Soft Typing with Conditional Types

Alexander Aiken* and Edward L. Wimmers
IBM Almaden Research Center
650 Harry Rd., San Jose, CA 95120

{aiken,wimmers}@almaden.ibm.com

Abstract

We present a simple and powerful type inference method
for dynamically typed languages where no type information
is supplied by the user. Type inference is reduced to the
problem of solvability of a system of type inclusion con-
straints over a type language that includes function types,
constructor types, union, intersection, and recursive types,
and conditional types. Conditional types enable us to ana-
lyze control flow using type inference, thus facilitating com-
putation of accurate types. We demonstrate the power and
practicality of the method with examples and performance
results from an implementation.

1 Introduction

Most modern programming languages employ type checking
to guarantee that functions are applied only to appropriate
arguments. Languages differ in the degree to which the type
checking is static (performed at compile-time) or dynamic
(performed at run-time). Statically typedlanguages, such as
ML, require that function applications be proven type-safe
at compile-time. This is enforced by a type inference algo-
rithm that assigns types to program phrases. If the type in-
ference algorithm verifies that a program cannot “go wrong”
(i.e., is free of run-time type errors) the program is accepted;
otherwise, the program is rejected. Static type checking
eliminates the need to perform run-time type checking and
detects many programming errors at compile-time. The cost
of this efficiency and security is loss of programming flexibil-
ity, because no decidable type inference system can be both
sound and complete—some programs that cannot go wrong
must be rejected in any statically typed language.
Dynamically typed languages, such as Lisp and Scheme,
impose no type constraints on programs and, in the worst
case, perform all type-checking at run-time. This permits
maximum programming flexibility at the potential cost of
efficiency and security. However, in an implementation of
a dynamically typed language it is beneficial to perform

*Author’s current address: Computer Science Division, Uni-
versity of California at Berkeley, Berkeley, CA 94720, email:
alken@cs.berkeley.edu

TThis work was done while visiting IBM Almaden Research Center.

To appear in Proceedings of the 21st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages.

T. K. Lakshman '
Department of Computer Science
University of lllinois at Urbana-Champaign
1304 W. Springfield Ave,
Urbana, 1L, 61801
lakshman@ces.uiuc.edu

at least some static type checking. This regains some of
the benefits of statically typed languages; how much is re-
gained depends on the power of the type inference algo-
rithm. Type inference systems for dynamically typed lan-
guages have been dubbed soft typing systems by Cartwright
and Fagan [6].

Interest in inferring types for dynamically typed pro-
grams began with Reynolds [19]. Since then, numerous al-
gorithms have been proposed, based variously on tree gram-
mars [13, 23], ad hoc extensions of static type systems [6, 10,
21], abstract interpretation [2, 20], and constraint solving
[11, 12]. Many of these techniques are complicated, limited
in power, or both.

In this paper we present a soft typing system that is both
simple and powerful. Our method is simple because we ad-
dress a type inference problem directly using type inference
techniques; there are no special encodings or awkward cases
to consider. Our method is also powerful: our algorithm au-
tomatically infers accurate types for recursive, higher-order,
dynamically typed programs with no type information sup-
plied by the user.

The essence of our approach is to perform standard ML-
style type inference, but over a much richer domain of types.
Our type language (Section 3) includes function types, a
least type 0, a greatest type 1, intersection, union, recur-
sive types, and conditional types (see below). A program is
well-typed if it is provable that the program is free of run-
time type errors. Our type inference system reduces the
problem of determining whether a program is well-typed to
the satisfiability of a system of type inclusion constraints
(Section 4). The inclusion constraints are solvable, which
provides an effective type inference procedure (Section 5).

The most novel feature of our type language is condi-
tional types (Section 3). With conditional types, the type of
an expression e can be constrained using information about
the results of run-time tests in the context surrounding e.
For example, in an expression

case e; of true : ez, false : e3

conditional types can express that ez is evaluated only in
environments where e; 1s true, and es is evaluated only in
environments where e; is false. This kind of analysis usually
is called control-flow analysis. The ability to take advantage
of control-flow information in type inference is crucial to
computing accurate type information in dynamically typed
programs [2, 20]. Using conditional types, we eliminate the
ad hoc steps in [2, 20] used to perform control-flow analysis.

The type inference system presented in Section 4 is quite

powerful and interesting in its own right. However, since no
decidable type inference system can be both sound and com-
plete, our system rejects some programs that make no run-
time type errors. In a dynamically typed language programs
cannot be rejected by a type system—after all, the language
itself imposes no type constraints. Following [6, 12], we take
the view that explicit run-time type checks should be added
to the program to make it well-typed. Section 7 describes
how our system automatically adds such type checks to a
program.

This paper makes three contributions. First, we believe
our system infers the most accurate types of any proposed
type inference system for dynamically (or statically) typed
languages. Second, we show how control-flow analysis can
be performed using type inference with conditional types.
Third, we show that several proposals for performing pro-
gram analysis of dynamically typed languages are in fact
special cases of solving systems of type inclusion constraints.
Thus, our approach unifies a diverse body of work on pro-
gram analysis (Section 9).

The type inference system described here has been imple-
mented and extensively tested for the functional program-
ming language FL. Section 6 presents examples, while Sec-
tion 8 discusses the implementation and presents the results
of performance measurements. Proofs and some technical
discussion are deferred to appendices.

2 A Programming Language

We illustrate our system using a simple dynamically typed,
higher-order functional language. Our system should be
extensible to imperative language features using standard
techniques [22]. The programming language £ is the lambda
calculus with constructors, let, case, and patterns:

e = zx|Az.e;|erexfcler,...,en)||let x =€ ines]
case eof p1 1e1,...,pn 1 en
p = x|z aspi|c(pi,...,pn)

Giving a formal semantics to £ is routine and we omit it.
We briefly summarize the important features of the seman-
tics. The semantic domain D) of L satisfies the equations

Dt = (D= Dyul Jed*,..., D)
ceC
D = DYU{L, wrong}

The set C'is a set of data constructors (e.g., constants, pairs,
etc.), the value L denotes non-termination, and the value
wrong denotes an erroneous computation.

The meaning function g : Expr x Env — D for £ expres-
sions maps an expression e and an environment assigning
meaning to the free variables of e to an element of D. Ex-
pressions are generally strict in L and wrong; for example,
f L=1,¢(Ll,x) =1, etc. The exceptions are lambda ab-
straction (Az. L is a function that returns 1) and case (see
below). The choice of a strict semantics over a lazy seman-
tics is not important; our techniques work for lazy languages
as well.

In an expression case e of p1 : en,...,pn : €n, if € eval-
uates to v and v matches the “shape” of pattern p;, then
the result is e; with the variables in p; bound to correspond-
ing components of v. The other branches are not evaluated.

The pattern = as p binds # to a value that matches p. If no
pattern matches a case analysis, the expression evaluates to
wrong. For example, pu(case false of true : nil,) = wrong.
We impose two standard restrictions on patterns. Patterns
must be linear (each variable in a pattern occurs exactly
once). Within a single case, patterns must be pairwise dis-
joint (so that no two patterns match the same value).

We prefer to use case instead of a conditional if because
case is more general. The usual conditional if e; ez es is
defined as case e; of true : ez, false: ej.

3 Types

This section presents the syntax and semantics of our type
language. The syntax of type expressions is given by the
following grammar:

= n—mnldn,. .., m)a|lnUn|nNr|n?r|0|1
n= 7|Var,...,an.7 where {..., 11 C12,...}
Unquantified types are written 7, 71, 72,.... Types that may

be quantified are written o,01,02,....

For semantics we adopt the ideal model, in which types
are certain subsets (called ideals) of the semantic domain D
[15]. In the ideal model, every type T satisfies four condi-
tions: 7 is non-empty, wrong & 7, 7 is directed-closed (closed
under limits), and 7 is downward-closed, which means that
ify € 7and if z < y* then z € . Since types are sets, types
are ordered by set inclusion.

In the grammar above, « is a type variable. Given an
assignment p of types to type variables, Figure 1 extends
p to give semantics to all type expressions. We briefly ex-
plain each case. The first three type expressions are familiar
from typed functional languages. They are function types
T — To (the set of functions mapping elements of 7 to
elements of 73), constructor types ¢(71,...,7,) (the set of
“c” data structures with components drawn from 71, ..., 7,),
and type variables. Note that we use the same name ¢ for
both a value constructor in expressions and a type construc-
tor in types. The type expressions 7 U7 and 7 N7 denote
set-theoretic union and intersection of types respectively.

The type 0 contains only L, the value denoting non-
termination. Since types are non-empty and downward-
closed, 0 is the least type: 0 C 7 for any type 7. The
type 1 is the entire semantic domain except wrong. Note
that 1 is the greatest type: 7 C 1 for any type 7. The type
1 is handy for defining the set of all values of a particular
kind. For example, the set of all functions (that don’t go
wrong) is 1 — 1, the set of all cons pairs is cons(1,1), and
so on. The type cons(1,1) is an example of a monotype—
a type with no variables. For monotypes and types with
no free (unquantified) variables, the type denotes the same
set regardless of the choice of substitution in Figure 1. In
this case we drop the substitution and treat the the type
expression itself as a set.

The type ™71, read “m if 727, is a conditional type.
Conditional types can express a restricted form of overload-
ing, which is useful in giving accurate types for case expres-
sions. For example, consider the function

Ay.case y of true : zero, false : succ(zero)

1 The standard ordering: L< &, ¢(eq, ..
i < yi,and [< g iff f(o) < g(x) forall @

Tn) S e(y1, ., yn) iff

= {C(t1,.. .
(m)

p
p(T1)

p(0) = {1}

p(1) = D — {wrong}

p(Vai, ..., an.7 where S) =

¢

pPrEX

where X = Sol(S) N {p'|p"(B) = p(B) if B & {a, ..

U p(r
N p(r

{1 (p(r1) = {L, wrong}) C p(r2)} U {L}
stn)lti € p(ri) — {L, wrong}} U {1}

) = {p(n) if p(r2) #{L}

1} otherwise

St}

Figure 1: Semantics of type expressions.

A fragment of the type inferred for this function by our
algorithm 1is

a — (zero?(a Ntrue)) U (succ(zero)?(a Nfalse))

Substituting true (resp. false) for o and simplifying,® this
type has instance true — zero (resp. false — succ(zero)).
Thus, this type accurately captures the input-output depen-
dencies of the case expression. The ability to constrain the
types of expressions using information about run-time tests
is usually called control-flow analysis and is very important
in inferring accurate types for dynamically typed programs
[20]. Conditional types were first introduced by Reynolds in
his algorithm for analyzing Lisp programs [19].

Type schemes have the form Vo, ..., an.7 where S where
«; is a type variable, 7 is an unquantified type expression,
and S is a set of type constraintsof the form 71 C 7. The un-
usual aspect of our type schemes is the use of subsidiary con-
straints. Intuitively, the constraints are a form of bounded
quantification restricting 7 to instances satisfying the con-
straints. More formally, the solutions Sol(S) of a system S
of constraints is the set of assignments p of types to type
variables such that p(71) C p(72) holds for all constraints
71 C 72 in S. In the case where Vai,...,an.7 where S is
fully quantified (i.e., there are no free type variables in 7),

the meaning is the intersection ﬂpesOl(s) p(7). For example,

the type Yo.oo — o where 0 is just the type of the identity
function. However, Vo.ao — a where {a C int} is the type
of the identity on the integers. For the function using case
defined above, the full type inferred by our algorithm is

Va. a — (zero?(a Ntrue)) U (succ(zero)?(a Nfalse))
where {a C true U false}

The constraint on « says the function is guaranteed to be
well-defined only if applied to the constructors true or false.

Recursive types are not included in the grammar for type
expressions because recursive types are definable using con-
straints. Let 7 = 72 stand for the pair of constraints 71 C
and 7> C 71. Then a constraint such as ¢ = cons(§,) Unil

2true — (zero?(true N true)) U (succ(zero)?(true N false)) =
true — (zero?true) U (succ(zero)?0) = true — zeroU 0 = true —
zero

has a unique solution which defines (given the usual inter-
pretation of cons and nil) a to be all lists with elements of
type £.

We assume the set of type constructors includes con-
stants such as zero, true, false, and nil, a unary construc-
tor succ, and a binary constructor cons. We separate true
and false (resp. nil and cons) from the more conventional
type bool (resp. list) in order to assign more precise types
to expressions.

4 Type Inference

A type inference system for £ is given in Figure 2. Asso-
ciated with every conclusion is a set of assumptions A and
a set of type constraints S. The rules prove sentences of
the form “A, S F e : 7”7, which should be read “if the free
variables of e have the types given by assumptions A, then e
has type p(7) for any solution p of the constraints S.” That
is, the conclusion holds only for solutions of 5.

We briefly explain the inference rules in Figure 2. The
rule [VAR] is standard: given the assumption z : o one
can prove & : 0. The rule [STRUCT] says that the type of a
construction is the construction of the component types. For
nullary constructors such as true, the scheme in [STRUCT]
simplifies to an axiom A,S F true : true (recall that a
constructor name is used both in values and types). In the
[APP] rule, if 75 — 74 is a superset of the type for e¢; and 73
is a superset of the type for ez, then 74 is a type for e; es.

To simplify presentation of the [CASE] rule, we introduce
two auxiliary functions for patterns. The set of all variables
in pattern p is V(p). The type P is the set of all values that
can match the pattern p:

=1 Tasp=7p mzc(i’_l""’p_")

For example, the pattern cons(z,y) matches any cons pair.
This fact is captured by cons(z,y) = cons(1,1).

For an expression case e of p1 : e1,...,pn : €n, the rule
[CASE] takes as hypotheses a type 7 for e, a type 7 for
each e;, and a type 7/ for each p;. The type 7; appears in
the conclusion of the rule in the disjunct 7:?(r N p7). Thus,
7; 18 included in the result type if there is something in 7
matching p;. Otherwise, if 7 N p; = 0 then this branch

AU{z:0},Stz:0

ASte :m 1<i1<n
A, StEcler,...,en)c(m,...,Tn)

AU{z :m},Ste:m
ASHFAze: T — 1

AStker:m, e2: 1

ASU{RCm, mCm—mnlbee:n

ASta:m, p:im
ASFrzasp:mNm

ASke:T
AU{z |z €eV(p)}, Sker:m, p1: 7y

AU{z |z € Vipn)}, S Fen: o, pn i Th

A, SU{r ClU e, it Feaseeof piier,...,pnien U 0, i7(r N DY)

ASter:o AU{z:0},Skex:T
A Stletx =e;inex: 7

A,Ste:7and Sol(S)# 0 and ay, ...,y not freein A

ADFe:Vai,...,a,. 1 where S

ASFe:VYai,..., an 1 where S’
A SUSr/ail b e: m[m/oi)

Figure 2: Type inference rules.

[VAR]

[STRUCT)]

[ABS]

[APP]

[AS]

[CASE]

[LET]

[GEN]

[INST]

{y : true}, 0 F y : true
{y : true}, 0 - zero : zero
{y : true}, 0 F succ(zero) : succ(zero)

{y : true}, 0 F case y of true : zero, false : succ(zero) : zero

{r:a,y:1},0Fz: o
{z:a},0Fdyz:1—a

F Ay.case y of true : zero, false : succ(zero) : true — zero
F true : true

FlXtAyz:a—1—a

(a) The K combinator.

F (Ay.case y of true : zero, false: succ(zero)) true : zero

(b) An example using case.

Figure 3: Examples of well-typed expressions.

of the case cannot be taken and =?(r Np;) = 770 = 0.
The constraint 7 C U1<i<n 7! serves two purposes. First,
it ensures that the set of case branches is an exhaustive
analysis of the type 7. Second, this constraint propagates
type information about e to the types of the variables in the
€.

Finally, the rules [LET], [GEN], and [INST] are stan-
dard except for the use of subsidiary constraints in [GEN]
and [INST]. The following lemma shows that the inference
system is sound.

Lemma 4.1 (Soundness) Let A, S F e : o, let p be any
solution of the constraints S, and let £ be an environment
for the free variables of e such that if E(z) = v, and = :
oy € A, then v, € p(0). Then p(e, E) € p(o).

Definition 4.2 A programis an £ expression with no free
variables.

Corollary 4.3 Let e be program and let §,0 - ¢ : 0. Then
ple,) € 0.

The sentence §,0 - e : o is abbreviated F e : o. Recall
that wrong € 7 for any type 7 (Section 3). The following
corollary is immediate.

Corollary 4.4 If - e : o then p(e,#) # wrong.

A program e is well-typed if - e : 0. Figure 3a gives
a proof that the K combinator is well-typed. Figure 3b
is a more complex example involving a case expression.
In Figure 3b, some types have been simplified. For in-
stance, by rule [CASE] the first conclusion is zero?(true N
true) U succ(zero)?(false Ntrue), but this is zero?true U
succ(zero)?0 = zero. In addition, we have elided the con-
straints, which are all vacuously true in this proof. For in-
stance, by rule [CASE] there is a constraint true C true U
false in the first conclusion, but this always holds, and so
has the same solutions as the empty set of constraints.

The inference system in Figure 2 is a very powerful static
type system and may be of interest in its own right. In our
application, the reason for having such a powerful system is
to make the set of well-typed programs as large as possible,
because any program that is well-typed requires no run-time
type checking. To make a convincing case for using this type
inference system with a dynamically typed language, there
are still three things that need to be explained. In the rest of
this section, we show that the set of well-typed programs is
in fact very large. This shows that many programs pass the

type checker without modification. In Section 5, we show
that the type constraints can be solved—this shows that it is
decidable whether or not a program is well-typed. Finally,
in Section 7 we explain how dynamic type checks can be
inserted into ill-typed programs to make them well-typed;
this guarantees that every program can be modified to pass
the type checker.

It is important to know the “size” of the set of well-typed
programs. If the set is small, than the type inference system
is not of much practical interest. We do not have an exact
characterization of the set of well-typed programs, but the
following two lemmas show that the set is very large.

Lemma 4.5 A lambda termis a program without construc-
tors or case. Every lambda term is well-typed.

The Hindley/Milner type inference system [16] is used in
most functional languages. We write Fyar e : o if € has type
o in the Hindley/Milner system. Lemma 4.6 shows that all
programs well-typed in the Hindley/Milner system are also
well-typed in our system.

Lemma 4.6 If gy e: o then ke o.

5 Computing Types

In this section we discuss an algorithm that derives types in
the logic given in Figure 2. We do this in two steps: first,
we prove that expressions have minimal types in this logic.
We then show that the minimal type is computable.

Definition 5.1 A program e has minimal type o iff Fe: o
and for any o', if F e : ¢’ then o C o'

Minimal types are related to, but not the same as, prince-
pal types [7]. Principal types are defined syntactically, with
the usual definition being that o is a principal type for e
if F e: o and if for any other type o’ such that - e : o/,
the type ¢’ is a substitution instance of ¢. In the Hind-
ley /Milner system the two notions coincide, so that a type
is principal if and only if it is minimal in the ideal model.
Thus, in this instance minimal types are simply the seman-
tic counterpart of principal types. In our system, programs
have minimal types but may not have principal types (e.g.,
because many type expressions denote the same type).

A minimal type is the smallest derivable type in the se-
mantic model. To prove that programs have minimal types,
we introduce the notion of a most general type derivation.

let Y = Au.(Az.(Qw.(u (z z)) w) Aw.(u (z ¢)) w) in
let last = Y Af.A\z.case z of

in

cons(y,nil) : y
cons(u, v as cons(a,b)): fv

let a = last cons(zero, cons(zero, cons(zero, nil))) in
last cons(true, cons(false, cons(a, nil)))

Figure 4: Taking the last element of a list.

Definition 5.2 A most general type derivation satisfies:

1. Every type assumption has the form z : o where o is
a distinct type variable.

2. In every use of the [APP] rule the types 75 and 74 are
fresh type variables.

3. In every let © = e in ¢/, the [GEN] rule is applied once
to quantify as many type variables as possible in the
type of e.

4. The [GEN] rule is applied in the last step of the entire
type derivation to quantify over all type variables.

5. The [INST] rule is applied immediately after uses of
the rule [VAR] to eliminate any quantified variables.
Fresh type variables are substituted for the quantified
variables.

6. The [GEN] and [INST] rules are applied nowhere else

in the derivation.

It is easy to check that the restrictions in Definition 5.2
specify a unique derivation up to renaming of type variables.
Lemma 5.3 shows that the minimal type of a program is the
one generated by a most general derivation.

Lemma 5.3 If - e: o by a most general derivation, then o
is the minimal type for e.

To obtain an effective type inference procedure, the only
missing link is an algorithm to solve the type inclusion con-
straints generated in a most general derivation. We make
use of the following theorem.

Theorem 5.4 It is decidable whether systems of proper
constraints have solutions. Furthermore, all solutions can

be exhibited [3].

The constraints generated by a most general derivation
are proper, with an extension to handle conditional types,
which are not treated in [3]. A definition of proper con-
straints and the extension for conditional types are given in
Appendix B.

6 Examples

In this section we present two examples illustrating the power
of our type inference system. The first example 1s an imple-
mentation of the Lisp car function, which returns the first
component of a cons when applied to a cons, nil when
applied to nil, and goes wrong for any other argument.

let car = Az.case z of cons(y, z) : y, nil: nil in
car cons(zero, nil)

Our system reports that car cons(zero,nil) : zero. The
interesting aspect of this example is the type of car, which
illustrates the role of conditional types in our system. The
type inferred for car is

Va,f,v. a — (f7(aNcons(1,1))) U (nil?(« N nil))
where {a C cons(f,v) Unil}

If we let o« = cons(zero,1), # = zero, and v = 1, then
this type has instance cons(zero,1) — zero. Thus, the
application has type zero; this is also the minimal type. In
addition to handling the distinction between cons and nil
accurately, the inferred type for car is completely accurate
even for heterogeneous lists, since only the type of the head
of the list is relevant. For example, our system also reports
that car cons(zero, cons(true,nil)) : zero.

A more substantial example i1s given in Figure 4, which
defines a recursive function last that selects the last element
of a list. Note that a Y combinator is used for recursion be-
cause £ has no special syntax for declaring recursive func-
tions. The particular version of Y used here is one appro-
priate for a strict language such as £ . The function last
is used polymorphically in two places: once with a list of
zero and once with a heterogeneous list consisting of some
booleans followed by zero.

This expression illustrates some of the difficulties of per-
forming automatic type inference in a dynamically typed
language such as Lisp or Scheme. The program contains no
type declarations—everything must be inferred. The pro-
gram uses higher-order, recursive, polymorphic functions.
The function last works for any heterogeneous list of at
least length one; for any other input value, it goes wrong.
Control-flow analysis is required to make distinctions be-
tween what last does with the last element of the list and
all other elements of the list. The expression in Figure 4
means zero. Our algorithm infers that this expression has
type zero. Therefore, it is well-typed and no run-time type
checking is required.

The key to proving this expression is well-typed is the
type for last. The minimal type of last computed by our
system is:

Va.X — a where {X = cons(1, X) U cons(a,nil)}

In this example we have rewritten the type of last produced
by our system to an equivalent, but more readable, form.
The type X is the set of all lists of length at least one ending
in «v. Because of the polymorphic let, the two uses of last are
typed separately using distinct instances of the type above.
In the first instance last has type

X' — zero where {X' = cons(1, X') U cons(zero, nil)}

The result type zero is the type of the variable a. Since the
second application of lastis to a list with last element a, this
instance is also assigned the type X' — zero. The type of
the application (and of the whole expression) is then zero.

7 Inserting Dynamic Type Checks

Recall that an expression e is well-typed if - e : . If e is
ill-typed then it cannot be said whether or not e makes a
run-time type error. In a dynamically typed language, it is
not reasonable to reject ill-typed programs, because no type
constraints are imposed on programs. Instead, it is neces-
sary to add dynamic type checks to the program to make
it well-typed. To make an ill-typed program well-typed we
insert functions called narrowers [6] in certain places. A
narrower performs a run-time check and returns a value in-
dicating whether or not the check succeeded. A narrower
Checkx is defined for every monotype X. The meaning of
Checkx 1s

v ifvelX

1 otherwise

Checkx v = {

Checkx 1s the identity on X and L elsewhere. Thus, Checkx
“narrows” the set of possible values of the input to X. The
type of Checkx is Vao.oo — a N X.

From Figure 2 and Definition 5.2 there are three kinds
of constraints in a most general derivation:

T C « from [APP] (1)
r C a—f from[APP] (2)
r C U,r from [CASE] (3)

In a most-general derivation, constraints of form (1) are sat-
isfied by the assignment o = 1. Thus, only constraints (2)
and (3) may be inconsistent and result in an ill-typing. Con-
straint (2) guarantees that e; is a function in an application
e1 ex. Constraint (3) guarantees that all possible values of
e are covered by the case analysis in case e of

The following lemma shows that by inserting narrowers
in all applications and case expressions, any program can be
made well-typed. In other words, there is at least one way
to add enough dynamic type checking to guarantee that a
program makes no run-time type errors.

Lemma 7.1 Let e be a program and let e’ be e modified as
follows:

1. Replace every application e1 ex by (Checki_1 e1) es.

2. Replace every case e of p1 : e1,...,pn : en by
case (Checkx e) of p1 1 e1,...,pn: €, where

= Ui<icn Pi-
Then e’ is well-typed.

Lemma 7.1 gives one very conservative way of inserting
dynamic checks. To minimize the run-time overhead of dy-
namic type checking, our system attempts to minimize the
number of checks inserted. This is done performing some ex-
tra bookkeeping in constraint solving, so that it is possible to
tell which constraints of forms (2) and (3) are violated in an
ill-typed program. The following trivial example illustrates
the idea. The type derivation for the ill-typed application
(true false) generates the constraints:

false C o true Ca — f

The constraints are inconsistent since true € a — 3. There-
fore, a dynamic type check is required on the application.
The expression is modified to ((Check; .1 true) false). It is
easy to verify that the modified program is well-typed and
that its minimal type is 0, thereby proving that its meaning
is L.

The rest of this section describes how inconsistent con-
straints are detected by the implementation; this is the “ex-
tra bookkeeping” mentioned above. In fact, checking which
constraints of forms (2) and (3) are violated is done by solv-
ing an extended system of constraints. The extended con-
straints always have at least one solution, so the constraint
solver is guaranteed to terminate successfully. By exam-
ining the solutions of this extended system of constraints,
it is possible to determine conservatively which constraints
of forms (2) and (3) are violated in the original constraint
system.

The definition of the extended constraints requires the
introduction of the type =X, the complement of type X.

Definition 7.2 =X is the largest type such that
-XNX=0.

The type =X is unique, so =X is well-defined. Also, con-
straints involving negated types can be solved; for details
see [3]. As an example, the type =(1 — 1) is the type of all
non-functions, which is Ucec ¢(1,...,1) where C is the set
of all data constructors.

Consider the application constraint true C o« — 3 from
the example above. This constraint is inconsistent (has no
solutions) because the right-hand side can contain at most
the set of all functions. To modify this constraint so that it
always has a solution, an error term is added to the right-
hand side to include those values that result in run-time
errors. The modified constraint is

true C (a — YU (yN=(1 — 1))

This constraint is satisfiable, since if « = 8 = v = 1 then
the right-hand is 1. In addition, by setting the error variable
~v = 0 the error term drops out and the original constraint
is recovered. The intuition is that the error term allows for
all (and only) the values that may cause a run-time error.
The error variable v makes it possible to distinguish be-
tween solutions where there are no run-time errors (y = 0)
and solutions that may admit run-time errors (v # 0). For
example, the constraint above implies that true C 4. Thus,
there is no solution where ¥ = 0, which implies that the
original constraint is inconsistent.

In general, the extended constraints include constraints
of form (1) and modifications of forms (2) and (3):

T C a—=pAU(rN=(1—=1)) (29

¢ U vuhn-Ur) 39

In each case the error term covers exactly those values that
may cause a run-time error. These constraints are proper
and can be solved using the algorithm in [3]. In addition,
these constraints always have a solution (e.g., let all vari-
ables be 1; then the right-hand side of every constraint is
1).

) Let S be an extended system of constraints generated
from a program e. After solving the constraints, each error
variable v is considered in turn. If the system S U {y = 0}
has a solution, then the constraint v = 0 is added to S. In
this case, the original constraint (without the error term)

Program Size vs Elapsed Time

30 T T T
o]
25 o _
o]
20 o -
o &P o
o]
Seconds 15 |- o o o -
[e3) o]
10 b © o 08 o° —
%)
5 R oo 0(98) ° 0 o —]
® o
0 &o(gb()@ 1 ° | | | |
0 500 1000 1500 2000 2500 3000

Program Size

Figure 5: Performance results.

must be satisfiable; since setting v = 0 in a constraint with
an error term recovers the original constraint. It is easy to
show that in this case, no run-time check is required for the
program phrase of e associated with the constraint. If there
is no solution of the system SU{vy = 0}, then the appropriate
run-time check is added to e and S is not changed. Note
that the case where all error variables are replaced by 0
corresponds to a well-typed program.

8 Implementation

There are two implementations of the type inference algo-
rithm presented here: one for £ and one for FL [5], a dy-
namically typed, higher-order functional language based on
Backus’ FP [4]. The implementation of type inference for
L is small (about 100 lines of Lisp code). The implementa-
tion for FL is considerably larger (about 1000 lines of Lisp
code), reflecting the increased complexity of FL, in which it
is necessary to deal with exceptions, side-effects from I/O,
and a rich set of primitive functions. Both implementations
are functional programs built on top of an implementation
of a constraint solver for type inclusion constraints.

The implementation for FL has been extensively tested
on a diverse suite of about 80 FL programs, which range
from small utilities (e.g., sort) to modules of several hundred
lines of code (e.g., a general I/O package). Figure 5 gives
performance results for the test suite. Program “size” in
this figure is the number of nodes in the program’s parse
tree. This is a more relevant measure than lines of code,
since the number of parse tree nodes corresponds to the
number of steps in a type derivation. For the test suite
programs, the number of lines of code is anywhere between
a factor of 2 and 10 less than the number of parse tree nodes.
For example, escherimplements a simple graphics language;
escher has 278 lines of FL code, which translates into 2770
parse tree nodes. All experiments were done on an unloaded
IBM RS/6000 running Lucid Common Lisp. The times in

Figure 5 are total elapsed times.

The implemented algorithm for solving systems of type
constraints requires exponential time in the worst case. From
Figure 5, however, it is clear that in practice the complexity
does not grow rapidly for realistic-sized modules, and the
absolute speed is fast enough to be useful. Memory require-
ments are moderate, with a maximum of 5MB allocated
for any example in the test suite. We have not measured
the maximum amount of live data, but it is certainly much
smaller than 5MB.

This level of performance is not trivial to achieve—a
naive implementation is unusable even for small programs.
We have relied heavily on a number of simple optimizations
that improve the performance of the constraint solver by or-
ders of magnitude [1]. In the current implementation, only
about 10% of the time is spent solving constraints. The
majority of the time is spent simplifying the representation
of type expressions and determining where dynamic type
checks should be inserted. Further performance improve-
ments should be possible, as this portion of the system has
not been tuned extensively.

9 Related Work

This section compares our work with a wide variety of re-
lated work. The coverage of each proposal is necessarily

brief.

9.1 Type Inference Systems

A number of type inference systems for dynamically-typed
languages have been proposed. Gomard’s system adds to
the Hindley/Milner type system an undefined type [10] and
then uses a minor variation of the Hindley/Milner type as-
signment algorithm. The type undefined represents a value
for which nothing is statically known, which is the same role

played by the type 1 in our system. Without other type op-
erators, the types assigned by Gomard’s system are not very
precise, and as a result many dynamic type checks have to
be added to make programs well-typed.

Another generalization of the Hindley/Milner system is
partial types. In partial types, the type 1 is added to the
usual Hindley/Milner types, but there is a different type as-
signment algorithm [14]. Partial types have the same limited
expressive power as (Gomard’s system, and again the types
assigned are not very precise.

Closest in spirit to our own work is soft typing [6]. In
[6], Cartwright and Fagan set out criteria that they feel any
typing algorithm for dynamically typed languages should
meet and provide an algorithm meeting those criteria. The
typing algorithm generates type constraints that must be
solved. The constraints are not solved directly; they are first
encoded in a special representation in which circular unifi-
cation is used to obtain representations of solutions, which
are then decoded back to types.

We feel our approach also meets the criteria in [6] for a
soft typing system, while providing a simpler formalism and
a more accurate type assignment algorithm. Our approach
is simpler because we deal directly with the type constraints,
without any intermediate encoding. With respect to accu-
racy, the algorithm in [6] does include union types, function
types, and parametric polymorphism. It does not have inter-
section types or conditional types, and unions types are re-
stricted to be discriminative (disjuncts in unions must have
distinct outermost constructors).

At the present time we do not know how our method
compares to that of [6] in practice. In future work we hope
to make some empirical measurements of the strengths and
weaknesses of both systems.

Outside the realm of dynamically typed languages, Fuh
and Mishra [9] and Mitchell [18] have given algorithms for
type inference with subtypes. Neither approach incorpo-
rates union types, parametric polymorphism, or conditional
types. The subtyping algorithm of [17] has limited union
and intersection types, but no function types. Also related
to our work are the refinement types of Freeman and Pfen-
ning [8]. Refinement types include union and intersection
types, but not conditional types.

For each of the systems listed above, it is immediately
apparent that our type language is more expressive, and
with the exceptions of [6, 8] it is relatively easy to prove
formally that our algorithm infers types that are at least as
accurate. We believe such a proof is also possible with re-
spect to the algorithm in [6], although a formal proof would
be tedious to write down. Currently we do not know the
exact relationship of our system to that of [8].

The greatest qualitative jump in accuracy in our system
comes from the ability to encode control-flow analysis of
case expressions; using conditional types, we are able to
constrain the type of the branch of a case to reflect the
possible values that could match the pattern. This ability
is crucial to giving accurate types to many programs and it
is not found in any of the systems above.

9.2 Constraints over Regular Trees

Several analysis techniques for dynamically typed languages
have been based on solving equations over sets of regular
trees. Reynolds proposes a method for analyzing Lisp pro-
grams [19]. This is the first and only other use of condi-
tional types of which we are aware. Jones and Muchnick

propose a different analysis system based on solving equa-
tions over sets of regular trees [13], which is used not only
to eliminate dynamic type checks but also to reduce refer-
ence counting. Recently Wang and Hilfinger have proposed
an analysis method based on tree grammars [23]. Since a
grammar

Xuo=X1]... | Xn

is, by a small twist of perspective, a constraint
X=Xju...uX,

this algorithm also falls into the general class of constraint
systems over regular trees.

The common weakness of these approaches is that they
are inherently first-order (no function types) and monomor-
phic. Furthermore, none of these techniques take advantage
of control-flow information. One feature found in [13, 19] is
the use of projections ¢™'(¢(X,Y)) = X to model selector
functions. We do not have projections in our type language,
but a selector can be assigned a function type ¢(X,Y) — X
instead.

9.3 Abstract Interpretation

We are aware of two systems based on abstract interpreta-
tion that have been implemented. Shivers proposes a type
recovery system for Scheme [20]. The algorithm is a clas-
sical abstract interpretation with a number of features de-
signed specifically for type inference in dynamically typed
programs. Most notably the system includes a mechanism
for constraining the types of the branches of a conditional
using information about the predicate.

The system of Aiken and Murphy is a predecessor to
the one presented here. In [2], an analysis algorithm based
on abstract interpretation combined with constraint solv-
ing over sets of regular trees is described. Essentially, the
abstract interpretation is used to generate constraints that
must be solved. The constraint language has no function
types, intersection types are restricted, and there are no
conditional types. Like Shiver’s algorithm, this algorithm
performs an ad hoc analysis to constrain the types of the
branches of a conditional using the type of the predicate.

Based on several years experience with the implementa-
tion of [2], we have come to the conclusion that there are
two serious problems with techniques such as these. First,
in these works (as in most work on abstract interpretation)
there is an implicit assumption that the entire program is
available for compilation at once, which is unrealistic. Our
type inference algorithm, on the other hand, is a compo-
sitional, bottom-up algorithm. This makes it amenable to
use in an environment that supports separately compiled
modules.

Second, while it is easy to prove that these techniques
are correct, it is difficult to prove anything useful about the
quality of the information the algorithms compute. Thus,
it is very difficult for a programmer to predict for which
programs the analysis performs well. Removing dynamic
type checks makes enough difference in performance that
programmers need a chance to understand the type inference
system. Our algorithm is sufficiently declarative that we
can give at least some guidance (Lemmas 4.5 and 4.6) to
programmers who need to write efficient code.

9.4 Dynamic Typing

Henglein proposes an algorithm for dynamic typing that re-
moves both dynamic type checks and dynamic tags [12].
Since our algorithm does not deal with type tags (in fact, we
assume all values are tagged) our techniques do not subsume
those in [12]. On the other hand, our algorithm removes
more dynamic type checks than the dynamic typing algo-
rithm, which is monomorphic, has no intersection or union
types, and performs no control-flow analysis. Thus, the two
algorithms are incomparable and to some extent aimed at
different problems.

References

[1] AIKEN, A., AND MURPHY, B. Implementing regular
tree expressions. In Proceedings of the 1991 Conference
on Functional Programming Languages and Computer
Architecture (Aug. 1991), pp. 427-447.

AIKEN, A., AND MURPHY, B. Static type inference in
a dynamically typed language. In FEighteenth Annual
ACM Symposium on Principles of Programming Lan-
guages (Jan. 1991), pp. 279-290.

AIKEN, A., AND WIMMERS, E. Type inclusion con-
straints and type inference. In Proceedings of the 1993
Conference on Functional Programming Languages and
Computer Architecture (Copenhagen, Denmark, June
1993), pp. 31-41.

Backus, J. Can programming be liberated from the
von Neumann style? A functional style and its algebra
of programs. Commun. ACM 21, 8 (Aug. 1978), 613-
641.

Backus, J., WiLriams, J. H., WimMERSs, E. L., Lu-
cAs, P., AND AIKEN, A. The FL language manual
parts 1 and 2. Tech. Rep. RJ 7100 (67163), IBM, 1989.

CARTWRIGHT, R., AND FAGAN, M. Soft typing. In Pro-
ceedings of the ACM SIGPLAN "91 Conference on Pro-
gramming Language Design and Implementation (June
1991), pp. 278-292.

Damas, L., AND MILNER, R. Principle type-schemes
for functional programs. In Ninth Annual ACM Sympo-
stum on Principles of Programming Languages (1982),
pp. 207-212.

FREEMAN, T., AND PFENNING, F. Refinement types for
ML. In Proceedings of the ACM SIGPLAN '91 Confer-
ence on Programming Language Design and Implemen-
tation (June 1991), ACM Press, pp. 268-277.

Fun, Y., aAND MisHra, P. Type inference with sub-
types. In Proceedings of the 1988 European Symposium
on Programming (1988), pp. 94-114.

[10] GomaRrD, C. Partial type inference for untyped func-
tional programs (extended abstract). In Proceedings of
the 1990 ACM Conference on Lisp and Functional Pro-
gramming (1990), pp. 282-287.

[11] HEINTZE, N. Set Based Program Analysis. PhD thesis,

Carnegie Mellon University, 1992.

10

[12] HENGLEIN, F. Dynamic typing. In Proceedings of the
1992 ACM Conference on Lisp and Functional Pro-
gramming (July 1992), pp. 205-215.

[13] JonES, N. D., AND MUCHNICK, S. S. Flow analysis

and optimization of LISP-like structures. In Sixth An-

nual ACM Symposium on Principles of Programming

Languages (Jan. 1979), pp. 244-256.

[14] KozEN, D., PALSBERG, J., AND SCHWARTZBACH, M. I.

Efficient inference of partial types. In Foundations of

Computer Science (Oct. 1992), pp. 363-371.

[15] MACQUEEN, D., PLOTKIN, G., AND SETHI, R. An

ideal model for recursive polymophic types. In Eleventh

Annual ACM Symposium on Principles of Program-

ming Languages (Jan. 1984), pp. 165-174.

[16

=

MILNER, R. A theory of type polymorphism in pro-
gramming. J. Comput. Syst. Sci. 17 (1978), 348-375.

[17

=

MisHra, P., aAND REDDY, U. Declaration-free type
checking. In Proceedings of the Twelfth Annual ACM
Symposium on the Principles of Programming Lan-
guages (1985), pp. 7-21.

[18

[t

MrrcHELL, J. Coercion and type inference (summary).
In Eleventh Annual ACM Symposium on Principles of
Programming Languages (Jan. 1984), pp. 175-185.

[19] REYNOLDS, J. C. Automatic Computation of Data Set
Definitions. Information Processing 68. North-Holland,

1969, pp. 456-461.
[20

[t

SHIVERS, O. Control flow analysis in scheme. In Pro-
ceedings of the ACM SIGPLAN °88 Conference on Pro-
gramming Language Design and Implementation (June
1988), pp. 164-174.

[21

[ha—”

THATTE, S. Type inference with partial types. In
Automata, Languages and Programming: 15th Interna-
tional Colloquium (July 1988), Springer-Verlag Lecture
Notes in Computer Science, vol. 317, pp. 615-629.

[22] TorFTE, M. Operational Semantics and Polymorphic
Type Inference. PhD thesis, University of Edinburgh,
1987.

[23] WANG, E., AND HILFINGER, P. N. Analysis of recursive
types in Lisp-like languages. In Proceedings of the 1992
ACM Conference on Lisp and Functional Programming
(June 1992), pp. 216-225.

A Proofs

Proof: [of Lemma 4.1] This is an easy induction on the
structure of the proof that A, Ske:0. O

Proof: [of Lemma 4.5] For lambda terms, type constraints
are introduced only by the [APP] rule. From Figure 2, the
constraints are

T2 3

N 1N

1 T3 — T4

Let 73 = 74 = x where z is the solution of the equation
x =z — x. Let e be a lambda term. By induction on the

structure of the type derivation for e it is easy to check that
this assignment satisfies the constraints for e. Therefore e
is well-typed. O

Proof: [of Lemma 4.6] The usual Hindley/Milner rules can
be expressed in our notation. Except for the [APP] and
[CASE] rules, the rules in Figure 2 either are Hindley/Milner
rules ([VAR], [STRUCT], [ABS], and [LET]) or differ only
superficially ([GEN]and [INST]). The Hindley /Milner [APP]

rule is:

A Stker T, e2:1m2

ASU{n=m, n=m—mn}bee:n
The Hindley/Milner [CASE] rule is:

ASke:T
AU{z |z €eV(p)},Skerim,p1 i i

AU{z |z €V(pn)}, St en: Tn,pn: 1y
ASU{r=r=...=7,n=...=7}
Fcaseeofprier,....,pnien: 7

Since equality is a special case of containment, it is clear that
the Hindley/Milner [APP] rule is a special case of the rule
in Figure 2. Similarly, the constraints in the Hindley/Milner
[CASE] rule are a restriction of the constraints in the [CASE]
rule in Figure 2. Therefore, if Fgar e : 7 then Fe: 7. O

Proof: [of Lemma 5.3] The type o generated by a most
general derivation has the form Vo, ..., a,.7 where S. It is
easy to show that for any other typing I e : o/, 0’ is equal to
Vo, ..., an.7 where S such that Sol(S') C Sol(S). Since
the meaning of the quantified types is the intersection of the
meaning of 7 in all solutions of the constraints (Section 3),
it follows that ¢ C ¢’. O

Proof: [of Lemma 7.1] Let p(a) = 1 for all variables a.
To show that e’ is well-typed, it suffices to show that p is a
solution for the type constraints in a most general derivation
for e’.

Consider uses of rule [APP]. Every application in e’ has
the form (Checki_1 e1) ez. For constraints of form (1), we
have p(7) € 1 = p(a). Now consider constraints of form (2).
If €1 : 7, then the type of Checki_1 guarantees that the type
of Checky_1 e1 has the form 7 N (1 — 1). It follows that

p(rA(1—1)C1—1=p(a—p)

so the type constraint is satisfied.

Consider uses of rule [CASE]. In €', every case expression
has the form case Checkx(e) of p1 : e1,...,pn : €, where
X = U1<i<n1’_i' If e : 7, then the type of Checkx(e) is

TmU1<i<n Pi. It is also easy to check that in a most general

derivation, if p; : 7/ then p(7{) = p;. Now we have that
orn | me | m=oJ
1<i<n 1<i<n 1<i<n

and so the type constraint is satisfied. O

11

B Proper Constraints

We briefly explain the main result of [3] and then present
the extension to conditional types. A proper type expression
is either an R (for right) or an L (for left) type as defined
by the following grammar:

L =
R =

0|1]a|e(Ly,...
0|1]a|c(Ry,...

JIn)|R— L|LiNLy| Ly ULy
JRu)|L — R|RiNRy| Ry UR,

The following restrictions are placed on R and L types. In
an L type L1 N Lz, L> must be both a monotype and upward-
closed. A type X is upward-closed if X = {yly >z € X —{L
1}. In an R type R1UR>, it must be the case that RiNR, =0
in all assignments of the variables in Ry and Ro.

The definitions of I and R types rule out certain forms
of constraints for which it is not known how to perform con-
straint resolution. The problematic cases are an intersection
on the left (i.e., LN L2 C R1) and a union on the right (i.e.,
L1 C Ry U R). Thus, L types restrict intersections (on the
left-hand sides of constraints) and R types restrict unions
(on the right-hand sides of constraints).

A proper system of constraints has the form {L; C R;}.

In [3], an algorithm is given for solving proper systems of
constraints. To extend the result of [3] to include conditional
types, we extend the definition of I types:
L ZZ:0|1|CY|C(L1,...,Ln)|R—>L|L1OL2|L1UL2|L1?L2
To show that proper systems with conditional types can be
solved, it is sufficient to show how to decompose a constraint
of the form L17L> C R into smaller constraints while pre-
serving the set of solutions. From the semantics of 7-types
it follows that

where = means that the two sides have the same set of
solutions and V means the union of the solutions of the two
systems. The new constraints L; C R and L2 C 0 both have
the correct form L. C R. Finally, the constraints generated in
a most general derivation (Definition 5.2) are proper under
the extended definition.

