
Ann. Rev. Comput. Sci. 1986. 1:289-317
Copyright O 1986 by Annual Reviews Inc. All rights reserved.

TYPE ARCHITECTURES, SHARED
MEMORY, AND THE COROLLARY
OF MODEST POTENTIAL

Lawrence Snyder

Department of Computer Science, University of Washington, Seattle, Washington
98195

Likewise, when a long series of identical computations is to be performed, such as those
required for the formation of numerical tables, the machine can be brought into play so as
to give several results at the same time, which will greatly abridge the whole amount of the
processes.

-General L. F. Manabrea (1842)

Manabrea's remark, referring to a design option for Babbage's Analytical
Engine, has been cited (Hockney & Jesshope 198 1) as the earliest reference to
parallelism in computer design. The fact that Babbage considered parallelism
allows us to conjecture that nearly a century and a half ago he understood the
obvious, but nevertheless, Fundamental Law of Parallel Computation: A
parallel solution utilizing p processors can improve the best sequential solu-
tion by at most a factor of p.

This law's truth follows from the observation that a speedup greater than a
factor of p implies the existence of a better sequential solution. It provides an
upper limit on achievable performance that has been difficult to approach in
practice, much less to achieve. After only two decades of serious study
(Hockney & Jesshope 1981) and only preliminary analysis of the limits to
speedup (Hwang & Briggs 1984, p. 28), it is certainly premature to be
pessimistic about our ultimate success at attaining the maximum predicted
benefits of parallelism. Still, there are reasons to be cautious.

As a practical matter the scientific and commercial problems that are most
in need of speedup are the so-called compute-bound problems (Bardon &
Curtis 1983) since the YO-bound problems would yield to better data
transmission technology not more processing capability (Boral & DeWitt

290 SNYDER

1983). These compute-bound problems are generally superlinear, typically
exhibiting sequential time complexity in the range 0(n2) to 0(n4) for pro-
blems of size n. The reason O(n4) problems are common in science and
engineering is that they often model physical systems with three spatial
dimensions developing in time.

A frequent challenge with these problems is not to solve a fixed-size
instance of the problem faster, but rather to solve larger instances within a
fixed time budget. The rationale is simple: The solutions are so com-
putationally intensive that problem instances of an interesting size do not
complete execution in a tolerable amount of time. Here "tolerable" means the
maximum time the machine can be monopolized or the scientist can wait
between experiments. Thus, with present performance the scientist solves a
smaller-than-desirable problem to assure tolerable turnaround. The fact that
the tolerable turnaround time will remain constant implies that increased
performance will be used to attack larger problems.

What is the effect of parallelism on problem size? Keeping time fixed at t
and (unrealistically) assuming the best possible speedup, it follows that
superlinear problems can be improved only sublinearly by parallel computa-
tion. Specifically, if a problem takes

sequential steps, and if the application of p processors permits an increase in
the problem size by a factor of m,

t = c (n~n)~ lp , then

the problem size can increase by at most a factor of

For example, to increase by two orders of magnitude the size of a problem
whose sequential performance is given by

requires, optimistically, 100,000,000 processors!
This observation, which I will call the Corollary of Modest Potential, is

simply an interpretation of the Fundamental Law in the context of superlinear
problems-the problems that matter. It states that in terms of extending our
grasp, in permitting us to solve problems that are now too computationally
intensive, parallel computation offers only a modest potential benefit. Notice,
too, that the argument above is generous in focussing on low-degree polyno-
mials. For interesting problems whose best sequential running time is of a
higher degree or is exponential, the potential improvement is correspondingly
more modest.

TYPE ARCHITECTURES 291

The Corollary was not formulated as an argument against parallelism.
Parallel computation is perhaps the most promising way to improve computer
performance now that technological advancements are approaching their
inevitable physical limits. Rather, the Corollary has been formulated to
emphasize that introducing overhead must be scrupulously avoided in the
implementation of parallel systems, both in languages and in architectures.
Because its benefit is so modest, the whole force of parallelism must be
transferred to the problem, not converted to "heat" in implementational
overhead.

This review assesses recent developments in parallel architecture and lan-
guage in light of the Corollary's mandate for efficiency. Because the interface
between these two elements is rarely smooth, the friction metaphor of ill-
fitting parts producing heat generally applies. Thus, a secondary agenda item
is to define a clean interface point between language and architecture from
which both specialties may depart.

Preliminaries
Parallel computation means different things to different researchers, so it is
important to delimit the range of interest here. A parallel computer is com-
posed of multiple processor elements, each capable of executing a stored
program, and used collectively to solve one problem. For present purposes
their organization must generalize so the number of processors can grow
without a serious performance penalty. (A small set of processors attached to
a bus is not treated here because buses simply are not scalable.) This defini-
tion does not include distributed computer networks, pipelines or vector
computers, or special purpose parallel computers embedded in larger systems.

To execute a parallel algorithm on a parallel computer requires that at least
two encodings be performed:

algorithm 5 program computer

where a programmer performs the first translation and a compiler performs
the second. As we shall see, substantial overhead may be introduced with .

both encodings, but the importance of performance implied by the Corollary
will motivate us to seek ways of avoiding it in both. In the final analysis, the
parallel programming language-the medium in which the program is ex-
pressed, the target of the first translation and the source of the second
translation-is the most critical element in effective parallel computation.

Language: The Medium is the Message
Although it is well known that languages like FORTRAN, LISP, APL and
SNOBOL are universal in the sense of Turing computability, it is also
acknowledged that each engenders a different programming style, each differs

292 SNYDER

in its suitability for programming a particular algorithm, and each favors
particular problem solving methodologies. What makes these languages
equivalent from a computability point of view and apparently dissimilar from
the programmer's point of view is efficiency. The distinctions are annihilated
in the grossly inefficient Godel encoding that proves their equivalence, but the
distinctions are exposed when writing an efficient program. The form of
expression, the selection and use of control structures, and the type and
management of data representations all influence the processing that can be
efficiently and conveniently expressed. If sequential languages, or more
generally sequential language constructs, influence the form and structure of
the programs for sequential processors, it is reasonable to conjecture that
parallel language constructs, the medium of expressing parallelism, control
and shape the form and extent of the actions and interactions of parallel
processors. '

Because this point-that language greatly influences the form and efficien-
cy of a parallel program-is so central to the following discussion, it is
necessary to be more specific: A programming language's semantics define an
abstract machine model, or simply model, that is the conceptual device
executing the language; the "instruction set" for this machine is the set of
language constructs. So, ALGOL-like languages define a machine providing
a nested naming environment with name scoping, recursion, call-by-name
parameters, control structures, dynamically allocated arrays, etc (Naur l963),
while LISP-like languages define a machine providing a dynamic naming
environment with S-expressions and lists, lambda binding, recursion, map-
car, etc (McCarthy 1960). When the processing required for a particular
algorithm matches that provided by a language's model, programming that
algorithm will be convenient and the implementation will be efficient; matrix
operations in ALGOL-like languages are a good example. But when the
algorithm's requisite processing does not match that provided by the lan-
guage's model, as with SNOBOL-like string matching expressed in APL or
matrix operations expressed in pure LISP, the programming is difficult and
the program is turgid and inefficient.

These difficulties are introduced by having to program around the lan-
guage-that is, to implement constructs not in the language with the facilities
of the language. The turgidity and inefficiency derive from two sources. First,
the required instruction sequencing must be realized as a subsequence of those
producible by the available control operators; and the required data repre-

'This last clause is a paraphrase of McLuhan's explanation of his famous dictum: " 'The
medium is the message' because it is the medium that shapes and controls the scale and form of
human association and action" (McLuhan 1964).

TYPE ARCHITECTURES 293

sentations must be realized by space-wasteful encodings using the available
data structures, which do not capture the relationships needed for the algo-
rithm. An extreme illustration is a matrix product program with the matrices
implemented by S-expressions, car, and cdr rather than arrays with indexing,
and the control implemented by recursion rather than for loops. Second, an
extra level of interpretation is incurred when implementing a construct in any
language as compared to having it available as a primitive.

Thus, the medium shapes and controls the actions of the machine because
efficiency of execution and the convenience and clarity of programming select
for those computations (a subspace of all computations) directly expressible
with the language constructs.

Sequential Languages
It follows immediately, then, that a sequential language such as FORTRAN is
an unlikely candidate for programming a parallel machine, not so much
because FORTRAN favors a certain subclass of algorithms---every language
will be restrictive in this sense-but rather because without parallel constructs
in the language, the subclass is chosen from sequential algorithms. Express-
ing any computation in it entails specifying sequencing, whether or not it is
essential to the formation of the result. Some of this sequentiality can be
removed by systems such as Parafrase (Kuck et a1 1980) and PFC (Allen et a1
1983), thus permitting possible concurrent execution. The parallelism that is
thus identified is constrained by the underlying sequential algorithm, and the
chief difficulty remains: This mechanism (providing a sequencing and de-
pending on the compiler to discover that the data dependencies do not require
it) is the only means of specifying parallelism, and there are forms of
concurrency that cannot be specified this way. The problem with sequential
languages is they have no parallel constructs. (Notice that Parafrase and PFC
were developed not so much to make FORTRAN a parallel programming
language for new programs, as to extract whatever parallelism is available in
extant FORTRAN programs.)

The implication that "parallel" algorithms are different from "sequential"
algorithms warrants scrutiny. Since there seems to be no adequate formal -
definition, the intended distinction must be stated informally: Parallel algor-
ithms exhibit the weakest possible ordering constraints, while sequential
algorithms exhibit some artificial ordering restrictions. The distinction is
nicely illustrated by the successive overrelaxation (SOR) computation used to
solve linear systems of equations (Young 1971). A common implementation
(Adams 1982) of this iterative technique using the "five point stencil" is to
compute the (k + 1)st iteration from the kth iteration by traversing the SOR
iteration array in row major order,

294 SNYDER

for i : = 1 to n do
for j : = 1 to n do

A[i, j] : = o x A[i, j]
+ (1 - o) X ((A[i, j - 11 + A[i - 1, j]
+ A[i, j + 11 + A[i + 1, j]) /4) ;

The array is used simultaneously to store both old and new values. This
provides some memory savings, but it serializes the row computations. That
is, the program states that for a given sweep over the array, an element cannot
be computed until the element to its left (and the one above it) have new
values.

The data dependencies are such that the rows can be computed con-
currently, provided they are offset by one position to the left in each suc-
cessive row; the frontier between the (k + 1)st and the kth iteration is a 45"
line "marching" across the array. Thus, an iteration takes 2n - 1 steps.

Normally, the loop pair is followed by a test for convergence, but if this
pair of loops is nested inside a for loop on k, the successive iterations can be
done simultaneously, provided there are enough of them. That is, with full
concurrency, 2n - 1 steps are used for a start-up phase during which time
successive 45" frontiers march across the array. This phase is followed by a
steady state phase in which alternate array positions compute a new value on
alternate steps. Finally, there is a 2n - 1 step shutdown phase as the last
iterations finish up (see Figure 1). This is probably the maximum amount of
concurrency that can be achieved with the common SOR.

A more parallel alternative is known as the RedlBlack SOR computation
(Young 1950; Adams 1982; Adams & Jordan 1986). The name derives from
visualizing the iteration array as a checkerboard and computing new values
for all "red squares" on one step and all "black squares" on the next step (see
Figure 2). Thus, the data dependencies permit a complete iteration to be
computed in two steps.

Although the steady state of the fully concurrent common SOR appears
similar in operation to the RedlBlack SOR, these are very different algo-
rithms. They have different data dependencies and hence cannot be derived
from one another by reordering the evaluation. The particular order of evalua- -
tion of the common SOR leads to data dependencies that are not inherent in
the solution of the problem. Thus, the common SOR has the characteristics of
a sequential algorithm, while the RedIBlack SOR, an almost perfectly con-
current algorithm, would be termed parallel.

Notice that this digression has sought only to illuminate the distinctions
between sequential and parallel algorithms, and there is no claim that the
Red/Black algorithm cannot be specified in a sequential language. In fact,
Parafrase and PFC will recognize the FORTRAN text of Figure 3 as the

TYPE ARCHITECTURES 295

Figure 1 Common SOR, assuming full concurrency, showing the iteration number of values
completed and (being computed); (a) in the start-up phase, (b) in the steady-state phase, (c) in the
shutdown phase.

Red/Black data dependencies, although it is unclear whether this text is likely
to appear in a program originally written for a sequential computer. The point
of the digression is that the algorithms one formulates when thinking sequen-
tially are qualitatively different from those formulated when exploiting
parallelism.

One way to overcome the inadequacies of a sequential language is to add
some parallel constructs to it. This common approach seems to have a
potential hazard, assuming that the resulting language is actually an extension
of the original rather than a whole new language with the old name. The
approach requires that the extended language "retain" its sequential abstract -
machine model, since a program without parallel constructs must have the
behavior of the original language's semantics. This can constrain the language
design and influence the parallel facilities provided.

To illustrate the phenomenon, postulate an abstract machine model using a
stack to maintain procedure activations. Retaining this stack-based model in
the extended language implies that processes activated within a procedure
must all terminate before the procedure returns. Thus, one cannot call a
procedure to fire up a set of processes and then return to the main program. To
have process activations with nonnested lifetimes requires a heap memory

296 SNYDER

Figure 2 RedIBlack SOR showing iterations completed and (being computed).

organization for procedure activation and thus a fundamental change to the
model. Of course the model can be changed provided it is equivalent to the
stack when no parallelism is used. But if the model can be changed, why
constrain the language design by the artificial requirement of preserving the
semantics of a sequential language?

The argument is intended not as a proof that a sequential language is a poor
starting point for parallel language design, but rather as an indication of the
problem. "Add on" parallelism is not likely to be sufficient, and model
development should not be constrained a priori to preserve sequential seman-
tics. Just because a parallel language might reduce to a sequential language
when there is only one processor, it does not follow that one can guess a good
parallel generalization beginning with a sequential language.

DO 10 I = 1, N-1, 2
DO 20 J = 1, N-1, 2
A[I, 31 = OMEGA+A[I,J] + (1 - OMEGA)*(A[I,J-11

+ A[I-1,J] + A[I,J+l] + A[I+l,J])/4
DO 30 J = 2, N, 2
A[I+l,J] = OMEGA*A[I+l,J] + (1 - OMEGA)

+(A[I+l,J-11 + A[I,J]
+ A[I+l,J+l] + A[I+2,J])/4

CONTINUE
DO 40 I = 1, N-1, 2

DO 50 J = 2, N, 2
A[I,J] = OMEGA*A[I,J] + (1 - OMEGA)*(A[I,J-11

+ A[I-1,J] + A[I,J+l] + A[I+l,J])/4
DO 60 J = 1, N-1, 2
A[I+l,J] = OMEGA+A[I+l,J] + (1 - OMEGA)

*(A[I+l,J-11 + A[I,J]
+ A[I+l,J+l] + A[I+Z,J])/4

CONTINUE

Figure 3 Serial program text defining the RedJBlack SOR Data Dependencies.

TYPE ARCHITECTURES 297

Parallel Languages
The goal in parallel programming language design, then, is to discover a
conceptually clean abstract machine model that matches the form of a cohe-
rent subclass of parallel algorithms in the same way FORTRAN, LISP, APL,
SNOBOL, etc match the algorithms they support well. But one other major
constraint governs parallel language design besides the closeness of the match
to a parallel algorithm subclass: the efficiency of the program's implementa-
tion on a specific machine.

The problem is that different sequential languages can be implemented with
acceptable efficiency on any sequential machine; but there is a much greater
diversity among parallel machines, making the matter of efficient im-
plementation of a particular language on a particular machine problematical.
Consider the options.

A high level, abstract language that does not presume particular features of
the underlying machine has the advantage of being portable between
machines. It has the disadvantage of not being able to exploit particular
hardware features, except insofar as the compiler is able to recognize the
opportunity to do so; furthermore, the implementation of the high-level
abstractions is likely to incur considerable overhead. A low-level language
with machine-specific constructions will presumably exhibit good perform-
ance and low overhead on some machines; but if it is worth porting to other
machines at all, it is not likely to run well because of the software im-
plementation of the features available in hardware on the preferred machines.
The desire for high level abstract languages and the need to be efficient pose
an apparently insurmountable gap to be covered by compiler technology.

Type Architecture
At the heart of the problem is the fact that there is no widely accepted parallel
analogue to the sequential von Neumann machine. There is no idealized set of
facilities that all physical machines tend to provide more or less efficiently
and that compiler writers can expect to find in their target computers. If there
were such an idealized parallel machine, then the dissimilarities among
parallel computers just mentioned might be neutralized by architects who
would make the diverse physical structures realize the idealization. We refer -

to such an idealization as a type architecture2 and note that it is a standardiza-
tion of the hardwarellanguage interface.

A type architecture is not a rigid specification to which all architectures
must conform and all languages adhere. It defines a region of consensus,

 h he term is analogous to type species in taxonomy, the species of a genus with which the
generic name is permanently associated.

298 SNYDER

being explicit about a few salient features and mute on everything else. For
example, the von Neumann machine treats the concepts of a stored program, a
program counter, the memory-processor relationship, etc and ignores address-
ing modes, general purpose registers, virtual memory, etc. A type architec-
ture, by establishing agreement on the main points of interest, reduces the
differences to mere details. Notice that we have no reason to expect a single
parallel type architecture to suffice. On the other hand, a proliferation of type
architectures would not be desirable for two reasons. First, it would probably
signal a failure to find the correct, unifying concepts; and second, if there
actually are many fundamentally different ways to compute in parallel, then
wide program portability may be hopeless, since it is doubtful that programs
written in a language based on one type architecture would be convertible to
efficient programs for machines based on another.

Although no parallel type architecture has achieved wide acceptance, the
paracomputer (Schwartz 1980) has developed a substantial following. It has
been embraced by the theory community, where it is called the PRAM; more
importantly, it has been used implicitly as a type architecture by advocates of
extended sequential, high-level, and machine-independent parallel languages.
However, it is an inappropriate choice for general parallel computation, as
Schwartz apparently recognized and as I will demonstrate below, because it is
unrealizable. Thus, in terms of defining a reference point between the abstrac-
tions of language and the possible realizations of architecture, it is too
abstract, too far from what can actually be built.

Evaluating the Paracomputer
The case against the pHacomputer as a type architecture begins with a concise
example of its failure to serve that role well. Recall that the paracomputer is
an idealized, shared-memory multiprocessor:

One such model is that in which a very large number p of identical processors (each with a
conventional order-code) share a common memory which they can read simultaneously in a
single cycle. In such a model we also assume that during any access cycle any number of
processors can simultaneously write to memory, and that a memory cell to which writes are
simultaneously addressed by many processors will come to contain one of the quantities
written to it (perhaps a randomly selected one of these quantities, or perhaps the minimum).
We call this very general model of parallel computation the paracomputer model (Schwartz
1980).

Postulate a programming language based on the paracomputer, and suppose
that the language is transparent in the sense that it has language constructs that
permit a collection of processors to access the flat, shared memory with unit
access time. A programmer, wishing to write a program to find the maximum
of n elements with n = p processors, will discover in a search of the literature
(Shiloach & Vishkin 1981) that Valiant's algorithm (Valiant 1975) is optimal

TYPE ARCHITECTURES 299

for this set of assumptions. The running time for this algorithm on the
paracomputer is O(log1og n), as will be seen, but the performance of the
program on a real machine will not be so good.

The algorithm operates in stages; at the s stage, the n(s) distinct input
values a l , . . . a,(,) are partitioned into the fewest number r of sets S1, S2, . . .
Sr, of essentially equal size (abs(l~~l-I~~I) 5 1), such that

r

(I?') 5 p .
i= 1

For each set Si , ('2 ') processors are assigned so that each processor compares
one of the ('2 ') distinct pairs of elements. The result of the comparison is
recorded in an auxiliary Boolean array b,, . . . , blsil which is initialized to all
1s at the start of the stage: Processor p assigns 0 to bk where k is the index of
the smaller element of the pair. This operation requires concurrent writes to
memory locations. It takes one step to find the maximum of the set, and the
winner is identified as the (sole) element al with a corresponding bl = 1; that
is, it was not the smaller of any of the ('9') distinct pairs of the set Si. Each
winner of a set at stage s becomes an input to stage s + 1. The maximum of
any set of n values can be found in loglog n + c stages. The bookkeeping
details of the algorithm, which can be performed in constant time for each
stage, are described in Shiloach & Vishkin (1981).

As an example, the maximum of a set S of 1000 elements can be found as
follows:

stage 1 : S is divided into 332 sets of 3 elements each and 2 sets of 2 elements
each; each 3-set requires (;) = 3 processors and each 2-set requires
(2 2) = 1 processor; a total of 998 = 996 + 2 processors are used to
produce a set St of 334 winners.

stage 2: St is divided into 46 sets of 7 elements each and 2 sets of 6 elements
each; each 7-set requires (Z) = 21 processors and each 6-set requires
(26) = 15 processors; a total of 996 = 966 + 30 processors are used
to produce a set of St' of 48 winners.

stage 3: St' is divided into 2 sets of 24 elements each which require (22) =
276 processors each to find the maximum; a total of 552 processors -

are used producing 2 winners.

The maximum of the two values is computed directly and returned without
another stage. Notice that the comparison depth of 4 is superior to the
comparison depth of 10 for the obvious binary tree algorithm.

As I'll explain below, the memory accesses that are assumed to take unit
time for the paracomputer cannot be performed that rapidly on any physical
machine. In fact, they will take at least fl(log n) time when the program
runs-perhaps more--depending on the machine. Thus the observed running
time of the program will be at least O(1og n loglog n) on any physical

300 SNYDER

machine. Contrast this with the fact that the same physical machine could
realize O(1og n) performance on this problem: Assuming that the architecture
"contains" a binary tree, that is, the processing elements can directly com-
municate in a manner described by a binary tree, then they can percolate the
maximum to the root in O(1og n) time.

This is a serious matter. A machine that can find the maximum in O(1og n)
time requires O(1og n loglog n) to run the algorithm that is optimal for the
paracomputer. The language, and by extension the type architecture on which
it is based, have been harmful rather than helpful. Indeed, this maximum-
finding example seems to be an instance of the earlier claim that the language
influences the choice of algorithms, and here the language led the pro-
grammer to the wrong choice.

Unrealizability of the Unit Cost
At the heart of the maximum-finding example is the claim that the facilities
used in the optimal algorithm cannot be implemented with a constant unit
cost. Moreover, it was claimed that these operations actually require at least
O(log n) time on any physical realization. Both of these claims are widely
accepted, but it is still worthwhile to examine them closely.

The unit-cost assumption means that independent of the number of pro-
cessors and independent of the characteristics of the reference sequences
performed by the other processors, there is a constant upper bound on the time
for any processor to reference any memory location. This condition is
obviously unrealizable in practice because among other things it violates the
physical law that an arbitrary amount of information cannot be stored within a
fixed transmission time of a point. But this is not a compelling justification for
claiming the unrealizability of the unit-cost assumption, because similar
reasoning would also compromise the widely accepted unit-cost memory-
reference assumption for von Neumann machines with arbitrarily large mem-
ory. Since it is more beneficial than harmful to ignore this physical limitation
for the von Neumann type architecture, it seems constructive to do the same
here.

To translate this simplification into a form that is most useful to the present
discussion, let us assume unit-time transmission over an arbitrarily long data .

path. This permits the components of the parallel computer to be physically
separated, as they must be, without that requirement's influencing the cost
analysis out of all proportion to its actual importance. For distances encoun-
tered in a parallel computer, the contribution of the physical distance to the
transmission delay is so small at the speed of light as to be negligible.3

3There are settings in which the transmission delays are substantially larger than those
predicted by speed of light estimates. MOS VLSI chips are one example. But because other
technologies (for example, ECL) do not have these problems, it seems justified that the type
architecture be independent of this technological consideration.

TYPE ARCHITECTURES 301

Though the relative importance of distance can change with technology, for
now we will assume information transfer- is not tied directly to distance.

The unrealizability has more to do with the multiplicity of processing sites
than with distance: Each of p processors is physically separated, each of the m
memory locations is also physically separated, and the model of computation
requires information to move between arbitrary pairs of these sites at each
time step. To access an arbitrary memory location in unit time requires that a
processor not collide with any other access, lest the collision produce a delay
that causes the time unit to be e~ceeded .~ Thus each processor must have an
independent path to each memory cell. Furthermore, there must be no deci-
sion logic along the path, lest switching delays cause the time unit to be
exceeded. Thus, each processor must have a direct path to each memory cell.
Consequently, the unit-time property implies the need for mp direct, in-
dependent paths.

There are two essentially different approaches to implementing these in-
dependent paths: Separate physical paths, m incident with each processor and
p incident with each memory cell, violate the physical constraint that an
arbitrary number of paths cannot fan into or out of a point. A single physical
path connecting the processors and memories transmitting p data values in
unit time violates the physical constraint that an arbitrary number of signals
cannot be simultaneously multiplexed on a single datapath. A strategy based
on a bounded degree or a bounded amount of multiplexing or a mixture of
both leads only to a bounded number of direct, independent paths. Thus, the
unit-time access to memory cannot be achieved.

Though the paracomputer's unit-cost shared-memory property is generally
unrealizable, physical machines have been built around these two techniques.
The separate-physical-paths solution or cross bar is illustrated by the C.mmp
(Wulf & Bell 1972) architecture where p = 16. The other extreme, the single
physical path solution or bus, is illustrated by the Sequent (Fielland & Rogers
1984) architecture, where p = 12. It is unclear how large p can be practically,
but since cacheing is likely to be a critical component, recent analyses by
Archibald & Baer (1985) suggest p = 64 is a serious barrier. Although the
unit-time constraint cannot be realized for arbitrary machines, the memory
sharing can be. With bounded fan-in and fan-out, a tree must be used to raise -
the degree of both the processors and memories, engendering an fl(log m)
access delay. This justifies the logarithmic performance degradation men-
tioned in the maximum-finding example.

41t is understood throughout this discussion that prohibitions such as "processor not collide"
should properly be expressed as "processor not collide more than a bounded number of times" in
order to provide for the possibility of violating the prohibition by a small but limited amount
which can be absorbed into the time unit. Because it increases clarity without losing generality,
we give the less tedious but more rigid condition.

302 SNYDER

Notice that in this analysis m refers to individual memory locations. It is
customary, of course, to group many cells together into a memory module and
treat them as a single unit. This reduces the value of m, yielding generally
favorable architectural consequences (reduced hardware) and generally un-
favorable performance consequences. First, because a memory module can-
not be used simultaneously by more than one processor, there is a delay for all
but one of the processors, whenever two or more accesses to a module occur
at the same time. Second, there is overhead in arbitrating the possible multiple
requests. Third, decoding the address, to find the proper memory location,
requires fl(log n) time for an n word memory module. Since the constant is
small, it can with little risk be ignored as with the von Neumann type
architecture. Notice that all three of these performance-degrading properties
increase with n, and the first is quite serious.

Type Architecture's Influence on Language
With its unrealizability established, the role of the type architecture in leading
to the wrong maximum-finding algorithm can now be analyzed. Recognize
that what is crucial here is the type architecture's role in defining a region of
consensus between languages and machines; the issue is not simply that the
paracomputer cannot be built. Indeed, its unrealizability has been widely
acknowledged, but many scientists have gone on to argue that the paracompu-
ter is just the kind of high-level language abstraction that contributes to
effective and efficient programming. It should therefore be used even if the
implementation gap must be covered by software. Obviously it doesn't
contribute to efficient and effective programming. The purpose of this and the
next section is to explain why.

The fallacy in this argument-that the paracomputer is an ideal, high-level
abstraction promoting effective programming-is that the paracomputer is not
used here or elsewhere as an abstraction, but rather as a type architecture. The
distinction is important: A language abstraction is an idealized structure
expressed in terms of other basis facilities. A type architecture is the basis
facility.

The type architecture is the machine on which a language's abstract ma-
chine model is implemented. That is, in formulating a language's semantics -
and in expressing how the compiler is to implement the semantics, the role of
the type architecture is that of target machine. This is completely appropriate
because on the hardware side, physical machines will implement the type
architecture's facilities. Thus the target machine on which the language model
"runs" will exist.

The language's abstract model might be quite transparent, providing facilit-
ies that correspond directly to type architecture facilities. This is not a level of
interpretation, but rather is a means by which source language features can

TYPE ARCHITECTURES 303

correspond one-to-one to machine language features; for example, gotos
correspond to unconditional jumps. Alternatively, the language could provide
one or more layers of abstraction implemented on top of the type architecture.
The cost of this implementation, expressed in terms of type architecture
facilities, is a fair statement of the cost of using the abstraction in a program,
since architecture of this type can be directly implemented in hardware. So,
the type architecture permeates the language, either explicitly or implicitly in
the implementation of the language constructs.

Paracomputer's Influence on Language
The shortcomings of the paracomputer as a type architecture can now be
explained in terms of the two translations mentioned earlier, the programm-
er's translation p from algorithm to program and the compiler's translation c
from program to linked object code.

THE PROGRAMMER'S TRANSLATION In the maximum-finding problem, the
programmer selected the algorithm that was optimal with respect to the
unit-cost assumption of the language. This assumption in turn was simply
inherited from the type architecture because the language was assumed to be
transparent. Given that the problem of finding the maximum can be solved in
O(1og n) time on a physical machine, and (optimistically) accepting that the
program can be translated to run on a physical machine with O(1og n loglog n)
execution time, the algorithm was not optimal for the actual existing con-
ditions, and the programmer was poorly served by the type architecture. At a
minimum, the programmer should have been told that the cost of each step
was at least 0 (log n). This means that every program would have had this
factor in its running time, so that to achieve an O(1og n) result, the original
time complexity would have had to be constant. There is no constant-time
maximum-finding algorithm for the shared memory unit-cost model. [Recall
that for the n = p assumption the O(log1og n) algorithm is best.] It is
impossible, therefore, to write a maximum-finding program in any language
based on the paracomputer type architecture and achieve the best physically
achievable execution time. This leads to a fundamental conclusion:

A type architecture must accurately reflect costs.

When it does not, the cost of the language's facilities will be biased, and the
programmer will be unable to assess the running time of the program.
Algorithms thought to be optimal will not be. Worse yet, certain performance
cannot be achieved, no matter how much ingenuity is applied.

To emphasize, the key point is not the magnitude of the difference but
rather the provable necessity of a gap between the best physically realizable
performance and the best physically realizable performance of a program

304 SNYDER

written in a paracomputer type language. Indeed, had care been taken to
charge for the facilities actually provided by the paracomputer model, such as
concurrent reading and writing, the gap would probably have been larger by at
least a factor of O(1og n) (Snir 1985; Cook et a1 1986). (Answering the
question exactly takes us into the pointless activity of physical analysis of
formal models of computation.) Also, the fact that the paracomputer has
concurrent read and write is relevant only to the details of this particular
presentation, and not relevant to the fundamental argument; any model mis-
representing important costs will suffice.

THE COMPILER'S TRANSLATION Postulate a programming language based
on the paracomputer as a type architecture, and consider the problem of
compiling to some physical machine. The problem is substantial because the
language designer, who regarded his job as complete when he expressed the
language's abstract model in terms of the paracomputer, left a large gap
between the paracomputer facilities and the physical machine. (The gap
doesn't exist for a true type architecture, of course, since it can be imple-
mented.) Moreover, the gap must be "spanned differently for each physical
architecture unless someone takes the time to express the paracomputer's
semantics in terms of a small set of facilities generally available on physical
parallel computers (in which case this small set of facilities would be called a
type architecture, the paracomputer would be called an abstraction, and the
objectives we are advocating would be achieved).

To appreciate the problems caused by the paracomputer from the compil-
er's point of view, assume the target machine is a nonshared-memory parallel
architecture. This may at first seem foolish, but unlike architectures with
interconnection networks having all processors equidistant from each other
(see next section), most nonshared-memory architectures have processors
separated by varying distances. The ultracompute? for example, has all
processors connected in a shuffle graph and thus the maximum distance
between two processors is log n; the direct communication is but one. Most
importantly for the present discussion, this minimum distance can be ex-
ploited so that most nonshared memory machines can find the maximum of n
values in O(1og n) time. [In fact, they can find the maximum of n log n
elements in O(1og n) time (Schwartz 1980)!]

Suppose that the programmer writes the appropriate binary tree percolate
algorithm. If the compiler implements the literal shared-memory facilities,

'Notice that the ultracomputer (Schwartz 1980) and the NYU Ultracomputer (Gottlieb et a1
1983) are radically different machines: The former is a shuffle-connected nonshared-memory
machine, the latter uses an omega network to connect processors to shared memory modules. The
reasons for the difference seem to be largely historical (Gottlieb 1981). The reader should note the
distinction and be advised that both machines are mentioned in these pages.

TYPE ARCHITECTURES 305

this algorithm will take at least 0(log2 n) time. Instead, the hope is for the
compiler to implement the program in the ideal way, taking advantage of
features of the underlying machine. To do so, the compiler must know that the
values should be mapped onto the processors, one value per processor, and
that the processing that percolates values towards the root should be allocated
so that nodes adjacent in the tree are adjacent on the underlying architecture.
It is generally impossible for the compiler to deduce such information from a
program, of course. If there is any hope of having the compiler achieve the
O(1og n) efficiency, then, the programmer must tell the compiler how to
allocate memory, how to allocate processing, how to schedule 110, etc. But
the paracomputer has undifferentiated processors and undifferentiated mem-
ory. Structural components of the underlying machine are not visible from the
program. There is no way to correlate entities of the source program with
them.

Using a "blind" scheme where the programmer specifies generic allocation
and assignment information will not work for two reasons. First, without
knowing the underlying machine, one doesn't know what to specify to aid the
compiler. Second, without knowing the underlying machine, one cannot
judge whether the postulated allocations are feasible, and their feasibility
affects the choice of problem-solving techniques. This leads to a second
fundamental conclusion:

The type architecture must display the principal structural features of the
architectures.

Features hidden by the type architecture are hidden from the language;
therefore the language designer cannot incorporate facilities for describing
their use; without such facilities the programmer cannot tell the compiler how
the program should be run, and with no help from the programmer the
compiler must employ only generalized, inefficient translations.

The conclusion is that the paracomputer cannot be used as a type architec-
ture because it fails to reflect accurately the costs of physical machines and it
fails to describe important structural features of physical machines. A candi-
date type architecture, to serve in the paracomputer's stead, is described in a
later section. Though it may have difficulties, the candidate type architecture
meets these two requirements.

As a postscript to our criticism of the paracomputer, some loose ends
should be tied up. First, our criticism of Schwartz's paracomputer has been
directed at the way it, or an equivalent machine, has been used by others;
Schwartz (1980) used it as a theoretical tool and employed the ultracomputer
in the role of what we would now describe as a type architecture. Second, the
inadequacies of the paracomputer as a type architecture do no more to
diminish the role of its theoretical equivalent, the PRAM, than the un-
realizability of the Turing Machine does to diminish its importance as a

306 SNYDER

theoretical tool; this value lies in what they tell us about the nature of
computation. Valiant's algorithm illustrates this point nicely. It seems to
imply that the complication [O(log n) time] in finding the maximum is more
attributable to the time required to bring the values together [O(log n)] than to
the actual accumulation of the information since, when the time to bring the
values together is removed by the paracomputer model, the time to accumu-
late the information turns out to be smaller [O(loglog n)].

Shared-Memory Computers
Although we have already noted that the direct implementations of the
shared-memory facility have a serious limitation as the number of processors
approaches 64, the indirect implementations have not yet been considered.
These are the so-called dance hall architectures, a name assigned by Keller
(1982) alluding to their characteristic structure of a set of processors lined up
on one side of a processor interconnection network (dance hall) and a set of
memory modules lined up on the other side. Recently proposed dance hall
architectures include the NYU Ultracomputer (Gottlieb et a1 1983), the PASM
Computer (Siegel et a1 1981), the Cedar Computer (Gajski et a1 1983), the
Butteffly (Crowther et a1 1985), and the RP3 (Pfister et a1 1985). The salient
property, it seems to me, is that all processors are "equidistant" from each
other through the shared memory, and so cases like the Butteffly, where the
memory wraps around to the processors giving each a direct connection to one
module, are still dance hall architectures. (The Cedar machine has a second,
direct path for processors within a cluster, but is still a dance hall architec-
ture.)

The interconnection networks used for dance hall architectures typically
have log p depth (Siegel 1985) and thus each reference to shared memory has
at least O(1og p) delay. This delay is not like the trivial address decoding
overhead which we argued earlier could be ignored; it is significant (Franklin
& Dhar 1986) in current technologies even though every effort is made to
make it as small as possible (Gajski et a1 1983).

The corollary of our earlier argument is that dance hall architectures find
the maximum of n values in 0(log2 n) time; the reader should be cautioned,
however, that although this conclusion correctly implies superiority of non- .

shared-memory architectures, this is to date only theoretically true. No non-
shared memory machine has been engineered to have processor-to-processor
communication execute as fast as the typical shared memory access of the
dance hall architectures.

A more serious problem with the interconnection network structure is that
the O(1og p) performance is the collision-free performance and can be much
worse when collisions arise. Borodin & Hopcroft (1982) have shown that a

TYPE ARCHITECTURES 307

deterministic (oblivious) routing strategy can take ~(fi) time in worst case
to route messages across an interconnection network because of collisions.

Many strategies have been developed to try to reduce collisions or their
effect. The combining switch of the NYU Ultracomputer (Gottlieb et a1 1983)
provides the ability to merge colliding requests to the same memory location.
Clever allocation of data structures can avoid collisions when standard refer-
ence sequences are used (Lawrie 1975). Architectural techniques can hide
memory latency (Smith 1981). General mechanisms have also been studied to
control the hazards of collisions (Valiant & Brebner 1981; Upfal & Wigder-
son 1984).

Alternative Type Architecture
Criticizing the paracomputer as a type architecture is considerably easier than
offering an alternative. Still, it is instructive to present a candidate parallel
type architecture in order to illustrate a contrasting set of issues. Consider a
Candidate Type Architecture:

CTA: A finite set of sequential computers connected in a fured, bounded degree graph, with
a global controller.

Although this architecture has been widely used in the technical literature for
presenting nonshared-memory parallel algorithms, its characteristics must
still be amplified.

finite set: This limitation, though necessary in practice, is analogous to the memory-size
limitation in von Neumann machines-that is, it is no limitation at all. Programmers
assume there is no bound and the compiler handles the case when it is exceeded (see section
on exploiting graph properties).

sequential computers: A von Neumann type architecture is presumed, and hence a locally
stored program and data; the computers run asynchronously. The term "sequential" means
"implements a sequential instruction stream" and is not intended to exclude parallelism in
the form of coprocessors, pipelining, or other limited parallelism such as instruction
packing (Fisher 1983) or multi gauging (Snyder 1985).

connected: The term is intended to connote the ability to send a simple value between -
computers efficiently (i.e. in small constant time) and the ability for each computer to
transmit to its adjacent neighbors simultaneously.

fued, bounded degree graph: The sequential computers are the vertices of the graph and
the connections form the edges of the graph; the fact that it is a graph and not a hypergraph
excludes buses; the bounded degree limitation is self-evident; the fixedness of the graph
acknowledges the fact that a machine must be wired together in some permanent form.

global controller. This is a sequential machine that can broadcast signals (for example,
reset) or perhaps single values to all the computers, can address individual computers to

308 SNYDER

request single values, and can interrupt or be interrupted by them. This facility provides a
weak control over the computers consistent with the multiple independent programs and
asynchronous control.

The nature of the type architecture is such that many aspects of parallel
computers are omitted in the CTA definition. For example, whether the
processors operate synchronously or asynchronously is not mentioned, but
since asynchronous is more general, it must be assumed. I hope the features
that have been defined are the critical ones for establishing a working con-
sensus between architects and language designers.

The CTA defines, by inheritance from the von Neumann type architecture,
unit-cost memory access to a local memory; it is mute on the existence of any
global memory. The processors are independent, communicating with a
bounded number of neighbors over channels represented by the edges of the
graph; they are capable of fine-grain communication, since transmission of
simple values is explicitly mentioned. The small constant time assessed for
interprocessor communication, though technically not achievable in the limit,
is consistent with the earlier argument that data transmission is best viewed as
independent of distance. Evidently, the CTA overcomes the problems of the
paracomputer, since it assesses costs fairly and exposes the underlying struc-
ture.

CTA Architectures and Languages
Recall that a type architecture is not a rigid specification to which all
architectures must conform and all languages adhere; rather, it defines a
region of consensus. Thus architectures and languages may be evaluated in
terms of how closely they match the consensus. In the case of architectures,
this means evaluating how efficiently they provide the facilities mandated by
the type architecture. In the case of languages, it means assessing whether the
abstract machine model would run on the type architecture. The following
(nonexhaustive) review should solidify the intended meaning of the CTA.

The ultracomputer of Schwartz (1980) is obviously an instance of the CTA,
though the global controller is not explicitly mentioned. The Cosmic Cube
(Seitz 1985) efficiently provides the requisite facilities of the CTA. It is not an -

instance of the CTA, because the binary n-cube architectures have vertex
degree (that is, the number of processors to which each processor is con-
nected) of log n, and the CTA specifies bounded degree independent of the
number of processors.6 The CHiP architecture (Snyder 1982) is another
example of a generalized CTA; its configurability permits the CHiP computer
to implement a variety of graph interconnections.

%rsuing the taxonomic analogy further, the Cosmic Cube is in the CTA genus, but it is not
the species that gives the genus its name.

TYPE ARCHITECTURES 309

It is permissible for machines to differ from (in this case generalize) the
type architecture, as long as they provide the type-architecture facilities
efficiently. The opposite is true for languages; a language can be based on the
type-architecture facilities, or a subset of them, but it is not a type language if
it is based on a super set. Thus,

facilities(type architecture) C facilities(physica1 machine)

facilities(type language) C facilities(type architecture)

describe the constraints imposed by a type architecture.
Systolic arrays (Kung & Leiserson 1980) are not architectures of the CTA

type, since the processors are not von Neumann machines and the array is
synchronous. Physical implementations have tended to use von Neumann
machines as processing elements but retain the synchronous property (Dohi et
a1 1985; Bromley et a1 198 1). Some machines are excluded from the CTA
genus by virtue of being single-instruction stream computers (Bouknight et a1
1972). Of course, the dance hall architectures are excluded because the
processors are unconnected, communication must go through the log n depth
network to the shared memory, and thus they fail to implement the bounded
time communication requirement. The important property of all these
architectures is not that they are different from the CTA but that they do not
provide the facilities of the CTA with the requisite efficiency.

These remarks have applied to architectures and are thus quantified over a
family of machines: One effect of such quantification is that it confuses the
properties of a whole family with the properties of individuals. Thus every
single instruction stream, multiple data stream (SIMD) architecture is unable
to run programs from CTA-type languages because these programs generally
require multiple instruction stream; each machine fails to be of the CTA type.
By contrast, dance hall architectures can run programs from CTA-type lan-
guages quite efficiently until the number of processors gets so large that the
logarithmic depth of the interconnection network cannot be treated as a
constant; the individual machines are acceptable but they do not scale.

To evaluate languages in terms of the CTA, one must determine whether -
the language's model can be implemented on the CTA. This determination is
complicated by the fact that the CTA is universal in the sense of Turing, so it
can host any programming language, though to do so may require running the
program on one processor. To avoid this problem and to bring the discussion
into the realm of practical programming languages, agree that the test of
whether a language is of CTA type is whether the language's model has been
implemented on a CTA-type architecture, or whether it is known how to do
SO.

Cosmic Cube C (Su et a1 1985), the language designed for the Cosmic

310 SNYDER

Cube, is a CTA-based language if, as it appears, it does not rely significantly
on the non-CTA property of the Cosmic Cube, the unbounded degree. Poker,
(Snyder 1984a), the language designed for the CHiP architecture, is also a
CTA-based language. OCCAM (INMOS 1984) is in principle a CTA-type
language.

An interesting kind of language qualifying as a CTA type is one developed
for a more limited class of architectures; programs written in such a language
must, by containment, run on a CTA. One example is Crystal (Chen 1986).
This system was developed to generate systolic array programs from a set of
recurrence equations. Since systolic arrays can be well approximated by the
CTA architecture-all processors running the same code is equivalent to the
SIMD operation, and regular (coarse-grain) signals from the controller can
keep all the asynchronous processors adequately synchronized-the programs
should run on a CTA.

Most well-known parallel programming languages are not CTA-type lan-
guages, since it is apparently not known how to implement them efficiently on
a CTA-type machine. These include the data flow languages [e.g. VAL
(Ackerrnan 1982)], which treat variables in a flat, undifferentiated name
space. Extended sequential languages, for example FORTRAN 8X, are also
not CTA-type languages since they preserve the shared memory of their
namesake. Also, high-level parallel languages, for example Concurrent Pro-
log (Shapiro 1984), have the added difficulty of a complex language model.
All of these languages can possibly be converted into CTA-type languages by
implementing their language models on the CTA.

Evaluating the. CTA
Although it meets the requirements of being cost accurate and structurally
explicit, there are other considerations, and so the CTA is offered only as a
candidate type architecture. Consequently, it is appropriate to evaluate the
CTA to see what it does and does not offer.

One apparent shortcoming of the CTA is the absence of any specific choice
of graph. The justification for this decision is that no graph has emerged as the
ideal, and to choose one now would simply be premature. Among the choices
that could have been made are the shuffle exchange graph as used in the
ultracomputer; the Cube Connected Cycles graph of Preparata & Vuillemin -
(1981), and other "universal" graphs (Siege1 1985); the array-type structures,
including the 8-, 6-, and 4-connected meshes and toruses and the linear
(2-connected) mays; and finally trees of various species. Each graph family
has its assets and liabilities, and so far we've had too little experience to make
an optimum selection.

The unspecified graph structure is probably a benefit from the architect's
point of view since it places no a priori constraints on design decisions.

TYPE ARCHITECTURES 3 1 1

Language designers, on the other hand, do not appear to be well served by this
feature of the CTA. This may be more an appearance than a reality, though,
because designers must inevitably begin dealing with a graph-based type
architecture, a more difficult medium than the malleable paracomputer. Hav-
ing a specific graph to work with hardly seems a great simplification.

The language designer's task is clear: Either implement an existing lan-
guage's abstract model on the CTA or develop a new language and implement
its model on the CTA. The implementation of an existing language might be
favored because of a large body of existing software, but consider what must
be done: The designer must define how variables and data structures are to be
allocated to the local memories of the specific machines by a compiler. In
addition, the revised language model must explain how references to nonlocal
values are to be converted to sends and receives by the compiler; finally,
synchronization and other control operators must be implemented, though the
type architecture does not favor such centralized facilities as semaphores.
These language model revisions are so difficult to achieve that one is inclined
to recommend definition of a new language. The benefit is that new language
facilities can shift some of the burden of allocation, 110 scheduling, syn-
chronization, etc to the programmer and thus deliver efficiently executable
programs.

The programmer appears to be poorly served by the CTA. Shared memory
might be a thing of the past; and if the new programming languages provide
facilities for specifying memory and process allocation, interprocessor data
transmission, syncfionization, etc, then programmers will have to do all of
the detailed planning of the computation. This seems to complicate pro-
gramming substantially.

In reality, programmers will work harder only to the extent that language
designers fail to measure up to the demands of the CTA. For example, shared
memory is not excluded by the CTA. Any language designer can choose to
provide shared memory as a language abstraction simply by defining it in
terms of the CTA-that is, by defining how a compiler should allocate data
structures to the processor's local memories, etc. (Architects might help, too,
by including automatic routing hardware to support nonlocal references.) This -
has many benefits, not the least of which is that the language designer, having
to explain in the definition of the model how shared memory maps onto a
graph structure, will recognize how expensive it can be and thus add language
facilities that permit the direct use of the CTA. For example, rather than allow
the programmer's encoding of the maximum-finding algorithm to have 0(log2
n) performance, because of the direct implementation of shared memory, the
language designer might add an operator like the APL reduction operation,
[IV, which could be implemented by the compiler using the percolate algo-
rithm to achieve O(1og n) performance. Typing three characters to compute

312 SNYDER

the maximum would not overburden the programmer. The conclusion is that
accommodating the programmer's desire for convenience in a CTA-type
language depends on the effective use of known facilities and the develop-
ment of new, more powerful programming abstractions.

Notice that in one sense even a transparent CTA-type language with few
abstractions serves the programmers well because they can write efficient
programs. After all, it was the distance from the physical machine that earlier
prevented the programmer from writing an efficient maximum finding algo-
rithm. In this way the CTA directly serves the need for efficient parallel
programming mandated by the Corollary of Modest Potential.

Exploiting Explicit Graph Structure
Return now to the matter of the CTA's unspecified graph structure and
recognize that one consequence of the CTA is that every parallel program
written in a CTA-type language will be described by a graph. This may be the
graph used to define the language model and thus be the same for all
programs. On the other hand, if the language is like Poker (Snyder 1984a),
each program can use a specific graph. Either way this may be the single
greatest benefit of the CTA, because the graph is an explicit statement of the
communication structure utilized by the program, and it must be known to
implement many (all?) important program optimizations.

The program is not a single graph but rather a family of graphs, where the
size of the appropriate graph is determined by the program's input. For
example, the SOR runs on a family of square meshes. The program graph,
which we call G for guest, will have to be mapped by the compiler onto the
parallel computer which is also defined in terms of a graph, called H for host.
The best case is for the graph families to have the same number of vertices,
and to be identical (or G contained in H)-that is, the program and the
computer are the same graph. Things rarely work out so well.

Assuming the general case where the graph families are different and the
size of G (amount of parallelism) greatly exceeds the size of H, there are two
problems: contraction and mapping (Berman & Snyder 1984; Bokhari 1981).
Contraction is the task of mapping a member of a graph family down to a
smaller member of the family; mapping is the task of embedding a graph G
into a graph H so that the vertices map one-to-one and the edges of G map to
paths of H.

Since there are good contractions for many popular graph families (Berman
& Snyder 1984) that can be incorporated into compilers, since there are
automatic methods of contraction (Berman et a1 1985), and since it is
straightforward for programmers to incorporate contractions into their pro-
grams (Nelson & Snyder 1986), it seems justified to treat contraction as a
solvable problem. (Notice that these contraction methods accomplish the

TYPE ARCHITECTURES 3 13

"downward translation" permitting the program to deliver its rated perform-
ance subject to the availability of processors.)

As a result, as long as the program and architecture graphs are selected
from the same family, the advertised benefits of the CTA-accurate costs and
visible structure-are realized.

When the G family differs from the H graph, the situation is more com-
plicated. Specifically, when G is embedded in H, edges of G map to paths in
H, which represents data being relayed through several processors in H to
implement what was a direct transfer in G. If the maximum length or dilation
(Rosenberg & Snyder 1978) of any path is small, than the cost of running G
family programs on H family architectures will be but a constant amount
worse than running on the proper architecture. An example would be an
eight-degree mesh program run on a four-degree mesh computer. The more
typical case is that the worst-case dilation will be larger, on the order of the
diameter of the host computer. Thus the shuffle graph might extend the
constant transmission time of G to O(1og n) time while a mesh architecture
would extend it to 0 (6) time. This is a serious departure from what the
programmer expects, as serious a deception as when the paracomputer was
the type architecture. Moreover, it is a direct consequence of not selecting a
specific graph in the CTA, since agreement on one graph would return us to
the conjectured-to-be-solvable contraction case above.

So why not simply select a graph and settle the issue? The first answer, as
mentioned before, is that no graph has emerged as an optimum choice. To that
reason can be added the observation that not all graph structures are equally
simple to implement as architectures (Snyder 1984b), and simplicity often
translates into a favorable cost-benefit. For example, mesh architectures are
very easy in VLSI, but shuffle-based architectures are not. More importantly,
no choice has to be made if we learn more about the mapping problem, or
learn of ways to cope with it. For example, one might exploit the apparent
tendency of graph families to cluster into groups-mesh-based in-
terconnections, cube-based interconnections, etc-and expect problems to be
solved for a representative of each group; then the (usually efficient) in-
tratranslatability can be exploited to give an efficient mapping for any mem-
ber of the group from the base program. Even more attractive would be t h ~
development of new, high-level abstractions that have good (but probably
different) mappings onto each group. The problem will ultimately be solved,
we can be certain; it is simply too early to guess the best solution strategy.

Summary
This critique began with the claim that the medium is the message, that the
form of the programming language influences the choice of the algorithms
and the details of their encoding into a program. The point was illustrated later

314 SNYDER

by the poor choice of the maximum-finding algorithm for the paracomputer-
based programming language.

Next, various language types were scrutinized: Serial languages were found
to be inadequate chiefly because the only available way to specify parallelism
is for the compiler to recognize when the given serial order is unimportant.
Extended sequential languages were criticized for being unnecessarily con-
strained by the need to preserve a sequential language model. Parallel lan-
guages were seen to pose an almost insurmountable challenge to provide
convenient high-level facilities while providing a means to exploit machine-
specific features that provide efficiency. This challenge was then placed in
perspective; not only is it solvable, but it also promises to be a rich area for
further research.

The key to solving the problem was first to appreciate the role of a type
architecture and then to choose an effective one. A type architecture is an
idealized machine that serves as a region of consensus between programming
languages and architectures. The von Neumann architecture is a type architec-
ture, the paracomputer is used as a type architecture, and I here offered a new
type architecture called the CTA.

The paracomputer was scrutinized in terms of its role as a type architecture
and was shown to be wanting. It failed to meet two critical requirements of a
type architecture: to describe costs accurately and to expose important structu-
ral information. By misrepresenting costs, the paracomputer leads one to
select suboptimal algorithms; and one cannot tell the compiler how to gener-
ate optimal code without seeing the cost critical features of the architecture
from the language: Finally, dance hall architectures do nothing to reduce the
inadequacies of the paracomputer.

In the interest of offering a constructive alternative to the paracomputer, I
introduced a candidate type architecture, dubbed the CTA. This non-shared-
memory machine avoided the shortcomings of the paracomputer but seemed
to introduce its own problems because the graph describing its interconnection
structure was left open. It was argued that it is premature to select a graph
because none has emerged as a clear choice. Furthermore, programming
languages in which the graph is specified not only finesse the issue but also
make explicit the actual communication requirements of the program. Finally, -
shared memory, as an abstraction, can and probably should be defined on top
of the CTA; it is a useful programming facility, and there is no reason why the
CTA should prevent the programmer's use of it.

The opening observation was the Corollary of Modest Potential, an obvious
but not widely appreciated interpretation of the Fundamental Law, stating that
the greater a problem's sequential time complexity, the less improvement in
terms of increased problem size will be realized by parallelism. This observa-
tion motivated an intense interest in avoiding inefficiency. But in most of our

TYPE ARCHITECTURES 3 15

discussions the gap between efficient and inefficient was generally O(1og n),
an amount sufficiently small that we might be inclined to ignore it. But that
conclusion misses the import of the Corollary.

Most of the arguments were intended to establish a gap between efficiency
and standard practice; O(1og n) was the easiest gap to establish. It is generally
not known how inefficient most of the cases discussed can become, many
complexity-contributing aspects of parallel computation are routinely
ignored, and the critical constants of proportionality are all but unknown. The
existence of the gap has generally been the important point; its magnitude
could well be larger. Even so, a logarithm is not as small as our common
usage tends to imply. When the 100,000,000 processors of the original
example, which improved the problem size by only a factor of 100, are
handicapped by a logarithm's worth of overhead, more than half of this
modest improvement is lost!

It is a pleasure to thank W. L. Ruzzo for many enjoyable hours of illuminating
discussion on the topics of this paper; his thoughtful comments on earlier
drafts of the manuscript have improved the work immeasurably. It is a
pleasure to thank Loyce M. Adams for her patient instruction on the subtleties
of successive overrelaxation. Faith E. Fich has been extremely helpful in
clarifying these ideas and suggesting the interpretation of Valiant's algorithm.
Burton J. Smith offered helpful insight into the impact of practical constraints
on parallel type- architectures. Kenneth Kennedy, Jean-Loup Baer, Janice
Cuny, Duncan Lawrie, and Allan Gottlieb helped with specific technical
questions. The Blue CHiPpers generously offered their suggestions to im-
prove the presentation of these ideas. This assistance is greatly appreciated.

Literature Cited

Ackerman, W. B. 1982. Data flow languages.
Computer l5(2): 15-25

Adams, L. M. 1982. Iterative algorithms for
large sparse linear systems on parallel com-
puters. PhD thesis. Univ. Va., Charlottes-
ville

Adams, L. M., Jordan, H. F. 1986. Is SOR
colorblind? SIAM Sci. Stat. Comput.
7(2):490-506

Allen, J. R., Kennedy, K., Porterfield, C.,
Warren, J. 1983. Conversion of control de-
pendencies to data dependencies. Proc.
10th ACM Symp. Princ. Program. Lung.,
Austin, Texas, pp. 177-89

Archibald, J., Baer, J.-L. 1985. An evaluation
of cache coherence solutions in shared-bus
multiprocessors. Univ. Wash. Tech. Rep.
85-1 0-05

Bardon, M., Curtis, K. K. 1983. A National
Environment for Academic Research.
Washington, DC: Natl. Sci. Found.

Berman, F. D., Goodrich, M., Koelbel, C.,
Robinson, W. J. 111, Showel, K. 1985. Pre--
p-P: a mapping preprocessor for CHiP com-
puters. Proceedings of the 1985 In-
ternational Conference on Parallel Proc-
ess., IEEE, ed. D. Degroot, pp. 731-33.
Washington, DC: Comput. Soc. Press

Berman, F. D., Snyder, L. 1984. On mapping
parallel algorithms into parallel
architectures. Proc. 1984 Int. Conf. Para-
llel Process., IEEE, Belaire, Mich., ed. R.
Keller, pp. 307-9

Bokhari, S. H. 1981. On the mapping prob-
lem. IEEE Trans. Comput. C30(3):207-14

Boral, H., DeWitt, D. J. 1983. Database

316 SNYDER

machines: An idea whose time has passed?
A critique of the future of database
machines. In Database Machines, ed. H. 0 .
Leilich, M. Missikoff, pp. 166-87. New
York: Springer-Verlag

Borodin, A., Hopcroft, J. 1982. Routing,
merging and sorting on parallel models of
computation. Proc. 14th Ann. Symp.
Theory Comput., ACM, Sun Francisco, pp.
338-44

Bouknight, W. J., Denenberg, W. J., Mcln-
tyre, S. A., Randall, D. E., Slotnick, D. L.
1972. The ILLIAC IV system. Proc. IEEE
6O(4) : 369-88

Bromley, K., Symanski, J. J., Speiser, J. M.,
Whitehouse, H. J. 198 1. Systolic array pro-
cessor developments. In VLSI Systems and
Computations, ed. H. T. Kung, B. Sproull,
G. Steele, pp. 273-84. Rockville, Md:
Comput. Sci. Press

Chen, M. C. 1986. A parallel language and its
compilation to multiprocessor machines on
VLSI. Proc. 13th ACM Symp. Princ. Pro-
gram. Lang. In press

Cook, S. A., Dwork, C., Reischuk, R. 1986.
Upper and lower time bounds for parallel
random access machines without simulta-
neous writes. SIAM J. Comput. 14(3):688-
708

Crowther, W., Goodhue, J., Starr, E., Tho-
mas, R., Milliken, W., Blackadar, T. 1985.
Performance measurements on a 128-node
butterfly parallel processor. See Berman et
a1 1985, pp. 5 3 1 4 0 -

Dohi, Y., Fisher, A. L., Kung, H. T.,
Monier, L. M. 1985. The programmable
systolic chip: project overview. In Algorith-
mically Specialized Parallel Computers, ed.
L. Snyder, L. Jamieson, D. Gannon, H.
Siegel, pp. 47-53. New York: Academic

Fielland, G., Rogers, D. 1984. 32-bit compu-
ter system shares land equally among up to
12 processors. Electronic Design, pp. 153-
68

Fisher, J. A. 1983. Very long instruction word
architectures and the ELI-512. Tech. Rep.
YALEUIDCSIRR-253, Yale Univ., New
Haven, Conn.

Franklin, M. A., Dhar, S. 1986. On designing
interconnection networks for multi-
processors. Tech. Rep. WUCS-86-3, Wash-
ington Univ., St. Louis, Mo.

Gajski, D . , Kuck, D., Lawrie, D., Sameh, A.
1983. Cedar-a large scale multiprocessor.
Proc. 1983 Int. Conf. Parallel Process.,
IEEE, Belaire, Mich., pp. 524-29

Gottlieb, A. 1981. A historical guide to the
ultracomputer literature. Ultracomputer
Note #36, New York Univ., NY

Gottlieb, A., Grishman, R., Kruskal, C. P.,
McAuliffe, K. P., Rudolph, L., Snir, M.
1983. The NYU ultracomputer-designing

an MIMD shared memory parallel compu-
ter. IEEE Trans. Comput. C32(2):175-89

Hockney, R. W., Jesshope, C. R. 1981. Para-
llel Computers. Bristol, U K : Adam Hilger

Hwang, K., Briggs, F. A. 1984. Computer
Architecture and Parallel Processing. New
York: McGraw-Hill

INMOS Limited. 1984. OCCAM Programm-
ing Manual. Englewood Cliffs, NJ: Pre-
ntice-Hall

Keller, R. M. 1982. Comment in a technical
presentation. Parallel Architectures Work-
shop, Boulder, Colo.

Kuck, D. J., Kuhn, R. H., Leasure, B.,
Wolfe, M. 1980. The structure of an adv-
anced vectorizer for pipelined processors.
Proc. 4th Int. Comput. Software Appl.
Conf., IEEE, pp. 709-15

Kung, H. T., Leiserson, C. E. 1980. Algor-
ithms for VLSI processor arrays. In In-
troduction to VLSI Design Systems, ed. C .
Mead, L. Conway, pp. 271-92. Reading,
Mass: Addison-Wesley

Lawrie, D. H. 1975. Access and alignment of
data in an array processor. IEEE Trans.
Comput. C24(12):1145-55

McCarthy , J. 1960. Recursive functions of
symbolic expressions and their computation
by machine. Commun. ACM 3(4):184-
95

McLuhan, M. 1964. Understanding Media:
The Extensions of Man. New York:
McGraw-Hill

Naur, P., ed. 1963. Revised report in the
algorithmic language ALGOL-60. Com-
mun. ACM 6(1):1-17

Nelson, P. A., Snyder, L. 1986. Programming
solutions to the algorithm contraction prob-
lem. Tech. Rep. #86-03-02, Comput. Sci.
Dep., Univ. Wash., Seattle

Pfister, G. F . , Brandlay, W. C., George, D.
A., Harvey, S. L., Kleinfelder, W. J., et al.
1985. The IBM research parallel processor
prototype (RP) introduction and architec-
ture. See Berman et a1 1985, pp. 764-71

Preparata, F., Vuillemin, J. 1981. The cube-
connected cycles: A versatile network for
parallel computation. Commun. ACM -
24(5):300-9

Rosenberg, A. L., Snyder, L. 1978. Bounds
on the cost of data encoding. Math. Syst.
Theory 129-39

Schwartz, J. T. 1980. Ultracomputers. ACM
Trans. Program. Lang. Syst. 2(4):484-52 1

Seitz, C. E. 1985. The cosmic cube. Commun.
ACM 28(1):22-33

Shapiro, E. 1984. Systems programming in
concurrent prolog. In Proc. 11 th ACM
Symp. Princ. Program., Salt Lake City,
Utah, pp. 93-105

Shiloach, Y., Vishkin, U. 1981. Finding the
maximum, merging and sorting in a parallel

TYPE ARCHITECTURES 3 17

computation model. J. Algorithms. 2:88-
102

Siegel, H. Jay. 1985. Interconnection Network
for Large-Scale Parallel Processing. Wash-
ington DC: Heath

Siegel, H. J., Siegel, L. J., Kemmerer, F. C.,
Mueller, P. T. Jr., Smalley, H. E. Jr.,
Smith, S. D. 1981. PASM: A partitionable
SIMDIMIMD system for image processing
and patter recognition. IEEE Trans. Com-
put. C30(12):934-47

Smith, B. J. 1981. Architecture and applica-
tions of the HEP multiprocessor computer
system. Proc. SPIE Symp., pp. 24248

Snir, M. 1985. On parallel searching. SIAM J.
Comput. 14(3):688-708

Snyder, L. 1982. Introduction to the configur-
able, highly parallel computer. Computer
15(1):47-56

Snyder, L. July 1984a. Parallel programming
and the poker programming environment.
Computer 17(7):27-36

Snyder, L. 1984b. Supercomputers and VLSI:
The effect of large-scale integration on com-
puter architecture. In Advances in Comput-
ers, ed. M . C. Yovitz, 23:l-33. New York:
Academic

Snyder, L. 1985. An inquiry into the benefits

of multigauge computation. See Beman et
a1 1985, pp. 488-92

Su, W.-K., Faucette, R., Seitz, C. 1985. C
programmer's guide to the cosmic cube.
Tech. Rep. 5203: TR: 85, Comput. Sci.
Dep.., Calif. Inst. Technol., Pasadena,
Callf.

Upfal, E., Wigderson, A. 1984. How to share
memory in a distributed system. Proc. 25th
IEEE Symp. Found. Comput. Sci., pp. 17 1-
80

Valiant, L. G. 1975. Parailelism in compari-
son problems. SIAM J. Comput. 4(3):34&
55

Valiant, L. G., Brebner, G. J. 1981. Universal
schemes for parallel communication. Proc.
13th ACM Symp. Theory Comput., Mil-
waukee, Wisc., pp. 263-77

Wulf, W. A., Bell, C. G. 1972. C.mmp-A
multi-miniprocessor. Proceedings AFIPS
Fall Joint Computer Conference, 41 :765-
77. Montvale, N.J: AFIPS Press

Young, D. 1950. Iterative methods for solving
partial diferential equations of elliptic type.
PhD thesis. Harvard Univ., Cambridge,
Mass.

Young, D. 197 1. Iterative Solution of Large,
Linear Systems. New York: Academic

