
Chapter 2

Data Types

Any computer program is going to have to operate on the available data. The valid data types that are
available will vary from one language to another. Here we will examine the intrinsic or built-in data types,
user-defined data types or structures and, finally, introduce the concept of the abstract data type which
is the basic foundation of object-oriented methods. We will also consider the precision associated with
numerical data types. The Fortran data types are listed in Table 2–1. Such data can be used as constants,
variables, pointers and targets.

Table 2–1. F90/95 Data Types and Pointer Attributes

Data Option
��������������������
j j

Intrinsic Derived
j [Components of intrinsic type and/or
j previously declared derived types.]
j

� � �������������
j j j
Character Logical Numeric

j
� �� ���������������
j j

Floating Point Integer
j (Default Precision)
j Selected-Int-Kind
j

� � ������������ � � � � � �
j j j
Complex Real Double Precision
(Default Precision) (Default Precision) [Obsolete]
Selected-Real-Kind’s Selected-Real-Kind

2.1 Intrinsic Types
The simplest data type is theLOGICALtype which has the Boolean values of either.true. or .false.

and is used for relational operations. The other non-numeric data type is theCHARACTER. The sets of valid
character values will be defined by the hardware system on which the compiler is installed. Character sets
may be available in multiple languages, such as English and Japanese. There are international standards
for computer character sets. The two most common ones are the English character sets defined in the
ASCII and EBCDIC standards that have been adapted by the International Standards Organization (ISO).
Both of these standards for defining single characters include the digits (0 to 9), the 26 upper case letters
(A to Z), the 26 lower case letters (a to z), common mathematical symbols, and many non-printable codes
known as control characters. We will see later that strings of characters are still referred to as being of
theCHARACTERtype, but they have a length that is greater than one. In other languages such a data type
is often called astring. [While not part of the F95 standard, the ISO Committee created a user-defined
type known as theISO VARIABLE LENGTH STRINGwhich is available as a F95 source module.]

c
2001 J.E. Akin 23

For numerical computations, numbers are represented as integers or decimal values known asfloating
point numbersor floats. The former is called anINTEGERtype. The decimal values supported in Fortran
are theREALandCOMPLEXtypes. The range and precision of these three types depends on the hardware
being employed. At the present, 1999, most computers have 32 bit processors, but some offer 64 bit
processors. This means that the precision of a calculated result from a single program could vary from
one brand of computer to another. One would like to have a portable precision control so as to get
the same answer from different hardware; whereas some languages, like C++, specify three ranges of
precision (with specific bit widths). Fortran provides default precision types as well as two functions to
allow the user to define the “kind” of precision desired.

Table 2–2. Numeric Types on 32 Bit Processors

Significant
Type Bit Width Digits Common Range

integer 16 10 –32,768 to 32,767

real 32 6 �1037 to 1037

double precisiony 64 15 �10307 to 10307

complex 2@32 2@6 two reals

yobsolete in F90, seeselected real kind

Still, it is good programming practice to employ a precision that is of the default, double, or quad pre-
cision level. Table 2–2 lists the default precisions for 32 bit processors. The first three entries correspond
to typesint, float, anddouble, respectively, of C++. Examples of F90 integer constants are

–32 0 4675123 24 short 24 long

while typical real constant examples are
–3. 0.123456 1.234567e+2 0.0 0.3 double
7.6543e+4 double 0.23567 quad 0.3d0

In both cases, we note that it is possible to impose a user-defined precision kind by appending an under-
score () followed by the name of the integer variable that gives the precision kind number. For example,
one could define

long = selected int kind(9)

to denote an integer in the range of�109 to 109, while
double = selected real kind(15,307)

defines a real with 15 significant digits with an exponent range of�307. Likewise, a higher precision
real might be defined by the integer kind

quad = selected real kind(18,4932)

to denote 18 significant digits over the exponent range of�4932. If these kinds of precision are available
on your processors, then the F90 types of “integer (long),” “real (double),” and “real (quad)” would
correspond to the C++ precision types of “long int,” “double,” and “long double,” respectively. If the
processor cannot produce the requested precision, then it returns a negative number as the integer kind
number. Thus, one should always check that the kind (i.e., the above integer values of long, double, or
quad) is not negative, and report an exception if it is negative.

The old F77 intrinsic type ofDOUBLE PRECISIONhas been declared obsolete, since it is now easy
to set any level of precision available on a processor. Another way to always define a double precision
real on any processor is to use the “kind” function such as

double = kind(1.0d0)

where the symbol ‘d’ is used to denote the I/O of a double precision real. For completeness it should be
noted that it is possible on some processors to define different kinds of character types, such as “greek”
or “ascii”, but in that case, the kind value comes before the underscore and the character string such as:
ascii “a string”.

c
2001 J.E. Akin 24

[1] Module Math Constants ! Define double precision math constants
[2] implicit none
[3] ! INTEGER, PARAMETER :: DP = SELECTED REAL KIND (15,307)
[4] INTEGER, PARAMETER :: DP = KIND (1.d0) ! Alternate form
[5] real(DP), parameter:: Deg Per Rad = 57.295779513082320876798155 DP
[6] real(DP), parameter:: Rad Per Deg = 0.017453292519943295769237 DP
[7]
[8] real(DP), parameter:: e Value = 2.71828182845904523560287 DP
[9] real(DP), parameter:: e Recip = 0.3678794411714423215955238 DP
[10] real(DP), parameter:: e Squared = 7.389056098930650227230427 DP
[11] real(DP), parameter:: Log10 of e = 0.4342944819032518276511289 DP
[12]
[13] real(DP), parameter:: Euler = 0.5772156649015328606 DP
[14] real(DP), parameter:: Euler Log = -0.5495393129816448223 DP
[15] real(DP), parameter:: Gamma = 0.577215664901532860606512 DP
[16] real(DP), parameter:: Gamma Log = -0.549539312981644822337662 DP
[17] real(DP), parameter:: Golden Ratio = 1.618033988749894848 DP
[18]
[19] real(DP), parameter:: Ln 2 = 0.6931471805599453094172321 DP
[20] real(DP), parameter:: Ln 10 = 2.3025850929940456840179915 DP
[21] real(DP), parameter:: Log10 of 2 = 0.3010299956639811952137389 DP
[22]
[23] real(DP), parameter:: pi Value = 3.141592653589793238462643 DP
[24] real(DP), parameter:: pi Ln = 1.144729885849400174143427 DP
[25] real(DP), parameter:: pi Log10 = 0.4971498726941338543512683 DP
[26] real(DP), parameter:: pi Over 2 = 1.570796326794896619231322 DP
[27] real(DP), parameter:: pi Over 3 = 1.047197551196597746154214 DP
[28] real(DP), parameter:: pi Over 4 = 0.7853981633974483096156608 DP
[29] real(DP), parameter:: pi Recip = 0.3183098861837906715377675 DP
[30] real(DP), parameter:: pi Squared = 9.869604401089358618834491 DP
[31] real(DP), parameter:: pi Sq Root = 1.772453850905516027298167 DP
[32]
[33] real(DP), parameter:: Sq Root of 2 = 1.4142135623730950488 DP
[34] real(DP), parameter:: Sq Root of 3 = 1.7320508075688772935 DP
[35]
[36] End Module Math Constants
[37]
[38] Program Test
[39] use Math Constants ! Access all constants
[40] real :: pi ! Define local data type
[41] print *, ’pi Value: ’, pi Value ! Display a constant
[42] pi = pi Value; print *, ’pi = ’, pi ! Convert to lower precision
[43] End Program Test ! Running gives:
[44] ! pi Value: 3.1415926535897931 ! pi = 3.14159274

Figure 2.1: Defining Global Double Precision Constants

To illustrate the concept of a defined precision intrinsic data type, consider a program segment to
make available useful constants such aspi (3.1415: : :) or Avogadro’s number(6:02 : : :� 1023). These
are real constants that should not be changed during the use of the program. In F90, an item of that nature
is known as aPARAMETER. In Fig. 2.1, a selected group of such constants have been declared to be of
double precision and stored in aMODULEnamedMath Constants . The parameters in that module can
be made available to any program one writes by including the statement “use math constants ” at the
beginning of the program segment. The figure actually ends with a short sample program that converts
the tabulated value ofpi (line 23) to a default precision real (line 42) and prints both.

2.2 User Defined Data Types
While the above intrinsic data types have been successfully employed to solve a vast number of pro-
gramming requirements, it is logical to want to combine these types in some structured combination
that represents the way we think of a particular physical object or business process. For example, as-
sume we wish to think of a chemical element in terms of the combination of its standard symbol, atomic
number and atomic mass. We could create such a data structure type and assign it a name, saychemi-

cal element , so that we can refer to that type for other uses just like we might declare a real variable.
In F90 we would define the structure with aTYPEconstruct as shown below (in lines 3–7):

[1] program create a type
[2] implicit none
[3] type chemical element ! a user defined data type
[4] character (len=2) :: symbol
[5] integer :: atomic number
[6] real :: atomic mass

c
2001 J.E. Akin 25

[7] end type

Having created the new data type, we would need ways to define its values and/or ways to refer to any of
its components. The latter is accomplished by using the component selection symbol “%”. Continuing
the above program segment we could write:

[8] type (chemical element) :: argon, carbon, neon ! elements
[9] type (chemical element) :: Periodic Table(109) ! an array
[10] real :: mass ! a scalar
[11]
[12] carbon%atomic mass = 12.010 ! set a component value
[13] carbon%atomic number = 6 ! set a component value
[14] carbon%symbol = "C" ! set a component value
[15]
[16] argon = chemical element ("Ar", 18, 26.98) ! construct element
[17]
[18] read *, neon ! get "Ne" 10 20.183
[19]
[20] Periodic Table(5) = argon ! insert element into array
[21] Periodic Table(17) = carbon ! insert element into array
[22] Periodic Table(55) = neon ! insert element into array
[23]
[24] mass = Periodic Table(5) % atomic mass ! extract component
[25]
[26] print *, mass ! gives 26.9799995
[27] print *, neon ! gives Ne 10 20.1830006
[28] print *, Periodic Table(17) ! gives C 6 12.0100002
[29] end program create a type

In the above program segment, we have introduced some new concepts:

� define argon, carbon and neon to be of thechemical element type (line 7).

� define an array to contain 109chemical element types (line 8).

� used the selector symbol, %, to assign a value to each of the components of the carbon structure
(line 15).

� used the intrinsic “structure constructor” to define the argon values (line 15). The intrinsic construct
or initializer function must have the same name as the user-defined type. It must be supplied with
all of the components, and they must occur in the order that they were defined in theTYPEblock.

� read in all the neon components, in order (line 17). [The ‘*’ means that the system is expected
to automatically find the next character, integer and real, respectively, and to insert them into the
components ofneon .]

� inserted argon, carbon and neon into their specific locations in the periodic table array (lines 19–
21).

� extracted theatomic mass of argon from the corresponding element in theperiodic element

array (line 23).

� print the real variable,mass (line 25). [The ‘*’ means to use a default number of digits.]

� printed all components of neon (line 26). [Using a default number of digits.]

� printed all the components of carbon by citing its reference in the periodic table array (line 27).
[Note that the printed real value differs from the value assigned in line 12. This is due to the way
reals are represented in a computer, and will be considered elsewhere in the text.]

A defined type can also be used to define other data structures. This is but one small example of the
concept of code re-use. If we were developing a code that involved the history of chemistry, we might
use the above type to create a type calledhistoryas shown below.

type (chemical element) :: oxygen

type history ! a second type using the first
character (len=31) :: element name
integer :: year found
type (chemical element) :: chemistry

c
2001 J.E. Akin 26

end type history

type (history) :: Joseph Priestley ! Discoverer

oxygen = chemical element ("O", 76, 190.2) ! construct element

Joseph Priestley = history ("Oxygen", 1774, oxygen) ! construct

print *, Joseph Priestley ! gives Oxygen 1774 O 76 1.9020000E+02

Shortly we will learn about other important aspects of user-defined types, such as how to define operators
that use them as operands.

2.3 Abstract Data Types
Clearly, data alone is of little value. We must also have the means to input and output the data, subpro-
grams to manipulate and query the data, and the ability to define operators for commonly used procedures.
The coupling or encapsulation of the data with a select group of functions that defines everything that can
be done with the data type introduces the concept of an abstract data type (ADT). An ADT goes a step
further in that it usually hides from the user the details of how functions accomplish their tasks. Only
knowledge of input and output interfaces to the functions are described in detail. Even the components
of the data types are kept private.

The wordabstractin the termabstract data typeis used to: 1) indicate that we are interested only
in the essential features of the data type, 2) to indicate that the features are defined in a manner that
is independent of any specific programming language, and 3) to indicate that the instances of the ADT
are being defined by their behavior, and that the actual implementation is secondary. An ADT is an
abstraction that describes a set of items in terms of a hidden or encapsulated data structure and a set of
operations on that data structure.

Previously we created user-defined entity types such as thechemical element . The primary dif-
ference between entity types and ADTs is that all ADTs include methods for operating on the type. While
entity types are defined by a name and a list of attributes, an ADT is described by its name, attributes,
encapsulated methods, and possibly encapsulated rules.

Object-oriented programming is primarily a data abstraction technique. The purpose of abstraction
and data hiding in programming is to separate behavior from implementation. For abstraction to work,
the implementation must be encapsulated so that no other programming module can depend on its imple-
mentation details. Such encapsulation guarantees that modules can be implemented and revised indepen-
dently. Hiding of the attributes and some or all of the methods of an ADT is also important in the process.
In F90 thePRIVATE statement is used to hide an attribute or a method; otherwise, both will default to
PUBLIC. Public methods can be used outside the program module that defines an ADT. We refer to the
set of public methods or operations belonging to an ADT as the public interface of the type.

The user-defined data type, as given above, in F90 is not an ADT even though each is created with
three intrinsic methods to construct a value, read a value, or print a value. Those methods cannot modify
a type; they can only instantiate the type by assigning it a value and display that value. (Unlike F90, in
C or C++ a user-defined type, or “struct”, does not have an intrinsic constructor method, or input/output
methods.) Generally ADTs will have methods that modify or query a type’s state or behavior.

From the above discussion we see that the intrinsic data types in any language (such as complex,
integer and real in F90) are actually ADTs. The system has hidden methods (operators) to assign them
values and to manipulate them. For example, we know that we can multiply any one of the numerical
types by any other numerical type.

We do not know how the system does the multiplication, and we don’t care. All computer languages
provide functions to manipulate the intrinsic data types. For example, in F90 a square root function,
namedsqrt, is provided to compute the square root of a real or complex number. From basic mathematics
you probably know that two distinctly different algorithms must be used and the choice depends on the
type of the supplied argument. Thus, we call thesqrt function a generic function since its single name,
sqrt, is used to select related functions in a manner hidden from the user. In F90 you can not take the
square root of an integer; you must convert it to a real value and you receive back a real answer. The

c
2001 J.E. Akin 27

ADT name

Public attributes

Public ADT with private attributes

Private attributes

Public members

Private members

Component

Send
Message

Receive
Message

Type

Send
Type

Receive
Type

Name

Member Name

Member Name

Receive,
Send

Modified
Type

Member Name

Figure 2.2: Graphical Representation of ADTs

above discussions of the methods (routines) that are coupled to a data type and describe what you can
and can not do with the data type should give the programmer good insight into what must be done to
plan and implement the functions needed to yield a relatively complete ADT.

chemical_element ADT

symbol

chemical_element

character

integer

real

atomic_number

atomic_mass

chemical_element

Figure 2.3: Representation of the Public ChemicalElement ADT

It is common to have a graphical representation of the ADTs and there are several different graphical
formats suggested in the literature. We will use the form shown in Fig. 2.4 where a rectangular box begins
with the ADT name and is followed by two partitions of that box that represent the lists of attribute data
and associated member routines. Items that are available to the outside world are in sub-boxes that cross
over the right border of the ADT box. They are the parts of the public interface to the ADT. Likewise
those items that are strictly internal, or private, are contained fully within their respective partitions of
the ADT box. There is a common special case where the name of the data type itself is available for
external use, but its individual attribute components are not. In that case the right edge of the private
attributes lists lie on the right edge of the ADT box. In addition, we will often segment the smallest box
for an item to give its type (or the most important type for members) and the name of the item. Public

c
2001 J.E. Akin 28

member boxes are also supplemented with an arrow to indicate which take in information (<--), or send
out information (-->). Such a graphical representation of the previouschemical element ADT, with
all its items public, is shown in Fig. 2.4.

The sequence of numbers known as Fibonacci numbers is the set that begins with one and two and
where the next number in the set is the sum of the two previous numbers (1, 2, 3, 5, 8, 13, ...). A primarily
private ADT to print a list of Fibonacci numbers up to some limit is represented graphically in Fig. 2.5.

Figure 2.4: Representation of a FibonacciNumber ADT

2.4 Classes
A class is basically the extension of an ADT by providing additional member routines to serve ascon-
structors. Usually those additional members should include adefault constructorwhich has no argu-
ments. Its purpose is to assure that the class is created with acceptable default values assigned to all
its data attributes. If the data attributes involve the storage of large amounts of data (memory) then one
usually also provides adestructormember to free up the associated memory when it is no longer needed.
F95 has an automatic deallocation feature which is not present in F90 and thus we will often formally
deallocate memory associated with data attributes of classes.

As a short example we will consider an extension of the above FibonacciNumber ADT. The ADT
for Fibonacci numbers simply keeps up with three numbers (low, high, and limit). Its intrinsic ini-
tializer has the (default) name Fibonacci. We generalize that ADT to a class by adding a constructor
named new Fibonacci number. The constructor accepts a single number that indicates how many
values in the infinite list we wish to see. It is also a default constructor because if we omit the one
optional argument it will list a minimum number of terms set in the constructor. The graphical repre-
sentation of the FibonacciNumber class extends Fig. 2.4 for its ADT by at least adding one public
constructor, called newFibonacci number, as shown in Fig. 2.5. Technically, it is generally accepted
that a constructor should only be able to construct a specific object once. This differs from the intrin-
sic initializer which could be invoked multiple times to assign different values to a single user-defined
type. Thus, an additional logical attribute has been added to the previous ADT to allow the constructor,
new Fibonacci number, to verify that it is being invoked only once for each instance of the class. The
coding for this simple class is illustrated in Fig. 2.6. There the access restrictions are given on lines 4, 5,
and 7 while the attributes are declared on line 8 and the member functions are given in lines 13-33. The
validation program is in lines 36–42, with the results shown as comments at the end (lines 44–48).

c
2001 J.E. Akin 29

Figure 2.5: Representation of a FibonacciNumber Class

[1] ! Fortran 90 OOP to print list of Fibonacci Numbers
[2] Module class Fibonacci Number ! file: Fibonacci Number.f90
[3] implicit none
[4] public :: Print ! member access
[5] private :: Add ! member access
[6] type Fibonacci Number ! attributes
[7] private
[8] integer :: low, high, limit ! state variables & access
[9] end type Fibonacci Number
[10]
[11] Contains ! member functionality
[12]
[13] function new Fibonacci Number (max) result (num) ! constructor
[14] implicit none
[15] integer, optional :: max
[16] type (Fibonacci Number) :: num
[17] num = Fibonacci Number (0, 1, 0) ! intrinsic
[18] if (present(max)) num = Fibonacci Number (0, 1, max) ! intrinsic
[19] num%exists = .true.
[20] end function new Fibonacci Number
[21]
[22] function Add (this) result (sum)
[23] implicit none
[24] type (Fibonacci Number), intent(in) :: this ! cannot modify
[25] integer :: sum
[26] sum = this%low + this%high ; end function add ! add components
[27]
[28] subroutine Print (num)
[29] implicit none
[30] type (Fibonacci Number), intent(inout) :: num ! will modify
[31] integer :: j, sum ! loops
[32] if (num%limit < 0) return ! no data to print
[33] print *, ’M Fibonacci(M)’ ! header
[34] do j = 1, num%limit ! loop over range
[35] sum = Add(num) ; print *, j, sum ! sum and print
[36] num%low = num%high ; num%high = sum ! update
[37] end do ; end subroutine Print
[38] End Module class Fibonacci Number
[39]
[40] program Fibonacci !** The main Fibonacci program
[41] implicit none
[42] use class Fibonacci Number ! inherit variables and members
[43] integer, parameter :: end = 8 ! unchangeable
[44] type (Fibonacci Number) :: num
[45] num = new Fibonacci Number(end) ! manual constructor
[46] call Print (num) ! create and print list
[47] end program Fibonacci ! Running gives:
[48]
[49] ! M Fibonacci(M) ; ! M Fibonacci(M)
[50] ! 1 1 ; ! 5 8
[51] ! 2 2 ; ! 6 13
[52] ! 3 3 ; ! 7 21
[53] ! 4 5 ; ! 8 34

Figure 2.6: A Simple Fibonacci Class

c
2001 J.E. Akin 30

2.5 Exercises
1. Create a module of global constants of common a) physical constants, b) common units conversion
factors.

2. Teams in a Sports League compete in matches that result in a tie or a winning and loosing team.
When the result is not a tie the status of the teams is updated. The winner is declared better that the looser
and better than any team that was previously bettered by the loser. Specify this process by ADTs for
the League, Team, and Match. Include a logical member functionis better than which expresses
whether a team is better than another.

c
2001 J.E. Akin 31

