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Abstract

Network-on-Chip (NoC) provides a network as a global
communication platform for future SoC designs. Evaluat-
ing network architectures requires both synthetic workloads
and application-oriented traffic. We present our traffic con-
figuration methods that can be used to configure uniform
and locality traffic as synthetic workloads, and to configure
channel-based traffic for specific application(s). We also
illustrate the significance of applying these methods to con-
figure traffic for network evaluation and system simulation.
These traffic configuration methods have been integrated
into our Nostrum NoC simulation environment.

1 Introduction

One crucial aspect of Network-on-Chip design is to
determine its network architecture [1]. It is challenging
mainly due to two facts. One is that there exists a huge
network design space with respect to topology, routing and
flow control schemes etc. The other is that the network de-
sign should be customized for applications or a class of ap-
plications under current consideration and even for future
upgrades or extensions. It is therefore very important to
evaluate the network extensively in order to make right de-
cisions on the network architecture.

Network evaluation commonly employs two kinds of
traffic [2]. One is application-driven traffic, and the other
synthetic traffic. Application-driven traffic models the net-
work and its clients simultaneously. This is based on full-
system simulation and communication traces. Full-system
simulation requires building the client models. Besides, the
feedback from the network influences the workload. Al-
ternatively, execution traces may be recorded in advance
and then replay this sequence for the network simulation.
Application-driven traffic can be too cumbersome to de-
velop and control. Synthetic traffic captures the salient as-
pects of the application-driven workload but can also be
more easily designed and manipulated. Because of this,

synthetic traffic is widely used for network evaluation.
In this paper, we present our traffic configuration

schemes for the evaluation of networks on chips. Our con-
tributions are (1) a unified representation for describing
synthetic traffic. This representation is used to construct
both uniform and locality traffic. The latter is essential to
capture the traffic characteristics that explore communica-
tion locality for performance enhancement and energy sav-
ing; (2) a method to configure application-oriented traffic.
Application-oriented traffic can be viewed as a traffic type
between application-driven traffic and synthetic traffic. The
spatial pattern of the application-oriented traffic reflects the
communication distribution of the application(s). The tem-
poral and message size specification may be synthetic or
characterized from execution traces.

The rest of the paper is structured as follows. Section 2
briefs related work. In Section 3, we first describe the traf-
fic configuration tree by which we introduce traffic charac-
teristic parameters, then we detail the unified synthetic traf-
fic representation and application-oriented traffic configura-
tion. The experiments of applying the traffic configuration
methods are reported in Section 4. Finally we conclude the
paper in Section 5.

2 Related Work

In the communication community, traffic traces from
physical networks are usually collected and analyzed to de-
tect, identify, and quantify pertinent characteristics. For
example, scale-invariant burstiness or self-similarity is an
ubiquitous phenomenon found in diverse context, from
LANs and WANs to IP and ATM protocol stacks [4].

For domain-specific applications, researchers use anal-
ysis or characterization methods to model the traffic of
applications. In [3], a method is proposed to create ab-
stract instruction-level workload models from source code
for simulating application domain-specific multi-processor
systems. It is shown in [8] that the traffic of multi-media
applications has self-similarity characteristics.

There exist a variety of sources for application-driven



workloads. Parallel computing benchmarks such as
SPLASH [9] or database benchmarks are possible tests for
processor interconnection networks. The construction of
synthetic workloads for network simulation can be found
in [2].

3 Traffic Configuration

3.1 The traffic configuration tree

Network messages (traffic) can typically be charac-
terized and constructed by considering their distributions
along the three dimensions: spatial distribution, temporal
characteristics, and message size specification. The spatial
distribution gives the communication partnership between
sources and destinations. The temporal characteristics de-
scribe the message generation probability over time. The
size specification defines the length of communicated mes-
sages. We use a traffic configuration tree to express the ele-
ments and their attributes of traffic in Figure 1.
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Figure 1. Traffic configuration tree

By the spatial distribution, traffic is classified into two
categories: traffic pattern and channel-by-channel traffic.
Traffic patterns consist of uniform and locality traffic. Each
simulation cycle, the destinations of a traffic pattern may
vary. That is to say, the same source node may send mes-
sages to a different channel. 1 With a traffic pattern, all
the channels share the same temporal and size parameters.
In contrast, channel-by-channel traffic consists of a set of
channels with each channel taking its own temporal and size
parameters. In addition, channel-by-channel traffic stat-
ically defines communication channels before simulation
starts, implying that the source and destination nodes are
fixed during the whole network simulation.

The temporal distribution has a list of items such as con-
stant rate (periodic), random rate, and normal rate etc. The
size distribution has a list of items such as uniform, random,
and normal. As can be observed, these lists are just exam-
ples of possible distributions. Other interested distributions

1A channel in this paper refers to a logical path from a source node to
a destination node.

can be integrated into the tree with their associated param-
eters. By the tree, each traffic configuration can be set with
a set of parameters.

Please note that, although we have divided the traffic
configuration into three independent axes, it also allows one
to configure traffic by jointly considering two axes. For ex-
ample, the configuration of burstiness traffic may involve
both the time and size axis.

3.2 Traffic patterns

3.2.1 Communication distribution probability DP

In the tree, two classes of traffic patterns are considered,
namely, uniform and locality traffic. In order to build a uni-
fied expression for both traffic, we define communication
distribution probability in relation to communication prob-
ability as follows:

• Communication probability of node i Pi: the proba-
bility of sending messages to the network from node
i.

• Communication probability from node i to node j
Pi>j : the probability of sending messages to node j
from node i. For any source node i with N destination
nodes numbering from 1 to N ,

∑N

j=1 Pi>j = Pi.

• Communication distribution probability from node i
to node j DPi>j : the probability of distributing mes-
sages to node j from node i while node i sends mes-
sages to the network. For any source node i with its N
destination nodes, we have Equation 1, meaning that
all the messages from node i are aimed to all the N
destination nodes in the network.

N
∑

j=1

DPi>j = 1 (1)

By the definitions, we also have Pi>j = Pi · DPi>j .

We consider on-chip networks with regular topologies
such as 2D meshes/tori, rings, trees etc. The benefit of the
topological regularity is that the network nodes can be iden-
tified more structurally and with less bits. In the rest of
the section, we use two-dimension topology to illustrate our
representation for synthetic traffic patterns.

With two dimensions, the network topology directly
maps to the Cartesian coordinate. Each network node can
be identified and denoted as (x, y). For a source node
(xs, ys), we define its communication distribution matrix
M(xs,ys), which represents the spatial communication dis-
tribution of the node. Each item v in position (xd, yd) of the
matrix expresses the communication distribution probabil-
ity DP(xs,ys)>(xd,yd), i.e., from the given source node (xs,



ys) to the destination node (xd, yd). For example, the fol-
lowing gives the communication distribution matrix M(0,1)

of node (0, 1) in a 4x3 network.

M(0,1) =





0 0 0 0.3
0 0 0.2 0
0 0.5 0 0





From the matrix, we can see that DP(0,1)>(1,0)=0.5,
DP(0,1)>(2,1)=0.2, DP(0,1)>(3,2)=0.3. If an item in the ma-
trix is zero, it means that no traffic is distributed/sent to the
node from the source node.

3.2.2 Distribution coefficient coef

Suppose the distance between a source node (xs, ys) and
a destination node (xd, yd) is d, we define communica-
tion distribution probability DP(xs,ys)>(xd,yd) as a relative
probability to a common probability factor Pc (0 ≤ Pc ≤ 1)
in Equation 2 and 3:

DP(xs,ys)>(xd,yd) = coef · Pc (2)

coef = 1 +
α

d + 1
(3)

where coef is the distribution coefficient; α is called lo-
cality factor. Since DP(xs,ys)>(xd,yd) ≥ 0, α ≥ −(d + 1).
This suggests that the valid region of α depends on distance
d. Particularly when α = −(d+1), DP(xs,ys)>(xd,yd) = 0;
when α = 0, DP(xs,ys)>(xd,yd) = Pc. Besides, when
−(d + 1) < α < 0, DP(xs,ys)>(xd,yd) is proportional to
the distance d; When α > 0, DP(xs,ys)>(xd,yd) is inversely
proportional to the distance d. Intuitively, we would have
defined the distribution coefficient as coef = α/d. We
use d + 1 instead of d in order to allow d = 0; We use
coef = 1+α/(d + 1) in order to incorporate the case when
α = 0. In this case, the distribution coefficient coef be-
comes independent of d, thus the traffic is uniformly dis-
tributed to nodes with a different distance.
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Figure 2. The distribution coefficient

By Equation 3, we depict a set of curves between coef
and d when α = 7, 5, 3, 0,−3,−5,−7 in Figure 2. Note

that the region when coef < 0 is invalid region. As can
be seen, the value range of coef differs when α > 0 from
that when α < 0. In order for coefficient coef to have a
symmetric range when α > 0 and α < 0, we constrain
the distribution coefficient coef(d) to be not greater than 2,
then the locality factor α falls into the region [−(d+1), (d+
1)] and 0 ≤ Pc ≤ 0.5. The distribution coefficient coef in
relation to locality factor α is shown in Figure 3.
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Figure 3. The locality factor and distribution
coefficient

Applying the formula
∑N

j=1 DPi>j = 1 on Equation 2,
we have

D
∑

k=0

Nkcoef k · Pc = 1 (4)

where Nk is the number of nodes with distance k and
∑D

k=0 Nk = N ; D is the maximum distance between the
source node and the destination nodes; coef k is the distri-
bution coefficient for a destination node with distance k.

3.2.3 Common probability factor Pc
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Figure 4. A distance graph



The common probability factor Pc is calculated after
α(d) is given. This allows us to give the value(s) of α freely,
ignoring the details about the exact number of destination
nodes with a different distance. As this detail is dependent
on the source node position in the network topology, it may
vary from node to node. We use an example to illustrate
how Pc is determined. Figure 4 shows a 4 × 4 mesh topol-
ogy. We define on this mesh that α = 1, which means α
is a constant, i.e., irrespective of distance d. To determine
Pc for node (0, 0), we draw the dashed lines to indicate all
the destination nodes with a different distance. For its dis-
tance array [0, 1, 2, 3, 4, 5, 6], it has the array of the num-
ber of destination nodes [1, 2, 3, 4, 3, 2, 1]. By Equation 3,
we obtain the coefficient array coef (d) of node (0, 0) as
[2, 1.5, 1.3333, 1.25, 1.2, 1.1667, 1.1429].

Using Equation 4, we have

(1·2+2·1.5+3·1.3333+4·1.25+3·1.2+2·1.1667+1·1.1429)·Pc = 1

Solving the equation, we receive Pc = 0.0474. If α = 0,
Pc = 1/16 = 0.0625. After obtaining Pc, we can calculate
the distribution probability DP (d) from node (0, 0) to des-
tination node(s) with distance d by Equation 2 as an array
[0.0948, 0.0711, 0.0632, 0.0592, 0.0569, 0.0553, 0.0542].
Clearly, for a different source node, Pc may be different
even if α is the same, since its distance array and the
number of destination nodes with a certain distance may be
different.

Since locality factor α may be set individually with
d, we can control the amount of traffic distributed to
a certain distance. Again with the example in Figure
4, if we define the node (0, 0)’s locality factor array
α(d) as [−1, 0,−1.2,−2.4,−4.0,−5.4,−6.3], its distribu-
tion coefficient array coef (d) is [0, 1, 0.6, 0.4, 0.2, 0.1, 0.1].
Then its Pc = 0.1587. As a result, the com-
munication distribution array DP (d) of node (0, 0) is
[0, 0.1587, 0.0952, 0.0635, 0.0317, 0.0159, 0.0159].

If all the source nodes’ locality factors α are zero, their
distribution coefficients coef (d) to all destinations are one,
i.e., independent of distance d. In this case, the traffic is
uniformly distributed.

3.3 Application-oriented Workloads

Channel-by-channel traffic differs from the traffic pat-
terns in that the traffic’s spatial pattern is built on per-
channel basis and static. This type of traffic is used to con-
struct application-oriented workloads for specific applica-
tions. The temporal characteristics and message size spec-
ification may be approximated using analysis or commu-
nication traces. The set of traffic parameters of a chan-
nel is {s node, d node, T ,S}, where s node represents the
source node, d node the destination node, T its temporal
characteristics, and S is its message size specification. In

the following, we use a Motion JPEG (M-JPEG) encoder
to illustrate how to approximately construct its application
workload, supposing that its functional blocks are mapped
to network nodes in a one-to-one manner. For simplicity,
we assume a single synchronous clock.
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Figure 5. An M-JPEG encoder

Figure 5 shows the functional blocks of an M-JPEG en-
coder where each frame is separately compressed into a
JPEG image [5]. The characters A, B, C, D, E, F, G,
H indicate eight communication channels between mod-
ules. The M-JPEG codec is decomposed into three indepen-
dent pipelined stages, namely, DCT (Discrete Cosine Trans-
form), quantization and an encoding module. The figure
consists of two parallel pipelines. Computations are per-
formed on an 8x8 pixel block. Suppose one pixel contains
8 bits, one block has 64 bytes. The encoding module pro-
cesses four blocks of data before outputting results. Due to
data compression, the output from this module has a vari-
able size. From recorded communication traces, we found
it falls in the region [16, 56] bytes.

Channels Period (Cycles) Size (bytes)

A, E; B, F; C, G; 160 64
D, H 640 [16, 56]

Table 1. Channel parameters

The DCT module is the performance bottleneck. To pro-
cess one block of data, it consumes 135 cycles [6]. Assum-
ing the maximum latency for processing one block of data
over the communication channels is 25 cycles, we could
consider that the critical path passes from the video se-
quence sender through the channel A/E and DCT. Following
the worst-case style for synchronous design, we can design
the period of the pipelined stages to be 160 cycles. Con-
sequently, we may configure the traffic to model the appli-
cation as follows: The channels A, B, C, and E, F, G are
periodic channels with a constant period of 160 cycles and
a uniform size of 64 bytes. The encoding modules may not
generate output periodically. But, with the support of traffic
shaping, the channel D and H can be assumed to transmit
messages with a period of 640 cycles and a random size in
region [16, 56] bytes. We summarize the traffic parameters
in Table 1.



4 Experiments

4.1 Use of the synthetic traffic patterns

We have integrated the traffic configuration methods
into our Nostrum Network-on-chip Simulation Environ-
ment (NNSE) [7]. Based on a SystemC NoC simulation
kernel, this tool allows one to construct a network and traf-
fic by using the network and traffic characteristic parame-
ters, and then evaluate the network with the traffic.

TRAFFIC d 0 1 2 3 4 5 6

Locality α -1 0 -1.2 -2.4 -4.0 -5.4 -6.3
coef 0 1 0.6 0.4 0.2 0.1 0.1

Uniform α -1 0 0 0 0 0 0
coef 0 1 1 1 1 1 1

Non-locality α -1 -1.8 -2.7 -3.2 -3 -2.4 0
coef 0 0.1 0.1 0.2 0.4 0.6 1

Table 2. Traffic specifications

In order to understand the network behavior for local-
ity traffic, we can create synthetic traffic using the method
described in Section 3.2. We first construct a 4×4 mesh
network operating synchronously. The network employs
wormhole-based virtual-channel (VC) flow control with
dimension-ordered XY routing, which is deterministic and
deadlock free on meshes. The switch model is a single-
cycle model. The number of VCs per physical channel of a
switch is 4 and the depth of a VC is 2. The network diameter
is 6. Then we inject one of the three classes of traffic into the
network: locality traffic, uniform traffic, and non-locality
traffic. With the uniform traffic, a network node sends pack-
ets to other nodes with the same probability. With the local-
ity traffic, a network node sends packets to its nearer nodes
with higher probability. With the non-locality traffic, a net-
work node sends packets to its further nodes with higher
probability. We list the traffic’s locality factors α(d) and
calculated distribution coefficients coef (d) in Table 2. All
the network nodes are both packet sources and sinks. The
source nodes inject packets into the network via bounded
FIFOs with a constant rate. The flits of packets are ejected
from the network immediately once they reach destinations.
One message contains only one packet and each packet is
4-flit long. By our configuration tree, all the traffic classes
belong to periodic traffic with a uniform message size.

The left one of Figure 6 illustrates the average latency
of packets. This figure demonstrates that, the more local-
ity the traffic has, the lower average latency the network
achieves. Note that, with the same injection rate, the of-
fered load is different for the three types of traffic since the
average packet distance is different. The non-locality traf-
fic results in the largest offered load since it has the largest
average packet distance. The uniform traffic is the second,
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Figure 6. Performance with traffic classes

followed by the locality traffic. This also implies that the lo-
cality traffic allows higher packet injection rate before sat-
uration. Besides, due to buffer overflow, the offered load
does not increase proportionally when the injection rate is
high. The right one of Figure 6 shows the throughput in
relation to the packet injection rate. As can be observed,
under the same amount of workload, the network can reach
a higher throughput if the locality of traffic is higher.

Clearly the network shows significant performance im-
provement if the traffic is more locally distributed. We can
conclude that, with the dimension-order routing, the worm-
hole network can efficiently benefit from traffic locality.
Our traffic configuration method can flexibly enable to ex-
plore this by changing the traffic’s locality factors.

4.2 Use of the application-oriented traffic

In NNSE, we manually map the functional modules of
the M-JPEG model in Figure 5 onto the 4×4 mesh network
described above. The mapping is done in a one-to-one fash-
ion. Messages from these modules are encapsulated into
packets. One packet has a payload length of 96 bits. This
means a message with size s bytes will be decomposed into
ds/12e packets. The traffic is created and injected into the
network according to Table 1. Simulation results show that
the average latency of the packets is 9.68 cycles, the link
utilization is 14.7%. Designers can use the simulated re-
sults to optimize the mapping or adjust the pipeline period
to achieve design goals. Since the network is under-utilized,
the designers may decide to shrink the network size to 3×3,
or to implement more concurrent pipelines in the network.

5 Conclusions

We have proposed and demonstrated our traffic configu-
ration schemes for evaluating networks on chips. The uni-
fied expression for configuring regular traffic patterns al-



lows designers to adjust the locality of traffic so as to ana-
lyze the network behavior under locality traffic. The con-
figuration of application-oriented traffic enables to take into
account the spatial communication patterns of the appli-
cation while generating traffic, and it maintains the flex-
ibility of synthetic traffic. The configured synthetic and
application-oriented traffic can help designers to evaluate
and thus make right decisions on the network architecture.
In addition, the configuration of application-oriented traffic
is beneficial to obtain performance data at an early design
phase, thus useful for fast design space exploration.

Future work will fledge the traffic configuration tree to
include more traffic distributions. Another direction is to in-
tegrate Quality-of-Service (QoS) traffic into the framework
in order to evaluate NoC architectures supporting QoS with
different guarantees on throughput and delay bounds.
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