
Fast and Scalable Method for Resolving Anomalies in Firewall Policies

Hassan Gobjuka Kamal A. Ahmat
Verizon Department of Information Technology

919 Hidden Ridge City University of New York
Irving, TX 75038 New York, NY 11101

hasan.gobjuka@verizon.com kamal.ahmat@live.lagcc.cuny.edu

Abstract
In this paper, we investigate the problem of improving

the performance and scalability of large firewall policies
that comprise thousands of rules by detecting and re-
solving any potential conflicts among them. We present
a novel, highly scalable data structure that requires O(n)
space where n is the number of rules in the policy
to represent the dependency among rules. After that,
we describe a practical heuristic that utilizes our data
structure to find conflicting rules, and consequently find
an optimal ordering of consistent ones. Our algorithm
has time complexity O(n2 log n), making it the fastest
to-date known algorithm for firewall rule anomaly dis-
covery and resolution. We validate the practicality of
our algorithm through real-life firewall policies and
synthetic firewall policies of large data. Performance
results show that our heuristic algorithm achieves from
40% to 87% improvement in the number of comparisons
overhead, comparatively with the original policies.

I. Introduction

The proliferation and advancement of the network tech-
nologies have not only facilitated the work of legitimate
organizations, but also the activity of criminals and
other malefactors. The plenty of opportunities, provided
by the World Wide Web, make the network attacks
a daily routine. The nature of firewall makes it the
only tool to effectively control the flow of traffic and
detect suspicious behavior of the installed applications.
Firewalls are the bastions, protecting the workstations
and networks from the outside intrusion.

Unlike other security software, firewalls have no
database of virus signatures, which makes them ef-
fective protection against the applications disguised as
the legitimate ones. As a rule, firewalls have at least
two modes, perhaps more, which either blocks the
connection or selectively allows the traffic going in and
out. When filtering the traffic firewall acts in accordance

with the custom rules added to its configuration, which
practically describe the packets to be blocked and the
ones to be let in. The assembly of firewall rules is
referred to as policy.

Firewall policies are mainly created on the individual
basis, often the rules have different moments: some
grant access for certain applications, others for IPs and
protocols, third ones make accessible the certain ports,
etc. Once written, the policy is experiencing a con-
stant modification, which becomes painstaking with the
course of time. The number of rules in a policy increases
constantly which doesn’t only raise serious scalability
and performance issues, but also highly increases the
probability of inconsistency among these rules [2], [12].

The anomalies have double effect: on the one hand,
they can compromise organization for letting confiden-
tial information out, on the other hand, they expose the
network to external attacks, the consequences of which
are hard to predict [2], [5]. Despite the importance of
automating the process of discovering rule conflicts,
there are very few commercial platforms available on
the market today that offer tools for discovering and
eliminating anomalies in firewall policies.

In this paper, we investigate the problem of discov-
ering the set of troublesome rules in a large firewall
policy and consequently eliminating or resolving them
so that all the rules in the policy are consistent and can
be reordered to make them effectively and optimally
functional. We first present a novel data structure that
requires O(n) space where n is the number of rules
in the policy to represent the dependency among rules.
After that, we describe a practical heuristic that utilizes
our data structure to find conflicting rules, and conse-
quently find an optimal ordering of consistent rules. Our
algorithm has time complexity O(n2 log n), making
it not only very scalable, but also the fastest to-date
known algorithm for firewall rule anomaly discovery
and resolution. We validate the practicality of our algo-
rithm through real-life firewall policies and synthetic

This paper was presented as part of the 14th IEEE Global Internet Symposium (GI) 2011 at IEEE INFOCOM 2011

978-1-4244-9920-5/11/$26.00 ©2011 IEEE 839

firewall policies of large data and demonstrate that
our algorithm achieves from 40% to 87% improvement
in the number of comparisons overhead comparatively
with the original policies.

A. Related Work

Analyzing firewall policies has been extensively stud-
ied in the research community. In this section, we focus
our literature study on related research that is close to
our work in the areas of firewall rule conflict detection
and optimization analysis [1], [4], [6], [8] and [10].

In [6], the authors study Optimal Rule Ordering
(ORO) in a firewall policy. They prove that the ORO
problem is NP-hard. Then, they present a heuristic
algorithm that utilizes Internet traffic characteristics to
optimize the organization of firewall policies. Their
algorithm takes the rule list to be optimized as an input
and an optimization limit that represents an upper bound
on the total weight of the active rules. The algorithm
then sequentially selects rules based on the descending
order of weights. Each selected rule along with all
dependent rules are sorted and inserted in the sorted list
while maintaining the integrity of the policy. However,
this approach considers only partial set of rules that have
higher probability, which limits its practicality.

Al-Shaer et al. [1] identified the anomalies that could
exist in both single- and multi-firewall environments.
They also presented several algorithms based on state
diagrams to detect anomalies between each pair of rules
in centralized and distributed firewalls. A tool named
“Firewall Policy Advisor” was also implemented based
on their methods. However, this work doesn’t address
the problem of reordering rules.

Fulp [4] proposed a new method named Simple
Rule Sorting (SRS) for the optimal ordering of inde-
pendent neighboring firewall rules based on the non-
increasing probabilities. Their method is based on Direct
Acyclic Graph (DAG). They also showed that their pro-
posed methods yield in considerably better performance
comparing to unordered policies. However, this paper
considers independent rules and thus, it can be more
applicable to firewalls that handle smaller set of rules.

An all-match based method for discovering and elim-
inating identical redundant rules was described in [8].
The authors also described a formal proof that their
method removes all such redundant rules. The work
presented in [8] closes, generally, the problem of dis-
covering redundant rules.

Results presented here are most closely associated
with the techniques developed in [10]. However, there
are important differences between their and our meth-
ods. First, the algorithm presented in [10] has time
complexity O(n3) while the complexity of our algorithm

is O(n2 log n). Second, our algorithm also returns a set
of correlating rules.

B. Organization of the Paper

The rest of the paper is organized as follows. The
next section describes the system model used in this
paper and problem formulation. We subdivide Section
III into two subsections. First, in Subsection III-A we
describe a data structure that we designed to model
the rule dependencies. Then, in Subsection III-B we
present an algorithm to find the correct ordering of
rules and to discover and eliminate conflicting ones.
Our environment setup and experimental results are
described in Section IV. Finally, Section V concludes
the paper.

II. System Model and Problem Formula-
tion

In this section, we describe the firewall policy model
we adopt and present formal description of the problem
addressed in this paper. Then, we formally present the
problem addressed in this paper.

A. Firewall Rules and Policies

Firewalls control traffic by matching incoming pack-
ets against a set of rules grouped in policy files. Each
rule defines the parameters against which each connec-
tion is compared, resulting in a decision on what action
to take for each connection. As soon as a network packet
matches a rule, that rule is applied, and processing stops
[11], [12].

Definition 2.1: [FIREWALL-RULE]
A firewall rule r is an ordered set of seven attributes
r = (Protocol, source IP, source port, destination IP,
destination port, action, probability). ◻

While the first six attributes are self-descriptive, the
probability of each rule indicates the ratio of hits of
that rule against incoming packets. To improve the
performance and scalability in firewalls that handle large
number of incoming packets and maintain very large
policies, rules with higher probability are usually listed
on top of the policy so that the number of comparisons
is kept minimum.

Definition 2.2: [FIREWALL-POLICY]
A firewall policy P is an ordered list of rules P = (r1,
r2, . . ., rn). ◻

The two major anomalies in firewall rules are Shad-
owing and Correlating [1]. A rule is shadowed by an-
other rule when a preceding rule matches all the packets
that match the succeeding rule, and thus the succeeding
rule is never activated [1]. Consequently, there is an
implied precedence relationship - also known as rule
dependency - between rules to prevent the occurrence

840

Id Protocol Source Destination Action Probability

IP address Port IP address Port

r1 TCP 71.123.10.* any 10.0.0.1 21 permit 0.3

r2 TCP *.*.*.* any 10.0.0.1 21-23 deny 0.25

r3 TCP 71.*.*.* any 10.0.0.1 21 permit 0.15

r4 TCP 71.123.*.* any 10.0.0.1 21 deny 0.1

r5 TCP *.*.*.* any 10.0.0.1 23-25 permit 0.1

TABLE I
EXAMPLE SECURITY POLICY CONSISTING OF MULTIPLE ORDERED RULES.

of shadowing [4]. If rule rj shadows rule ri (denoted
ri ⊂ rj), then we use the notation ri ≺ rj to denote
the implied precedence of rule ri to rule rj . Ordering
rules based on their dependencies may conflict with the
goal of minimizing the number of comparisons [4]. It
is worth to note here that the shadowing relationship
is transitive. That is, if rule rk ⊂ rj and rj ⊂ ri, then
rk ⊂ ri. For example, consider the list of rules in Table
I1. It can be seen that rule r2 shadows rule r3 and rule
r3 shadows rule r4. Consequently, rule r2 shadows rule
r4 (r4 ⊂ r2).

Two rules are correlated if some packets match both
of the rules but none of the rules shadows the other, and
the action taken by these rules is different [1]. If two
rules are correlated, then one of them must be removed
from the policy or edited. We use the notion ri⋂ rj to
indicate the correlation between rules ri and rj . Note
that if ri⋂ rj , then both ri ≺ rj and rj ≺ ri hold. For
example, rules r2 and r5 from Table I are correlated.

In an optimal firewall policy, neither any pair of
rules correlate nor shadow each other. Consequently, we
define a valid policy as follows.

Definition 2.3: [VALID-POLICY]
A policy P = (r1, r2, r3, . . ., rn) is valid if and only
if, for any two rules {ri, rj} ∈ P :

1) Rule ri doesn’t shadow rule rj , and vice versa;
and

2) Rules ri and rj do not correlate.
◻

B. Problem Formulation

Given a policy comprising a set of rules, our goal
is to discover and eliminate troublesome rules and
find an ordered list of consistent ones while perform-
ing the minimum number of comparisons. Formally,
the AUTOMATIC-ANOMALY-RESOLVING problem
is defined as follows.

1To simplify the presentation, we don’t include the default rule.
However, that doesn’t affect the results presented in this paper.

Definition 2.4: [AUTOMATIC-ANOMALY-
RESOLVING]
Given a policy that comprises a list of rules P = (r1,
r2, . . ., rn), construct a policy P̀ ⊆ P such that P̀ is
valid. ◻

III. Policy Conflict Detection Algorithm

In this section we first describe the data structure that we
use to represent dependencies among policy rules. Then,
we present our algorithm Policy-Anomaly-Discovery
that takes a policy and utilizes the dependency data
structure to find and eliminate anomalies returning a
list of validated policy.

A. Data Structure
The data structures that are used by the Policy-

Anomaly-Discovery algorithm are a directed graph D
and an undirected graph U . In the undirected graph U ,
each rule is represented as a node and each link repre-
sents the presence of dependency between connected
nodes (i.e. rules.) That is, if U doesn’t contain any
links, there is no dependency between any pair of rules,
and consequently, rules can be arbitrarily ordered. The
forehead mentioned situation is very unlikely in practice
but we stated it to clarify the context of the graph.
The directed graph D is used to represent the actual
dependency among rules. For each pair of rules ri and
rj , if ri ≺ rj , then there is node (j, i) ∈D. Furthermore,
for any two nodes (i, j) and (j, k) in graph D, there is
link ((i, j), (j, k)) ∈ D. Graphs U and D are formally
described as follows.
● D = (V̀ , A) where for each rk ≺ rj and rj ≺ ri,
{ri, rj , rk} ∈ P , nodes (ri, rj) and (rj , rk) are in
V̀ and edge (ri, rj) → (rj , rk) is in A.

● U = (V , E) with the vertex set V = {1, 2, . . ., n}
and where, for each rule node (ri, rj) ∈ D, nodes
ri and rj are in V , and edge (ri, rj) is in E.

Since the dependency relationship is transitive, if
graph D contains edge (ri, rj) → (rj , rk), then the
dependency of rule ri on rule rk is represented by that

841

edge and consequently, node (ri, rk) can be removed
from D. Thus, in such cases, edge (i, k) is not included
in graph U . We call nodes that has outdegree 0 in D as
terminal nodes, and all other nodes as non−terminal
nodes.

To illustrate the structures of U and D, consider again
the rules listed in Table I. It can be easily seen that the
set R of rule dependencies is as follows R = {(r1 ≺ r2),
(r1 ≺ r3), (r1 ≺ r4), (r1 ≺ r5), (r4 ≺ r2), (r4 ≺ r3),
(r4 ≺ r5), (r3 ≺ r2), (r3 ≺ r5), (r2 ≺ r5), (r5 ≺ r2)}. The
graphs D and U are shown in Figure 3(a). Observe that,
node (2,1) ∉ D and also edge (1,2) ∉ U . This is due
to the transitivity relationship between rules r1 and r2

(e.g. r1 ≺ r4 ≺ r2). Excluding transitive dependencies
simplifies the graph but it doesn’t affect the anomaly
discovery process.

During the anomaly detection and resolution course,
we use the term “Red Nodes” to refer to the terminal
nodes in graph D. Intuitively, we use the term “Red
Edges” to refer to links from graph U that correspond
to red nodes from D. Every non-red-edge from U is a
“Black Edge”. A “Black Path” is a set of consequent
black edges. A Connected Component CC is a subset
Ù ⊂ U such that every two nodes i and j from Ù are
connected by a “Black Path”. For instance, in the graph
U in Fig. 3(b) there are two connected components;
node 1 is a connected component, and nodes 2, 3, 4,
and 5 form another connected component.

B. Anomaly Detection Algorithm

1) The Discover-Connected-Components Proce-
dure: The Discover-Connected-Components proce-
dure receives as an input an instance of graph U . It
then systematically finds a red link (u, v) in U , assigns
nodes u and v to connected components Ci and Cj ,
respectively. It then recursively traverses the nodes that
are adjacent to both u and v and add them to Ci and
Cj , respectively, until the traversing process ends. At
this stage, either Ci and Cj are disjoint, which means
at least one new connected component has been created,
or Ci and Cj are in the same connected component. If
Ci and Cj are disjoint connected components, then the
red links are deleted from U and the set C of connected
components is updated. The formal description of the
Discover-Connected-Components procedure is given
in Fig. 1.

2) The Policy-Anomaly-Discovery Algorithm: The
algorithm Policy-Anomaly-Discovery starts by con-
structing graphs D and U as described in Section III-A.
After that, it iteratively finds terminal nodes in D and
colors them along with their corresponding edges in
U in red. Then, it calls the Discover-Connected-
Components procedure to find whether any new con-
nected components are created. If there is a newly

Algorithm Discover-Connected-Components(U)
Input: An undirected graph U
Output: Set of connected components C ∈ U
(∗ Returns connected components in U ∗)
1. set C ← ϕ;
2. for every red link (i, j) ∈ U
3. set Ci ← {i};
4. set Cj ← {j};
5. for every node k ∈ U
6. if there is a black path p(i, k)
7. set Ci ← Ci⋃ {k};
8. if there is a black path p(j, k)
9. set Cj ← Cj ⋃ {k};
10. if Ci = {i}
11. set C ← C⋃Ci;
12. if Cj = {j}
13. set C ← C⋃Cj ;
14. delete red links from U ;
15. return C;

Fig. 1. A formal description of the Discover-Connected-
Components procedure.

created connected component Ci such that Ci consists
of a single node u, then the rule corresponds to node u is
appended to end of validated policy P̀ . If more than one
connected component is created such that each of them
comprises one node, then all these nodes are appended
arbitrarily to the policy P̀ . After that, red nodes (along
with their incident links) and red links are deleted from
graphs D and U , respectively. This process is repeated
until D is empty and U has no edges, or until D doesn’t
contain any terminal nodes and the validated policy P̀
is returned. If the graph D is not empty but it doesn’t
contain any terminal nodes, then graph D contains a
set of correlating rules and the network manager must
take an action and edit some of them to eliminate the
anomaly. The formal description of algorithm Policy-
Anomaly-Discovery is given in Fig. 2.

To derive the time complexity of the Policy-
Anomaly-Discovery algorithm we first observe that
the construction of the data structures U and D is
proportional to the number of rules in the policy (i.e.
∣P ∣). To derive the complexity of Discover-Connected-
Components procedure, we observe that each non-
separable edge e is connected to vertices in the same
component. Since each new component is smaller than
previous ones, each vertex v is in a smaller connected
component for at most log n times. Thus, each edge e
is considered for at most 2log n times. Consequently,
the total cost of considering all non-separable edges is
O(n2 log n) such that n is the total number of rules.

Example 3.1: Consider the policy P that contains
the set of five rules defined in Table I. That is, P = {r1,

842

Algorithm Policy-Anomaly-Discovery(P)
Input: A set P of rules r1, r2, . . ., rn

Output: A set P̀ of ordered rules, and P of correlated
rules

(∗ Orders rules according to their dependencies ∗)
1. construct graphs U and D;
2. set P̀ ← ∅;
3. while D contains terminal nodes
4. for every terminal node v=(i, j) ∈D
5. do color v red;
6. do color link e=(i, j) ∈ U red;
7. C ← Discover-Connected-Components(U);
8. if C doesn’t contain new components
9. return “Rules conflict: ”, P ;
10. while C ≠ ∅
11. select node u randomly from C;
12. set P̀ ← P̀ ⋃ {ru};
13. set P ← P ∖ {ru};
14. return P̀ ;

Fig. 2. A formal description of the Policy-Anomaly-Discovery
algorithm.

r2, r3, r4, r5}. The algorithm will first construct the
initial graphs D and U as depicted in Figure 3(a). Nodes
(3, 1) and (4, 1) are terminals in D. Consequently, they
are colored along with their corresponding links in U
in red. The set C of connected components will be C
= {C1,C2} such that C1 = {1} and C2 = {2, 3, 4, 5}.
Since C1 is a newly formed component, the procedure
Discover-Connected-Components will traverse the
graph U and find that the component C1 contains one
node (i.e. 1). Thus, the rule r1 will be added as the first
rule to the validated policy P̀ . Then, nodes (3, 1) and (4,
1) and their corresponding links will be deleted from D
and U , prospectively. At this stage, graph D has three
terminal nodes (2, 4), (3, 4), and (5, 4). Consequently,
these nodes will be colored in red along with their
corresponding links in U as shown in Fig. 3(b). Since
node 4 comprises a new connected component in U , it
will be appended to the list P̀ and all red nodes and
links will be deleted from D and U , respectively. After
that, graph D contains two terminal nodes (2, 3) and (5,
3) so the algorithm will color these nodes along with
edges (2, 3) and (5, 3) in U in red and append rule 3
to P̀ as depicted in Fig. 3(c). Now, there is no terminal
node in D and graph U is not empty (Fig. 3(d)), which
indicates the presence of correlation anomaly between
rules 2 and 5. Thus, the algorithm will return partial list
of validated rules P̀ = {r1, r4, r3}, and set of correlating
rules P = {r2, r5}. ◻

Fig. 3. The data structures used in Example 3, (a) The initial graphs
D and U , (b) and (c) The data structures after the first and second
iterations, respectively, and (d) The correlation relationship between
rules 2 and 5.

IV. Implementation and Experimental Re-
sults

We implemented the algorithm described in this paper in
the context of Verizon Internet Security Suite’s Firewall
system using platform-independent C++. In this section,
we present our evaluation study of the scalability and
performance of our method. Given any firewall policy,
our algorithm builds the data structure presented in
this paper and computes the average dependency and
correlation values of each rule for analysis purposes.
To evaluate the performance of this algorithm, we
conducted two sets of experiential tests. In the first
set, we obtained measurements of original policies
for thirty-day period on five Verizon Internet Security
Suite’s firewalls and then ran our algorithm on the same
firewalls and obtained measurements for thirty days and
calculated average performance results for both sets.
In the second set, we conducted further stress tests on
synthetic firewall policies that have very large number
of rules. During the experiments, the correlating rules
returned by our algorithm were further sorted in non-

843

Test No. of Avg. Base Avg. Avg. Imp.

Rules Comp. Correlation Dependency Ratio

1 107 43.1 2.7 8.5 63.3%

2 361 87.2 1.4 2.2 47.2%

3 647 381.1 3.1 7.9 62.7%

4 881 341.6 3.3 6.4 71.2%

5 1385 715.3 3.8 6.7 74.8%

TABLE II
PERFORMANCE RESULTS FOR REAL-LIFE POLICIES.

increasing order according to their probabilities.
The implementation of our data structure is based

on the heap structure implementation described in [7],
which has O(n) space complexity, with substantial
modifications. The details are omitted due to space
constraints and will appear in the full version of the
paper.

To test the performance of our methods on real-life
policies, we deployed our implementation component
on five firewalls that were installed on distinct networks.
The five firewall policies consisted of 107, 361 , 647,
881, and 1316 rules, respectively. For the stress test,
we ran five test sets on very large policies. For each
test set, we generated the 50 policies of the same size
using Rovniagin and Wools [9] model of generating
firewall synthetic rules. Then, we submitted the policy
files to our component and calculated the average for
each test set. The performance results for both real
real-life policies and synthetic policies are shown in
Tables II and III, respectively. Obviously, the average
comparison numbers depend on the traffic type and
the complexity of rules. We observed that our method
improves the performance as the policy size increases
as well as when the average number of rule dependency
and correlation increase. It can be also clearly seen that
the performance ratio of our method is not affected by
the increasing number of anomalies, which validates the
high scalability and efficiency of our approach.

In general, we have discovered that our algorithm
is sufficiently fast and highly scalable for all practical
purposes. As can be seen in our results, the performance
improvement ratio was quite high and our method
helped in discovering many anomalies that were undis-
covered by network administrators in real-life policies.

V. Conclusion

Firewall rule anomaly discovery has been an active
research area in the past several years. However, the in-
creasing complexity of enterprise network applications
and services dictates a manifested need to find new

Test No. of Avg. Base Avg. Avg. Imp.

Rules Comp. Correlation Dependency Ratio

1 10K 4224 121.3 13.5 68.6 %

2 12.5K 5584 389.6 11.6 40.5 %

3 15K 8054 274.7 12.0 76.4 %

4 25.5K 14263 649.2 15.2 79.3 %

5 30K 17714 712.4 20.7 87.6 %

TABLE III
PERFORMANCE RESULTS FOR SYNTHETIC POLICIES.

directions and methods to improve the performance, re-
liability and scalability of firewalls. This paper presents
a fast and highly scalable approach for discovering
anomalies in firewall policies and resolving them. We
have implemented our method and validated its practi-
cality on both real-life as well as synthetically generated
firewall policies of very large sizes. The experimental
results support our theoretical analysis and show that
our proposed method doesn’t only scale very well but
also improves the performance of firewall performance
significantly.

References

[1] E. Al-Shaer and H. Hamed, Firewall Policy Advisor for Anomaly
Discovery and Rule Editing, IFIP/IEEE Eighth International
Symposium on Integrated Network Management, 2003, pp. 17-
30.

[2] C. Benecke, A Parallel Packet Screen for High Speed Networks,
In Proc. Proceedings of the 15th Annual Computer Security
Applications Conference (ACSAC ’99), 1999.

[3] F. Chen, A. X. Liu , J. Hwang , T. Xie, First Step Towards
Automatic Correction of Firewall Policy Faults, In Proceedings
of the 24th USENIX Large Installation System Administration
Conference (LISA), 2010.

[4] E. W. Fulp, Optimization of Network Firewall Policies using
Directed Acyclical Graphs, In Proc. IEEE Internet Management
Conference (IM ’05), 2005.

[5] S Goddard, An Unavailability Analysis of Firewall Sandwich
Configurations, In Proc. IEEE International Symposium on High
Assurance Systems Engineering, 2001.

[6] H. Hamed and E. Al-Shaer, On autonomic optimization of firewall
policy organization, J. High Speed Networks, Vol. 15, Issue 3,
2006, pp. 209-227.

[7] C. Lattner, V. Adve , Data Structure Analysis: A Fast and Scal-
able Context-Sensitive Heap Analysis, Tech. Report UIUCDCS-
R-2003-2340, Computer Science Dept., Univ. of Illinois at
Urbana-Champaign, 2003.

[8] A. Liu, C. R. Meiners, Y. Zhou, All-Match Based Complete
Redundancy Removal for Packet Classifiers in TCAMs, In Proc.
IEEE INFOCOM, 2008, pp. 574-582.

[9] D. Rovniagin, A. Wool, The geometric efficient matching algo-
rithm for firewalls, In Proc. of IEEE Convention of Electrical
and Electronics Engineers in Israel (IEEEI), 2004, pp. 153156.

[10] A. Tapdiya, E. W. Fulp, Towards Optimal Firewall Rule
Ordering Utilizing Directed Acyclical Graphs, In Proc. IEEE
ICCCN, 2009.

[11] R. L. Ziegler, Linux Firewalls, New Riders, Second Edition,
2002.

[12] E. D. Zwicky, S. Cooper, and D. B. Chapman, Building Internet
Firewalls , O’Reilly Media, Second Edition, 2000.

844

