
Soft Typing with Conditional TypesAlexander Aiken� and Edward L. WimmersIBM Almaden Research Center650 Harry Rd., San Jose, CA 95120faiken,wimmersg@almaden.ibm.com T. K. LakshmanyDepartment of Computer ScienceUniversity of Illinois at Urbana-Champaign1304 W. Spring�eld Ave,Urbana, IL 61801lakshman@cs.uiuc.eduAbstractWe present a simple and powerful type inference methodfor dynamically typed languages where no type informationis supplied by the user. Type inference is reduced to theproblem of solvability of a system of type inclusion con-straints over a type language that includes function types,constructor types, union, intersection, and recursive types,and conditional types. Conditional types enable us to ana-lyze control ow using type inference, thus facilitating com-putation of accurate types. We demonstrate the power andpracticality of the method with examples and performanceresults from an implementation.1 IntroductionMost modern programming languages employ type checkingto guarantee that functions are applied only to appropriatearguments. Languages di�er in the degree to which the typechecking is static (performed at compile-time) or dynamic(performed at run-time). Statically typed languages, such asML, require that function applications be proven type-safeat compile-time. This is enforced by a type inference algo-rithm that assigns types to program phrases. If the type in-ference algorithm veri�es that a program cannot \go wrong"(i.e., is free of run-time type errors) the program is accepted;otherwise, the program is rejected. Static type checkingeliminates the need to perform run-time type checking anddetects many programming errors at compile-time. The costof this e�ciency and security is loss of programming exibil-ity, because no decidable type inference system can be bothsound and complete|some programs that cannot go wrongmust be rejected in any statically typed language.Dynamically typed languages, such as Lisp and Scheme,impose no type constraints on programs and, in the worstcase, perform all type-checking at run-time. This permitsmaximum programming exibility at the potential cost ofe�ciency and security. However, in an implementation ofa dynamically typed language it is bene�cial to perform�Author's current address: Computer Science Division, Uni-versity of California at Berkeley, Berkeley, CA 94720, email:aiken@cs.berkeley.eduyThis work was done while visiting IBM Almaden Research Center.To appear in Proceedings of the 21st Annual ACMSIGPLAN-SIGACT Symposium on Principles of Pro-gramming Languages.

at least some static type checking. This regains some ofthe bene�ts of statically typed languages; how much is re-gained depends on the power of the type inference algo-rithm. Type inference systems for dynamically typed lan-guages have been dubbed soft typing systems by Cartwrightand Fagan [6].Interest in inferring types for dynamically typed pro-grams began with Reynolds [19]. Since then, numerous al-gorithms have been proposed, based variously on tree gram-mars [13, 23], ad hoc extensions of static type systems [6, 10,21], abstract interpretation [2, 20], and constraint solving[11, 12]. Many of these techniques are complicated, limitedin power, or both.In this paper we present a soft typing system that is bothsimple and powerful. Our method is simple because we ad-dress a type inference problem directly using type inferencetechniques; there are no special encodings or awkward casesto consider. Our method is also powerful: our algorithm au-tomatically infers accurate types for recursive, higher-order,dynamically typed programs with no type information sup-plied by the user.The essence of our approach is to perform standard ML-style type inference, but over a much richer domain of types.Our type language (Section 3) includes function types, aleast type 0, a greatest type 1, intersection, union, recur-sive types, and conditional types (see below). A program iswell-typed if it is provable that the program is free of run-time type errors. Our type inference system reduces theproblem of determining whether a program is well-typed tothe satis�ability of a system of type inclusion constraints(Section 4). The inclusion constraints are solvable, whichprovides an e�ective type inference procedure (Section 5).The most novel feature of our type language is condi-tional types (Section 3). With conditional types, the type ofan expression e can be constrained using information aboutthe results of run-time tests in the context surrounding e.For example, in an expressioncase e1 of true : e2; false : e3conditional types can express that e2 is evaluated only inenvironments where e1 is true, and e3 is evaluated only inenvironments where e1 is false. This kind of analysis usuallyis called control-ow analysis. The ability to take advantageof control-ow information in type inference is crucial tocomputing accurate type information in dynamically typedprograms [2, 20]. Using conditional types, we eliminate thead hoc steps in [2, 20] used to perform control-ow analysis.The type inference system presented in Section 4 is quite

powerful and interesting in its own right. However, since nodecidable type inference system can be both sound and com-plete, our system rejects some programs that make no run-time type errors. In a dynamically typed language programscannot be rejected by a type system|after all, the languageitself imposes no type constraints. Following [6, 12], we takethe view that explicit run-time type checks should be addedto the program to make it well-typed. Section 7 describeshow our system automatically adds such type checks to aprogram.This paper makes three contributions. First, we believeour system infers the most accurate types of any proposedtype inference system for dynamically (or statically) typedlanguages. Second, we show how control-ow analysis canbe performed using type inference with conditional types.Third, we show that several proposals for performing pro-gram analysis of dynamically typed languages are in factspecial cases of solving systems of type inclusion constraints.Thus, our approach uni�es a diverse body of work on pro-gram analysis (Section 9).The type inference system described here has been imple-mented and extensively tested for the functional program-ming language FL. Section 6 presents examples, while Sec-tion 8 discusses the implementation and presents the resultsof performance measurements. Proofs and some technicaldiscussion are deferred to appendices.2 A Programming LanguageWe illustrate our system using a simple dynamically typed,higher-order functional language. Our system should beextensible to imperative language features using standardtechniques [22]. The programming language L is the lambdacalculus with constructors, let, case, and patterns:e ::= x j�x:e1 j e1 e2 j c(e1; : : : ; en) j j let x = e1 in e2 jcase e of p1 : e1; : : : ; pn : enp ::= x jx as p1 j c(p1; : : : ; pn)Giving a formal semantics to L is routine and we omit it.We briey summarize the important features of the seman-tics. The semantic domain D of L satis�es the equationsD+ = (D+ ! D) [[c2C c(D+; : : : ; D+)D = D+ [f?;wronggThe set C is a set of data constructors (e.g., constants, pairs,etc.), the value ? denotes non-termination, and the valuewrong denotes an erroneous computation.The meaning function � : Expr�Env ! D for L expres-sions maps an expression e and an environment assigningmeaning to the free variables of e to an element of D. Ex-pressions are generally strict in ? and wrong; for example,f ?=?, c(?;x) =?, etc. The exceptions are lambda ab-straction (�x: ? is a function that returns ?) and case (seebelow). The choice of a strict semantics over a lazy seman-tics is not important; our techniques work for lazy languagesas well.In an expression case e of p1 : en; : : : ; pn : en, if e eval-uates to v and v matches the \shape" of pattern pi, thenthe result is ei with the variables in pi bound to correspond-ing components of v. The other branches are not evaluated.

The pattern x as p binds x to a value that matches p. If nopattern matches a case analysis, the expression evaluates towrong. For example, �(case false of true : nil; ;) = wrong:We impose two standard restrictions on patterns. Patternsmust be linear (each variable in a pattern occurs exactlyonce). Within a single case, patterns must be pairwise dis-joint (so that no two patterns match the same value).We prefer to use case instead of a conditional if becausecase is more general. The usual conditional if e1 e2 e3 isde�ned as case e1 of true : e2; false : e3.3 TypesThis section presents the syntax and semantics of our typelanguage. The syntax of type expressions is given by thefollowing grammar:� ::= �1 ! �2 j c(�1; : : : ; �n) j� j �1 [�2 j �1 \ �2 j �1?�2 j 0 j 1� ::= � j 8�1; : : : ; �n:� where f: : : ; �1 � �2; : : :gUnquanti�ed types are written �; �1; �2; : : :. Types that maybe quanti�ed are written �; �1; �2; : : :.For semantics we adopt the ideal model, in which typesare certain subsets (called ideals) of the semantic domain D[15]. In the ideal model, every type � satis�es four condi-tions: � is non-empty, wrong 62 � , � is directed-closed (closedunder limits), and � is downward-closed, which means thatif y 2 � and if x � y1 then x 2 � . Since types are sets, typesare ordered by set inclusion.In the grammar above, � is a type variable. Given anassignment � of types to type variables, Figure 1 extends� to give semantics to all type expressions. We briey ex-plain each case. The �rst three type expressions are familiarfrom typed functional languages. They are function types�1 ! �2 (the set of functions mapping elements of �1 toelements of �2), constructor types c(�1; : : : ; �n) (the set of\c" data structures with components drawn from �1; : : : ; �n),and type variables. Note that we use the same name c forboth a value constructor in expressions and a type construc-tor in types. The type expressions �1 [�2 and �1 \�2 denoteset-theoretic union and intersection of types respectively.The type 0 contains only ?, the value denoting non-termination. Since types are non-empty and downward-closed, 0 is the least type: 0 � � for any type � . Thetype 1 is the entire semantic domain except wrong. Notethat 1 is the greatest type: � � 1 for any type � . The type1 is handy for de�ning the set of all values of a particularkind. For example, the set of all functions (that don't gowrong) is 1! 1, the set of all cons pairs is cons(1; 1), andso on. The type cons(1; 1) is an example of a monotype|a type with no variables. For monotypes and types withno free (unquanti�ed) variables, the type denotes the sameset regardless of the choice of substitution in Figure 1. Inthis case we drop the substitution and treat the the typeexpression itself as a set.The type �1?�2, read \�1 if �2", is a conditional type.Conditional types can express a restricted form of overload-ing, which is useful in giving accurate types for case expres-sions. For example, consider the function�y:case y of true : zero; false : succ(zero)1The standard ordering: ?� x, c(x1; : : : ; xn) � c(y1; : : : ; yn) i�xi � yi, and f � g i� f(x) � g(x) for all x2

�(�1 ! �2) = ff jf(�(�1)� f?;wrongg) � �(�2)g [f?g�(c(�1; : : : ; �n)) = fc(t1; : : : ; tn)jti 2 �(�i) � f?;wronggg [f?g�(�1 [�2) = �(�1) [�(�2)�(�1 \ �2) = �(�1) \ �(�2)�(�1?�2) = � �(�1) if �(�2) 6= f?gf?g otherwise�(0) = f?g�(1) = D � fwrongg�(8�1; : : : ; �n:� where S) = \�02X �0(�)where X = Sol(S) \ f�0j�0(�) = �(�) if � 62 f�1; : : : ; �nggFigure 1: Semantics of type expressions.A fragment of the type inferred for this function by ouralgorithm is�! (zero?(� \ true)) [(succ(zero)?(� \ false))Substituting true (resp. false) for � and simplifying,2 thistype has instance true! zero (resp. false! succ(zero)).Thus, this type accurately captures the input-output depen-dencies of the case expression. The ability to constrain thetypes of expressions using information about run-time testsis usually called control-ow analysis and is very importantin inferring accurate types for dynamically typed programs[20]. Conditional types were �rst introduced by Reynolds inhis algorithm for analyzing Lisp programs [19].Type schemes have the form 8�1; : : : ; �n:� where S where�i is a type variable, � is an unquanti�ed type expression,and S is a set of type constraints of the form �1 � �2. The un-usual aspect of our type schemes is the use of subsidiary con-straints. Intuitively, the constraints are a form of boundedquanti�cation restricting � to instances satisfying the con-straints. More formally, the solutions Sol(S) of a system Sof constraints is the set of assignments � of types to typevariables such that �(�1) � �(�2) holds for all constraints�1 � �2 in S. In the case where 8�1; : : : ; �n:� where S isfully quanti�ed (i.e., there are no free type variables in �),the meaning is the intersection T�2Sol(S) �(�). For example,the type 8�:� ! � where ; is just the type of the identityfunction. However, 8�:� ! � where f� � intg is the typeof the identity on the integers. For the function using casede�ned above, the full type inferred by our algorithm is8�: �! (zero?(� \ true)) [(succ(zero)?(� \ false))where f� � true [falsegThe constraint on � says the function is guaranteed to bewell-de�ned only if applied to the constructors true or false.Recursive types are not included in the grammar for typeexpressions because recursive types are de�nable using con-straints. Let �1 = �2 stand for the pair of constraints �1 � �2and �2 � �1. Then a constraint such as � = cons(�;�)[nil2true ! (zero?(true \ true)) [(succ(zero)?(true \ false)) =true! (zero?true)[(succ(zero)?0) = true! zero[0 = true!zero

has a unique solution which de�nes (given the usual inter-pretation of cons and nil) � to be all lists with elements oftype �.We assume the set of type constructors includes con-stants such as zero, true, false, and nil, a unary construc-tor succ, and a binary constructor cons. We separate trueand false (resp. nil and cons) from the more conventionaltype bool (resp. list) in order to assign more precise typesto expressions.4 Type InferenceA type inference system for L is given in Figure 2. Asso-ciated with every conclusion is a set of assumptions A anda set of type constraints S. The rules prove sentences ofthe form \A;S ` e : �", which should be read \if the freevariables of e have the types given by assumptions A, then ehas type �(�) for any solution � of the constraints S." Thatis, the conclusion holds only for solutions of S.We briey explain the inference rules in Figure 2. Therule [VAR] is standard: given the assumption x : � onecan prove x : �. The rule [STRUCT] says that the type of aconstruction is the construction of the component types. Fornullary constructors such as true, the scheme in [STRUCT]simpli�es to an axiom A;S ` true : true (recall that aconstructor name is used both in values and types). In the[APP] rule, if �3 ! �4 is a superset of the type for e1 and �3is a superset of the type for e2, then �4 is a type for e1 e2.To simplify presentation of the [CASE] rule, we introducetwo auxiliary functions for patterns. The set of all variablesin pattern p is V (p). The type p is the set of all values thatcan match the pattern p:x = 1 x as p = p c(p1; : : : ; pn) = c(p1; : : : ; pn)For example, the pattern cons(x;y) matches any cons pair.This fact is captured by cons(x; y) = cons(1; 1).For an expression case e of p1 : e1; : : : ; pn : en, the rule[CASE] takes as hypotheses a type � for e, a type �i foreach ei, and a type � 0i for each pi. The type �i appears inthe conclusion of the rule in the disjunct �i?(� \ pi). Thus,�i is included in the result type if there is something in �matching pi. Otherwise, if � \ pi = 0 then this branch3

A [fx : �g; S ` x : � [V AR]A;S ` ei : �i 1 � i � nA;S ` c(e1; : : : ; en) : c(�1; : : : ; �n) [STRUCT]A [fx : �1g; S ` e : �2A;S ` �x:e : �1 ! �2 [ABS]A;S ` e1 : �1; e2 : �2A;S [f�2 � �3; �1 � �3 ! �4g ` e1 e2 : �4 [APP]A;S ` x : �1; p : �2A;S ` x as p : �1 \ �2 [AS]A;S ` e : �A [fx : �xjx 2 V (p1)g; S ` e1 : �1; p1 : � 01...A [fx : �xjx 2 V (pn)g; S ` en : �n; pn : � 0nA;S [f� � S1�i�n � 0ig ` case e of p1 : e1; : : : ; pn : en :S1�i�n �i?(� \ pi) [CASE]A;S ` e1 : � A [fx : �g; S ` e2 : �A;S ` let x = e1 in e2 : � [LET]A;S ` e : � and Sol (S) 6= ; and �1; : : : ; �n not free in AA; ; ` e : 8�1; : : : ; �n:� where S [GEN]A;S ` e : 8�1; : : : ; �n:� where S0A;S [S0[�i=�i] ` e : � [�i=�i] [INST]Figure 2: Type inference rules.4

fx : �; y : 1g; ; ` x : �fx : �g; ; ` �y:x : 1! �` �x:�y:x : �! 1! �(a) The K combinator. fy : trueg; ; ` y : truefy : trueg; ; ` zero : zerofy : trueg; ; ` succ(zero) : succ(zero)fy : trueg; ; ` case y of true : zero; false : succ(zero) : zero` �y:case y of true : zero; false : succ(zero) : true! zero` true : true` (�y:case y of true : zero; false : succ(zero)) true : zero(b) An example using case.Figure 3: Examples of well-typed expressions.of the case cannot be taken and �i?(� \ pi) = �i?0 = 0.The constraint � � S1�i�n � 0i serves two purposes. First,it ensures that the set of case branches is an exhaustiveanalysis of the type � . Second, this constraint propagatestype information about e to the types of the variables in theei. Finally, the rules [LET], [GEN], and [INST] are stan-dard except for the use of subsidiary constraints in [GEN]and [INST]. The following lemma shows that the inferencesystem is sound.Lemma 4.1 (Soundness) Let A;S ` e : �, let � be anysolution of the constraints S, and let E be an environmentfor the free variables of e such that if E(x) = vx and x :�x 2 A, then vx 2 �(�x). Then �(e;E) 2 �(�).De�nition 4.2 A program is an L expression with no freevariables.Corollary 4.3 Let e be program and let ;; ; ` e : �. Then�(e; ;) 2 �.The sentence ;; ; ` e : � is abbreviated ` e : �. Recallthat wrong 62 � for any type � (Section 3). The followingcorollary is immediate.Corollary 4.4 If ` e : � then �(e; ;) 6= wrong.A program e is well-typed if ` e : �. Figure 3a givesa proof that the K combinator is well-typed. Figure 3bis a more complex example involving a case expression.In Figure 3b, some types have been simpli�ed. For in-stance, by rule [CASE] the �rst conclusion is zero?(true \true) [succ(zero)?(false\true), but this is zero?true [succ(zero)?0 = zero. In addition, we have elided the con-straints, which are all vacuously true in this proof. For in-stance, by rule [CASE] there is a constraint true � true [false in the �rst conclusion, but this always holds, and sohas the same solutions as the empty set of constraints.The inference system in Figure 2 is a very powerful statictype system and may be of interest in its own right. In ourapplication, the reason for having such a powerful system isto make the set of well-typed programs as large as possible,because any program that is well-typed requires no run-timetype checking. To make a convincing case for using this typeinference system with a dynamically typed language, thereare still three things that need to be explained. In the rest ofthis section, we show that the set of well-typed programs isin fact very large. This shows that many programs pass the

type checker without modi�cation. In Section 5, we showthat the type constraints can be solved|this shows that it isdecidable whether or not a program is well-typed. Finally,in Section 7 we explain how dynamic type checks can beinserted into ill-typed programs to make them well-typed;this guarantees that every program can be modi�ed to passthe type checker.It is important to know the \size" of the set of well-typedprograms. If the set is small, than the type inference systemis not of much practical interest. We do not have an exactcharacterization of the set of well-typed programs, but thefollowing two lemmas show that the set is very large.Lemma 4.5 A lambda term is a program without construc-tors or case. Every lambda term is well-typed.The Hindley/Milner type inference system [16] is used inmost functional languages. We write `HM e : � if e has type� in the Hindley/Milner system. Lemma 4.6 shows that allprograms well-typed in the Hindley/Milner system are alsowell-typed in our system.Lemma 4.6 If `HM e : � then ` e : �.5 Computing TypesIn this section we discuss an algorithm that derives types inthe logic given in Figure 2. We do this in two steps: �rst,we prove that expressions have minimal types in this logic.We then show that the minimal type is computable.De�nition 5.1 A program e has minimal type � i� ` e : �and for any �0, if ` e : �0 then � � �0.Minimal types are related to, but not the same as, princi-pal types [7]. Principal types are de�ned syntactically, withthe usual de�nition being that � is a principal type for eif ` e : � and if for any other type �0 such that ` e : �0,the type �0 is a substitution instance of �. In the Hind-ley/Milner system the two notions coincide, so that a typeis principal if and only if it is minimal in the ideal model.Thus, in this instance minimal types are simply the seman-tic counterpart of principal types. In our system, programshave minimal types but may not have principal types (e.g.,because many type expressions denote the same type).A minimal type is the smallest derivable type in the se-mantic model. To prove that programs have minimal types,we introduce the notion of a most general type derivation.5

let Y = �u:(�x:(�w:(u (x x)) w) (�w:(u (x x)) w) inlet last = Y �f:�x:case x ofcons(y;nil) : ycons(u; v as cons(a; b)) : f vin let a = last cons(zero; cons(zero; cons(zero;nil))) inlast cons(true; cons(false; cons(a;nil)))Figure 4: Taking the last element of a list.De�nition 5.2 A most general type derivation satis�es:1. Every type assumption has the form x : � where � isa distinct type variable.2. In every use of the [APP] rule the types �3 and �4 arefresh type variables.3. In every let x = e in e0, the [GEN] rule is applied onceto quantify as many type variables as possible in thetype of e.4. The [GEN] rule is applied in the last step of the entiretype derivation to quantify over all type variables.5. The [INST] rule is applied immediately after uses ofthe rule [VAR] to eliminate any quanti�ed variables.Fresh type variables are substituted for the quanti�edvariables.6. The [GEN] and [INST] rules are applied nowhere elsein the derivation.It is easy to check that the restrictions in De�nition 5.2specify a unique derivation up to renaming of type variables.Lemma 5.3 shows that the minimal type of a program is theone generated by a most general derivation.Lemma 5.3 If ` e : � by a most general derivation, then �is the minimal type for e.To obtain an e�ective type inference procedure, the onlymissing link is an algorithm to solve the type inclusion con-straints generated in a most general derivation. We makeuse of the following theorem.Theorem 5.4 It is decidable whether systems of properconstraints have solutions. Furthermore, all solutions canbe exhibited [3].The constraints generated by a most general derivationare proper, with an extension to handle conditional types,which are not treated in [3]. A de�nition of proper con-straints and the extension for conditional types are given inAppendix B.6 ExamplesIn this section we present two examples illustrating the powerof our type inference system. The �rst example is an imple-mentation of the Lisp car function, which returns the �rstcomponent of a cons when applied to a cons, nil whenapplied to nil, and goes wrong for any other argument.let car = �x:case x of cons(y; z) : y; nil : nil incar cons(zero;nil)

Our system reports that car cons(zero;nil) : zero. Theinteresting aspect of this example is the type of car, whichillustrates the role of conditional types in our system. Thetype inferred for car is8�; �;: �! (�?(� \ cons(1; 1))) [(nil?(� \ nil))where f� � cons(�;) [nilgIf we let � = cons(zero; 1), � = zero, and = 1, thenthis type has instance cons(zero; 1) ! zero. Thus, theapplication has type zero; this is also the minimal type. Inaddition to handling the distinction between cons and nilaccurately, the inferred type for car is completely accurateeven for heterogeneous lists, since only the type of the headof the list is relevant. For example, our system also reportsthat car cons(zero; cons(true;nil)) : zero.A more substantial example is given in Figure 4, whichde�nes a recursive function last that selects the last elementof a list. Note that a Y combinator is used for recursion be-cause L has no special syntax for declaring recursive func-tions. The particular version of Y used here is one appro-priate for a strict language such as L . The function lastis used polymorphically in two places: once with a list ofzero and once with a heterogeneous list consisting of somebooleans followed by zero.This expression illustrates some of the di�culties of per-forming automatic type inference in a dynamically typedlanguage such as Lisp or Scheme. The program contains notype declarations|everything must be inferred. The pro-gram uses higher-order, recursive, polymorphic functions.The function last works for any heterogeneous list of atleast length one; for any other input value, it goes wrong.Control-ow analysis is required to make distinctions be-tween what last does with the last element of the list andall other elements of the list. The expression in Figure 4means zero. Our algorithm infers that this expression hastype zero. Therefore, it is well-typed and no run-time typechecking is required.The key to proving this expression is well-typed is thetype for last. The minimal type of last computed by oursystem is:8�:X ! � where fX = cons(1; X) [cons(�;nil)gIn this example we have rewritten the type of last producedby our system to an equivalent, but more readable, form.The type X is the set of all lists of length at least one endingin �. Because of the polymorphic let, the two uses of last aretyped separately using distinct instances of the type above.In the �rst instance last has typeX 0 ! zero where fX 0 = cons(1;X 0) [cons(zero;nil)g6

The result type zero is the type of the variable a. Since thesecond application of last is to a list with last element a, thisinstance is also assigned the type X 0 ! zero. The type ofthe application (and of the whole expression) is then zero.7 Inserting Dynamic Type ChecksRecall that an expression e is well-typed if ` e : �. If e isill-typed then it cannot be said whether or not e makes arun-time type error. In a dynamically typed language, it isnot reasonable to reject ill-typed programs, because no typeconstraints are imposed on programs. Instead, it is neces-sary to add dynamic type checks to the program to makeit well-typed. To make an ill-typed program well-typed weinsert functions called narrowers [6] in certain places. Anarrower performs a run-time check and returns a value in-dicating whether or not the check succeeded. A narrowerCheckX is de�ned for every monotype X. The meaning ofCheckX is CheckX v = � v if v 2 X? otherwiseCheckX is the identity on X and ? elsewhere. Thus, CheckX\narrows" the set of possible values of the input to X. Thetype of CheckX is 8�:�! � \X.From Figure 2 and De�nition 5.2 there are three kindsof constraints in a most general derivation:� � � from [APP] (1)� � �! � from [APP] (2)� � Si � 0i from [CASE] (3)In a most-general derivation, constraints of form (1) are sat-is�ed by the assignment � = 1. Thus, only constraints (2)and (3) may be inconsistent and result in an ill-typing. Con-straint (2) guarantees that e1 is a function in an applicatione1 e2. Constraint (3) guarantees that all possible values ofe are covered by the case analysis in case e of : : :.The following lemma shows that by inserting narrowersin all applications and case expressions, any program can bemade well-typed. In other words, there is at least one wayto add enough dynamic type checking to guarantee that aprogram makes no run-time type errors.Lemma 7.1 Let e be a program and let e0 be e modi�ed asfollows:1. Replace every application e1 e2 by (Check1!1 e1) e2.2. Replace every case e of p1 : e1; : : : ; pn : en bycase (CheckX e) of p1 : e1; : : : ; pn : en whereX =S1�i�n pi.Then e0 is well-typed.Lemma 7.1 gives one very conservative way of insertingdynamic checks. To minimize the run-time overhead of dy-namic type checking, our system attempts to minimize thenumber of checks inserted. This is done performing some ex-tra bookkeeping in constraint solving, so that it is possible totell which constraints of forms (2) and (3) are violated in anill-typed program. The following trivial example illustratesthe idea. The type derivation for the ill-typed application(true false) generates the constraints:false � � true � �! �

The constraints are inconsistent since true 6� �! �. There-fore, a dynamic type check is required on the application.The expression is modi�ed to ((Check1!1 true) false). It iseasy to verify that the modi�ed program is well-typed andthat its minimal type is 0, thereby proving that its meaningis ?.The rest of this section describes how inconsistent con-straints are detected by the implementation; this is the \ex-tra bookkeeping" mentioned above. In fact, checking whichconstraints of forms (2) and (3) are violated is done by solv-ing an extended system of constraints. The extended con-straints always have at least one solution, so the constraintsolver is guaranteed to terminate successfully. By exam-ining the solutions of this extended system of constraints,it is possible to determine conservatively which constraintsof forms (2) and (3) are violated in the original constraintsystem.The de�nition of the extended constraints requires theintroduction of the type :X, the complement of type X.De�nition 7.2 :X is the largest type such that:X \X = 0.The type :X is unique, so :X is well-de�ned. Also, con-straints involving negated types can be solved; for detailssee [3]. As an example, the type :(1! 1) is the type of allnon-functions, which is Sc2C c(1; : : : ; 1) where C is the setof all data constructors.Consider the application constraint true � �! � fromthe example above. This constraint is inconsistent (has nosolutions) because the right-hand side can contain at mostthe set of all functions. To modify this constraint so that italways has a solution, an error term is added to the right-hand side to include those values that result in run-timeerrors. The modi�ed constraint istrue � (�! �) [(\ :(1! 1))This constraint is satis�able, since if � = � = = 1 thenthe right-hand is 1. In addition, by setting the error variable = 0 the error term drops out and the original constraintis recovered. The intuition is that the error term allows forall (and only) the values that may cause a run-time error.The error variable makes it possible to distinguish be-tween solutions where there are no run-time errors (= 0)and solutions that may admit run-time errors (6= 0). Forexample, the constraint above implies that true � . Thus,there is no solution where = 0, which implies that theoriginal constraint is inconsistent.In general, the extended constraints include constraintsof form (1) and modi�cations of forms (2) and (3):� � �! � [(\ :(1! 1)) (20)� � (Si � 0i) [(\ :Si � 0i) (30)In each case the error term covers exactly those values thatmay cause a run-time error. These constraints are properand can be solved using the algorithm in [3]. In addition,these constraints always have a solution (e.g., let all vari-ables be 1; then the right-hand side of every constraint is1). Let S be an extended system of constraints generatedfrom a program e. After solving the constraints, each errorvariable is considered in turn. If the system S [f = 0ghas a solution, then the constraint = 0 is added to S. Inthis case, the original constraint (without the error term)7

05101520
2530

0 500 1000 1500 2000 2500 3000Seconds Program Size
Program Size vs Elapsed Time �

��� ����� ����� ��� ��� � �� � � �� ���� �� �� �� ��� �� ��� �� �� ��� � �� ���� � �� �� �� ��� � ��� �� �Figure 5: Performance results.must be satis�able, since setting = 0 in a constraint withan error term recovers the original constraint. It is easy toshow that in this case, no run-time check is required for theprogram phrase of e associated with the constraint. If thereis no solution of the system S[f = 0g, then the appropriaterun-time check is added to e and S is not changed. Notethat the case where all error variables are replaced by 0corresponds to a well-typed program.8 ImplementationThere are two implementations of the type inference algo-rithm presented here: one for L and one for FL [5], a dy-namically typed, higher-order functional language based onBackus' FP [4]. The implementation of type inference forL is small (about 100 lines of Lisp code). The implementa-tion for FL is considerably larger (about 1000 lines of Lispcode), reecting the increased complexity of FL, in which itis necessary to deal with exceptions, side-e�ects from I/O,and a rich set of primitive functions. Both implementationsare functional programs built on top of an implementationof a constraint solver for type inclusion constraints.The implementation for FL has been extensively testedon a diverse suite of about 80 FL programs, which rangefrom small utilities (e.g., sort) to modules of several hundredlines of code (e.g., a general I/O package). Figure 5 givesperformance results for the test suite. Program \size" inthis �gure is the number of nodes in the program's parsetree. This is a more relevant measure than lines of code,since the number of parse tree nodes corresponds to thenumber of steps in a type derivation. For the test suiteprograms, the number of lines of code is anywhere betweena factor of 2 and 10 less than the number of parse tree nodes.For example, escher implements a simple graphics language;escher has 278 lines of FL code, which translates into 2770parse tree nodes. All experiments were done on an unloadedIBM RS/6000 running Lucid Common Lisp. The times in

Figure 5 are total elapsed times.The implemented algorithm for solving systems of typeconstraints requires exponential time in the worst case. FromFigure 5, however, it is clear that in practice the complexitydoes not grow rapidly for realistic-sized modules, and theabsolute speed is fast enough to be useful. Memory require-ments are moderate, with a maximum of 5MB allocatedfor any example in the test suite. We have not measuredthe maximum amount of live data, but it is certainly muchsmaller than 5MB.This level of performance is not trivial to achieve|anaive implementation is unusable even for small programs.We have relied heavily on a number of simple optimizationsthat improve the performance of the constraint solver by or-ders of magnitude [1]. In the current implementation, onlyabout 10% of the time is spent solving constraints. Themajority of the time is spent simplifying the representationof type expressions and determining where dynamic typechecks should be inserted. Further performance improve-ments should be possible, as this portion of the system hasnot been tuned extensively.9 Related WorkThis section compares our work with a wide variety of re-lated work. The coverage of each proposal is necessarilybrief.9.1 Type Inference SystemsA number of type inference systems for dynamically-typedlanguages have been proposed. Gomard's system adds tothe Hindley/Milner type system an unde�ned type [10] andthen uses a minor variation of the Hindley/Milner type as-signment algorithm. The type unde�ned represents a valuefor which nothing is statically known, which is the same role8

played by the type 1 in our system. Without other type op-erators, the types assigned by Gomard's system are not veryprecise, and as a result many dynamic type checks have tobe added to make programs well-typed.Another generalization of the Hindley/Milner system ispartial types. In partial types, the type 1 is added to theusual Hindley/Milner types, but there is a di�erent type as-signment algorithm [14]. Partial types have the same limitedexpressive power as Gomard's system, and again the typesassigned are not very precise.Closest in spirit to our own work is soft typing [6]. In[6], Cartwright and Fagan set out criteria that they feel anytyping algorithm for dynamically typed languages shouldmeet and provide an algorithm meeting those criteria. Thetyping algorithm generates type constraints that must besolved. The constraints are not solved directly; they are �rstencoded in a special representation in which circular uni�-cation is used to obtain representations of solutions, whichare then decoded back to types.We feel our approach also meets the criteria in [6] for asoft typing system, while providing a simpler formalism anda more accurate type assignment algorithm. Our approachis simpler because we deal directly with the type constraints,without any intermediate encoding. With respect to accu-racy, the algorithm in [6] does include union types, functiontypes, and parametric polymorphism. It does not have inter-section types or conditional types, and unions types are re-stricted to be discriminative (disjuncts in unions must havedistinct outermost constructors).At the present time we do not know how our methodcompares to that of [6] in practice. In future work we hopeto make some empirical measurements of the strengths andweaknesses of both systems.Outside the realm of dynamically typed languages, Fuhand Mishra [9] and Mitchell [18] have given algorithms fortype inference with subtypes. Neither approach incorpo-rates union types, parametric polymorphism, or conditionaltypes. The subtyping algorithm of [17] has limited unionand intersection types, but no function types. Also relatedto our work are the re�nement types of Freeman and Pfen-ning [8]. Re�nement types include union and intersectiontypes, but not conditional types.For each of the systems listed above, it is immediatelyapparent that our type language is more expressive, andwith the exceptions of [6, 8] it is relatively easy to proveformally that our algorithm infers types that are at least asaccurate. We believe such a proof is also possible with re-spect to the algorithm in [6], although a formal proof wouldbe tedious to write down. Currently we do not know theexact relationship of our system to that of [8].The greatest qualitative jump in accuracy in our systemcomes from the ability to encode control-ow analysis ofcase expressions; using conditional types, we are able toconstrain the type of the branch of a case to reect thepossible values that could match the pattern. This abilityis crucial to giving accurate types to many programs and itis not found in any of the systems above.9.2 Constraints over Regular TreesSeveral analysis techniques for dynamically typed languageshave been based on solving equations over sets of regulartrees. Reynolds proposes a method for analyzing Lisp pro-grams [19]. This is the �rst and only other use of condi-tional types of which we are aware. Jones and Muchnick

propose a di�erent analysis system based on solving equa-tions over sets of regular trees [13], which is used not onlyto eliminate dynamic type checks but also to reduce refer-ence counting. Recently Wang and Hil�nger have proposedan analysis method based on tree grammars [23]. Since agrammar X ::= X1 j : : : jXnis, by a small twist of perspective, a constraintX = X1 [: : : [Xnthis algorithm also falls into the general class of constraintsystems over regular trees.The common weakness of these approaches is that theyare inherently �rst-order (no function types) and monomor-phic. Furthermore, none of these techniques take advantageof control-ow information. One feature found in [13, 19] isthe use of projections c�1(c(X;Y)) = X to model selectorfunctions. We do not have projections in our type language,but a selector can be assigned a function type c(X;Y)! Xinstead.9.3 Abstract InterpretationWe are aware of two systems based on abstract interpreta-tion that have been implemented. Shivers proposes a typerecovery system for Scheme [20]. The algorithm is a clas-sical abstract interpretation with a number of features de-signed speci�cally for type inference in dynamically typedprograms. Most notably the system includes a mechanismfor constraining the types of the branches of a conditionalusing information about the predicate.The system of Aiken and Murphy is a predecessor tothe one presented here. In [2], an analysis algorithm basedon abstract interpretation combined with constraint solv-ing over sets of regular trees is described. Essentially, theabstract interpretation is used to generate constraints thatmust be solved. The constraint language has no functiontypes, intersection types are restricted, and there are noconditional types. Like Shiver's algorithm, this algorithmperforms an ad hoc analysis to constrain the types of thebranches of a conditional using the type of the predicate.Based on several years experience with the implementa-tion of [2], we have come to the conclusion that there aretwo serious problems with techniques such as these. First,in these works (as in most work on abstract interpretation)there is an implicit assumption that the entire program isavailable for compilation at once, which is unrealistic. Ourtype inference algorithm, on the other hand, is a compo-sitional, bottom-up algorithm. This makes it amenable touse in an environment that supports separately compiledmodules.Second, while it is easy to prove that these techniquesare correct, it is di�cult to prove anything useful about thequality of the information the algorithms compute. Thus,it is very di�cult for a programmer to predict for whichprograms the analysis performs well. Removing dynamictype checks makes enough di�erence in performance thatprogrammers need a chance to understand the type inferencesystem. Our algorithm is su�ciently declarative that wecan give at least some guidance (Lemmas 4.5 and 4.6) toprogrammers who need to write e�cient code.9

9.4 Dynamic TypingHenglein proposes an algorithm for dynamic typing that re-moves both dynamic type checks and dynamic tags [12].Since our algorithm does not deal with type tags (in fact, weassume all values are tagged) our techniques do not subsumethose in [12]. On the other hand, our algorithm removesmore dynamic type checks than the dynamic typing algo-rithm, which is monomorphic, has no intersection or uniontypes, and performs no control-ow analysis. Thus, the twoalgorithms are incomparable and to some extent aimed atdi�erent problems.References[1] Aiken, A., and Murphy, B. Implementing regulartree expressions. In Proceedings of the 1991 Conferenceon Functional Programming Languages and ComputerArchitecture (Aug. 1991), pp. 427{447.[2] Aiken, A., and Murphy, B. Static type inference ina dynamically typed language. In Eighteenth AnnualACM Symposium on Principles of Programming Lan-guages (Jan. 1991), pp. 279{290.[3] Aiken, A., and Wimmers, E. Type inclusion con-straints and type inference. In Proceedings of the 1993Conference on Functional Programming Languages andComputer Architecture (Copenhagen, Denmark, June1993), pp. 31{41.[4] Backus, J. Can programming be liberated from thevon Neumann style? A functional style and its algebraof programs. Commun. ACM 21, 8 (Aug. 1978), 613{641.[5] Backus, J., Williams, J. H., Wimmers, E. L., Lu-cas, P., and Aiken, A. The FL language manualparts 1 and 2. Tech. Rep. RJ 7100 (67163), IBM, 1989.[6] Cartwright, R., and Fagan, M. Soft typing. In Pro-ceedings of the ACM SIGPLAN '91 Conference on Pro-gramming Language Design and Implementation (June1991), pp. 278{292.[7] Damas, L., and Milner, R. Principle type-schemesfor functional programs. In Ninth Annual ACM Sympo-sium on Principles of Programming Languages (1982),pp. 207{212.[8] Freeman, T., and Pfenning, F. Re�nement types forML. In Proceedings of the ACM SIGPLAN '91 Confer-ence on Programming Language Design and Implemen-tation (June 1991), ACM Press, pp. 268{277.[9] Fuh, Y., and Mishra, P. Type inference with sub-types. In Proceedings of the 1988 European Symposiumon Programming (1988), pp. 94{114.[10] Gomard, C. Partial type inference for untyped func-tional programs (extended abstract). In Proceedings ofthe 1990 ACM Conference on Lisp and Functional Pro-gramming (1990), pp. 282{287.[11] Heintze, N. Set Based Program Analysis. PhD thesis,Carnegie Mellon University, 1992.

[12] Henglein, F. Dynamic typing. In Proceedings of the1992 ACM Conference on Lisp and Functional Pro-gramming (July 1992), pp. 205{215.[13] Jones, N. D., and Muchnick, S. S. Flow analysisand optimization of LISP-like structures. In Sixth An-nual ACM Symposium on Principles of ProgrammingLanguages (Jan. 1979), pp. 244{256.[14] Kozen, D., Palsberg, J., and Schwartzbach, M. I.E�cient inference of partial types. In Foundations ofComputer Science (Oct. 1992), pp. 363{371.[15] MacQueen, D., Plotkin, G., and Sethi, R. Anideal model for recursive polymophic types. In EleventhAnnual ACM Symposium on Principles of Program-ming Languages (Jan. 1984), pp. 165{174.[16] Milner, R. A theory of type polymorphism in pro-gramming. J. Comput. Syst. Sci. 17 (1978), 348{375.[17] Mishra, P., and Reddy, U. Declaration-free typechecking. In Proceedings of the Twelfth Annual ACMSymposium on the Principles of Programming Lan-guages (1985), pp. 7{21.[18] Mitchell, J. Coercion and type inference (summary).In Eleventh Annual ACM Symposium on Principles ofProgramming Languages (Jan. 1984), pp. 175{185.[19] Reynolds, J. C. Automatic Computation of Data SetDe�nitions. Information Processing 68. North-Holland,1969, pp. 456{461.[20] Shivers, O. Control ow analysis in scheme. In Pro-ceedings of the ACM SIGPLAN '88 Conference on Pro-gramming Language Design and Implementation (June1988), pp. 164{174.[21] Thatte, S. Type inference with partial types. InAutomata, Languages and Programming: 15th Interna-tional Colloquium (July 1988), Springer-Verlag LectureNotes in Computer Science, vol. 317, pp. 615{629.[22] Tofte, M. Operational Semantics and PolymorphicType Inference. PhD thesis, University of Edinburgh,1987.[23] Wang, E., and Hilfinger, P. N. Analysis of recursivetypes in Lisp-like languages. In Proceedings of the 1992ACM Conference on Lisp and Functional Programming(June 1992), pp. 216{225.A ProofsProof: [of Lemma 4.1] This is an easy induction on thestructure of the proof that A;S ` e : �. 2Proof: [of Lemma 4.5] For lambda terms, type constraintsare introduced only by the [APP] rule. From Figure 2, theconstraints are �2 � �3�1 � �3 ! �4Let �3 = �4 = x where x is the solution of the equationx = x ! x. Let e be a lambda term. By induction on the10

structure of the type derivation for e it is easy to check thatthis assignment satis�es the constraints for e. Therefore eis well-typed. 2Proof: [of Lemma 4.6] The usual Hindley/Milner rules canbe expressed in our notation. Except for the [APP] and[CASE] rules, the rules in Figure 2 either are Hindley/Milnerrules ([VAR], [STRUCT], [ABS], and [LET]) or di�er onlysuper�cially ([GEN] and [INST]). The Hindley/Milner [APP]rule is: A;S ` e1 : �1; e2 : �2A;S [f�2 = �3; �1 = �3 ! �4g ` e1 e2 : �4The Hindley/Milner [CASE] rule is:A;S ` e : �A [fx : �xjx 2 V (p1)g; S ` e1 : �1; p1 : � 01...A [fx : �xjx 2 V (pn)g; S ` en : �n; pn : � 0nA;S [f� = � 01 = : : : = � 0n; �1 = : : : = �ng` case e of p1 : e1; : : : ; pn : en : �1Since equality is a special case of containment, it is clear thatthe Hindley/Milner [APP] rule is a special case of the rulein Figure 2. Similarly, the constraints in the Hindley/Milner[CASE] rule are a restriction of the constraints in the [CASE]rule in Figure 2. Therefore, if `HM e : � then ` e : � . 2Proof: [of Lemma 5.3] The type � generated by a mostgeneral derivation has the form 8�1; : : : ; �n:� where S. It iseasy to show that for any other typing ` e : �0, �0 is equal to8�1; : : : ; �n:� where S0 such that Sol (S0) � Sol (S). Sincethe meaning of the quanti�ed types is the intersection of themeaning of � in all solutions of the constraints (Section 3),it follows that � � �0. 2Proof: [of Lemma 7.1] Let �(�) = 1 for all variables �.To show that e0 is well-typed, it su�ces to show that � is asolution for the type constraints in a most general derivationfor e0.Consider uses of rule [APP]. Every application in e0 hasthe form (Check1!1 e1) e2. For constraints of form (1), wehave �(�) � 1 = �(�). Now consider constraints of form (2).If e1 : � , then the type of Check1!1 guarantees that the typeof Check1!1 e1 has the form � \ (1! 1). It follows that�(� \ (1! 1)) � 1! 1 = �(�! �)so the type constraint is satis�ed.Consider uses of rule [CASE]. In e0, every case expressionhas the form case CheckX(e) of p1 : e1; : : : ; pn : en whereX = S1�i�n pi. If e : � , then the type of CheckX(e) is� \S1�i�n pi. It is also easy to check that in a most generalderivation, if pi : � 0i then �(� 0i) = pi. Now we have that�(� \ [1�i�n pi) � [1�i�n pi = �([1�i�n � 0i)and so the type constraint is satis�ed. 2

B Proper ConstraintsWe briey explain the main result of [3] and then presentthe extension to conditional types. A proper type expressionis either an R (for right) or an L (for left) type as de�nedby the following grammar:L ::= 0 j 1 j� j c(L1; : : : ; Ln) jR! L jL1 \ L2 jL1 [L2R ::= 0 j 1 j� j c(R1; : : : ; Rn) jL! R jR1 \R2 jR1 [R2The following restrictions are placed on R and L types. Inan L type L1\L2, L2 must be both a monotype and upward-closed. A type X is upward-closed if X = fyjy � x 2 X�f?gg. In an R type R1[R2, it must be the case that R1\R2 = 0in all assignments of the variables in R1 and R2.The de�nitions of L and R types rule out certain formsof constraints for which it is not known how to perform con-straint resolution. The problematic cases are an intersectionon the left (i.e., L1\L2 � R1) and a union on the right (i.e.,L1 � R1 [R2). Thus, L types restrict intersections (on theleft-hand sides of constraints) and R types restrict unions(on the right-hand sides of constraints).A proper system of constraints has the form fLi � Rig.In [3], an algorithm is given for solving proper systems ofconstraints. To extend the result of [3] to include conditionaltypes, we extend the de�nition of L types:L ::= 0 j 1 j� j c(L1; : : : ; Ln) jR! L jL1\L2 jL1[L2 jL1?L2To show that proper systems with conditional types can besolved, it is su�cient to show how to decompose a constraintof the form L1?L2 � R into smaller constraints while pre-serving the set of solutions. From the semantics of ?-typesit follows thatfL1?L2 � Rg � fL1 � Rg _ fL2 � 0gwhere � means that the two sides have the same set ofsolutions and _ means the union of the solutions of the twosystems. The new constraints L1 � R and L2 � 0 both havethe correct form L � R. Finally, the constraints generated ina most general derivation (De�nition 5.2) are proper underthe extended de�nition.
11

