Solution of a Class of Differential Equation with Variable Coefficients

Huanhuan Xiong ${ }^{1}$, Yuedan Jin ${ }^{1}$, Xiangqing Zhao ${ }^{2}$
${ }^{1}$ Department of Mathematics, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
${ }^{2}$ Key Laboratory of Oceanographic Big Data Mining \& Application of Zhejiang Province, Zhoushan, Zhejiang 316022, China
Correspondence: Huanhuan Xiong. E-mail:xionghuanhuan@163.com

Received: March 28, 2016
doi:10.5539/jmr.v8n4p140

Accepted: April 18, 2016 Online Published: July 26, 2016
URL: http://dx.doi.org/10.5539/jmr.v8n4p140

Abstract

In this paper, we obtain the formula of solution to the initial value problem for a hyperbolic partial differential equation with variable coefficient which is the modification of the famous D'Alembert formula.

Keywords: Differential equation with variable coefficient; Solution; D’ Alembert formula

1. Introduction

The exact solutions are always not easy to find for differential equations, especially for differential equations with variable coefficients, nonlinear differential equations. Luckily ${ }^{1}$, Euler equation as a ordinary differential equation with variable coefficients

$$
a_{k} x^{k} \frac{\mathrm{~d}^{k} y}{\mathrm{~d} x^{k}}+a_{k-1} x^{k-1} \frac{\mathrm{~d}^{k-1} y}{\mathrm{~d} x^{k-1}}+\cdots+a_{1} x \frac{\mathrm{dy}}{\mathrm{~d} x}+a_{0} y=0
$$

can be solved by variable transformation $y=\ln x$ which satisfies

$$
x^{k} \frac{\mathrm{~d}^{k}}{\mathrm{~d} x^{k}}=k(k-1) \cdots \frac{\mathrm{d}^{k}}{\mathrm{~d} y^{k}} .
$$

Gained enlightenment from Euler equation, the famous Black-Scholes equation ${ }^{2}$

$$
\partial_{t} V+\sigma^{2} S^{2} \cdot \partial_{s}^{2} V+r S \cdot \partial_{S} V-r V=0
$$

was solved after changing it into heat conduct equation $\partial_{\tau} V-\sigma^{2} \partial_{T}^{2} V=0$ by variable transformation $T=\ln S^{3}$. In this paper, we study the solutions of the following differential equation with variable coefficient:

$$
\begin{equation*}
\partial_{t}^{2} u-a^{2}\left(x^{2} \partial_{x}^{2}+x \partial_{x}\right) u=f(t, x) \tag{1}
\end{equation*}
$$

which is similar to the Black-Scholes equation.
When $x \neq 0$, (1) is hyperbolic (since $\Delta=a^{2} x^{2}>0, \forall x \neq 0$), the initial value problem of which includes two cases ${ }^{4}$:

$$
\left\{\begin{array}{lr}
\partial_{t}^{2} u-a^{2}\left(x^{2} \partial_{x}^{2}+x \partial_{x}\right) u=f(t, x), & 0<x<\infty, t>0 \tag{2}\\
u(0, x)=\phi(x), & 0<x<\infty \\
u_{t}(0, x)=\psi(x), & 0<x<\infty
\end{array}\right.
$$

and

[^0]\[

\left\{$$
\begin{array}{lr}
\partial_{t}^{2} u-a^{2}\left(x^{2} \partial_{x}^{2}+x \partial_{x}\right) u=f(t, x), & -\infty<x<0, t>0 \tag{3}\\
u(0, x)=\phi(x), & -\infty<x<0 \\
u_{t}(0, x)=\psi(x), & -\infty<x<0
\end{array}
$$\right.
\]

When $x=0$, (1) degenerate to 2-order ordinary differential equation, the initial value problem of which is:

$$
\begin{equation*}
\frac{d^{2} u}{d t^{2}}=f(t), u(0)=u_{0}, \quad \frac{d u}{d t}(0)=u_{1} . \tag{4}
\end{equation*}
$$

By the variable transformation $y=\ln x$, the hyperbolic equation with variable coefficients $\partial_{t t} u-a^{2}\left(x^{2} \partial_{x x}+x \partial_{x}\right) u=0$ can be convert into the string vibrating equation $\partial_{t}^{2} u-a^{2} \partial_{y}^{2} u=0$. Thus, the solution of (2), (3) can be found by applying the famous D'Alembert formula of the string vibrating equation $\partial_{t}^{2} u-a^{2} \partial_{y}^{2} u=0$.

2. Solutions of the Initial Value Problem

Let's recall D' Alembert formula first which is exact solution for initial value problem of string vibrating equation (see i.g. J. Smoller (1994)):

Lemma 1. If $\varphi \in C^{2}(-\infty, \infty), \psi \in C^{1}(-\infty, \infty)$ and $f \in C^{1}[(-\infty, \infty) \times(0, \infty)]$. The initial value problem

$$
\left\{\begin{array}{lr}
\partial_{t}^{2} u-a^{2} \partial_{x}^{2} u=f(t, x),-\infty<x<\infty, t>0 \\
u(0, x)=\varphi(x), & -\infty<x<\infty \\
\partial_{t} u(0, x)=\psi(x), & -\infty<x<\infty
\end{array}\right.
$$

has the unique solution

$$
\begin{equation*}
u(t, x)=\frac{\varphi(x-a t)+\varphi(x+a t)}{2}+\frac{1}{2 a} \int_{x-a t}^{x+a t} \psi(\xi) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{x-a(t-\tau)}^{x+a(t-\tau)} f(\xi, \tau) d \xi d \tau \tag{5}
\end{equation*}
$$

Based on (5), we can establish the solution of (2) as follows:
Theorem 2. If $\varphi \in C^{2}(0, \infty), \psi \in C^{1}(0, \infty)$ and $f \in C^{1}[(0, \infty) \times(0, \infty)]$. Then the initial value problem (2) has unique solution

$$
\begin{equation*}
u(t, x)=\frac{\phi\left(e^{\ln x-a t}\right)+\phi\left(e^{\ln x+a t}\right)}{2}+\frac{1}{2 a} \int_{\ln x-a t}^{\ln x+a t} \psi\left(e^{\xi}\right) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{\ln x-a(t-\tau)}^{\ln x+a(t-\tau)} f\left(e^{\xi}, \tau\right) d \xi d \tau \tag{6}
\end{equation*}
$$

Proof. By the variable transformation $y=\ln x$, we obtain

$$
x \partial_{x}=\partial_{y}, \quad x^{2} \partial_{x}^{2}=\partial_{y}^{2}-\partial_{y} .
$$

Applying the above formula to

$$
\partial_{t}^{2} u-a^{2}\left(x^{2} \partial_{x}^{2}+x \partial_{x}\right) u=0, t>0,0<x<\infty
$$

we obtain

$$
\partial_{t}^{2} u-a^{2} \partial_{y}^{2} u=0, t>0,-\infty<y<\infty
$$

Thus, initial value problem (2) is converted to

$$
\left\{\begin{array}{lr}
\partial_{t}^{2} u-a^{2} \partial_{y}^{2} u=f\left(t, e^{y}\right), & -\infty<y<\infty, t>0 \tag{7}\\
u(0, y)=\phi\left(e^{y}\right), & -\infty<y<\infty \\
u_{t}(0, y)=\psi\left(e^{y}\right), & -\infty<y<\infty
\end{array}\right.
$$

Applying the formula (5) to (7), we obtain

$$
u(t, y)=\frac{\phi\left(e^{y-a t}\right)+\phi\left(e^{y+a t}\right)}{2}+\frac{1}{2 a} \int_{y-a t}^{y+a t} \psi\left(e^{\xi}\right) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{y-a(t-\tau)}^{y+a(t-\tau)} f\left(e^{\xi}, \tau\right) d \xi d \tau .
$$

Since $y=\ln x$, finally we obtain the solution of (2)

$$
u(t, x)=\frac{\phi\left(e^{\ln x-a t}\right)+\phi\left(e^{\ln x+a t}\right)}{2}+\frac{1}{2 a} \int_{\ln x-a t}^{\ln x+a t} \psi\left(e^{\xi}\right) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{\ln x-a(t-\tau)}^{\ln x a(t-\tau)} f\left(e^{\xi}, \tau\right) d \xi d \tau
$$

In order to find the solution of (3), we'll establish the relation between (2) and (3) first. To this end, apply transformation $y=-x$ to (3). Then, we have

$$
x \partial_{x}=y \partial_{y}, x^{2} \partial_{x}^{2}=y^{2} \partial_{y}^{2}
$$

which implies that (3) can be converted into

$$
\left\{\begin{array}{lr}
\partial_{t}^{2} u-a^{2}\left(y^{2} \partial_{x}^{2}+y \partial_{x}\right) u=f(t,-y), & 0<y<\infty, t>0, \tag{8}\\
u(0, y)=\phi(-y), & 0<y<\infty, \\
u_{t}(0, y)=\psi(-y), & 0<y<\infty
\end{array}\right.
$$

Applying (6) to (8), obtain

$$
u(t, y)=\frac{\phi\left(-e^{\ln y-a t}\right)+\phi\left(-e^{\ln y+a t}\right)}{2}+\frac{1}{2 a} \int_{\ln y-a t}^{\ln y+a t} \psi\left(-e^{\xi}\right) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{\ln y y-a(t-\tau)}^{\ln y+a(t-\tau)} f\left(-e^{\xi}, \tau\right) d \xi d \tau
$$

Put back $y=-x$ into the above equation, we obtain the formula which we desired:
Theorem 3. If $\varphi \in C^{2}(-\infty, 0), \psi \in C^{1}(-\infty, 0)$ and $f \in C^{1}[(0, \infty) \times(-\infty, 0)]$. Then the initial value problem (1.3) has unique solution

$$
\begin{equation*}
u(t, x)=\frac{\phi\left(-e^{\ln (-x)-a t}\right)+\phi\left(-e^{\ln (-x)+a t}\right)}{2}+\frac{1}{2 a} \int_{\ln (-x)-a t}^{\ln (-x)+a t} \psi\left(-e^{\xi}\right) d \xi+\frac{1}{2 a} \int_{0}^{t} \int_{\ln (-x)-a(t-\tau)}^{\ln (-x)+a(t-\tau)} f\left(-e^{\xi}, \tau\right) d \xi d \tau . \tag{9}
\end{equation*}
$$

Finally, (4) is the initial value problem of second order ordinary differential equation, its solution is as follows:

$$
u(t)=u_{1} t+u_{0}+\int_{0}^{t} \int_{0}^{\xi} f(\eta) d \eta d \xi
$$

3. Applications

Example 4. Find the solution of the initial value problem:

$$
\left\{\begin{array}{lr}
u_{t t}-a^{2}\left(x^{2} u_{x x}+x u_{x}\right)=t+x, & 0<x<\infty, t>0, \tag{10}\\
u(0, x)=x, & 0<x<\infty, \\
u_{t}(0, x)=1 n x, & 0<x<\infty
\end{array}\right.
$$

Let $\phi(x)=x, \psi(x)=1 n x, f(t, x)=t+x$. Apply the formula (6) to (10), we obtain:

$$
u(t, x)=\frac{e^{\ln x+a t}+e^{\ln x-a t}}{2}+t \cdot \ln x+\frac{1}{6} t^{3}+\frac{x}{2 a^{2}}\left(e^{a t}+e^{-a t}-2\right) .
$$

Example 5. Find the solution of the initial value problem:

$$
\left\{\begin{array}{lr}
u_{t t}-a^{2}\left(x^{2} u_{x x}+x u_{x}\right)=t+x, & -\infty<x<0, t>0, \tag{11}\\
u(0, x)=\sin x, & -\infty<x<0, \\
u_{t}(0, x)=x, & -\infty<x<0
\end{array}\right.
$$

Let $\phi(x)=\sin x, \psi(x)=x, f(t, x)=t+x$. Apply formula (9) to (11), we obtain:

$$
u(t, x)=-\frac{\sin \left(e^{\ln (-x)+a t}\right)+\sin \left(e^{\ln (-x)-a t}\right)}{2}-\frac{e^{\ln (-x)+a t}-e^{\ln (-x)-a t}}{2 a}+\frac{t^{3}}{6}+\frac{x\left(e^{a t}+e^{-a t}-2\right)}{2 a^{2}} .
$$

Acknowledgments

The third author is financially supported by National Natural Science Foundation of China (11505154) and Natural Science Foundation of Zhejiang province (LQ16A010003) .

References

Black, F., \& Schols, M. (1973). The pricing of options and corporate liabilities. J. Polit. Econ., 81, 637-654. http://dx.doi.org/10.1086/260062
DiBeneddetto, E. (1993). Degenerate Parabolic Equations, New York: Springer-Verlag.
Jiang, L. S. (2008). The mathematical models and methods for pricing of options. Beijing: Higher Education Press (In Chinese).
Rudin, W. (1964). Principles of Mathematical Analysis, McGraw Hill, New York.
Smoller, J. (1994). Shock Waves and Reaction-Diffusion Equation, Springer-Verlag. http://dx.doi.org/10.1007/978-1-4612-0873-0
Wang, G. X., Zhou, Z. M., \& Zhu, S. M. (2007). Ordinary Differential Equations, Beijing: Higher Education Press (In Chinese).

Copyrights

Copyright for this article is retained by the author(s), with first publication rights granted to the journal.
This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).

[^0]: ${ }^{1}$ See for example the book by Wang G X., Zhou Z M, Zhu SM (2007).
 ${ }_{3}^{2}$ Black F, Scholes, M (1973) proposed this financial model when studying the pricing of options and corporate liabilities.
 ${ }^{3}$ Consult the book by Jiang LS (2008) for the detail.
 ${ }^{4}$ On the degenerate line $x=0$, no boundary conditions are necessary to posed on it. Consult the book by E. DiBeneddetto (1993).

