
International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

266

Abstract—The estimation accuracy has been focused in

various formal estimation models in recent research initiatives.

The formal estimation models were developed to measure lines of

code and function points in the software projects but most of them

failed to improve accuracy in estimation. The concept of

reusability in software development in estimating effort using

artificial neural network is focused in this paper. Incorporation of

reusability metrics in COCOMO II may yield better results. In

COCOMO II it is very difficult to find the values of size

parameters. A new model called COREAN has been proposed in

this paper for better effort estimation accuracy and reliability. The

proposed model has focused on two components of COCOMO II.

First, instead of using RUSE cost driver, three new reuse cost

drivers are introduced. Second, In order to reduce the project cost,

three cost drivers such as PEXE, AEXE, LTEX are combined into

single cost driver Personnel Experience (PLEX). Finally, this

proposed model accuracy is more improved with the help of

Enhanced RPROP algorithm and simulated annealing

optimization technique.

Index Terms—Effort Estimation, Software Reuse, COCOMO

II, Artificial Neural Network, Simulated Annealing.

I. INTRODUCTION

 Most of the software development projects were failed

due to effort overrun and exceeding its original estimates as

per the survey conducted in various research publications [1].

Effort overruns usually lead to cost overruns and missed

project deadline. In software engineering estimating software

development effort is one of the most critical and complex

task. Over the last three decades, a growing trend has been

observed in using variety of software effort estimation models

in diversified software development processes. Along with

this tremendous growth, it is also realized that the essentiality

of all these models in estimating the software development

costs and preparing the schedules more quickly and easily in

the anticipated environments. Although a great amount of

research time and money have been invested to improve the

accuracy of the various estimation models. Due to the

inherent uncertainty in software development projects such as

complex and dynamic interaction factors, change of

requirements, intrinsic software complexity, pressure on

standardization and lack of software data, it is unrealistic to

expect very accurate effort estimation of software

development processes[2].

Reusability has benefits such as reduced effort, improved

productivity, decreased time-to-market and decreased cost in

software development. This research work addresses the

significance of reusability in effort estimation and formulates

Manuscript received on January, 2013.

 Jyoti Mahajan, Computer Engineering Department, Government

College of Engineering & Technology, Jammu, India.

Simmi Dutta, Computer Engineering Department, Government College

of Engineering & Technology, Jammu, India.

new metrics for reusability to determine the reliable and

accurate effort estimates. Selecting an appropriate model for a

specific project is an issue in project management[3]. The

appropriate model which provides minimum relative error has

to be considered as the best fit for effort estimation.

II. RELATED WORK

A. Extensions of COCOMO II

The COCOMO II [4][5] project was started to meet the

future requirements of the next generation of software

development process. The new COCOMO II model has

incorporated features that are realistic and accurate in

COCOMO 81 and Ada COCOMO models. COCOMO II has

proposed three submodels based on development stages of the

project. The Application Composition model is the first

submodel used to estimate effort and schedule on projects that

use rapid application development tools. Early design model

is used to get approximate estimate in the preliminary stages

of the project. Post architectural model is mainly used to

estimate effort when the high level design is completed.

COCOMO II defined the reuse model which adjusts the code

reuse by modifying the size of the module or project. This

model considers reuse with function points and source lines of

code the same in either the early design model or the

post-architecture model. A size estimate equivalent to the

number of lines of new source code is computed and then

adjusts the size estimate for new code. This model has not

clearly specified complete system to evaluate the “actual”

equivalent SLOC. It is difficult to calibrate the model and

difficult to determine the parameters Design Modified (DM),

Code Modified (CM), reuse software (IM) and Adapted

SLOC. Estimating development effort using reuse proposed

by Balda and Gustafson [6]. This model adapted the simple

COCOMO model by distinguishing newly developed code

that is specific to the project, newly developed code that is

made for reuse and code that is modified for reuse. This

model uses the four variables to represent these types of code.

COCOMO II Constructive Staged Schedule & Effort

Model (COSSEMO) [7] specifies the percentages of effort

and schedule to be applied to the different stages of project:

Inception, Elaboration and Construction. The predicted effort

and schedule from a COCOMO II correspond to the sum of

effort and schedule of inception, Elaboration and

Construction stages. Thus, the sum of the effort or schedule

for three stages can actually total more than 100% of the

COCOMO II effort and schedule.

Constructive RAD Schedule Estimation Model

(CORADMO) [8] model has five drivers. Each driver has

both rating levels, which are selected by a user based on the

characteristics of the software project, its development

COREAN: A proposed Model for Predicting

Effort Estimation having Reuse

Jyoti Mahajan, Simmi Dutta

COREAN: A proposed Model for Effort Estimation having Reuse

267

organization, and its milieu. There are numeric schedule and

effort multiplier values per stage for each rating level. The

impact of re-use of 3GL production code is handled directly

in the COCOMO II model via the re-use sub-model and its

effect on size. This CORADMO driver reflects the impact of

re-use of code and/or the use of very high level languages,

especially during the Inception and Elaboration stages.

Higher rating levels reflect the potential schedule

compression impacts in Inception and Elaboration stages due

to faster prototyping, option exploration. Clearly this impact

will be dependent on the level of capability and experience in

doing this, such as Rapid Prototyping experience. The values

of the multipliers corresponding to the rating levels are the

same for both effort and schedule; this implies that the staff

level is held constant.

Constructive Quality Model (COQUALMO) [9] is an

extension of the existing COCOMO II model to specify the

quality. This model is based on the software defect

introduction and removal model described by Barry Boehm.

The defects conceptually flow into a holding tank through

various defect source pipes. These defect source pipes are

modeled in COQUALMO as the “Software Defect

Introduction Model”. The Defect Introduction and Defect

Removal Sub-Models described above can be integrated to

the existing COCOMO II cost, effort and schedule estimation

model. COnstructive COTS integration cost model

(COCOTS) [10] where COTS in turn is short for

commercial-off-the-shelf, and refers to those pre-built,

commercially available software components that are

becoming ever more important in the creation of new software

systems. This model was developed as an extension of the

COCOMO II cost model for reusable components based

software development effort estimation. COCOTS attempts to

predict the lifecycle costs of using COTS components by

capturing the more significant COTS risks in its modeling

parameters.

The primary approach modeled by COCOMO is the use of

system components that are developed from scratch or new

code. But COCOMO II also allows you to model the

reusability in which system components are built out of

pre-existing source code. Even most the projects are not

building the reuse component from scratch but reusable

component’s source code can be modified to suit your needs.

COCOMO II currently does not model the case in which

project has access to a pre-existing component’s source code.

B. ANN based Effort Estimation

Literature reveals that many software engineering

researchers have proposed ANN based approach to estimate

software development effort [9,10, 11, 12, 13]. The back

propagation trained multilayered feed forward networks is

generally used in most of the research work to predict the

software effort estimation. The use of ANN with a back

propagation learning algorithm for effort estimation has

explored [11,14,15] and found the effectiveness of the neural

network technique in effort estimation. Some preliminary

investigation in the use of neural network in estimating

software cost and produced very accurate results[11], but the

major set back in their work was due to the availability of

dataset and the accuracy of the result depends on the size of

the training set.

III. PROPOSED MODEL - COREAN

The proposed model is estimating more accuracy and

reliable software effort with the help of software reusability

concept. Comparing with COREAN, Software reusability in

COCOMO II is not provided an accuracy result. Instead of

RUSE cost driver, three new reuse cost drivers is introduced

such as Reuse Veryhigh Level Language (RVLL), Required

Integrator for Product Reuse (RIPR), Reuse Application

Generator (RAPG) is yielding best result for reusability in

software effort estimation. The effort estimation formula of

COREAN is,
17

B
i

i 1

PM = 2.94*(SIZE) * EM ----- 1

where
5

j

j=1

B = 0.91+ 0.01* SF ------- 2

The COREAN model Scale Factors are same as the

COCOMO II [7][8] model scale factors such as PREC,

FLEX, RESL, TEAM, PMAT.

REVL
SIZE = 1+ * New KSLOC+ Equivalent KSLOC

100 --------- 3
AT

Equivalent KSLOC = Adapted KSLOC* 1- *AAM
100 ----------- 4

-- 5

COREAN Cost Drivers:

 Product reliability and complexity - RELY,

 DATA, CPLX, DOCU

 Required reuse - RVLL, RIPR, RAPG

 Platform difficulty - TIME, STOR, PVOL

 Personnel capability - ACAP, PCAP, PCON

 Personnel experience – PLEX

 Facilities - TOOL, SITE

 Required Development Schedule - SCED

A. New Metrics Introduction

Three cost drivers such as PEXE, AEXE, LTEX are

combined into single cost driver Personnel Experience

(PLEX) for reducing the software project cost.

Instead of RUSE metric in COCOMO II, three new reuse

metrics are introduced,

1) RVLL(Reuse Very high Level Language)

2) RIPR(Required Integrator for Product Reuse)

3) RAPG(Reuse Application Generator)

B. New Metrics Definition and Validation Methodologies

The Goal/Question/ Metric (GQM) paradigm provides a

template and guidelines to define metric goals and refine them

into concrete and realistic questions, which is subsequently

lead to the definition of measures. Software engineering

process requires feedback and evaluation mechanism to

define and validate metrics. GQM is usable as a practical

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

268

guideline to design and reuse technically sound and useful

measures. It provides templates for defining goal and generate

questions to define new metrics in software engineering

process[16][17].The main focus is to construct cost drivers

for predictive models that establish a reliable effort

estimation. Goals are defined in an operational way by

refining them into a set of quantifiable questions that are used

to extract appropriate information. The new cost drivers are

defined under GQM methodology.

 These new cost drivers are properly validated with the

help of Theoretical (Internal) validation and Empirical

(External) validation [18][19]. The important of theoretical

validation is to measure and asses the metric intensions using

DISTANCE framework[20] and the empirical validation by

gathering the information about the metrics using survey

method. To validate the EAF of proposed model, company

dataset containing 20 project has been used. By adjusting the

value of cost drivers, this will yield better result than past

projects.

C. COREAN and ANN Model Implementation

To implement ANN model, COREAN effort estimation

Equation 1 should be transform from non linear model to

linear model by applying natural logarithm on both sides.

ANN is implemented with Enhanced RPROP[21].

In(PM) = In(A) + 0.91 * In(SIZE) + SF1 * 0.01 * In(SIZE)

+ ………. + SF5 * 0.01 * In(SIZE) + In(EM1) + In(EM2) +

……… + In(EM17) ----------- 6

[Linear Equation]

OPest =WT0 + WT1 * IP1 + WT2 * IP2 + …+ WT6 * IP6 +

WT7 * IP7 +…+ WT23 * IP23 --------------- 7

 [ANN Based Model For Effort Estimation]

Actual observed effort is compared with this estimated

effort. The differences between these values are the error in

the effort. It should be minimized.

D. Optimization

In the proposed model COREAN, Simulated Annealing

Algorithm[22] is used to estimate the optimum solution of the

software project effort. The given solution method is helped

to get optimal values of effort:
n

2

M C

i=1

Minimize (Effort -Effort)

Where, EffortM = Measured Value of Effort, EffortC =

Computed Value of Effort according to the model used.

Simulated Annealing Algorithm Procedure:

1. Initialization: parameters of annealing schedule.

2. Select an iteration mechanism: a simple prescription to

generate a transition from current state to another state by

a small perturbation.

3. Evaluate the new state, compute the value of E = (value

of current state - value of new state).

4. If the new state is better, make it current state, otherwise

probabilistically accept or reject it with a determined

probability function

5. If condition is true continue Step 2 otherwise terminated.

IV. RESULTS

Out of the 20 project dataset, to forecast an effort of the

proposed model. The estimated effort is comparing with

existing COCOMO II and Actual effort of the project. This

results are shown as Table – 1 and comparison graph also

provided as below:

Table - 1 : Comparison of Effort Estimation With SA

Optimization

Project

ID

Actual

Effort

Estimating Effort (PM) using

COCOMOII COREAN with

SA Optimization

1 205 117.6 192

2 211 117.6 173

3 40 31.2 32.6

4 24 36 25.15

5 43 25.2 44.48

6 15 8.4 4.87

7 9 10.8 13.9

8 36 25.2 38.12

9 277 352.8 254

10 95 72 104.1

11 67 72 101.87

12 39 24 22.7

13 255 360 259

14 77 36 79.2

15 288 215 287.3

16 345 360 315

17 398 360 407

18 299 324 303.8

19 102 60 89

20 76 48 61

Figure - 1 : Comparison of Effort Estimation

-50

0

50

100

150

200

250

300

350

400

450

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Project Unique ID

E
f
f
o

r
t

(
P

M
)

Actual Effort COCOMO II COREANN With Optimization

Table – 2 shows that the result for MRE comparison of the

proposed model with existing COCOMO II.

COREAN: A proposed Model for Effort Estimation having Reuse

269

Table 2 - Comparison of Effort Estimation Results In

MRE

Project ID MRE using

COCOMO II COREAN

1 42.63 6.34

2 44.27 18.009

3 22 18.5

4 50 4.792

5 41.39 3.44

6 44 67.53

7 20 54.44

8 30 5.89

9 27.36 8.303

10 24.21 9.58

11 7.46 52.05

12 38.46 41.795

13 41.18 1.769

14 53.25 2.857

15 25.35 0.243

16 4.35 8.696

17 9.58 2.26

18 8.361 1.605

19 41.18 12.75

20 36.84 19.74

MMRECOCOMOII = 30.592 PRED(25)COCOMOII = 35.00

MMRECOREAN = 17.019 PRED(25)COREAN = 80.00

0

10

20

30

40

50

60

70

MRE

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Project Unique ID

Figure - 2 : MRE Comparison

COCOMO II

COREANN

Figure – 3 MMRE Comparisons

Figure-4 : PRED(25) Comparison

By the above result, observed value for MMRE of

COREAN is less than MMRE of COCOMO II and PRED(25)

of COREAN is greater than PRED(25) of COCOMO II.

V. CONCLUSION AND FUTURE WORK

In software engineering, it is extremely difficult to select

appropriate model for estimation effort estimation due to the

availability of number of models. Software reuse has become

a major factor in development. Hence, effort estimation for

reuse must accurate for the successful project execution. This

paper primarily concentrated on the computation of accurate

effort with software reusability as the main focus. While

comparing performance results of COREAN and COCOMO

II, it clearly shows that the proposed COREAN works better

than COCOMO II. That is, the COREAN model is estimated

lower MRE & MMRE and higher PRED(25) than the

COCOMO II model. So the prediction accuracy of COREAN

is high based on the performance evaluation. In future work,

the effort estimated by expert judgment method has to be

considered to optimize the final effort estimation. Initial value

of the optimization is the effort estimated by expert judgment.

VI. ACKNOWLEDGMENT

The authors would like to express their cordial thanks to the

Principal of Government College of Engineering &

Technology, Jammu for their financial support and advice.

REFERENCES

[1] K. Molokken-Ostvold and M. Jorgensen, “A Review of Surveys on

Software Effort Estimation,” Proc. 2003 ACM-IEEE Intternational

Symposium on Empirical Software Eng, pp. 220-230, 2003.

[2] Saleem Basha and Dhavachelvan P, “Analysis of Empirical Software

Effort Estimation Models”, International Journal of Computer Science

and Information Security, Vol. 7, No. 3, 2010

[3] Chao-Jung Hsu, Nancy Urbina Rodas, Chin-Yu Huang and Kuan-Li

Peng “A Study of Improving the Accuracy of Software Effort

Estimation Using Linearly Weighted Combinations”, 34th Annual

IEEE Computer Software & Application Conference Workshops, 2010

[4] B. Boehm, B. Clark, E. Horowitz, C. Westland, R. Madachy, and R.

Selby, “Cost Models for Future Software Life Cycle Processes:

COCOMO 2. 0,” Annals of Software Engineering: Special Volume on

Software Process and Product Measurement, Science Publishers, vol.

1, pp. 45-60, 1995.

[5] Boehm, B. COCOMO II Model Definition Manual. Center for

Software Engineering, University of Southern California. 1997.

[6] Balda, D,. M. and D. A. Gustafson, "Cost Estimation Models for the

Reuse and Prototype Software Development Life-Cycles", ACM

Sigsoft Software Engineering Notes, 15 (3), pp. 4250, 1990.

[7] A.Windsor Brown url:

http://csse.usc.edu/publications/TECHRPTS/KBSA_Tech_Report/ap

p5.pdf, 1999

[8] Barry Boehm, A.Winsor Brown,

http://csse.usc.edu/publications/TECHRPTS/KBSA_Tech_Report/vol

umeI.pdf, 1999

[9] Sunita Chulani, Barry Boehm "Modeling Software Defect Introduction

Removal: COQUALMO (COnstructive QUALity MOdel)", Technical

Report USC-CSE-99-510, 1998

International Journal of Soft Computing and Engineering (IJSCE)

ISSN: 2231-2307, Volume-2, Issue-6, January 2013

270

[10] C.Abst, B.Boehm, E.Clark. “COCOTS: A COTS Software Integration

Lifecycle Cost Model - Model Overview and Preliminary Data

Collection Findings", Technical report USC-CSE-2000-501, USC

Center for Software Engineering, 2000.

[11] Heiat A, “Comparison of artificial neural network and regression

models for estimating software development effort,” Journal of

Information and Software Technology, Volume 44, Issue 15, Pages

911-922, 2002.

[12] Wittig, G., Finnie, G., “Estimating software development effort with

connectionist models”, Information and Software Technology, 39 (7),

469–476, 1997

[13] Karunanithi, N., D. Whitely, Y. K. Malaiya, “Using neural networks in

reliability prediction”, IEEE Software, pp. 53-59, 1992.

[14] Tadayon, N., “Neural network approach for software cost estimation,”

International Conference on Information Technology: Coding and

Computing (ITCC 2005), Volume: 2, on page(s): 815- 818, 2005.

[15] Dawson, C.W., “A neural network approach to software projects effort

estimation,” Transaction: Information and Communication

Technologies, Volume 16, pages 9, 1996.

[16] Lionel C. Briand, Sandro Morasca, and Victor R. Basili, “An

Operational Process for Goal-Driven Definition of Measures”, IEEE

Transactions On Software Engineering, Vol. 28, No. 12, 2002.

[17] V. Basili, "Software Modeling and Measurement: The

Goal/Question/Metric Paradigm" University of Maryland, Department

of Computer Science, Tech. Rep. CS-TR-2956, 1992.

[18] L. Briand, K. El Emam, S. Morasca, “Theoretical and Empirical

Validation of Software Product Measures”, Technical Report

ISERN-95-03, Fraunhofer Institute for Experimental Software

Engineering, Germany, 1995.

[19] Murat Ayyıldız, Oya Kalıpsız, and Sırma Yavuz, “A Metric-Set and

Model Suggestion for Better Software Project Cost Estimation”, World

Academy of Science, Engineering and Technology, 2006.

[20] G. Poels, G. Dedene, DISTANCE: A Framework for Software Measure

Construction, Reserch Report 9937, Dep. of Applied Economics,

Katholieke Universiteit Leuven, 1999.

[21] Jyoti Mahajan, Devanand, “Reusability in Effort Estimation model

based on Artificial Neural Network for Predicting Effort in Software

Development”, Research Cell : An International Journal of

Engineering Sciences, vol. 4, 2011.

[22] Mitat Uysal, “Estimation of the Effort Component of the Software

Projects Using Simulated Annealing Algorithm”, World Academy of

Science, Engineering and Technology, 2008

 Jyoti Mahajan obtained his B.E. Degree in

Computer Science & Engineering from Bangalore

University, M.S. (Software Systems) from BITS

Pilani and Ph.D. in Computer Science from

University of Jammu. He has published 10 papers in

International and National Journals of repute and

presented 9 papers in National and International

Conferences. He is working as Lecturer in the

Department of Computer Engineering at Government

College of Engineering & Technology, Jammu, India. He has about 12 years

teaching experience. His Research interests include Data Structure, Software

Engineering like Software Systems, Software Metrics, Cost Estimation,

Neural Networks.

 Simmi Dutta holds a Ph.d Degree from University of Jammu and is

presently working as Assistant Professor in the Department of Computer

Engineering at Government College of Engineering & Technology, Jammu,

India. She has about 15 years of experience. Her research interests include

Software Engineering, Data Engineering and Security, Wireless Networks.

