
Chapter 1

Group Fundamentals

1.1 Groups and Subgroups

1.1.1 Definition

A group is a nonempty set G on which there is defined a binary operation (a, b) → ab
satisfying the following properties.

Closure: If a and b belong to G, then ab is also in G;

Associativity : a(bc) = (ab)c for all a, b, c ∈ G;

Identity : There is an element 1 ∈ G such that a1 = 1a = a for all a in G;

Inverse: If a is in G, then there is an element a−1 in G such that aa−1 = a−1a = 1.

A group G is abelian if the binary operation is commutative, i.e., ab = ba for all a, b
in G. In this case the binary operation is often written additively ((a, b) → a + b), with
the identity written as 0 rather than 1.

There are some very familiar examples of abelian groups under addition, namely the
integers Z, the rationals Q, the real numbers R, the complex numers C, and the integers
Zm modulo m. Nonabelian groups will begin to appear in the next section.

The associative law generalizes to products of any finite number of elements, for exam-
ple, (ab)(cde) = a(bcd)e. A formal proof can be given by induction. If two people A and
B form a1 · · · an in different ways, the last multiplication performed by A might look like
(a1 · · · ai)(ai+1 · · · an), and the last multiplication by B might be (a1 · · · aj)(aj+1 · · · an).
But if (without loss of generality) i < j, then (induction hypothesis)

(a1 · · · aj) = (a1 · · · ai)(ai+1 · · · aj)

and

(ai+1 · · · an) = (ai+1 · · · aj)(aj+1 · · · an).

By the n = 3 case, i.e., the associative law as stated in the definition of a group, the
products computed by A and B are the same.
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The identity is unique (1′ = 1′1 = 1), as is the inverse of any given element (if b and b′

are inverses of a, then b = 1b = (b′a)b = b′(ab) = b′1 = b′). Exactly the same argument
shows that if b is a right inverse, and b′ a left inverse, of a, then b = b′.

1.1.2 Definitions and Comments

A subgroup H of a group G is a nonempty subset of G that forms a group under the
binary operation of G. Equivalently, H is a nonempty subset of G such that if a and b
belong to H, so does ab−1. (Note that 1 = aa−1 ∈ H; also, ab = a((b−1)−1) ∈ H.)

If A is any subset of a group G, the subgroup generated by A is the smallest subgroup
containing A, often denoted by 〈A〉. Formally, 〈A〉 is the intersection of all subgroups
containing A. More explicitly, 〈A〉 consists of all finite products a1 · · · an, n = 1, 2, . . . ,
where for each i, either ai or a−1

i belongs to A. To see this, note that all such products
belong to any subgroup containing A, and the collection of all such products forms a
subgroup. In checking that the inverse of an element of 〈A〉 also belongs to 〈A〉, we use
the fact that

(a1 · · · an)−1 = a−1
n · · · a−1

1

which is verified directly: (a1 · · · an)(a−1
n · · · a−1

1 ) = 1.

1.1.3 Definitions and Comments

The groups G1 and G2 are said to be isomorphic if there is a bijection f : G1 → G2 that
preserves the group operation, in other words, f(ab) = f(a)f(b). Isomorphic groups are
essentially the same; they differ only notationally. Here is a simple example. A group G
is cyclic if G is generated by a single element: G = 〈a〉. A finite cyclic group generated
by a is necessarily abelian, and can be written as {1, a, a2, . . . , an−1} where an = 1, or in
additive notation, {0, a, 2a, . . . , (n − 1)a}, with na = 0. Thus a finite cyclic group with
n elements is isomorphic to the additive group Zn of integers modulo n. Similarly, if G
is an infinite cyclic group generated by a, then G must be abelian and can be written as
{1, a±1, a±2, . . . }, or in additive notation as {0,±a,±2a, . . . }. In this case, G is isomorphic
to the additive group Z of all integers.

The order of an element a in a group G (denoted |a|) is the least positive integer n such
that an = 1; if no such integer exists, the order of a is infinite. Thus if |a| = n, then the
cyclic subgroup 〈a〉 generated by a has exactly n elements, and ak = 1 iff k is a multiple
of n. (Concrete examples are more illuminating than formal proofs here. Start with 0 in
the integers modulo 4, and continually add 1; the result is 0, 1, 2, 3, 0, 1, 2, 3, 0, 1, 2, 3, . . . .)

The order of the group G, denoted by |G|, is simply the number of elements in G.

1.1.4 Proposition

If G is a finite cyclic group of order n, then G has exactly one (necessarily cyclic) subgroup
of order n/d for each positive divisor d of n, and G has no other subgroups. If G is an infi-
nite cyclic group, the (necessarily cyclic) subgroups of G are of the form {1, b±1, b±2, . . . },
where b is an arbitrary element of G, or, in additive notation, {0,±b,±2b, . . . }.
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Proof. Again, an informal argument is helpful. Suppose that H is a subgroup of Z20 (the
integers with addition modulo 20). If the smallest positive integer in H is 6 (a non-divisor
of 20) then H contains 6, 12, 18, 4 (oops, a contradiction, 6 is supposed to be the smallest
positive integer). On the other hand, if the smallest positive integer in H is 4, then H =
{4,8,12,16,0}. Similarly, if the smallest positive integer in a subgroup H of the additive
group of integers Z is 5, then H = {0,±5,±10,±15,±20, . . . }. ♣

If G = {1, a, . . . , an−1} is a cyclic group of order n, when will an element ar also have
order n? To discover the answer, let’s work in Z12. Does 8 have order 12? We compute
8, 16, 24 (= 0), so the order of 8 is 3. But if we try 7, we get 7, 14, 21, . . . , 77, 84 = 7× 12,
so 7 does have order 12. The point is that the least common multiple of 7 and 12 is
simply the product, while the lcm of 8 and 12 is smaller than the product. Equivalently,
the greatest common divisor of 7 and 12 is 1, while the gcd of 8 and 12 is 4 > 1. We have
the following result.

1.1.5 Proposition

If G is a cyclic group of order n generated by a, the following conditions are equivalent:

(a) |ar| = n.

(b) r and n are relatively prime.

(c) r is a unit mod n, in other words, r has an inverse mod n (an integer s such that
rs ≡ 1 mod n).

Furthermore, the set Un of units mod n forms a group under multiplication. The order
of this group is ϕ(n) = the number of positive integers less than or equal to n that are
relatively prime to n; ϕ is the familiar Euler ϕ function.

Proof. The equivalence of (a) and (b) follows from the discussion before the statement
of the proposition, and the equivalence of (b) and (c) is handled by a similar argument.
For example, since there are 12 distinct multiples of 7 mod 12, one of them must be 1;
specifically, 7 × 7 ≡ 1 mod 12. But since 8 × 3 is 0 mod 12, no multiple of 8 can be
1 mod 12. (If 8x ≡ 1, multiply by 3 to reach a contradiction.) Finally, Un is a group
under multiplication because the product of two integers relatively prime to n is also
relatively prime to n. ♣

Problems For Section 1.1

1. A semigroup is a nonempty set with a binary operation satisfying closure and asso-
ciativity (we drop the identity and inverse properties from the definition of a group).
A monoid is a semigroup with identity (so that only the inverse property is dropped).
Give an example of a monoid that is not a group, and an example of a semigroup
that is not a monoid.

2. In Z6, the group of integers modulo 6, find the order of each element.

3. List all subgroups of Z6.
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4. Let S be the set of all n by n matrices with real entries. Does S form a group under
matrix addition?

5. Let S∗ be the set of all nonzero n by n matrices with real entries. Does S∗ form a
group under matrix multiplication?

6. If H is a subgroup of the integers Z and H �= {0}, what does H look like?

7. Give an example of an infinite group that has a nontrivial finite subgroup (trivial
means consisting of the identity alone).

8. Let a and b belong to the group G. If ab = ba and |a| = m, |b| = n, where m and n
are relatively prime, show that |ab| = mn and that 〈a〉 ∩ 〈b〉 = {1}.

9. If G is a finite abelian group, show that G has an element g such that |g| is the least
common multiple of {|a| : a ∈ G}.

10. Show that a group G cannot be the union of two proper subgroups, in other words, if
G = H ∪K where H and K are subgroups of G, then H = G or K = G. Equivalently,
if H and K are subgroups of a group G, then H ∪ K cannot be a subgroup unless
H ⊆ K or K ⊆ H.

11. In an arbitrary group, let a have finite order n, and let k be a positive integer. If
(n, k) is the greatest common divisor of n and k, and [n, k] the least common multiple,
show that the order of ak is n/(n, k) = [n, k]/k.

12. Suppose that the prime factorization of the positive integer n is

n = pe1
1 pe2

2 · · · per
r

and let Ai be the set of all positive integers m ∈ {1, 2, . . . , n} such that pi divides m.
Show that if |S| is the number of elements in the set S, then

|Ai| =
n

pi
,

|Ai ∩Aj | =
n

pipj
for i �= j,

|Ai ∩Aj ∩Ak| =
n

pipjpk
for i, j, k distinct,

and so on.

13. Continuing Problem 12, show that the number of positive integers less than or equal
to n that are relatively prime to n is

ϕ(n) = n(1− 1
p1

)(1− 1
p2

) · · · (1− 1
pr

).

14. Give an example of a finite group G (of order at least 3) with the property that the
only subgroups of G are {1} and G itself.

15. Does an infinite group with the property of Problem 14 exist?
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1.2 Permutation Groups

1.2.1 Definition

A permutation of a set S is a bijection on S, that is, a function π : S → S that is one-
to-one and onto. (If S is finite, then π is one-to-one if and only if it is onto.) If S is not
too large, it is feasible to describe a permutation by listing the elements x ∈ S and the
corresponding values π(x). For example, if S = {1, 2, 3, 4, 5}, then[

1 2 3 4 5
3 5 4 1 2

]

is the permutation such that π(1) = 3, π(2) = 5, π(3) = 4, π(4) = 1, π(5) = 2. If we
start with any element x ∈ S and apply π repeatedly to obtain π(x), π(π(x)), π(π(π(x))),
and so on, eventually we must return to x, and there are no repetitions along the way
because π is one-to-one. For the above example, we obtain 1 → 3 → 4 → 1, 2 → 5 → 2.
We express this result by writing

π = (1, 3, 4)(2, 5)

where the cycle (1, 3, 4) is the permutation of S that maps 1 to 3, 3 to 4 and 4 to 1,
leaving the remaining elements 2 and 5 fixed. Similarly, (2, 5) maps 2 to 5, 5 to 2, 1 to 1,
3 to 3 and 4 to 4. The product of (1, 3, 4) and (2, 5) is interpreted as a composition, with
the right factor (2, 5) applied first, as with composition of functions. In this case, the
cycles are disjoint, so it makes no difference which mapping is applied first.

The above analysis illustrates the fact that any permutation can be expressed as a
product of disjoint cycles, and the cycle decomposition is unique.

1.2.2 Definitions and Comments

A permutation π is said to be even if its cycle decomposition contains an even number
of even cycles (that is, cycles of even length); otherwise π is odd. A cycle can be de-
composed further into a product of (not necessarily disjoint) two-element cycles, called
transpositions. For example,

(1, 2, 3, 4, 5) = (1, 5)(1, 4)(1, 3)(1, 2)

where the order of application of the mappings is from right to left.
Multiplication by a transposition changes the parity of a permutation (from even to

odd, or vice versa). For example,

(2, 4)(1, 2, 3, 4, 5) = (2, 3)(1, 4, 5)
(2, 6)(1, 2, 3, 4, 5) = (1, 6, 2, 3, 4, 5);

(1, 2, 3, 4, 5) has no cycles of even length, so is even; (2, 3)(1, 4, 5) and (1, 6, 2, 3, 4, 5) each
have one cycle of even length, so are odd.

Since a cycle of even length can be expressed as the product of an odd number of
transpositions, we can build an even permutation using an even number of transpositions,
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and an odd permutation requires an odd number of transpositions. A decomposition into
transpositions is not unique; for example, (1, 2, 3, 4, 5) = (1, 4)(1, 5)(1, 4)(1, 3)(1, 2)(3, 5),
but as mentioned above, the cycle decomposition is unique. Since multiplication by a
transposition changes the parity, it follows that if a permutation is expressed in two
different ways as a product of transpositions, the number of transpositions will agree in
parity (both even or both odd).

Consequently, the product of two even permutations is even; the product of two odd
permutations is even; and the product of an even and an odd permutation is odd. To
summarize very compactly, define the sign of the permutation π as

sgn(π) =

{
+1 if π is even
−1 if π is odd

Then for arbitrary permutations π1 and π2 we have

sgn(π1π2) = sgn(π1) sgn(π2).

1.2.3 Definitions and Comments

There are several permutation groups that are of major interest. The set Sn of all per-
mutations of {1, 2, . . . , n} is called the symmetric group on n letters, and its subgroup An

of all even permutations of {1, 2, . . . , n} is called the alternating group on n letters. (The
group operation is composition of functions.) Since there are as many even permutations
as odd ones (any transposition, when applied to the members of Sn, produces a one-to-one
correspondence between even and odd permutations), it follows that An is half the size
of Sn. Denoting the size of the set S by |S|, we have

|Sn| = n!, |An| = 1
2n!

We now define and discuss informally D2n, the dihedral group of order 2n. Consider
a regular polygon with center O and vertices V1, V2, . . . , Vn, arranged so that as we move
counterclockwise around the figure, we encounter V1, V2, . . . in turn. To eliminate some of
the abstraction, let’s work with a regular pentagon with vertices A, B, C, D, E, as shown
in Figure 1.2.1.

C
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Figure 1.2.1

The group D10 consists of the symmetries of the pentagon, i.e., those permutations
that can be realized via a rigid motion (a combination of rotations and reflections). All
symmetries can be generated by two basic operations R and F :
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R is counterclockwise rotation by 360
n = 360

5 = 72 degrees,
F (“flip”) is reflection about the line joining the center O to the first vertex (A in this

case).
The group D2n contains 2n elements, namely, I (the identity), R, R2, . . . , Rn−1, F ,

RF , R2F , . . . , Rn−1F (RF means F followed by R). For example, in the case of the
pentagon, F = (B, E)(C, D) and R = (A, B, C, D, E), so RF = (A, B)(C, E), which is
the reflection about the line joining O to D; note that RF can also be expressed as FR−1.
In visualizing the effect of a permutation such as F , interpret F ’s taking B to E as vertex
B moving to where vertex E was previously.

D2n will contain exactly n rotations I, R, . . . , Rn−1 and n reflections F, RF, . . . , Rn−1F .
If n is odd, each reflection is determined by a line joining the center to a vertex (and pass-
ing through the midpoint of the opposite side). If n is even, half the reflections are
determined by a line passing through two vertices (as well as the center), and the other
half by a line passing through the midpoints of two opposite sides (as well as the center).

1.2.4 An Abstract Characterization of the Dihedral Group

Consider the free group with generators R and F , in other words all finite sequences whose
components are R, R−1, F and F−1. The group operation is concatenation, subject to
the constraint that if a symbol and its inverse occur consecutively, they may be can-
celled. For example, RFFFF−1RFR−1RFF is identified with RFFRFFF , also written
as RF 2RF 3. If we add further restrictions (so the group is no longer “free”), we can
obtain D2n. Specifically, D2n is the group defined by generators R and F , subject to the
relations

Rn = I, F 2 = I, RF = FR−1.

The relations guarantee that there are only 2n distinct group elements I, R, . . . , Rn−1 and
F, RF, . . . , Rn−1F . For example, with n = 5 we have

F 2R2F = FFRRF = FFRFR−1 = FFFR−1R−1 = FR−2 = FR3;

also, R cannot be the same as R2F , since this would imply that I = RF , or F = R−1 =
R4, and there is no way to get this using the relations. Since the product of two group
elements is completely determined by the defining relations, it follows that there cannot
be more than one group with the given generators and relations. (This statement is true
“up to isomorphism”; it is always possible to create lots of isomorphic copies of any given
group.) The symmetries of the regular n-gon provide a concrete realization.

Later we will look at more systematic methods of analyzing groups defined by gener-
ators and relations.

Problems For Section 1.2

1. Find the cycle decomposition of the permutation[
1 2 3 4 5 6
4 6 3 1 2 5

]

and determine whether the permutation is even or odd.
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2. Consider the dihedral group D8 as a group of permutations of the square. Assume that
as we move counterclockwise around the square, we encounter the vertices A, B, C, D
in turn. List all the elements of D8.

3. In S5, how many 5-cycles are there; that is, how many permutations are there with
the same cycle structure as (1, 2, 3, 4, 5)?

4. In S5, how many permutations are products of two disjoint transpositions, such as
(1, 2)(3, 4)?

5. Show that if n ≥ 3, then Sn is not abelian.

6. Show that the products of two disjoint transpositions in S4, together with the identity,
form an abelian subgroup V of S4. Describe the multiplication table of V (known as
the four group).

7. Show that the cycle structure of the inverse of a permutation π coincides with that
of π. In particular, the inverse of an even permutation is even (and the inverse of an
odd permutation is odd), so that An is actually a group.

8. Find the number of 3-cycles, i.e., permutations consisting of exactly one cycle of
length 3, in S4.

9. Suppose H is a subgroup of A4 with the property that for every permutation π in A4,
π2 belongs to H. Show that H contains all 3-cycles in A4. (Since 3-cycles are even,
H in fact contains all 3-cycles in S4.)

10. Consider the permutation

π =
[
1 2 3 4 5
2 4 5 1 3

]
.

Count the number of inversions of π, that is, the number of pairs of integers that are
out of their natural order in the second row of π. For example, 2 and 5 are in natural
order, but 4 and 3 are not. Compare your result with the parity of π.

11. Show that the parity of any permutation π is the same as the parity of the number
of inversions of π.

1.3 Cosets, Normal Subgroups, and Homomorphisms

1.3.1 Definitions and Comments

Let H be a subgroup of the group G. If g ∈ G, the right coset of H generated by g is

Hg = {hg : h ∈ H};

similarly, the left coset of H generated by g is

gH = {gh : h ∈ H}.

It follows (Problem 1) that if a, b ∈ G, then

Ha = Hb if and only if ab−1 ∈ H
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and

aH = bH if and only if a−1b ∈ H.

Thus if we define a and b to be equivalent iff ab−1 ∈ H, we have an equivalence relation
(Problem 2), and (Problem 3) the equivalence class of a is

{b : ab−1 ∈ H} = Ha.

Therefore the right cosets partition G (similarly for the left cosets). Since h → ha,
h ∈ H, is a one-to-one correspondence, each coset has |H| elements. There are as many
right cosets as left cosets, since the map aH → Ha−1 is a one-to-one correspondence
(Problem 4). If [G : H], the index of H in G, denotes the number of right (or left) cosets,
we have the following basic result.

1.3.2 Lagrange’s Theorem

If H is a subgroup of G, then |G| = |H|[G : H]. In particular, if G is finite then |H|
divides |G|, and

|G|
|H| = [G : H].

Proof. There are [G : H] cosets, each with |H| members. ♣

1.3.3 Corollary

Let G be a finite group.
(i) If a ∈ G then |a| divides |G|; in particular, a|G| = 1. Thus |G| is a multiple of the

order of each of its elements, so if we define the exponent of G to be the least common
multiple of {|a| : a ∈ G}, then |G| is a multiple of the exponent.

(ii) If G has prime order, then G is cyclic.

Proof. If the element a ∈ G has order n, then H = {1, a, a2, . . . , an−1} is a cyclic subgroup
of G with |H| = n. By Lagrange’s theorem, n divides |G|, proving (i). If |G| is prime
then we may take a �= 1, and consequently n = |G|. Thus H is a subgroup with as many
elements as G, so in fact H and G coincide, proving (ii). ♣

Here is another corollary.

1.3.4 Euler’s Theorem

If a and n are relatively prime positive integers, with n ≥ 2, then aϕ(n) ≡ 1 mod n. A
special case is Fermat’s Little Theorem: If p is a prime and a is a positive integer not
divisible by p, then ap−1 ≡ 1 mod p.

Proof. The group of units mod n has order ϕ(n), and the result follows from (1.3.3). ♣

We will often use the notation H ≤ G to indicate that H is a subgroup of G. If H is
a proper subgroup, i.e., H ≤ G but H �= G, we write H < G.
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1.3.5 The Index is Multiplicative

If K ≤ H ≤ G, then [G : K] = [G : H][H : K].

Proof. Choose representatives ai from each left coset of H in G, and representatives bj

from each left coset of K in H. If cK is any left coset of K in G, then c ∈ aiH for some
unique i, and if c = aih, h ∈ H, then h ∈ bjK for some unique j, so that c belongs to
aibjK. The map (ai, bj)→ aibjK is therefore onto, and it is one-to-one by the uniqueness
of i and j. We therefore have a bijection between a set of size [G : H][H : K] and a set
of size [G : K], as asserted. ♣

Now suppose that H and K are subgroups of G, and define HK to be the set of all
products hk, h ∈ H, k ∈ K. Note that HK need not be a group, since h1k1h2k2 is not
necessarily equal to h1h2k1k2. If G is abelian, then HK will be a group, and we have the
following useful generalization of this observation.

1.3.6 Proposition

If H ≤ G and K ≤ G, then HK ≤ G if and only if HK = KH. In this case, HK is the
subgroup generated by H ∪K.

Proof. If HK is a subgroup, then (HK)−1, the collection of all inverses of elements of HK,
must coincide with HK. But (HK)−1 = K−1H−1 = KH. Conversely, if HK = KH,
then the inverse of an element in HK also belongs to HK, because (HK)−1 = K−1H−1 =
KH = HK. The product of two elements in HK belongs to HK, because (HK)(HK) =
HKHK = HHKK = HK. The last statement follows from the observation that any
subgroup containing H and K must contain HK. ♣

The set product HK defined above suggests a multiplication operation on cosets. If
H is a subgroup of G, we can multiply aH and bH, and it is natural to hope that we get
abH. This does not always happen, but here is one possible criterion.

1.3.7 Lemma

If H ≤ G, then (aH)(bH) = abH for all a, b ∈ G iff cHc−1 = H for all c ∈ G. (Equiva-
lently, cH = Hc for all c ∈ G.

Proof. If the second condition is satisfied, then (aH)(bH) = a(Hb)H = abHH = abH.
Conversely, if the first condition holds, then cHc−1 ⊆ cHc−1H since 1 ∈ H, and
(cH)(c−1H) = cc−1H(= H) by hypothesis. Thus cHc−1 ⊆ H, which implies that
H ⊆ c−1Hc. Since this holds for all c ∈ G, we have H ⊆ cHc−1, and the result fol-
lows. ♣

Notice that we have proved that if cHc−1 ⊆ H for all c ∈ G, then in fact cHc−1 = H
for all c ∈ G.
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1.3.8 Definition

Let H be a subgroup of G. If any of the following equivalent conditions holds, we say
that H is a normal subgroup of G, or that H is normal in G:

(1) cHc−1 ⊆ H for all c ∈ G (equivalently, c−1Hc ⊆ H for all c ∈ G).

(2) cHc−1 = H for all c ∈ G (equivalently, c−1Hc = H for all c ∈ G).

(3) cH = Hc for all c ∈ G.

(4) Every left coset of H in G is also a right coset.

(5) Every right coset of H in G is also a left coset.

We have established the equivalence of (1), (2) and (3) above, and (3) immediately
implies (4). To show that (4) implies (3), suppose that cH = Hd. Then since c belongs
to both cH and Hc, i.e., to both Hd and Hc, we must have Hd = Hc because right
cosets partition G, so that any two right cosets must be either disjoint or identical. The
equivalence of (5) is proved by a symmetrical argument.

Notation: H � G indicates that H is a normal subgroup of G; if H is a proper
normal subgroup, we write H ) G.

1.3.9 Definition of the Quotient Group

If H is normal in G, we may define a group multiplication on cosets, as follows. If aH
and bH are (left) cosets, let

(aH)(bH) = abH;

by (1.3.7), (aH)(bH) is simply the set product. If a1 is another member of aH and b1

another member of bH, then a1H = aH and b1H = bH (Problem 5). Therefore the set
product of a1H and b1H is also abH. The point is that the product of two cosets does
not depend on which representatives we select.

To verify that cosets form a group under the above multiplication, we consider the
four defining requirements.

Closure: The product of two cosets is a coset.

Associativity : This follows because multiplication in G is associative.

Identity : The coset 1H = H serves as the identity.

Inverse: The inverse of aH is a−1H.

The group of cosets of a normal subgroup N of G is called the quotient group of G
by N ; it is denoted by G/N .

Since the identity in G/N is 1N = N , we have, intuitively, “set everything in N equal
to 1”.
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1.3.10 Example

Let GL(n,R) be the set of all nonsingular n by n matrices with real coefficients, and
let SL(n,R) be the subgroup formed by matrices whose determinant is 1 (GL stands for
“general linear” and SL for “special linear”). Then SL(n,R) ) GL(n, R), because if A is
a nonsingular n by n matrix and B is n by n with determinant 1, then det(ABA−1) =
detA detB detA−1 = detB = 1.

1.3.11 Definition

If f : G→ H, where G and H are groups, then f is said to be a homomorphism if for all
a, b in G, we have

f(ab) = f(a)f(b).

This idea will look familiar if G and H are abelian, in which case, using additive notation,
we write

f(a + b) = f(a) + f(b);

thus a linear transformation on a vector space is, in particular, a homomorphism on the
underlying abelian group. If f is a homomorphism from G to H, it must map the identity
of G to the identity of H, since f(a) = f(a1G) = f(a)f(1G); multiply by f(a)−1 to get
1H = f(1G). Furthermore, the inverse of f(a) is f(a−1), because

1 = f(aa−1) = f(a)f(a−1),

so that [f(a)]−1 = f(a−1).

1.3.12 The Connection Between Homomorphisms and Normal
Subgroups

If f : G→ H is a homomorphism, define the kernel of f as

ker f = {a ∈ G : f(a) = 1};

then ker f is a normal subgroup of G. For if a ∈ G and b ∈ ker f , we must show that
aba−1 belongs to ker f . But f(aba−1) = f(a)f(b)f(a−1) = f(a)(1)f(a)−1 = 1.

Conversely, every normal subgroup is the kernel of a homomorphism. To see this,
suppose that N � G, and let H be the quotient group G/N . Define the map π : G→ G/N
by π(a) = aN ; π is called the natural or canonical map. Since

π(ab) = abN = (aN)(bN) = π(a)π(b),

π is a homomorphism. The kernel of π is the set of all a ∈ G such that aN = N(= 1N),
or equivalently, a ∈ N . Thus kerπ = N .
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1.3.13 Proposition

A homomorphism f is injective if and only if its kernel K is trivial, that is, consists only
of the identity.

Proof. If f is injective and a ∈ K, then f(a) = 1 = f(1), hence a = 1. Conversely, if K is
trivial and f(a) = f(b), then f(ab−1) = f(a)f(b−1) = f(a)[f(b)]−1 = f(a)[f(a)]−1 = 1,
so ab−1 ∈ K. Thus ab−1 = 1, i.e., a = b, proving f injective. ♣

1.3.14 Some Standard Terminology

A monomorphism is an injective homomorphism

An epimorphism is a surjective homomorphism

An isomorphism is a bijective homomorphism

An endomorphism is a homomorphism of a group to itself

An automorphism is an isomorphism of a group with itself

We close the section with a result that is applied frequently.

1.3.15 Proposition

Let f : G→ H be a homomorphism.
(i) If K is a subgroup of G, then f(K) is a subgroup of H. If f is an epimorphism

and K is normal, then f(K) is also normal.
(ii) If K is a subgroup of H, then f−1(K) is a subgroup of G. If K is normal, so is

f−1(K).

Proof. (i) If f(a) and f(b) belong to f(K), so does f(a)f(b)−1, since this element coin-
cides with f(ab−1). If K is normal and c ∈ G, we have f(c)f(K)f(c)−1 = f(cKc−1) =
f(K), so if f is surjective, then f(K) is normal.

(ii) If a and b belong to f−1(K), so does ab−1, because f(ab−1) = f(a)f(b)−1, which
belongs to K. If c ∈ G and a ∈ f−1(K) then f(cac−1) = f(c)f(a)f(c)−1, so if K is
normal, we have cac−1 ∈ f−1(K), proving f−1(K) normal. ♣

Problems For Section 1.3

In Problems 1–6, H is a subgroup of the group G, and a and b are elements of G.

1. Show that Ha = Hb iff ab−1 ∈ H.

2. Show that “a ∼ b iff ab−1 ∈ H” defines an equivalence relation.

3. If we define a and b to be equivalent iff ab−1 ∈ H, show that the equivalence class
of a is Ha.

4. Show that aH → Ha−1 is a one-to-one correspondence between left and right cosets
of H.
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5. If aH is a left coset of H in G and a1 ∈ aH, show that the left coset of H generated
by a1 (i.e., a1H), is also aH.

6. If [G : H] = 2, show that H is a normal subgroup of G.

7. Let S3 be the group of all permutations of {1, 2, 3}, and take a to be permutation
(1, 2, 3), b the permutation (1, 2), and e the identity permutation. Show that the
elements of S3 are, explicitly, e, a, a2, b, ab and a2b.

8. Let H be the subgroup of S3 consisting of the identity e and the permutation b = (1, 2).
Compute the left cosets and the right cosets of H in S3.

9. Continuing Problem 8, show that H is not a normal subgroup of S3.

10. Let f be an endomorphism of the integers Z. Show that f is completely determined
by its action on 1. If f(1) = r, then f is multiplication by r; in other words, f(n) = rn
for every integer n.

11. If f is an automorphism of Z, and I is the identity function on Z, show that f is
either I or −I.

12. Since the composition of two automorphisms is an automorphism, and the inverse of
an automorphism is an automorphism, it follows that the set of automorphisms of a
group is a group under composition. In view of Problem 11, give a simple description
of the group of automorphisms of Z.

13. Let H and K be subgroups of the group G. If x, y ∈ G, define x ∼ y iff x can be
written as hyk for some h ∈ H and k ∈ K. Show that ∼ is an equivalence relation.

14. The equivalence class of x ∈ G is HxK = {hxk : h ∈ H, k ∈ K}, called a double coset
associated with the subgroups H and K. Thus the double cosets partition G. Show
that any double coset can be written as a union of right cosets of H, or equally well
as a union of left cosets of K.

1.4 The Isomorphism Theorems

Suppose that N is a normal subgroup of G, f is a homomorphism from G to H, and π is
the natural map from G to G/N , as pictured in Figure 1.4.1.

G

π

��

f �� H

G/N
f

���
�

�
�

Figure 1.4.1

We would like to find a homomorphism f : G/N → H that makes the diagram com-
mutative. Commutativity means that we get the same result by traveling directly from G
to H via f as we do by taking the roundabout route via π followed by f . This requirement
translates to f(aN) = f(a). Here is the key result for finding such an f .



1.4. THE ISOMORPHISM THEOREMS 15

1.4.1 Factor Theorem

Any homomorphism f whose kernel K contains N can be factored through G/N . In other
words, in Figure 1.4.1 there is a unique homomorphism f : G/N → H such that f ◦π = f .
Furthermore:

(i) f is an epimorphism if and only if f is an epimorphism;

(ii) f is a monomorphism if and only if K = N ;

(iii) f is an isomorphism if and only if f is an epimorphism and K = N .

Proof. If the diagram is to commute, then f(aN) must be f(a), and it follows that f , if
it exists, is unique. The definition of f that we have just given makes sense, because if
aN = bN , then a−1b ∈ N ⊆ K, so f(a−1b) = 1, and therefore f(a) = f(b). Since

f(aNbN) = f(abN) = f(ab) = f(a)f(b) = f(aN)f(bN),

f is a homomorphism. By construction, f has the same image as f , proving (i). Now the
kernel of f is

{aN : f(a) = 1} = {aN : a ∈ K} = K/N.

By (1.3.13), a homomorphism is injective, i.e., a monomorphism, if and only if its kernel
is trivial. Thus f is a monomorphism if and only if K/N consists only of the identity
element N . This means that if a is any element of K, then the coset aN coincides with
N , which forces a to belong to N . Thus f is a monomorphism if and only if K = N ,
proving (ii). Finally, (iii) follows immediately from (i) and (ii). ♣

The factor theorem yields a fundamental result.

1.4.2 First Isomorphism Theorem

If f : G → H is a homomorphism with kernel K, then the image of f is isomorphic
to G/K.

Proof. Apply the factor theorem with N = K, and note that f must be an epimorphism
of G onto its image. ♣

If we are studying a subgroup K of a group G, or perhaps the quotient group G/K,
we might try to construct a homomorphism f whose kernel is K and whose image H has
desirable properties. The first isomorphism theorem then gives G/K ∼= H (where ∼= is
our symbol for isomorphism). If we know something about H, we may get some insight
into K and G/K.

We will prove several other isomorphism theorems after the following preliminary
result.
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1.4.3 Lemma

Let H and N be subgroups of G, with N normal in G. Then:

(i) HN = NH, and therefore by (1.3.6), HN is a subgroup of G.

(ii) N is a normal subgroup of HN .

(iii) H ∩N is a normal subgroup of H.

Proof. (i) We have hN = Nh for every h ∈ G, in particular for every h ∈ H.
(ii) Since N is normal in G, it must be normal in the subgroup HN .
(iii) H ∩N is the kernel of the canonical map π : G→ G/N , restricted to H. ♣

The subgroups we are discussing are related by a “parallelogram” or “diamond”, as
Figure 1.4.2 suggests.

HN

��
��

��
��

�

��
��

��
��

�

H N

H ∩N

���������

���������

Figure 1.4.2

1.4.4 Second Isomorphism Theorem

If H and N are subgroups of G, with N normal in G, then

H/(H ∩N) ∼= HN/N.

Note that we write HN/N rather than H/N , since N need not be a subgroup of H.

Proof. Let π be the canonical epimorphism from G to G/N , and let π0 be the restriction
of π to H. Then the kernel of π0 is H∩N , so by the first isomorphism theorem, H/(H∩N)
is isomorphic to the image of π0, which is {hN : h ∈ H} = HN/N . (To justify the last
equality, note that for any n ∈ N we have hnN = hN). ♣

1.4.5 Third Isomorphism Theorem

If N and H are normal subgroups of G, with N contained in H, then

G/H ∼= (G/N)/(H/N),

a “cancellation law”.
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Proof. This will follow directly from the first isomorphism theorem if we can find an
epimorphism of G/N onto G/H with kernel H/N , and there is a natural candidate:
f(aN) = aH. To check that f is well-defined, note that if aN = bN then a−1b ∈ N ⊆ H,
so aH = bH. Since a is an arbitrary element of G, f is surjective, and by definition of
coset multiplication, f is a homomorphism. But the kernel of f is

{aN : aH = H} = {aN : a ∈ H} = H/N. ♣

Now suppose that N is a normal subgroup of G. If H is a subgroup of G containing
N , there is a natural analog of H in the quotient group G/N , namely, the subgroup H/N .
In fact we can make this correspondence very precise. Let

ψ(H) = H/N

be a map from the set of subgroups of G containing N to the set of subgroups of G/N .
We claim that ψ is a bijection. For if H1/N = H2/N then for any h1 ∈ H1, we have
h1N = h2N for some h2 ∈ H2, so that h−1

2 h1 ∈ N , which is contained in H2. Thus
H1 ⊆ H2, and by symmetry the reverse inclusion holds, so that H1 = H2 and ψ is
injective. Now if Q is a subgroup of G/N and π : G→ G/N is canonical, then

π−1(Q) = {a ∈ G : aN ∈ Q},

a subgroup of G containing N , and

ψ(π−1(Q)) = {aN : aN ∈ Q} = Q,

proving ψ surjective.
The map ψ has a number of other interesting properties, summarized in the following

result, sometimes referred to as the fourth isomorphism theorem.

1.4.6 Correspondence Theorem

If N is a normal subgroup of G, then the map ψ : H → H/N sets up a one-to-one
correspondence between subgroups of G containing N and subgroups of G/N . The inverse
of ψ is the map τ : Q → π−1(Q), where π is the canonical epimorphism of G onto G/N .
Furthermore:

(i) H1 ≤ H2 if and only if H1/N ≤ H2/N , and, in this case,

[H2 : H1] = [H2/N : H1/N ].

(ii) H is a normal subgroup of G if and only if H/N is a normal subgroup of G/N .

More generally,

(iii) H1 is a normal subgroup of H2 if and only if H1/N is a normal subgroup of H2/N ,
and in this case, H2/H1

∼= (H2/N)/H1/N).
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Proof. We have established that ψ is a bijection with inverse τ . If H1 ≤ H2, we have
H1/N ≤ H2/N immediately, and the converse follows from the above proof that ψ is
injective. To prove the last statement of (i), let η map the left coset aH1, a ∈ H2, to the
left coset (aN)(H1/N). Then η is a well-defined injective map because

aH1 = bH1 iff a−1b ∈ H1

iff (aN)−1(bN) = a−1bN ∈ H1/N

iff (aN)(H1/N) = (bN)(H1/N);

η is surjective because a ranges over all of H2.
To prove (ii), assume that H � G; then for any a ∈ G we have

(aN)(H/N)(aN)−1 = (aHa−1)/N = H/N

so that H/N � G/N . Conversely, suppose that H/N is normal in G/N . Consider the
homomorphism a → (aN)(H/N), the composition of the canonical map of G onto G/N
and the canonical map of G/N onto (G/N)/(H/N). The element a will belong to the
kernel of this map if and only if (aN)(H/N) = H/N , which happens if and only if
aN ∈ H/N , that is, aN = hN for some h ∈ H. But since N is contained in H, this
statement is equivalent to a ∈ H. Thus H is the kernel of a homomorphism, and is
therefore a normal subgroup of G.

Finally, the proof of (ii) also establishes the first part of (iii); just replace H by H1

and G by H2. The second part of (iii) follows from the third isomorphism theorem (with
the same replacement). ♣

We conclude the section with a useful technical result.

1.4.7 Proposition

If H is a subgroup of G and N is a normal subgroup of G, we know by (1.4.3) that HN ,
the subgroup generated by H ∪ N , is a subgroup of G. If H is also a normal subgroup
of G, then HN is normal in G as well. More generally, if for each i in the index set I, we
have Hi � G, then 〈Hi, i ∈ I〉, the subgroup generated by the Hi (technically, by the set
∪i∈IHi) is a normal subgroup of G.

Proof. A typical element in the subgroup generated by the Hi is a = a1a2 · · · an where ak

belongs to Hik
. If g ∈ G then

g(a1a2 · · · an)g−1 = (ga1g
−1)(ga2g

−1) · · · (gang−1)

and gakg−1 ∈ Hik
because Hik

� G. Thus gag−1 belongs to 〈Hi, i ∈ I〉. ♣

Problems For Section 1.4

1. Let Z be the integers, and nZ the set of integer multiples of n. Show that Z/nZ
is isomorphic to Zn, the additive group of integers modulo n. (This is not quite a
tautology if we view Zn concretely as the set {0, 1, . . . , n−1}, with sums and differences
reduced modulo n.)
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2. If m divides n then Zm ≤ Zn; for example, we can identify Z4 with the subgroup
{0, 3, 6, 9} of Z12. Show that Zn/Zm

∼= Zn/m.

3. Let a be an element of the group G, and let fa : G → G be “conjugation by a”, that
is, fa(x) = axa−1, x ∈ G. Show that fa is an automorphism of G.

4. An inner automorphism of G is an automorphism of the form fa (defined in Prob-
lem 3) for some a ∈ G. Show that the inner automorphisms of G form a group under
composition of functions (a subgroup of the group of all automorphisms of G).

5. Let Z(G) be the center of G, that is, the set of all x in G such that xy = yx for all y
in G. Thus Z(G) is the set of elements that commute with everything in G. Show that
Z(G) is a normal subgroup of G, and that the group of inner automorphisms of G is
isomorphic to G/Z(G).

6. If f is an automorphism of Zn, show that f is multiplication by m for some m relatively
prime to n. Conclude that the group of automorphisms of Zn can be identified with
the group of units mod n.

7. The diamond diagram associated with the second isomorphism theorem (1.4.4) illus-
trates least upper bounds and greatest lower bounds in a lattice. Verify that HN is the
smallest subgroup of G containing both H and N , and H ∩N is the largest subgroup
of G contained in both H and N .

8. Let g be an automorphism of the group G, and fa an inner automorphism, as defined
in Problems 3 and 4. Show that g ◦fa ◦g−1 is an inner automorphism. Thus the group
of inner automorphisms of G is a normal subgroup of the group of all automorphisms.

9. Identify a large class of groups for which the only inner automorphism is the identity
mapping.

1.5 Direct Products

1.5.1 External and Internal Direct Products

In this section we examine a popular construction. Starting with a given collection of
groups, we build a new group with the aid of the cartesian product. Let’s start with
two given groups H and K, and let G = H × K, the set of all ordered pairs (h, k),
h ∈ H, k ∈ K. We define multiplication on G componentwise:

(h1, k1)(h2, k2) = (h1h2, k1k2).

Since (h1h2, k1k2) belongs to G, it follows that G is closed under multiplication. The
multiplication operation is associative because the individual products on H and K are
associative. The identity element in G is (1H , 1K), and the inverse of (h, k) is (h−1, k−1).
Thus G is a group, called the external direct product of H and K.

We may regard H and K as subgroups of G. More precisely, G contains isomorphic
copies of H and K, namely

H = {(h, 1K) : h ∈ H} and K = {(1H , k) : k ∈ K}.



20 CHAPTER 1. GROUP FUNDAMENTALS

Furthermore, H and K are normal subgroups of G. (Note that (h, k)(h1, 1K)(h−1, k−1) =
(hh1h

−1, 1K), with hh1h
−1 ∈ H.) Also, from the definitions of H and K, we have

G = H K and H ∩K = {1}, where 1 = (1H , 1K).

If a group G contains normal subgroups H and K such that G = HK and H∩K = {1},
we say that G is the internal direct product of H and K.

Notice the key difference between external and internal direct products. We construct
the external direct product from the component groups H and K. On the other hand,
starting with a given group we discover subgroups H and K such that G is the inter-
nal direct product of H and K. Having said this, we must admit that in practice the
distinction tends to be blurred, because of the following result.

1.5.2 Proposition

If G is the internal direct product of H and K, then G is isomorphic to the external direct
product H ×K.

Proof. Define f : H ×K → G by f(h, k) = hk; we will show that f is an isomorphism.
First note that if h ∈ H and k ∈ K then hk = kh. (Consider hkh−1k−1, which belongs
to K since hkh−1 ∈ K, and also belongs to H since kh−1k−1 ∈ H; thus hkh−1k−1 = 1,
so hk = kh.)

(a) f is a homomorphism, since

f((h1, k1)(h2, k2)) = f(h1h2, k1k2) = h1h2k1k2 = (h1k1)(h2k2) = f(h1, k1)f(h2, k2).

(b) f is surjective, since by definition of internal direct product, G = HK.
(c) f is injective, for if f(h, k) = 1 then hk = 1, so that h = k−1.Thus h belongs

to both H and K, so by definition of internal direct product, h is the identity, and
consequently so is k. The kernel of f is therefore trivial. ♣

External and internal direct products may be defined for any number of factors. We
will restrict ourselves to a finite number of component groups, but the generalization to
arbitrary cartesian products with componentwise multiplication is straightforward.

1.5.3 Definitions and Comments

If H1, H2, . . . Hn are arbitrary groups, the external direct product of the Hi is the cartesian
product G = H1 ×H2 × · · · ×Hn, with componentwise multiplication:

(h1, h2, . . . , hn)(h′1, h
′
2, . . . h

′
n) = (h1h

′
1, h2h

′
2, . . . hnh′n);

G contains an isomorphic copy of each Hi, namely

Hi = {(1H1 , . . . , 1Hi−1 , hi, 1Hi+1 , . . . , 1Hn
) : hi ∈ Hi}.

As in the case of two factors, G = H1H2 · · ·Hn, and Hi � G for all i; furthermore, if
g ∈ G then g has a unique representation of the form

g = h1 h2 · · ·hn where hi ∈ Hi.
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Specifically, g = (h1, . . . , hn) = (h1, 1, . . . , 1) . . . (1, . . . , 1, hn). The representation is
unique because the only way to produce the i-th component hi of g is for hi to be the ith

component of the factor from Hi. If a group G contains normal subgroups H1, . . . , Hn

such that G = H1 · · ·Hn, and each g ∈ G can be uniquely represented as h1 · · ·hn with
hi ∈ Hi, i = 1, 2, . . . , n, we say that G is the internal direct product of the Hi. As in the
case of two factors, if G is the internal direct product of the Hi, then G is isomorphic
to the external direct product H1 × · · · × Hn; the isomorphism f : H1 × · · · × Hn → G
is given by f(h1, . . . , hn) = h1 · · ·hn. The next result frequently allows us to recognize
when a group is an internal direct product.

1.5.4 Proposition

Suppose that G = H1 · · ·Hn, where each Hi is a normal subgroup of G. The following
conditions are equivalent:

(1) G is the internal direct product of the Hi.

(2) Hi

⋂ ∏
j �=i Hj = {1} for i = 1, . . . , n; thus it does not matter in which order the Hi

are listed.

(3) Hi

⋂ ∏i−1
j=1 Hj = {1} for i = 1, . . . , n.

Proof. (1) implies (2): If g belongs to the product of the Hj , j �= i, then g can be written
as h1 · · ·hn where hi = 1 and hj ∈ Hj for j �= i. But if g also belongs to Hi then g can be
written as k1 · · · kn where ki = g and kj = 1 for j �= i. By uniqueness of representation in
the internal direct product, hi = ki = 1 for all i, so g = 1.

(2) implies (3): If g belongs to Hi and, in addition, g = h1 · · ·hi−1 with hj ∈ Hj , then
g = h1 · · ·hi−11Hi+1 · · · 1Hn

, hence g = 1 by (2).
(3) implies (1): If g ∈ G then since G = H1 · · ·Hn we have g = h1 · · ·hn with hi ∈ Hi.

Suppose that we have another representation g = k1 · · · kn with ki ∈ Hi. Let i be the
largest integer such that hi �= ki. If i < n we can cancel the ht(= kt), t > i, to get
h1 · · ·hi = k1 · · · ki. If i = n then h1 · · ·hi = k1 · · · ki by assumption. Now any product
of the Hi is a subgroup of G (as in (1.5.2), hihj = hjhi for i �= j, and the result follows
from (1.3.6)). Therefore

hik
−1
i ∈

i−1∏
j=1

Hj ,

and since hik
−1
i ∈ Hi, we have hik

−1
i = 1 by (3). Therefore hi = ki, which is a contra-

diction. ♣

Problems For Section 1.5

In Problems 1–5, Cn is a cyclic group of order n, for example, Cn = {1, a, . . . , an−1} with
an = 1.

1. Let C2 be a cyclic group of order 2. Describe the multiplication table of the direct
product C2 × C2. Is C2 × C2 cyclic?
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2. Show that C2 × C2 is isomorphic to the four group (Section 1.2, Problem 6).

3. Show that the direct product C2 × C3 is cyclic, in particular, it is isomorphic to C6.

4. If n and m are relatively prime, show that Cn × Cm is isomorphic to Cnm, and is
therefore cyclic.

5. If n and m are not relatively prime, show that Cn × Cm is not cyclic.

6. If p and q are distinct primes and |G| = p, |H| = q, show that the direct product G×H
is cyclic.

7. If H and K are arbitrary groups, show that H ×K ∼= K ×H.

8. If G, H and K are arbitrary groups, show that G× (H ×K) ∼= (G×H)×K. In fact,
both sides are isomorphic to G×H ×K.


