

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

336

Abstract— Microprocessor designers have been torn

between tight constraints on the amount of on-chip cache

memory and the high latency of off-chip memory, such as

dynamic random access memory. Accessing off-chip

memory generally takes an order of magnitude more time

than accessing on-chip cache, and two orders of magnitude

more time than executing an instruction. Computer systems

and microarchitecture researchers have pro- posed using

hardware data compression units within the memory

hierarchies of microprocessors in order to improve

performance, energy efficiency, and functionality.

Furthermore, as we show in this paper, raw compression

ratio is not always the most important metric. In this work,

we present a lossless compression algorithm that has been

designed for fast on-line data compression, and cache

compression in particular. The algorithm has a number of

novel features tailored for this application, including

combining pairs of compressed lines into one cache line

and allowing parallel compression of multiple words while

using a single dictionary and without degradation in

compression ratio. We reduced the proposed algorithm to a

register transfer level hardware design, permitting

performance, power consumption, and area estimation.

Permitting performance, power consumption, and area

estimation. Experiments comparing our work to previous

work are described.

Index Terms— Cache compression, effective system-wide

compression ratio, hardware implementation, pair

matching, parallel compression.

I. INTRODUCTION

 This paper addresses the increasingly important issue of

controlling off-chip communication in computer systems in

order to maintain good performance and energy effi- ciency.

Microprocessor speeds have been increasing faster than

off-chip memory latency, raising a “wall” between processor

and memory. The ongoing move to chip-level

multiprocessors (CMPs) is further increasing the problem;

more processors require more accesses to memory, but the

performance of the processor-memory bus is not keeping

Manuscript Received on 28 October, 2011

Srikant Pothula, ECE, JNTU KAKINADA/PYDAH ENGINEERING

COLLEGE/VISHAKAPATNAM,INDIA,9573022727 (e-mail:

srikanth_pothula@yahoo.co.in).

SK Nayab Rasool, ECE, JNTU KAKINADA/PYDAH ENGINEERING

COLLEGE/VISHAKAPATNAM,INDIA,9247972800, (e-mail:

sknayab54@gmail.com).

pace. Techniques that reduce off-chip communication without

degrading performance have the potential to solve this

problem. Cache compression is one such technique; data in

last-level on-chip caches, e.g., L2 caches, are compressed,

resulting in larger usable caches. In the past, researchers have

reported that cache compression can improve the

performance of uni-processors by up to 17% for

memory-intensive commercial workloads [1] and up to 225%

for memory-intensive scientific workloads [2]. Researchers

have also found that cache compression and

pre-fetchingtechniques can improve CMP throughput by

10%–51% [3].This analysis is also essential to permit the

performance impact of using cache compression to be

estimated.

Cache compression presents several challenges. First,

decompression and compression must be extremely fast: a

significant increase in cache hit latency will overwhelm the

advantages of reduced cache miss rate. This requires an

efficient on-chip decompression hardware implementation.

Second, the hardware should occupy little area compared to

the corresponding decrease in the physical size of the cache,

and should not substantially increase the total chip power

consumption. Third, the algorithm should losslessly compress

small blocks, e.g., 64-byte cache lines, while maintaining a

good compression ratio (throughout this paper we use the

term compression ratio to denote the ratio of the compressed

data size over the original data size). Conventional

compression algorithm quality metrics, such as block

compression ratio, are not appropriate for judging quality in

this domain. Instead, one must consider the effective

system-wide compression ratio (defined precisely in Section

IV.C). This paper will point out a number of other relevant

quality metrics for cache compression algorithms, some of

which are new. Finally, cache compression should not

increase power consumption substantially. The above

requirements prevent the use of high-overhead compression

algorithms such as the PPM family of algorithms [4] or

Burrows-Wheeler transforms [5]. A faster and

lower-overhead technique is required.

II. RELATED WORK AND CONTRIBUTIONS

Researchers have commonly made assumptions about the

implications of using existing compression algorithms for

cache compression and the design of special-purpose cache

compression hardware. A number of researchers have

assumed the use of general purpose main memory

compression hardware for cache compression. IBM‟s MXT

C-Pack: A High-Performance Microprocessor

Cache Compression Algorithm

SRIKANTH POTHULA, SK NAYAB RASOOL

C-PACK: A HIGH-PERFORMANCE MICROPROCESSOR CACHE COMPRESSION ALGORITHM

337

(Memory Expansion Technology) [6] is a hardware memory

compression/decompression technique that improves the

performance of servers via increasing the usable size of

off-chip main memory. Data are compressed in main memory

and decompressed when moved from main memory to the

off-chip shared L3 cache. Memory management hardware

dynamically allocates storage in small sectors to

accommodate storing variable-size compressed data block

without the need for garbage collection. IBM reports

compression ratios (compressed size divided by

uncompressed size) ranging from 16% to 50%.

X-Match is a dictionary-based compression algorithm that

has been implemented on an FPGA [7]. It matches 32-bit

words using a content addressable memory that allows partial

matching with dictionary entries and outputs variable-size

encoded data that depends on the type of match. To improve

coding efficiency, it also uses a move-to-front coding strategy

and represents smaller indexes with fewer bits. Although

appropriate for compressing main memory, such hardware

usually has a very large block size (1 KB forMXT and up to

32 KB for X-Match), which is inappropriate for compressing

cache lines. It is shown that for X-Match and two variants of

Lempel-Ziv algorithm, i.e., LZ1 and LZ2, the compression

ratio for memory data deteriorates as the block size becomes

smaller [7]. For example, when the block size decreases from

1KBto 256 B, the compression ratio for LZ1 and X-Match

increase by 11% and 3%. It can be inferred that the amount of

increase in compression ratio could be even larger when the

block size decreases from 256 B to 64 B. In addition, such

hardware has performance, area, or power consumption costs

that contradict its use in cache compression. For example, if

the MXT hardware were scaled to a 65 nm fabrication process

and integrated within a 1 GHz processor, the decompression

latency would be 16 processor cycles, about twice the normal

L2 cache hit latency. Other work proposes special-purpose

cache compression hardware and evaluates only the

compression ratio, disregarding other important criteria such

as area and power consumption costs. Frequent pattern

compression (FPC) [8] compresses cache lines at the L2 level

by storing common word patterns in a compressed format.

Patterns are differentiated by a 3-bit prefix. Cache lines are

compressed to predetermined sizes that never exceed their

original size to reduce decompression overhead. Based on

logical effort analysis [9], for a 64-byte cache line,

compression can be completed in three cycles and

decompression in five cycles, assuming 12 fan-out-four (FO4)

gate delays per cycle. To the best of our knowledge, there is

no register-transfer-level hardware implementation or FPGA

implementation of FPC, and therefore its exact performance,

power consumption, and area overheads are unknown.

Although the area cost for FPC [8] is not discussed, our

analysis shows that FPC would have an area overhead of at

least 290 k gates, almost eight times the area of the approach

proposed in this paper, to achieve the claimed 5-cycle

decompression latency. This will be examined in detail in

Section VI.C.3

In short, assuming desirable cache compression hardware

with adequate performance and low area and power

overheads is common in cache compression research [2],

[10]–[15]. It is also understandable, as the microarchitecture

community is more interested in microarchitectural

applications than compression. However, without a cache

compression algorithm and hardware implementation

designed and evaluated for effective system-wide

compression ratio, hardware overheads, and interaction with

other portions of the cache compression system, one can not

reliably determine whether the proposed architectural

schemes are beneficial.

In this work, we propose and develop a lossless

compression

algorithm, named C-Pack, for on-chip cache compression.

The main contributions of our work are as follows.

1) C-Pack targets on-chip cache compression. It permits a

good compression ratio even when used on small cache lines.

The performance, area, and power consumption overheads

are low enough for practical use. This contrasts with other

schemes such as X-match which require complicated

hardware to achieve an equivalent effective system-wide

compression ratio [7].

2) We are the first to fully design, optimize, and report

performance and power consumption of a cache compression

algorithm when implemented using a design flow

appropriate

for on-chip integration with a microprocessor. Prior work

in cache compression does not adequately evaluate the

overheads imposed by the assumed cache compression

algorithms.

3) We demonstrate when line compression ratio reaches

50%,

further improving it has little impact on effective

systemwide

compression ratio.

4) C-Pack is twice as fast as the best existing hardware

implementations potentially suitable for cache compression.

For FPC to match this performance, it would require at least

the area of C-Pack.

5) We address the challenges in design of

high-performance

cache compression hardware while maintaining some

generality, i.e., our hardware can be easily adapted to other

high-performance lossless compression applications.

III. CACHE COMPRESSION ARCHITECTURE

In this section, we describe the architecture of a CMP

system

in which the cache compression technique is used.We

consider private on-chip L2 caches, because in contrast to a

shared L2 cache, the design styles of private L2 caches remain

consistent when the number of processor cores increases.We

also examine how to integrate data prefetching techniques

into the system. Fig. 1 gives an overview of a CMP system

with processor cores. Each processor has private L1 and L2

caches. The L2 cache is divided into two regions: an

uncompressed region (L2 in the figure) and a compressed

region (L2C in the figure). For each processor, the sizes of the

uncompressed region and compression region can be

determined statically or adjusted to the processor‟s needs

dynamically. In extreme cases, the whole L2 cache is

compressed due to capacity requirements, or uncompressed

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

338

to minimize access latency. We assume a three-level cache

hierarchy consisting of L1 cache, uncompressed L2 region,

and compressed L2 region. The L1 cache communicates with

the uncompressed region of the L2 cache, which in turn

exchanges data with the compressed region through the

compressor and decompressor, i.e., an uncompressed line can

be compressed in the compressor and placed in the

compressed region, and vice versa. Compressed L2 is

essentially a virtual layer in the memory hierarchy with larger

size, but higher access latency, than uncompressed L2. Note

that no architectural changes are needed to use the proposed

techniques for a shared L2 cache. The only difference is that

both regions contain cache lines from different processors

instead of a single processor, as is the case in a private

L2 cache.

IV. C-PACK COMPRESSION ALGORITHM

This section gives an overview of the proposed C-Pack

compression algorithm. We first briefly describe the

algorithm and several important features that permit an

efficient hardware implementation, many of which would be

contradicted for a software implementation.We also discuss

the design trade-offs and validate the effectiveness of C-Pack

in a compressed-cache architecture.

A. Design Constraints and Challenges

We first point out several design constraints and challenges

particular to the cache compression problem.

1) Cache compression requires hardware that can

de/compress a word in only a few CPU clock cycles. This

rules out software implementations and has great influence

on compression algorithm design.

2) Cache compression algorithms must be lossless to maintain

correct microprocessor operation.

3) The block size for cache compression applications is

smaller than for other compression applications such as file

and main memory compression. Therefore, achieving a low

compression ratio is challenging.

4) The complexity of managing the locations of cache lines

after compression influences feasibility. Allowing

arbitrary,

i.e., bit-aligned, locations would complicate cache design to

the point of infeasibility. A scheme that permits a pair of

compressed lines to fit within an uncompressed line is

advantageous.

B. C-Pack Algorithm Overview

C-Pack (for Cache Packer) is a lossless compression

algorithm designed specifically for high-performance

hardware- based on-chip cache compression. It achieves a

good compression ratio when used to compress data

commonly found in microprocessor low-level on-chip caches,

e.g., L2 caches. Its design was strongly influenced by prior

work on pattern- based partial dictionary match compression

[16]. However, this prior work was designed for

software-based main memory compression and did not

consider hardware implementation.

C-Pack achieves compression by two means: (1) it uses

statically decided, compact encodings for frequently

appearing data words and (2) it encodes using a dynamically

updated dictionary allowing adaptation to other frequently

appearing words. The dictionary supports partial word

matching as well as full word matching. The patterns and

coding schemes used by C-Pack are summarized in Table I,

which also reports the actual frequency of each pattern

observed in the cache trace data file mentioned in Section

IV.D. The „Pattern‟ column describes frequently appearing

patterns, where „z‟ represents a zero byte, „m‟ represents a

byte matched against a dictionary entry, and „x‟ represents an

unmatched byte. In the „Output‟ column, „B‟ represents a byte

and „b‟ represents a bit. The C-Pack compression and

decompression algorithms are illustrated in Fig. 2. We use an

input of two words per cycle as an example in Fig. 2.

However, the algorithm can be easily extended to cases with

one, or more than two, words per cycle. During one iteration,

each word is first compared with patterns “zzzz” and “zzzx”.

If there is a match, the compression output is produced by

combining the corresponding code and unmatched bytes as

indicated in Table I. Otherwise; the compressor compares the

word with all dictionary entries and finds the one with the

most matched bytes. The compression result is then obtained

by combining code, dictionary entry index, and unmatched

bytes, if any. Words that fail pattern matching are pushed into

the dictionary. Fig. 3 shows the compression results for

several different input words. In each output, the code and the

dictionary index, if any, are enclosed in parentheses.

Although we used a 4-word dictionary in Fig. 3 for

illustration, the dictionary size is set to 64 B in our

implementation. Note that the dictionary is updated after each

word insertion, which is not shown in Fig. 3.

During decompression, the decompressor first reads

compressed words and extracts the codes for analyzing the

patterns of each word, which are then compared against the

codes defined in Table I. If the code indicates a pattern match,

the original word is recovered by combining zeroes and

unmatched bytes, if any. Otherwise, the decompression output

is given by combining bytes from the input word with bytes

from dictionary entries, if the code indicates a dictionary

match. The C-Pack algorithm is designed specifically for

hardware implementation. It takes advantage of simultaneous

comparison of an input word with multiple potential patterns

and dictionary entries. This allows rapid execution with good

C-PACK: A HIGH-PERFORMANCE MICROPROCESSOR CACHE COMPRESSION ALGORITHM

339

compression ratio in a hardware implementation, but may not

be suitable for a software implementation. Software

implementations commonly serialize operations. For

example, matching against multiple patterns can be

prohibitively expensive for software implementations when

the number of patterns or dictionary entries is large. C-Pack‟s

inherently parallel design allows an efficient hardware

implementation, in which pattern matching, dictionary

matching, and processing multiple words are all done

simultaneously. In addition, we chose various design

parameters such as dictionary replacement policy and coding

scheme to reduce hardware complexity, even if our choices

slightly degrade the effective system-wide compression ratio.

Details are described in Section IV.D.

In the proposed implementation of C-Pack, two words are

processed in parallel per cycle. Achieving this, while still

permitting an accurate dictionary match for the second word,

is challenging. Let us consider compressing two similarwords

that have not been encountered by the compression algorithm

recently, assuming the dictionary uses first-in first-out (FIFO)

as its replacement policy. The appropriate dictionary content

when processing the second word depends on whether the

first word matched a static pattern. If so, the first word will not

appear in the dictionary. Otherwise, it will be in the

dictionary, and its presence can be used to encode the second

word. Therefore, the second word should be compared with

the first word and all but the first dictionary entry in parallel.

This improves compression ratio compared to the more naïve

approach of not checking with the first word. Therefore, we

can compress two words in parallel without compression ratio

degradation.

C. Effective System-Wide Compression Ratio and

Pair-Matching Compressed Line Organization

Compressed cache organization is a difficult task because

different compressed cache lines may have different lengths.

Researchers have proposed numerous line segmentation

techniques [1], [2], [10] to handle this problem. The main idea

is to divide compressed cache lines into fixed-size segments

and use indirect indexing to locate all the segments for a

compressed line. Hallnor et al. [2] proposed IIC-C, i.e.,

indirect index cache with compression. The proposed cache

design decouples accesses across the whole cache, thus

allowing a fully-associative placement. Each tag contains

multiple pointers to smaller fixed-size data blocks to

represent a single cache block. However, the tag storage

overhead of IIC-C is significant, e.g., 21% given a 64 B line

size and 512 KB cache size, compared to less than 8% for our

proposed pair-matching based cache organization. In

addition, the hardware overhead for addressing a compressed

line is not discussed in the paper. The access latency in IIC-C

is attributed to three primary sources, namely additional hit

latency due to sequential tag and data array access, tag lookup

induced additional hit and miss latency, and additional miss

latency due to the overhead of software management.

However, we do not report worst-case latency. Lee et al.

[10] proposed selective compressed caches using a similar

idea. Only the cache lines with a compression ratio of less

than 0.5 are compressed so that two compressed cache lines

can fit in the space required for one uncompressed cache line.

However, this will inevitably result in a larger system-wide

compression ratio compared to that of our proposed

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-1, Issue-5, November 2011

340

pair-matching based cache because each compression ratio,

not the average, must be less than 0.5, for compression to

occur. The hardware overhead and worst-case access latency

for addressing a compressed cache line is not discussed.

Alameldeen et al. [1] proposed decoupled variable-segment

cache, where the L2 cache dynamically allocates compressed

or uncompressed lines depending on whether compression

eliminates a miss or incurs an unnecessary decompression

overhead. However, this approach has significant

performance and area overhead, discussed later in this

section.

We propose the idea of pair-matching to organize

compressed cache lines. In a pair-matching based cache, the

location of a newly compressed line depends on not only its

own compression ratio but also the compression ratio of its

partner. More specifically, the compressed line locator first

tries to locate the cache line (within the set) with sufficient

unused space for the compressed line without replacing any

existing compressed lines. If no such line exists, one or two

compressed lines are evicted to store the new line. A

compressed line can be placed in the same line with a partner

only if the sum of their compression ratios is less than 100%.

Note that successful placement of a line does not require that

it have a compression ratio smaller than 50%. It is only

necessary that the line, combined with a partner line be as

small as an uncompressed line. To reduce hardware

complexity, the candidate partner lines are only selected from

the same set of the cache. Compared to segmentation

techniques which allow arbitrary positions, pair-matching

simplifies designing hardware to manage the locations of the

compressed lines. More specifically, line extraction in a

pair-matching based cache only requires parallel address tag

match and takes a single cycle to accomplish. For line

insertion, neither LRU list search nor set compaction is

involved.

Fig. 4 illustrates the structure of an 8-way associative

pairmatching based cache. Since any line may store two

compressed lines, each line has two valid bits and tag fields to

indicate status and indexing. When compressed, two lines

share a common data field. There are two additional size

fields to indicate the compressed sizes of the two lines.

Whether a line is compressed or not is indicated by its size

field. A size of zero is used to indicate uncompressed lines.

For compressed lines, size is set to the line size for an empty

line, and the actual compressed size for a valid line. For a

64-byte line in a 32-bit architecture the tag is no longer than

32 bits, hence the worst-case overhead is less than 32 (tag)

(valid) (size) bits, i.e., 6 bytes. As we can see in Fig. 4, the

compressed line locator uses the bitlines for valid bits and

compressed line sizes to locate a newly compressed line. Note

that only one compressed line locator is required for the entire

compressed cache. This is because for a given address, only

the cache lines in the set which the specific address is mapped

to are activated thanks to the set decoder.

Each bitline is connected to a sense amplifier, which

usually requires several gates [17], for signal amplification

and delay reduction. The total area overhead is approximately

500 gates plus the area for the additional bitlines, compared to

an uncompressed cache.

Based on the pair-matching concept, a newly compressed

line has an effective compression ratio of 100% when it takes

up a whole cache line, and an effective compression ratio of

50% when it is placed with a partner in the same cache line.

Note that when a compressed line is placed together with its

partner without evicting any compressed lines, its partner‟s

effective compression ratio decreases to 50%. The effective

system-wide compression ratio is defined as the average of

the effective compression ratios of all cache lines in a

compressed cache. It indicates how well a compression

algorithm performs for pairmatching based cache

compression. The concept of effective compression ratio can

also be adapted to a segmentation based approach. For

example, for a cache line with 4 fixed-length segments, a

compressed line has an effective compression ratio of 25%

when it takes up one segment, 50% for two segments, and so

on. Varying raw compression ratio between 25% and 50% has

little impact on the effective cache capacity of a four-part

segmentation based technique. Fig. 5 illustrates the

distribution of raw compression ratios for different cache

lines derived from real cache data. The axis shows different

compression ratio intervals and axis indicates the percentage

of all cache lines in each compression ratio interval. For real

cache trace data, pair-matching generally achieves a better

effective system-wide compression ratio (58%) than line

segmentation with four segments per line (62%) and the same

compression ratio as line segmentation with eight segments,

which would impose substantial hardware overhead.

C-PACK: A HIGH-PERFORMANCE MICROPROCESSOR CACHE COMPRESSION ALGORITHM

341

We now compare the performance and hardware overhead

of pair-matching based cache with decoupled

variable-segment cache. The hardware overhead can be

divided into two parts: tag storage overhead and compressed

line locator overhead. For a 512 KB L2 cache with a line size

of 64 bytes, the tag storage overhead is 7.81% of the total

cache size for both decoupled variable-segment cache and

pair-matching based cache. The area overhead of the

compressed line locator is significant in a decoupled

variable-segment cache. During line insertion, a newly

inserted line may be larger than the LRU line plus the unused

segments. In that case, prior work proposed replacing two

lines by replacing the LRU line and searching the LRU list to

find the least-recently used line that ensures enough space for

the newly arrived line [1]. However, maintaining and

updating the LRU list will result in great area overhead.

Moreover, set compaction may be required after line insertion

to maintain the contiguous storage invariant. This can be

prohibitively expensive in terms of area cost because it may

require reading and writing all the set‟s data segments. Cache

compression techniques that assume it are essentially

proposing to implement kernel memory allocation and

compaction in hardware [18]. However, for pair-matching

based cache, the area of compressed line locator is negligible

(less than 0.01% of the total cache size).

The performance overhead comes from two primary

sources: addressing a compressed line and compressed line

insertion.

The worst-case latency to address a compressed line in a

pair-matching based cache is 1 cycle. For a 4-way associative

decoupled variable-segment cache with 8 segments per line,

each set contains 8 compression information tags and 8

address tags because each set is constrained to hold no more

than eight compressed lines. The compression information tag

indicates 1) whether the line is compressed and 2) the

compressed size of the line. Data segments are stored

contiguously in address tag order. In order to extract a

compressed line from a set, eight segment offsets are

computed in parallel with the address tag match. Therefore,

deriving the segment offset for the last line in the set requires

summing up all the previous 7 compressed sizes, which incurs

a significant performance overhead. In addition, although the

cache array may be split into two banks to reduce line

extraction latency, addressing the whole compressed line may

still take 4 cycles in the worst case. To insert a compressed

line, the worst-case latency is 2 cycles for pair-matching

based cache with a peak frequency of more than 1 GHz. The

latency of a decoupled variable-segment cache is not reported

[1]. However, as explained in the previous paragraph, LRU

list searching and set compaction introduce great performance

overhead. Therefore, we recommend pair-matching and

use the pair-matching effective system-wide compression

ratio as a metric for comparing different compression

algorithm.

V. CONCLUSION

This paper has proposed and evaluated an algorithm for

cache compression that honors the special constraints this

application imposes. The algorithm is based on pattern

matching and partial dictionary coding. Its hardware

implementation permits parallel compression of multiple

words without degradation of dictionary match probability.

The proposed algorithm yields an effective system-wide

compression ratio of 61%, and permits a hardware

implementation with a maximum decompression latency of

6.67 ns in 65 nm process technology. These results are

superior to those yielded by compression algorithms

considered for this application in the past. Although the

proposed hardware implementation mainly targets online

cache compression, it can also be used in other

high-performance lossless data compression applications with

few or no modifications.

REFERENCES
[1] A. R. Alameldeen and D. A. Wood, “Adaptive cache compression

for high-performance processors,” in Proc. Int. Symp. Computer

Architecture, Jun. 2004, pp. 212–223.
[2] E. G. Hallnor and S. K. Reinhardt, “A compressed memory

hierarchy using an indirect index cache,” in Proc. Workshop Memory

PerformanceIssues, 2004, pp. 9–15.
[3] P. Pujara and A. Aggarwal, “Restrictive compression techniques

to increase level 1 cache capacity,” in Proc. Int. Conf. Computer

Design,
Oct. 2005, pp. 327–333.
[4] L. Yang, H. Lekatsas, and R. P. Dick, “High-performance

operating system controlled memory compression,” in Proc. Design

Automation Conf., Jul. 2006, pp. 701–704.

 Srikanth Pothula pursuing MTECH

in Pydah college of engineering and did BE in Sir C R

Reddy college of engineering…

 Sk Nayab Rasool is an assistant

professor in dept of ECE pydah college of engineering

&pursuing mtech.

