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Abstract— Microprocessor designers have been torn 

between tight constraints on the amount of on-chip cache 

memory and the high latency of off-chip memory, such as 

dynamic random access memory. Accessing off-chip 

memory generally takes an order of magnitude more time 

than accessing on-chip cache, and two orders of magnitude 

more time than executing an instruction. Computer systems 

and microarchitecture researchers have pro- posed using 

hardware data compression units within the memory 

hierarchies of microprocessors in order to improve 

performance, energy efficiency, and functionality. 

Furthermore, as we show in this paper, raw compression 

ratio is not always the most important metric. In this work, 

we present a lossless compression algorithm that has been 

designed for fast on-line data compression, and cache 

compression in particular. The algorithm has a number of 

novel features tailored for this application, including 

combining pairs of compressed lines into one cache line 

and allowing parallel compression of multiple words while 

using a single dictionary and without degradation in 

compression ratio. We reduced the proposed algorithm to a 

register transfer level hardware design, permitting 

performance, power consumption, and area estimation.  

Permitting performance, power consumption, and area 

estimation. Experiments comparing our work to previous 

work are described. 

 

Index Terms— Cache compression, effective system-wide 

compression ratio, hardware implementation, pair 

matching, parallel compression. 
 

I. INTRODUCTION 

  This paper addresses the increasingly important issue of 

controlling off-chip communication in computer systems in 

order to maintain good performance and energy effi- ciency. 

Microprocessor speeds have been increasing faster than 

off-chip memory latency, raising a “wall” between processor 

and memory. The ongoing move to chip-level 

multiprocessors (CMPs) is further increasing the problem; 

more processors require more accesses to memory, but the 

performance of the processor-memory bus is not keeping 
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pace. Techniques that reduce off-chip communication without 

degrading performance have the potential to solve this 

problem. Cache compression is one such technique; data in 

last-level on-chip caches, e.g., L2 caches, are compressed, 

resulting in larger usable caches. In the past, researchers have 

reported that cache compression can improve the 

performance of uni-processors by up to 17% for 

memory-intensive commercial workloads [1] and up to 225% 

for memory-intensive scientific workloads [2]. Researchers 

have also found that cache compression and 

pre-fetchingtechniques can improve CMP throughput by 

10%–51% [3].This analysis is also essential to permit the 

performance impact of using cache compression to be 

estimated. 

 

Cache compression presents several challenges. First, 

decompression and compression must be extremely fast: a 

significant increase in cache hit latency will overwhelm the 

advantages of reduced cache miss rate. This requires an 

efficient on-chip decompression hardware implementation. 

Second, the hardware should occupy little area compared to 

the corresponding decrease in the physical size of the cache, 

and should not substantially increase the total chip power 

consumption. Third, the algorithm should losslessly compress 

small blocks, e.g., 64-byte cache lines, while maintaining a 

good compression ratio (throughout this paper we use the 

term compression ratio to denote the ratio of the compressed 

data size over the original data size). Conventional 

compression algorithm quality metrics, such as block 

compression ratio, are not appropriate for judging quality in 

this domain. Instead, one must consider the effective 

system-wide compression ratio (defined precisely in Section 

IV.C). This paper will point out a number of other relevant 

quality metrics for cache compression algorithms, some of 

which are new. Finally, cache compression should not 

increase power consumption substantially. The above 

requirements prevent the use of high-overhead compression 

algorithms such as the PPM family of algorithms [4] or 

Burrows-Wheeler transforms [5]. A faster and 

lower-overhead technique is required. 

II. RELATED WORK AND CONTRIBUTIONS 

Researchers have commonly made assumptions about the 

implications of using existing compression algorithms for 

cache compression and the design of special-purpose cache 

compression hardware. A number of researchers have 

assumed the use of general purpose main memory 

compression hardware for cache compression. IBM‟s MXT 
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(Memory Expansion Technology) [6] is a hardware memory 

compression/decompression technique that improves the 

performance of servers via increasing the usable size of 

off-chip main memory. Data are compressed in main memory 

and decompressed when moved from main memory to the 

off-chip shared L3 cache. Memory management hardware 

dynamically allocates storage in small sectors to 

accommodate storing variable-size compressed data block 

without the need for garbage collection. IBM reports 

compression ratios (compressed size divided by 

uncompressed size) ranging from 16% to 50%. 

X-Match is a dictionary-based compression algorithm that 

has been implemented on an FPGA [7]. It matches 32-bit 

words using a content addressable memory that allows partial 

matching with dictionary entries and outputs variable-size 

encoded data that depends on the type of match. To improve 

coding efficiency, it also uses a move-to-front coding strategy 

and represents smaller indexes with fewer bits. Although 

appropriate for compressing main memory, such hardware 

usually has a very large block size (1 KB forMXT and up to 

32 KB for X-Match), which is inappropriate for compressing 

cache lines. It is shown that for X-Match and two variants of 

Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression 

ratio for memory data deteriorates as the block size becomes 

smaller [7]. For example, when the block size decreases from 

1KBto 256 B, the compression ratio for LZ1 and X-Match 

increase by 11% and 3%. It can be inferred that the amount of 

increase in compression ratio could be even larger when the 

block size decreases from 256 B to 64 B. In addition, such 

hardware has performance, area, or power consumption costs 

that contradict its use in cache compression. For example, if 

the MXT hardware were scaled to a 65 nm fabrication process 

and integrated within a 1 GHz processor, the decompression 

latency would be 16 processor cycles, about twice the normal 

L2 cache hit latency. Other work proposes special-purpose 

cache compression hardware and evaluates only the 

compression ratio, disregarding other important criteria such 

as area and power consumption costs. Frequent pattern 

compression (FPC) [8] compresses cache lines at the L2 level 

by storing common word patterns in a compressed format. 

Patterns are differentiated by a 3-bit prefix. Cache lines are 

compressed to predetermined sizes that never exceed their 

original size to reduce decompression overhead. Based on 

logical effort analysis [9], for a 64-byte cache line, 

compression can be completed in three cycles and 

decompression in five cycles, assuming 12 fan-out-four (FO4) 

gate delays per cycle. To the best of our knowledge, there is 

no register-transfer-level hardware implementation or FPGA 

implementation of FPC, and therefore its exact performance, 

power consumption, and area overheads are unknown. 

Although the area cost for FPC [8] is not discussed, our 

analysis shows that FPC would have an area overhead of at 

least 290 k gates, almost eight times the area of the approach 

proposed in this paper, to achieve the claimed 5-cycle 

decompression latency. This will be examined in detail in 

Section VI.C.3 

In short, assuming desirable cache compression hardware 

with adequate performance and low area and power 

overheads is common in cache compression research [2], 

[10]–[15]. It is also understandable, as the microarchitecture 

community is more interested in microarchitectural 

applications than compression. However, without a cache 

compression algorithm and hardware implementation 

designed and evaluated for effective system-wide 

compression ratio, hardware overheads, and interaction with 

other portions of the cache compression system, one can not 

reliably determine whether the proposed architectural 

schemes are beneficial. 

In this work, we propose and develop a lossless 

compression 

algorithm, named C-Pack, for on-chip cache compression. 

The main contributions of our work are as follows. 

1) C-Pack targets on-chip cache compression. It permits a 

good compression ratio even when used on small cache lines. 

The performance, area, and power consumption overheads 

are low enough for practical use. This contrasts with other 

schemes such as X-match which require complicated 

hardware to achieve an equivalent effective system-wide 

compression ratio [7]. 

2) We are the first to fully design, optimize, and report 

performance and power consumption of a cache compression 

algorithm when implemented using a design flow 

appropriate 

for on-chip integration with a microprocessor. Prior work 

in cache compression does not adequately evaluate the 

overheads imposed by the assumed cache compression 

algorithms. 

3) We demonstrate when line compression ratio reaches 

50%, 

further improving it has little impact on effective 

systemwide 

compression ratio. 

4) C-Pack is twice as fast as the best existing hardware 

implementations potentially suitable for cache compression. 

For FPC to match this performance, it would require at least 

the area of C-Pack. 

5) We address the challenges in design of 

high-performance 

cache compression hardware while maintaining some 

generality, i.e., our hardware can be easily adapted to other 

high-performance lossless compression applications. 

III.   CACHE COMPRESSION ARCHITECTURE 

 

In this section, we describe the architecture of a CMP 

system 

in which the cache compression technique is used.We 

consider private on-chip L2 caches, because in contrast to a 

shared L2 cache, the design styles of private L2 caches remain 

consistent when the number of processor cores increases.We 

also examine how to integrate data prefetching techniques 

into the system. Fig. 1 gives an overview of a CMP system 

with processor cores. Each processor has private L1 and L2 

caches. The L2 cache is divided into two regions: an 

uncompressed region (L2 in the figure) and a compressed 

region (L2C in the figure). For each processor, the sizes of the 

uncompressed region and compression region can be 

determined statically or adjusted to the processor‟s needs 

dynamically. In extreme cases, the whole L2 cache is 

compressed due to capacity requirements, or  uncompressed 
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to minimize access latency. We assume a three-level cache 

hierarchy consisting of L1 cache, uncompressed L2 region, 

and compressed L2 region. The L1 cache communicates with 

the uncompressed region of the L2 cache, which in turn 

exchanges data with the compressed region through the 

compressor and decompressor, i.e., an uncompressed line can 

be compressed in the compressor and placed in the 

compressed region, and vice versa. Compressed L2 is 

essentially a virtual layer in the memory hierarchy with larger 

size, but higher access latency, than uncompressed L2. Note 

that no architectural changes are needed to use the proposed 

techniques for a shared L2 cache. The only difference is that 

both regions contain cache lines from different processors 

instead of a single processor, as is the case in a private 

L2 cache. 

 

 

 

IV. C-PACK COMPRESSION ALGORITHM 

This section gives an overview of the proposed C-Pack 

compression algorithm. We first briefly describe the 

algorithm and several important features that permit an 

efficient hardware implementation, many of which would be 

contradicted for a software implementation.We also discuss 

the design trade-offs and validate the effectiveness of C-Pack 

in a compressed-cache architecture. 

 

A. Design Constraints and Challenges 

We first point out several design constraints and challenges 

particular to the cache compression problem. 

 

1) Cache compression requires hardware that can 

de/compress a word in only a few CPU clock cycles. This 

rules out software implementations and has great influence 

on compression algorithm design. 

2) Cache compression algorithms must be lossless to maintain 

correct microprocessor operation. 

3) The block size for cache compression applications is 

smaller than for other compression applications such as file 

and main memory compression. Therefore, achieving a low 

compression ratio is challenging. 

4) The complexity of managing the locations of cache lines 

after compression influences feasibility. Allowing 

arbitrary, 

i.e., bit-aligned, locations would complicate cache design to 

the point of infeasibility. A scheme that permits a pair of 

compressed lines to fit within an uncompressed line is 

advantageous. 

 

B. C-Pack Algorithm Overview 

C-Pack (for Cache Packer) is a lossless compression 

algorithm designed specifically for high-performance 

hardware- based on-chip cache compression. It achieves a 

good compression ratio when used to compress data 

commonly found in microprocessor low-level on-chip caches, 

e.g., L2 caches. Its design was strongly influenced by prior 

work on pattern- based partial dictionary match compression 

[16]. However, this prior work was designed for 

software-based main memory compression and did not 

consider hardware implementation. 

C-Pack achieves compression by two means: (1) it uses 

statically decided, compact encodings for frequently 

appearing data words and (2) it encodes using a dynamically 

updated dictionary allowing adaptation to other frequently 

appearing words. The dictionary supports partial word 

matching as well as full word matching. The patterns and 

coding schemes used by C-Pack are summarized in Table I, 

which also reports the actual frequency of each pattern 

observed in the cache trace data file mentioned in Section 

IV.D. The „Pattern‟ column describes frequently appearing 

patterns, where „z‟ represents a zero byte, „m‟ represents a 

byte matched against a dictionary entry, and „x‟ represents an 

unmatched byte. In the „Output‟ column, „B‟ represents a byte 

and „b‟ represents a bit. The C-Pack compression and 

decompression algorithms are illustrated in Fig. 2. We use an 

input of two words per cycle as an example in Fig. 2. 

However, the algorithm can be easily extended to cases with 

one, or more than two, words per cycle. During one iteration, 

each word is first compared with patterns “zzzz” and “zzzx”. 

If there is a match, the compression output is produced by 

combining the corresponding code and unmatched bytes as 

indicated in Table I. Otherwise; the compressor compares the 

word with all dictionary entries and finds the one with the 

most matched bytes. The compression result is then obtained 

by combining code, dictionary entry index, and unmatched 

bytes, if any. Words that fail pattern matching are pushed into 

the dictionary. Fig. 3 shows the compression results for 

several different input words. In each output, the code and the 

dictionary index, if any, are enclosed in parentheses. 

Although we used a 4-word dictionary in Fig. 3 for 

illustration, the dictionary size is set to 64 B in our 

implementation. Note that the dictionary is updated after each 

word insertion, which is not shown in Fig. 3. 

During decompression, the decompressor first reads 

compressed words and extracts the codes for analyzing the 

patterns of each word, which are then compared against the 

codes defined in Table I. If the code indicates a pattern match, 

the original word is recovered by combining zeroes and 

unmatched bytes, if any. Otherwise, the decompression output 

is given by combining bytes from the input word with bytes 

from dictionary entries, if the code indicates a dictionary 

match. The C-Pack algorithm is designed specifically for 

hardware implementation. It takes advantage of simultaneous 

comparison of an input word with multiple potential patterns 

and dictionary entries. This allows rapid execution with good 
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compression ratio in a hardware implementation, but may not 

be suitable for a software implementation. Software 

implementations commonly serialize operations. For 

example, matching against multiple patterns can be 

prohibitively expensive for software implementations when 

the number of patterns or dictionary entries is large. C-Pack‟s 

inherently parallel design allows an efficient hardware 

implementation, in which pattern matching, dictionary 

matching, and processing multiple words are all done 

simultaneously. In addition, we chose various design 

parameters such as dictionary replacement policy and coding 

scheme to reduce hardware complexity, even if our choices 

slightly degrade the effective system-wide compression ratio. 

Details are described in Section IV.D. 

 

 

 
 
 

 
 
In the proposed implementation of C-Pack, two words are 

processed in parallel per cycle. Achieving this, while still 

permitting an accurate dictionary match for the second word, 

is challenging. Let us consider compressing two similarwords 

that have not been encountered by the compression algorithm 

recently, assuming the dictionary uses first-in first-out (FIFO) 

as its replacement policy. The appropriate dictionary content 

when processing the second word depends on whether the 

first word matched a static pattern. If so, the first word will not 

appear in the dictionary. Otherwise, it will be in the 

dictionary, and its presence can be used to encode the second 

word. Therefore, the second word should be compared with 

the first word and all but the first dictionary entry in parallel. 

This improves compression ratio compared to the more naïve 

approach of not checking with the first word. Therefore, we 

can compress two words in parallel without compression ratio 

degradation. 

 

 
 

 

 
C. Effective System-Wide Compression Ratio and 

Pair-Matching Compressed Line Organization 

Compressed cache organization is a difficult task because 

different compressed cache lines may have different lengths. 

Researchers have proposed numerous line segmentation 

techniques [1], [2], [10] to handle this problem. The main idea 

is to divide compressed cache lines into fixed-size segments 

and use indirect indexing to locate all the segments for a 

compressed line. Hallnor et al. [2] proposed IIC-C, i.e., 

indirect index cache with compression. The proposed cache 

design decouples accesses across the whole cache, thus 

allowing a fully-associative placement. Each tag contains 

multiple pointers to smaller fixed-size data blocks to 

represent a single cache block. However, the tag storage 

overhead of IIC-C is significant, e.g., 21% given a 64 B line 

size and 512 KB cache size, compared to less than 8% for our 

proposed pair-matching based cache organization. In 

addition, the hardware overhead for addressing a compressed 

line is not discussed in the paper. The access latency in IIC-C 

is attributed to three primary sources, namely additional hit 

latency due to sequential tag and data array access, tag lookup 

induced additional hit and miss latency, and additional miss 

latency due to the overhead of software management. 

However, we do not report worst-case latency. Lee et al. 

[10] proposed selective compressed caches using a similar 

idea. Only the cache lines with a compression ratio of less 

than 0.5 are compressed so that two compressed cache lines 

can fit in the space required for one uncompressed cache line. 

However, this will inevitably result in a larger system-wide 

compression ratio compared to that of our proposed 
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pair-matching based cache because each compression ratio, 

not the average, must be less than 0.5, for compression to 

occur. The hardware overhead and worst-case access latency 

for addressing a compressed cache line is not discussed. 

Alameldeen et al. [1] proposed decoupled variable-segment 

cache, where the L2 cache dynamically allocates compressed 

or uncompressed lines depending on whether compression 

eliminates a miss or incurs an unnecessary decompression 

overhead. However, this approach has significant 

performance and area overhead, discussed later in this 

section.  

We propose the idea of pair-matching to organize 

compressed cache lines. In a pair-matching based cache, the 

location of a newly compressed line depends on not only its 

own compression ratio but also the compression ratio of its 

partner. More specifically, the compressed line locator first 

tries to locate the cache line (within the set) with sufficient 

unused space for the compressed line without replacing any 

existing compressed lines. If no such line exists, one or two 

compressed lines are evicted to store the new line. A 

compressed line can be placed in the same line with a partner 

only if the sum of their compression ratios is less than 100%. 

Note that successful placement of a line does not require that 

it have a compression ratio smaller than 50%. It is only 

necessary that the line, combined with a partner line be as 

small as an uncompressed line. To reduce hardware 

complexity, the candidate partner lines are only selected from 

the same set of the cache. Compared to segmentation 

techniques which allow arbitrary positions, pair-matching 

simplifies designing hardware to manage the locations of the 

compressed lines. More specifically, line extraction in a 

pair-matching based cache only requires parallel address tag 

match and takes a single cycle to accomplish. For line 

insertion, neither LRU list search nor set compaction is 

involved. 

Fig. 4 illustrates the structure of an 8-way associative 

pairmatching based cache. Since any line may store two 

compressed lines, each line has two valid bits and tag fields to 

indicate status and indexing. When compressed, two lines 

share a common data field. There are two additional size 

fields to indicate the compressed sizes of the two lines. 

Whether a line is compressed or not is indicated by its size 

field. A size of zero is used to indicate uncompressed lines. 

For compressed lines, size is set to the line size for an empty 

line, and the actual compressed size for a valid line. For a 

64-byte line in a 32-bit architecture the tag is no longer than 

32 bits, hence the worst-case overhead is less than 32 (tag) 

(valid) (size) bits, i.e., 6 bytes. As we can see in Fig. 4, the 

compressed line locator uses the bitlines for valid bits and 

compressed line sizes to locate a newly compressed line. Note 

that only one compressed line locator is required for the entire 

compressed cache. This is because for a given address, only 

the cache lines in the set which the specific address is mapped 

to are activated thanks to the set decoder. 

Each bitline is connected to a sense amplifier, which 

usually requires several gates [17], for signal amplification 

and delay reduction. The total area overhead is approximately 

500 gates plus the area for the additional bitlines, compared to 

an uncompressed cache. 

Based on the pair-matching concept, a newly compressed 

line has an effective compression ratio of 100% when it takes 

up a whole cache line, and an effective compression ratio of 

50% when it is placed with a partner in the same cache line. 

Note that when a compressed line is placed together with its 

partner without evicting any compressed lines, its partner‟s 

effective compression ratio decreases to 50%. The effective 

system-wide compression ratio is defined as the average of 

the effective compression ratios of all cache lines in a 

compressed cache. It indicates how well a compression 

algorithm performs for pairmatching based cache 

compression. The concept of effective compression ratio can 

also be adapted to a segmentation based approach. For 

example, for a cache line with 4 fixed-length segments, a 

compressed line has an effective compression ratio of 25% 

when it takes up one segment, 50% for two segments, and so 

on. Varying raw compression ratio between 25% and 50% has 

little impact on the effective cache capacity of a four-part 

segmentation based technique. Fig. 5 illustrates the 

distribution of raw compression ratios for different cache 

lines derived from real cache data. The axis shows different 

compression ratio intervals and axis indicates the percentage 

of all cache lines in each compression ratio interval. For real 

cache trace data, pair-matching generally achieves a better 

effective system-wide compression ratio (58%) than line 

segmentation with four segments per line (62%) and the same 

compression ratio as line segmentation with eight segments, 

which would impose substantial hardware overhead. 
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We now compare the performance and hardware overhead 

of pair-matching based cache with decoupled 

variable-segment cache. The hardware overhead can be 

divided into two parts: tag storage overhead and compressed 

line locator overhead. For a 512 KB L2 cache with a line size 

of 64 bytes, the tag storage overhead is 7.81% of the total 

cache size for both decoupled variable-segment cache and 

pair-matching based cache. The area overhead of the 

compressed line locator is significant in a decoupled 

variable-segment cache. During line insertion, a newly 

inserted line may be larger than the LRU line plus the unused 

segments. In that case, prior work proposed replacing two 

lines by replacing the LRU line and searching the LRU list to 

find the least-recently used line that ensures enough space for 

the newly arrived line [1]. However, maintaining and 

updating the LRU list will result in great area overhead. 

Moreover, set compaction may be required after line insertion 

to maintain the contiguous storage invariant. This can be 

prohibitively expensive in terms of area cost because it may 

require reading and writing all the set‟s data segments. Cache 

compression techniques that assume it are essentially 

proposing to implement kernel memory allocation and 

compaction in hardware [18]. However, for pair-matching 

based cache, the area of compressed line locator is negligible 

(less than 0.01% of the total cache size). 

The performance overhead comes from two primary 

sources: addressing a compressed line and compressed line 

insertion. 

The worst-case latency to address a compressed line in a 

pair-matching based cache is 1 cycle. For a 4-way associative 

decoupled variable-segment cache with 8 segments per line, 

each set contains 8 compression information tags and 8 

address tags because each set is constrained to hold no more 

than eight compressed lines. The compression information tag 

indicates 1) whether the line is compressed and 2) the 

compressed size of the line. Data segments are stored 

contiguously in address tag order. In order to extract a 

compressed line from a set, eight segment offsets are 

computed in parallel with the address tag match. Therefore, 

deriving the segment offset for the last line in the set requires 

summing up all the previous 7 compressed sizes, which incurs 

a significant performance overhead. In addition, although the 

cache array may be split into two banks to reduce line 

extraction latency, addressing the whole compressed line may 

still take 4 cycles in the worst case. To insert a compressed 

line, the worst-case latency is 2 cycles for pair-matching 

based cache with a peak frequency of more than 1 GHz. The 

latency of a decoupled variable-segment cache is not reported 

[1]. However, as explained in the previous paragraph, LRU 

list searching and set compaction introduce great performance 

overhead. Therefore, we recommend pair-matching and 

use the pair-matching effective system-wide compression 

ratio as a metric for comparing different compression 

algorithm. 

V. CONCLUSION 

This paper has proposed and evaluated an algorithm for 

cache compression that honors the special constraints this 

application imposes. The algorithm is based on pattern 

matching and partial dictionary coding. Its hardware 

implementation permits parallel compression of multiple 

words without degradation of dictionary match probability. 

The proposed algorithm yields an effective system-wide 

compression ratio of 61%, and permits a hardware 

implementation with a maximum decompression latency of 

6.67 ns in 65 nm process technology. These results are 

superior to those yielded by compression algorithms 

considered for this application in the past. Although the 

proposed hardware implementation mainly targets online 

cache compression, it can also be used in other 

high-performance lossless data compression applications with 

few or no modifications. 
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