introductory and easily comprehensible material onbiological neurons and neural networks in [3].2.2 Why arti�cial neural networks?Modern digital computers have outperformed humans in the domain of numeric computationand related symbol manipulation. However, humans can e�ortlessly solve complex perceptualproblems (e.g., recognizing a person in a crowd from a mere glimpse of his face) at such afast speed and extent as to dwarf the world's fastest computer. Why does there exist such aremarkable di�erence in their performance? The biological computer employs a completelydi�erent architecture than the Von Neumann architecture (see Table 1). It is this di�erencethat signi�cantly a�ects the type of functions each computational model is best able toperform.Numerous e�orts have been made on developing \intelligent" programs based on the VonNeumann's centralized architecture. However, such e�orts have not resulted in any general-purpose intelligent programs. ANNs are inspired by biological evidence, and attempt tomake use of some of the \organizational" principles that are believed to be used in thehuman brain. This, of course, implies that the achievement of ANNs is largely dependent onthe depth of our understanding of the human brain, which is beyond our comprehension. On8



Von Neumann computer Biological computercomplex simpleProcessor high speed low speedone or a few large numberseparate from processor integrated into processorMemory localized distributednon-content addressable content addressablecentralized distributedComputing sequential parallelstored programs self-learningReliability very vulnerable robustExpertise numerical and symbolic perceptual problemsmanipulationsOperating well-de�ned, poorly-de�ned,environment well-constrained unconstrainedTable 1: Von Neumann computer versus biological computer.the other hand, a successful ANN may not have any resemblance to the biological system.Our ability to model biological nervous system using ANNs can increase our understandingof biological functions. For example, experimental psychologists have used neural networksto model classical conditioning animal learning data for many years [1]. The state-of-the-art in computer hardware technology (e.g., VLSI and optical) has made such modeling andsimulation feasible.The long course of evolution has resulted in the human brain to possess many desirablecharacteristics which are present neither in a Von Neumann computer nor in modern paral-lel computers. These characteristics include massive parallelism, distributed representationand computation, learning ability, generalization ability, adaptivity, inherent contextual in-formation processing, fault tolerance, and low energy consumption. It is hoped that ANNs,motivated from biological neural networks, would possess some of these desirable character-9



istics in the human brain.2.3 Relationship with other disciplinesThe �eld of arti�cial neural networks is an interdisciplinary area of research. A thoroughstudy of arti�cial neural networks requires knowledge about neurophysiology, cognitive sci-ence/psychology, physics (statistical mechanics), control theory, computer science, arti�cialintelligence, statistics/mathematics, pattern recognition, computer vision, parallel process-ing, and hardware (digital/analog/VLSI/optical).Figure 3 illustrates the interaction between arti�cial neural networks and these disciplines.Arti�cial neural networks receive inputs from these disciplines. New developments in thesedisciplines continuously nourish the �eld of ANNs. On the other hand, arti�cial neural net-works also provide an impetus to these disciplines in terms of new tools and representations.This symbiosis is necessary for the vitality of neural network research. Communicationsamong these disciplines ought to be encouraged.
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Pattern recognition systems are expected to automatically classify, describe, or clustercomplex patterns or objects based on their measured properties or features. Design of apattern recognition system involves the following three main steps: (i) data acquisition andpreprocessing, (ii) representation or feature extraction, and (iii) decision making or clus-tering. Jain and Mao [11] have addressed a number of common links between ANNs andstatistical pattern recognition (SPR). There is a close correspondence between some of thepopular ANN models and traditional pattern recognition approaches. Quite often, these re-lationships are not fully exploited to build hybrid systems. Examples are perceptron versuslinear classi�er, vector quantization learning by ANNs versus k-means clustering, and radialbasis function network versus Parzen window density estimation/classi�er. In spite of thisclose resemblance between ANN and SPR, ANNs have provided a variety of novel or sup-plementary approaches for pattern recognition tasks. More noticeably, ANNs have providedarchitectures on which many well-known statistical pattern recognition algorithms can bemapped to facilitate hardware implementation. The adaptivity of ANNs is crucial for thedesign of pattern recognition systems not only in terms of good generalization capability, butalso in terms of its performance in dynamic environments and in the presence of incompleteinformation during training. At the same time, ANNs can derive bene�t from some well-known results in statistical pattern recognition. For example, the generalization ability of anetwork is related to the \curse of dimensionality" problem in statistical classi�ers; radialbasis function networks share many design issues with Parzen window classi�ers. Most of thee�orts in the ANN research related to pattern recognition have been directed to designing aclassi�er with good generalization ability. Little work has been devoted towards designing agood representation scheme for a given problem using neural networks.Arti�cial intelligence (AI) aims at building \intelligent" machines that can perform taskswhich require cognition when performed by humans. A typical AI system has three majorcomponents: representation, reasoning, and learning (see [7]). With motivation derived frompsychology and cognitive science (mental representation), natural language (symbols, sequen-tial processing), and logic (symbol manipulation), traditional AI systems adopt (i) symbolicrepresentation, (ii) searching-based reasoning using rules, logic, and knowledge database, and(iii) expert-based learning (expert systems). AI takes the top-down strategy to solve prob-11



lems [16]: begin at the level of commonsense psychology, and hypothesize what processescould solve a problem. If the problem can not be solved in a single step, break the probleminto subproblems. This procedure continues until a solution is obtained.In contrast, ANNs distinct themselves from traditional AI by employing the paralleland distributed processing (PDP) model which uses a network of massively connected sim-ple processing units (connectionist model). Problems, knowledge, and even solutions arerepresented (coded) by numeric weights and outputs which are distributed in the network.Motivated by neurophysiology, ANNs take the bottom-up strategy: start from simple pro-cessing units, and then move upward in complexity by studying their interconnections andcollective behavior.Both AI and ANN paradigms have their own virtues and de�ciencies (symbolic versusconnectionist, top-down versus bottom-up) [16]. Most importantly, the virtues of one ap-proach could compensate the de�ciencies of the other. Therefore, we should not excludeany one of these two approaches based on our bias. Instead, a useful approach might be tocombine both the approaches in building structured connectionist models.2.4 Brief Historical ReviewHumans, being inquisitive creatures, have long been interested in exploring where the mindoriginates and how the brain computes. These e�orts may be traced back to Aristotle.Yet, the modern era of computational neural modeling began with the pioneering work ofMcCulloch and Pitts [15] in 1943, who introduced a computational model of neuron anda logical calculus of neural networks. McCulloch-Pitts' classic paper was widely read atthe time (and is still read), generating considerable interest over the next 15 years in thedetailed logic of networks consisting of their simple neurons. Such networks were proved tobe capable of universal computation (any Boolean function).The next major milestone in ANNs was Rosenblatt's work on the Perceptron in 1958. Thecrowning achievement of Rosenblatt's work was the �rst proof of the perceptron convergencetheorem. In 1960, Widrow and Ho� introduced the least mean square (LMS) algorithm forthe Adaline (Adaptive Linear Element). Nilsson's book on machine learning [19] was thebest-written exposition of linearly separable patterns in hypersurfaces. ANNs generated a12



great deal of enthusiasm in the 1960's. It appeared as if such a machine could do any typeof computation. However, this enthusiasm was dampened by Minsky and Papert's book[17] which demonstrated the fundamental limitations of the computing power of one-layerperceptrons. They showed that certain rather simple computations, such as the Exclusive-OR (XOR) problem, could not be solved by the one-layer perceptron. It was believed thatsuch limitations could be overcome by multilayer perceptrons which employ intermediatelayers of units (hidden units) between the input layer and output layer. But, a di�cultproblem encountered in designing a multilayer perceptron is the credit assignment problem(i.e., the problem of assigning credit to the hidden units in the network). There was nolearning algorithm known at that time to solve this problem. Minsky and Papert doubtedthat one could be found and thought it more pro�table to explore other approaches toarti�cial intelligence. Because of this and other reasons, research into neural networks wentinto hibernation. However, the neural network �eld was not completely abandoned in the1970's. A number of dedicated researchers continued to develop neural network models.Two important themes that emerged were associative content-addressable memory and self-organizing networks using competitive learning.In the 1980's, a number of important publications appeared, which changed the courseof ANN research. Perhaps more than any other publication, the 1982 paper by Hop�eld[10] and the two-volume book by Rumelhart and McClelland in 1986 [21] were the mostinuential publications. In 1982, Hop�eld introduced the idea of an energy function fromstatistical physics to formulate a new way of understanding the computation of recurrentnetworks with symmetric synaptic connections. This formulation makes explicit the principleof storing information as dynamically stable attractors. Many combinatorial optimizationproblems, such as the classical Traveling Salesperson Problem, can be formulated in termsof a network energy function which is minimized when the network reaches a stable state.In 1986 Rumelhart, Hinton and Williams reported the development of the backpropaga-tion algorithm which popularized the use of multilayer perceptron to solve a wide variety ofpattern recognition problems. In fact, the development of the back-propagation algorithmhas a colorful history. It was �rst developed by Werbos in 1974 in his Ph.D. thesis, and laterrediscovered independently in two other places by Parker and by LeCun in 1985.13



Over the last ten years, thousands of researchers from many diverse �elds, such as neu-roscience, psychology, medicine, mathematics, physics, computer science, and engineering,have been involved in developing neural network models, implementing the models in hard-ware (VLSI and optics) and software, and solving a number of important applications. Theseactivities continue to grow as a result of the successful applications of the ANN models.3 Arti�cial Neurons/Neural NetworksThis section provides an overview of ANNs. First, computational models of neurons areintroduced. Then, two important issues, network architecture and learning, are discussed.Various ANNmodels are organized by their architecture and the learning algorithm involved.3.1 Computational Models of NeuronsMcCulloch and Pitts [15] proposed a binary threshold unit as a computational model fora neuron. A schematic diagram of a McCulloch-Pitts neuron is shown in Figure 4. This
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which is attached to the neuron with a constant input, x0 = 1. Positive weights correspondto excitatory synapses, while negative weights model inhibitory synapses. McCulloch andPitts proved that with suitably chosen weights a synchronous arrangement of such neuronsis, in principle, capable of universal computation. There is a crude analogy (Table 2) to abiological neuron: wires and interconnections model axons and dendrites, connection weightsrepresent synapses, and the threshold function approximates the activity in soma. The modelof McCulloch and Pitts contains a number of simplifying assumptions, which do not reectthe true behavior of biological neurons. Some of these di�erences are:� Biological neurons are not threshold devices, but have graded response (essentially anonlinear function of the inputs);� Biological neurons perform a nonlinear summation of inputs and can even performlogical processing;� Biological neurons produce a sequence of pulses, not a simple output value;� Biological neurons are updated asynchronously.Nevertheless, the McCulloch-Pitts neuron model started a new era for computational neuralmodeling. Biological neurons Arti�cial neuronsSynapses Connection weightsAxons Output wiresDendrites Input wiresSoma Activation functionTable 2: An analogy between biological neurons and arti�cial neurons.The McCulloch-Pitts neuron has been generalized in many ways. An obvious generaliza-tion is to use activation functions other than the threshold function, e.g., a piecewise linear,sigmoid, or Gaussian, shown in Figure 5. The sigmoid function is by far the most frequently15



used function in ANNs. It is a strictly increasing function that exhibits smoothness andasymptotic properties. The standard sigmoid function is the logistic function, de�ned byg(x) = 1=(1 + exp (��x));where � is the slope parameter.
Threshold Piecewise linear Sigmoid GaussianFigure 5: Di�erent types of activation functions.3.2 Network Architecture/TopologyAn assembly of arti�cial neurons is called an arti�cial neural network. ANNs can be viewedas weighted directed graphs in which nodes are arti�cial neurons and directed edges (withweights) are connections from the outputs of neurons to the inputs of neurons. Based
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categories as shown in Figure 6: (i) feedforward networks in which no loop exists in thegraph, and (ii) feedback (or recurrent) networks in which loops exist because of feedbackconnections. The most common family of feedforward networks is a layered network inwhich neurons are organized into layers with connections strictly in one direction from onelayer to another. In fact, all the networks with no loops can be rearranged in the formof layered feedforward networks with possible skip-layer connections. Figure 6 also showstypical networks of each category. We will discuss in this article all these networks except theRadial Basis Function (RBF) networks (see [7]) which employ the same network architectureas multilayer perceptrons, but di�erent activation functions.Di�erent connectivities exhibit di�erent network behaviors. Generally speaking, feedfor-ward networks are static networks, i.e., given an input, they produce only one set of outputvalues, not a sequence of values. Feedforward networks are memoryless in the sense thatthe response of a feedforward network to an input is independent of the previous state ofthe network. An exception is the time delay feedforward network in which dynamics occursbecause of di�erent delay factors of the neurons in the network.Recurrent networks are dynamic systems. Upon presenting a new input pattern, theoutputs of the neurons are computed. Because of the feedback paths, the inputs to eachneuron are then modi�ed, which leads the network to enter a new state. This processis repeated until convergence. Obviously, di�erent mathematical tools must be employedto treat these two di�erent types of networks. Dynamic systems are often described bydi�erential equations.These network architectures can be either simulated in software or implemented in hard-ware (VLSI and optical). Software simulation of a network is always necessary before im-plementing it in hardware. A number of public and commercial software ANN simulatorsare available. More and more researchers have recognized the importance of hardware im-plementation, which is probably the only way to take the full advantage of the capacitiesof ANNs. A di�culty in the VLSI implementation of ANNs is the massive connections. Afully connected network with N neurons requires N2 connections! This factor limits thenumber of neurons (typically a few hundred) that we can build on a single chip using thestate-of-the-art VLSI technology. An alternative is the optical implementation of ANNs.17



But, it is still in the early stages.Di�erent network architectures require di�erent learning algorithms. The next sectionwill provide a general overview of the learning processes.3.3 LearningAbility to learn is a fundamental trait of intelligence. Although what is meant by learning isoften di�cult to describe, a learning process, in the context of arti�cial neural networks canbe viewed as the problem of updating network architecture and connection weights so thata network can e�ciently perform a speci�c task. Typically, learning in ANNs is performedin two ways. Sometimes, weights can be set a priori by the network designer through aproper formulation of the problem. However, most of the time, the network must learnthe connection weights from the given training patterns. Improvement in performance isachieved over time through iteratively updating the weights in the network. The ability ofneural networks to automatically learn from examples makes arti�cial neural networks veryattractive and exciting. Instead of having to specify a set of rules, ANNs appear to learnfrom the given collection of representative examples. This is one of the major advantages ofneural networks over traditional expert systems.In order to understand or design a learning process, one must �rst have a model ofthe environment in which a neural network operates, i.e., what information is available tothe neural network. We refer to this model as a learning paradigm [7]. Second, one mustunderstand how weights in the network are updated, i.e., what are the learning rules whichgovern the updating process. A learning algorithm refers to a procedure in which learningrules are used for adjusting weights in the network. Finally, it is important to investigatehow much the network can learn from examples (capacity), how many training samples arerequired (sample complexity), and how fast the system can learn (time complexity). Thestudy of capacity, sample complexity, and time complexity is what a learning theory mustdeal with. Figure 7 illustrates these three aspects of a learning process.There are three main learning paradigms, namely, (i) supervised, (ii) unsupervised, and(iii) hybrid learning. In supervised learning, the network is provided with a correct answerto every input pattern. Weights are determined so that the network can produce answers as18
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Figure 7: Learning issues.close as possible to the known correct answers. This is sometimes referred to as learning witha teacher. Reinforcement learning is a special case of supervised learning where the networkis provided with only critiques on the correctness of network outputs, not the correct answers(outputs) themselves. In contrast, unsupervised learning does not require any correct answerassociated with each input pattern in the training data set. It explores the underlyingstructure in the data, or correlations between patterns in the data, and organizes patternsinto categories from these correlations. Hybrid learning combines supervised learning andunsupervised learning. Typically, a portion of weights in the network are determined usingsupervised learning, while the others are obtained from unsupervised learning.Learning theory must address three fundamental and practical issues associated withlearning from samples: (i) capacity, (ii) sample complexity, and (iii) time complexity. The�rst issue concerns whether the true solution is contained in the set of solutions that anetwork can deliver. If not, we can never hope to obtain the optimal solution. This remains19



a di�cult and open problem. The approximation capabilities of feedforward neural networkshave recently been investigated by many researchers (see, [9]). A fundamental result of thesestudies is that 3-layer, or even 2-layer, feedforward networks with an arbitrarily large numberof nonlinear hidden units are capable of implementing any continuous mapping with a pre-speci�ed accuracy under certain mild conditions. Unfortunately, most of these theoreticalstudies ignore the learnability problem that is concerned with whether there exist methodsto learn the network weights from empirical observations of the mappings. Furthermore,these theoretical analyses have not introduced any new practical learning methods.The second issue, sample complexity, determines the number of training patterns neededto train the network in order to guarantee a valid generalization. Too few patterns maycause the \over-�tting" problem where the network performs well on the training data set,but poorly on independent test patterns drawn from the same distribution as the trainingpatterns.The third issue is the computational complexity of the learning algorithm used to esti-mate a solution from the training patterns. Many existing learning algorithms have highcomputational complexity. For example, the popular backpropagation learning algorithmfor feedforward networks is computationally demanding because of its slow convergence.Designing e�cient algorithms for neural network learning is a very active research topic.There are four basic types of learning rules as shown in Figure 7: (i) error-correction,(ii) Boltzmann, (iii) Hebbian, and (iv) competitive learning. They will be described in thefollowing four subsections.3.3.1 Error-correction rulesIn the supervised learning paradigm, the network is given a desired output for each inputpattern. During the learning process, the actual output, y, generated by the network maynot equal the desired output, d. The basic principle of error-correction learning rules is touse the error signal (d � y) to modify the connection weights such that this error will begradually reduced.The well-known perceptron learning rule is based on the error-correction principle. Aperceptron consists of a single neuron with adjustable weights, wj; j = 1; 2; � � � ; n, and20



threshold �, as shown in Figure 4. Given an input vector x = (x1; x2; � � � ; xn)t, the net inputto the neuron (before applying the threshold function) isv = nXj=1wjxj � �:The output y of the perceptron is +1 if v > 0, and 0 otherwise. In a two-class classi�cationproblem, the perceptron assigns an input pattern to one class if y = 1, and to the other classif y = 0. The linear equation nXj=1wjxj � � = 0;de�nes the decision boundary (a hyperplane in the n-dimensional input space) which dividesthe space into two halves.Rosenblatt [20] developed a learning procedure to determine the weights and thresholdin a perceptron, given a set of training patterns. The perceptron learning procedure can bedescribed as follows.1. Initialize the weights and threshold to small random numbers.2. Present a pattern vector (x1; x2; � � � ; xn)t, and evaluate the output of the neuron.3. Update the weights according towj(t+ 1) = wj(t) + �(d� y)xj;where d is the desired output, t is iteration number, and � (0:0 < � < 1:0) isthe gain (step size).Note that learning occurs only when an error is made by the perceptron. Rosenblattproved that if the training patterns are drawn from two linearly-separable classes, then theperceptron learning procedure will converge after a �nite number of iterations. This is thewell known perceptron convergence theorem. However, in practice, one does not know whetherthe patterns are linearly separable or not. Many variations of this learning algorithm havebeen proposed in the literature [9]. Other activation functions can also be used, which leadto di�erent learning characteristics. However, a single layer perceptron can only separatelinearly separable patterns, as long as a monotonous activation function is used. Note thatnon-monotonous activation functions, such as a Gaussian function, could form non-lineardecision boundaries. 21



Figure 8 shows the trajectory of the decision boundary learned using a modi�ed percep-tron learning algorithm for classifying the logical \AND" problem which is linearly-separable.
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connection weights such that the states of visible units satisfy a particular desired probabilitydistribution. According to the Boltzmann learning rule, the change of connection weight wijis given by �wij = �(�ij � �ij);where �ij and �ij are the correlations between the states of unit i and unit j when thenetwork operates in the clamped mode and free-running mode, respectively. The values of�ij and �ij are usually estimated from Monte Carlo experiments which are extremely slow.Boltzmann learning can be viewed as a special case of error-correction rule in which erroris measured not as the direct di�erence between the desired output and actual output, butas the di�erence between the correlations between the outputs of two neurons under twooperating conditions (clamped and free-running).3.3.3 Hebbian ruleThe oldest, yet still used, learning rule is Hebb's postulate of learning [8]. It was proposedby Hebb based on the following observation from neurobiological experiments: When anaxon of a cell A is near enough to excite a cell B and repeatedly or persistently takes partin �ring it, some growth process or metabolic changes take place in one or both cells suchthat A's e�ciency as one of the cells �ring B is increased. In other words, if two neurons onthe either side of a synapse are activated synchronously and repeatedly, then the strengthof that synapse is selectively increased [7]. Such a synapse is often referred to as Hebb'ssynapse, or correlational synapse because the change of the synapse's strength depends onthe correlation between the presynaptic and postsynaptic activities.Mathematically, the update of Hebb's synapse can be described aswij(t+ 1) = wij(t) + �yj(t)xi(t);where xi and yj are the output values of neurons i and j, respectively, which are connectedby the synapse wij , and � is the learning rate. Note that xi is the input to the synapse.An important property of this rule is that learning is done locally, i.e., the change ofthe synapse weight depends only on the activities of the two neurons connected by it. Thissigni�cantly simpli�es the complexity of the learning circuit in a VLSI implementation.23



One problem with this learning rule is that the connection weights will grow unboundedlyas learning proceeds. To deal with this problem, many modi�cations to the basic Hebbianrule have been proposed [7, 9]. For example, Oja's rule adds a weight decay proportional toy2j to the basic Hebbian rule:wij(t+ 1) = wij(t) + �yj(t)(xi(t)� yj(t)wij):It is interesting to note that this rule is similar to the reverse error-correction rule; �wijdepends on the di�erence between the actual input and the back-propagated output.A single neuron trained using the Hebbian rule exhibits an orientation selectivity. Figure9 demonstrates this property. The points depicted in Figure 9 are drawn from a 2-dimensionalGaussian distribution and used for training a neuron. The weight vector of the neuron isinitialized to w0 as shown in the �gure. As the learning proceeds, the weight vector movescloser and closer to the direction w of maximal variance in the data. In fact, w is theeigenvector of the covariance matrix of the data corresponding to the largest eigenvalue.
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w0Figure 9: Orientation selectivity of a single neuron.It is straightforward to generalize the above behavior of a single unit and conclude thata one-layer feedforward network with m output units can extract �rst m principal compo-nents of n-dimensional data, m � n. Due to the orthogonality of the eigenvectors, the other(m � 1) principal components lie in the subspace which is perpendicular to the �rst prin-cipal component corresponding to the largest eigenvalue. Therefore, the (m � 1) principalcomponents can be determined recursively in subspaces in a way similar to computing the�rst component. Several more elegant methods have been proposed for computing all the24



principal components simultaneously by imposing some constraints on the activities of theoutput units [7].3.3.4 Competitive Learning RulesUnlike the Hebbian learning where multiple output units can be �red simultaneously, incompetitive learning all the output units compete among themselves for being activated. Asa result of such competition, only one output unit, or only one per group, is active at anygiven time. This phenomenon is often known as winner-take-all. Competitive learning hasbeen found to exist in biological neural networks. Neurobiological experiments have shownthat competitive learning plays an important role in the formation of topographic maps inthe brain, and the self-organization of orientation sensitive nerve cells in the striate cortex.The outcome of competitive learning is often a clustering or categorization of the inputdata. Similar patterns are grouped by the network and represented by a single unit. Thisgrouping process is done by the network automatically based on the correlations in the data.The simplest competitive learning network consists of a single layer of output units asshown in Figure 10. Each output unit i in the network connects to all the input units
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3Figure 10: A simple competitive learning architecture.via weights, wij, j = 1; 2; � � � ; d. Each output unit also connects to all the other outputunits via inhibitory weights, but has self-feedback with an excitatory weight. As a result ofcompetition, only the unit with the largest (or the smallest) net input becomes the winner,i.e., wi� � x � wi � x 8 i;25



or kwi� � xk � kwi � xk 8 i:When all the weight vectors are normalized, these two inequalities are equivalent.A simple competitive learning rule can be stated as follows.�wij = 8><>: �(x�j �wi�j); i = i�;0; i 6= i�: (1)Note that only the weights of the winner unit get updated. The e�ect of this learning ruleis to move the stored pattern in the winner unit (weights) a little bit closer to the inputpattern. A geometric interpretation of competitive learning is demonstrated in Figure 11.In this example, we assume that all the input vectors have been normalized to have unitlength. They are depicted as black dots in Figure 11(a). The weight vectors of the threeunits are randomly initialized. Their initial positions and �nal positions on the sphere aftercompetitive learning are shown as crosses in Figures 11(a) and 11(b), respectively. As wecan see from Figure 11, each of the three natural groups of patterns has been discovered byan output unit whose weight vector points to the center of gravity of the discovered group.
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X(a) (b)Figure 11: An example of competitive learning: (a) before learning; (b) after learning.One can see from the competitive learning rule that the network will never stop learning(updating weights) unless the learning rate � is zero. It is possible that a particular patternmay �re di�erent output units (change categories) forever during the learning. This bringsup the stability issue of a learning system. A learning system is said to be stable if no patternin the training data changes its category after a �nite number of learning iterations. One26



way of achieving stability is to force the learning rate to decrease gradually as the learningprocess proceeds, and so it eventually approaches zero. However, this arti�cial freezing oflearning causes another problem of plasticity, which is de�ned as the ability to adapt to newdata. This is the well-known Grossberg's stability-plasticity dilemma in competitive learning.Perhaps, the most well-known example of competitive learning is vector quantization fordata compression. Vector quantization has been widely used in speech and image processingfor e�cient storage, transmission and modeling. The goal of vector quantization is to repre-sent a set or distribution of input vectors by a relatively small number of prototype vectors(weight vectors), or a codebook. Once a codebook has been constructed and agreed upon,we can only transmit or store the index of the corresponding prototype to the input vector.Given an input vector, its corresponding prototype can be found through searching for thenearest prototype in the codebook. If the Euclidean distance is used, this divides the inputspace into a Voronoi tessellation. The competitive learning rule in Equation (1) can be usedfor generating a codebook for a given set of input vectors.The codebook and Voronoi tessellation generated by the unsupervised competitive learn-ing rule may not be the best for pattern classi�cation purposes (see Figure 12(a)). Learningvector quantization (LVQ) [12] is a supervised competitive learning technique which uses pat-tern class information to adjust the Voronoi vectors slightly, so as to improve classi�cationaccuracy. In LVQ, the weight updating rule is replaced bywc(t+ 1) = 8>>>>><>>>>>: wc(t) + �(t)[x(t)� wc(t)]; If pattern x(t) is correctly classi�edby the winning unit c;wc(t)� �(t)[x(t)�wc(t)]; otherwise:Figure 12(b) demonstrates the e�ect of LVQ. It moves the prototypes learned using theVQ algorithm slightly to the left in order to classify all the patterns correctly.3.3.5 Summary of Learning AlgorithmsVarious learning algorithms and their associated network architectures are summarized inTable 3. However, this is by no means an exhaustive list of the learning algorithms availablein the literature. We notice that both the supervised and unsupervised learning paradigms27



(a) (b)Figure 12: Vector quantization (a) versus learning vector quantization (b). Patternsfrom two classes are labeled by triangles and circles, respectively. Solid patterns arelearned prototypes.employ learning rules based on error-correction, Hebbian, and competitive learning. Learningrules based on error-correction can be used for training feedforward networks, while Hebbianlearning rules have been used for all types of network architectures. However, each learningalgorithm is designed for training a speci�c network architecture. Therefore, when we talkabout a learning algorithm, it is implied that there is a particular network architecture asso-ciated with it. Each learning algorithm is also designed for performing one or a few speci�ctasks. The last column of table 3 lists a number of tasks that each learning algorithm canperform. Due to space limitation, we will not discuss some of the other algorithms, includingADALINE, MADALINE [22], linear discriminant analysis (see [11]), ART2, ARTMAP [4],Sammon's projection (see [11]), principal component analysis (see [9]), and RBF learningalgorithm (see [7]). Interested readers can further read the corresponding references. Notethat in order to reduce the size of the bibliography, this article does not always cite the �rstpaper that proposed a particular algorithm.
28



Learning Paradigm Learning Rule Architecture Learning Algorithm TaskSingle- or Perceptron learning algorithms pattern classi�cationError-correction Multi-layer Backpropagation function approximationPerceptron ADALINE & MADALINE controlSupervised Boltzmann Recurrent Boltzmann Learning algorithm pattern classi�cationHebbian Multi-layer Linear Discriminant Analysis data analysisFeedforward pattern classi�cationCompetitive Learning Vector Quantization within-class categorizationCompetitive data compressionART network ARTMAP pattern classi�cationwithin-class categorizationError-correction Multi-layer Sammon's projection data analysisFeedforwardFeedforward Principal Component Analysis data analysisUnsupervised Hebbian or Competitive data compressionHop�eld Net Associative memory learning associative memoryCompetitive Vector Quantization categorizationdata compressionCompetitive Kohonen SOM Kohonen's SOM categorizationdata analysisART networks ART1, ART2 categorizationHybrid Error-correction RBF network RBF Learning algorithm pattern classi�cationand Competitive function approximationcontrolTable 3: Well-known learning algorithms.29



4 Multilayer PerceptronIt has been recognized that multilayer feedforward networks are capable of forming arbitrarilycomplex decision boundaries and can represent any Boolean function [17]. The developmentof the back-propagation learning algorithm for determining weights in a multi-layer feedfor-ward network has made these networks the most popular of all the networks.
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input layer hidden layers output layerFigure 13: A typical 3-layer feedforward network architecture.Figure 13 shows a typical 3-layer perceptron. In general, a standard L-layer feedforwardnetwork1 consists of one input stage, L�1 hidden layers, and one output layer of units whichare successively connected (fully or locally) in a feedforward fashion with no connectionsbetween units in the same layer and no feedback connections between layers. We denotewij(l) as the weight on connection between the ith unit in layer (l � 1) to jth unit in layer l.Recall that the task of a learning algorithm is to automatically determine the weights inthe network such that a certain cost function is minimized.Let f(x(1);d(1)); (x(2);d(2)); � � � ; (x(p);d(p))g be a set of p training patterns (input-outputpairs), where x(i) 2 Rn is the input vector in the n-dimensional pattern space, and d(i) 2[0; 1]m is the desired output vector in the m-dimensional hyper-cube. For classi�cationpurposes, m is set to the number of classes. The squared-error cost function, which is mostfrequently used in the ANN literature, can be de�ned asE = 12 pXi=1 ky(i)� d(i)k2: (2)1In this paper, we adopt the convention that the input nodes are not counted as a layer.30



The back-propagation algorithm is a gradient-descent method to minimize the abovesquared-error cost function in Equation (2). It can be described as follows [21].1. Initialize the weights to small random values;2. Randomly choose an input pattern x(�);3. Propagate the signal forward through the network;4. Compute �Li in the output layer (oi = yLi )�Li = g0(hLi )[d�i � yLi ];where hli represents the net input to the ith unit in the lth layer.5. Compute the deltas for the preceding layers by propagating the errors back-wards; �li = g0(hli)Xj wl+1ij �l+1j ;for l = (L� 1); � � � ; 1.6. Update weights using �wlji = ��liyl�1j7. Go to step 2 and repeat for the next pattern until the error in the output layer isbelow a pre-speci�ed threshold or the maximumnumber of iterations is reached.A geometric interpretation (adopted and modi�ed from [14]) shown in Figure 14 can helpus understand the role of hidden units (with the threshold activation function). Each unit inthe �rst hidden layer forms a hyper-plane in the pattern space; boundaries between patternclasses can be approximated by hyper-planes. A unit in the second hidden layer formsa hyper-region from the outputs of the �rst-layer units; a decision region is obtained byperforming an \AND" operation on hyperplanes. Arrange the output-layer units to performan \OR" operation on all the second-layer units. Remember that this scenario is depictedonly to help us understand the role of hidden units. Their actual behavior, after we trainthe network, could be di�erent from this. Moreover, multilayer feedforward networks withsigmoid activation functions can form smooth decision boundaries rather than piece-wiselinear boundaries.There are many issues in designing feedforward networks. These issues include: (i) how31
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units)Figure 14: A geometric interpretation of the role of hidden units.many layers are needed for a given task?; (ii) how many units per layer?; (iii) what canwe expect a network to generalize on data not included in the training set?; and (iv) howlarge should the training set be for \good" generalization? Although multilayer feedforwardnetworks with backpropagation algorithm has been widely used for classi�cation and functionapproximation (see [9]), many design parameters still have to be determined by the trial-and-error method. Existing theoretical results only provide very loose guidelines for selectingthese parameters in practice.5 Kohonen's Self-Organizing MapsKohonen's Self-Organizing Map (SOM) [12] has the desirable property of topology preservingwhich captures an important aspect of the feature maps in the cortex of the more developedanimal brains. By topology preserving mapping, we mean that nearby input patterns shouldactivate nearby output units on the map. The basic network architecture of Kohonen's SOMis shown in Figure 15. It basically consists of a two-dimensional array of units, each of whichis connected to all the d input nodes. Letwij denote the d-dimensional vector associated withthe unit at location (i; j) of the 2-D array. Each neuron computes the Euclidean distance32



dx x x1 2

...

...Figure 15: Kohonen's Self-Organizing Map.between the input vector x and the stored weight vector wij .yij = jjx�wij jj:Kohonen's SOM is a special type of competitive learning network which de�nes a spatialneighborhood for each output unit. The shape of the local neighborhood can be eithersquare, rectangle, or circle. Initial neighborhood size is often set to 1/2 to 2/3 of the networksize. Neighborhood shrinks with time according to some schedule such as an exponentiallydecreasing function. During the competitive learning, all the weight vectors associated withthe winner and its neighboring units are updated.Kohonen's SOM learning algorithm can be described as follows.
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1. Initialize weights to small random numbers; set initial learning rate and neigh-borhood;2. Present a pattern x, and evaluate the network outputs;3. Select the unit (ci; cj) with the minimum output:jjx�wcicj jj = minij jjx�wij jj4. Update all the weights according to the following learning rule;wij(t+ 1) = 8><>: wij(t) + �(t)[x(t)�wij(t)]; if (i; j) 2 Ncicj (t);wij(t); otherwise;where Ncicj(t) is the neighborhood of unit (ci; cj) at time t, and �(t) is thelearning rate.5. Decrease the value of �(t) and shrink the neighborhood Ncicj (t);6. Repeat steps 2 { 5 until the change in weight values is less than a pre-speci�edthreshold, or the maximum number of iterations is reached.Kohonen's SOM can be used for projection of multivariate data, density approximation,and clustering. Some successful applications of Kohonen's SOM can be found in the areas ofspeech recognition, image processing, robotics, and process control [9]. The design param-eters include the dimensionality of the neuron array, number of neurons in each dimension,shape of neighborhood, shrinking schedule of the neighborhood, and learning rate.6 Adaptive Resonance Theory ModelsRecall that an important issue in competitive learning is the stability-plasticity dilemma.How can our brain learn new things (plasticity) yet retain the stability that ensures theexisting knowledge not being erased or corrupted? Carpenter and Grossberg's AdaptiveResonance Theory models (ART1, ART2, and ARTMAP) were developed in an attempt toovercome this dilemma [4]. The basic idea of these models is as follows. The network hasa su�cient supply of output units, but they are not used until deemed necessary. A unit issaid to be committed (uncommitted) if it is (not) being used. The learning algorithm updatesthe stored prototypes of a category only if the input vector is su�ciently similar to them.34



Input and a stored prototype are said to resonate when they are su�ciently similar. Thesu�cient extent of similarity is controlled by a vigilance parameter, �, with 0 < � < 1, whichalso determines the number of categories. When the input vector is not su�ciently similarto any existing prototype in the network, a new category is created and an uncommittedunit is assigned to this new category with the input vector as the initial prototype. If nosuch uncommitted unit exists, then a novel input generates no response.ART1 takes only binary (0/1) input, while ART2 was designed for continuous-valuedinput. The newer version ARTMAP makes use of pattern label information. Here, wepresent only ART1 to illustrate the model.
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Figure 16: ART1 network.Figure 16 shows a simpli�ed diagram of the ART1 architecture (see [9]). It consists oftwo layers of units, which are fully connected. Top-down weight vector wj is associated withunit j in the input layer, and bottom-up weight vector wi is associated with output unit i;wi is the normalized version of wi. wi = wi"+Pj wji ; (3)where " is a small number which is used for breaking the ties in selecting the winner. Givenan N -bit input vector x, the output of the auxiliary unit A is given byA = Sgn0=1(Xj xj �NXi Oi � 0:5);35



and the outputs of input units is given byVj = Sgn0=1(xj +Xi wjiOi +A� 1:5)= 8><>: xj; if no output Oj is \on";xj ^PiwjiOi; otherwise:A reset signal R is generated only when the similarity is less than the vigilance level.The ART1 learning algorithm is described below.1. Initialize wij = 1, for all i; j. Enable all the output units.2. Present a new pattern x.3. Find the winner unit i� among all the enabled output unitswi� � x � wi � x; 8i4. Vigilance test r = wi� � xPj xj :If r � � (resonance), goto Step 5. Otherwise, disable unit i� and goto Step 3(until all the output units are disabled).5. Update the winning weight vector wi�, enable all the output units and gotoStep 2 �wji� = �(Vj � wji�):6. If all the output units are disabled, select one of the uncommitted output unitsand set its weight vector to x. If there is no uncommitted output unit (capacityis reached), the network rejects the input pattern.The ART1 model runs entirely autonomously. It is able to create new categories andto reject an input pattern when the network reaches its capacity. However, the number ofcategories in the input data discovered by ART1 is sensitive to the vigilance parameter.7 Hop�eld networkThe Hop�eld network is a special type of recurrent network which uses the network energyfunction as a tool for designing recurrent networks and for understanding its dynamic behav-ior [10]. It is Hop�eld's formulation that made explicit the principle of storing information as36



dynamically stable attractors, and popularized the use of recurrent networks for associativememory and for solving combinatorial optimization problems.A Hop�eld network with N units has two versions: binary and continuous valued net-works. Let vi be the state or output of the ith unit. For binary networks, vi is either +1or -1, but for continuous networks, vi can be any value between 0 and 1. Let wij be thesynapse weight on the connection from unit i to unit j. In Hop�eld network, wij = wji; 8i; j(symmetric network), and wii = 0; 8i (no self-feedback connections). The network dynamicsfor the binary Hop�eld network isvi = Sgn(Xj wijvj � �i); (4)where Sgn(x) is the signum function which produces +1 if x � 0 and �1, otherwise. Thenetwork dynamics for the continuous Hop�eld network is�iduidt = �ui +Xj wijg(uj)�Ri�i; (5)where ui is the net input (potential) to the ith unit, g is the sigmoid function, vi = g(ui),and Ri and �i are constants. At an equilibrium point,vi = g(Xj wijvj � �i): (6)The dynamic update of network states in Equation (4) can be carried out in at leasttwo ways: synchronously versus asynchronously. In a synchronous updating scheme, all theunits are updated simultaneously at each time step. A central clock is therefore requiredto synchronize the process. On the other hand, an asynchronous updating scheme selectsone unit at a time, and updates its state. The unit for updating can be chosen randomly.The asynchronous updating scheme is more natural for biological networks. For the contin-uous Hop�eld network, in addition to the synchronous and asynchronous updating schemes,Equation (5) provides a continuous updating scheme which is particularly desirable for circuitimplementation.The energy function of the binary Hop�eld network in a state v = (v1; v2; � � � ; vN)T isgiven by E = �12Xi Xj wijvivj: (7)37



The network energy of the continuous Hop�eld network is de�ned asE = �12Xi Xj wijvivj +Xi 1Ri Z vi0 g�1(x)dx+Xi �ivi: (8)The central property of these energy functions is that as the state of network evolves ac-cording to the network dynamics (Eqs. (4) and (5)), the network energy always decreases,and eventually reaches a local minimum point where the network stays with a constant en-ergy. Such local minimum points in the state space are often referred to as attractors, dueto the fact that starting with any point (or state) in the neighborhood of an attractor, thenetwork will evolve into this attractor. Such a neighborhood is called the basin of attractionof an attractor. A sequence of state changes is named a trajectory. Figure 17 schematicallyexplains these terminologies.
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Basin of AttractionFigure 17: A schematic plot of attractors, trajectories, and basin of attraction.Suppose a set of patterns are stored in these attractors of a network. Then this networkcan be used as an associative memory. A stored pattern can be retrieved by any pattern(represented by a network state) in the basin of attraction of the attractor corresponding tothe stored pattern. This is the principle of using Hop�eld network as an associative memory.The attractors of a network can also encode the solutions of a combinatorial optimizationproblem if its cost (or objective) function can be formulated as the network energy. Anoptimal or sub-optimal solution is obtained as the network evolves into a local minimumpoint. This is the basic idea behind the use of Hop�eld network for solving combinatorialoptimization problems.The next two subsections will discuss these two applications of Hop�eld network.38



7.1 Associative MemoryA fundamental property of associative or content-addressable memory is its ability to storea set of patterns in such a way that when presented with a new pattern which could be anincomplete or noisy version of a stored pattern, the network can retrieve one of the storedpatterns which most closely resembles the input pattern. This property has a two-foldmeaning. First, the memory must be accessed by content. Second, the memory must beerror-correcting, i.e., an item in the memory can be reliably retrieved by noisy or incompleteinformation, as long as the information is su�cient.Associative memory usually operates in two phases: storage and retrieval. In the storagephase, the weights in the network are determined or learned in such a way that the attractorsof the network memorize a set of p N -dimensional patterns fx1;x2; � � � ;xpg to be stored. Ageneralization of Hebbian learning rule can be used for setting connection weights wij . Notethat the number of units in the network equals to N .wij = 8><>: 1N Pp�=1 x�i x�j ; i 6= j0 i = j:The values of all the thresholds �i are set to zero.In the retrieval phase, the input pattern is used as the initial state of the network, andthe network evolves according to the network dynamics. A pattern is produced (or retrieved)when the network reaches an equilibrium state.How many patterns can be stored in a network withN binary units? In other words, whatis the memory capacity of a network? Note that the capacity is �nite because a network withN binary units has a maximum of 2N distinct states, and not all of the states are attractors.Moreover, not all the attractors (stable states) can store useful patterns. There also existspurious attractors which store patterns di�erent from any of the patterns in the trainingset [9].It has been shown that the maximumnumber of random patterns that a Hop�eld networkcan store is Pmax � 0:15N:If the number of stored patterns p < 0:15N , then almost a perfect recall can be achieved.39



If memory patterns are orthogonal vectors instead of random patterns, then more patternscan be stored. But, the number of spurious attractors increases as p reaches the capacitylimit. The hardware e�ciency of Hop�eld network is extremely low, because we requireN2 connections in the network to store p N -bit patterns. Several learning rules have beenproposed for increasing the memory capacity of Hop�eld networks (see [9]).7.2 Combinatorial optimizationHop�eld networks always evolve in the direction that leads to lower network energy. Thisimplies that if a combinatorial optimization problem can be formulated as minimizing thenetwork energy, then the Hop�eld network can be used to �nd the optimal (or suboptimal)solution by letting the network evolve freely. In fact, any quadratic objective function canbe rewritten in the form of Hop�eld network energy. We present here classical TravelingSalesperson Problem as an example of how a network is constructed.The units in the network are organized into a two-dimensional n�n array, where n is thetotal number of cities. Let the row index of a unit represent a city, and the column index bethe index of the stop in a tour. Let the output of the unit in row X and column i be vXi;vXi = 1 means the cityX is visited at the ith stop. Therefore, a solution to the TSP problemis presented in an n� n permutation matrix of vXi's. Let dXY be the distance between cityX and city Y . Now, we can construct the cost function for the TSP problem as follows.We want to minimize the total distanceE1 = D2 XX XY 6=XXi dXY vX;i(vY;i+1 + vY;i�1):We employ a periodic boundary condition, i.e., the (n+1)th column and the 0th column arethe same as the �rst column and the last column, respectively.The problem constraints are as follows:(i) Each city must be visited onceE2 = A2 XX Xi Xj 6=i vX;ivX;j(ii) Each stop must contain one cityE3 = B2 Xi XX XY 6=X vX;ivY;i40



(iii) The matrix must contain n entriesE4 = C2 (XX Xi vX;i � n)2:The positive constants A, B, C, and D are the parameters of the problem. The total costof the tour is de�ned as E = E1 + E2 + E3 + E4: (9)Note that Equation (9) is quadratic in network outputs. After manipulating Equation (9),we obtain a quadratic function with three terms. The coe�cients of the quadratic terms inthe cost function de�ne the connection weights in the networkwXi;Y j = �A�XY (1 � �ij)�B�ij(1� �XY )�C �DdXY (�j;i+1 + �j;i�1); (10)where �ij = 8><>: 1 if i = j0 if i 6= jThe coe�cients of the linear terms specify the thresholds of the units.�Xi = �nC: (11)The constant term in the total cost does not change the solution and, therefore, it can beignored.A solution to the TSP problem, given a set of cities and distances, can thus be found eitherby running a physical network whose weights and thresholds are determined by Equations(10) and (11), or by computer simulation. It has been found that the continuous networkperforms better than the binary network. The latter easily gets stuck in a local minimumwith poor tour length. Simulated annealing technique can be employed to deal with thisproblem, but it is very time consuming. It has also been found that the performance of thenetwork is crucially dependent on the choice of the parameters (A;B;C;D). Only a goodbalance among the parameter values produces valid tours satisfying the constraints. Variousmodi�cations to the Hop�eld-Tank architecture for solving TSP have been explored (see [9]).41



8 ApplicationsVarious ANNmodels and learning algorithms have been successfully applied to a large varietyof problems belonging to the seven tasks shown in Figure 1. As pointed out in Section 1,one of the important applications of ANN is pattern classi�cation. A pattern classi�cationproblem of high commercial importance is Optical Character Recognition (OCR). OCR dealswith the problem of processing a scanned image of text and transcribing it into a machinereadable form (for example, ASCII). The text may be machine-printed or handwritten.Actually, the term OCR is a misnomer as there is no \optical" processing involved in thetranscription process. OCR is important in eliminating or minimizing the human laborinvolved in capturing information from paper documents. Two of the major applicationareas for OCR are in forms readers and text conversion in Digital Libraries. In this sectionwe will outline the basic components of OCR and explain how ANNs are used for patternclassi�cation.The basic processing steps in an OCR system are shown in Figure 18. A paper documentis scanned to produce a gray level or binary (black-and-white) image; a scanning resolutionof 300 pixels/inch is typically used. In the preprocessing stage, �ltering is applied to removenoise, and text areas are located and converted to binary (black/white) image using a globallyor locally adaptive method.In the segmentation step, the text image is separated into individual character patterns.This is a particularly di�cult task for handwritten text where there is a proliferation oftouching characters. It is also di�cult for machine printed text when techniques such as\kerning" are employed. Noise could cause otherwise separated characters to be touching.Various techniques can be used to split composite patterns [5]. One e�ective technique is tobreak the composite pattern into smaller patterns (over-segmentation) and �nd the correctcharacter segmentation points using the output of pattern classi�er.Figure 19 shows the size-normalized character bitmaps of a sample set from the NISTcharacter database [23]. We can see substantial intra-class variations. The goal of feature ex-traction is to extract the most relevant measurements from the sensed data, so as to minimizethe within-class variability while increasing the between-class variability. Various feature42
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Figure 18: Diagram of a typical OCR system.extraction methods have been employed for character recognition, including projection his-tograms, contour pro�les, zoning, geometric moment invariants, spline curve approximation,and Fourier descriptors. There is no clear evidence as to which feature set is best for a givenapplication. Figure 20 shows a typical scheme for extracting zone features [18]: contour di-rection and bending points. Contour direction features are generated by dividing the binaryimage array into rectangular and diagonal zones and computing histograms of chain codesin these zones, which results in 88 features (Figure 20(a)). Bending point features representhigh curvature points, terminal points and fork points. A special geometrical mapping frombending points and their attributes to a �xed-length (96) feature vector has been designed(Figure 20(b)). The bending points in a normalized image are coded by positions which arequantized into 12 (4 � 3) regions, and by their curvature orientations which are quantizedto eight (4 directions and convex or concave). The value of acuteness of a bending point isused as the magnitude for the corresponding component in the feature vector.In the pattern classi�cation stage, the extracted features are passed to the input stageof an ANN. The number of input units is equal to the dimensionality of the feature vector.The number of output units is equal to the number of character categories; for example,43



Figure 19: A sample set of characters in the NIST data.in the classi�cation of numeral digits, 10 output units are required, where as for a mixed-case alphanumeric classi�er as many as 80 units may be necessary (10 for digits, 26 forupper case, 26 for lower case, and about 18 for special symbols and punctuation marks).The number of units in the intermediate layer is usually determined experimentally so asto get the maximum recognition accuracy on an independent test set. In the OCR systemdescribed in [18], a two-layer feedforward network with 50 hidden units is found to producegood generalization ability.Not all OCR systems explicity extract features from the raw data. A typical exampleis the network developed by Le Cun et al. [13] for zip-code recognition. The network ar-chitecture is shown in Figure 21. A 16 � 16 normalized gray level image is presented to afeedforward network with three hidden layers. The feature extraction implicitly takes placewithin the intermediate stages of the ANN. The 768 units in the �rst hidden layer form 128�8 feature maps. Each unit in a feature map is locally connected to a 5�5 neighborhood inthe input image. All the units in a feature map share the same weight vector. Constructed ina similar way as the �rst hidden layer, the second hidden layer forms 12 4� 4 feature maps.Each unit in the second hidden layer also combines local information coming from eight outof 12 feature maps in the �rst hidden layer. The third hidden layer consists of 30 hiddenunits. The 10 output units correspond to the 10 classes (digits `0' to `9'). The sub-network44
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Acuteness(a) (b)Figure 20: Zone features: (a) contour direction, (b) bending points.from the second layer to the output layer is a standard fully-connected feedforward network.The activation level of an output unit can be interpreted as an approximation of the aposteriori probability of belonging to a particular class given the input pattern. The outputcategories are ordered according to activation levels and passed to the post-processing stage.In the post-processing stage, contextual information is exploited to update the output of theclassi�er. Examples are looking up in a dictionary of admissible words, or applying syntacticconstraints such as for phone numbers or social security numbers.How good are ANNs for OCR? ANNs are found to work very well in practice. However,there is no conclusive evidence about ANN's superiority over conventional statistical patternclassi�ers. At the First Census Optical Character Recognition System Conference in 1992[23], more than 40 di�erent handwritten character recognition systems were tested on thesame database. The top ten performers among them used either some type of multilayerfeedforward network or a nearest neighbor-based classi�er. ANNs tend to be superior inspeed and in smaller memory requirements compared to nearest neighbor methods. Unlikethe nearest neighbor methods, classi�cation speed using ANN is also independent of the sizeof the training set. The recognition accuracies of the top OCR systems on the NIST isolated(pre-segmented) character data were above 98% for digits, 96% for upper-case characters,and 87% for lower-case characters. One conclusion drawn from the test is that the recognitionperformance of OCR systems is comparable to the human performance on isolated characters.45



Figure 21: A network for recognizing numeric digits.However, humans still outperform OCR systems on unconstrained and cursive handwrittendocuments.9 Concluding RemarksDevelopments in ANNs have experienced a lot of enthusiasm and criticism as well. Manycomparative studies provide an optimistic outlook for ANNs, while others o�er a pessimisticview. For many tasks, such as pattern recognition, no single approach dominates the other.The choice of the best technique should be driven by the nature of the given application. Weshould try to understand the capacities, assumptions, and applicability of various approachesdeveloped in various disciplines, and maximally exploit the complementary advantages ofthese approaches in order to develop better intelligent systems. Such an e�ort may leadto a synergistic approach which combines the strengths of ANNs and other disciplines inorder to achieve a signi�cantly better performance for challenging problems. Minsky [16]46
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