
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Applied Soft Computing 11 (2011) 1427–1438

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

Radial basis function network based on time variant multi-objective particle
swarm optimization for medical diseases diagnosis

Sultan Noman Qasem ∗, Siti Mariyam Shamsuddin
Soft Computing Research Group, Faculty of Computer Science and Information System, Universiti Teknologi Malaysia, Skudai, 81310 Johor, Malaysia

a r t i c l e i n f o

Article history:
Received 18 November 2009
Received in revised form 26 February 2010
Accepted 28 April 2010
Available online 5 May 2010

Keywords:
Radial basis function network
Hybrid learning
Particle swarm optimization
Time variant multi-objective particle
swarm optimization
Multi-objective particle swarm
optimization
Elitist non-dominated sorting genetic
algorithm

a b s t r a c t

This paper proposes an adaptive evolutionary radial basis function (RBF) network algorithm to evolve
accuracy and connections (centers and weights) of RBF networks simultaneously. The problem of hybrid
learning of RBF network is discussed with the multi-objective optimization methods to improve classifi-
cation accuracy for medical disease diagnosis. In this paper, we introduce a time variant multi-objective
particle swarm optimization (TVMOPSO) of radial basis function (RBF) network for diagnosing the medical
diseases. This study applied RBF network training to determine whether RBF networks can be developed
using TVMOPSO, and the performance is validated based on accuracy and complexity. Our approach
is tested on three standard data sets from UCI machine learning repository. The results show that our
approach is a viable alternative and provides an effective means to solve multi-objective RBF network
for medical disease diagnosis. It is better than RBF network based on MOPSO and NSGA-II, and also
competitive with other methods in the literature.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Artificial Neural Networks (ANNs) have been developed in the
form of parallel-distributed network models based on the biologi-
cal learning process of the human brain. ANNs are computational
models inspired by a biological nervous system with applications in
science and engineering. Radial Basis Function (RBF) networks are
typed of ANNs, and they were introduced into the neural network
literature by Broomhead and Lowe [1]. RBF networks are moti-
vated by observation on the local response in biologic neurons.
Due to their better approximation capabilities, simpler network
structures and faster learning algorithms, RBF networks have cer-
tain advantages over other types of ANNs and have been widely
applied in many science and engineering fields. It has three layered
feed-forward and fully connected network, which uses RBFs as the
only nonlinearly in the hidden layer neurons. The output layer has
no nonlinearly and the connections of the output layer are only
weighted; the connections from the input to the hidden layer are
not weighted [2].

In recent years, there have been many studies in solving the
problem of ANN training and structure optimization. Most of
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them have been applied to feed-forward models. The study in [3]
provides a general framework for using evolutionary algorithms
for ANNs. Other authors have used single-objective evolutionary
algorithms to evolve a set of networks of different sizes in the
same population. In recent years, Pareto-based multi-objective
algorithms have proven to be more promising tools for training
and optimizing the size of a neural network. For example, multi-
objective approaches may force the search process to find a set of
optimal solutions instead of a single one. Furthermore, a Pareto-
based approach may be preferred to a linear weight aggregation
procedure since this last type of method may entail some unde-
sirable characteristics when combining different error measures
such as those mentioned in [4]. Considering the set of Pareto-based
multi-objective procedures [5,6], population-based ones might be
preferred since they may speed up the search and optimization
process.

Other studies attempted to use Pareto-based multi-objective
algorithms to evolve the structure of neural networks and train
them simultaneously. For example, the studies in [7,8] intro-
duce the use of multi-objectivity to coevolve ensembles to build
feed-forward networks. Liu and Kadirkamanathan [9] studied the
benefits of multi-objective optimization for identifying nonlinear
systems while optimizing the size of neural networks. In [10],
the authors provide one of the first approximations for optimiz-
ing the size and parameters of RBF networks. The study in [11]
extended this paper [10], using multi-objective optimization to
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find the best of radial basis function, number of hidden units,
centers and widths of RBF networks. Other approaches use the
Pareto-optimality criterion to train a multilayer perceptron, con-
sidering different error measures as objectives to be achieved [4].
In [12], the multi-objective method proposed includes differen-
tial evolution to find the optimal size of the hidden units and also
train the network for a single layer perceptron. The same author
improved his work in [13] with multi-objective ANNs (MPANN),
which are a multi-objective algorithm that combines Pareto-based
multi-objective algorithms with local search to optimize the num-
ber of hidden nodes and the perceptron training. In [14], MPANN is
applied to breast cancer diagnosis, and promising results have been
obtained. Abbass [15] studied the benefits of hybridizing Pareto-
based evolutionary algorithms with the back-propagation training
method. The same author also studied the improvement in net-
work performance using different formulations for multi-objective
optimization in [16].

Other authors have focused on the problem of multi-objective
optimization of feed-forward NNs as a solution for the regular-
ization problems in the network’s complexity [17]. In this case,
the optimization of the structure is carried out by minimizing the
number of network connections. The same authors extend these
ideas by including local search in the evolutionary process in [18]
and to improve the generalization capabilities of the networks
and their interpretability in [19,20]. Although, many authors offer
many competitive solutions for feed-forward networks, this is not
the case for RBF network, where hybrid learning in this network
increases the complexity.

Although there are few studies on the implementation of multi-
objective RBF network training, but research on training of RBF
network with multi-objective swarm intelligence is still new. This
section presents some existing work of training RBF network based
on Multi-Objective Evolutionary Algorithms (MOEAs).

In [21], a multi-objective (MOBJ) optimization algorithm has
been applied to the problem of inductive supervised learning
depended on smoothness based apparent complexity measure for
RBF networks. However, the computational complexity of the pro-
posed algorithm is high in comparison with other state-of-the-art
machine learning methods. A multi-objective genetic algorithm
based design procedure for the RBF network has been proposed
in [22]. A Hierarchical Rank Density Genetic Algorithm (HRDGA)
has been developed to evolve both the neural network’s topology
and its parameters simultaneously.

A method in which RBF network ensemble is constructed
from Pareto-optimal set obtained by multi-objective evolution-
ary computation has been proposed in [23]. Pareto-optimal set of
RBF networks has been acquired by multi-objective GA based on
three criteria; model complexity, representation ability, and model
smoothness. A new evolutionary algorithm, the RBF-Gene algo-
rithm, has been applied to optimize RBF networks [24]. Unlike other
works, the algorithm can evolve both from the structure and the
numerical parameters of the network: it can evolve the number of
neurons and their weights.

A study in [25] presented RBF network optimization from train-
ing examples as a multi-objective problem and an evolutionary
algorithm has been proposed to solve it. This algorithm incorpo-
rates mutation operators to guide the search for good solutions.
A method of obtaining Pareto-optimal RBF network set based on
multi-objective evolutionary algorithms has been proposed in [26].
On the other hand, Ferreira et al. [27] proposed a multi-objective
genetic algorithm for identification of RBF network couple models
of humidity and temperature in a greenhouse. Two combinations of
performance and complexity criteria were used to steer the selec-
tion of model structures, resulting in distinct sets of solutions.

Unlike previous studies, our approach deals with the problem
of RBF network hybrid learning (unsupervised learning and super-

vised learning) that shares with TVMOPSO. This mechanism evolves
toward Pareto-optimal front defined by several objective functions
with model accuracy and complexity. This proposed approach is
simple with faster convergence to Pareto-optimal solutions. In this
study, three benchmark data sets and two well-known MOEAs (i.e.,
MOPSO [35] and NSGA-II [34]) for RBF network are conducted. The
comparison with previous methods is implemented to examine
the efficiency and effectiveness of our proposed method. There are
two main advantages of the proposed method; first, the proposed
method can be applied to any real-world problem and second, it
shows better performance in terms of error, sensitivity, specificity
and accuracy for benchmark data sets. In other cases, the pro-
posed method still has acceptable performance and produces the
results that are comparable with the results produced by the exist-
ing methods. The better performance of the proposed method may
be attributed to all features i.e., mutation operator, diversity mea-
sure and the adaptive control parameters. In addition, our proposed
method is good not only in approximating the Pareto-optimal RBF
network, but also in terms of diversity of the solutions on the front.

The structure of this paper is organized as follows: Section 2
provides the Background Materials of the study, and follows by
the explanation on the RBFN-TVMOPSO in Section 3. Experimental
Results and Discussions are given in Section 4, and Conclusions are
drawn in Section 5.

2. Background materials

2.1. RBF network

RBF network is one of the most important ANN paradigms in
machine learning field. It is a feed-forward network with a single
layer of hidden units, called radial basis functions (RBFs). RBF out-
puts show the maximum value at its center point and decrease its
output value as the input leaves the center. Typically, the Gaus-
sian function is used for the activation function. The RBF network
is constructed with three layers: input layer, hidden layer and out-
put layer (Fig. 1). In input layer, the number of neurons is the same
with the number of input dimension. The input layer neuron will
transmit data to the hidden layer, and calculates a value of the RBFs
received from the input layer. These values will be transmitted to
the output layer which calculates the values of linear sum of the
hidden neuron. In this study, the Gaussian function is used as RBF
[10,11,21–28].

Let ˚j(x) be the jth radial basis function. ˚j(x) is represented as:

˚j(x) = exp

(
−
(

x − cj

)2

2�2
j

)
(1)

Here, x = (x1, x2,. . .,xd)T is the input vector, cj = (c1j, c2j,. . .,cdj)T and
�2

j
are the jth center vector and the width parameter, respectively.

The output of RBF network y which is the linear sum of radial basis
function, is given as follows:

y =
p∑

j=1

wj˚j(x), (2)

Fig. 1. Structure of RBF network.
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where y is the output of the RBF network, p is the number of the
hidden layer neuron, and wj is the weight from jth neuron to the
output layer.

To construct RBF network, the number of the hidden layer neu-
ron m must be set, and the centers cj, the widths �j and the weights
wj must be estimated. In RBF typical learning, the network structure
will be determined based on prior knowledge or the experiences of
experts. The parameters are estimated using either the clustering
or the least mean squared method. On the other hand, there are
approaches in which the network structure and its parameters are
estimated by the evolutionary computation [28,29].

2.2. Multi-Objective Optimization (MOO)

Many real-world problems involve simultaneous optimization
of several objective functions. Generally, these functions are non-
commensurable and often with conflicting objectives. MOO with
such conflicting objective functions gave rise to a set of optimal
solutions, instead of one optimal solution. The reason for the opti-
mality of many solutions is that no one can be considered to be
better than any other with respect to all objective functions. These
optimal solutions are known as Pareto-optimal solutions.

A general MOO problem consists of a number of objectives to
be optimized simultaneously and is associated with a number of
equality and inequality constraints. It can be formulated as follows:

Minimize/Maximize fi(x) i = 1, . . . , M

Subject to :

{
gj(x) = 0 j = 1, ..., N

hk(x) ≤ 0 k = 1, ..., K

(3)

where fi, gj and hk are the ith objective function, jth equality and
kth inequality constraints respectively, x is a decision vector that
represents a solution, and M, N and K are the number of objectives,
equality and inequality constraints.

For a MOO problem, any two solutions x1 and x2 can have one of
the two possibilities—one dominates the other or none dominates
the other. In a minimization problem, without loss of generality, a
solution x1 dominates x2 if the following two conditions are satis-
fied:

∀i ∈ {1, 2, ..., M} : fi(x1) ≤ fi(x2)

∃j ∈ {1, 2, ..., M} : fj(x1) ≺ fj(x2)
(4)

The operators ≤ and ≺ can be seen as the “less than or equal
to” and “less than” operators respectively. The solutions which
are not dominated by any other solutions are called the Pareto-
optimal solution or non-dominated solution. Generally, many
Pareto-optimal solutions exist. The set of Pareto-optimal solutions
is called Pareto-optimal front. A non-dominated set is required to
be near to the true Pareto front and distributed uniformly.

2.3. Time Variant Multi-Objective Particle Swarm Optimization
(TVMOPSO)

Particle Swarm Optimization (PSO) is a population-based
stochastic optimization technique developed by Kennedy and Eber-
hart in 1995 [30], inspired by social behavior of bird flocking or
fish schooling, in which each individual is treated as an infinites-
imal particle in the n-dimensional space, with the position vector
and velocity vector of particle i being represented as Xi(t) = (Xi1(t),
Xi2(t),. . ., Xin(t)) and Vi(t) = (Vi1(t), Vi2(t),. . ., Vin(t)). The particles
move according to the following equations:

Vid(t + 1) = W × Vid(t) + c1r1(Pid(t) − Xid(t)) + c2r2(Pgd(t) − Xid(t))

(5)

Xid(t + 1) = Xid(t) + Vid(t + 1), i = 1, 2, . . . , M; d = 1, 2, . . . , n,

(6)

where c1 and c2 are the acceleration coefficients, vector Pi = (Pi1,
Pi2,. . ., Pin) is the best previous position (the position giving the
best fitness value) of particle i known as the personal best position
(pbest), vector Pg = (Pg1, Pg2,. . ., Pgn) is the best position among the
personal best positions of the particles in the population and is
known as the global best position (gbest).

The parameters r1 and r2 are two random numbers distributed
uniformly in (0, 1). Generally, the value of Vid is restricted in the
interval [−Vmax, Vmax]. Inertia weight w, introduced by Shi and
Eberhart commonly used to accelerate the convergence speed of
the algorithm [31]. A particle swarm algorithm for the solution of
Multi-Objective (MO) problems was presented in [32]. In MOPSO,
there are many fitness functions, and there is no global best; how-
ever, a repository with the non-dominated solutions will be found.

TVMOPSO is adaptive in nature by allowing its vital parame-
ters (inertia weight and acceleration coefficients) to adjust with
iterations. This adaptiveness helps the algorithm to explore the
search space more efficiently. A diversity parameter has been used
to ensure sufficient diversity among the solutions of the non-
dominated fronts, while retaining at the same time the convergence
to the Pareto-optimal front. TVMOPSO extends the algorithm of the
single-objective PSO to handle MOO problems. It incorporates the
mechanism of crowding distance computation into the algorithm
of PSO, specifically on global best selection, in the deletion method
of an external archive of non-dominated solutions and adjusts the
parameters of PSO. The crowding distance mechanism together
with a mutation operator maintains the diversity of non-dominated
solutions in the external archive. The algorithm of TVMOPSO is
given in the next subsection.

2.3.1. Main algorithm
The TVMOPSO algorithm is presented below:

Step 1: Generate an initial population P (Population size = N) and
velocity for each particle V in a feasible space; evaluate the popula-
tion and initialize the personal best (pbest) and global best (gbest)
of each particle respectively.
Step 2: Initialize the iteration counter t = 0.
Step 3: Store the non-dominated vectors found in P into the archive
A (A is the external archive that stores non-dominated solutions
found in P).
Step 4: Repeat
a) Compute the crowding distance values of each non-dominated

solution in the archive A.
b) Sort the non-dominated solutions in A in descending crowding

distance values.
c) Repeat

i. Randomly select the global best guide for P from a specified
top portion of the sorted archive A and store its position to
gbest.

ii. Adjust the parameters of PSO (inertia weight and acceler-
ation coefficients) at iteration t. The value of wt is allowed
to decrease linearly with iteration from wmax to wmin. The
value of inertia weight at iteration t, wt is obtained as

wt = (wmax − wmin)
max t − t

max t
+ wmin, (7)

where maxt is the maximum number of iterations and t is
the iteration number.

The value of c1 has been allowed to decrease from its initial
value of c1i to c1f while the value of c2 has been increased
from c2i to c2f using the following equations as in [33]. The
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values of c1t and c2t are evaluated as follows:

c1t = (c1f − c1i)
t

max t
+ c1i, (8)

c2t = (c2f − c2i)
t

max t
+ c2i. (9)

iii. Modify each searching point using previous PSO formula and
the gbest:

Vi+1 = Wt×Vi + r1c1t(pbesti−Pi) + r2c2t(A(gbest) − Pi) (10)

Pi+1 = Pi + Vi+1, (11)

where wt is inertia weight at iteration t, Vi+1, Pi+1 are new
velocity and position of particle i, c1t and c2t are the accelera-
tion coefficients at iteration t, r1 and r2 are random numbers
in the range [0,1], pbesti is the best position that the particle
i have reached and A(gbest) is the global best guide for each
non-dominated solution.

iv. If the current position outside the boundaries, then it takes
the upper bound or lower bound, and it is the velocity is
multiplied by −1 so that it searches in the opposite direction.

v. If (t < (maxt*Pmut), then perform mutation on Pi+1, where
maxt is the maximum number of iterations and Pmut is the
probability of mutation.

vi. Evaluate the population Pi+1.
d) Until the population size is N.
e) Insert all new non-dominated solutions in P into A, if they are

not dominated by any of the stored solutions. All dominated
solutions in the archive by the new solution are removed from
the archive. If the archive is full, then the solution to be replaced
is determined by the following steps:
a. Compute the crowding distance values of each non-

dominated solution in the archive A.
b. Sort the non-dominated solutions in A in descending crowd-

ing distance values.
c. Randomly select a particle from a specified bottom portion

which comprises the most crowded particles in the archive
then replace it with the new solution.

f) Modify the pbest of each particle in P. If the current position
dominates the pbest, replace the pbest with current position;
otherwise keep the previous pbest.

g) Increment iteration counter t.
Step 5: Until maximum number of iterations is reached.

The main differences of the proposed approach with respect to
the other proposals existing in the literature [35,36] are:

1. Selection of gbest: Based on the crowding distances’ values, the
non-dominated solution with the highest crowding distance val-
ues is done to pick a solution as the gbest instead of roulette
wheel selection.

2. Computation of the diversity: The diversity measurement has
been done using crowding distance measure.

3. Updating of the archive: whenever the archive is full, crowding
distance is used in selecting which solution to be replaced in the
archive. This promotes diversity among the stored solutions in
the archive since those solutions which are in the most crowded
areas are most likely to be replaced by a new solution.

These differences are similar to [37]; however, we adjust PSO
parameters accordingly (wt: the inertia coefficient, c1t: the local
acceleration coefficient and c2t: the global acceleration coefficient)
in each iteration to ensure better search to improve the conver-
gence to Pareto-optimal solutions.

2.3.2. External archive
As archive stores non-dominated solutions found in the pre-

vious iteration, any one of the solutions can be used as global
guide. However to ensure that the particles in the population
move towards the sparse regions of the non-dominated solutions
and speed up the convergence towards the true Pareto-optimal
region, the global best guide of the particles is selected from a
restricted variable size archive. This restriction on archive is done
using the crowding distance operator. This operator will ensure
that those non-dominated solutions with the highest crowding dis-
tance values are always preferred to be in the external archive.
The other advantage of this variable size external archive is
that it saves considerable computational time during optimiza-
tion. As the archive size increases, the computing requirement
becomes greater for sorting and crowding value calculations.
Selecting different guides for each particle from a restricted archive
allows the particles to explore better to the true Pareto-optimal
region, hence, improve improves the performance of the algorithm
effectively.

2.3.3. Crowding distance assignment operator
In order to improve the diversity in the Pareto-optimal solutions,

a crowding distance operator is adopted from [34]. Unlike [35], this
operator for measuring diversity has an advantage that it needs no
parameter specification. The crowding distance value of a solution
provides density estimation of surrounding solutions. Crowding
distance is calculated by sorting the set of solutions in ascending
objective function values. The crowding distance value of a particu-
lar solution is the average distance of its two neighboring solutions.
The boundary solutions that have the lowest and highest objective
function values are given infinite crowding distance values; hence,
they are always selected. This process is done for each objective
function. The final crowding distance value of a solution is com-
puted by adding all the individual crowding distance values in each
objective function. For sorting, an efficient quick sorting procedure
is used. The pseudo-code of crowding distance computation is given
below.
1. Get the number of non-dominated solutions in the external archive A

n = |A|
2. Initialize distance

For i = 1 to n
Ai .dist = 0

3. Compute the crowding distance of each solution
For each objective m,
Sort using each objective value.

A = sort(A, m)
Set the maximum distance to the boundary points so that they are

always selected
A1.distance = Sn .distance = maximum distance

For i = 2 to (n − 1)
Ai.dist = Ai.dist + (Ai+1.dist − Ai−1.dist)/(f max

m − f min
m )

2.3.4. Mutation operator
The single-objective PSO algorithms have been found to show

good convergence properties. However, for the multi-objective
PSOs, this convergence is usually achieved at the cost of the diver-
sity [35]. To allow the multi-objective PSO algorithm to explore the
search space to a greater extent, while obtaining better diversity,
a mutation operator has been used in TVMOPSO. This is helpful in
terms of preventing premature convergence due to existing local
Pareto fronts in some optimization problem. The pseudo-code of
mutation operator is given below.
% particle = particle to be mutated
% dims = number of dimensions
% t = current iteration
% maxt = total number of iterations
% Pmut = mutation rate
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function Mutation-Operator(particle,dims,t,maxt,Pmut)
begin

if flip((1 − t/maxt)5/Pmut) then
begin

Wichdim = random (0, dims-1)
Mutrange = (upperbound[wichdim]−lowerbound[wichdim])*

(1−t/maxt)5/Pmut

ub = particle[wichdim]+mutrange
lb = particle[wichdim]−mutrange
if lb < lowerbound[wichdim] then lb=lowerbound[wichdim]
if ub > upperbound[wichdim]then ub=upperbound [wichdim]
particle[wichdim]=RealRandom(lb,ub)

end if
end function

3. The RBFN–TVMOPSO algorithm

3.1. RBFN representation

The RBF network is represented as a vector with dimension D
containing the connections (centers and weights) of the network.
The dimension of a particle is:

D = (I × H) + (H × O) + H + O, (12)

where I, H and O are referred the number of input, hidden and
output neurons of RBF network respectively. The centers of RBF
network in hidden layer are initialized from k-means clustering
algorithm and the weights of RBF network are initialized from the
Least Mean Squared (LMS) algorithm or random values. The num-
ber of input and output neurons is problem-specific and there is no
exact way of knowing the best number of hidden neurons. How-
ever, there are rules-of-thumb [38] to obtain this value. The number
of hidden neurons (RBFs) is depended on the number of classes of
the problem to be solved. In this paper, a particle represents a one-
hidden layer of RBF network and the swarm consists of a population
of one-hidden layer of networks.

3.2. RBFN-TVMOPSO implementation

The proposed approach is a multi-objective optimization
approach to RBF network training with TVMOPSO as the
multi-objective optimizer (RBFN-TVMOPSO). The algorithm will
simultaneously determine the set of connection (centers of RBF,
weights) and its corresponding accuracy by treating this problem
as a multi-objective minimization problem.

RBFN-TVMOPSO starts by collecting, normalizing and reading
the data set. This is followed by setting the desired number of
hidden neurons and the maximum number of generations for
TVMOPSO. The next step is to determine the dimension of the parti-
cles and to initialize the population with feed-forward RBF network.
In each generation, every particle is evaluated based on the two
objective functions (Eqs. (13) and (14)). Subsequently, the algo-
rithm outputs a set of non-dominated Pareto RBF networks (Fig. 2).

3.3. Objective functions

Two objective functions are used to evaluate the RBF network
particle’s performance. The two objective functions for minimiza-
tion problems are:

1. Accuracy based on Mean Square Error (MSE) on the training set.

f1 = 1
N

N∑
j=1

(
tj − oj

)2
, (13)

where oj and tj are the network output and the desired output,
and N is the number of samples.

2. Complexity is computed based on the sum of the squared
weights, and it is a concept of regularization and represents the
smoothness of the model [17,20,41]. The equation is given as:

f2 = 1
2

Q∑
j=1

w2
j , (14)

where wj , j = 1,. . .,Q is a weight in the network, and Q is the
number of weights in total.

4. Experimental studies

Several experiments were conducted on three real-world med-
ical data sets listed in Table 1 to evaluate the performance of
RBFN-TVMOPSO. All data sets have been loaded from the University
of California at Irvine (UCI) machine learning benchmark reposi-
tory [39]. These problems have been the subjects of many studies
in ANNs and machine learning.

Fig. 2. RBFN-TVMOPSO procedure.
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Table 1
Description of data sets.

Data Set Attributes Classes Samples Input Hidden Output

Breast Cancer 9 2 699 9 2 1
Diabetes 8 2 768 8 2 1
Hepatitis 19 2 155 19 2 1

4.1. Data sets design

Data sets from the medical field are being used to validate the
proposed algorithm. The cancer, diabetes and hepatitis data sets
represent binary class classification problems.

The objective of the cancer problem is to diagnose breast can-
cer in patients by classifying a tumor as benign or malignant. The
“Breast Cancer Wisconsin” problem data set was originally col-
lected in the University of Wisconsin Hospitals, Madison from Dr.
William H. Wolberg [42]. 458 (65.5%) of the patterns in the data
sets are benign while 241 (34.5%) of the patterns are malignant.
There are nine attributes/inputs (clump thickness, uniformity of
cell size and shape, marginal adhesion, single epithelial cell size,
bare nuclei, bland chromatin, normal nucleoli and mitoses) and two
output classes (benign or malignant).

The diabetes problem is to diagnose a Pima Indian individual
based on personal data and medical examination. There are eight
attributes/inputs (no. of times pregnant, plasma glucose concen-
tration, diastolic blood pressure, triceps skin fold thickness, serum
insulin, BMI and age) and two output classes (diabetes positive or
diabetes negative).

The hepatitis problem is a complex and noisy data as it contains
a large number of missing data (there are 167 missing values in total
in this data set). The learning task is to predict whether a patient
with hepatitis will live or die. There are nineteen attributes/inputs
(age, sex, steroid, antivirals, fatigue, malaise, anorexia, liver big,
liver film, spleen palpable, spiders, ascites, varices, bilirubin, alk.
phosphate, SGOT, albumin, protime and histology) and two output
classes (live or die).

4.2. Experimental setup

All data sets in this study are partitioned into three sets: a train-
ing set, a validation set and a testing set. The training set is used to
train the network in order to get the Pareto-optimal solutions. The
validation set is used to select the best one from the Pareto-optimal
solutions, while the testing set is used to test the generalization

Table 2
Parameters settings for RBFN-TVMOPSO.

Parameter RBFN-TVMOPSO

Optimization type Minimization
Population size 100
Archive size 100
Objective functions 2
Constraints 0
Lower limit of variable −0.5
Upper limit of variable 0.5
Probability of mutation (pM) 0.5

performance of Pareto RBF network. It is known that the results
may vary significantly for different partitions of the same data set.
For each data set, we analyze the evolutionary process of RBFN-
TVMOPSO and evaluate the performance of it on the breast cancer,
diabetes and hepatitis data sets. These data are partitioned ran-
domly into three. For each data set, 50% of data were used for the
training set, 25% of data for the validation set and the rest 25% for
the testing set. Values of the data sets are normalized in the range
of [0,1].

For each data set, the experiments were implemented to min-
imize the influence of random effects. In addition, the number of
input and output nodes is problem-dependent but the number of
hidden nodes is the number of classes of data set. The structure
of RBF network in these data sets is shown in Table 1. The num-
ber of iterations is the same for all data sets (1000) except for the
breast cancer data set (500). There are some parameters in RBFN-
TVMOPSO, which need to be specified by the user. Therefore, these
parameters were set equivalently for all data: the inertia weights
wmax and wmin (0.7 and 0.4), the initial acceleration coefficients c1
and c2 (2.5 and 0.5) [36]. c1 has been allowed to decrease from its
initial value of 2.5 to 0.5, while c2 has been increased from 0.5 to
2.5. The other various parameters’ settings of RBFN-TVMOPSO are
presented in Table 2.

4.3. Results and discussions

This section presents the results of study on TVMOPSO based
RBF network. The experiments are conducted using three data sets.
The results for each data set are compared to RBF network based
on MOPSO [35] and NSGA-II [34] algorithms and analyzed based
on the convergence to Pareto-optimal set with their classification
performance. One advantage of evolutionary multi-objective opti-
mization approach to RBF network generation is that a number of

Table 3
Results of RBFN-TVMOPSO, RBFN-NSGA-II and RBFN-MOPSO for all data sets.

Data set RBFN-TVMOPSO RBFN-MOPSO RBFN-NSGA-II

Training error Validation error Testing error Training error Validation error Testing error Training error Validation error Testing error

Breast cancer
Mean 0.0241 0.0251 0.0267 0.0747 0.0724 0.0767 0.1049 0.0998 0.1052
SD 0.0307 0.0299 0.0299 0.0653 0.0620 0.0645 0.0664 0.0664 0.0666
Min 0.0142 0.0157 0.0149 0.0133 0.0145 0.0121 0.0199 0.0187 0.0203
Max 0.2854 0.2912 0.2834 0.3201 0.3312 0.3163 0.2513 0.2517 0.2512

Diabetes
Mean 0.1786 0.1730 0.1591 0.2050 0.1994 0.1928 0.2061 0.1984 0.1942
SD 0.0136 0.0127 0.0167 0.0234 0.0227 0.0294 0.0195 0.0220 0.0250
Min 0.1592 0.1631 0.1411 0.1605 0.1656 0.1470 0.1831 0.1733 0.1629
Max 0.2556 0.2570 0.2567 0.2617 0.2645 0.2636 0.2506 0.2507 0.2507

Hepatitis
Mean 0.1464 0.1970 0.1226 0.1774 0.1809 0.1472 0.1856 0.1866 0.1637
SD 0.0153 0.0282 0.0209 0.0253 0.0236 0.0368 0.0302 0.0276 0.0389
Min 0.1201 0.1522 0.1034 0.1434 0.1527 0.1033 0.1458 0.1576 0.1202
Max 0.2526 0.2750 0.2644 0.2725 0.3268 0.3436 0.2505 0.2505 0.2506

The best results are highlighted in bold.
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Fig. 3. Pareto front of (a) RBFN-TVMOPSO, (b) RBFN-MOPSO and (c) RBFN-NSGA-II on breast cancer data set.

RBF networks with a spectrum of complexity can be obtained in
one single run.

Table 3 shows the statistical results of RBF network based on
TVMOPSO, MOPSO and NSGA-II algorithms over 10 independent
runs on breast cancer, diabetes and hepatitis data sets (the mean,
SD, Max and Min indicate the mean value, standard deviation, max-
imum value and minimum value, respectively). The result of these
algorithms is Pareto-optimal solutions to improve the generaliza-
tion on unseen data. We report the results in terms of average error
rates over 10 independent runs on the three data sets. These results
demonstrate that TVMOPSO has the capability to evolve compact
RBF networks which generalize well on unseen data. As illustrated
in Table 3, testing error values signify that RBFN-TVMOPSO has
resulted in better convergence, compared to other algorithms for
all data sets. It is interesting to see that small standard deviations
are obtained for the testing error in all data sets. These indicate the
consistency, stability and accuracy of our proposed method.

In order to evaluate the performance of RBFN-TVMOPSO for
generalization and classification, the comparison was carried out
using RBFN-MOPSO and RBFN-NSGA-II. Figs. 3–5 show the results
of non-dominated fronts of all algorithms on training, validation
and testing corresponding to these data sets. Fig. 3 provides the
non-dominated solutions returned by three algorithms for the
breast cancer data set. The best performance of RBFN-TVMOPSO is

clearly illustrated. Fig. 3a shows that RBFN-TVMOPSO is better than
RBFN-MOPSO and RBFN-NSGA-II in terms of convergence to Pareto
front solutions, while RBFN-TVMOPSO maintains diversity of the
Pareto front solutions. The poor performance of RBFN-MOPSO and
RBFN-NSGA-II is shown in Fig. 3b and c. From Table 3 and Fig. 3,
RBFN-MOPSO and RBFN-NSGA-II have failed to converge to the true
Pareto front properly. From Fig. 3b, the highest value of function f2
(complexity) is found to be 1000, whereas for the results obtained
by RBFN-TVMOPSO and RBFN-NSGA-II, this value is set to 50 and
40 respectively.

Similarly, Fig. 4 represents the final fronts obtained by three
algorithms for the diabetes data set. It can be seen that RBFN-
MOPSO and RBFN-NSGA-II have failed to converge to the true
Pareto front properly. The highest value of function f2 (complex-
ity) for RBFN-MOPSO is found to be 800, whereas for the results
obtained by RBN-TVMOPSO and RBFN-NSGA-II are set to 30 and 10
respectively (Table 3). Among these algorithms, RBFN-TVMOPSO
has given better convergence, spread and distributed of solu-
tions on this data set. However, RBFN-NSGA-II in Fig. 4c has good
solutions diversity. The comparative performance of the above
algorithms in terms of their performance in hepatitis data set can be
seen in Fig. 5 which shows the final non-dominated fronts obtained
by all the algorithms. From Fig. 5b and c and Table 3, it can be
seen that RBFN-MOPSO and RBFN-NSGA-II have failed considerably
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Fig. 4. Pareto front of (a) RBFN-TVMOPSO, (b) RBFN-MOPSO and (c) RBFN-NSGA-II on diabetes data set.

in attaining the non-dominated set properly in terms of conver-
gence. In addition, RBFN-TVMOPSO in Fig. 5a provides good spread
and distributed solution compared to RBFN-MOPSO for this data
set.

From these comparisons, it shows that RBFN-TVMOPSO is bet-
ter than RBFN-MOPSO and RBFN-NSGA-II in terms of convergence
to Pareto front solutions. RBFN-TVMOPSO maintains diversity of
the Pareto front solutions for all data sets. The average number
of Pareto-optimal solutions over 10 independent runs for each
data set is obtained by all methods (Table 4). It can be observed
that the proposed RBFN-TVMOPSO provides higher number of
Pareto-optimal solutions than RBFN-MOPSO. However, the pro-
posed algorithm has maintained diversity and has competitive
Pareto-optimal solutions compared to RBFN-NSGA-II for all data
sets.

Table 4
Average of number of Pareto-optimal solutions in set of non-dominated solutions
for all data sets.

Data set RBFN-TVMOPSO RBFN-MOPSO RBFN-NSGA-II

Breast cancer 98 54 100
Diabetes 96 50 100
Hepatitis 97 71 100

When we minimize both accuracy (error) and complexity of
the network in a Pareto-based approach, we are able to achieve
a number of Pareto-optimal solutions with a complexity ranging
from simple networks to highly complex ones. From all data sets,
we can conclude that by trading off accuracy against complexity,
the Pareto-based multi-objective optimization algorithm is able to
find the simplest structures that solve the problem best. Further-
more, the simple Pareto-optimal networks are able to generalize
well on unseen data. From Figs. 3–5, we can see that when the
network complexity is increasing, the testing error is decreasing.
This phenomenon can be observed from the results by all selected
testing approaches. However, this phenomenon is only partially
maintained for the relationship between the test accuracy and the
network complexity. Test error is still decreasing as the network
complexity is increasing. From these figures, it is very difficult to
find a single optimal network that can offer the best accuracy for
all data sets. Therefore, instead of searching for a single optimal
RBF network, an algorithm that can result in a complete set of near
optimal networks would be more reasonable for real applications.

Table 5 shows the statistical results for classification accuracy
of RBF network based on TVMOPSO, MOPSO and NSGA-II over 10
independent runs on breast cancer, diabetes, and hepatitis data
sets. The accuracy refers to the percentage of correct classifica-
tion on training, validation and testing data sets respectively. Fig. 6
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Fig. 5. Pareto front of (a) RBFN-TVMOPSO, (b) RBFN-MOPSO and (c) RBFN-NSGA-II on hepatitis data set.

shows correct classification of Pareto front solutions for testing
phases which are produced from RBFN-TVMOPSO, RBFN-MOPSO
and RBFN-NSGA-II. Table 5 and Fig. 6 show also that RBF networks
based on TVMOPSO have higher percentages of accuracy compared

to the other algorithms on breast cancer and diabetes data sets.
However, RBFN-NSGA-II has the highest classification accuracy for
Hepatitis data set compared to other algorithms. RBFN-TVMOPSO
provides best results and maintains diversity of Pareto fronts solu-

Table 5
Results of RBFN-TVMOPSO, RBFN-NSGA-II and RBFN-MOPSO for all data sets.

Data set RBFN-TVMOPSO RBFN-MOPSO RBFN-NSGA-II

Training
accuracy

Validation
accuracy

Testing
accuracy

Training
accuracy

Validation
accuracy

Testing
accuracy

Training
accuracy

Validation
accuracy

Testing
accuracy

Breast cancer
Mean 97.24 96.46 96.53 91.76 92.05 90.95 87.86 89.11 87.30
SD 6.35 6.42 6.19 11.54 10.12 12.09 14.21 12.59 14.83
Min 10.82 11.70 10.00 33.04 28.66 28.82 33.04 28.66 34.71
Max 98.83 98.25 98.24 98.83 98.25 98.82 97.95 97.66 98.24

Diabetes
Mean 72.87 73.41 78.02 67.09 68.91 70.58 66.28 68.59 69.59
SD 3.39 2.93 3.95 5.77 5.13 6.09 4.41 4.02 4.98
Min 36.98 33.85 33.85 36.98 32.81 33.85 36.98 33.85 33.85
Max 78.13 77.60 82.81 77.34 76.56 81.25 74.22 73.96 77.60

Hepatitis
Mean 78.19 72.54 82.26 74.12 75.61 82.32 75.82 76.36 83.78
SD 4.79 4.80 3.85 6.96 7.62 9.00 3.08 3.34 3.81
Min 25.64 23.08 18.42 24.36 23.08 13.16 24.36 23.08 15.79
Max 88.46 82.05 86.84 83.33 84.62 86.84 83.33 79.49 84.21

The best results are highlighted in bold.
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Fig. 6. Correct classification of Pareto front of testing data for (a) breast cancer, (b) diabetes and (c) hepatitis.

Table 6
Results of RBFN-TVMOPSO, RBFN-NSGA-II and RBFN-MOPSO for all data sets.

Data set RBFN-TVMOPSO RBFN-MOPSO RBFN-NSGA-II

Sensitivity Specificity AUC Sensitivity Specificity AUC Sensitivity Specificity AUC

Breast cancer 97.25 96.20 0.967 91.26 95.83 0.936 88.24 94.77 0.915
Diabetes 83.09 68.54 0.758 72.61 64.44 0.685 72.14 60.14 0.661
Hepatitis 88.47 41.92 0.652 86.18 43.67 0.649 84.17 0.59 0.424

The best results are highlighted in bold.

tions. It is interesting to see that the small standard deviations
are obtained for the testing classification accuracy in breast can-
cer and diabetes data sets. This indicates the consistency, stability
and accuracy of the proposed method.

In order to evaluate the classification capabilities of RBFN-
TVMOPSO, RBFN-MOPSO and RBFN-NSGA-II, a comparison of these
three algorithms and average of sensitivity, specificity, Area Under
Curve (AUC) of ROC analysis was performed as depicted in Table 6.
The Receiver Operating Characteristic (ROC) curve is a graphical
display that gives the measure of the predictive accuracy of a logis-
tic model. The curve displays the true positive rate (sensitivity) and
false positive rate (1-specificity). Sensitivity is a measure of accu-
racy for predicting events that is equal to the true positive/total
actual positive. Specificity is a measure of accuracy for predicting
nonevents that is equal to the true negative/total actual negative of
a classifier for a range of cutoffs. Fig. 7 displays the ROC curve for
all algorithms.

4.4. Comparisons with other work

Having validated the effectiveness of multi-objective optimiza-
tion, the performance of the proposed method is compared against
RBFN-MOPSO, RBFN-NSGA-II and other methods in the literature

Table 7
Comparison of classification accuracy of our proposed approach with the previous
methods.

Method/reference Breast cancer Diabetes Hepatitis

RBFN-TVMOPSO 96.53 78.02 82.26
RBFN-MOPSO 90.95 70.58 82.32
RBFN-NSGA-II 87.30 69.59 83.78
HMOEN L2 [40] 96.30 78.50 80.30
HMOEN HN [40] 96.82 75.36 75.51
MPANN [15] 98.10 74.90 –
MOBNET [8] – 77.85 –



Author's personal copy

S.N. Qasem, S.M. Shamsuddin / Applied Soft Computing 11 (2011) 1427–1438 1437

Fig. 7. ROC curve of Pareto front of testing data for (a) breast cancer, (b) diabetes and (c) hepatitis.

using these data sets. The summary of the results is shown in Table 7
and Fig. 8. The results that are presented here are not fine-tuned
in any manner, i.e., the same parameter and experimental settings
are used for all data sets. Nonetheless, it can be observed that the
proposed method is at least competitive for diabetes and hepatitis
data sets. Breast cancer results are outperformed by MPANN [15].
On the other hand, MPANN performs poorly for diabetes data set
with respect to our proposed RBFN-TVMOPSO. MPANN reported
the average Pareto-optimal front of the ANN with the lowest clas-

Fig. 8. Comparison of proposed algorithm against existing methods for breast can-
cer, diabetes and hepatitis data sets.

sification error for the breast cancer and diabetes data sets. The
HMOEN L2 [40] and HMOEN HN [40] results are based on the
ANN with the best training accuracy on the data set for each run.
However, our proposed method, RBFN-MOPSO and RBFN-NSGA-II
reported that average of all Pareto-optimal fronts over 10 indepen-
dent runs for all data sets.

5. Conclusions

In this paper, an approach for multi-objective optimization
based on swarm intelligence principles, called TVMOPSO, is pro-
posed and applied to develop generalization and classification
accuracy for multi-objective RBF network. TVMOPSO is adaptive
in nature with respect to its inertia weight and acceleration coeffi-
cients.

This paper introduces time variant multi-objective PSO
approach to RBF network design called time variant multi-objective
PSO-RBF network Optimizer to concurrently optimize the accuracy
and connections (centers and weights) of network. RBF network
and its parameters are encoded to the particle, and Pareto-optimal
set of RBF network is obtained by TVMOPSO based on two criteria,
i.e. model accuracy and model complexity. The benchmark of med-
ical diagnosis indicates that our proposed method provides better
or comparable results to RBF network based on MOPSO and NSGA-
II in terms of giving a wide spread of diverse solutions with good
convergence to true Pareto-optimal fronts.
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The main advantages of TVMOPSO are that it is simple algorithm,
easy to implement, easy to use, and yet robust in yielding efficient
Pareto frontiers. TVMOPSO converges fast to the true Pareto-
optimal RBF network, and at same time maintains good diversity
along the Pareto front. At this point, the proposed TVMOPSO sig-
nificantly outperforms MOPSO and NSGA-II for RBF network and
competitive with previous methods. Hence it can be concluded
that, for RBF networks, the proposed technique is a viable tool for
multi-objective analysis.
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