

Geometry Module

developed by
The Rice University School Mathematics Project
(RUSMP)

RICE

Funding for the Geometry Module was provided by the Texas Education Agency and the Texas Higher Education Coordinating Board.

The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module

Introduction

The Rice University School Mathematics Project (RUSMP) developed the Geometry Module as a comprehensive teacher training module with funding from the Texas Education Agency and the Texas Higher Education Coordinating Board. The Geometry Module effectively assists teachers in developing a deeper understanding of the underlying concepts that support the Texas Essential Knowledge and Skills (TEKS) in Geometry and helps teachers develop the pedagogical tools necessary to provide their students the opportunity to meet Texas' challenging state content and student performance standards. The Geometry Module also supports related TExES Mathematics Competencies. The rigor of the Geometry Module is of sufficient nature as to allow participating teachers who have not yet met the requirements of a "highly qualified" teacher, as defined by the United States NO CHILD LEFT BEHIND ACT of 2001 (NCLB), to progress towards this goal.

Theoretical Framework for the Geometry Module

The National Council of Teachers of Mathematics (NCTM) proposed major changes in precollege mathematics curriculum in its Standards (1989, 1991, 1995, 2000). The National Research Council in Adding It Up: Helping Children Learn Mathematics (2001) and Educating Teachers of Science, Mathematics, and Technology: New Practices for the New Millennium (2001) provides research-based recommendations for teaching and learning that support effective mathematics education. This research indicates that active, student-centered mathematical investigations, group cooperation, and alternative assessments are more effective in reaching diverse student populations than the passive, teacher-centered learning methods which have dominated mathematics instruction in the past. The Geometry Module materials are consistent with these recommendations.

The Geometry Module is based on the van Hiele model of geometric thought. NCTM in its Standards (1989), acknowledged the importance of the van Hieles' research.

Development of geometric ideas progresses through a hierarchy of levels. Students first learn to recognize whole shapes and then to analyze the relevant properties of a shape. Later they can see relationships between shapes and make simple deductions (p. 48).

Traditional geometry curriculum often fails, because there is a mismatch between geometry instruction and a student's van Hiele level. The hierarchy of levels in the van Hiele model consists of (1) the Visual Level, (2) the Descriptive Level, (3) the Relational Level, (4) the Deductive Level, and (5) Rigor. The Geometry Module provides van Hiele-based experiences (Crowley, 1987) to move participants through the hierarchy from the Visual Level to Rigor. The Geometry Module provides descriptive behavior criteria which identify the different van Hiele levels of student performance, so that participants may identify and select corresponding activities to ensure success for all. Throughout the Geometry Module, participants will identify the van Hiele levels within the activities.

Tools for Learning Geometry

The Geometry Module utilizes construction tools, manipulatives, and technology: (1) to address various learning styles, (2) to model or represent mathematical concepts, (3) to abstract from the manipulative representations, (4) to construct and explore mathematical properties of geometric objects, (5) to generate authentic data, and most importantly (6) to progress participants through the van Hiele levels. The appropriate use of construction tools, manipulatives, the graphing calculator, The Geometer's Sketchpad, and NonEuclid is incorporated into module materials.

RUSMP's Unique Qualifications to Write the Geometry Module

RUSMP was established in 1987, with a grant from the National Science Foundation (NSF), in order to provide a bridge between the Rice University mathematics research community and Houston-area mathematics teachers. In addition to the original grant, RUSMP has received funding from a second NSF grant, the United States Department of Education Eisenhower and Teacher Quality Programs, and from corporations, foundations and school districts. The mission of RUSMP is to help teachers and administrators better understand the nature of mathematics, the effective teaching and assessing of mathematics, and the importance of mathematics in today's society. RUSMP's major goal is to enhance the mathematical and pedagogical knowledge of Houston PreK-12 teachers and support them in implementing more effective mathematics programs.

The RUSMP approach is founded on the belief that sustained instructional changes can best be supported through the development of professionalism among teachers and the creation of a network of teachers who have extensive knowledge of both mathematical content and pedagogy. All RUSMP activities are designed to support the development of teachers' professionalism.

RUSMP has developed an extensive array of programs and courses available to teachers and administrators. These include long-term, intensive professional development for teachers, daylong workshops, and opportunities for networking across schools and districts. In addition, RUSMP has undertaken several collaborative projects with districts, schools, and other community members in the Houston area. While there is great diversity among the programs and activities offered by RUSMP, they are all anchored by a common curriculum and approach to instruction. The Geometry Module is the latest of RUSMP's efforts to improve the teaching of pre-college mathematics.

As a result of RUSMP's eighteen-year partnership with Houston-area school districts to improve mathematics instruction, RUSMP has the knowledge and experience necessary to develop an effective Geometry Module that meets the needs of current and future teachers. The Geometry Module builds upon the strengths and recommendations of prior curricula that RUSMP has designed and implemented for Houston-area PreK-12 teachers.

The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module

Acknowledgements

Funding for the Geometry Module was provided by the Texas Education Agency and the Texas Higher Education Coordinating Board. The Geometry Module was developed under the direction and with the assistance of:

The Rice University School Mathematics Project (RUSMP)
Anne Papakonstantinou, Director, RUSMP
Richard Parr, Director of Educational Technology and Secondary Education, RUSMP

Project Manager

Jackie Sack, Geometry Model Lessons Writer, Houston Independent School District

Writers

Jan Casey	Consultant
Gary Cosenza	Region IV ESC
David Eschberger	Region IV ESC
Maria Franshaw	River Oaks Baptist School
Cedric French	Houston Independent School District
Paul Gray	Region IV ESC
Anne Papakonstantinou	Rice University
Richard Parr	Rice University
Judy Rice	Region IV ESC
Michelle Rohr	Houston Independent School District
Jackie Sack	Houston Independent School District
Sherry Senior	Houston Independent School District
Jo Ann Wheeler	Region IV ESC

External Evaluator

Ann McCoy
Decision Information Resources, Inc.

Special thanks to

Joel Castellanos, University of New Mexico Department of Computer Science John Polking, Rice University Department of Mathematics
Key Curriculum Press
Retha van Niekerk, African Mathematics and Science Institute

Key Curriculum Press
Innovators in Mathematics Education
115065 th Street, Emeryville, California 94608 • 5105957000
January 28, 2004
Anne Papakonstantinou
Rice University School Math Project
5620 Greenbriar, Suite 230
Houston, TX 77005
Dear Anne,

It was a pleasure seeing you last week. As we discussed, Key Curriculum Press is pleased to support you in your and your colleagues' efforts in producing geometry curriculum and materials in support of the Department of Higher Education, Participation \& Success -- Institution \& Educator Initiatives. Accordingly, we extend permission to you to reproduce, in print or electronically, portions of text and diagrams from the following Key Curriculum Press Publications for inclusion in Initiative materials:

Heart of Mathematics, © 2000
Symmetry, Shape \& Space, © 2002
Exploring Algebra with The Geometer's Sketchpad, © 2002
Exploring Geometry with The Geometer's Sketchpad, © 2002
Exploring Conics with The Geometer's Sketchpad, © 2002
Rethinking Proof with The Geometer's Sketchpad, © 2002
Pythagoras Plugged In, © 2003
Discovering Geometry: an Investigative Approach, $3^{\text {rd }}$ Edition, © 2003 Student textbook and teacher materials

We expect that any content taken from the above materials will be identified as Key Curriculum Press copyrighted material.

Should you wish to use any artwork or images (other than diagrams) from these books, we request that you contact us and obtain permission on a case by case basis. This is necessary because the terms of use we obtained for images may not, in some cases, extend to your planned use. As an example, the Far Side cartoons in Discovering Geometry may not be reproduced for additional publication without additional permission from the owner of this work.

Please don't hesitate to contact me directly at (800) 338-7638, extension 124 or via email at ktaylor@keypress.com if there are questions or if I can be of assistance.

Sincerely,
Kelvin Taylor
Sales Director
Fax $5105957040+1800995$ MATH for Orders and Inquiries

April 27, 2004

Dear Anne:
You are permitted to load The Geometer's Sketchpad ${ }^{\circledR}$ software program onto the computer labs in Fort Worth and Houston for the duration of the Geometry Module Workshops. After the completion of the workshops, please unload the programs from all the computers.

Feel free to contact me if you have any questions or concerns.
Thank You,

Lesa Zimmerman
Central Regional Manager
Key Curriculum Press
Lzimmerman@keypress.com
800-995-6284 x 225

Please visit our web site at www.keypress.com for the latest in Innovative Mathematics Materials.

The Texas Education Agency and The Texas Higher Education Coordinating Board Geometry Module

Table of Contents

Introduction i
Acknowledgements iv
Table of Contents vii
Materials List
Comprehensive Materials List X
Required Materials by Activity xii
Suggested Timeline xvi
Unit 1 Transformations
Terms and Definitions 1-1
What is a Translation? 1-6
Reflections 1-14
Theoretical Framework: The van Hiele Model of Geometric Thought 1-23
Rotations 1-40
Composite Transformations 1-53
Tessellations 1-60
Do You See What I See? 1-65
References and Additional Resources 1-74
Unit 2 Triangles
Equilateral Triangles 2-1
Two Congruent Angles 2-7
Scalene Triangles 2-14
The Meeting Place 2-21
References and Additional Resources 2-34
Unit 3 Quadrilaterals
Isosceles Right Triangle Reflections 3-1
Scalene Right Triangle Reflections 3-7
Scalene Acute/Obtuse Triangle Reflections 3-13
Rotate a Triangle 3-19
Truncate a Triangle's Vertex 3-27
Vesica Pisces 3-40
Exploring Prisms 3-44
References and Additional Resources 3-54
Unit 4 Informal Logic/Deductive Reasoning
Informal Logic 4-1
Inductive Triangle Congruence 4-7
Deductive Triangle Congruence 4-15
Quadrilateral Proofs 4-24
Alternate Definitions of Quadrilaterals 4-32
Circle Proofs 4-38
References and Additional Resources 4-46
Unit 5 Area
What is Area? 5-1
Investigating Area Formulas 5-6
Area of Trapezoids 5-13
Area of Circles 5-18
Applying Area Formulas 5-27
What is Surface Area? 5-34
What is Volume? 5-41
Net Perspective 5-46
Area Proofs 5-53
References and Additional References 5-59
Unit 6 Pythagoras
Sides of Squares 6-1
Squares on the Sides of Acute or Obtuse Triangles 6-13
Applying Pythagoras, Part I 6-17
Pythagorean Triples 6-22
Special Right Triangles 6-34
Distance Formula 6-39
Applying Pythagoras, Part II 6-41
References and Additional Resources 6-52
Unit 7 Polygons and Circles
Diagonals of a Polygon 7-1
Interior and Exterior Angles of a Polygon 7-7
Polygons in Circles 7-22
Angles Associated with a Circle 7-29
Parts of a Circle 7-47
References and Additional Resources 7-57
Unit 8 Similarity and Trigonometry
Magnification Ratio 8-1
What Do You Mean? 8-15
Dilations 8-21
Similarity and the Golden Ratio 8-27
Trigonometry 8-44
Exploring Pyramids and Cones 8-64
References and Additional Resources 8-74
Unit 9 Non-Euclidean Geometries
When Is the Sum of the Measures of the Angles of a Triangle Equal to 180° ? 9-1
Euclid's First Five Postulates in Euclidean Space 9-6
Curvature in Different Geometries 9-9
Euclid's First Five Postulates in Elliptic Space 9-14
Euclid's First Five Postulates in Hyperbolic Space 9-22
Visualizing Three Different Geometries 9-33
References and Additional Resources 9-38
The Geometer's Sketchpad Activities
Unit 1: Meet The Geometer's Sketchpad GS-1
Unit 2: Transformations GS-14
Unit 3: Triangles and Quadrilaterals GS-19
Unit 4: Area and Perimeter GS-29
Unit 5: Pythagorean Theorem GS-33
Unit 6: Polygons GS-37
Unit 7: Fractals GS-40
References and Additional Resources GS-47
Sample Assessment and Evaluation Documents
Geometry Module Subject Matter Pre-/Post-Test E-1
Geometry Module Subject Matter Pre-/Post-Test Solutions E-7
Classroom Observation Protocol E-15
Mentoring Strategies and Plan
Overview M-1
Timeline M-4
Observation Protocol M-6
Observation Record M-12
Observation Checklist M-13
Self-Report M-16
References and Additional Resources M-18
Competencies and Objectives
Texas Examination of Educator Standards Teacher Competenciesfor Mathematics (8-12)C-1
Texas Essential Knowledge and Skills for Geometry C-13
Appendix
Centimeter Grid Paper A-1
Geoboard Dot Paper A-2
Equilateral Triangle Paper A-3

Comprehensive materials list

Consumables

easel paper (several sheets per group of 4)
colored markers
patty paper (several pieces per participant)
graph paper
colored pencils (1 package of assorted colors per group of 4)
centimeter grid paper (several sheets per participant)
small colored dot (1 for demonstration)
transparency sheet (several sheets per group of 4 and 1 for demonstration)
overhead projector pens (1 package of 4 colors per group of 4)
unlined 8.5 in . by 11 in . paper (several sheets per person)
3 in. by 5 in. index cards ($1 \frac{1}{2}$ card per participant)
11 in . by 17 in . paper (1 per participant)
masking tape (1 roll per group of 4)
cardstock
floral wire (several pieces per participant)
modeling clay
one-inch easel grid paper (1 sheet per group of 4)
spaghetti
clear tape (1 roll per group of 4)
glue (1 bottle or stick per table)
cups (preferably large plastic cups)
geoboard dot paper (several sheets per participant-provided in the Appendix)
3 in. square adhesive notes (2 of different colors for each participant)
paper cone shaped drinking cups
plastic rice
string (1 spool per group of 4)
equilateral triangle paper with side length at least one inch (several sheets per participant provided in the Appendix)

Non-consumables

selection of geometry reference books or textbooks
centimeter ruler (1 per participant)
protractor (1 per participant)
linking cubes (several per participant)
small object such as a color tile
plastic mirror (1 per participant)
compass (1 per participant)
graphing calculator (1 per participant)
scissors (1 pair per participant)
straightedge (1 per participant)
centimeter cubes
geoboard (1 per participant)
centimeter grid transparency (1 for demonstration)
flexible protractor (1 per participant)
globe, beach ball, or Lénárt sphere (1 per group of 4)
transparencies "Constructing a Polygon's Exterior Angles" and "Determining the Sum of a Polygon's Exterior Angles"
wire-frame constructions from Unit 2: Exploring Prisms

Technology

PowerPoint presentation: The van Hiele Model of Geometric Thought (or transparencies of Power Point slides)
Flash animation video 3-D.html
The Geometer's Sketchpad with sketches: Dilation Investigation, Mona Lisa, Golden Construction, Spiral, Trigonometry Ratios, Trigonometry Tracers
Computer lab and/or computer with projector
NonEuclid (available at http://cs.unm.edu/~joel/NonEuclid/NonEuclid.html)

Required Materials by Activity

Unit 1 - Transformations	
Activity Name Materials	
Terms and Definitions	a selection of geometry reference books or textbooks, easel paper, colored markers
What is a Translation?	easel paper, centimeter ruler, colored markers
Reflections	easel paper, centimeter ruler, colored markers, patty paper, graph paper
Theoretical Framework: The van Hiele Model of Geometric Thought	PowerPoint presentation: The van Hiele Model of Geometric Thought or transparencies of PowerPoint slides
Rotations	centimeter ruler, patty paper, protractor, colored pencils, centimeter grid paper, small colored dot, transparency sheets (1 per group of 4), two overhead pens of different colors (for each group)
Composite Transformations	protractor, centimeter ruler, transparency sheets (1 per group of 4), overhead projector pens in at least two different colors
Tessellations	centimeter ruler, patty paper, protractor, colored pencils, unlined 8.5 in. by 11 in. paper, 3 in. by 5
in. index card cut in half, 11 in. by 17 in. sheet of	
paper, colored markers, masking tape, easel paper	

Unit 2 - Triangles	
Activity Name	Materials
Equilateral Triangles	patty paper, straightedge, compass, easel paper, colored markers
Two Congruent Angles	patty paper, straightedge, protractor, compass, easel paper, colored markers
Scalene Triangles	patty paper, centimeter ruler, compass, protractor
The Meeting Place	patty paper, centimeter ruler, compass, calculator

Unit 3 Quadrilaterals	
Activity Name	Materials
Isosceles Right Triangle Reflections	colored pencils, easel paper, colored markers, centimeter ruler, transparency
Scalene Right Triangle Reflections	colored pencils, easel paper, graph paper, colored markers, centimeter ruler

Scalene Acute/Obtuse Triangle Reflections	colored pencils, easel paper, colored markers, centimeter ruler
Rotate a Triangle	easel paper, graph paper, colored markers, patty paper, centimeter ruler
Truncate a Triangle's Vertex	easel paper, graph paper, colored markers, centimeter ruler
Vesica Pisces	compass, easel paper, colored markers, centimeter ruler
Exploring Prisms	cardstock, scissors, floral wire, modeling clay, one-inch grid easel paper, Flash animation video 3-D.html, computer lab and/or computer with projector

Unit 4 - Informal Logic/Deductive Reasoning	
Activity Name	Materials
Informal Logic	easel paper, colored markers
Inductive Triangle Congruence	unlined 8.5 in. by 11 in. paper, compass, centimeter ruler, protractor, spaghetti, scissors
Deductive Triangle Congruence	
Quadrilateral Proofs	easel paper, colored markers
Alternate Definitions	easel paper, colored markers
Circle Proofs	

Unit 5 - Area	
Activity Name	Materials
What Is Area?	3in. by 5 in. index cards, patty paper, straightedge
Investigating Area Formulas	transparency sheets, colored pencils, glue or clear tape, patty paper, scissors
Area of Trapezoids	patty paper, scissors
Area of Circles	cups (preferably large plastic cups), glue or clear tape, graphing calculator, colored markers, patty paper, scissors
Applying Area Formulas	graphing calculator
What Is Surface Area?	centimeter grid paper, linking cubes, scissors, straightedge, tape
What Is Volume?	centimeter cubes, straightedge, centimeter grid paper, scissors, tape
Net Perspective	paper, scissors, tape, rulers, centimeter grid paper (optional), centimeter cubes
Area Proofs	colored markers, easel paper

Unit 6 - Pythagoras	
Activity Name	Materials
Sides of Squares	centimeter grid paper
Squares on the Sides of Acute or Obtuse Triangles	centimeter grid paper, centimeter ruler
Applying Pythagoras, Part I	graphing calculator
Pythagorean Triples	transparencies of the tables for the activity, calculator
Special Right Triangles	geoboard or geoboard dot paper (provided in the appendix), unlined 8.5 in. x 11 in. paper
Distance Formula	centimeter grid paper, centimeter grid transparency, 3 in. square adhesive notes in two colors (one of each color per participant)
Applying Pythagoras, Part II	graphing calculator

Unit 7	
Activity Name	Materials
Diagonals of a Polygon	straightedge, graphing calculator
Interior and Exterior Angles of a Polygon	graphing calculator, straightedge, unlined 8.5 in. by 11 in. paper, scissors, tape, transparencies "Constructing a Polygon's Exterior Angles" and "Determining the Sum of a Polygon's Exterior Angles"
Polygons in Circles	graphing calculator, centimeter ruler
Angles Associated with a Circle	protractor, centimeter ruler
Parts of a Circle	compass, centimeter ruler, graphing calculator, easel paper, colored markers

Unit 8 - Similarity	
Activity Name	Materials
Magnification Ratio	graphing calculator, compass, centimeter grid paper, protractor or patty paper, straightedge
What Do You Mean?	compass, centimeter grid paper, patty paper, centimeter ruler
Dilations	compass, The Geometer's Sketchpad, The Geometer's Sketchpad Sketch: Dilation Investigation, centimeter grid paper, straightedge

Similarity and the Golden Ratio	compass, The Geometer's Sketchpad, The Geometer's Sketchpad Sketches: Mona Lisa, Golden Construction, Spiral, graphing calculator, centimeter grid paper, patty paper, straightedge
Trigonometry	cardstock, compass, The Geometer's Sketchpad, The Geometer's Sketchpad Sketches: Trigonometry Ratios, Trigonometry Tracers, graphing calculator, centimeter grid paper, patty paper, protractor, scissors, straightedge
Exploring Pyramids and Cones	wire-frame constructions from Unit 2: Exploring Prisms, centimeter ruler, scissors, protractor, patty paper (optional), compass (optional), paper cone- shaped drinking cups, plastic rice, cardstock

Unit 9 - Non-Euclidean Geometries	
Activity Name	Materials
When is the Sum of the Measures of the Angles of a Triangle Equal to 180° ?	straightedge, compass, patty paper, colored pencils, transparency sheet, scissors, overhead projector pens
Euclid's First Five Postulates in Euclidean Space	straightedge, protractor
Curvature in Different Geometries	flexible protractor, string, overhead projector pens, globe, beach ball, or Lénárt sphere
Euclid's First Five Postulates in Elliptic Space	compass, straightedge, colored pencils, computer lab and/or computer with projector, NonEuclid (available at http://cs.unm.edu/~joel/NonEuclid/NonEuclid.html)
Euclid's First Five Postulates in Hyperbolic Space	Equilateral triangle paper with side length of at least one inch (several sheets per participant- provided in the Appendix), scissors, clear tape
Visualizing Three Different Geometries	

The Texas Education Agency and the Texas Higher Education Coordinating Board Geometry Module Suggested Institute Timeline

This suggested timeline assumes $\mathbf{1 0}$ days of instruction with $\mathbf{6}$ hours of instruction per day.

Day 1
Hour 1 Welcome and Pre-Test
Hours 2-5 Unit 1: Introduction and Transformations
Hour 6 The Geometer's Sketchpad Unit 1: Introduction to the Program
Day 2
Hours 1-2 Unit 1: Introduction and Transformations (cont.)
Hours 3-5 Unit 2: Triangles
Hour 6 The Geometer's Sketchpad Unit 2: Transformations
Day 3
Hours 1-2 Unit 2: Triangles (cont.)
Hours 3-6 Unit 3: Quadrilaterals
Day 4
Hours 1-4 Unit 3: Quadrilaterals (cont.)
Hours 5-6 The Geometer's Sketchpad Unit 3: Triangles and Quadrilaterals
Day 5
Hours 1-5 Unit 4: Reasoning
Hour 6 Unit 5: Area
Day 6
Hours 1-5 Unit 5: Area (cont.)
Hour 6 The Geometer's Sketchpad Unit 4: Perimeter and Area
Day 7
Hours 1-5 Unit 6: Pythagoras
Hour 6 The Geometer's Sketchpad Unit 5: Pythagoras
Day 8
Hours 1-5 Unit 7: Polygons and Circles
Hour 6 The Geometer's Sketchpad Unit 6: Polygons and Circles
Day 9
Hours 1-6 Unit 8: Similar Figures and Trigonometry (The Geometer's Sketchpad embedded)

Day 10
Hours 1-5 Unit 9: Non-Euclidean Geometries (NonEuclid embedded)
Hour 6 Post-Test and Closing

