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Abstract 

In this paper, we obtain the formula of solution to the initial value problem for a hyperbolic partial differential equation 

with variable coefficient which is the modification of the famous D’ Alembert formula.  

Keywords: Differential equation with variable coefficient; Solution; D’ Alembert formula  

1. Introduction 

The exact solutions are always not easy to find for differential equations, especially for differential equations with 

variable coefficients, nonlinear differential equations. Luckily1, Euler equation as a ordinary differential equation with 

variable coefficients  
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can be solved by variable transformation lny x which satisfies 
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Gained enlightenment from Euler equation, the famous Black-Scholes equation2   

2 2 2 0St SV S V rS V rV       , 

was solved after changing it into heat conduct equation 
2 2 0TV V     by variable transformation lnT S

3. In this 

paper, we study the solutions of the following differential equation with variable coefficient: 

                         2 2 2 2( ) ( , )t x xu a x x u f t x                                      (1) 

which is similar to the Black-Scholes equation.  

When 0x  , (1) is hyperbolic (since 2 2 0a x   ,  0x  ), the initial value problem of which includes two cases4:  
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                        (2) 

and 

                                                        
1 See for example the book by Wang G X., Zhou Z M, Zhu SM  (2007) . 
2 Black F, Scholes, M (1973) proposed this financial model when studying the pricing of options and corporate liabilities. 
3 Consult the book by Jiang L S (2008) for the detail. 
4 On the degenerate line 0x  , no boundary conditions are necessary to posed on it. Consult the book by E. DiBeneddetto (1993). 
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2 2 2 2( ) ( , ), 0, 0,

(0, ) ( ), 0,

(0, ) ( ), 0.

t x x
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u x x x

u x x x





         


   
    

                         (3) 

When 0x  , (1) degenerate to 2-order ordinary differential equation, the initial value problem of which is: 

                              
2

0 12
( ),  (0) ,  (0)

d u du
f t u u u

dt dt
   .                                (4) 

By the variable transformation lny x , the hyperbolic equation with variable coefficients 
2 2( ) 0tt xx xu a x x u      can 

be convert into the string vibrating equation
2 2 2 0t yu a u    . Thus, the solution of (2), (3) can be found by applying the 

famous D’ Alembert formula of the string vibrating equation 
2 2 2 0t yu a u    . 

2. Solutions of the Initial Value Problem 

Let’s recall D’ Alembert formula first which is exact solution for initial value problem of string vibrating equation (see 

i.g. J. Smoller (1994) ): 

Lemma 1. If 2 ( , )C   , 1( , )C     and 1[( , ) (0, )]f C     . The initial value problem 
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has the unique solution    
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.        (5) 

Based on (5), we can establish the solution of (2) as follows: 

Theorem 2. If 2 (0, )C  , 1(0, )C    and 1[(0, ) (0, )]f C    . Then the initial value problem (2) has unique 

solution 
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     .         (6) 

Proof. By the variable transformation lny x , we obtain 

x yx   , 2 2 2

x y yx     . 

Applying the above formula to  

2 2 2 2( ) 0, 0,  0t x xu a x x u t x          , 

we obtain 

2 2 2 0,  0,  t yu a u t y         . 

Thus, initial value problem (2) is converted to  
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                        (7)     

Applying the formula (5) to (7), we obtain           



 

 

http://jmr.ccsenet.org                        Journal of Mathematics Research                        Vol. 8, No. 4; 2016 

142 

( )

0 ( )

( ) ( ) 1 1
( , ) ( ) ( , )

2 2 2

y at y at
y at t y a t

y at y a t

e e
u t y e d f e d d

a a


 



 
    

 
  

  


     . 

Since lny x , finally we obtain the solution of (2)    
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     .  □ 

In order to find the solution of (3), we’ll establish the relation between (2) and (3) first. To this end, apply 

transformation y x   to (3). Then, we have 

x yx y   , 2 2 2 2

x yx y    

which implies that (3) can be converted into  
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                       (8) 

Applying (6) to (8), obtain 
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       . 

Put back y x   into the above equation, we obtain the formula which we desired: 

Theorem 3. If 2( ,0)C  , 1( ,0)C   and 1[(0, ) ( ,0)]f C    . Then the initial value problem (1.3) has 

unique solution 
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            (9) 

□ 

Finally, (4) is the initial value problem of second order ordinary differential equation, its solution is as follows: 

1 0
0 0

( ) ( )
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       . 

3. Applications  

Example 4. Find the solution of the initial value problem： 
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                    (10) 

Let xx )( , nxx 1)(  , ( , )f t x t x  . Apply the formula (6) to (10), we obtain： 
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       .          □ 

Example 5. Find the solution of the initial value problem: 

              

2 2( ) , 0, 0,
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                 (11) 

Let xx sin)(  , xx )( , ( , )f t x t x  . Apply formula (9) to (11), we obtain： 
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