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ABSTRACT

The problem is to provide a short-term, probabilistic forecast of a river stage time series

{H1, ..., HN} based on a probabilistic quantitative precipitation forecast. The Bayesian forecast-

ing system (BFS) for this problem is implemented as a Monte-Carlo algorithm that generates an

ensemble of realizations of the river stage time series. This article (i) shows how the analytic-

numerical BFS can be used as a generator of the Bayesian ensemble forecast (BEF), (ii) demon-

strates the properties of the BEF, and (iii) investigates the sample size requirements for ensemble

forecasts (produced by the BFS or by any other system).

The investigation of the ensemble size requirements exploits the unique advantage of the

BFS, which outputs the exact, analytic, predictive distribution function of the stochastic process

{H1, ..., HN}, as well as can generate an ensemble of realizations of this process from which a

sample estimate of the predictive distribution function can be constructed. By comparing the ana-

lytic distribution with its sample estimates from ensembles of different sizes, the smallest ensemble

size M∗ required to ensure a specified expected accuracy can be inferred. Numerical experiments

in four river basins demonstrate that M∗ depends upon the kind of probabilistic forecast that is

constructed from the ensemble. Three kinds of forecasts are constructed: (i) a probabilistic river

stage forecast (PRSF), which for each time n (n = 1, ..., N) specifies a predictive distribution

function of Hn; (ii) a probabilistic stage transition forecast (PSTF), which for each time n specifies

a family (for all hn−1) of predictive one-step transition distribution functions from Hn−1 = hn−1

to Hn; and (iii) a probabilistic flood forecast (PFF), which for each time n specifies a predictive

distribution function of max{H1, ...,Hn}.

Overall, the experimental results demonstrate that the smallest ensemble size M∗ required

for accurate estimation (or numerical representation) of these predictive distribution functions is
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(i) insensitive to experimental factors and on the order of several hundreds for the PRSF and the

PFF, and (ii) sensitive to experimental factors and on the order of several thousands for the PSTF.

The general conclusions for system developers are that the ensemble size is an important design

variable, and that the optimal ensemble size M∗ depends upon the purpose of the forecast: for

dynamic control problems (which require a PSTF), M∗ is likely to be larger by a factor of 3–20

than it is for static decision problems (which require a PRSF or a PFF).

Keywords: Forecasting; Uncertainty; Bayesian analysis; Stochastic processes; Statistical analysis;

Probability; Ensemble; Rivers; Floods
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1. INTRODUCTION

1.1 Bayesian Forecasting System

Previous research formulated a general Bayesian theory of probabilistic forecasting of river

processes (time series of stages, discharges, or volumes) via a deterministic hydrologic model of

any complexity (Krzysztofowicz, 1999). For short-term forecasting in small-to-medium head-

water basins, the theory was implemented as an analytic-numerical Bayesian forecasting system

(BFS). Two systems have been developed to date for forecasting a discrete-time, continuous-state

stochastic process {Hn : n = 1, ..., N} with lead time of N time steps. Each system takes a

probabilistic quantitative precipitation forecast (PQPF) as input and employs a deterministic hy-

drologic model to calculate the response of a river basin to precipitation. The first BFS outputs a

probabilistic river stage forecast (PRSF) in the form of a sequence of predictive n-step transition

density functions (Krzysztofowicz, 2002). The second BFS outputs a probabilistic stage transi-

tion forecast (PSTF) in the form of a sequence of families of predictive one-step transition density

functions whose product gives the predictive joint density function of the river stages H1, ..., HN at

times t1, ..., tN (Krzysztofowicz and Maranzano, 2004b). As such, the PSTF provides a complete,

analytic characterization of predictive uncertainty about the process {Hn : n = 1, ..., N}.

1.2 Bayesian Ensemble Forecast

The PSTF is analytic and has the form of input needed by stochastic control models. But

many decision support systems for reservoir control, waterway operation, flood mitigation, or

water quality management utilize deterministic simulation models which need input in the form

of a time series — a realization of the process {H1, ...,HN}. For such systems, an ensemble of

realizations can provide a numerical characterization of predictive uncertainty about the process

{H1, ..., HN}. The degree to which such a numerical characterization is accurate (vis-a-vis the
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analytic characterization) depends upon the number of realizations — the ensemble size.

The objective of this article is threefold: (i) To show how the analytic-numerical BFS can

be used as a generator of the Bayesian ensemble forecast (BEF) of river stages (discharges, or

volumes). (ii) To demonstrate the properties of the BEF. (iii) To investigate the sample size

requirements for ensemble forecasts (produced by the BFS or by any other system).

The investigation of the ensemble size requirements exploits the unique advantage of the

BFS, which outputs the exact, analytic, predictive distribution function of the stochastic process

{H1, ..., HN}, as well as can generate an ensemble of realizations of this process from which

a sample estimate of the predictive distribution function can be constructed. By comparing the

analytic distribution with its sample estimates from ensembles of different sizes, the accuracy of the

numerical representation of the predictive uncertainty via an ensemble forecast can be ascertained.

Section 2 recalls the BFS. Section 3 explains the theory and the algorithm for the BEF gener-

ator. Sections 4, 5, and 6 present the procedures for estimating a PRSF, a PSTF, and a PFF (prob-

abilistic flood forecast) from an ensemble forecast. Section 7 describes an experiment to ascertain

the ensemble size required for accurate estimation of the predictive distributions that constitute the

PRSF, the PSTF and the PFF. Section 8 reports the results of that experiment. Finally, Section 9

draws conclusions. (The appendix provides a glossary of mathematical symbols.)

1.3 Ensemble Bayesian Forecasting System

The usage of the analytic-numerical BFS as a generator of the ensemble forecast must be dis-

tinguished from the ensemble Bayesian forecasting system (EBFS), which implements the Bayesian

theory of probabilistic forecasting entirely and exactly using Monte Carlo simulation. While the

theoretical framework for the EBFS was published (Krzysztofowicz, 2001), a prototype system is

just being developed and will be described in a future paper.
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2. SYSTEM ELEMENTS

This section recalls (from Krzysztofowicz and Maranzano, 2004b) some elements of the

analytic-numerical BFS necessary for the understanding of the BEF generator.

2.1 Uncertainty Processors

In the BFS, the total uncertainty is decomposed into precipitation uncertainty and hydro-

logic uncertainty. Precipitation uncertainty is associated with the total basin average precipitation

amount during the period covered by the PQPF. Hydrologic uncertainty is the aggregate of all

uncertainties arising from sources other than the total basin average precipitation amount.

The two sources of uncertainty are quantified independently and then are integrated. For

this purpose, two processors are attached to a deterministic hydrologic model. The precipitation

uncertainty processor maps precipitation uncertainty (input uncertainty quantified by the PQPF)

into output uncertainty under the hypothesis that there is no hydrologic uncertainty (Kelly and

Krzysztofowicz, 2000). The hydrologic uncertainty processor quantifies hydrologic uncertainty

under the hypothesis that there is no precipitation uncertainty (Krzysztofowicz and Maranzano,

2004a). Then the two uncertainties are optimally integrated to produce a PSTF.

2.2 Precipitation Forecast

The PQPF for a river basin consists of two parts: (i) a probabilistic forecast of the basin aver-

age precipitation amount to be accumulated during the period, W (the total precipitation amount,

for short), and (ii) a deterministic forecast of the spatio-temporal disaggregation of W . Because

the occurrence of precipitation alone is a significant predictor of river stages and a partial explainer

of hydrologic uncertainty, it is treated explicitly as a predictand as follows.

Let V denote an indicator of precipitation occurrence, with V = 0 ⇔ W = 0 and V = 1 ⇔
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W > 0. Hence the precipitation event is denoted V = v, where v ∈ {0, 1}. The first part of the

PQPF specifies (i) the probability of precipitation occurrence during the period and over the basin

ν = P (V = 1), (1)

such that 0 ≤ ν ≤ 1, and (ii) the distribution function of the total precipitation amount W , condi-

tional on the hypothesis that precipitation occurs, which for any w > 0 specifies T1(w) = P (W ≤

w|V = 1). Then the (unconditional) distribution function of W is specified for any w ≥ 0 by

P (W ≤ w) = (1− ν) + νT1(w). (2)

It is a mixed (binary-continuous) distribution function which assigns a probability mass of (1− ν)

to event W = 0 and spreads the remaining probability mass ν over the interval (0,∞). This

structure of the mixture is mapped by the BFS to all the predictive distribution functions of river

stages. Hence its importance.

A system that produces the PQPF is not part of the BFS. It must be developed separately

and may employ any forecasting method. However, it must meet two requirements: (i) the PQPF

must be in the specified format, and (ii) the PQPF system must be well calibrated (Krzysztofowicz,

1999).

In the examples reported throughout the article, the PQPF for a river basin was prepared judg-

mentally by a meteorologist in the Pittsburgh office of the US National Weather Service (NWS)

according to a formal methodology (Krzysztofowicz et al., 1993; Krzysztofowicz and Pomroy,

1997; Krzysztofowicz and Sigrest, 1997). The calibration of the forecaster was verified statisti-

cally (Krzysztofowicz and Sigrest, 1999). The PQPF was for a 24-h period beginning at 1200

UTC (Universal Time Coordinated). The temporal disaggregation was into four 6-h subperiods.

The spatial disaggregation was into sub-basins, as described in the next section.
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2.3 Hydrologic Model

The BFS can be attached to any deterministic hydrologic model (lumped, semi-distributed, or

distributed) which simulates the response of a river basin to a time series of precipitation amounts,

and outputs a time series of model river stages at a forecast point.

The examples throughout the article are for the forecast point Eldred, Pennsylvania, located

in the headwater of the Allegheny River and closing a drainage area of 550 miles2 (1430 km2).

The time to peak of the unit hydrograph is 30 h. Forecasts are produced daily based on input data

available at 1200 UTC. A forecast is for 3 days ahead, either in 6-h steps or in 24-h steps.

The conclusions at the end of the article are based on aggregate results for four forecast points,

whose characteristics are listed in Table 1. Hydrologic models come from the NWS operational

forecast system and have parameters estimated for each basin. For Eldred, it is a lumped model

consisting of a continuous antecedent precipitation index, a unit hydrograph, a baseflow procedure,

and a stage-discharge conversion (Sittner et al., 1969). For Dailey, Philippi, and Parsons, it is the

Sacramento catchment model (Burnash, 1995) applied either in a lumped version (for Dailey) or

in a semi-distributed version (for Philippi and Parsons). All input data come from the operational

archives of the NWS. The precipitation input is in the form of a time series of 6-h spatially

averaged precipitation amounts for a basin or each sub-basin. The hydrologic model for a forecast

point outputs a time series of river stages at 6-h steps.

2.4 System Operation

The operation of the analytic-numerical BFS in real time is outlined below, borrowing from

Sections 2–6 in Krzysztofowicz and Maranzano (2004b), where the reader can find the mathemat-

ical details. The purpose here is to explain, in concept, the genesis of Eq. (9) in Section 3, which

provides the basis for the BEF generator.
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Hydrologic uncertainty processor (HUP). Before real-time forecasting can begin, one must

have a hydrologic model with parameters estimated for the river basin above the forecast point, and

the HUP, formulated according to the Bayesian theory (Krzysztofowicz and Maranzano, 2004a),

with parameters estimated according to the proper methodology (Krzysztofowicz and Kelly, 2000);

this HUP is for the forecast point, for the PQPF time scale (e.g., 24 h divided into 6-h subperiods),

and for the BEF time scale (e.g., 72 h in 24-h steps). For each lead time n (n = 1, ..., N) and

for each hypothesized precipitation event V = v (v = 0, 1), the HUP specifies a family (for all

sn, hn−1, h0) of conditional posterior (in the Bayesian sense) density functions of the actual river

stage Hn:

p(hn|sn, hn−1, h0, V = v) = φnv(hn|sn, hn−1, h0). (3)

Above, p is the generic symbol for a density function; hn is a realization of the actual river stage

Hn at lead time n, with h0 being the observed river stage at the forecast time; sn is a realization of

the model river stage Sn at lead time n; and φnv (·|sn, hn−1, h0) is the operational notation for the

conditional posterior density function, showing only the variables (sn, hn−1, h0) which define the

family. Except for sn, which must be included if the hydrologic model is informative at all, the

list of the other conditioning variables (here hn−1, h0, v) may be modified, shortened or expanded,

as appropriate. The above variables are sufficient for each of the four forecast points and were

selected from a list of potential explanatory variables. A specialized statistical analysis of data

that accomplishes this task was developed by Maranzano and Krzysztofowicz (2004).

Real-time inputs. Let u0 denote the vector of deterministic inputs to the hydrologic model

(except future precipitation), which are needed to produce a deterministic forecast and whose val-

ues vary from one forecast time to the next (e.g., initial model states, observed river stage h0). The

PQPF for the river basin supplies (i) the probability ν of precipitation occurrence (V = 1); (ii)
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the distribution function T1 of the total precipitation amount W , conditional on the hypothesis that

V = 1; and (iii) a deterministic forecast of the spatio-temporal disaggregation of W , conditional

on the hypothesis that V = 1, which is specified by the matrix ξ of expected disaggregation factors

(e.g., for Parsons, it is a 4×5matrix that disaggregates any total precipitation amount W = w into

4 subperiods and 5 sub-basins). Details of this specification and its justification (in terms of the

optimality-complexity trade-off and the deterministic equivalence principle) can be found in Kelly

and Krzysztofowicz (2000, Section 6) and Krzysztofowicz (2002, Section 3).

Precipitation uncertainty processor (PUP). Seven quantiles of the total precipitation amount

W are judiciously selected from the conditional distribution function T1; each quantile is disag-

gregated in time and space using the matrix ξ; thereby seven precipitation inputs to the hydrologic

model are created. Next, the hydrologic model is run seven times; the output is seven time se-

ries of model river stages. For each lead time n (n = 1, ..., N), the PUP takes the seven output

realizations and supplies two conditional output density functions of the model river stage Sn:

p(sn|u0, V = 0) = δ(sn − sn0), (4a)

p(sn|T1, ξ,u0, V = 1) = πn1(sn), sn > sn0. (4b)

Above, sn0 is the model river stage at lead time n resulting from zero total precipitation amount; δ

is the Dirac function; and πn1 is the operational notation for the conditional output density function.

Integrator (INT). The precipitation uncertainty, which gives rise to the conditional output

density functions of Sn, and the hydrologic uncertainty, which gives rise to the family of condi-

tional posterior density functions ofHn, are integrated according to the prescription of the Bayesian

theory. For each lead time n (n = 2, ..., N), the total probability law yields a family (for all hn−1)

of conditional predictive density functions of the actual river stage Hn:

7



p(hn|hn−1, h0,u0, V = 0) =
∞R
−∞

p(hn|sn, hn−1, h0, V = 0)p(sn|u0, V = 0) dsn

=
∞R
−∞

φn0(hn|sn, hn−1, h0)δ(sn − sn0) dsn

= φn0(hn|sn0, hn−1, h0)

= θn0(hn|hn−1), (5)

and

p(hn|hn−1, h0, T1, ξ,u0, V = 1) =
∞R
−∞

p(hn|sn, hn−1, h0, V = 1)p(sn|T1, ξ,u0, V = 1) dsn

=
∞R
−∞

φn1(hn|sn, hn−1, h0)πn1(sn) dsn

= θn1(hn|hn−1), (6)

where θnv(·|hn−1) is the operational notation for the conditional density function, showing only

the variable (hn−1) which defines the family. For the first lead time, n = 1, the conditioning

simplifies, and thus the operational notation is

p(h1|h0,u0, V = 0) = ψ10(h1), (7a)

p(h1|h0, T1, ξ,u0, V = 1) = ψ11(h1). (7b)

2.5 Forecast Structure

With respect to the stochastic process {Hn : n = 1, ..., N} being forecasted, the INT outputs,

for each hypothesized event V = v (v = 0, 1), the conditional predictive one-step transition den-

sity function ψ1v for lead time n = 1, and a family (for all hn−1) of the conditional predictive

one-step transition density functions θnv(·|hn−1) for every lead time n ∈ {2, ..., N}. Thus, un-
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der the hypothesis that the precipitation event is V = v, the conditional predictive joint density

function of the river stages H1, ..., HN takes the form

ψ1v(h1)
NY
n=2

θnv(hn|hn−1). (8)

For brevity, such a probabilistic forecast is said to have a conditional Markov structure (of order

one). The adjective “conditional” is crucial and must not be omitted: For as the full generic no-

tation shows, the stochastic dependence structure of the process {H1, ..., HN} under the Bayesian

forecast is not Markov at all. One can test this fact mentally as follows: Suppose that after

the forecast time 1200 UTC, precipitation did occur within 24 h (V = 1), and at some step n–1

(n ≥ 2) the actual river stage hn−1 was observed. If the river stage process, conditional on V = 1,

were Markov of order one, then the observer would be able to specify the predictive one-step tran-

sition density function θn1(·|hn−1) of Hn. In fact, this task is impossible because to specify this

function, the observer must also know (h0, T1, ξ,u0) and the hydrologic model.
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3. BAYESIAN ENSEMBLE FORECAST

This section reviews the fundamentals of the BEF as they were first presented by Krzyszto-

fowicz and Maranzano (2004b, Section 9). It shows how the output from the analytic-numerical

BFS can be used to generate an ensemble of realizations of the river stage process {H1, ..., HN}.

3.1 Theoretic Basis

At the forecast time, the BFS outputs the predictive joint density function ξ of river stages

H1, ...,HN for any N ≥ 2 (Krzysztofowicz and Maranzano, 2004b, Eq. (30)) in the form

ξ(h1, ..., hN) = (1− ν)ψ10(h1)
NY
n=2

θn0(hn|hn−1) + νψ11(h1)
NY
n=2

θn1(hn|hn−1). (9)

Above, ν is the probability of precipitation occurrence during the period covered by the PQPF

and over the river basin, ψ1v is the conditional predictive one-step transition density function for

lead time n = 1, and θnv(·|hn−1) is the conditional predictive one-step transition density function

for lead time n ≥ 2. According to Eq. (9), the river stage process {H1, ...,HN} is a mixture of

two conditional Markov processes of order one. Thus, to sample a realization of the process, one

can first generate a realization of V , either V = 0, or V = 1, which designates the branch of the

mixture, and then recursively generate realizations of the river stages from the one-step transition

distribution functions corresponding to the density functions in the designated branch. Thereby,

Eq. (9) provides the theoretic basis for the BEF generator.

Three important facts to note are (i) that the predictive joint density function ξ is conditional

on the hydrologic model being used, all deterministic inputs to that model at the forecast time (e.g.,

initial model states, observed river stage h0), and the PQPF; (ii) that the predictive uncertainty

quantified by ξ about the river stage process {H1, ..., HN} is nonstationary; and (iii) that under ξ,

the river stage process {H1, ...,HN} is not Markov of any order.
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3.2 Source Elements

The primary output from the BFS, which constitutes the input into the BEF generator, is the

families of the conditional predictive one-step transition distribution functions (Krzysztofowicz

and Maranzano, 2004b, Eq. (45)):

{Ψ1v : v = 0, 1} , (10a)

{Θnv(·|hn−1) : all hn−1; v = 0, 1;n = 2, ..., N} . (10b)

Also required is the probability of precipitation occurrence, ν, provided by the PQPF.

3.3 Ensemble Size

Given the source elements, the objective is to generate an ensemble of M realizations of

the river stage process, which characterizes faithfully the predictive uncertainty about the process.

Assuming that 0 < ν < 1, let Mv denote the number of realizations conditional on V = v, with

v ∈ {0, 1}, so that M =M0 +M1. These numbers must satisfy two requirements.

First, M1/M must be (approximately) equal to ν so that the ensemble preserves (almost)

exactly the probability of precipitation occurrence. Second, suppose M∗ is the smallest sample

size required for accurate estimation from the ensemble of any predictive transition distribution

function that a user might employ (explicitly or implicitly) in a decision model. (The determination

of M∗ is studied experimentally in Section 8.) Then each M0 and M1 must be at least as large as

M∗.

These two requirements can be met as follows. If ν = 0, then M = M0 =M∗ and M1 = 0.

If ν = 1, then M =M1 =M∗ and M0 = 0. If 0 < ν < 1, then

M =M∗ +mod

µ
max {1− ν, ν}
min {1− ν, ν}M

∗ +
1

2

¶
, (11a)
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M1 = mod

µ
νM +

1

2

¶
, (11b)

M0 =M −M1, (11c)

where mod(m) denotes the largest integer not exceeding m.

It follows that for a given M∗, the ensemble size M and its summands, M1 and M0, are

functions of the probability of precipitation occurrence ν. Figure 1 depicts these functions for

M∗ = 100. At ν = 0 and ν = 1, M = 100. For all 0 < ν < 1, M is a convex function of ν,

attaining a minimum at ν = 0.5, and being unbounded, M →∞, as either ν → 0 or ν → 1.

[This theoretic fact sends a message of caution to the forecasters: to hold the computation

cost (which increases with M) down, it is advisable not to be almost certain (e.g., ν = 0.001 or

ν = 0.999), but rather somewhat uncertain (e.g., ν = 0.1 or ν = 0.9) or completely certain (ν = 0

or ν = 1) about the occurrence of precipitation. This later forecast violates the Cromwell’s rule

(never assign probability zero or one to an uncertain event because such a probability cannot be

revised by Bayes theorem; Lindley, 1985, p. 104), but cloudless skies or rains already pouring

may qualify as exceptions even to the most ardent probabilists.]

In summary, the uncertainty associated with the intermittence of the precipitation process

has an important implication: to maintain a desired level of accuracy of the predictive transition

distribution functions, of which the ensemble is a numerical representation, the ensemble size M

must not be constant, but must vary in the prescribed manner with ν. [Of course, in real-time

forecasting the ensemble size could be kept constant, provided it were equal to the largest number

M calculated from (11a) using a given M∗ and the greatest ν or 1 − ν (0 < ν < 1) ever to be

assigned.]
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3.4 Ensemble Generator

Based on expression (9), and using input (10), a single realization (h1, ..., hN) of the river

stage process {H1, ...,HN}, conditional on V = v, with v ∈ {0, 1}, is generated according to the

following algorithm.

1. Generate N random numbers (p1, ..., pN), 0 < pn < 1, n = 1, ..., N .

2. Find realization h1 such that p1 = Ψ1v(h1).

3. Proceed recursively on n (n = 2, ..., N); given realization hn−1, find realization hn

such that pn = Θnv(hn|hn−1).

3.5 Example of BEF

The example uses the input data from Krzysztofowicz and Maranzano (2004b). In particular,

the PQPF specifies (i) a probability of precipitation occurrence during the 24-h period and over

the basin, ν = 0.81; (ii) a distribution function of the 24-h basin average precipitation amount

conditional on the hypothesis that precipitation occurs, a Weibull distribution with scale parameter

α = 1.807 and shape parameter β = 1.378; Figure 2 shows the resultant unconditional distribution

function; and (iii) a vector of expected fractions ξ = (0.0, 0.1, 0.4, 0.5) for temporal disaggregation

of any total precipitation amount into 6-h subperiods. The observed river stage is h0 = 7.9

ft. The BFS outputs the family of distribution functions (10). This family is employed in the

ensemble generator to obtain 100 members, each consisting of 12 river stages at 6-h time steps

(n = 1, ..., 12).

Figure 3 shows a spaghetti plot of the BEF, with members conditional on no rain displayed

in gray and members conditional on rain displayed in black. Three features are of note: (i) the

distinct nature of uncertainty under no rain and rain conditions, with little mixing of the condi-

tional realizations; (ii) the nonstationarity of uncertainty, both conditional and total, as the en-
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semble spread increases with the lead time until, at the lead time long enough, it stabilizes and

conforms to the marginal prior (climatic) distribution function of the river stage; (iii) the relatively

sharp delineation of the minimal river stages (where the hydrologic uncertainty dominates) and the

relatively fuzzy delineation of the maximal river stages (where the precipitation uncertainty domi-

nates). This last feature suggests that a 100-member ensemble is too small to reliably estimate the

distribution functions of the flood crest and the time to crest.

Figure 4 shows the predictive n-step transition distribution functions Ψ̂n estimated from the

ensemble for n = 1, ..., 12. Note the inflection point between rain and no rain ensemble mem-

bers, and the resultant bimodality of the distribution functions. This reflects the fact that each of

these distribution functions is a mixture of two functions: one conditional on rain and another

conditional on no rain.
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4. ESTIMATING PRSF FROM ENSEMBLE

For all analyses that follow, the BFS was reset to produce forecasts on a coarser time scale:

n = 1, 2, 3 at 24-h steps, so that the lead times are 24, 48, 72 h.

The PRSF consists of a sequence of predictive n-step transition distribution functions Ψn

(n = 1, 2, 3), each of which is a mixture (Krzysztofowicz and Maranzano, 2004b, Eq. (43)):

Ψn(hn) = (1− ν)Ψn0(hn) + νΨn1(hn). (12)

[Function Ψn is the n-step transition distribution function because it characterizes the transition

from the river stage H0 = h0 observed at the forecast time to the uncertain river stage Hn at the

lead time of n steps. Because h0 is known and fixed on any particular forecasting occasion, it is

not shown explicitly in (12).]

The ensemble generator was run multiple times, and each time the empirical distribution func-

tions Ψ̂nv were estimated from the ensemble and compared with the analytic distribution functions

Ψnv output from the BFS (v = 0, 1;n = 1, 2, 3). The goodness of the ensemble-based estimate

was measured by the maximum absolute difference

MAD = max
hn
|Ψnv(hn)− Ψ̂nv(hn)|. (13)

For v = 0, 1, Fig. 5 compares Ψ3v with three Ψ̂3v, each estimated from a different ensemble of

size M = 100, and reports the maximum MAD across the three estimates. The example demon-

strates that the estimation error may be phenomenal — up to 0.20. This implies that in a particular

forecasting situation, two consecutive ensembles may yield estimates of the same predictive n-step

transition distribution function Ψn that differ by as much as 0.40 when evaluated at some particular

river stage. A user who took the PRSF at its face value, would interpret this difference as a change

in uncertainty, whereas in fact the change resulted from the sampling variability.
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Whereas the estimates Ψ̂3v in Fig. 5 were selected to show the range of the sampling vari-

ability, not the “average” variability, they do illustrate the problem: The MAD on the order of

0.20 is possible, which is obviously unacceptable for real-time forecasting because a forecast with

such large MAD deceives the users. Clearly then, the ensemble size M = 100 is too small to

produce acceptable estimates of predictive probabilities. What the required ensemble size should

be is researched in Section 7.
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5. ESTIMATING PSTF FROM ENSEMBLE

5.1 Estimation Problem

The PSTF consists of the predictive distribution function Ψ1 of H1, conditional on the ob-

served river stage H0 = h0 (which is the forecast for the first time step, n = 1), and a sequence of

families of the predictive one-step transition distribution functions:

{Θn(·|hn−1, ..., h1) : all h1, ..., hn−1;n = 2, ..., N} . (14)

These transition distribution functions are not conditional Markov of order one, but they may be

constructed from ν, Ψ10, Ψ11, and a sequence of families of the conditional predictive one-step

transition distribution functions, which are conditional Markov of order one:

{Θnv(·|hn−1) : all hn−1; v = 0, 1;n = 2, ..., N} . (15)

Therefore, to ascertain whether or not an ensemble of a particular size yields accurate esti-

mates of all one-step transition distribution functions, it is sufficient to validate that each family of

the distribution functions in (15) can be estimated accurately. This means that for each v ∈ {0, 1}

and n ∈ {2, ..., N}, and at every point hn−1 in the domain of variate Hn−1, one must estimate the

distribution function Θnv(·|hn−1) of variate Hn.

An obstacle to such a validation is that there are infinitely many points hn−1 in the domain of

Hn−1 and that P (Hn−1 = hn−1) = 0 because Hn−1 is a continuous variate. Hence, it is impossible

to estimate function Θnv(·|hn−1) at the point hn−1 from a finite ensemble, not to mention the

infinite number of such functions, at all points hn−1 as required for (15).

One solution to this estimation problem is to create a window about hn−1 of a fixed size and

to specify a sampling rule: if an ensemble member generated conditional on V = v contains

a realization of Hn−1 that falls within the window, then this member is included in the sample
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from which Θnv(·|hn−1) is estimated. Formally, let dnv be the size of the window about hn−1 for

lead time n and V = v, and let hn−1,k be the realization of Hn−1 in the kth ensemble member,

conditional on V = v. If hn−1,k ∈ [hn−1 − dnv, hn−1 + dnv], then the kth ensemble member is

included in the sample. The selection of dnv is described next.

5.2 Sampling Window

The empirical distribution function Θ̂nv(·|hn−1) estimated from the ensemble was compared

with the analytic distribution function Θnv(·|hn−1) output from the BFS in terms of

MAD = max
hn
|Θnv(hn|hn−1)− Θ̂nv(hn|hn−1)|, (16)

for a given hn−1, and a fixed n and v. The window size dnv was selected to minimize the average

MAD for the estimate Θ̂nv(·|hn−1) across points hn−1 = 5, 6, 7, 8, 9, 10, 11, 12 ft. The following

values for dnv were considered: 0.5, 0.4, 0.3, 0.2, 0.1, 0.05 ft. Table 2 presents the results for the

ensemble sizes used in the experiment. It is clear that the window size minimizing the average

MAD is, in general, larger for v = 1 than for v = 0. In fact, it is usually as large as 0.5 ft. For

v = 0 and n = 3, the optimal window size becomes smaller as the ensemble size increases, down

to a minimum of 0.2 ft. This pattern is broken for large values of h2 and small ensemble sizes M ,

but this is an artifact of small samples collected by the windows regardless of the value of d30. For

v = 0 and n = 2, only h1 = 6 ft and h1 = 7 ft yield any ensemble members. For h1 = 7, the

average sample size is too small to draw any conclusion. However, for h1 = 6, all samples include

most of the ensemble members for every value of d20, and it is this case where the tendency for the

optimal value of dnv to decrease with ensemble size is the most prevalent.

5.3 Explanation of Behavior

The optimal window sizes dnv being smaller for v = 0 than for v = 1 may be explained by
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examining the impact of the window size on the estimate of the conditional distribution function.

Suppose the kth ensemble member, generated conditional on V = v, has river stage hn−1,k at time

n−1. This member is included in the estimation sample for Θnv(·|hn−1) if hn−1−dnv ≤ hn−1,k ≤

hn−1+ dnv. This implies that the acquired estimation sample is actually generated from a mixture

of conditional distribution functions that belong to the family:

©
Θnv(·|h∗n−1) : all h∗n−1 ∈ [hn−1 − dnv, hn−1 + dnv]

ª
. (17)

Hence, the greater the diversity of this family, the worse the empirical estimate Θ̂nv(·|hn−1) ob-

tained from the ensemble is. For our purposes, the diversity is measured by the MAD between

the members of the family and the distribution we wish to estimate, Θnv(·|hn−1).

Figure 6 shows select members of the families when the task is to estimate Θ20(·|h1 = 6) and

Θ21(·|h1 = 8) from samples acquired with d20 = 0.1 ft and d21 = 0.5 ft, respectively. Clearly, the

first family is more diverse than the second family, as measured by the MAD. Hence, one may

suspect that the optimal window size d2v is smaller for Θ20(·|h1 = 6) than for Θ21(·|h1 = 8), and

this is indeed the case as shown in Table 2.

5.4 Choice of Window Size

In the remainder of the analyses reported herein, the following window sizes are used: d20 =

0.1, d30 = 0.3, d21 = 0.5, and d31 = 0.5 ft. These sizes were selected in order to minimize

the average MAD in the experiment that should yield the smallest average MAD, which is when

M = 10000.
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6. ESTIMATING PFF FROM ENSEMBLE

Let t0 denote the forecast time, tn denote the time instance at whichHn is observed, and let Zn

denote the maximum river stage within time interval (t0, tn], practically Zn = max{H1, ...,Hn}.

The PFF consists of a sequence of predictive distribution functions Fn (n = 1, 2, 3) such that

Fn(h) = P (Zn ≤ h) for all h. Each of these distribution functions is a mixture

Fn(h) = (1− ν)Fn0(h) + νFn1(h), (18)

wherein Fnv(h) = P (Zn ≤ h|V = v) for v = 0, 1. For n = 1, obviously F1 = Ψ1, which is

defined by Eq. (12). For n = 2, 3, function Fn is derived from Eq. (9), as shown by Krzysztofow-

icz (2008). It follows that Fn is conditioned on the same elements on which the predictive joint

density function of river stages H1, ..., Hn is conditioned, as explained in Section 2. In essence,

the PFF is a byproduct of the PSTF.

The ensemble generator was run multiple times, and each time the empirical distribution func-

tions F̂nv were estimated from the ensemble and compared with the analytic distribution functions

Fnv output from the BFS (v = 0, 1; n = 2, 3). The goodness of the ensemble-based estimate was

measured by the maximum absolute difference

MAD = max
h
|Fnv(h)− F̂nv(h)|. (19)
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7. EXPERIMENTAL DESIGN

Define M∗ to be the smallest ensemble size required for the BEF-based empirical predictive

distributions to accurately approximate the BFS analytical predictive distributions. Because the

BFS output is used to generate the ensemble members, the convergence of the BEF-based empirical

distributions to the BFS analytical distributions is assured as the ensemble size increases. The

objective of the experiments is to determine M∗.

The example presented in Section 3.5 served as the source of data for the experiment at Eldred.

Parallel sources of data were used for the experiments at Dailey, Philippi, and Parsons. Aside

drainage areas and hydrologic models (Table 1), the main difference in these experiments was the

PQPF (Fig. 2): if the incoming storm passed over the river basin (probability ν = 0.81), then it

would produce almost certainly 1.0–2.5 in of basin average precipitation amount.

At each forecast point, the BEF generator was run under two scenarios, v = 0 and v = 1, and

for Mv = 50, 100, 150, 200, 500, 750, 1000, 1500, 2000, 5000, 7500, 10000. For each combination

of v and Mv, the generator was executed 500 times. After every execution, each distribution

function in the following families was estimated from the ensemble and compared in terms of the

MAD to the corresponding analytical distribution function:

{Ψnv : v = 0, 1;n = 1, 2, 3} , (20)

{Θnv(·|hn−1) : all hn−1; v = 0, 1;n = 2, 3}, (21)

{Fnv : v = 0, 1;n = 2, 3}. (22)

Then the expected MAD (across 500 ensembles) was calculated to measure the accuracy of the

BEF-based estimate relative to the BFS analytical distribution. Finally, the relationship between

the expected MAD and the ensemble size Mv for every v, n, and forecast point was analyzed to

infer the smallest ensemble size M∗ required to achieve a specified level of accuracy.
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8. EXPERIMENTAL RESULTS

8.1 Results for Predictive n-Step Transition Distributions

The results turned out to be nearly identical across the four forecast points, as well as inde-

pendent of the precipitation event (v = 0, 1) and the lead time (n = 1, 2, 3). To convey these

three invariance properties, Table 3 reports the expected MADs for selected ensemble sizes Mv.

The largest difference in the corresponding MADs across the forecast points is 0.005; the largest

difference in the corresponding MADs across the precipitation events (v = 0, 1) and across the

lead times (n = 1, 2, 3) is 0.003. These largest differences occur when the ensemble size is the

smallest, Mv = 50; and 0.005 is less than 14% of the standard deviation of the MAD due to

sampling (sample size of 500); viz, all the differences are statistically insignificant and visually

imperceptible.

With the nearly identical results, the average of the 24 expected MADs was calculated (across

four forecast points, two precipitation events, three lead times) and then graphed against the en-

semble size M . Figure 7 shows the graph.

We conclude that within the scope of the experimental factors (four river basins of 484–2372

km2, two hydrologic models, two PQPFs, rain and no rain events, and three lead times up to 72

h), there exists a general graph of the expected MAD (between the predictive n-step transition

distribution functions Ψ̂n and Ψn) against the ensemble size M . This graph (Fig. 7) allows one

to select the smallest ensemble size M∗ required to maintain a particular expected MAD. For

example, if one is willing to allow the expected MAD of 0.06, then the ensemble size of about 200

members is required. If the allowable expected MAD is decreased to 0.04, then the ensemble size

must be about 500; decreasing the allowable expected MAD further to 0.02, requires the ensemble

size of about 2000.
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8.2 Results for Predictive One-Step Transition Distributions

8.2.1 One Forecast Point

The results are much more voluminous than the previous ones because of the additional factor

— the preceding river stage hn−1, which conditions every predictive one-step transition distribution

function Θnv(·|hn−1) for v = 0, 1 and n = 2, 3. The number of different stages hn−1 considered

is 8 at Eldred and Dailey and 9 at Philippi and Parsons.

To gain insight into the nature of the results, the case of (v = 1, n = 3, d31 = 0.5 ft) at Eldred

is examined in detail. Table 4 reports the expected MAD for every ensemble size M1 and for h2 =

6, 8, 10, 12 ft. (The case with h2 = 10 ft is plotted in Fig. 8.) These results imply that the smallest

ensemble size M∗ required to ensure a particular expected MAD depends on the conditioning river

stage h2. For instance, to ensure the expected MAD less than 0.06 for Θ̂31(·|H2 = 6) one needs

M∗ = 7500, but for Θ̂31(·|H2 = 10), one needs only M∗ = 1500. The difference can be explained

by the predictive probabilities of the windows that “catch” the ensemble members into sub-samples

from which Θ31(·|h2) are estimated; apparently P (H2 ∈ [5.5, 6.5]) < P (H2 ∈ [9.5, 10.5]).

Table 4 reports also the standard deviation of each MAD. For a fixed ensemble size M1, the

smallest standard deviation is associated with the smallest expected MAD, which is at h2 = 10 ft.

Not surprisingly, the sampling window (with d31 = 0.5 ft) about this h2 catches, on average, the

largest number of ensemble members that form the sub-sample from which an empirical estimate

Θ̂31(·|h2) is obtained (Table 5).

The above pattern of results prevails (with only a few minor perturbations) for all v ∈ {0, 1},

n = {2, 3}, and forecast points. Therefore, to reduce the volume of numbers, only one column

from each of the sixteen tables (like Table 4) is reported; the one column is for the conditioning

river stage hn−1 at which the standard deviation of the MAD is the smallest (across all, or most,

23



of the twelve ensemble sizes Mv). Table 6 lists these stages. The implication is that the results

reported henceforth are “the best cases” (across all hn−1 stages for each v, n, and forecast point).

Consequently, any required ensemble size inferred from these results should be viewed as a lower

bound on M∗.

8.2.2 Four Forecast Points

With the conditioning river stages hn−1 fixed (Table 6), the results are reported in Table 7,

which has the same format as Table 3 to facilitate comparisons. The table reports the expected

MAD for selected ensemble sizes Mv, for both precipitation events (v = 0, 1), both lead times

(n = 2, 3), and the four forecast points. The largest difference in the corresponding MADs is

0.133 across the forecast points, 0.096 across precipitation events, and 0.123 across the lead times.

These differences exceed the corresponding standard deviations of the MAD due to sampling

(sample size of 500). Clearly, the expected MADs in Table 7 differ significantly from those in

Table 3 in terms of both magnitude (at least twice as large on average) and variability (significantly

greater).

For each forecast point, a graph of the expected MAD against the ensemble size Mv was

made for v = 0, 1 and n = 2, 3. The most diverse graphs were those at Eldred and Philippi;

they are shown in Figs. 8 and 9, respectively. A comparison of Figs. 8 and 9 with Fig. 7

makes it clear that the ensemble size required to maintain the expected MAD of a particular value

is significantly larger for a predictive one-step transition distribution than for a predictive n-step

transition distribution. For example, consider Fig. 9 for Philippi: to ensure the expected MAD

between 0.06 and 0.04 when it rains (v = 1) requires 4000–8000 ensemble members for n = 2,

and 5000–10000 ensemble members for n = 3; the expected MAD of 0.02 is reachable with about

7000 members in only one case (v = 0, n = 2) out of four.
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These results are not surprising because only a fraction of the ensemble can be used in the

estimation of Θnv(·|hn−1) for any particular hn−1. Furthermore, the required ensemble size when

v = 1 is different than that when v = 0. This is explained by the diversity of the family of

the distribution functions making up the estimates (see Section 5.3). Also, the expected MAD

when v = 0 and n = 3 is never below 0.04 regardless of the ensemble size. This is explained

by the absence of precipitation uncertainty in the forecast for day 1, which results in a very steep

(concentrated) predictive one-step transition distribution functions. Such functions are notoriously

difficult to estimate because of the inherent tradeoff between the size of the sampling window

(which one wants to minimize) and the expected number of ensemble members caught by the

window (which one wants to maximize).

8.2.3 Stable Sampling Requirement

The example for Eldred (Table 5) reveals that while the smallest ensemble size M∗ required

for the expected MAD to be below 0.06 varies with the conditioning river stage h2, the expected

number of ensemble members that form the sub-sample from which Θ31(·|h2) is estimated remains

fairly stable. It is less than 277, 228, 202, 214 for h2 = 6, 8, 10, 12 ft respectively.

The generality of this observation is confirmed in Table 8, which shows the expected number

of ensemble members that must fall within the sampling window about hn−1 in order to obtain an

empirical estimate Θ̂nv(·|hn−1) with the expected MAD less than 0.06, for v = 0, 1, and n = 2, 3,

for all stages hn−1 and all forecast points. The grand average is about 210 ensemble members per

sampling window [hn−1 − dnv, hn−1 + dnv].

The implication is immediate: If most of the variability of Hn−1 occurs within L sampling

windows (of optimal size, not arbitrary size), then a lower bound on the required ensemble size is

M∗ = 210× L. Thus, even with a crude discretization of the sample space of the river stage into
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L = 10 windows of 1 ft width, the minimum required ensemble size is about M∗ = 2100.

8.2.4 General Sampling Requirement

The above analyses suggest a general conclusion: in order that an ensemble forecast repre-

sents reliably the predictive one-step transition distribution functions, say, with the expected MAD

of less than 0.06, the required ensemble size M∗ is on the order of 1000–5000. Decreasing the

expected MAD threshold to 0.04, increases the range of M∗ to 2000–10000.

8.3 Results for Maximum Stage Distributions

The results turned out to be nearly identical across the four forecast points, with a tendency

for the expected MAD to increase slightly with the precipitation occurrence index (v = 0, 1) and

the lead time (n = 2, 3). The average, the minimum, and the maximum of the expected MADs

were calculated (across four forecast points, two precipitation events, two lead times) and then

graphed against the ensemble size M . Figure 10 shows the graph.

We conclude that within the scope of the experimental factors, there exists a general graph

of the expected MAD (between the predictive distribution functions F̂n and Fn of the flood crest)

against the ensemble size M . This graph (Fig. 10) is nearly identical with the graph of the expected

MAD for the predictive n-step transition distribution functions Ψ̂n and Ψn (Fig. 7).
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9. SUMMARY AND CONCLUSION

9.1 Bayesian Ensemble Forecast

The BEF, introduced first in concept by Krzysztofowicz (1999, 2001), can be produced in

two ways, either by attaching an ensemble generator to an analytic-numerical BFS (Krzysztofow-

icz and Maranzano, 2004b) or by implementing the BFS entirely using Monte Carlo simulation

(Krzysztofowicz, 2001). Herein, an analytic-numerical BFS for short-term PSTF was coupled

with an ensemble generator to produce the first BEF of the river stage process. This BEF quantifies

the total uncertainty, which represents the integration of precipitation uncertainty and hydrologic

uncertainty. In particular, this BEF characterizes the stochastic dependence in the future river

stage process, which is nonstationary and complex, especially in the presence of uncertainty about

the occurrence of precipitation: the predictive n-step transition distribution functions are bimodal;

and the predictive one-step transition distribution functions depend on all preceding river stages,

beginning with the river stage observed at the forecast time.

The analytic-numerical BFS offers a unique advantage for research purposes because it al-

lows one to obtain each predictive distribution function via two methods of computation: (i) the

analytic-numerical integration, which supplies the exact solution, and (ii) the empirical estimation

from a sample provided by the ensemble forecast, which supplies an approximate solution whose

expected accuracy depends on the ensemble size. A comparative analysis of the two solutions for

different ensemble sizes offers a means of determining the optimal ensemble size for a particular

purpose.

9.2 Optimal Ensemble Size

Through experimentation, it was discovered that to ensure reasonable accuracy of the empiri-

cal distribution functions estimated from an ensemble, hundreds or possibly thousands of ensemble
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members are needed. These results are pertinent to any ensemble forecasting system. And they

serve as a caution to system developers, reminding us that (i) the ensemble size is an important

design variable, and (ii) the optimal ensemble size M∗ depends upon the purpose of the forecast.

For those purposes that require forecasts of the river stages at time instances (e.g., barge

operation), or forecasts of the maximum river stages within time intervals (e.g., flood forecasts,

public warnings), it is sufficient to quantify the total uncertainty in terms of the predictive n-

step transition distribution functions (essentially the conditional marginal distribution functions of

variates H1, ..., HN or of their sequential maxima). The ensemble size M∗ required for accurate

estimation of these univariate distribution functions is on the order of several hundreds. This

requirement on M∗ is basic and possibly general because it is independent of the factors varied in

the present experiments. It is depicted by the two nearly-identical graphs in Figs. 7 and 10, from

which one can read M∗ as a function of the expected MAD. Table 9 offers a brief guide.

For those purposes that require forecasts of the river flow process (e.g., forecasts of reservoir

inflows, control of storage reservoirs, or operation of waterways), it is necessary to quantify the

total uncertainty not only about the river flows at time instances, but also about the evolution of

the river flow from one time instance to the next. For this purpose, the families of the predictive

one-step transition distribution functions for the process {H1, ..., HN} are necessary. To ensure

that every conditional distribution function in each of the families is represented adequately in

the ensemble forecast, the ensemble size M∗ required may be on the order of several thousands.

This requirement on M∗ is more stringent and variable with factors such as the probability of

precipitation occurrence, the distribution function of precipitation amount, the lead time, the river

basin, and possibly others. The range of the variability of M∗ as a function of the expected MAD

is conveyed by the eight graphs in Figs. 8 and 9. Table 9 offers a brief guide. At the minimum,
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this more stringent requirement on M∗ is about three times larger than the basic requirement; but

the multiplier may be as high as 20.

9.3 Future Research

While this study points out the importance of the ensemble size as a design variable, it is

confined to four case studies. Many more case studies in river basins of different sizes and char-

acteristics are needed to establish general design guidelines.

The ensemble size requirements identified herein exceed substantially the size of the largest

meteorological ensembles (of precipitation and temperature) available currently in real-time fore-

casting. Therefore, a more efficient ensemble generator for hydrological forecasting is desirable in

order to generate the hundreds or the thousands of members operationally in a reasonable amount

of time. To this end, the theory of the ensemble BFS (Krzysztofowicz, 2001) could be explored

and implemented.
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APPENDIX: GLOSSARY OF MATHEMATICAL SYMBOLS

A.1 Variables and Parameters

dnv size of the window about hn−1, conditional on V = v

h0 observed river stage at time t0

M ensemble size, number of ensemble members (realizations)

M∗ the smallest ensemble size required for accurate estimation of predictive
distribution functions, optimal ensemble size

Mv number of ensemble members, conditional on V = v

MAD maximum absolute difference between two distribution functions

n index of time steps, index of lead times

N last time step, last lead time

pn probability number

sn0 model river stage at time tn resulting from W = 0

t0 forecast time

tn time instance

u0 vector of deterministic inputs to the hydrologic model at time t0

α scale parameter of a Weibull distribution

β shape parameter of a Weibull distribution

ν probability of precipitation occurrence

ξ matrix of expected disaggregation factors of W , conditional on V = 1;
vector of expected fractions of W , conditional on V = 1

A.2 Variates and Realizations

Hn, hn actual river stage at time tn

h∗n−1 realization of Hn−1 falling within a specified window

31



Sn, sn model river stage at time tn

V , v indicator of precipitation occurrence

W , w basin average precipitation amount

Zn, h maximum river stage within time interval (t0, tn]

A.3 Distribution and Density Functions

D.F., d.f. distribution function, density function

Fn predictive D.F. of Zn

Fnv conditional predictive D.F. of Zn

F̂nv empirical, ensemble-based estimate of Fnv

P generic probability function

p generic density function

T1 conditional D.F. of W

δ Dirac function

Θn predictive one-step transition D.F.

Θnv, θnv conditional predictive one-step transition D.F., d.f.

Θ̂nv empirical, ensemble-based estimate of Θnv

ξ predictive joint d.f. of (H1, ...,HN)

πn1 conditional output d.f. of Sn

φnv conditional posterior d.f. of Hn

Ψn predictive n-step transition D.F.

Ψnv, ψnv conditional predictive n-step transition D.F., d.f.

Ψ̂nv empirical, ensemble-based estimate of Ψnv

32



REFERENCES

Burnash, R.J.C., 1995. The NWS river forecast system: catchment modeling. In Singh, V.P.,

(Ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Highlands

Ranch, Colorado, Chapter 10, pp. 311–366.

Kelly, K.S., Krzysztofowicz, R., 2000. Precipitation uncertainty processor for probabilistic river

stage forecasting. Water Resources Research 36(9), 2643–2653.

Krzysztofowicz, R., 1999. Bayesian theory of probabilistic forecasting via deterministic hydro-

logic model. Water Resources Research 35(9), 2739–2750.

Krzysztofowicz, R., 2001. Reply. Water Resources Research 37(2), 441–442.

Krzysztofowicz, R., 2002. Bayesian system for probabilistic river stage forecasting. Journal of

Hydrology 268(1–4), 16–40.

Krzysztofowicz, R., 2008. Probabilistic flood forecast: exact and approximate predictive distribu-

tions. Research Paper RK–0802, University of Virginia, September 2008.

Krzysztofowicz, R., Kelly, K.S., 2000. Hydrologic uncertainty processor for probabilistic river

stage forecasting. Water Resources Research 36(11), 3265–3277.

Krzysztofowicz, R., Maranzano, C.J., 2004a. Hydrologic uncertainty processor for probabilistic

stage transition forecasting. Journal of Hydrology 293(1–4), 57–73.

Krzysztofowicz, R., Maranzano, C.J., 2004b. Bayesian system for probabilistic stage transition

forecasting. Journal of Hydrology 299(1–2), 15–44.

Krzysztofowicz, R., Pomroy, T.A., 1997. Disaggregative invariance of daily precipitation. Journal

of Applied Meteorology 36(6), 721–734.

33



Krzysztofowicz, R., Sigrest, A.A., 1997. Local climatic guidance for probabilistic quantitative

precipitation forecasting. Monthly Weather Review 125(3), 305–316.

Krzysztofowicz, R., Sigrest, A.A., 1999. Calibration of probabilistic quantitative precipitation

forecasts. Weather and Forecasting 14(3), 427–442.

Krzysztofowicz, R., Drzal, W.J., Drake, T.R., Weyman, J.C., Giordano, L.A., 1993. Probabilistic

quantitative precipitation forecasts for river basins. Weather and Forecasting 8(4), 424–439.

Lindley, D.V., 1985. Decision Making. Wiley, New York.

Maranzano, C.J., Krzysztofowicz, R., 2004. Identification of likelihood and prior dependence

structures for hydrologic uncertainty processor. Journal of Hydrology 290(1–2), 1–21.

Sittner, W.T., Schauss, C.E., Monro, J.C., 1969. Continuous hydrograph synthesis with an API-

type hydrologic model. Water Resources Research 5(5), 1007–1022.

34



Table 1. Forecast points, river basins, and hydrologic models.

Forecast River Statea Drainage area Hydrologic Number of

point model sub-basins
sq. miles km2

Eldred Allegheny PA 550 1430 API-basedb 1

Dailey Tygart Valley WV 187 484 Sacramento 1

Philippi Tygart Valley WV 916 2372 Sacramento 5

Parsons Cheat WV 718 1859 Sacramento 5

a/PA, Pennsylvania; WV, West Virginia.

b/API, antecedent precipitation index.
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Table 2. An analysis of the sampling window size dnv (v = 0, 1;n = 2, 3) for

estimating the conditional predictive one-step transition distribution

functions Θnv(·|hn−1) from an ensemble. A cell entry is 10 · dnv [ft],

which minimizes the expected MAD defined by Eq. (16); Eldred.

n = 2 n = 3

h1 [ft] h2 [ft]

M 5 6 7 8 9 10 11 12 5 6 7 8 9 10 11 12

v = 0 50 − 4 5 − − − − − 4 5 5 2 3 5 .5 .5
100 − 3 4 − − − − − 4 5 5 5 4 1 5 2
150 − 3 4 − − − − − 4 5 5 5 .5 .5 .5 .5
200 − 2 5 − − − − − 4 5 5 5 3 .5 .5 .5
500 − 2 4 − − − − − 3 5 5 5 5 1 .5 .5
750 − 2 5 − − − − − 3 5 5 5 5 1 5 5
1000 − 1 3 − − − − − 3 4 4 5 5 .5 .5 .5
1500 − 1 4 − − − − − 2 4 4 5 5 5 1 .5
2000 − 1 3 − − − − − 2 4 4 5 5 5 1 .5
5000 − 1 3 − − − − − 2 3 3 4 5 5 .5 .5
7500 − 1 3 − − − − − 2 3 3 4 5 5 5 .5
10000 − 1 5 − − − − − 2 3 3 4 5 5 5 .5

v = 1 50 2 5 5 5 5 .5 1 3 .5 .5 .5 5 .5 5 5 5
100 2 5 5 5 5 5 1 .5 1 .5 5 5 5 5 5 5
150 .5 5 5 5 5 5 5 .5 1 .5 5 5 5 5 5 5
200 1 5 5 5 5 5 5 5 3 5 5 5 5 5 5 5
500 .5 5 5 5 5 5 5 5 .5 5 5 5 5 5 5 5
750 .5 5 5 5 5 5 5 5 .5 5 5 5 5 5 5 5
1000 5 5 5 5 5 5 5 5 .5 5 5 5 5 5 5 5
1500 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
2000 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
5000 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
7500 5 4 5 5 5 5 5 5 4 5 5 5 5 5 5 5
10000 5 4 5 5 5 5 5 5 4 5 5 5 5 5 5 5
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Table 3. The expected (across 500 samples) MAD between Ψ̂nv and Ψnv as a function

of the ensemble size Mv, precipitation indicator v, and lead time n, at four

forecast points; the last column reports the average (across four forecast

points) standard deviation of MAD.

v n Mv Eldred Dailey Philippi Parsons Std. Dev.

0 1 50 0.114 0.110 0.112 0.112 0.0365
200 0.058 0.057 0.059 0.059 0.0185
2000 0.019 0.019 0.019 0.019 0.0058
7500 0.010 0.010 0.010 0.011 0.0030

2 50 0.112 0.111 0.110 0.110 0.0369
200 0.058 0.059 0.059 0.059 0.0185
2000 0.019 0.019 0.019 0.019 0.0057
7500 0.010 0.010 0.010 0.010 0.0030

3 50 0.112 0.108 0.111 0.110 0.0362
200 0.058 0.059 0.059 0.058 0.0181
2000 0.019 0.019 0.020 0.019 0.0060
7500 0.010 0.010 0.010 0.010 0.0029

1 1 50 0.111 0.110 0.111 0.112 0.0383
200 0.058 0.057 0.059 0.060 0.0183
2000 0.019 0.019 0.019 0.019 0.0057
7500 0.010 0.010 0.010 0.010 0.0030

2 50 0.109 0.112 0.112 0.114 0.0367
200 0.058 0.059 0.059 0.058 0.0188
2000 0.019 0.019 0.020 0.019 0.0058
7500 0.010 0.010 0.010 0.010 0.0031

3 50 0.111 0.109 0.111 0.111 0.0380
200 0.058 0.059 0.058 0.059 0.0183
2000 0.019 0.019 0.019 0.019 0.0059
7500 0.010 0.010 0.010 0.010 0.0031
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Table 4. The expected (across 500 samples) MAD between Θ̂31(·|h2) and Θ31(·|h2) as

a function of the ensemble size M1 and the conditioning river stage h2; and

the corresponding standard deviation of MAD; Eldred.

h2 [ft]

Statistic M1 6 8 10 12

Expectation 50 0.265 0.254 0.247 0.249
100 0.268 0.209 0.192 0.210
150 0.250 0.180 0.164 0.180
200 0.241 0.153 0.143 0.157
500 0.176 0.103 0.096 0.110
750 0.147 0.088 0.081 0.088
1000 0.131 0.078 0.073 0.078
1500 0.108 0.062 0.058∗ 0.065
2000 0.096 0.057∗ 0.051∗ 0.057∗
5000 0.067 0.035∗ 0.032∗ 0.036∗
7500 0.058∗ 0.030∗ 0.027∗ 0.030∗
10000 0.053∗ 0.025∗ 0.023∗ 0.026∗

Std. dev. 50 0.137 0.108 0.106 0.116
100 0.127 0.082 0.072 0.084
150 0.109 0.068 0.063 0.068
200 0.101 0.056 0.053 0.058
500 0.067 0.036 0.033 0.038
750 0.054 0.030 0.028 0.028
1000 0.047 0.026 0.024 0.026
1500 0.038 0.020 0.018 0.020
2000 0.034 0.017 0.017 0.018
5000 0.022 0.010 0.010 0.011
7500 0.020 0.009 0.008 0.009
10000 0.018 0.007 0.006 0.008

Asterisks indicate values less than 0.06.
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Table 5. The expected (across 500 samples) number of ensemble members falling

into the sampling window (d31 = 0.5 ft) about h2, and forming the

sub-sample from which an empirical estimate Θ̂31(·|h2) of the conditional

predictive one-step transition distribution function is obtained, as a function

of the ensemble size M1 and the conditioning river stage h2; Eldred.

h2 [ft]

M1 6 8 10 12

50 2 6 7 5
100 4 11 14 11
150 6 17 20 16
200 7 23 27 21
500 18 56 68 53
750 28 85 101 80
1000 37 114 135 106
1500 55 171 202∗ 161
2000 74 228∗ 270∗ 214∗
5000 185 569∗ 676∗ 533∗
7500 277∗ 851∗ 1011∗ 800∗
10000 368∗ 1135∗ 1348∗ 1066∗

Asterisks indicate sample sizes that yield the average
MAD less than 0.06 (see Table 4).

39



Table 6. The initial (observed) river stage h0, and the river stages hn−1 (n = 2, 3)

that condition the predictive one-step transition distribution functions

Θ̂nv(·|hn−1) and Θnv(·|hn−1) compared in terms of the expected

MAD in Table 7; for these hn−1 values, the standard deviation of

MAD is the smallest across (almost) all of the ensemble sizes.

hn−1 [ft]

v n Eldred Dailey Philippi Parsons

0 1 8 3 6 5

2 6 3 8 5

3 6 3 8 4

1 1 8 3 6 5

2 7 8 14 10

3 10 6 16 7
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Table 7. The expected (across 500 samples) MAD between Θ̂nv(·|hn−1) and Θnv(·|hn−1)

as a function of the ensemble size Mv, precipitation indicator v, and lead time n, at

four forecast points; stages hn−1 are listed in Table 6; results for Eldred and

Philippi are graphed in Figs. 8 and 9; the last column reports the average (across

four forecast points) standard deviation of MAD.

v n Mv Eldred Dailey Philippi Parsons Std. Dev.

0 2 50 0.209 0.221 0.187 0.246 0.0920
200 0.120 0.135 0.102 0.140 0.0442
2000 0.046 0.047 0.035 0.049 0.0145
7500 0.030 0.025 0.018 0.025 0.0077

3 50 0.184 0.211 0.274 0.163 0.0852
200 0.101 0.119 0.225 0.092 0.0486
2000 0.036 0.041 0.086 0.033 0.0154
7500 0.021 0.022 0.047 0.021 0.0084

1 2 50 0.192 0.240 0.274 0.245 0.1014
200 0.109 0.143 0.198 0.138 0.0541
2000 0.037 0.050 0.073 0.049 0.0163
7500 0.019 0.026 0.040 0.026 0.0086

3 50 0.247 0.249 0.273 0.241 0.1133
200 0.143 0.153 0.225 0.147 0.0655
2000 0.051 0.053 0.085 0.049 0.0189
7500 0.027 0.028 0.047 0.027 0.0101
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Table 8. The expected (across 500 samples) number of ensemble members falling into the

sampling window about hn−1, and forming the sub-sample from which an empirical

estimate Θ̂nv(·|hn−1) is obtained having the expected MAD less than 0.06.

Forecast Index1/ of hn−1
point

n v 1 2 3 4 5 6 7 8 9 Average

Eldred 2 0 − 211 − − − − − − 211
2 1 − 206 193 198 191 191 215 191 198
3 0 − 199 203 203 − − − − 202
3 1 − 257 222 189 188 195 193 191 205

Dailey 2 0 − 208 − − − − − − 208
2 1 − − 222 223 188 198 184 215 205
3 0 379 194 225 − − − − − 266
3 1 − − 192 188 185 202 225 189 197

Philippi 2 0 − 195 − − − − − − − 195
2 1 − − 191 222 220 221 207 197 − 210
3 0 − 212 − − − − − − − 212
3 1 − − 193 195 206 198 192 193 190 195

Parsons 2 0 − 192 − − − − − − − 192
2 1 − − − 202 183 191 196 222 191 198
3 0 207 220 245 212 − − − − − 221
3 1 − 227 206 202 193 209 212 194 − 206

Grand average 208

1/ The stages [in ft] corresponding to the indices 1, 2, 3, 4, 5, 6, 7, 8, 9 are as follows:
Eldred 5, 6, 7, 8, 9, 10, 11, 12, none
Dailey 2, 3, 4, 5, 6, 8, 10, 12, none
Philippi 6, 8, 10, 12, 14, 16, 20, 24, 28
Parsons 4, 5, 6, 7, 8, 10, 12, 14, 16

2/ A dash means that there is no empirical estimate with the average MAD less than 0.06
for that case.
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Table 9. A brief empirical guide: the smallest ensemble size M∗ required to ensure the

expected MAD less than a threshold, depending on the kind of predictive

distribution functions needed for decision making.

Distribution Expected MAD Required ensemble
kind threshold size M∗

Marginal 0.06 200
0.04 500
0.02 2000

Transition 0.06 700–5000
0.04 1500–10000
0.02 7000–

For transition, to achieve the expected MAD = 0.06 when
the preceding river stage is discretized into L windows,
the lower bound on M∗ is 210 · L.
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FIGURE CAPTIONS

Figure 1. The ensemble size M (black line and dots) and the number of realizations conditional

on precipitation occurrence M1 (gray line and crosses) needed to preserve the

probability of precipitation occurrence ν when the smallest required sample size is

M∗ = 100.

Figure 2. The PQPF specifying the distribution function of the 24-h basin average precipitation

amount for Eldred (upper graph) and for Dailey, Philippi, Parsons (lower graph).

Figure 3. Spaghetti plot of the 100-member Bayesian ensemble forecast of river stages generated

using the PQPF shown in Figure 2; Eldred.

Figure 4. Predictive n-step transition distribution functions Ψ̂n of river stages Hn for n = 1, ..., 12,

estimated from the 100-member Bayesian ensemble forecast shown in Figure 3; Eldred.

Figure 5. Comparison of the PRSFs: the conditional predictive 3-step transition distribution

function Ψ3v calculated analytically from the BFS and its three empirical estimates

Ψ̂3v obtained from three different ensembles of size M = 100. In each case (v = 0, 1),

one estimate is near perfect, one is biased leftward, and one is biased rightward; Eldred.

Figure 6. Select conditional predictive one-step transition distribution functions that comprise the

family which generates the ensemble members from which the function Θ2v(·|h1) is

actually estimated when the sampling window size is d2v; h1 = 6 ft for v = 0,

and h1 = 8 ft for v = 1; Eldred.

Figure 7. The average (across four forecast points, two precipitation events, three lead times) of

the expected (across 500 samples) MAD between Ψ̂nv and Ψnv.
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Figure 8. The expected (across 500 samples) MAD between Θ̂nv(·|hn−1) and Θnv(·|hn−1)

as a function of the ensemble size Mv for v = 0, 1 and n = 2, 3; Eldred.

Figure 9. The expected (across 500 samples) MAD between Θ̂nv(·|hn−1) and Θnv(·|hn−1)

as a function of the ensemble size Mv for v = 0, 1 and n = 2, 3; Philippi.

Figure 10. The average, the minimum, and the maximum (across four forecast points, two

precipitation events, two lead times) of the expected (across 500 samples) MAD

between F̂nv and Fnv.
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Figure 1. The ensemble size M (black line and dots) and the number of realizations conditional

on precipitation occurrence M1 (gray line and crosses) needed to preserve the

probability of precipitation occurrence ν when the smallest required sample size is

M∗ = 100.
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Figure 2. The PQPF specifying the distribution function of the 24-h basin average precipitation
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Figure 4. Predictive n-step transition distribution functions Ψ̂n of river stages Hn for n = 1, ..., 12,

estimated from the 100-member Bayesian ensemble forecast shown in Figure 3; Eldred.
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Figure 5. Comparison of the PRSFs: the conditional predictive 3-step transition distribution

function Ψ3v calculated analytically from the BFS and its three empirical estimates

Ψ̂3v obtained from three different ensembles of size M = 100. In each case (v = 0, 1),

one estimate is near perfect, one is biased leftward, and one is biased rightward; Eldred.
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Figure 6. Select conditional predictive one-step transition distribution functions that comprise the

family which generates the ensemble members from which the function Θ2v(·|h1) is

actually estimated when the sampling window size is d2v; h1 = 6 ft for v = 0,

and h1 = 8 ft for v = 1; Eldred.
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Figure 7. The average (across four forecast points, two precipitation events, three lead times) of

the expected (across 500 samples) MAD between Ψ̂nv and Ψnv.

52



0 2000 4000 6000 8000 10000
M0

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

E
xp

ec
te

d 
M

A
D

v = 0
n = 2
d = 0.1
h1 = 6 ft

0 2000 4000 6000 8000 10000
M1

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

E
xp

ec
te

d 
M

A
D

v = 1
n = 2
d = 0.5
h1 = 7 ft

0 2000 4000 6000 8000 10000
M0

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

E
xp

ec
te

d 
M

A
D

v = 0
n = 3
d = 0.3
h2 = 6 ft

0 2000 4000 6000 8000 10000
M1

0.00
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

E
xp

ec
te

d 
M

A
D

v = 1
n = 3
d = 0.5
h2 = 10 ft

Figure 8. The expected (across 500 samples) MAD between Θ̂nv(·|hn−1) and Θnv(·|hn−1)

as a function of the ensemble size Mv for v = 0, 1 and n = 2, 3; Eldred.
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Figure 9. The expected (across 500 samples) MAD between Θ̂nv(·|hn−1) and Θnv(·|hn−1)

as a function of the ensemble size Mv for v = 0, 1 and n = 2, 3; Philippi.
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Figure 10. The average, the minimum, and the maximum (across four forecast points, two

precipitation events, two lead times) of the expected (across 500 samples) MAD

between F̂nv and Fnv.
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