

Symmetric Bi-multipliers on *d-algebras*

Tamer Firat, Şule Ayar Özbal^{*}

Department of Mathematics, Faculty of Science and Letter, Yaşar University, Izmir, Turkey *Corresponding author: sule.ayar@yasar.edu.tr

Abstract In this study, we introduce the notion of symmetric bimultipliers in *d-algebras* and investigate some related properties. Among others kernels and sets of fixed points of a *d-algebra* are characterized by symmetric bi-multipliers.

Keywords: d- algebras, multipliers, fixed set, kernel

Cite This Article: Tamer Firat, and Şule Ayar Özbal, "Symmetric Bi-multipliers on *d-algebras.*" *Journal of Mathematical Sciences and Applications*, vol. 3, no. 2 (2015): 22-24. doi: 10.12691/jmsa-3-2-1.

1. Introduction

Imai and Iski introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [2] and [3]. The class of BCK-algebras is a proper subclass of the class of BCI-algebras. It is known that the notion of BCI-algebras is a generalization of BCK-algebras. J. Neggers and H. S. Kim [5] introduced the class of *d-algebras* which is a generalization of BCK-algebras, and investigated relations between *d-algebras* and BCK-algebras.

A partial multiplier on a commutative semigroup (A, \cdot) has been introduced in [4] as a function F from a nonvoid subset DF of A into A such that $F(x) \cdot y = x \cdot F(y)$ for all $x, y \in D_F$. The notion of multipliers on lattices was introduced and studied by [6,7] and it was generalized to the partial multipliers on partially ordered sets in [8,9]. Muhammad Anwar Chaudhry and Faisal Ali defined the notion of multipliers on d-algebras in [1].

In this paper the notion of symmetric bi-multipliers in d-algebras are given and properties of these multipliers are researched. Also, kernels and set of fixed points of a d-algebra are characterized by symmetric bi-multipliers.

2. Preliminaries

Definition 2.1. [5] A d-algebra is a non-empty set *X* with a constant 0 and a binary operation denoted by * satisfying the following axioms for all $x, y \in X$:

(I) x * x = 0,

(II) 0 * x = 0,

(III) $x^* y = 0$, and $y^* x = 0$ imply x = y for all $x, y \in X$.

Definition 2.2. [5] Let *S* be a non-empty subset of a *d*-algebra *X*, then *S* is called subalgebra of *X* if $x * y \in S$ for all $x, y \in S$.

Definition 2.3. Let *X* be a d-algebra and I be a subset of *X*, then *I* is called an ideal of *X* if it satisfies the following conditions:

(2) $x^* y \in I$ and $y \in I$ imply $x \in I$.

Definition 2.4. Let *X* be a d-algebra and *I* be a non-empty subset of *X*, then *I* is called a d-ideal of *X* if it satisfies the following conditions:

(1) $x^* y \in I$ and $y \in I$ imply $x \in I$ and

(2) $x \in I$ and $y \in X$ imply $x^* y \in I$. From condition (2) it is obvious that for $x \in I \subseteq X$; $0 = x^* x \in I$.

3. Symmetric Bi-multipliers on *d-algebras*

The following Definition introduces the notion of symmetric bi-multiplier for a *d-algebra*. In what follows, let *X* denote a *d-algebra* unless otherwise specified.

Definition 3.1. Let X be a *d-algebra*. A mapping $f(.,.): X \times X \to X$ is called symmetric if f(x, y) = f(y, x) for all $x, y \in X$.

Definition 3.2. Let X be a *d-algebra* and let $f(.,.): X \times X \rightarrow X$ be a symmetric mapping. We call f a *symmetric bi-multiplier* on X if it satisfies;

$$f(x, y^*z) = f(x, y)^*z \text{ for all } x, y, z \in X.$$

Example 3.1. Let $X = \{0, a, b\}$, and with the binary operation * defined by :

*	0	a	b
0	0	0	0
a	a	0	0
b	b	a	0

Then X is a d-algebra.

The mapping $f(.,.): X \times X \to X$ defined by

$$f(x, y) = \begin{cases} a, & \text{if } x = y = b, \\ 0, & \text{otherwise.} \end{cases}$$

Then we can see that f is a symmetric bi-multiplier on X. **Remark 3.1.** If X is a d-algebra with a binary operation *, then we can define a binary operation \leq on X by;

(1) $0 \in I$

$$x \le y$$
 if and only if $x^* y = 0$ for all $x, y \in X$.

Proposition 3.3. Let X be a d-algebra and f be the symmetric bi-multiplier on X. Then the followings hold for all $x, y, z \in X$:

i)
$$f(0,0) = 0$$
,

$$ii) f(0,x) \le x,$$

iii) If
$$x \le y$$
 then $f(0, x) \le y$.

Proof: Let X be a *d*-algebra and f be the symmetric bi-multiplier on X.

i) By using the definition of symmetric bi-multiplier on X and (I) we have the following:

$$f(0,0) = f(0,0*f(0,0))$$
$$= f(0,0)*f(0,0) = 0$$

Therefore, f(0,0) = 0.

ii) By i) we have

$$0 = f(0,0) = f(0, x^*x) = f(0, x)^*x$$

Therefore, we have f(0, x) * x = 0 and hence $f(0, x) \le x$.

iii) Let x, y be elements in X and $x \le y$.

$$0 = f(0,0) = f(0, x^* y) = f(0, x)^* y$$

Therefore, we get $0 = f(0, x)^* y$ and hence $f(0, x) \le y$. Definition 3.4. [1] A *d*-algebra X is said to be positive implicative if

$$(x*y)*z = (x*z)*(y*z)$$

for all $x, y, z \in X$.

Let S(X) be the collection of all symmetric bi-multipliers on X. It is clear that $O(.,.): X \times X \to X$ defined by O(x, y) = 0 for all $(x, y) \in X \times X$ and $P(.,.): X \times X \to X$ defined by P(x, y) = x for all $(x, y) \in X \times X$ are in S(X). Therefore, S(X) is not empty.

Definition 3.5. Let *X* be a positive implicative *d*-algebra and S(X) be the collection of all symmetric bi-multipliers on X. We define a binary operation * on S(X) by

$$(f * g)_{x,y} = f(x, y) * g(x, y)$$

 $(x, y) \in X \times X$ and $f, g \in S(X)$.

Theorem 3.6. Let X be a positive implicative d-algebra. Then (S(X), *, 0) is a positive implicative d-algebra.

Proof: Let *X* be a positive implicative *d*-algebra and let $g, f \in S(X)$. Then

$$(g * f)_{(x,y)*(z,t)} = (g * f)_{(x,z)*(y,t)}$$

= $(g (x * z, y * t))*(f (x * z, y * t))$
= $(g (x * z, y)*t)*(f (x * z, y)*t)$
= $(g (x * z, y))*(f (x * z, y))*t$
= $(g * f)_{(x*z,y)}*t$

So,
$$g * f \in S(X)$$
.
Let $f \in S(X)$. Then
 $(O * f)_{(x,y)} = O(x, y) * f(x, y) = 0 * f(x, y)$
 $= 0 = O(x, y)$

for al $(x, y) \in X \times X$. So O * f = O for all $f \in S(X)$. Now let $f \in S(X)$, we have

0 * f(x, y)

$$(f * f_{(x,y)}) = f(x,y) * f(x,y) = 0 = O(x,y)$$

for all $(x, y) \in X \times X$. So f * f = O.

Let $f, g \in S(X)$ such that f * g = O and g * f = O. This implies that $(f * g)_{(x,y)} = 0$ and $(g * f)_{(x,y)} = 0$ for all $(x, y) \in X \times X$. That is $f_{(x, y)} * g_{(x, y)} = 0$ and $g_{(x,y)} * f_{(x,y)} = 0$ which implies that $f_{(x,y)} = g_{(x,y)}$ for all $(x, y) \in X \times X$. Thus f = g. Hence S(X) is a d-algebra.

Now we need to show that it is positive implicative. Let $f, g, h \in S(X)$. Then

$$\begin{split} & \left(\left(f * g \right) * h \right)_{(x,y)} = \left(f * g \right)_{(x,y)} * h(x,y) \\ &= \left(f(x,y) * g(x,y) \right) * h(x,y) \\ &= \left(f(x,y) * h(x,y) \right) * \left(g(x,y) * h(x,y) \right) \\ &= \left(\left(f * h \right)_{(x,y)} \right) * \left(\left(g * h \right)_{(x,y)} \right) \\ &= \left(\left(f * h \right) * \left(g * h \right) \right)_{(x,y)} \end{split}$$

for all $(x, y) \in X \times X$. Hence (f * g) * h = (f * h) * (g * h)for all $f, g, h \in S(X)$. Therefore S(X) is an implicative d-algebra.

Definition 3.7. Let *f* be a symmetric bi-multiplier on *X*. We define *Ker(f)* by

$$Ker(f) = \left\{ x \in X \mid f(0, x) = 0 \right\}$$

for all $x \in X$.

Proposition 3.8. Let X be a d-algebra and f be the symmetric bi-multiplier on X. Then Ker(f) is a subalgebra of X.

Proof: Let *X* be a *d*-algebra and f be the symmetric bimultiplier on X. Let $x, y \in Ker(f)$. Then we have f(0,x) = 0 and f(0,y) = 0. So f(0,x*y) = f(0,x)*y= 0 * y = 0. Thus $x * y \in Ker(f)$. Therefore, Ker(f) is a subalgebra of X.

Definition 3.9. [1] A *d*-algebra X is called commutative if x * (x * y) = y * (x * y) for all $(x, y) \in X$.

Proposition 3.10. Let X be a commutative d-algebra satisfying x * 0 = 0, $x \in X$ and f be the symmetric bimultiplier on X. If $x \in Ker(f)$ and $y \le x$ then $y \in Ker(f)$.

Proof: Let $x \in Ker(f)$ and $y \le x$. Then we have f(0,x) = 0 and y * x = 0. And then

$$f(0, y) = f(0, y*0) = f(0, y*(y*x))$$

= $f(0, x*(x*y))$
= $f(0, x*(x*y))$
= $0*(x*y)$
= 0

Therefore, $x \in Ker(f)$.

Definition 3.11. Let X be a *d*-algebra and f be the symmetric bi-multiplier on X. Then the set

$$Fix(f) = \left\{ x \in X \mid f(0, x) = x \right\}$$

for all $x \in X$ is called the set of fixed points of f.

Proposition 3.12. Let X be a d-algebra and f be the symmetric bi-multiplier on X. Then Fix(f) is a subalgebra of X.

Proof: Let X be a *d*-algebra and f be the symmetric bi-multiplier on X.

Since f(0,0) = 0 Fix(f) is non-empty. Let

 $x, y \in Fix(f)$. Then we have f(0, x) = x, f(0, y) = y. Then

$$f(0, x * y) = f(0, x) * y = x * y$$

Therefore, $x * y \in Fix(f)$. Hence, Fix(f) is a subalgebra of *X*.

Acknowledgements

The authors are highly grateful to the referees for their valuable comments and suggestions for the paper.

References

- M. A. Chaudhry, and F. Ali, Multipliers in d-Algebras, World Applied Sciences Journal 18 (11):1649-1653, 2012.
- [2] K. Iski, On BCI-algebras Math. Seminar Notes, 8 (1980), pp. 125130.
- [3] K. Iski, S. Tanaka An introduction to theory of BCK-algebras, Math. Japonica, 23 (1978), pp. 126.
- [4] R. LARSEN, An Introduction to the Theory of Multipliers, Berlin: Splinger-Verlag, 1971.
- [5] J. Neggers, and Kim H.S. On d-Algebras , Math. Slovaca, Co., 49 (1999), 19-26.
- [6] G. SZASZ Derivations of Lattices, Acta Sci. Math. (Szeged) 37 (1975), 149-154.
- [7] G. SZASZ Translationen der Verbande, Acta Fac. Rer. Nat. Univ. Comenianae 5 (1961), 53-57.
- [8] A. SZAZ, Partial Multipliers on Partiall Ordered Sets, Novi Sad J. Math. 32(1) (2002), 25-45.
- [9] A. SZAZ AND J. TURI, Characterizations of Injective Multipliers on Partially Ordered Sets, Studia Univ. "BABE-BOLYAI" Mathematica XLVII(1) (2002), 105-118.