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Abstract

Probabilistic topic models are a suite of algorithms whose aim is to discover the
hidden thematic structure in large archives of documents. In this article, we review the
main ideas of this field, survey the current state-of-the-art, and describe some promising
future directions. We first describe latent Dirichlet allocation (LDA) [8], which is the
simplest kind of topic model. We discuss its connections to probabilistic modeling,
and describe two kinds of algorithms for topic discovery. We then survey the growing
body of research that extends and applies topic models in interesting ways. These
extensions have been developed by relaxing some of the statistical assumptions of LDA,
incorporating meta-data into the analysis of the documents, and using similar kinds
of models on a diversity of data types such as social networks, images and genetics.
Finally, we give our thoughts as to some of the important unexplored directions for
topic modeling. These include rigorous methods for checking models built for data
exploration, new approaches to visualizing text and other high dimensional data, and
moving beyond traditional information engineering applications towards using topic
models for more scientific ends.

1 Introduction

As our collective knowledge continues to be digitized and stored—in the form of news, blogs,
web pages, scientific articles, books, images, sound, video, and social networks—it becomes
more difficult to find and discover what we are looking for. We need new computational tools
to help organize, search and understand these vast amounts of information.

Right now, we work with online information using two main tools—search and links. We
type keywords into a search engine and find a set of documents related to them. We look at
the documents in that set, possibly navigating to other linked documents. This is a powerful
way of interacting with our online archive, but something is missing.

Imagine searching and exploring documents based on the themes that run through them. We
might “zoom in” and “zoom out” to find specific or broader themes; we might look at how
those themes changed through time or how they are connected to each other. Rather than
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finding documents through keyword search alone, we might first find the theme that we are
interested in, and then examine the documents related to that theme.

For example, consider using themes to explore the complete history of the New York Times. At
a broad level some of the themes might correspond to the sections of the newspaper—foreign
policy, national affairs, sports. We could zoom in on a theme of interest, such as foreign
policy, to reveal various aspects of it—Chinese foreign policy, the conflict in the Middle East,
the United States’s relationship with Russia. We could then navigate through time to reveal
how these specific themes have changed, tracking, for example, the changes in the conflict in
the Middle East over the last fifty years. And, in all of this exploration, we would be pointed
to the original articles relevant to the themes. The thematic structure would be a new kind
of window through which to explore and digest the collection.

But we don’t interact with electronic archives in this way. While more and more texts are
available online, we simply do not have the human power to read and study them to provide
the kind of browsing experience described above. To this end, machine learning researchers
have developed probabilistic topic modeling, a suite of algorithms that aim to discover and
annotate large archives of documents with thematic information. Topic modeling algorithms
are statistical methods that analyze the words of the original texts to discover the themes that
run through them, how those themes are connected to each other, and how they change over
time. (See, for example, Figure 3 for topics found by analyzing the Yale Law Journal.) Topic
modeling algorithms do not require any prior annotations or labeling of the documents—the
topics emerge from the analysis of the original texts. Topic modeling enables us to organize
and summarize electronic archives at a scale that would be impossible by human annotation.

2 Latent Dirichlet allocation

We first describe the basic ideas behind latent Dirichlet allocation (LDA), which is the
simplest topic model [8]. The intuition behind LDA is that documents exhibit multiple topics.
For example, consider the article in Figure 1. This article, entitled “Seeking Life’s Bare
(Genetic) Necessities,” is about using data analysis to determine the number of genes that an
organism needs to survive (in an evolutionary sense).

By hand, we have highlighted different words that are used in the article. Words about
data analysis, such as “computer” and “prediction,” are highlighted in blue; words about
evolutionary biology, such as “life” and “organism”, are highlighted in pink; words about
genetics, such as “sequenced” and “genes,” are highlighted in yellow. If we took the time
to highlight every word in the article, you would see that this article blends genetics, data
analysis, and evolutionary biology with different proportions. (We exclude words, such as
“and” “but” or “if,” which contain little topical content.) Furthermore, knowing that this
article blends those topics would help you situate it in a collection of scientific articles.

LDA is a statistical model of document collections that tries to capture this intuition. It is
most easily described by its generative process, the imaginary random process by which the
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gene     0.04
dna      0.02
genetic  0.01
.,,

life     0.02
evolve   0.01
organism 0.01
.,,

brain    0.04
neuron   0.02
nerve    0.01
...

data     0.02
number   0.02
computer 0.01
.,,

Topics Documents Topic proportions and
assignments

Figure 1: The intuitions behind latent Dirichlet allocation. We assume that some
number of “topics,” which are distributions over words, exist for the whole collection (far left).
Each document is assumed to be generated as follows. First choose a distribution over the
topics (the histogram at right); then, for each word, choose a topic assignment (the colored
coins) and choose the word from the corresponding topic. The topics and topic assignments
in this figure are illustrative—they are not fit from real data. See Figure 2 for topics fit from
data.

model assumes the documents arose. (The interpretation of LDA as a probabilistic model is
fleshed out below in Section 2.1.)

We formally define a topic to be a distribution over a fixed vocabulary. For example the
genetics topic has words about genetics with high probability and the evolutionary biology
topic has words about evolutionary biology with high probability. We assume that these
topics are specified before any data has been generated.1 Now for each document in the
collection, we generate the words in a two-stage process.

1. Randomly choose a distribution over topics.

2. For each word in the document

(a) Randomly choose a topic from the distribution over topics in step #1.

(b) Randomly choose a word from the corresponding distribution over the vocabulary.

This statistical model reflects the intuition that documents exhibit multiple topics. Each
document exhibits the topics with different proportion (step #1); each word in each document

1Technically, the model assumes that the topics are generated first, before the documents.
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Figure 2: Real inference with LDA. We fit a 100-topic LDA model to 17,000 articles
from the journal Science. At left is the inferred topic proportions for the example article in
Figure 1. At right are the top 15 most frequent words from the most frequent topics found in
this article.

is drawn from one of the topics (step #2b), where the selected topic is chosen from the
per-document distribution over topics (step #2a).2

In the example article, the distribution over topics would place probability on genetics,
data analysis and evolutionary biology, and each word is drawn from one of those three
topics. Notice that the next article in the collection might be about data analysis and
neuroscience; its distribution over topics would place probability on those two topics. This
is the distinguishing characteristic of latent Dirichlet allocation—all the documents in the
collection share the same set of topics, but each document exhibits those topics with different
proportion.

As we described in the introduction, the goal of topic modeling is to automatically discover
the topics from a collection of documents. The documents themselves are observed, while
the topic structure—the topics, per-document topic distributions, and the per-document
per-word topic assignments—are hidden structure. The central computational problem for
topic modeling is to use the observed documents to infer the hidden topic structure. This
can be thought of as “reversing” the generative process—what is the hidden structure that
likely generated the observed collection?

Figure 2 illustrates example inference using the same example document from Figure 1.
Here, we took 17,000 articles from Science magazine and used a topic modeling algorithm to
infer the hidden topic structure. (The algorithm assumed that there were 100 topics.) We

2We should explain the mysterious name, “latent Dirichlet allocation.” The distribution that is used to
draw the per-document topic distributions in step #1 (the cartoon histogram in Figure 1) is called a Dirichlet
distribution. In the generative process for LDA, the result of the Dirichlet is used to allocate the words of the
document to different topics. Why latent? Keep reading.
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Figure 3: A topic model fit to the Yale Law Journal. Here there are twenty topics (the top
eight are plotted). Each topic is illustrated with its top most frequent words. Each word’s
position along the x-axis denotes its specificity to the documents. For example “estate” in
the first topic is more specific than “tax.”

then computed the inferred topic distribution for the example article (Figure 2, left), the
distribution over topics that best describes its particular collection of words. Notice that this
topic distribution, though it can use any of the topics, has only “activated” a handful of them.
Further, we can examine the most probable terms from each of the most probable topics
(Figure 2, right). On examination, we see that these terms are recognizable as terms about
genetics, survival, and data analysis, the topics that are combined in the example article.

We emphasize that the algorithms have no information about these subjects and the articles
are not labeled with topics or keywords. The interpretable topic distributions arise by
computing the hidden structure that likely generated the observed collection of documents.3

For example, Figure 3 illustrates topics discovered from Yale Law Journal. (Here the number
of topics was set to be twenty.) Topics about subjects like genetics and data analysis are
replaced by topics about discrimination and contract law.

The utility of topic models stems from the property that the inferred hidden structure
resembles the thematic structure of the collection. This interpretable hidden structure
annotates each document in the collection—a task that is painstaking to perform by hand—
and these annotations can be used to aid tasks like information retrieval, classification, and

3Indeed calling these models “topic models” is retrospective—the topics that emerge from the inference
algorithm are interpretable for almost any collection that is analyzed. The fact that these look like topics has
to do with the statistical structure of observed language and how it interacts with the specific probabilistic
assumptions of LDA.
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corpus exploration.4 In this way, topic modeling provides an algorithmic solution to managing,
organizing, and annotating large archives of texts.

2.1 LDA and probabilistic models

LDA and other topic models are part of the larger field of probabilistic modeling. In generative
probabilistic modeling, we treat our data as arising from a generative process that includes
hidden variables. This generative process defines a joint probability distribution over both
the observed and hidden random variables. We perform data analysis by using that joint
distribution to compute the conditional distribution of the hidden variables given the observed
variables. This conditional distribution is also called the posterior distribution.

LDA falls precisely into this framework. The observed variables are the words of the
documents; the hidden variables are the topic structure; and the generative process is as
described above. The computational problem of inferring the hidden topic structure from the
documents is the problem of computing the posterior distribution, the conditional distribution
of the hidden variables given the documents.

We can describe LDA more formally with the following notation. The topics are β1:K , where
each βk is a distribution over the vocabulary (the distributions over words at left in Figure 1).
The topic proportions for the dth document are θd, where θd,k is the topic proportion for
topic k in document d (the cartoon histogram in Figure 1). The topic assignments for the
dth document are zd, where zd,n is the topic assignment for the nth word in document d (the
colored coin in Figure 1). Finally, the observed words for document d are wd, where wd,n is
the nth word in document d, which is an element from the fixed vocabulary.

With this notation, the generative process for LDA corresponds to the following joint
distribution of the hidden and observed variables,

p(β1:K , θ1:D, z1:D, w1:D) (1)

=
K∏
i=1

p(βi)
D∏

d=1

p(θd)
(∏N

n=1 p(zd,n | θd)p(wd,n | β1:K , zd,n)
)
.

Notice that this distribution specifies a number of dependencies. For example, the topic
assignment zd,n depends on the per-document topic proportions θd. As another example,
the observed word wd,n depends on the topic assignment zd,n and all of the topics β1:K .
(Operationally, that term is defined by looking up which topic zd,n refers to and looking up
the probability of the word wd,n within that topic.)

These dependencies define LDA. They are encoded in the statistical assumptions behind the
generative process, in the particular mathematical form of the joint distribution, and—in a
third way—in the probabilistic graphical model for LDA. Probabilistic graphical models provide

4See, for example, the browser of Wikipedia built with a topic model at http://www.sccs.swarthmore.
edu/users/08/ajb/tmve/wiki100k/browse/topic-list.html.
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Figure 4: The graphical model for latent Dirichlet allocation. Each node is a random
variable and is labeled according to its role in the generative process (see Figure 1). The
hidden nodes–the topic proportions, assignments and topics—are unshaded. The observed
nodes—the words of the documents—are shaded. The rectangles are “plate” notation, which
denotes replication. The N plate denotes the collection words within documents; the D plate
denotes the collection of documents within the collection.

a graphical language for describing families of probability distributions.5 The graphical model
for LDA is in Figure 4. These three representations are equivalent ways of describing the
probabilistic assumptions behind LDA.

In the next section, we describe the inference algorithms for LDA. However, we first pause to
describe the short history of these ideas. LDA was developed to fix an issue with a previously
developed probabilistic model probabilistic latent semantic analysis (pLSI) [21]. That model
was itself a probabilistic version of the seminal work on latent semantic analysis [14], which
revealed the utility of the singular value decomposition of the document-term matrix. From
this matrix factorization perspective, LDA can also be seen as a type of principal component
analysis for discrete data [11, 12].

2.2 Posterior computation for LDA

We now turn to the computational problem, computing the conditional distribution of the
topic structure given the observed documents. (As we mentioned above, this is called the
posterior.) Using our notation, the posterior is

p(β1:K , θ1:D, z1:D |w1:D) =
p(β1:K , θ1:D, z1:D, w1:D)

p(w1:D)
. (2)

The numerator is the joint distribution of all the random variables, which can be easily
computed for any setting of the hidden variables. The denominator is the marginal probability
of the observations, which is the probability of seeing the observed corpus under any topic
model. In theory, it can be computed by summing the joint distribution over every possible
instantiation of the hidden topic structure.

5The field of graphical models is actually more than a language for describing families of distributions. It
is a field that illuminates the deep mathematical links between probabilistic independence, graph theory, and
algorithms for computing with probability distributions [35].
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That number of possible topic structures, however, is exponentially large; this sum is
intractable to compute.6 As for many modern probabilistic models of interest—and for much
of modern Bayesian statistics—we cannot compute the posterior because of the denominator,
which is known as the evidence. A central research goal of modern probabilistic modeling
is to develop efficient methods for approximating it. Topic modeling algorithms—like the
algorithms used to create Figure 1 and Figure 3—are often adaptations of general-purpose
methods for approximating the posterior distribution.

Topic modeling algorithms form an approximation of Equation 2 by forming an alternative
distribution over the latent topic structure that is adapted to be close to the true posterior.
Topic modeling algorithms generally fall into two categories—sampling-based algorithms and
variational algorithms.

Sampling based algorithms attempt to collect samples from the posterior to approximate
it with an empirical distribution. The most commonly used sampling algorithm for topic
modeling is Gibbs sampling, where we construct a Markov chain—a sequence of random
variables, each dependent on the previous—whose limiting distribution is the posterior. The
Markov chain is defined on the hidden topic variables for a particular corpus, and the algorithm
is to run the chain for a long time, collect samples from the limiting distribution, and then
approximate the distribution with the collected samples. (Often, just one sample is collected
as an approximation of the topic structure with maximal probability.) See [33] for a good
description of Gibbs sampling for LDA, and see http://CRAN.R-project.org/package=lda

for a fast open-source implementation.

Variational methods are a deterministic alternative to sampling-based algorithms [22, 35].
Rather than approximating the posterior with samples, variational methods posit a parame-
terized family of distributions over the hidden structure and then find the member of that
family that is closest to the posterior.7 Thus, the inference problem is transformed to an
optimization problem. Variational methods open the door for innovations in optimization to
have practical impact in probabilistic modeling. See [8] for a coordinate ascent variational
inference algorithm for LDA; see [20] for a much faster online algorithm (and open-source soft-
ware) that easily handles millions of documents and can accommodate streaming collections
of text.

Loosely speaking, both types of algorithms perform a search over the topic structure. The
collection of documents (the observed random variables in the model) are held fixed and serve
as a guide towards where to search. Which approach is better depends on the particular topic
model being used—we have so far focused on LDA, but see below for other topic models—and
is a source of academic debate. For a good discussion of the merits and drawbacks of both,
see [1].

6More technically, the sum is over all possible ways of assigning each observed word of the collection to
one of the topics. Document collections usually contain observed words at least on the order of millions.

7Closeness is measured with Kullback-Leibler divergence, an information theoretic measurement of the
distance between two probability distributions.
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3 Research in topic modeling

The simple LDA model provides a powerful tool for discovering and exploiting the hidden
thematic structure in large archives of text. However, one of the main advantages of
formulating LDA as a probabilistic model is that it can easily be used as a module in
more complicated models for more complicated goals. Since its introduction, LDA has been
extended and adapted in many ways.

3.1 Relaxing the assumptions of LDA

LDA is defined by the statistical assumptions it makes about the corpus. One active area
of topic modeling research is how to relax and extend these assumptions to uncover more
sophisticated structure in the texts.

One assumption that LDA makes is the “bag of words” assumption, that the order of the
words in the document does not matter. (To see this note that the joint distribution of
Equation 1 remains invariant to permutation of the words of the documents.) While this
assumption is unrealistic, it is reasonable if our only goal is to uncover the course semantic
structure of the texts.8 For more sophisticated goals—such as language generation—it is
patently not appropriate. There have been a number of extensions to LDA that model words
nonexchangeably. For example, [36] developed a topic model that relaxes the bag of words
assumption by assuming that the topics generate words conditional on the previous word; [18]
developed a topic model that switches between LDA and a standard HMM. These models
expand the parameter space significantly, but show improved language modeling performance.

Another assumption is that the order of documents does not matter. Again, this can be seen
by noticing that Equation 1 remains invariant to permutations of the ordering of documents
in the collection. This assumption may be unrealistic when analyzing long-running collections
that span years or centuries. In such collections we may want to assume that the topics
change over time. One approach to this problem is the dynamic topic model [5]—a model
that respects the ordering of the documents and gives a richer posterior topical structure
than LDA. Figure 5 shows a topic that results from analyzing all of Science magazine under
the dynamic topic model. Rather than a single distribution over words, a topic is now a
sequence of distributions over words. We can find an underlying theme of the collection and
track how it has changed over time.

A third assumption about LDA is that the number of topics is assumed known and fixed.
The Bayesian nonparametric topic model [34] provides an elegant solution: The number
of topics is determined by the collection during posterior inference, and furthermore new
documents can exhibit previously unseen topics. Bayesian nonparametric topic models have
been extended to hierarchies of topics, which find a tree of topics, moving from more general
to more concrete, whose particular structure is inferred from the data [3].

8As a thought experiment, imagine shuffling the words of the article in Figure 1. Even when shuffled, you
would be able to glean that the article has something to do with genetics.
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Figure 5: Two topics from a dynamic topic model. This model was fit to Science from
(1880–2002). We have illustrated the top words at each decade.

There are still other extensions of LDA that relax various assumptions made by the model.
The correlated topic model [6] and pachinko allocation machine [24] allow the occurrence
of topics to exhibit correlation (for example a document about geology is more likely to
also be about chemistry then it is to be about sports); the spherical topic model [28] allows
words to be unlikely in a topic (for example, “wrench” will be particularly unlikely in a topic
about cats); sparse topic models enforce further structure in the topic distributions [37]; and
“bursty” topic models provide a more realistic model of word counts [15].

3.2 Incorporating meta-data

In many text analysis settings, the documents contain additional information—such as author,
title, geographic location, links, and others—that we might want to account for when fitting
a topic model. There has been a flurry of research on adapting topic models to include
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meta-data.

The author-topic model [29] is an early success story for this kind of research. The topic
proportions are attached to authors; papers with multiple authors are assumed to attach
each word to an author, drawn from a topic drawn from his or her topic proportions. The
author-topic model allows for inferences about authors as well as documents. Rosen-Zvi et al.
show examples of author similarity based on their topic proportions—such computations are
not possible with LDA.

Many document collections are linked—for example scientific papers are linked by citation or
web pages are linked by hyperlink—and several topic models have been developed to account
for those links when estimating the topics. The relational topic model of [13] assumes that
each document is modeled as in LDA and that the links between documents depend on the
distance between their topic proportions. This is both a new topic model and a new network
model. Unlike traditional statistical models of networks, the relational topic model takes into
account node attributes (here, the words of the documents) in modeling the links.

Other work that incorporates meta-data into topic models includes models of linguistic
structure [10], models that account for distances between corpora [38], and models of named
entities [26]. General purpose methods for incorporating meta-data into topic models include
Dirichlet-multinomial regression models [25] and supervised topic models [7].

3.3 Other kinds of data

In LDA, the topics are distributions over words and this discrete distribution generates
observations (words in documents). One advantage of LDA is that these choices for the topic
parameter and data-generating distribution can be adapted to other kinds of observations
with only small changes to the corresponding inference algorithms. As a class of models, LDA
can be thought of as a mixed-membership model of grouped data—rather than associate each
group of observations (document) with one component (topic), each group exhibits multiple
components with different proportions. LDA-like models have been adapted to many kinds
of data, including survey data, user preferences, audio and music, computer code, network
logs, and social networks. We describe two areas where mixed-membership models have been
particularly successful.

In population genetics, the same probabilistic model was independently invented to find
ancestral populations (e.g., originating from Africa, Europe, the Middle East, etc.) in the
genetic ancestry of a sample of individuals [27]. The idea is that each individual’s genotype
descends from one or more of the ancestral populations. Using a model much like LDA,
biologists can both characterize the genetic patterns in those populations (the “topics”) and
identify how each individual expresses them (the “topic proportions”). This model is powerful
because the genetic patterns in ancestral populations can be hypothesized, even when “pure”
samples from them are not available.

LDA has been widely used and adapted in computer vision, where the inference algorithms
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are applied to natural images in the service of image retrieval, classification, and organization.
Computer vision researchers have made a direct analogy from images to documents. In
document analysis we assume that documents exhibit multiple topics and a collection of
documents exhibits the same set of topics. In image analysis we assume that each image
exhibits a combination of visual patterns and that the same visual patterns recur throughout
a collection of images. (In a preprocessing step, the images are analyzed to form collections
of “visual words.”) Topic modeling for computer vision has been used to classify images [16],
connect images and captions [4], build image hierarchies [2, 23, 31] and other applications.

4 Future directions

Topic modeling is an emerging field in machine learning, and there are many exciting new
directions for research.

Evaluation and model checking. There is a disconnect between how topic models are
evaluated and why we expect topic models are useful. Typically, topic models are evaluated
in the following way. First, hold out a subset of your corpus as the test set. Then, fit a
variety of topic models to the rest of the corpus and approximate a measure of model fit
(e.g., probability) for each trained model on the test set. Finally, choose the the model that
achieves the best held out performance.

But topic models are often used to organize, summarize and help users explore large corpora,
and there is no technical reason to suppose that held-out accuracy corresponds to better
organization or easier interpretation. One open direction for topic modeling is to develop
evaluation methods that match how the algorithms are used. How can we compare topic
models based on how interpretable they are?

This is the model checking problem. When confronted with a new corpus and a new task,
which topic model should I use? How can I decide which of the many modeling assumptions
are important for my goals? How should I move between the many kinds of topic models that
have been developed? These questions have been given some attention by statisticians [9, 30],
but they have been scrutinized less for the scale of problems that machine learning tackles.
New computational answers to these questions would be a significant contribution to topic
modeling.

Visualization and user interfaces. Another promising future direction for topic
modeling is to develop new methods of interacting with and visualizing topics and corpora.
Topic models provide new exploratory structure in large collections—how can we best exploit
that structure to aid in discovery and exploration?

One problem is how to display the topics. Typically, we display topics by listing the most
frequent words of each (see Figure 2), but new ways of labeling the topics—either by choosing
different words or displaying the chosen words differently—may be more effective. A further
problem is how to best display a document with a topic model. At the document-level,
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topic models provide potentially useful information about the structure of the document.
Combined with effective topic labels, this structure could help readers identify the most
interesting parts of the document. Moreover, the hidden topic proportions implicitly connect
each document to the other documents (by considering a distance measure between topic
proportions). How can we best display these connections? What is an effective interface to
the whole corpus and its inferred topic structure?

These are user interface questions, and they are essential to topic modeling. Topic modeling
algorithms show much promise for uncovering meaningful thematic structure in large collec-
tions of documents. But making this structure useful requires careful attention to information
visualization and the corresponding user interfaces.

Topic models for data discovery. Topic models have been developed with information
engineering applications in mind. As a statistical model, however, topic models should be
able to tell us something, or help us form a hypothesis, about the data. What can we learn
about the language (and other data) based on the topic model posterior? Some work in this
area has appeared in political science [19], bibliometrics [17] and psychology [32]. This kind
of research adapts topic models to measure an external variable of interest, a difficult task
for unsupervised learning which must be carefully validated.

In general, this problem is best addressed by teaming computer scientists with other scholars
to use topic models to help explore, visualize and draw hypotheses from their data. In
addition to scientific applications, such as genetics or neuroscience, one can imagine topic
models coming to the service of history, sociology, linguistics, political science, legal studies,
comparative literature, and other fields where texts are a primary object of study. By working
with scholars in diverse fields, we can begin to develop a new interdisciplinary computational
methodology for working with and drawing conclusions from archives of texts.

5 Summary

We have surveyed probabilistic topic models, a suite of algorithms that provide a statistical
solution to the problem of managing large archives of documents. With recent scientific
advances in support of unsupervised machine learning—flexible components for modeling,
scalable algorithms for posterior inference, and increased access to massive data sets—topic
models promise to be an important component for summarizing and understanding our
growing digitized archive of information.
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