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Abstract

Hearing loss can be caused by many factors, e.g., daily exposure to excessive
noise in the work environment and listening to loud music. Another important
reason can be age-related, i.e., the slow loss of hearing that occurs as people
get older. In general hearing impaired people suffer from a frequency-dependent
hearing loss and from a reduced dynamic range between the hearing threshold
and the uncomfortable level. This means that the uncomfortable level for normal
hearing and hearing impaired people suffering from so called sensorineural hearing
loss remains the same but the hearing threshold and the sensitivity to soft sounds
are shifted as a result of the hearing loss. To compensate for this kind of hearing
loss the hearing aid should include a frequency-dependent and a level-dependent
gain. The corresponding digital signal processing (DSP) algorithm is referred to as
dynamic range compression (DRC). Background noise (from competing speakers,
traffic etc.) is also a significant problem for hearing impaired people who indeed
have more difficulty understanding speech in noise and so in general need a higher
signal-to-noise-ratio (SNR) than people with normal hearing. Because of this
the noise reduction (NR) is also an important algorithmic component in hearing
aids. Another issue in hearing aids is the undesired acoustic coupling between
the loudspeaker and the microphone which is referred to as the acoustic feedback
problem. Acoustic feedback produces an annoying howling sound and limits the
maximum amplification that can be used in the hearing aid without making it
unstable. To tackle the acoustic feedback problem adaptive feedback cancellation
(AFC) algorithms are used. Acoustic feedback is becoming an even more significant
problem due to the use of open fittings and the decreasing distance between the
microphone and the loudspeaker.

In this thesis several DSP techniques are presented to address the problems
introduced above. For the background noise problem, we propose a NR algorithm
based on the speech distortion weighted multi-channel Wiener filter (SDW-MWF)
that is designed to allow for a trade-off between NR and speech distortion. The
first contribution to the SDW-MWF based NR is based on using a weighting factor
that is updated for each frequency and for each frame such that speech dominant
segments and noise dominant segments can be weighted differently. This can be

iii



iv

done by incorporating the conditional speech presence probability (SPP) in the
SDW-MWF. The second contribution is based on an alternative and more robust
method to estimate and update the correlation matrices, which is very important
since an SDW-MWF based NR is uniquely based on these correlation matrices.
The proposed SDW-MWF based NR shows better performance in terms of SNR
improvement and signal distortion compared to a traditional SDW-MWF.

For the problem of background noise and reduced dynamic range, we propose
a combined algorithm of an SDW-MWF based NR and DRC. First the DRC is
extended to a dual-DRC approach that allows for a switchable compression char-
acteristic based on the conditional SPP. Secondly the SDW-MWF incorporating
the conditional SPP is combined and analysed together with the dual-DRC. The
proposed method shows that the SNR degradation can be partially controlled by
using the dual-DRC.

For the acoustic feedback problem, we propose a prediction error method based
AFC (PEM-based AFC) exploiting an improved cascaded near-end signal model.
The challenge in PEM-based AFC is to accurately estimate the near-end signal
model such that the inverse of this model can be used as a decorrelation of
the loudspeaker and the microphone signals. Due to the closed signal loop the
loudspeaker and the microphone signal are now correlated which causes standard
adaptive filtering methods to fail. The proposed PEM-based AFC shows improved
performance in terms of maximum stable gain (MSG) and filter misadjustment
compared to a PEM-based AFC using a single near-end signal model.



Korte Inhoud

Gehoorverlies kan worden veroorzaakt door vele factoren, voorbeelden zĳn
dagelĳkse blootstelling aan overmatig lawaai in de werkomgeving of luisteren
naar luide muziek. Een andere belangrĳke reden is gerelateerd aan de leeftĳd,
met name de langzame achteruitgang van het gehoor die optreedt als mensen
ouder worden. In het algemeen lĳden slechthorenden aan een frequentie-
afhankelĳk gehoorverlies en aan een verminderd dynamisch bereik tussen de
gehoordrempel en het oncomfortabele niveau. Dit betekent dat het oncomfortabele
niveau voor normaalhorenden en slechthorenden, die lĳden aan een zogenaamd
sensorineuraal verlies, hetzelfde blĳft, terwĳl de gehoordrempel en de gevoeligheid
voor zachte geluiden worden verschoven ten gevolge van het gehoorverlies. Ter
compensatie voor dit soort van gehoorverlies moet het hoorapparaat een frequentie-
afhankelĳke en niveau-afhankelĳke versterking toepassen. Het corresponderende
digitale signaalverwerkingsalgoritme (DSP) is het zogenaamde Dynamisch Bereik
Compressie-algoritme (DRC). Achtergrondgeluiden (van door elkaar pratende
personen, verkeer enz.) vormen ook een groot probleem voor slechthorenden, die
inderdaad meer moeite hebben met spraakverstaan in ruis en over het algemeen
dus behoefte hebben aan een hogere signaal-ruisverhouding (SNR) dan normaal-
horenden. Hierdoor kan ruisonderdrukking (NR) ook worden beschouwd als
een belangrĳke algoritmische component in hoorapparaten. Een ander probleem
in hoorapparaten is de ongewenste akoestische koppeling tussen de luidspreker
en de microfoon, die wordt aangeduid als het akoestische terugkoppelings- of
feedbackprobleem. Akoestische terugkoppeling produceert een irritant fluitend
geluid en beperkt de maximale versterking die in het hoortoestel kan worden
toegepast zonder dat het onstabiel wordt. Ter bestrĳding van het akoestische
terugkoppelingsprobleem worden Adaptieve Feedbackonderdrukkingsalgoritmes
(AFC) gebruikt. Akoestische terugkoppeling is recentelĳk een nog groter probleem
geworden door het gebruik van open aanpassingen en de afnemende afstand tussen
de microfoon en de luidspreker.

In dit proefschrift worden verschillende DSP-technieken gepresenteerd om de
problemen aan te pakken die hierboven werden gëıntroduceerd. Voor het
achtergrondgeluid probleem, stellen we een NR algoritme voor dat is gebaseerd
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op de spraak distortie gewogen meerkanaals Wiener filter (SDW-MWF), die
ontworpen is om een afweging tussen NR en spraak distortie mogelĳk te maken.
De eerste bĳdrage aan de SDW-MWF gebaseerde NR is gebaseerd op het gebruik
van een wegingsfactor, die wordt bĳgewerkt voor elke frequentie en voor elk frame,
zodanig dat spraak-dominante segmenten en ruis-dominante segmenten op een
verschillende manier kunnen gewogen worden. Dit kan gedaan worden door het
opnemen van de voorwaardelĳke kans op spraak aanwezigheid (SPP) in de SDW-
MWF. De tweede bĳdrage is gebaseerd op een alternatieve en robuustere methode
om correlatie matrices te schatten en bĳ te werken, wat heel belangrĳk is aangezien
de SDW-MWF gebaseerde NR enkel gebruik maakt van deze correlatie matrices.
De voorgestelde SDW-MWF gebaseerde NR toont betere prestaties in termen van
SNR verbetering en spraak distortie, vergeleken met een traditionele SDW-MWF.

Voor het probleem van achtergrondlawaai en verminderd dynamisch bereik, stellen
we een combinatie van SDW-MWF gebaseerde NR en DRC voor. Eerst wordt
de DRC uitgebreid met een duale DRC benadering die een omschakeling van
de compressie karakteristiek op basis van de voorwaardelĳke SPP toelaat. Ten
tweede wordt de SDW-MWF met voorwaardelĳke SPP samen met de duale DRC
gecombineerd en geanalyseerd. De voorgestelde methode toont aan dat de SNR
degradatie gedeeltelĳk kan worden gecontroleerd met behulp van de duale DRC.

Voor het akoestische terugkoppelingsprobleem, stellen we een Predictie Fout
Methode-gebaseerde AFC (PEM-gebaseerde AFC) voor, waarbĳ een verbeterd
gecascadeerd bronsignaalmodel wordt aangewend. De uitdaging in PEM-
gebaseerde AFC is een nauwkeurige schatting van het bronsignaalmodel te
bekomen zodat de inverse van dit model gebruikt kan worden als decorrelatie
van de luidspreker en de microfoonsignalen. Door de gesloten signaallus zĳn de
luidspreker en de microfoonsignalen nu gecorreleerd waardoor standaard adaptieve
filtering methodes mislukken. De voorgestelde PEM-gebaseerde AFC toont
verbeterde prestaties in termen van maximale stabiele versterking (MSG) en filter
misaanpassing, vergeleken met een PEM-gebaseerde AFC met een enkelvoudig
bronsignaalmodel.



Nomenclature

Mathematical Notation

a scalar a
a vector a
A matrix A

AT , aT transpose of matrix A, vector a

AH , aH Hermitian transpose of matrix A, vector a

â, â, Â estimate of scalar a, vector a, matrix A.
ε{·} expectation operator
Tr{·} trace operator
|·| absolute value
‖·‖ 2-norm
t discrete time variable
∈ element of
C set of complex numbers
ω radial frequency variable (rad)
log10 common logarithm
max(·) maximum
min(·) minimum
exp(·) exponential operator

Fixed Symbols

d(t) feedback compensated signal
el l-th canonical vector
fs sampling frequency
f feedback path impulse response vector
ˆf(t) estimated feedback path impulse response vector

vii



viii

F (q, t) feedback path model
H(q, t) near-end signal model
k frequency bin index
l frame index
M number of microphones
nF feedback path model order
r(t) source excitation signal
T60 reverberation time
u(t) loudspeaker signal
x(t) microphone signal
Xsi (k, l) speech component in the i-th microphone
Xni (k, l) noise component in the i-th microphone
Xi(k, l) i-th microphone signal
Xs(k, l) stacked speech vector
Xn(k, l) stacked noise vector
Xs(k, l) stacked data vector
v(t) near-end signal
W(k, l) stacked filter vector of multi-channel noise reduction
y(t) microphone signal
Z(k, l) output of the noise reduction algorithm
µ weighting factor to trade-off between noise reduction and

speech distortion
αn exponential weighting factor for the noise correlation matrice
αx exponential weighting factor for the speech-plus-noise correla-

tion matrice
ε(t) prediction error

Acronyms and Abbreviations

AFC Adaptive Feedback Cancellation
AR autoregressive
BTE Behind-the-ear
CIC Completely-in-the-canal
CPZLP Constrained Pole-Zero Linear Prediction
dB Decibels
DRC Dynamic Range Compression
DSP Digital Signal Processing
e.g. exempli gratia: for example
etc. et cetera: and so forth
FFT Fast Fourier Transform
FIR Finite Impulse Response
GSC Generalized Sidelobe Canceller
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HRTF Head-Related Transfer Function
Hz hertz
i.e. id est: that is
IFFT Inverse Fast Fourier Transform
IIR Infinite Impulse Response
ITC In-the-canal
ITE In-the-ear
kHz kilohertz
LMS Least Mean Squares
LP Linear Prediction
ms milliseconds
MMSE Minimum Mean Square Error
MSG Maximum Stable Gain
MVDR Minimum Variance Distortionless Response
MWF Multi-channel Wiener Filter
NIHL Noise-induced hearing loss
NR Noise Reduction
PEM Prediction Error Method
PEM-AFC PEM-based AFC
PZLP Pole-Zero Linear Prediction
RCB Robust Capon Beamformer
SAP Speech Absence Probability
SCB Standard Capon Beamformer
SD Signal Distortion
SFM Spectral Flatness Measure
SDW-MWF Speech Distortion Weighted MWF
SPL Sound Pressure Level
SNR Signal-to-Noise-Ratio
SPP Speech Presence Probability
STFT Short-Time Fourier Transform
vs. versus
VAD Voice Activity Detection
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Chapter 1

Introduction

Digital signal processing (DSP) is widely used to manipulate, modify, enhance
or filter signals such as speech, audio, image and telecommunication signals
[41][69][80][145][176][177][203][239]. These signals can be processed in the analog
domain but the digital domain offers high speed, better accuracy, greater flexibility,
increased storing capabilities, and simpler implementation. DSP has become a
fundamental area of research for many real-world applications, e.g., mobile phones,
digital cameras, GPS, video/tele-conference, radar, MP3 players and many more.
The work presented here is focused on DSP for hearing aids which is important for
hearing impaired people in order to communicate and interact with other people
in the daily life. It should be mentioned that some of the algorithms developed
here can be applied to, e.g., hands-free telephony, in-vehicle communication, and
public address systems. The two types of technology for hearing aids are analog
and digital [45][100][109]. The majority of hearing aids sold today are digital
namely because of the increased performance and flexibility compared to analog
hearing aids. Current state-of-the-art hearing aids are exploiting various aspects
of DSP and according to [216][217] 93 percent of all hearing aids sold in 2005
were digital. The core function of traditional hearing aids is mainly based on
signal amplification. However, digital hearing aids allow for more advanced signal
processing since the purpose of modern hearing aids is not only to amplify sounds.

This dissertation addresses several topics in DSP for hearing aids, namely noise
reduction (NR), dynamic range compression (DRC), and adaptive feedback
cancellation (AFC) which is only a subset of DSP algorithms that are used to
build a digital hearing aid. The design of NR, DRC and AFC is closely related and
equally important. The purpose of DRC is to make the speech signal audible by
providing proper amplification. However acoustic feedback limits the amplification
and therefore AFC is included to make the hearing aid stable. Reducing acoustic

1
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feedback increases the available gain and allows the hearing aid to get closer to the
prescribed gain. Making speech audible does not mean that hearing aid users can
understand the speech without enhancement of, e.g., spectral or spatial signal
information. This of course becomes more crucial when the hearing aid user
is listening in the presence of background noise which makes NR an important
component as well.

In this introduction, we will briefly motivate and explain the problems related to
hearing aids and hearing impairment. An overview of open problems and state-of-
the-art DSP algorithms in the areas of NR, DRC and AFC will also be discussed.
At the end of the introduction we will explain how this work fits within the current
open problems in hearing aids and point out the main contributions of this work
together with a chapter-by-chapter outline.

1.1 Preliminaries

1.1.1 Hearing impairment

Hearing impairment is becoming more common and can be caused by many reasons.
The most important reason is age-related (high-frequency hearing loss), i.e., the
slow loss of hearing that occurs as people get older [70]. Other reasons are daily
exposure to excessive noise in the work environment (construction site, factory
etc.) [143] and listening to loud music (MP3 players, iPod, concerts, night clubs
etc.) [191]. In general two factors can be mentioned as the primary reasons that
can cause hearing loss, i.e., the level of the sound and the duration that people
are exposed to this sound. This can damage the inner ear or more specifically the
inner and outer hair cells (outer hair cells are more susceptible to noise exposure
than inner hair cells) which is referred to as noise-induced hearing loss (NIHL)
[123]. The function of these hair cells is to convert sound energy into electrical
signals that are sent to the brain by the auditory nerve.

In our daily-life we are often exposed to sounds with high intensity without
realizing the danger to our hearing abilities. The consequence of NIHL can
typically not be reversed by surgical or medical procedures, i.e, once the hair cells
are damaged they cannot grow back again. Typically the damage is done when
people realize that they have a NIHL [39]. Sound levels are typically measured
in decibels (dB) which is not necessarily something that we think about when we
are in various environments. On a dB-scale an increase of 10 means that a sound
is 10 times more intense and this will sound twice as loud to our ears. To give a
perspective on the different sound levels that we can be exposed to some examples
are shown in Figure 1.1. Figure 1.2 shows hazardous exposure limits for various
sound levels. This shows that the louder the sound is the shorter the time is before
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Degree of hearing loss Hearing loss range (dB HL) Effect
Normal -10 to 15
Slight 16 to 25 Difficulty understanding
Mild 26 to 40 normal speech
Moderate 41 to 55 Difficulty understanding
Moderately severe 56 to 70 loud speech
Severe 71 to 90 Can understand only

amplified speech
Profound 91+ Difficulty understanding

amplified speech

Table 1.1: Degree of hearing loss.

NIHL occurs. Sounds less than 75dB are unlikely to cause NIHL even after a long
exposure time. Another factor that can play a role is of course the distance to the
sound source(s).

In general the degree of hearing loss can be classified into the following categories,
see Table 1.1. For a perspective the degree of hearing loss can be compared to the
level and frequency of average speech which is shown in Figure 1.3. For hearing
impaired people with mild to moderate hearing loss a hearing aid is needed in
specific situations or at least on a frequent basis. For severe hearing loss a hearing
aid is needed for all communications and for profound hearing loss the use of a
hearing aid may be combined with speech-reading (lip-reading) or sign language.
Furthermore there exist three distinct types of hearing loss, i.e.,

• Sensorineural hearing loss results from damages to the hair cells in the
cochlea in the inner ear.

• Conductive hearing loss occurs when the ability to conduct sound from
the external and middle ear into the inner ear is lost.

• Mixed hearing loss, i.e., combined sensorineural and conductive hearing
loss.

1.1.2 Some statistics

The exact number of hearing impaired people world wide is unknown but here
we will provide some statistics in order to give a perspective on the hearing loss
problem. According to [195] 71 million adults in 2006 aged 18 to 80 years in Europe
have a hearing loss. In the European Union alone the number is 55 million. Table
1.2 shows the hearing loss statistics for specific countries in Europe [195] and in
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Country Million people
Germany 10.2
France 7.6
United Kingdom 7.5
Italy 7.2
Spain 5.5
Poland 4.7
The Netherlands 2
United States 35

Table 1.2: Hearing loss statistics for different countries [117][195].

United States (2008) [117]. It was further reported in [117] that more than 25
million out the 35 million Americans suffering from hearing loss did not have a
hearing aid. There can be many reasons why people with a hearing loss do not
wish to use a hearing aid. The work in [115] investigated this issue and some of
the reasons are: poor benefit, background noise, negative side effects, price and
cost, sound quality, and volume adjustments. The most often heard complaints
are [113][115]:

• ”It does not work well in background noise”

• ”I can’t adjust the hearing aids constantly to every noise”

• ”Volume is OK, but I can’t distinguish words”

• ”Hearing aids amplify other sounds so much that I actually feel pain”

The work in [116] investigated improvements sought in the United States hearing
aid market from a consumer point of view. Basically the consumers were asked
to rate different items on a scale between one (not desirable) to five (highly
desirable). In Table 1.3 we have extracted the numbers related to benefit and
listening experience and sound quality which is related to the DSP part of the
hearing aid that is addressed in this dissertation. Other categories like cosmetics,
price and cost, batteries, maintenance etc. can be found in [116]. It is clear that
speech in noise is the most significant problem for hearing aid users together with
the desire for less whistling and buzzing. These problems are directly related to
NR and AFC. Making loud sounds less painful and making soft sounds audible is
related to DRC. The desire for better sound quality is more objective and depends
on the overall output from the different hearing aid algorithms, see Figure 1.8.
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% Not % Highly
Desirable Desirable

Improvement sought 1 2 3 4 5
Speech in noise 0.5 0.5 4.2 13.1 81.7
Less whistling & buzzing 2.4 2.0 10.7 18.6 66.3
Better sound quality 1.0 0.7 9.9 23.0 65.4
Work better - telephone 2.8 2.1 13.5 22.6 59.1
Loud sounds less painfull 2.2 2.8 14.3 22.8 58.0
More soft sounds 2.4 2.1 12.7 25.0 57.8
Speech in quiet 1.2 1.9 15.9 25.7 55.2
Mask tinnitus 5.7 4.6 18.7 18.5 52.5
Work better - cellphone 11.4 5.0 20.2 17.6 45.9
Better sound to music 6.0 4.4 27.3 27.9 34.1

Table 1.3: Improvements sought in the US hearing aid market from a consumer
point view [116].

1.1.3 Commercial hearing aids

Commercial hearing aids exists in many different styles and sizes, some of which
are listed below [45]:

• Behind the ear (BTE) hearing aids fit above and to the rear of the outer
ear.

• Completely in canal (CIC) hearing aids fit entirely in the ear canal and
are nearly invisible

• In the canal (ITC) hearing aids fit into the ear canal and fill roughly half
of the ear

• In the ear (ITE) hearing aids fit completely within the outer ear and fill
the entire ear

The choice of hearing aids depends on many factors, e.g., the impaired ear may be
too small to be fitted with a CIC or ITC hearing aid and these models are most
appropriate for hearing impaired people with a mild to moderate hearing loss.
The reason for this is the small size which removes options like volume control or
directional microphones. The ITE hearing aid is larger than the CIC and the ITC
hearing aid and can be used for hearing impaired people with a mild to severe
hearing loss. The large size of the BTE hearing aid makes it suitable for hearing
impaired people with a mild to profound hearing loss since BTE hearing aids in
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general can provide more amplification compared to smaller hearing aids due to a
stronger amplifier and a larger battery [45][109].

Typical design constraints for a commercial hearing aid are the size of the hearing
aid, e.g., number of microphones, microphone spacing, battery power, processing
complexity, and power restrictions. These constraints can limit the amount of
DSP algorithms that can be implemented in a commercial hearing aid. DSP is
only part of a larger system which includes many components such as microphone,
receiver, earmold, A/D converter, D/A converter, central processing unit, memory
etc. This part of the hearing aid is not considered in this dissertation and for a
general overview of these components we refer to [45][100][109].

1.1.4 Characterization of signals

Most hearing aids today are designed with different settings depending on whether
the input signal is a speech signal or music, which has a great influence on the
design of the hearing aids [109]. In this dissertation the input signal is assumed to
be a speech signal and therefore the characteristics of a speech signal will be shortly
explained. Speech signals have frequency components ranging from 100Hz to
8000Hz and are composed of voiced and unvoiced (noiselike) sounds. Voiced speech
is produced by a periodic vibration of the vocal chords and in general contains very
little energy above 4kHz. Unvoiced speech is produced by a turbulent airflow and is
considered to be broadband. The important frequencies for speech understanding
are between 300Hz and 3400Hz, which means that a sampling frequency of 8kHz
is sufficient to achieve acceptable speech quality and which is actually the classical
telephone bandwidth. Increasing the sampling frequency can increase the speech
quality and in this dissertation a sampling frequency of 16kHz is used. Speech
signals are considered to be non-stationary both spectrally and temporally and
can only be considered stationary over frames of 10-30ms [133]. Besides changes
from voiced to unvoiced sounds speech signals also consist of many silence periods.
These properties can be exploited using a voice activity detector (VAD) to classify
speech and noise-only periods. For a complete description of the speech production
model we refer to [41][133].

The knowledge of the speech production model is of course important but the
knowledge of the noise sources is crucial. Background noise can be classified
as either localized noise (e.g. computer fans) or diffuse noise, i.e., coming from
all directions (e.g. wind). Also the background noise can be considered to be
stationary (e.g. car noise) or nonstationary (e.g. multi-talker babble). The
most difficult scenario arises when the background noise is a speech signal (e.g.
competing speakers) since the spectral and temporal structure is similar as the
desired speaker. Reverberation (e.g. multipath propagation) and echo/feedback
(e.g. acoustic coupling between loudspeaker(s) and microphone(s)) can also be
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Desired speaker Talking Hearing aid userListening

Noise 

Reflected signalsDesired signal

Figure 1.4: Illustration of a hearing aid user in a noisy environment.

considered as noise or at least unwanted signals. Beside the different noise types
the noise source(s) can also be classified as either being additive, convolutive,
correlated or uncorrelated to the clean speech signal [45][100][109].

1.1.5 Acoustic environment

To communicate effectively in a noisy environment it is important to extract the
relevant information from the background noise which is a significant problem for
hearing impaired people. In environments with background noise the hearing aid
will amplify the noise as well as the desired signal. Due to room reverberation the
hearing aid will also amplify signals that are reflected against the walls, ceiling,
floor, and other objects in the room. An example with a desired speaker in a
class room is shown in Figure 1.4 where the hearing aid user is facing the desired
speaker and the noise is coming from other directions. Two main problems are
shown with respect to the hearing aid user, i.e., the desired signal, the reflected
signals, and the people talking behind the hearing aid user. The distance between
the desired speaker and the hearing aid user and the fact that the desired speaker
can move around also plays a crucial role on the speech intelligibility. Furthermore
the acoustic environment for hearing aid users can change rapidly, i.e., from being
outdoor (e.g. car passing by), in a car (e.g. engine noise) to entering an office
(e.g. fan noise, telephone ringing), restaurants (e.g. people talking), home (e.g.
television, radio, household appliances), church or a concert hall. All these effects
can seriously reduce the speech intelligibility especially for hearing aid users which
indeed require a higher SNR, which is also the most desirable improvement sought
by hearing aid users, see Table 1.3. Hence there is a strong need for DSP algorithms
for hearing aids that can compensate for all these effects.
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Figure 1.5: Example of an audiogram for mild, moderate, and severe hearing loss

1.1.6 Reduced dynamic range

In general hearing impaired people suffer from a frequency-dependent hearing loss
as shown in Figure 1.5. To compensate for this kind of hearing loss the hearing aid
should include a frequency-dependent gain such that the high frequencies receive a
higher amplification compared to the low frequencies. Typically hearing impaired
people also suffer from a reduced dynamic range between the hearing threshold and
the uncomfortable level as shown in Figure 1.6. This means that the uncomfortable
level for normal hearing and hearing impaired people remains the same but the
hearing threshold and the sensitivity to soft sounds are shifted as a result of the
hearing loss. It is also clear that a linear amplification in this case will make
the soft sounds audible but at the same time loud sounds can become too loud.
Therefore the wide dynamic range of speech needs to be reduced by amplifying
soft sounds more compared to loud sounds. This problem is also on the list of
improvements sought by hearing aid users, see Table 1.3. The rationale behind
the DRC is therefore to compensate for the reduced dynamic range in the impaired
ear by not only applying a frequency-dependent gain but a level-dependent gain
as well.
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Figure 1.6: Reduced dynamic range compared to dynamic range of normal hearing

1.1.7 Acoustic feedback

Acoustic feedback is a well-known problem in hearing aids, which is caused by the
undesired acoustic coupling between the loudspeaker and the microphone as shown
in Figure 1.7. This is especially a problem with the use of open fittings and the
small distance between the loudspeaker and the microphone. Acoustic feedback
produces an annoying howling sound and limits the maximum amplification that
can be used in a hearing aid if howling, due to instability, is to be avoided. In many
cases this maximum amplification is too small to compensate for the hearing loss,
which makes feedback cancellation algorithms an important component in hearing
aids [45][100][109]. Actually acoustic feedback is the second highest improvement
sought by hearing aid users, see Table 1.3. However acoustic feedback also affects
items such as better sound quality and the desire for more soft sounds.

1.1.8 Signal processing challenges

Hearing aid technology is constantly evolving and becoming increasingly more
advanced. This is partly due to the ongoing miniaturization of electronics such
that more microphones, processing power, and battery power are available in future
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Figure 1.7: Illustration of the acoustic coupling between the loudspeaker and the
microphone resulting in acoustic feedback.
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Figure 1.8: Illustration of typical DSP algorithms in hearing aids.

hearing aids. This means that future DSP algorithms can be designed with greater
flexibility and potential. Hearing aids include many DSP algorithms that assist
hearing impaired people to hear and understand speech. A hearing aid today
typically contains several DSP algorithms, some of which are listed in Figure
1.8. Besides the reduced dynamic range (hearing threshold to discomfort) and
increased hearing threshold (loss of sensitivity to weak sounds) hearing impaired
people also suffer from reduced frequency resolution (separating sounds of different
frequencies), reduced temporal resolution (intense sounds may mask following
weaker sounds), and reduced spatial cues (spatially separating a desired signal
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from noise). These are the effects that make hearing impaired people susceptible
to masking produced by background noise which consequently degrades the speech
intelligibility. For this purpose we will describe some state-of-the-art NR, DRC,
and AFC algorithms that have been proposed in hearing aids which is also the
topic of this dissertation. For an extensive overview of the different topics shown
in Figure 1.8 we refer the reader to [45][109][100].

1.2 Noise reduction in hearing aids

Background noise tends to decrease the speech intelligibility especially for people
suffering from hearing loss [124][51]. The topic of NR in hearing aids is therefore
of great importance and many different DSP strategies have been addressed in
the past [29]. The goal of NR algorithms is to reduce the background noise and
enhance the desired speech signal in complex acoustical environments in order
to improve speech intelligibility and/or listening comfort by increasing the SNR
without introducing any signal distortion.

NR algorithms can be classified as either fixed filters or adaptive filters [72][237].
The design of fixed filters relies on prior knowledge of the signal, the noise, and
the acoustic environment. Adaptive filters on the other hand are more flexible and
can adapt the filter characteristics automatically depending on the input signals.
The general trade-off in NR is the amount of noise that can be removed versus
speech distortion. NR algorithms can also be categorized into single-channel NR
and multi-channel NR and here we will provide a broad overview of different NR
algorithms.

Voice activity detection

The fundamental component of any NR algorithm is the voice activity detector
(VAD). Typically a stationarity assumption is made such that the noise charac-
teristics can be estimated and updated during noise-only periods. The purpose of
a VAD is to distinguish between speech dominant segments and noise dominant
segments (silence) which can be a challenging problem especially at low input SNR
and with non-stationary noise sources. In the past various VAD algorithms have
been proposed which all are aimed at improving the robustness, accuracy and
reliability. A VAD algorithm can be divided into two separate blocks, i.e., feature
extraction and a decision module. The objective of feature extraction is to find
discriminative speech features that can be used in the decision module. In this
section we will give a brief overview of existing VAD algorithms.

Features used in VAD algorithms have been based on: energy levels, pitch, and zero
crossing rates [99][121][179][221], the LPC distance measure [178], cepstral features
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[77], adaptive noise modeling of voiced signals [243], the periodicity measure [223],
and high order statistics (HOS) [153][183]. The problem with these approaches is
the robustness at low input SNR and with non-stationary noise sources since the
VAD is typically based on a fixed threshold.

Recent approaches to improve the VAD performance are based on using statistical
models with the decision rule derived from the statistical likelihood ratio test (LRT)
applied to a set of hypotheses [50][97][98][184]. Other decision rules have been
based on: Euclidean distance [71], Itakura-Saito and Kullback-Leibler divergence
[185], fuzzy logic [10], and support vector machines (SVM) [186]. Various
statistical models have been proposed to improve the VAD performance such as
Gaussian, Laplacian, and Gamma models [98]. VADs can also be distinguished
based on whether a hard decision (binary) or a soft decision (value between 0
and 1) is used. In [67] a soft VAD has been proposed where the distribution
of the clean speech and the noise are assumed to be Laplacian and Gaussian,
respectively. The probability of speech being active is then calculated using a
maximum likelihood (ML) approach and a hidden Markov model (HMM). In
[219] a soft VAD is proposed based on a generalized autoregressive conditional
heteroscedasticity (GARCH) filter and a variance gamma distribution (VGD).

It is obvious that an accurate estimate of the noise spectrum is the key to an
improved estimate of the original speech. A common noise estimation technique
is based on a recursive averaging procedure during periods where the speech is
absent and then keeping the noise estimate fixed during periods where speech
is present. This approach requires a VAD which in itself suffers from reliability
at low input SNR. An interesting approach has therefore been proposed in [35]
called improved minima-controlled recursive averaging (IMCRA). Basically the
smoothing parameter is now adapted over time and frequency based on the
conditional speech presence probability (SPP). The advantage of IMCRA is the
continuous update of the noise spectrum and the fact that a binary VAD is not
required.

Another common technique to estimate the noise characteristics is known as the
minimum statistics algorithm. This approach differs from the traditional VAD
methods since the minimum statistics algorithm does not need to distinguish
between speech activity and speech pauses. Instead the minimum statistics
algorithm is based on the fact that during speech pauses the speech energy is
close to zero which means that by tracking the minimum power the noise floor
can be estimated [140][141]. In [86] an approach for noise tracking is proposed
where the noise PSD can be updated in the presence of both speech and noise.
This method is based on the eigenvalue decomposition such that the noisy speech
can be decomposed into a signal-plus-noise subspace and a noise-only subspace.
This means that the noise statistics can be updated based on the noise-only
subspace even when speech is present. Other techniques that can be mentioned
are histogram [188] and quantile based noise estimation techniques [212].
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1.2.1 Single-channel noise reduction

Single-channel NR algorithms have been widely studied in the past [133] and
these approaches can be broadly categorized as parametric or non-parametric
techniques. These algorithms are designed to enhance noisy speech signals using a
single microphone, i.e., relying only on temporal and spectral differences between
the speech signal and the background noise. Single-channel NR is a difficult
problem, especially with non-stationary noise sources and low input SNR, since
there is no reference microphone available to estimate the noise or to estimate
spatial signal information. Since the speech and the noise typically occupy the
same frequency bands single-channel NR usually has problems reducing the noise
without introducing artifacts and distortion.

Non-parametric noise reduction

Non-parametric NR relies on an estimate of the noise characteristic estimated
during noise-only periods, e.g. using a VAD or a minimum statistics algorithm,
which then is applied during speech-plus-noise periods to extract the clean speech
signal. Many single-channel NR algorithms have been developed during the past
years starting from simple spectral subtraction [15][75] which is the most basic and
commonly used technique. The idea behind spectral subtraction is to estimate the
noise magnitude spectrum from the noisy speech magnitude spectrum, and then
subtract it from the noisy speech assuming that the noise is uncorrelated and
additive to the speech signal. The analysis and synthesis part of the different NR
algorithms is commonly performed using the short-time Fourier transform (STFT)
with overlap-add or overlap-save procedure. Spectral subtraction depends on a
VAD such that the noise power can be kept fixed during speech segments and
updated during noise-only segments which requires a stationarity assumption on
the background noise. Over the years many variations of the spectral subtraction
algorithm have been proposed, e.g., generalized spectral subtraction [11][40][144],
spectral subtraction using over-subtraction and spectral floor [11], nonlinear
spectral subtraction [131][132], spectral subtraction with a minimum mean square
error (MMSE) short-time spectral amplitude (STSA) estimator [55][56], spectral
subtraction based on perceptual properties [25][172][232][240], and subspace based
spectral subtraction [59][187]. The aim of all these methods is to compensate for
the drawbacks of the traditional spectral subtraction [15], e.g., speech distortion,
musical noise and other artifacts.

Another classical single-channel NR algorithm is the Wiener filter [128] which
is based on estimating an optimal filter from the noisy speech signal based on
minimizing the mean square error (MSE) between the desired signal and the
estimated signal. The Wiener filter requires separate estimates of the clean speech
and the noise power which can be estimated using a VAD assuming that the speech
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and the noise is short-term stationary. One of the drawbacks of the Wiener filter
is the requirement of the clean speech power which makes the Wiener filter highly
dependent on the VAD.

Single-channel NR based on subspace estimation has also been proposed [59][60][90].
These techniques are based on decomposing the vector space of the noisy speech
into a speech-plus-noise subspace and a noise subspace. The noise subspace can
then be removed before processing the speech-plus-noise subspace in order to
estimate the clean speech signal. The decomposition can be performed applying
either the singular value decomposition (SVD) or the Karkunen-Loeve transform
(KLT) on the noisy speech signal [146][187]. A perceptually motivated signal
subspace based NR has been proposed in [94] such that the masking properties of
the human auditory system are taken into account during the NR process.

Other single-channel NR techniques that can be mentioned are based on cost
functions such as MMSE estimators [54][56][79], log-MMSE estimators [57],
maximum likelihood (ML) [144], and maximum a posteriori (MAP) estimators
[135]. In [33][36][152] an optimally modified log-spectral amplitude estimator is
proposed based on incorporating the conditional SPP which is estimated for each
frequency bin and for each frame by a soft decision approach.

Parametric noise reduction

In parametric NR the noisy speech is modelled as an autoregressive (AR) process
embedded in coloured Gaussian noise, which then can be represented in the state-
space domain [95][171]. These techniques are performed in two steps, first the
speech AR parameters and the noise variances have to be estimated and then the
speech signal is estimated by applying either a Wiener filter [78] or a Kalman filter
[65][68] using the estimated parameters. In general parametric based NR differs
in the choice of model used to parametrize the speech signal and the method
used to estimate the model parameters. Commonly used methods to estimate the
model parameters are the estimation maximization (EM) algorithm [42] and the
Yule-Walker equations [81]. Harmonic models and HMM have also been used in
parametric based NR [54][58][128]. Kalman filtering has shown to have certain
advantages compared to Wiener filtering since the Kalman filters can take the
quasi-stationarity of speech signals into account. This is mainly due to the fact
that Kalman filters can be continuously updated [171]. Various modifications and
improvements of Kalman filtering based NR can be found in [64][65][112][246].

Although increased SNR and listening comfort have been reported for single-
channel NR, limited benefits in terms of speech intelligibility have been reported
[150]. Recently an environment specific NR was proposed [91] where the
NR algorithm is adjusted based on the listening situation which could be
done manually or automatically using sound classification methods. Using the
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environment specific NR substantial improvement in terms of speech intelligibility
was reported for CI users. Perceptual evaluation with normal hearing and hearing
impaired subjects was performed in [136] for various NR algorithms. Here it
was shown that single-channel NR algorithms did not significantly affect the
speech reception threshold (SRT). However single-channel NR algorithms were
significantly preferred over the unprocessed conditions. Since the speech and the
noise overlap in time and frequency it is difficult for single-channel NR to perform
NR without introducing speech distortion and musical noise. Other artifacts can
also be introduced due to the non-linear filtering approach related to single-channel
NR. Another factor is low input SNR and highly non-stationary noise sources
which typically result in an inaccurate estimation of the noise characteristic.

1.2.2 Multi-channel noise reduction

In the past, hearing aids were typically designed using a single omni-directional
microphone but the limited benefit in terms of speech intelligibility for single-
channel NR algorithms has motivated the use of multi-microphones [114][150].
Due to the miniaturization of microphones [170] hearing aids can be equipped
with two and even three microphones. Typically, the desired speaker and the
noise sources are located at different positions and the spatial separation can then
be used, i.e., the spectral and spatial differences between the desired signal and
the background noise are exploited. This section will summarize some of the well-
known multi-channel NR techniques.

Omni-directional and directional microphones

Directional microphones are used to preserve a desired signal coming from a certain
direction while reducing noise and interferences from other directions. Directional
microphones are preferred when the background noise is present to the side or the
rear, or when the desired signal is near to the listener, and the reverberation is
low. Omni-directional microphones are equally sensitive to sounds coming from all
directions. Omni-directional microphones are preferred when the signal is far from
the listener or when the reverberation is high [45][100][109]. In hearing aids the
spacing between the microphones is typically small compared to the wavelength
of the sound. This can be a problem since the directional response pattern is
defined by the microphone spacing and the time delay. The directional response
pattern can also be affected by microphone mismatch and the head-shadow effect.
A realistic assumption in hearing aids is that the desired signal is located in front
of the hearing aid user and the interferences can come from any direction, which
can be caused by room reverberation or from noisy environments.
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Results obtained in the laboratory often favour directional microphones but in real-
world situations results show equal support for directional and omni-directional
microphones [9][37][119]. In [8] it was shown that directional microphones provide
better speech perception compared to omni-directional microphones in a stationary
noise environment. In a moving noise environment an adaptive two microphone
mode was preferred compared to a fixed two microphone and an onmi-directional
microphone mode. In [31] three different noise scenarios were evaluated and
the results favoured the adaptive directional microphones compared to omni-
directional and fixed directional microphones.

Fixed beamformers

In fixed beamforming, the filter coefficients are fixed for a predefined target
position and are hence data-independent. The success of fixed beamformers relies
on correct assumptions on the microphone characteristics, array geometry, target
position etc. [230]. A fixed beamformer is a spatial filter that focuses on a
desired speaker, i.e., speech coming from a predefined target position is passed
through without distortion, while reducing the effect of background noise coming
from all other directions. The overall output from a beamformer is then formed
by summing the output from each filter. Typical fixed beamformers include
delay-and-sum beamformers, filter-and-sum beamformers, differential microphone
arrays, and superdirective microphone arrays.

Delay-and-sum beamformers basically delay the microphone signals and the single
output is then formed by summing the microphone signals. Delays between the
microphones are used to steer the mainlobe of the beamformer in a particular
direction. The beamwidth of a beamformer is the width of the main lobe which
indicates the ability of the beamformer to suppress interferences that are close
in azimuth to the desired signal. This beamwidth depends on the array length
such that a longer array length results in a narrower main lobe. Filter-and-sum
beamformers are based on filter coefficients that are optimized for a certain spatial
direction based on a given cost function [168][242]. Filter-and-sum beamformers
differ from delay-and-sum beamformers since an independent weight is applied to
each microphone signal before the signals are summed together to form the overall
output. In differential microphone arrays one of the microphone signals is delayed
and the output from the two microphones are subtracted from each other [52].
Superdirective beamformers [106] are designed to maximize the directivity pattern
in a desired direction, while suppressing noise coming from all other directions.

Fixed beamformers are typically very sensitive to microphone mismatch, missteer,
array geometry, and speaker position especially when applied in small-sized arrays
such as in hearing aids [211]. Robustness against these errors can be achieved
by calibrating each hearing aid which unfortunately can be time consuming and
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expensive [211][218].

Adaptive beamformers

Adaptive beamformers make use of data-dependent filter coefficients and adapt
to non-stationary signals and various acoustic environments [12][82][173][238]. In
general adaptive beamformers have a better NR performance compared to fixed
beamformers especially when the number of interferers is smaller than the number
of microphones, when no diffuse noise and little reverberation is present. The
idea is to steer the main lobe towards the desired signal and adapt the nulls in
the direction of the interferences. In most hearing aid scenarios there are more
sources than microphones available which means that there are not enough nulls to
be steered toward the interferences. Instead the overall power of the interferences
can be minimized by reducing the sidelobes without taking the nulls direction
into account. The performance of adaptive beamformers can be improved by
increasing the size of the array or the number of microphones. The challenge
of adaptive beamformers is robustness against reverberation and scenarios where
there are more sources than microphones. In theory, an array of M-microphones
can generate M-1 nulls in the directional response pattern, i.e., M-1 interferences
can be suppressed. The length of the filter also has an influence on the performance
and therefore needs to be carefully chosen as well. A long filter can model the direct
sound and the reflections and should therefore perform better than a short filter.
However long filters adapt slowly and may not respond fast enough to changes in
the acoustic environment.

Linearly constrained minimum variance (LCMV) beamforming is a well-known
technique that is designed to minimize the energy of the output signal with a
constraint on a certain direction such that the target speech is preserved [93]. An
alternative implementation of the LCMV beamformer is known as the generalized
sidelobe canceler (GSC) [74] where the constrained optimization problem is
reformulated as an unconstrained optimization problem. The GSC is based on a
fixed spatial pre-processor consisting of a fixed beamformer and a blocking matrix
together with an adaptive noise canceller (ANC). The ANC then minimizes the
output power while the blocking matrix is designed to avoid the speech leaking
into the noise references [17][46][81][180][224]. Obviously the performance of the
GSC will be affected if the speech signal is leaked into the noise references causing
speech distortion, which can happen due to reverberation, microphone mismatch,
misteer etc. Many variations of the GSC have been proposed in order to make the
GSC robust against these errors [18][32][34][66][88][235]. Adaptive beamformers
generally provide better NR performance compared to fixed beamformers since the
filter coefficients can be adapted to the changing acoustic environments. However
adaptive beamformers are very sensitive to modelling or adaptation errors which
can cause speech distortion. For this reason the fixed beamformer is sometimes
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desired especially if robustness and low complexity is preferred compared to NR
performance. Minimum variance distortionless response (MVDR) is a special
case of the LCMV beamformer [182], where the filter weights are designed to
minimize the variance of the output signal subject to a unity constraint in the
target direction.

In [204] it was shown that a two microphone adaptive beamformer significantly
improved the SRT compared to a standard hardware directional microphone. The
evaluation was carried out on a Nucleus Freedom cochlear implant (CI) system
based on five adult CI users. Perceptual evaluation for a dual-microphone hearing
aid also favoured the adaptive beamformer compared to a fixed software directional
microphone which is state-of-the-art in most modern commercial hearing aids [137].

Multi-channel Wiener filter

Another multi-channel NR algorithm is the multi-channel Wiener filter (MWF)
[62][139][169]. MWF based NR provides an MMSE estimate of the speech
component in one of the received microphone signals. The MWF is uniquely
based on second order-statistics of the speech and the noise signals and makes
no a priori assumptions about the signal model. This is particularly beneficial
in terms of robustness, especially when working with small-sized arrays such as
in hearing aids. MWF algorithms exploit both spectral and spatial differences
between the speech and the noise sources. The MWF has been extended to the
speech distortion weighted MWF (SDW-MWF) such that the MMSE optimization
criterion now allows for a tradeoff between speech distortion and noise reduction
[207][49]. The performance of the MWF has been evaluated in [48][205] which
showed that the MWF outperformed the GSC in adverse listening environments.
Perceptual evaluation with normal hearing and hearing impaired subjects was
performed in [136] for various NR algorithms. Here it was shown that the MWF
was the only algorithm that provided a significant SRT improvement compared
to four other NR algorithms. The problem is the high computational complexity
of the MWF which has limited the usage of the MWF in hearing aids. However,
work has been done to reduce the complexity of the MWF by exploiting low cost
subband and stochastic gradient implementations of the MWF [206][207].

In this thesis, we will focus on the MWF with unknown reference which means
that no a priori information and calibration is needed [48][189]. This property is
highly desirable from a robustness point of view.
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1.3 Dynamic range compression in hearing aids

DRC is a basic component in digital hearing aids and the use of DRC has increased
over the years [150][201]. The role of the DRC is to estimate a desirable gain to
map the wide dynamic range of an input audio (e.g. speech) signal into the reduced
dynamic range of a hearing impaired listener. DRC is a DSP strategy that makes
speech audible over a wide range of sound levels and reduces the dynamic range
of speech signals. Basically, a DRC is an automatic gain control, where the gain is
automatically adjusted based on the intensity level of the input signal. Segments
with a high intensity level (loud sounds) are amplified less compared to segments
with a low intensity level (soft sounds), since a comfortable listening level for loud
sounds makes soft sounds inaudible. In this way it is also guaranteed that loud
sounds are not becoming uncomfortably loud, so beside audibility a DRC is also
designed to avoid discomfort, distortion, and damage. A hearing aid with DRC
has a gain that changes over time and frequency depending on the intensity level
and is therefore considered to be a non-linear DSP algorithm. Changing the gain
in each frequency band will modify the speech spectrum and a rapid change of the
gain could also lead to audible processing artifacts. The design and perceptual
benefit of DRC will be shortly reviewed in the following sections.

1.3.1 Design of DRC algorithms

A DRC algorithm is typically performed in the following operations. First the
input signal is divided into a number of frequency bands and then an envelope
detector estimates the level of each frequency band. In the last step the level of
each frequency band is inserted in the compression characteristic which estimates
the desired gain which is applied to the input signal.

Most digital hearing aids today use a multi-band DRC approach which can be
implemented using either filter banks or a fast Fourier transform (FFT). The
problem with an FFT approach is the constant frequency resolution whereas
typically it is desirable to have a frequency resolution that can match the resolution
of the human auditory system. Another problem is the optimal number of
frequency bands that should be used in a DRC which is still unclear. General
trade-offs in the design of the DRC involves complexity, frequency resolution, time
delay, and quantization noise [108]. For any given application, increased frequency
resolution comes at the price of increased delay. In [109][110] a DRC using digital
frequency warping has been proposed with two main features such as a frequency
analysis that is better matched to the human auditory system, i.e., close to the
auditory Bark scale and a reduced group delay compared to traditional designs.
In [87] a multi-band DRC has been proposed based on instantaneous compression
performed on each frequency band using a gammatone filterbank.
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In the envelope detection the setting of the attack and the release time have been
widely discussed, i.e., whether a fast or a slow time constant should be used. Using
a fast time constant can make all segments of the speech audible [231] whereas
a slow time constant can preserve the speech envelope [175]. The attack and
release time specify how fast the gain is changed according to changes in the
input signal. The attack time is defined as the time taken for the compressor
to react to an increase in input signal level. The release time is the time taken
for the compressor to react to a decrease in input level. Typically a fast attack
time is used such that an increase in signal level can be quickly detected in order
to avoid overamplification of loud sounds. The release time is usually slower to
avoid audible fluctuations and distortion and it is also assumed that insufficient
amplification is not as damaging compared to overamplification. However a
problem could arise in terms of audibility, if the release time is too slow, such
that the soft sounds are amplified with a gain that was previously appropriate for
loud sounds.

The attack and release time only specify how fast the DRC algorithm should
react to an increase or a decrease in signal level but it does not define how
much the gain should be increased or decreased which is defined by a predefined
compression characteristic. A compression characteristic of a DRC algorithm is
typically defined by the compression ratio (CR), the compression threshold (CT),
and a desired gain which leads to a input-output characteristic that shows the
output sound pressure level (SPL) as a function of the input SPL. The CT is
defined in dB and corresponds to the point where the DRC becomes active, i.e.,
where the gain is reduced. The CR determines the degree of compression. A CR
of 2 (i.e. 2:1) means that for every 2dB increase in the input signal, the output
signal increases by 1dB.

In the past extensive works have analyzed the challenges and difficulties in the
settings of the DRC parameters such as the CR, CT, attack and release time, and
the number of compression bands [21][53][120][149][154][175][215][231]. Another
design criterion of the DRC has also been developed where the goal is to match
the estimated loudness in the impaired ear to that of a normal ear [103][118]. The
general design of different DRC algorithms can be found in [13][87][110][193][127].

1.3.2 Perceptual benefits from DRC

The benefits of using DRC in hearing aids have been reported with different results
and here we will review some of the conclusions made from perceptual experiments
with DRC. In [154] it was shown that listeners preferred a CR less than 2:1 for
all conditions. However in the presence of multi-talker babble noise, subjects
with a residual dynamic range greater than 30dB preferred a CR of 1:1 which
corresponds to a linear amplification. Subjects with a residual dynamic range of
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less than 30dB preferred a CR of 1.5:1 or 2:1. The same trend was shown in
[92] where an improved speech intelligibility was reported when using DRC with
speech in quiet but in the presence of noise a linear amplification was preferred.
This shows that the performance of the DRC in the presence of background noise
is different. In [202] it was reported that the DRC degrades the SNR and the
effective CR is lower for speech in noise.

The perceptual benefits with regard to the number of frequency bands needed
in DRC has also been widely discussed [149][236]. In [111] it was shown that
increasing the number of frequency bands from 1 to 4 did not have any significant
improvement on speech intelligibility and most subjects did not have any preference
for the number of frequency bands. In [151][215] the perceptual benefits of fast-
acting multi-band DRC was evaluated and compared to a linear amplification.
The first conclusion made was that the number of frequency bands did not
have a significant effect on the SRT. However it was shown that a fast-acting
multi-band DRC had a significant benefit compared to a linear amplification.
In [225] a DRC algorithm with 1, 4, and 16 frequency bands was evaluated,
which showed no significant difference, however the pleasantness for speech and
music were both highest with a single frequency band. In [236] it was concluded
that multi-band DRC unnecessarily attenuates important information regarding
the shape of the short-time speech spectrum, i.e., the height of spectral peaks
are reduced and the floor of the spectral valleys are increased which flattens
the short-time speech spectrum, resulting in poor speech perception. In [19]
it was suggested that multi-band DRC increased the overall gain compared to
linear amplification. This resulted in greater audibility and intelligibility for low
level sounds. However at high input levels the multi-band DRC degraded the
intelligibility compared to linear amplification. The analysis suggested that the
multi-band DRC caused spectral distortion due to independent compression in
each frequency band which was the reason for the degraded intelligibility. However
the work in [87] investigated the benefit of having slow-acting versus fast-acting
multi-band DRC and it was concluded that fast-acting DRC indeed introduces
some distortion but this did not have any negative impact on speech intelligibility.
A different DRC approach that does not use a compression characteristic with
a CR and a CT has been proposed in [13][14] called adaptive dynamic range
optimization (ADRO) amplification. ADRO is designed with 64 frequency bands
and uses statistical analysis of the signal to optimize the output dynamic range in
each frequency band independently. Here it was reported that, speech perception
scores showed improved audibility for sounds in many narrow frequency bands
while still maintaining improved comfort and sound quality.

In general it can be concluded that DRC is preferred over linear amplification.
However the optimal design of a DRC is still an open question. In [45][245] it is
suggested that multi-band DRC would mostly benefit people with a steeply sloping
hearing loss and that the full advantage of multi-band DRC may not be achieved
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until the hearing aid user has sufficient experience using a multi-band DRC hearing
aid. It is also mentioned that a multi-band DRC would probably work best at very
low and at very high input levels whereas most work has evaluated the multi-band
DRC at mid-range levels.

Despite the disagreement of how to design DRC algorithms and the perceptual
benefits the target of DRC is clear, i.e., make soft sounds audible by increasing
the gain while making loud sounds comfortable by reducing the gain. For sound
levels between soft and loud typically a linear amplification is applied. In this
dissertation we will focus on the scenario where the DRC operates in the presence
of background noise. Furthermore the aim is to analyze the undesired interaction
effect between NR and DRC.

1.4 Feedback cancellation in hearing aids

Modern hearing aids are becoming smaller and smaller these days which is desired
from an aesthetic point of view. Unfortunately this poses other problems such
as acoustic feedback, i.e., the acoustic coupling between the loudspeaker and the
microphone(s). The acoustic feedback problem is caused when amplified sound
leaks out and gets picked up by the microphone in the hearing aid creating a closed
signal loop. The acoustic feedback problem stems from the vent in the earmold
of the hearing aid which is becoming larger with the desire for open fittings. The
vent is used to reduce the occlusion effect which refers to the hearing aid users’
unnatural perception of their own voice [45][100][102][109]. Increasing the size of
the vent makes the acoustic feedback problem worse. Acoustic feedback limits the
maximum gain that can be used in the hearing aid. Furthermore, acoustic feedback
is audible as a continuous high-frequency tone emanating from the hearing aid.

There exist two distinct techniques to tackle the acoustic feedback problem, i.e.,
feedforward suppression and feedback cancellation both with a common goal,
i.e., to maximize the hearing gain while minimizing any processing artifacts
such as distortion, ringing, howling etc. The acoustic feedback problem can
be solved by either completely removing the acoustic coupling or partially by
removing the howling artifacts from the loudspeaker signal. The most widely
studied techniques are phase-modulating feedback control (PFC), notch-filter
based howling suppression (NHS), and adaptive feedback cancellation (AFC). The
PFC attempts to smooth the system loop gain whereas NHS aims to actually
suppress the howling. The target of AFC is to completely remove the acoustic
coupling. Here we will give a short overview of the two concepts and describe the
advantages and disadvantages of these techniques for reducing acoustic feedback.
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1.4.1 Feedforward suppression

In feedforward suppression techniques, the acoustic feedback is reduced in the
forward path (i.e., in the closed signal loop) such that the hearing aid is stable
in conjunction with the acoustic feedback path. A simple method for reducing
feedback is with the use of notch filters such that the gain is reduced in a narrow
frequency region (around the critical frequencies) whenever acoustic feedback
is expected to occur [105][142]. However there exist some disadvantages, e.g.,
reducing the gain at certain frequencies could potentially reduce the speech quality
or even speech intelligibility if the notch filters are wrongly placed. In general
the benefits of notch filters have been limited since these techniques operate in
the forward path which can compromise the frequency response and the speech
quality of the hearing aid. Furthermore, these techniques usually have a reactive
nature which means that howling or ringing can usually be perceived before
the detection algorithm is activated. Other feedforward suppression techniques
have been proposed based on equalizing the phase of the open-loop response
[234] or by using techniques such as frequency shifting and phase modulation
[20][101][166][194].

1.4.2 Feedback cancellation

Recently attention has been focused on feedback cancellation algorithms where the
target is to model the acoustic feedback path which is used to predict the feedback
signal in the microphone signal, i.e., part of the loudspeaker signal that is leaked
into the microphone signal. This predicted feedback signal is then subtracted from
the microphone signal and the feedback compensated signal should correspond to
the desired signal if the estimated acoustic feedback path is accurately estimated.
Ideally this kind of approach will preserve the desired signal at the input to the
forward path. The acoustic feedback path is typically modelled with an adaptive
finite impulse response (FIR) filter, since the acoustic feedback path can change
rapidly depending on the acoustic environment. The acoustic feedback path
includes a slowly varying part, i.e., the microphone, the amplifier, and the receiver
and a rapidly varying part, i.e., the vent acoustic, the earmold (acoustics leaks),
and external acoustics all of which can have a large effect on the acoustic feedback
path [84][181]. Examples of external acoustic factors can be scenarios where a
telephone is used [213] or if the hearing aid user is putting a hat on. Room
reverberation can also affect the performance of feedback cancellation in hearing
aids [104]. It is therefore preferable to use adaptive feedback cancellation (AFC)
algorithms. The accuracy of the estimated acoustic feedback path is of course
crucial since mismatch between the estimated acoustic feedback path and the true
acoustic feedback path can lead to instability and distortion.
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AFC algorithms exist in two different setups, i.e., with continuous adaptation or
with non-continuous adaptation. The latter is considered to be a reactive approach
since the filter coefficients are only adapted when instability is detected. This kind
of systems actually allows the hearing aid to become unstable before the AFC
algorithm is activated which in general is not desirable. Continuous adaptation
AFC is considered to be proactive, i.e., the critical frequencies are identified before
howling and ringing occurs. The acoustic feedback path can be estimated and
updated continuously by using standard adaptive filtering techniques such as least
mean squares (LMS) or recursive least squares (RLS) to adapt the filter coefficients.
However the continuous adaptation poses a problem that is highly non-trivial due
to the presence of the closed signal loop which introduces a correlation between
the loudspeaker and the near-end signal which is a major problem especially if the
near-end signal is spectrally colored such as for speech and music signals.

Therefore, applying standard adaptive filtering to the AFC problem in hearing
aids results in a biased estimate of the acoustic feedback path [85][197]. This can
lead to part of the desired signal being partially cancelled or at least distorted
and of course the risk of ringing and howling since the acoustic feedback path
is not accurately estimated. For this reason decorrelation procedures are usually
included in the AFC algorithm. The correlation problem is worst when the input
signal is tonal, e.g., speech and music signals which causes large changes in the
estimated acoustic feedback path. The problem is that standard adaptive filters
adapt to cancel the tonal components rather than modelling the acoustic feedback
path. It is clear that the bias and the correlation problem are crucial to achieve
good AFC performance which is the main topic of the next section.

1.4.3 Bias problem and decorrelation

In the past, many different solutions have been proposed to reduce the bias or the
correlation between the loudspeaker and the near-end signal. Decorrelation can
either be performed in the closed signal loop or in the adaptive filtering circuit.

Decorrelation in the closed signal loop can be achieved by injecting a white noise
signal in the forward path of the hearing aid. The problem with injecting a
noise signal is that it affects the overall sound quality. For this reason attempts
have been made to shape the noise based on psychoacoustic models. However in
this case the shaped noise had to be amplified to a level that was found to be
more disturbing than the white noise injection [229]. Decorrelation can also be
achieved by including a nonlinear or a time-varying operation in the forward path
of the hearing aid. Inserting a processing delay can also reduce the correlation
between the loudspeaker signal and the near-end signal which is assumed to be
short-term correlated. Although decorrelation in the closed signal loop can be
effective, the sound quality can be significantly affected. Therefore the attention
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has been directed towards decorrelation in the adaptive filtering circuit, such that
the closed loop signals remain unaffected. In the remainder of this section we will
focus on decorrelation in the adaptive filtering circuit.

Filtered-X LMS algorithms can be used to reduce the sensitivity of the system
towards tonal inputs. In [89] an AFC algorithm is proposed based on a filtered-
X LMS approach which was compared to a traditional LMS algorithm. The
filtered-X LMS approach showed better convergence behavior and improved AFC
performance. Another filtered-X LMS approach is proposed in [83] where the
adaptation is based on closed loop identification [63][196]. A bias reduction
approach has been proposed in [16] based on inserting all-pass filters in the forward
path of the hearing aid. These filters are time-varying with constant magnitude
and varying phase. This idea is motivated by the fact that the human ear is not
sensitive to moderate phase perturbations. Incorporating prior knowledge of the
acoustic feedback path has also been used in AFC. This leads to a constrained
adaptation approach that guarantees that the estimated filter coefficients do not
deviate too much from a reference [107]. Bandlimited adaptation has also been
used such that feedback cancellation is restricted to frequency bands that are
unstable [89].

A well-known approach is to use decorrelation prefilters [83][85] that are designed
to whiten the desired signal component in the microphone and the loudspeaker
signal. The challenge of this approach is the joint identification of the decorrelation
prefilters and the acoustic feedback path. For this purpose it has been proposed
to use a prediction-error-method (PEM)-based approach [190][209][210]. The idea
behind PEM-based AFC is based on using a model for the near-end signal, e.g.,
a linear prediction (LP) model, where the inverse of the LP model is used as a
time-varying FIR decorrelation prefilter. A LP model is widely used in speech
applications since the speech is well modelled with an LP model. Once the near-
end signal model is estimated the inverse of this model is applied to the loudspeaker
and the microphone signals before feeding these signals to the adaptive filtering
algorithm. This method has been shown to improve the filter convergence which
is of great importance since AFC algorithms need to track changes in the acoustic
feedback path fast and accurately. In [208] four commercial hearing aids were
evaluated and compared to the PEM-based AFC [209][210]. It was shown that
the PEM-based AFC together with the Starkey Destiny 400 hearing aids offered a
high added stable gain (ASG) compared to the Phonak Savia Art 411 dSZ and the
Siemens Centra HP hearing aids. However the PEM-based AFC and the Starkey
Destiny 400 hearing aid were more sensitive towards tonal input signals. This is
mainly due to the near-end signal model used which in this case was based on a
LP model.

In this dissertation we will only focus on the PEM-based AFC with emphasis on
improving the near-end signal model and the estimation of the parameters used in
the near-end signal model since this method has the greatest potential to reduce
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acoustic feedback without introducing distortion.

1.5 Outline of the thesis and main contributions

This section starts by summarizing the main research objectives of this dissertation.
In addition, an overview of each chapter is given followed by the references to
the publications that have been produced in the frame of this research work.
References that directly motivate the research behind this dissertation are also
given.

1.5.1 Main research objectives

The main research objectives of this dissertation are divided into three parts:

1. The first part addresses the NR problem in hearing aids, i.e., extensions of the
SDW-MWF based NR algorithm. First the target is to improve the trade-
off between NR and speech distortion by introducing different weighting
factors. The second target is to improve the robustness and the tracking
related to how the correlation matrices are estimated and updated. Another
contribution to the NR problem is based on a Capon beamformer designed
for small arrays. The aim here is to design a low computational complexity
beamformer in which the steering vectors are estimated in a robust way.

2. The second part addresses the problem of having NR and DRC combined
in hearing aids. The work is focussed on a combined SDW-MWF based NR
and DRC. First the aim is to analyze the undesired interaction effects when
background noise is present in the DRC. Secondly the goal is to compensate
for any negative effects that can counteract the NR performance.

3. The third part addresses the acoustic feedback problem in hearing aids,
i.e., the developments on the PEM-based AFC algorithm. The aim here
is to improve decorrelation prefilters by introducing a novel near-end signal
model based on exploiting a harmonic sinusoidal near-end signal model that
incorporates various features extracted from a typical speech signal.

1.5.2 Chapter by chapter outline and contributions

In Chapter 2 the MWF based NR is reviewed together with the problem
statement and the motivation for further research. First two formulations of
the SDW-MWF are given, namely the standard SDW-MWF and the rank-1
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SDW-MWF. Secondly problems related to the estimation and the update of
the correlation matrices are discussed such as the robustness, when estimating
the clean speech correlation matrix, and the problems of tracking spatial and
especially spectral signal characteristics. A third problem addressed here is the
use of a weighting factor that is fixed for each frequency and for each frame to
make the trade-off between NR and speech distortion. Through simulations it
is shown how the reverberation, low input SNR, different spatial angles, and the
fixed weighting factor negatively affects the SDW-MWF and the rank-1 SDW-
MWF performance. The evaluation is based on objective quality measures such
as intelligibility weighted SNR and signal distortion measures.

The references for the MWF based NR that serves as a baseline for the research
and development on the MWF are given in [49][38][207].

Chapter 3 focuses on the problem of having a fixed weighting factor to make
the trade-off between NR and speech distortion as explained in Chapter 2. For
this particular reason it is proposed to incorporate the conditional SPP, which
is estimated for each frequency and for each frame, in the SDW-MWF such that
the speech dominant segments and the noise dominant segments are weighted
differently. In the same process another solution is proposed that offers a flexible
weighting based on the conditional SPP combined with a per frame decision.
Making the weighting factor change for each frequency and for each frame improves
the spectral tracking of the speech which is very important since speech signals
are typically highly nonstationary. Through simulations it is shown how the
proposed weighting factor can improve the SNR improvement while keeping the
signal distortion low.

The main findings of this chapter are published in [158][160][161].

Chapter 4 focuses on the problem of estimating and updating the correlation
matrices in a robust manner. For this purpose a novel method to estimate and
update the correlation matrices is presented. The first step of the proposed
method is based on using prior knowledge of the correlation matrices such that the
estimated correlation matrices have a certain structure which guarantees that the
corresponding filter is valid. The second step, is based on combining the use of the
prior knowledge of the correlation matrices with a continuous update approach
based on the conditional SPP to improve the spectral as well as the spatial
tracking. Using the conditional SPP in the update of the correlation matrices
certain frequencies can be weighted higher such that frequencies dominated by
speech and those dominated by noise are weighted differently. By combining the
proposed weighting factor in Chapter 3 with the proposed method to estimate
and update the correlation matrices, a novel MWF based NR is proposed compared
to the MWF based NR introduced in Chapter 2. Through simulations it is shown
how the proposed MWF based NR outperforms the standard MWF based NR both
in terms of SNR improvement and signal distortion.
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A publication related to this chapter is in preparation [159].

Chapter 5 presents a different multi-channel NR technique based on the well-
known Capon beamformer. The challenge here is not necessarily to estimate
the correlation matrices as in Chapter 4. The target here is to estimate
the steering vector in a robust way. Therefore a robust Capon beamformer is
proposed based on using an uncertainty principle such that the steering vector
can be properly constrained and estimated. The proposed approach is focussed
on low computational complexity and small arrays which are important factors
in hearing aids. The proposed robust Capon beamformer is compared to the
standard Capon beamformer both in terms of SNR improvement, signal distortion
and computational complexity. Through simulations it is shown how the robust
Capon beamformer is able to outperform the standard Capon beamformer with a
very low increase in computational complexity.

The main findings of this chapter can be found in [156].

Chapter 6 explains the design of the multi-band DRC used in this work together
with the various parameters included in a typical DRC algorithm. However the
focus here is not the design of DRC algorithms but rather the problem of having
the DRC operate in the presence of background noise. First the DRC is analyzed
when background noise is present and then it is shown how the DRC gain should
be chosen if the SNR should be preserved. It is also shown that incorporating
knowledge of speech dominant segments and noise dominant segments can help
avoiding further SNR degradation. Beside the problem of SNR degradation
amplifying noise dominant segments could also lead to masking of speech dominant
segments especially if the speech dominant segments due to a high intensity level
receives less amplification compared to dominant segments. Through simulations
it is shown how the presence of background noise can negatively affect the DRC
and the SNR.

A publication related to this chapter is in preparation [157].

Chapter 7 presents a combined SDW-MWF based NR and DRC. Based on the
analysis in Chapter 6 a dual-DRC approach is proposed that incorporates the
conditional SPP, introduced in Chapter 3, in the traditional DRC such that a
different gain can be applied to speech dominant segments and to noise dominant
segments in order to avoid any SNR degradation. The purpose of the DRC is
to estimate a gain based solely on the intensity level without considering speech
dominant segments or noise dominant segments. A problem arises if a larger gain
is applied to the noise dominant segments which has previously been reduced by
the NR compared to the speech dominant segments which should be preserved by
the NR. First a standard SDW-MWF based NR as introduced, in Chapter 2, and
the DRC is concatenated and the undesired interaction effects are discussed. Then
the modified SDW-MWF based NR as introduced in, Chapter 3, and dual-DRC is
combined together with the conditional SPP. Through experimental simulations
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it shown that the DRC indeed counteracts the MWF based NR and that the
proposed combined MWF based NR and dual-DRC is able to compensate for a
certain amount of the SNR degradation.

The main findings of this chapter are in [155][162].

Chapter 8 reviews the acoustic feedback problem which is related to the need
for high amplification in hearing aids as explained in Chapter 6. It is shown that
in PEM-based AFC the near-end signal can be modelled using LP. However the
decorrelation is not sufficient with a single near-end signal model based on LP
which is the reason that a cascaded near-end signal model has been proposed
using LP combined with a pole-zero LP (PZLP) model. In this way, the LP
models the noise component and the PZLP models the tonal components. Through
simulations it is shown that the PEM-based AFC using a single near-end signal
model fails to provide sufficient stability compared to the PEM-based AFC using
a cascaded near-end signal model. The evaluation is based on objective measures
such as the maximum stable gain (MSG) and the filter misadjustment.

The references for the PEM-based AFC that serves as a baseline for the research
and development on the AFC are given in [209][210][228].

Chapter 9 presents a novel PEM-based AFC using a harmonic sinusoidal near-
end signal model cascaded with an LP model. To improve the near-end signal
model, compared to the models presented in Chapter 8, information such as pitch,
amplitude, and the number of harmonics are built into the near-end signal model.
The detection of voiced-unvoiced frames is also included in the cascaded near-end
signal model such that in unvoiced frames only a single near-end signal model is
used due to the high correlation of voiced frames. Furthermore, a single near-end
signal model using LP also has a lower computational complexity compared to
using a cascaded near-end signal model. Through simulations it is shown that an
accurate modelling of the near-end signal results in improved PEM-based AFC
performance in terms of MSG and filter misadjustment.

The main findings of this chapter are in [163][164][165].

Finally Chapter 10 summarizes the overall conclusions of the research presented
in this dissertation. Suggestions for further research are given here as well.





Chapter 2

Speech distortion weighted
multi-channel Wiener filter
(SDW-MWFµ)

In this chapter we will introduce the multi-channel Wiener filter (MWF) and
establish a baseline for the research and development related to the MWF
based NR algorithm. Over the years many modifications and formulations
have been introduced in the MWF either to improve the performance or the
robustness. The benefit of using an MWF based NR compared to, e.g. an
GSC or an LCMV beamformer, is the reduced sensitivity against signal model
errors such as microphone mismatch. For multi-channel NR algorithms like the
LCMV or the GSC beamformer a priori assumptions regarding the desired signal
model are required, e.g., location of the desired speaker, calibrated microphones,
low reverberation etc. The performance of the MWF has been evaluated
in [48][205] which showed that the MWF outperformed the GSC in adverse
listening environments. Furthermore perceptual evaluation with normal hearing
and hearing impaired subjects performed in [136] indicated a significant SRT
improvement for the MWF algorithm.

In this work we will focus on two main extensions of the MWF which have shown to
have certain interesting features but at the same time we will show that there is still
room for improvements. The first extension of the MWF is based on introducing a
weighting factor that allows for a trade-off between NR and speech distortion
referred to as the speech distortion weighted MWF (SDW-MWF). This is an
interesting approach however it is not clear how to actually select this weighting
factor and therefore in the past this weighting factor has simply been a scalar value

33
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that is fixed for all frequencies and for all frames. The second extension is based
on a rank-1 formulation of the SDW-MWF which has been shown to be more
robust against estimation errors in the correlation matrices [38]. The interesting
feature of the rank-1 formulation is that the SDW-MWF is now decomposed into
a spatial filter and a single-channel postfilter. However it still remains an open
problem if the single-channel postfilter is optimal in terms of spectral tracking
since it is based on correlation matrices that are adapted slowly over time.

Section 2.1 introduces the multi-channel NR problem with the motivation of using
an MWF based NR compared to other multi-channel NR techniques. Furthermore
the notation and the relevant definitions are given as well.

Section 2.2 defines the MMSE criteria of the MWF together with the derivation
leading to the MWF solution. The estimation and update procedure of the
correlation matrices are also defined.

Section 2.3 generalizes the MMSE criterion of the MWF to allow for a trade-off
between NR and speech distortion by introducing a weighting factor µ.

Section 2.4 extends the SDW-MWF to a rank-1 formulation referred to as rank-
1 SDW-MWF. It is shown how the derivation leads to the SDW-MWF being
decomposed into a spatial filter and a single-channel postfilter.

Section 2.5 explains the open problems and challenges remaining in the SDW-
MWF and the motivation for further research is given.

Section 2.6 presents the experimental set-up together with the objective quality
measures. Then the SDW-MWF and the rank-1 SDW-MWF are compared
through a series of experiments where parameters such as the input SNR, spatial
angles, number of noise sources, and the reverberation times are changed.

2.1 Preliminaries

A general set-up of a multi-channel noise reduction is shown in Figure 2.1, with
M microphones in an environment with one or more noise sources and a desired
speaker. First the microphone(s) capture the input signals and then all of the input
signals are filtered and finally the outputs from the filters are summed together to
produce the output signal. Let Xi(k, l), i = 1, ...,M denote the frequency-domain
microphone signals

Xi(k, l) = Xsi (k, l) +Xni (k, l) (2.1)

where k is the frequency bin index, and l the frame index of a short-time Fourier
transform (STFT), and the superscripts s and n are used to refer to the speech
and the noise contribution in a signal, respectively. Let X(k, l) ∈ CM×1 be defined
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Figure 2.1: Multi-channel noise reduction set-up in an environment with one or
more noise sources and a desired speaker.

as the stacked vector

X(k, l) = [X1(k, l) X2(k, l) ... XM (k, l)]T (2.2)

= Xs(k, l) + Xn(k, l) (2.3)

where the superscript T denotes the transpose. In addition, we define the speech-
plus-noise, the speech and the noise correlation matrices as

Rx(k, l) = ε{X(k, l)XH(k, l)} (2.4)

Rs(k, l) = ε{Xs(k, l)Xs,H(k, l)} (2.5)

Rn(k, l) = ε{Xn(k, l)Xn,H(k, l)} (2.6)

where ε{} denotes the expectation operator, H denotes Hermitian transpose.

2.1.1 Estimation of correlation matrices

For the estimation of the correlation matrices we will define a two-state model for
speech events which can be expressed given two hypotheses H0(k, l) and H1(k, l)
which represent speech absence and speech presence in frequency bin k of frame l,
respectively, i.e.,

H0(k, l) : X(k, l) = Xn(k, l)

H1(k, l) : X(k, l) = Xs(k, l) + Xn(k, l). (2.7)
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When a binary VAD is used to distinguish between the H0(k, l) and the H1(k, l)
state, the correlation matrix estimation can be written as

H0(k, l) :

{
R̂n(k, l + 1) = αnR̂n(k, l) + (1− αn)X(k, l)XH(k, l)

R̂x(k, l+ 1) = R̂x(k, l)
(2.8)

and

H1(k, l) :

{
R̂x(k, l + 1) = αxR̂x(k, l) + (1− αx)X(k, l)XH(k, l)

R̂n(k, l + 1) = R̂n(k, l)
(2.9)

where αn and αx are the forgetting factors for the noise-only and the speech-plus-
noise correlation matrix, respectively. The second-order statistics of the noise are
assumed to be (short-term) stationary which means that Rs(k, l) can be estimated
as R̂s(k, l) = R̂x(k, l) − R̂n(k, l) where R̂x(k, l) and R̂n(k, l) are estimated (i.e.
adapted) during periods of speech-plus-noise and periods of noise-only, respectively
(and ”frozen” otherwise). The concept of using (2.8) and (2.9) to update the
correlation matrices is shown in Figure 2.2 where the binary VAD is normally
referred to as a perfect VAD. In this work we will focus on the MWF since this
approach does not require any a priori information regarding the desired signal
model. The MWF is uniquely based on the correlation matrices defined (2.8)
and (2.9). This of course makes the MWF sensitive to errors in the estimated
correlation matrices which will be the main part of this work regarding the MWF.

2.2 Multi-channel Wiener filter (MWF)

The MWF optimally estimates the speech signal, based on a Minimum Mean
Squared Error (MMSE) criterion, i.e.,

WMMSE(k, l) = arg min
W(k,l)

ε{|Xs1(k, l)−WH(k, l)X(k, l)|2} (2.10)

where the desired signal in this case is the (unknown) speech component Xs1(k, l)
in the first microphone signal (could be any other microphone signal). Notice that
the delay in the speech component Xs1(k, l) is assumed to be zero. Typically a
delay is included to allow for non-causal taps in the filter W(k, l). The equation
in (2.10) can be written as

JMMSE(W(k, l)) = ε{|Xs1(k, l)−WH(k, l)X(k, l)|2}

= ε{Xs1(k, l)Xs,H1 (k, l)}+ ε{WH(k, l)X(k, l)XH(k, l)W(k, l)}

− ε{Xs1(k, l)XH(k, l)W(k, l)} − ε{WH(k, l)X(k, l)Xs,H1 (k, l)}
(2.11)
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Figure 2.2: Illustration of updating speech-plus-noise and noise-only correlation
matrices using a binary VAD.

which is minimized by setting the derivative of (2.11) to zero, i.e.,

∂JMMSE(W(k, l))

∂W(k, l)
= −2ε{X(k, l)Xs,H1 (k, l)}+ 2ε{X(k, l)XH(k, l)}W(k, l).

(2.12)

We assume that the speech and the noise signals are uncorrelated, i.e.,

ε{Xn(k, l)Xs,H1 (k, l)} = 0 (2.13)

such that the estimated speech correlation vector can be written as

ε{Xs(k, l)Xs,H1 (k, l)} = ε{X(k, l)XH1 (k, l)} − ε{Xn(k, l)Xn,H1 (k, l)}. (2.14)

Finally by solving (2.12) the MWF is given by

WMMSE(k, l) =
[
Rs(k, l) + Rn(k, l)

]−1

Rs(k, l)e1 (2.15)
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where the M × 1 vector e1 equals the first canonical vector defined as e1 =
[1 0 ... 0]T . The estimated speech component Zs(k, l) in one of the
microphone signals can then be written as

Zs(k, l) = WH
MMSE(k, l)X(k, l). (2.16)

Notice that Zs(k, l) is the complete output from the MWF based NR which may
contain some residual noise depending on the estimated filter WH

MMSE(k, l). The
superscript s is used here to avoid confusion since the (unknown) noise component
in one of the microphone signals can be estimated by modifying the MMSE
criterion in (2.10) to

VMMSE(k, l) = arg min
V
ε{|Xn1 (k, l)−VH(k, l)X(k, l)|2} (2.17)

and the solution is given by

VMMSE(k, l) =
[
Rn(k, l) + Rs(k, l)

]−1

Rn(k, l)e1. (2.18)

The estimated noise component Zn(k, l) in one of the microphone signals can then
be written as

Zn(k, l) = VHMMSE(k, l)X(k, l). (2.19)

Again depending on the estimated filter VHMMSE(k, l) the estimated noise
component Zn(k, l) may contain some residual speech.

2.3 Speech distortion weighted MWF (SDW-MWFµ)

The MWF has been extended to the SDW-MWFµ that allows for a trade-off
between noise reduction and speech distortion [49][207]. If the speech and the
noise signals are uncorrelated the residual error energy of the MWF in (2.10)

ε{|Xs1(k, l)−WH(k, l)X(k, l)|2} (2.20)

can be further decomposed into

ε{|Xs1(k, l)−WH(k, l)Xs(k, l)|2}+ ε{|WH(k, l)Xn(k, l)|2} (2.21)

where the first term corresponds to the speech distortion energy and the last term
corresponds to the residual noise energy. Using (2.21) the MWF can be extended
to allow for a trade-off between NR and speech distortion by incorporating a
weighting factor µ. The design criterion of the SDW-MWFµ is given by

WMWFµ(k, l) = arg min
W(k,l)

ε{|Xs1(k, l)−WH(k, l)Xs(k, l)|2}+

µε{|WH(k, l)Xn(k, l)|2} (2.22)
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and the solution of SDW-MWFµ is then given by

WMWFµ(k, l) =
[
Rs(k, l) + µRn(k, l)

]−1

Rs(k, l)e1. (2.23)

For µ = 1 the SDW-MWFµ reduces to the MWF solution in (2.15), while for µ > 1
the residual noise level will be reduced at the cost of a higher speech distortion.
By setting µ = ∞ all emphasis is put on the NR and the speech distortion is
completely ignored and if µ = 0 no NR will be performed.

2.4 Rank-1 SDW-MWFµ

The rank-1 MWF is based on a single target speech source assumption such that
the speech signal can be written as

Xs(k, l) = a(k, l)S(k, l) (2.24)

where S(k, l) is the clean speech signal modelled with the M -dimensional steering
vector a that contains the acoustic transfer functions from the speech source to
the microphones including room acoustics, microphone characteristics and head
shadow effect. Furthermore, the rank-one speech correlation matrix can be written
as

Rs(k, l) = Psa(k, l)aH(k, l) (2.25)

with Ps = ε{|S(k, l)|2} the power of the clean speech signal. Using the definitions
in (2.24) and (2.25) it has been shown in [38][66][76][198][206] that the SDW-
MWFµ formulation in (2.23) can be decomposed into a spatial filter and a single-
channel postfilter which can be written as

WR1-MWFµ(k, l) = R−1
n (k, l)Rs(k, l)e1︸ ︷︷ ︸

spatial filter

·
1

µ+ Tr{R−1
n (k, l)Rs(k, l)}︸ ︷︷ ︸

single-channel postfilter

(2.26)

where Tr{.} is the trace operator. It is worth noting that the speech distortion
weighting factor only appears in the single-channel postfilter and not in the spatial
filter. In this case the single-channel postfilter has a similar role as a single-channel
constrained Wiener filter [60][133]. If the noise-level is under-estimated or further
attenuation of the residual noise is desired the single-channel postfilter can also
be viewed as a spectral oversubtraction [11][133]. In this case increasing µ allows
for further attenuation of the residual noise which possibly comes at the cost of
higher speech distortion.
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The overall blocks in the traditional SDW-MWF based NR are shown in Figure
2.3. First an STFT is performed on each frame using an overlap-add or an overlap-
save procedure on the noisy speech. Then a binary VAD decides whether the
speech-plus-noise or the noise-only correlation matrix should be updated. Based
on these correlation matrices the SDW-MWF filter is formed and the filtering is
performed followed by an inverse STFT (ISTFT) and a reconstruction procedure
of the output signal. It is also clear that the binary VAD algorithm is a crucial
part of the algorithm here.

2.5 Analysis of the SDW-MWFµ

This section addresses two main problems related to estimating and updating the
correlation matrices which is of great importance since the MWF based NR is
uniquely based on these correlation matrices. Some properties and drawbacks of
the SDW-MWFµ are:

• SDW-MWFµ is uniquely based on the second-order statistics and in the
estimation of the speech-plus-noise and the noise-only correlation matrices
(containing spectral as well as spatial information) an averaging time window
of 2-3 seconds is typically required to achieve a reliable estimate.

• However speech is a spectrally non-stationary signal and can be considered
stationary only in a short time window, much shorter than the 2-3 seconds
time window used for the estimation of R̂s(k, l), and so the spectral non-
stationarity is not captured in R̂s(k, l). Also to obtain the noise-only
correlation matrix the MWF assumes that the noise statistics are sufficiently
stationary such that R̂n(k, l) can be updated during noise-only periods.

• Therefore the MWF is highly dependent on the long-time average of the
spectral and the spatial signal characteristics. Even though the spatial
characteristic can be assumed to vary slowly the assumption is not valid
for noise sources such as multi-talker babble. This implies that the MWF
can suppress spectrally non-stationary noise, provided that the long-term
spectral characteristic of the speech and the noise vary slowly over time.
beacuse the filter is only slowly varying. This of course reduces effects such
as musical noise.

• In the SDW-MWFµ the weighting factor µ is a fixed value for each frame and
for each frequency. As a consequence, any improvement in NR (by setting µ
to a larger value) comes at the cost of a higher speech distortion since speech
dominant segments and noise dominant segments are weighted equally.

• Furthermore typical speech signals contain many pauses while the noise is
assumed to be continuously present. This means that the weighting factor
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Figure 2.3: Block diagram of the SDW-MWFµ with a binary VAD for estimating
the correlation matrices.



42 SPEECH DISTORTION WEIGHTED MULTI-CHANNEL WIENER FILTER (SDW-MWFµ)

could indeed apply a different weighting dependent on whether speech is
present or absent.

2.5.1 Robustness and tracking

In the MWF set-up, the tracking performance depends on the forgetting factors
αx and αn whereas the robustness is related to the correct detection of the H0(k, l)
and the H1(k, l) state. On the other hand, since the noise-only and the speech-
plus-noise correlation matrices are updated at different time instants this would
consequently also limit the tracking and the accuracy of the estimated correlation
matrices especially when dealing with non-stationary noise sources and low input
SNR. This can become a major problem since the speech correlation matrix is
estimated by subtracting the noise-only correlation matrix from the speech-plus-
noise correlation matrix, i.e.,

R̂s(k, l) = R̂x(k, l)− R̂n(k, l). (2.27)

First of all there is no guarantee that the spectral and the spatial signal
characteristic remain fixed from aH0(k, l) to aH1(k, l) state especially since speech
and noise are considered to be non-stationary. Consequently, the subtraction
performed in (2.27) can lead to a poor estimate especially if R̂n(k, l) is larger
or equal to R̂x(k, l) which in theory should not happen. A scenario could be that
the noise level at a H0(k, l) state is higher than in the subsequent H1(k, l) state
and since the R̂n(k, l) is not updated in the H1(k, l) state the NR performance can
be severely compromised. This makes the estimation of R̂n(k, l) the key factor
and especially its spectral characteristic rather than the spatial characteristic.

The aim of this work is to improve the robustness and the tracking capabilities
when estimating the correlation matrices. First we will address the issue of having
a fixed weighting factor µ for each frequency and for each frame in Chapter 3.
Secondly, we will show that the update concept using (2.8) and (2.9) is not optimal
when the speech and the noise sources are non-stationary and when dealing with
a low input SNR scenario. Furthermore we will introduce a method to avoid the
subtraction in (2.27) leading to a poor estimate by introducing the usage of prior
correlation matrices combined with a continuous update approach which, will be
presented in Chapter 4.

2.6 Experimental results

In this section, experimental results for the SDW-MWFµ and for the rank-1 SDW-
MWFµ are presented and compared against each other. The estimation and the



EXPERIMENTAL RESULTS 43

Notation Spatial angle of source(s)
S0N0 Speech at 0◦, noise source(s) at 0◦

S0N30 Speech at 0◦, noise source(s) at 30◦

S0N60 Speech at 0◦, noise source(s) at 60◦

S0N90 Speech at 0◦, noise source(s) at 90◦

S0N120 Speech at 0◦, noise source(s) at 120◦

S0N2a Speech at 0◦, noise source(s) at 90◦, 180◦

S0N3a Speech at 0◦, noise source(s) at 90◦, 180◦, 270◦

S0N2b Speech at 0◦, noise source(s) at 45◦, 90◦

S0N3b Speech at 0◦, noise source(s) at 45◦, 90◦, 180◦

S0N2c Speech at 0◦, noise source(s) at 30◦, 60◦

S0N3c Speech at 0◦, noise source(s) at 30◦, 60◦, 90◦

Table 2.1: Spatial scenarios for the experimental evaluation

update of the correlation matrices are based on a perfect VAD since this is the
traditional way to estimate and update the correlation matrices. The experimental
results here then serve as the baseline for the proposed SDW-MWF based NR
algorithms in the next chapters.

2.6.1 Experimental set-up

Simulations have been performed with a 2-microphone (with an intermicrophone
distance of approximately 1cm) BTE hearing aid mounted on a CORTEX MK2
manikin such that the head-shadow effect is included. The loudspeakers (FOSTEX
6301B) are positioned at 1 meter from the center of the head. Two reverberation
times are used, i.e., T60 ≈ 0.61s which is considered to be a high reverberation
scenario and T60 ≈ 0.21s which is considered to be a low reverberation scenario
[43][44]. The microphone signals are generated by convolving the speech and the
noise signals with the HRTFs corresponding to the predefined angles of arrival and
finally the signals are mixed together at a specific SNR. The speech signal consists
of male sentences from the Hearing in Noise Test (HINT) for the measurement
of SRTs in quiet and in noise [167] and the noise signal consists of multi-talker
babble from Auditory Tests (Revised), Compact Disc, Auditec [5]. The signals
are sampled at 16kHz. For the analysis step an STFT length of 128 with 50%
overlap with a Hanning window is used to extract the frames. For the correlation
matrices the forgetting factors are set to αn = αx = 0.9980 corresponding to an
averaging time of 2 seconds. The algorithms are evaluated at -7.5dB, -5dB, and
0dB input SNR. Besides the various input SNRs the spatial angles of the noise
sources are also varied and Table 2.1 shows the 11 different spatial scenarios used
in the evaluation. Since the recordings of the clean speech and the noise-only
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Figure 2.4: Block diagram of the signals used for the objective quality measures.

signals are available the signals used in the objective measures can be estimated
as

X̂s(k, l) = WH(k, l)Xs(k, l). (2.28)

and

X̂n(k, l) = WH(k, l)Xn(k, l) (2.29)

where X̂s(k, l) and X̂n(k, l) are the clean speech and the noise-only signal filtered,
respectively, as shown in Figure 2.4. The NR performance is then quantified by
comparing the ratio between X̂s(k, l) and X̂n(k, l) with the ratio between the clean
speechXs1(k, l) and the noise-only signalXn1 (k, l) in the reference microphone. The
signal distortion is estimated by comparing X̂s(k, l) with Xs1(k, l).

2.6.2 Performance measures

To assess the noise reduction performance the intelligibility-weighted signal-to-
noise ratio (SNR) [73] is used which is defined as

∆SNRintellig =
∑

i

Ii(SNRi,out − SNRi,in) (2.30)

where Ii is the band importance function defined in ANSI S3.5-1997 [1] and where
SNRi,out and SNRi,in represent the output SNR and the input SNR (in dB) of the
i-th band, respectively. For measuring the signal distortion a frequency-weighted
log-spectral signal distortion (SD) is used defined as

SD =
1

K

K∑

k=1

√∫ fu

fl

wERB(f)
(

10log10

P sout,k(f)

P sin,k(f)

)2

df (2.31)
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where K is the number of frames, P sout,k(f) is the output power spectrum of
the kth frame, P sin,k(f) is the input power spectrum of kth frame and f is the
frequency index. The SD measure is calculated with a frequency-weighting factor
wERB(f) giving equal weight for each auditory critical band, as defined by the
equivalent rectangular bandwidth (ERB) of the auditory filter [147]. Notice that
the intelligibility-weighted SNR and the signal distortion are only computed during
frames of speech-plus-noise.

2.6.3 Results

Simulation results for the SDW-MWFµ compared to the rank-1 SDW-MWFµ for
a low reverberation scenario are shown in Figure 2.5. From the results it is clear
that increasing µ improves the SNR improvement for the SDW-MWFµ however
this comes at the cost of increased signal distortion. For the rank-1 SDW-MWFµ
the SNR improvement seems to be equal to SDW-MWFµ with µ = 5 but the
signal distortion is comparable with SDW-MWFµ with µ = 1. It should also be
mentioned that increasing µ in the rank-1 SDW-MWFµ does not affect the SNR
improvement. It is also clear that the NR performance is better for certain spatial
scenarios such as S0N60, S0N90, and S0N120. It is also worth noting that for these
particular spatial angles the signal distortion does not increase when µ= 3 and 5
as opposed to the other spatial angles. This suggests, that if the filter is working
properly, increasing µ will not increase the signal distortion. Spatial scenarios
with one noise source also show less signal distortion compared to scenarios with
multiple noise sources which is especially clear at low input SNR.

The same simulation for a high reverberation scenario is shown in Figure 2.6.
This shows that the reverberation indeed has a negative impact on the SNR
improvement especially for spatial scenarios such as S0N60, S0N90, and S0N120
which showed a great improvement for the low reverberation scenario. At these
particular spatial scenarios the signal distortion is also increased compared to the
scenario with the low reverberation. However a greater concern is that for other
spatial scenarios the high reverberation results in a very limited NR performance
even for the rank-1 SDW-MWFµ. For example spatial scenarios such as S0N0,
S0N30, S0N2c, and S0N3c seem to cause problems on the NR performance, i.e.,
when the noise sources are close to the desired speaker or when multiple noise
sources are used. This implies that the spatial filtering in these scenarios may be
rather poor whereas the spectral filtering is limited by the correlation matrices.
However the benefit of the rank-1 SDW-MWFµ is still that the signal distortion
is kept low even at high reverberation.
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2.7 Conclusion

In this chapter we have introduced the MWF based NR which provides an MMSE
estimate of the speech component in one of the microphone signals. We have
also shown that the MWF can be formulated in a way that allows for a trade-off
between NR and speech distortion which is referred to as SDW-MWFµ. Another
interesting approach that has been proposed is the rank-1 SDW-MWFµ where
the standard SDW-MWFµ is decomposed into a spatial filter and a single-channel
postfilter. A property of the rank-1 SDW-MWFµ is that the formulation is now
less sensitive to errors in the estimated correlation matrices and therefore a better
NR performance is achieved.

Experimental results shows that the SDW-MWFµ is able to improve the SNR
when µ is increased but this comes at the cost of a higher signal distortion.
However the rank-1 SDW-MWFµ is able to provide the same SNR improvement
without increasing the signal distortion. Furthermore it has been shown that
a high reverberation negatively affects the NR performance compared to a low
reverberation. For this reason the development on the SDW-MWF based NR is
primarily based on high reverberation and low input SNR scenarios.

Several open problems have been discussed related to the way the correlation
matrices are estimated and updated. Especially the estimation of the clean speech
correlation matrix can be a problem since it is based on subtracting the noise-only
correlation matrix from the speech-plus-noise correlation matrix which makes the
estimation of the noise-only correlation matrix very important. Furthermore, it
has been pointed out that the spectral tracking can be limited due to the fact that
the speech-plus-noise correlation matrix is kept fixed during noise-only periods and
the noise correlation matrix is kept fixed during speech-plus-noise periods. Other
factors that can limit the spectral and spatial tracking is the long time averaging
of the correlation matrices. Questions have also been raised as to whether the
weighting factor µ is optimal since it is a fixed value for each frequency and for
each frame considering the non-stationarity of the speech and the noise.
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Figure 2.5: Comparison of the SDW-MWFµ and the rank-1 SDW-MWFµ for a
low reverberation scenario using objective measures.
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Figure 2.6: Comparison of the SDW-MWFµ and the rank-1 SDW-MWFµ for a
high reverberation scenario using objective measures.



Chapter 3

SDW-MWFµ based on speech
presence probability (SPP)

This chapter address the issue of using a weighting factor to trade-off between
NR and speech distortion that is kept fixed for each frequency and for each frame
which potentially can limit the spectral tracking of the non-stationarity of the
speech and the noise. Combined with the fact that the correlation matrices are
kept fixed at different time instants all together with a long averaging time the
fixed weighting factor certainly does not help the spectral tracking.

To tackle this problem we have been inspired by an interesting technique which has
primarily been used in single-channel NR algorithms, referred to as the conditional
speech presence probability (SPP). This technique is based on a two-state speech
model, i.e, aH0(k, l) state represents speech absence and aH1(k, l) state represents
speech presence which is defined for each frequency and for each frame. This model
is based on the fact that the noise can be assumed to be continuously present
whereas speech typically contains many pauses. For this reason the conditional
SPP is estimated and updated for each frequency and for each frame. Since single-
channel NR algorithms are not able to exploit spatial signal information extensive
research has been conducted to obtain a spectral distinction between the speech
and the noise which is something that has not received a lot of attention in multi-
channel NR algorithms. In multi-channel NR the concern has primarily been to
improve the spatial filtering. For this reason we propose that the conditional
SPP is incorporated in the SDW-MWF based NR such that the speech dominant
segments and the noise dominant segments can be weighted differently.

Section 3.1 introduces the two-state speech model and the estimation of the
conditional SPP which is based on parameters such as the a priori SNR, a posteriori

49
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SNR, and a priori speech absence probability (SAP).

Section 3.2 extends the MMSE criterion of the MWF to incorporate the conditional
SPP leading to the SDW-MWFSPP. The derivation of the SDW-MWFSPP shows
that the conditional SPP replaces the fixed weighting factor such that the speech
dominant segments and the noise dominant segments can be weighted according
to the conditional SPP. A minor extension is also proposed referred to as SDW-
MWFcombined such that in one extreme case the solution corresponds to the SDW-
MWFµ and in the other extreme case to the SDW-MWFSPP.

Section 3.3 introduces an extension of the SDW-MWFSPP which is referred to
as SDW-MWFflex. The idea here is to use the conditional SPP combined with
a per frame decision such that a flexible weighting factor is introduced. The
flexible weighting factor is based on the fact that the noise in the H0(k, l) state
can be weighted differently compared to the noise in the H1(k, l) state. Since
in the H0(k, l) state the speech is absent and hence signal distortion or speech
intelligibility does not need to be taken into consideration, therefore more noise
can be suppressed in the H0(k, l) state compared to the H1(k, l) state.

Section 3.4 extends the SDW-MWFSPP to a rank-1 SDW-MWFSPP which allows
to show how the conditional SPP affects the SDW-MWF based NR. It is shown
here that the conditional SPP only affects the single-channel postfilter which
is interesting since the spectral weighting now only affects the single-channel
postfilter and not the spatial filter. The same extension is also shown for the
flexible weighting factor referred to as rank-1 SDW-MWFflex.

Section 3.5 presents the experimental results in order to confirm the influence of
the proposed weighting factor that is now updated for each frequency and for each
frame.

3.1 Conditional speech presence probability (SPP)

The key component to tackle the problems introduced above is the conditional SPP.
In this work, we will use a multi-channel approach to estimate the conditional SPP,
i.e., all available microphone signals are used [200]. Previous work has been based
on a single-channel approach where the reference microphone was used to estimate
the conditional SPP [35][161].

The conditional SPP is estimated for each frequency and for each frame by a
soft-decision approach [33][36][133], which exploits the strong correlation of speech
presence in neighboring frequency bins of consecutive frames. The two-state model
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for speech events introduced in Chapter 2 is modified here, i.e.,

H0(k, l) : Xi(k, l) = Xni (k, l) + 0 ·Xsi (k, l)

H1(k, l) : Xi(k, l) = Xni (k, l) + 1 ·Xsi (k, l), (3.1)

The inclusion of the second term in the definition of H0(k, l) will be explained in
Section 3.3. Assuming a complex Gaussian distribution of the STFT coefficients
for both the speech and the noise, the conditional probability density functions
(PDF) of the observed signals are given by

p(Xi(k, l)|H0(k, l)) =
1

πλni (k, l)
exp

{
−
|Xi(k, l)|

2

λni (k, l)

}
(3.2)

p(Xi(k, l)|H1(k, l)) =
1

π(λsi (k, l) + λni (k, l))
exp

{
−

|Xi(k, l)|
2

λsi (k, l) + λni (k, l)

}
(3.3)

where λsi (k, l) , ε{|Xsi (k, l)|
2} and λni , ε{|Xni (k, l)|2} denote the power spectrum

of the speech and the noise, respectively. Applying Bayes rule, the conditional SPP
p(k, l) , P (H1(k, l)|Xi(k, l)) can be written as [35][56][200]

p(k, l) =

{
1 +

q(k, l)

1− q(k, l)
(1 + ξ(k, l)) exp(−υ(k, l))

}−1

(3.4)

where q(k, l) , P (H0(k, l)) is the a priori speech absence probability (SAP), ξ(k, l)
is the a priori SNR, and υ(k, l) is defined as

υ(k, l) ,
γ(k, l)ξ(k, l)

(1 + ξ(k, l))
. (3.5)

where γ(k, l) is the a posteriori SNR. It should be mentioned that (3.4) remains
the same whether a single-channel or a multi-channel approach is used, i.e., only
the signals used to estimate the SAP, the a priori SNR, and the posteriori SNR
are changed, which will be explained next [33][36][133][161].

For the sake of conciseness the frequency bin index k and frame index l are omitted
from now on in X(k, l), Xs(k, l), Xn(k, l) and Xs1(k, l).

3.1.1 Multi-channel a priori and a posteriori SNR estimation

Recently it has been proposed to use all microphone signals to estimate the a priori
SNR and the a posteriori SNR based on the estimated correlation matrices [200].
The multi-channel a posteriori SNR estimate can then be written as

γ̂(k, l) = tr
[
R̂
−1

n (k, l)R̂x(k, l)
]

(3.6)
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and in a similar manner the multi-channel a priori SNR estimate can be written
as

ξ̂(k, l) = tr
[
R̂
−1

n (k, l)R̂s(k, l)
]

(3.7)

and R̂s(k, l) = R̂x(k, l) − R̂n(k, l). The advantage here is that these correlation
matrices are already estimated in the MWF and can therefore be reused.

3.1.2 A priori speech absence probability (SAP) estimation

Reliable estimation of the a priori SNR is important since it is used in the
estimation for the a priori SAP. In [33][36] an a priori SAP estimator is proposed
based on the time-frequency distribution of the estimated a priori SNR ξ̂(k, l). The
estimation is based on three parameters that each exploit the strong correlation
of speech presence in neighboring frequency bins of consecutive frames.

First a global and local averaging is applied to ξ̂(k, l) in the frequency domain.
Local means that the a priori SNR is averaged over a small number of frequency
bins (small bandwidth) and global means that the a priori SNR is averaged over
a larger number of frequency bins (larger bandwidth). The local and global
averaging of the a priori SNR is given by

ζη(k, l) =

i=ωη∑

i=−ωη

hη(i)ξ̂(k − i, l) (3.8)

where the subscript η represents either local or global averaging and hη is a
normalized Hanning window of size 2ωη+ 1. The local and global averaging of the
a priori SNR is then normalized to values between 0 and 1 before it is mapped
into the following threshold function,

Pη(k, l) =






0, if ζη(k, l) ≤ ζmin
1, if ζη(k, l) ≥ ζmax
log(ζη(k,l)/ζmin)
log(ζmax/ζmin) , otherwise

(3.9)

where Plocal(k, l) is the likelihood of speech presence when the a priori SNR is
averaged over a small number of frequency bins, and Pglobal(k, l) is the likelihood
of speech presence when the a priori SNR is averaged over a larger number of
frequency bins. ζmin and ζmax are empirical constants that decide the threshold
for speech or noise. The last term Pframe(l) represents the likelihood of speech
presence in a given frame based on the a priori SNR averaged over all frequency
bins, i.e.,

ζframe(l) = mean
1≤k≤N/2+1

{ζ(k, l)} (3.10)
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Algorithm 1 Estimation of Pframe(l)

1: if ζframe(l) > ζmin then
2: if ζframe(l) > ζframe(l − 1) then
3: Pframe(l) = 1
4: ζpeak(l) = min{max[ζframe(l), ζp min], ζp max}
5: else
6: Pframe(l) = δ(l)
7: else
8: Pframe(l) = 0
9: end if

10: end if
where

δ(l) =






0, if ζframe(l) ≤ ζpeak(l) · ζmin
1, if ζframe(l) ≥ ζpeak(l) · ζmax
log(ζframe(l)/ζpeak(l)/ζmin)

log(ζmax/ζmin) ,

otherwise

(3.11)

where N is the STFT-size. A pseudocode for the computation of Pframe(l) is given
by Algorithm 1, where δ(l) represents a soft transition from speech noise, ζpeak
is a confined peak value of ζframe, and ζp min and ζp max are empirical constants
that determine the delay of the transition. The a priori SAP estimation is then
obtained by [33][36]

q̂(k, l) = 1− Plocal(k, l) · Pglobal(k, l) · Pframe(l). (3.12)

This means that if either of the previous frames or recent frequency bins does not
contain speech, i.e., if the three likelihood terms are small, then q̂(k, l) becomes

larger and the conditional SPP ˆp(k, l) in (3.4) becomes smaller. The conditional
SPP is then estimated by inserting each of these contributions q̂(k, l), ξ̂(k, l), and
γ̂(k, l) in (3.4).

3.2 SDW-MWF incorporating the conditional SPP
(SDW-MWFSPP)

The SDW-MWFSPP derived in this section incorporates the conditional SPP in
the SDW-MWFµ to allow for a faster tracking of the spectral non-stationarity of
the speech, as well as for exploiting the fact that speech may not be present at all
time.
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3.2.1 Derivation of SDW-MWFSPP

The conditional SPP in (3.4) and the two-state model in (3.1) for speech events
can be incorporated into the optimization criterion of the SDW-MWFµ, leading
to a weighted average where the first term corresponds to H1(k, l) and is weighted
by the probability that speech is present, while the second term corresponds to
H0(k, l) and is weighted by the probability that speech is absent, i.e.,

WMWFSPP
(k, l) = arg min

W(k,l)
p(k, l)ε{|Xs1 −WH(k, l)X|2|H1(k, l)}

+ (1− p(k, l))ε{|WH(k, l)X|2|H0(k, l)} (3.13)

where p(k, l) is the conditional probability that speech is present and (1 − p(k, l))
is the conditional probability that speech is absent. The solution is then given by

WMWFSPP
(k, l) =

[
p(k, l)ε{XXH |H1(k, l)}+ (1− p(k, l))ε{XXH |H0(k, l)}

]−1

p(k, l)ε{XXs,H1 |H1(k, l)},

=
[
p(k, l)ε{XsXs,H}+ p(k, l)ε{XnXn,H}+

(1 − p(k, l))ε{XnXn,H}
]−1

p(k, l)ε{XXs,H1 }, (3.14)

which can be written as

WMWFSPP
(k, l) =

[
Rs(k, l) +

(
1
p(k,l)

)
Rn(k, l)

]−1

Rs(k, l)e1. (3.15)

Compared to (2.23) the fixed weighting factor µ is replaced by 1
p(k,l) , which is now

adjusted for each frequency bin k and for each frame l, making the SDW-MWFSPP

change with a faster dynamic. The SDW-MWFSPP offers more noise reduction
when p(k, l) is small, i.e., for noise dominant segments, and less noise reduction
when p(k, l) is large, i.e., for speech dominant segments.

Figure 3.1 presents a block diagram of the proposed SDW-MWFSPP. First an
STFT is performed on each frame of the noisy speech. Then on the left hand side
the conditional SPP is estimated, which includes the estimation of the a posteriori
SNR, the a priori SNR and the a priori SAP. On the right hand side the frequency
domain correlation matrices are estimated, which are used to estimate the filter
coefficients after weighting with the conditional SPP. Notice that the updates of
the frequency domain correlation matrices are still based on a longer time window.
The difference is now that the weights applied in the filter estimation are now
changing for each frequency bin and each frame based on the conditional SPP.
The last steps include the filtering operation and the ISTFT.
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Figure 3.1: Block diagram of the proposed SDW-MWFSPP incorporating the
conditional SPP.

3.2.2 Combined solution

A problem with the SDW-MWFSPP derived in (3.15) is that the conditional SPP
tends to show significant variation over different frequency bins which then also
causes the noise reduction to vary significantly over different frequency bins. We
therefore propose a combined solution referred to as SDW-MWFcombined, which
in one extreme case corresponds to the SDW-MWFSPP and in the other extreme
case corresponds to the SDW-MWFµ. The combined solution can be written as

WMWFcombined
(k, l) =

[
Rs(k, l) +

(
1

α( 1
µ

)+(1−α)p(k,l)

)
Rn(k, l)

]−1

Rs(k, l)e1

(3.16)
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Figure 3.2: Illustration of the different configuration of (weighting factor)−1 used
in (3.16).

where α is a trade-off factor between SDW-MWFµ and SDW-MWFSPP. The
(weighting factor)−1 i.e. α( 1

µ) + (1− α)p(k, l) used in (3.16) is shown in

Figure 3.2 for different configurations, i.e., SDW-MWFcombined (α=1) and SDW-
MWFcombined (α=0) and SDW-MWFcombined (α=0.5). The dashed line shows
the (weighting factor)−1 when 1/µ=0.5 and α=0.5. This clearly shows that the
combined solution corresponds to a scaling of the conditional SPP. Since the
variations between the speech dominant segments and the noise dominant segments
are reduced, the distortion is also reduced. When α=1 the solution corresponds
to a fixed µ shown with the (*) marker line. In Section 3.3 a flexible trade-off
between noise reduction and speech distortion is introduced.

3.3 SDW-MWF incorporating a flexible weighting
factor (SDW-MWFFlex)

Based on the observations made above the SDW-MWFSPP is modified to further
exploit the properties of the conditional SPP and to fully exploit the definition of
the two-state speech model. The two-state speech model given in (3.1) describes
the different states of the noisy speech which leads to the following observations.
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First, it is clear that the noise reduction in the H0(k, l) state and the H1(k, l) state
have a different interpretation, i.e.,

• Reducing the noise in the H0(k, l) state can be related to increasing listening
comfort, since speech is not present in the H0(k, l) state, which means that
a greater attenuation can be applied.

• Reducing the noise in the H1(k, l) state is a more challenging task since
this relates to speech intelligibility and hence the speech distortion weighted
concept truly only makes sense in the H1(k, l) state.

Secondly, as described in Chapter 2, the speech correlation matrix Rs(k, l) and the
noise correlation matrix Rn(k, l̃) are estimated during periods of speech-plus-noise
(l) and periods of noise-only (l̃), respectively. This means that,

• In theory the SDW-MWF could be an all zero vector during noise-only
periods since then Rs(k, l) = 0.

• In practice Rs(k, l) is ”frozen” during noise-only periods where Rn(k, l̃) is
updated. In fact this is in line with the definition of H0(k, l) in (3.1), where
the ”0” indicates, that the speech Xsi can have a non-zero Rs(k, l) in H0(k, l),
but is not transmitted into Xi.

We then suggest, that if the H0(k, l) state and the H1(k, l) state can be properly
detected a more flexible trade-off between noise reduction and speech distortion
can be achieved.

To this aim, the parameter P (l) is introduced, which is a binary decision, obtained
by averaging the conditional SPP p(k, l) over all frequency bins k

P (l) =





1 if

1

K

K∑

k=1

p(k, l) ≥ αframe

0 otherwise

(3.17)

where P (l) = 1 means theH1(k, l) state is detected and P (l) = 0 means theH0(k, l)
state is detected, and αframe is a detection threshold. This P (l) will be used in
the operation of SDW-MWFFlex. In Figure 3.3 P (l) is plotted for a given speech
segment which shows that even in the H1(k, l) state there are some frames/samples
where the conditional SPP is low. Notice that in this case the noise correlation
matrix is kept fixed whereas p(k, l) and P (l) are continuously updated. The two
key ingredients of the proposed SDW-MWFFlex are now as follows:

• A weighting factor µH1 is introduced, which is a function of p(k, l), and which
defines the amount of noise reduction that can be applied in the H1(k, l)
state.
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Figure 3.3: Illustration of P (l) for a given speech segment.

• A weighting factor µH0 is introduced, which is a constant weighting factor,
and which defines the amount of noise reduction that can be applied in the
H0(k, l) state.

The SDW-MWFFlex weighting strategy is illustrated in Figure 3.4 which shows
the weighting factor as a function of p(k, l). Notice that µH1 is defined here as
min( 1

p(k,l) , αH1 ), i.e., a function of the conditional SPP 1
p(k,l) and a lower threshold

αH1 , which is introduced since speech may not be present in all frequency bins
even in state H1(k, l). The optimization criterion for SDW-MWFFlex is given by

WMWFFlex
(k, l) = arg min

W(k,l)

P (l)
[

max(p(k, l), 1
αH1

)ε{|Xs1 −WH(k, l)X|2|H1(k, l)}

+ (1−max(p(k, l), 1
αH1

))ε{|WH(k, l)X|2|H0(k, l)}
]
+

(1− P (l))
[

1
µH0
ε{|Xs1 −WH(k, l)Xs|2|H0(k, l)}+

ε{|WH(k, l)Xn|2|H0(k, l)}
]

(3.18)

where the first term (P (l) = 1) is equivalent to (3.13) where p(k, l) is replaced
with max(p(k, l), 1

αH1
) and the second term (1 − P (l)) = 0 is equivalent to (2.22)
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Figure 3.4: The weighting factor used in SDW-MWFFlex as a function of the
conditional SPP.

where µ is replaced with µH0 . The expression in (3.18) can be further simplified
to

WMWFFlex
(k, l) = arg min

W(k,l)

[
P (l) max(p(k, l), 1

αH1
) + (1− P (l)) 1

µH0

]

ε{|Xs1 −WH(k, l)Xs|2}+
[
P (l) + (1 − P (l))

]
ε{|WH(k, l)Xn|2}

= arg min
W(k,l)

[
P (l) max(p(k, l), 1

αH1
) + (1− P (l)) 1

µH0

]

ε{|Xs1 −WH(k, l)Xs|2}+ ε{|WH(k, l)Xn|2}. (3.19)

The SDW-MWFFlex can then be written as

WMWFFlex
(k, l) =

[
Rs(k, l) + γ(k, l)Rn(k, l)

]−1

Rs(k, l)e1 (3.20)
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with the weighting factor defined as

γ(k, l) =
[
P (l) max(p(k, l), 1

αH1
) + (1− P (l)) 1

µH0

]−1

=
[
P (l) min( 1

p(k,l) , αH1 ) + (1 − P (l))µH0

]
. (3.21)

The SDW-MWFFlex is summarized in algorithm 2:

Algorithm 2 SDW-MWFFlex

1: for each frame l and each frequency k do
2: Estimate noise correlation matrix Rn(k, l) (2.4)
3: Estimate speech correlation matrix Rs(k, l) (2.6)
4: Estimate speech presence probability p(k, l) (3.4)
5: H1(k, l) and H0(k, l) detection P (l) (3.17)
6: if P (l) = 1 (per-frame decision) then
7: H1 state detected
8: Estimate SDW-MWFFlex (3.20)
9: with γ(k, l) = min( 1

p(k,l) , αH1 ) (3.21)

10: else
11: H0 state detected
12: Estimate SDW-MWFFlex (3.20)
13: with γ(k, l) = µH0 (3.21)
14: end if
15: end for

3.4 Rank-1 SDW-MWF incorporating the conditional
SPP

In a similar manner to (2.26) the rank-1 SDW-MWF incorporating the conditional
SPP can be written as

WR1-MWFSPP
(k, l) = R−1

n (k, l)Rs(k, l)e1 ·
1

1
p(k,l) + Tr{R−1

n (k, l)Rs(k, l)}

(3.22)
which shows that the conditional SPP only has an influence on the single-channel
postfilter. In order to show the characteristic of the single-channel postfilter (3.22)
can be rewritten as [38]

WR1-MWFSPP
(k, l) =

R−1
n (k, l)Rs(k, l)e1

1 + SNRout
·

1 + SNRout
1

p(k,l) + SNRout

(3.23)
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where SNRout = Tr{R−1
n (k, l)Rs(k, l)} and the single-channel postfilter can then

be written as,

Gpost(k, l) =
1 + SNRout
1
p(k,l) + SNRout

(3.24)

and by using the combined weighting factor in (3.16)

Gpost(k, l) =
1 + SNRout

1
α(1/µ)+(1−α)p(k,l) + SNRout

(3.25)

where µ in this case is the constant attenuation factor, and α is a trade-off
factor between the rank-1 SDW-MWFµ and the rank-1 SDW-MWFSPP. The
characteristic of the single-channel postfilter in (3.25) is shown in Figure 3.5(a)
and 3.5(b) for α = 0 and α = 0.85, respectively. It is clear that α defines how

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conditional SPP p(k,l)

po
st

fil
te

r 
G

po
st

(k
,l)

 

 

SNR
out

=0dB

SNR
out

=2.5dB

SNR
out

=5dB

SNR
out

=7.5dB

SNR
out

=10dB

(a) α = 0

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Conditional SPP p(k,l)

po
st

fil
te

r 
G

po
st

(k
,l)

 

 

SNR
out

=0dB

SNR
out

=2.5dB

SNR
out

=5dB

SNR
out

=7.5dB

SNR
out

=10dB

(b) α = 0.85

Figure 3.5: Characteristic of the single-channel postfilter incorporating the
conditional SPP and α for various SNRout.

aggressively the single-channel postfilter is allowed to behave especially at low
output SNR and at low conditional SPP. This means that the trade-off between
NR and signal distortion lies within the estimation of the conditional SPP and the
value chosen for α.

In this work the focus is on the rank-1 SDW-MWF since this formulation has shown
to be less sensitive to estimation errors in the correlation matrices compared to
the standard SDW-MWF [38]. This makes the rank-1 SDW-MWF an interesting
approach and therefore the target now is to combine the properties of the rank-1
SDW-MWF with a robust and a possibly more accurate method to estimate the
correlation matrices, which will be addressed in Chapter 4.
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3.5 Experimental results

3.5.1 Experimental set-up

The experimental set-up is similar as explained in Chapter 2. However
experimental results are only presented for a high reverberation scenario. For the
correlation matrices used to estimate the conditional SPP the forgetting factors
are set to ᾱn = ᾱx = 0.96 in order to track the spectral non-stationarities. The
forgetting factors used to estimate the correlation matrices for the MWF were
found to be varying too slowly to track the spectral information.

Table 3.1 shows the parameters used in the estimation of the conditional SPP.

ωlocal = 1 ζmin = −10dB (0.1) ζp min = 4dB
ωglobal = 10 ζmax = −5dB (0.3162) ζp max = 10dB

Table 3.1: Parameters used in the estimation of the conditional SPP

3.5.2 Results

Simulation results for the SDW-MWFSPP and the SDW-MWFFlex compared to the
SDW-MWFµ for a high reverberation scenario are shown in Figure 3.6. Overall
the results show that the SDW-MWFSPP and the SDW-MWFFlex are able to
outperform the SDW-MWFµ for µ=3 and 5 both in terms of SNR improvement
and signal distortion. The SDW-MWFFlex shows the best SNR improvement
but the signal distortion is also slightly higher compared to the SDW-MWFSPP.
The performance for SDW-MWFSPP with α=0.75 consistently shows a greater
SNR improvement compared to SDW-MWFµ with µ=1 and at the same time the
signal distortion is almost similar. Even though the signal distortion is lower for
SDW-MWFSPP and the SDW-MWFFlex the problem remains the same, i.e., any
improvement in the SNR comes at the cost of a higher signal distortion which is
highly undesirable.

Simulation results for the rank-1 SDW-MWFSPP and the rank-1 SDW-MWFFlex

compared to the rank-1 SDW-MWFµ for a high reverberation scenario are shown in
Figure 3.7. In this case the rank-1 SDW-MWFSPP and the rank-1 SDW-MWFFlex

can increase the SNR improvement compared to the rank-1 SDW-MWFµ but this
does not come without an increase in signal distortion. This suggests, that with
the rank-1 SDW-MWFµ the optimal performance has been reached and applying
the proposed weighting factor, that is updated for each frequency and for each
frame, in the single-channel postfilter only leads to increased signal distortion. A
possible explanation could be that the weighting factor 1

p(k,l) and the SNRout =



CONCLUSION 63

Tr{R−1
n (k, l)Rs(k, l)} varies with different dynamic which negatively affects the

single-channel postfilter.

3.6 Conclusion

In this chapter we have introduced an SDW-MWF-based NR that incorporates the
conditional SPP, referred to as SDW-MWFSPP, such that the weighting factor is
now updated for each frequency and for each frame. In addition to SDW-MWFSPP

we have also presented an SDW-MWF based NR that incorporates a flexible
weighting factor, referred to as SDW-MWFFlex which is based on combining the
conditional SPP with a per frame based H0(k, l) and H1(k, l) state detection. This
is based on the observation that the noise in the H0(k, l) and the H1(k, l) can be
reduced with different objectives.

Experimental results show that the SDW-MWFSPP and the SDW-MWFFlex

outperform the SDW-MWFµ both in terms of SNR improvement and signal
distortion. However, for the rank-1 SDW-MWFSPP and the rank-1 SDW-MWFFlex

the SNR improvement comes at the cost of a higher signal distortion compared to
the rank-1 SDW-MWFµ. This could indicate that the rank-1 SDW-MWFµ already
has reached the optimal performance or that the weighting factor that is updated
for each frequency and for each frame is limited by the slow time-variation of the
correlation matrices.

Allowing the weighting factor to be updated for each frequency and for each frame
has shown to improve the NR performance for certain scenarios. However the
estimation and the update of the correlation matrices are still an open problem
even when the weighting factor is updated more frequently, the correlation matrices
are still updated less frequently. This could be the reason that the rank-1 SDW-
MWFSPP and the rank-1 SDW-MWFFlex perform worse than the rank-1 SDW-
MWFµ, due to the mismatch in the dynamics of the single-channel postfilter.
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Figure 3.6: Comparison of SDW-MWFµ to SDW-MWFSPP and SDW-MWFFlex

a high reverberation scenario using objective measures.
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Figure 3.7: Comparison of rank-1 SDW-MWFµ to rank-1 SDW-MWFSPP and
rank-1 SDW-MWFflex for a high reverberation scenario using objective measures.





Chapter 4

SDW-MWFµ based on robust
estimation of the correlation
matrices

This chapter addresses the issue of using correlation matrices that are kept fixed
during speech-plus-noise periods and are updated during noise-only periods or
vice versa. As mentioned this can limit the tracking both spectrally and spatially.
The robustness of the correlation matrices can also be compromised especially
when estimating the clean speech correlation matrix which requires an accurate
estimation of the noise-only correlation matrix.

For this reason we once again turn our attention to single-channel NR where several
attempts have been made to continuously track and update the noise power during
periods of speech-plus-noise [133]. One of the interesting approaches is referred to
as the improved minima controlled recursive averaging (IMCRA) noise estimation
approach where the conditional SPP is used as a time-varying smoothing factor
[35][36]. Inspired by this approach we propose a robust method to estimate and
update the correlation matrices that exploits prior knowledge of the correlation
matrices combined with a continuous update approach based on the conditional
SPP [33][198].

Section 4.1 presents the proposed method to estimate and update the correlation
matrices in a robust way. The approach is based on using the conditional SPP
combined with prior knowledge of the correlation matrices.

Section 4.2 analyzes the performance of the proposed method to estimate and
update the correlation matrices compared to the traditional method using a perfect

67
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VAD.

Section 4.3 presents the experimental results using the SDW-MWF based NR
introduced in Chapter 2 and 3 to verify the properties of the proposed correlation
matrices.

4.1 Robust estimation of the correlation matrices

4.1.1 Uncertainty of the correlation matrices

The estimation of the correlation matrices is bound to introduce some errors due to,
e.g., VAD errors, non-stationary noise, low input SNR, reverberation, averaging
time etc. which can have a great influence on the MWF [38]. An error in the
estimated correlation matrices can be written as

R̂n(k, l) = Rn(k, l) + ∆nerror (4.1)

and

R̂x(k, l) = Rx(k, l) + ∆xerror (4.2)

where Rn(k, l) and Rx(k, l) are the true (unknown) noise-only and speech-plus-
noise correlation matrices, respectively, and ∆nerror and ∆xerror represent the error
(also unknown) in the estimated correlation matrices. Obviously, the important
factor is to compensate for the error introduced in (4.1) and (4.2). For this purpose,
we propose that the correlation matrices are updated continuously, i.e., the R̂x(k, l)
and R̂n(k, l) have to be estimated in both the H0(k, l) and H1(k, l) state. To
achieve this we will introduce the use of prior knowledge of the correlation matrices.
This is motivated by the fact that the correlation matrices used in (2.8) and (2.9)
are not guaranteed to be valid from one state to another, and in that sense we can
simply replace those correlation matrices with any prior knowledge that we have
regarding the correlation matrices. Then (4.1) and (4.2) can be rewritten as

Rn(k, l) = R̄n(k, l) + ∆ncorrection (4.3)

and

Rx(k, l) = R̄x(k, l) + ∆xcorrection (4.4)

where R̄n(k, l) and R̄x(k, l) are the prior knowledge of the noise-only and speech-
plus-noise correlation matrices, respectively. The term ∆ncorrection and ∆xcorrection

can be considered as the parameters that compensate for the mismatch between
the true and the prior correlation matrices. It is clear that the challenge is to select
the prior correlation matrices and estimating ∆ncorrection and ∆xcorrection which will
be explained in the following.
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4.1.2 Continuous updating of the correlation matrices

To achieve a robust and accurate estimation of the correlation matrices we propose
to combine the prior knowledge of the correlation matrices with a continuous
updating approach exploiting the conditional SPP. The proposed noise correlation
matrix estimation can then be written as

R̂n(k, l + 1) = p(k, l)R̄n(k, l)︸ ︷︷ ︸
prior

+ (1− p(k, l))
[
αnR̂n(k, l) + (1− αn)X(k, l)XH(k, l)

]

︸ ︷︷ ︸
update

= p(k, l)R̄n(k, l) + (1− p(k, l))∆n(k, l). (4.5)

If the conditional SPP indicates a high probability of speech presence then
greater weights are given to the prior knowledge R̄n(k, l). If the conditional SPP
indicates a high probability of speech absence then greater weights are given to
the instantaneous update. In a similar manner the speech-plus-noise correlation
matrix can be estimated as

R̂x(k, l+ 1) = (1− p(k, l))R̄x(k, l)︸ ︷︷ ︸
prior

+ p(k, l)
[
αxR̂x(k, l) + (1− αx)X(k, l)XH(k, l)

]

︸ ︷︷ ︸
update

= (1− p(k, l))R̄x(k, l) + p(k, l)∆x(k, l). (4.6)

In [35][36][199] the R̄n(k, l) and the R̄x(k, l) are replaced by the previous estimate
of the correlation matrices. Estimation of the correlation matrices with prior
knowledge ensures that the estimated correlation matrices always have a certain
structure which also makes the corresponding filter valid. The advantage of the
continuous update is that during noise-only periods the R̂n(k, l) is updated with
greater weight but more importantly the noise-level in R̂x(k, l) is also updated of
course with less weight. Then during speech-plus-noise periods greater weight is on
R̂x(k, l) which means that the noise-level in R̂x(k, l) and R̂n(k, l) should be better
matched. It should also be emphasized that the conditional SPP is estimated for
each frequency and for each frame such that certain frequencies can be updated
more frequently than others. This can be a benefit if the speech and the noise are
present at distinct frequencies. This problem is related to e.g. spectral subtraction
based NR where an inaccurate estimation of the noise can lead to severe distortion
[15][11][187].

Selecting the prior knowledge of the correlation matrices and estimating the
conditional SPP is always associated with some errors and uncertainty. Therefore,
it is desirable to always have the influence of the prior and the update during
the estimation which can be ensured by constraining the conditional SPP to be
0 < p(k, l) < 1. Excluding the scenarios where the speech is present (p(k, l)=1)
or absent (p(k, l)=0) makes sense since in these cases the influence of p(k, l) is
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removed and correlation matrices are not continously updated anymore. Actually
when (p(k, l)=0) the R̂x(k, l + 1) in (2.8) is replaced with R̄x(k, l) and when
(p(k, l)=1) the R̂n(k, l + 1) in (2.9) is replaced with R̄n(k, l).

4.1.3 Selection of prior correlation matrices

We propose to estimate the prior correlation matrices R̄x(k, l) and R̄n(k, l) using
a batch procedure, i.e., the correlation matrices are estimated off-line and kept
fixed during the NR process. The prior correlation matrices can be estimated as

H0(k, l) : R̄n(k, l + 1) = αnR̄n(k, l) + (1− αn)X̄(k, l)X̄
H

(k, l) (4.7)

and

H1(k, l) : R̄x(k, l + 1) = αxR̄x(k, l) + (1− αx)X̄(k, l)X̄
H

(k, l) (4.8)

where X̄(k, l) is the signal used to estimate the prior correlation matrices. Since
the correlation matrices contain both spectral and spatial signal characteristics
the choice of X̄(k, l) can result in both spectral and spatial mismatch. This is to
be expected since the input SNRs and the spatial scenarios are typically unknown.
Therefore, a spectral mismatch refers to a SNR mismatch between X̄(k, l) and
the actual signal X(k, l). For a typical hearing aid scenario we can assume that
the desired speaker is located in the front of the hearing aid user [45][109], i.e.,
at an angle corresponding to 0◦ whereas the noise can be located at any spatial
angle and can change over time. Therefore a spatial difference in the noise angles,
between X̄(k, l) and X(k, l) is referred to as a spatial mismatch.

The spectral mismatch of the prior is assumed to be more crucial than the spatial
mismatch. This observation is related to the way that the speech correlation
matrix is estimated. As mentioned in Chapter 2 the subtraction in (2.27) can lead
to a poor estimate of the speech correlation matrix. To avoid this it is important
that the SNR of X̄(k, l) is not chosen too low, but if the SNR is chosen too high
the NR may be compromised. However, this is where the expression in (4.5) and
(4.6) is supposed to compensate for any mismatch between the prior and the true
(unknown) correlation matrices defined in (4.3) and (4.4). On the other hand, if
this compensation is not sufficient the single-channel postfilter defined in (3.22)
can also compensate for any lack of spectral filtering by using the conditional SPP
and choosing a proper value for α. This suggests, that the SNR of X̄(k, l) can
be selected higher than the actual input SNR in order to avoid the subtraction in
(2.27) leading to a poor estimate.
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4.2 Analysis of estimation errors

In this section we will compare the proposed estimation and update of the
correlation matrices using prior knowledge and the conditional SPP with the
traditional methods using a perfect VAD. As mentioned previously the main
problem is the estimation of the clean speech correlation matrix, i.e.,

R̂s(k, l) = R̂x(k, l)− R̂n(k, l). (4.9)

In this analysis we are particularly interested in the spectral content of the
estimated correlation matrices in (4.9). For this purpose we define the power
of each correlation matrix as

P̂s(k, l) = Tr{R̂s(k, l)} (4.10)

P̂x(k, l) = Tr{R̂x(k, l)} (4.11)

P̂n(k, l) = Tr{R̂n(k, l)} (4.12)

In the following we will illustrate this problem by a series of examples. The
estimation of R̂x(k, l) and R̂n(k, l), or more specifically P̂x(k, l) and P̂n(k, l), using
a perfect VAD, based on a 0dB input SNR signal, is shown in Figure 4.1(a)-
(d). These plots show the power of the correlation matrices as a function of the
speech frames for selected frequencies. The first observation is that the noise-
only correlation matrix is kept fixed during speech-plus-noise frames but more
importantly most of the noise power P̂n(k, l) is actually higher than the speech-
plus-noise power P̂x(k, l). The consequence of this is shown in Figure 4.1(e)-(f)
where P̂s(k, l) is estimated which shows that due to estimation errors the power
of the estimated clean speech results in negative values. This will have a negative
impact if these correlation matrices are used to form the MWF.

The same experiments are conducted for the proposed estimation of the correlation
matrices (4.5)-(4.6) which is shown in Figure 4.2(a)-(f). It should also be
mentioned that the SNR of X̄(k, l) in (4.7)-(4.8) is set 5dB higher than the
actual input SNR which is 0dB. A first observation is that the speech-plus-
noise correlation matrices have a distinct shape, which is probably caused by the
conditional SPP and the fact that a continuous update approach is used. This
can be compared to the scenario with the perfect VAD which overall has a more
monotonous shape for different frequencies across different speech frames. Another
clear advantage is shown with the estimated noise-only correlation matrix which is
now continuously updated and it is clear that the proposed estimation technique
is able to track non-stationarity of the noise. The most important part here is
the estimation of the clean speech correlation matrices and here Figure 4.2(e)-(f)
clearly shows that the estimated P̂s(k, l) does not result in negative values which
is highly desirable.
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The final design of the proposed SDW-MWF based NR is shown in Figure 4.3.
Compared to the block diagrams shown in Figure 2.3 the binary VAD, that is
typically used in a MWF based NR [49][207], is now removed since the correlation
matrices are now jointly estimated. The estimation of the conditional SPP remains
the same as in Figure 3.1 but the difference is that the conditional SPP is now
also used in the estimation and in the update of the correlation matrices. As a
new ingredient to the SDW-MWF based NR the use of the prior knowledge of
the correlation matrices is introduced which allows for the continuous updating
approach.

4.3 Experimental results

In this section, experimental results for the rank-1 SDW-MWF using the proposed
robust estimation of the correlation matrices are presented and compared to a rank-
1 SDW-MWF using the traditional method to estimate the correlation matrices
based on a perfect VAD. As mentioned the rank-1 SDW-MWF has been selected
since this formulation has shown to be less sensitive to estimation errors [38].
Therefore the proposed correlation matrices are also verified for the traditional
formulation of the SDW-MWF [49][207][161].

4.3.1 Experimental set-up

The same simulation set-up is used as in Chapter 2 but only experiments with high
reverberation and low input SNR are presented here. For the conditional SPP the
same parameters are used as in Chapter 3. This means that only the selection
of the prior correlation matrices has to be defined. As defined in (4.7)-(4.8) the
prior correlation matrices are estimated based on X̄(k, l). Since the SNR and
the spatial scenarios are unknown the input SNR and spatial angles are selected
differently compared to the actual test-setup, which as previously defined referred
to as spectral and spatial mismatch. It should also be mentioned that the prior
correlation matrices are estimated using different signals than the one used in the
actual experiments. The spatial mismatch scenarios are shown in Table 4.1.

4.3.2 Results

In this experiment, the SNR of X̄(k, l) is varied from -7.5dB to 7.5dB using the
spatial scenarios defined in Table 2.1, i.e., no spatial mismatch is introduced
between X̄(k, l) and X(k, l). The effect of the spectral mismatch is shown in
Figure 4.4(a)-(b). As a first observation it is clear that the rank-1 SDW-MWFµ
with the perfect VAD performs well for certain spatial scenarios such as S0N90
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Case Spatial mismatch 1 Spatial mismatch 2
S0N0 noise source(s) at 30◦ noise source(s) at 60◦

S0N30 noise source(s) at 90◦ noise source(s) at 90◦, 180◦, 270◦

S0N60 noise source(s) at 30◦ noise source(s) at 90◦, 180◦

S0N90 noise source(s) at 30◦, 60◦ noise source(s) at 45◦, 90◦, 180◦

S0N120 noise source(s) at 30◦, 60◦ noise source(s) at 45◦, 90◦, 180◦

S0N2a noise source(s) at 30◦, 60◦ noise source(s) at 120◦

S0N3a noise source(s) at 30◦, 60◦ noise source(s) at 45◦, 90◦

S0N2b noise source(s) at 30◦, 60◦ noise source(s) at 120◦

S0N3b noise source(s) at 30◦ noise source(s) at 90◦

S0N2c noise source(s) at 0◦ noise source(s) at 120◦

S0N3c noise source(s) at 90◦, 180◦ noise source(s) at 120◦

Table 4.1: Spatial mismatch compared to the actual spatial scenarios

and S0N120. The same trend is observed for rank-1 SDW-MWFµ for the cases
where the SNR of X̄(k, l) is set to 7.5dB and 5dB but in these cases the SNR
improvement is greater and the signal distortion is lower compared to the case
with the perfect VAD. On the other hand, when the SNR of X̄(k, l) to -7.5dB and
-5dB the SNR improvement is poor even at S0N90 and S0N120 whereas spatial
scenarios such as S0N0, S0N30, and S0N60 show an SNR improvement but this
comes at the cost of a higher signal distortion. This suggests, that the noise has
been over-estimated when the SNR of X̄(k, l) is close to the input SNR and this
results in a poor estimate of the speech correlation matrix. Overall, the prior
correlation matrices with 7.5dB show the best performance.

In the next experiment, the SNR of X̄(k, l) is fixed at 7.5dB since this shows the
best SNR improvement with the lowest signal distortion. In order to show the
influence of the single-channel postfilter α in the rank-1 SDW-MWFcombined is
varied from 1 to 0.5, 0.3, 0, and compared to rank-1 SDW-MWFµ using a perfect
VAD which is shown in Figure 4.4(c)-(d). A remarkable SNR improvement is
observed with α=0 for S0N90, S0N120, S0N2a, and S0N3a and impressively the
signal distortion is lower compared to the performance using a perfect VAD. For
other spatial scenarios the SNR improvement results in greater signal distortion
but this can be avoided if α is set to 0.1. This suggests, that since the SNR of
X̄(k, l) is much higher than the actual input SNR the noise correlation matrix may
not indicate the true noise-level and in such case the single-channel postfilter is
able to compensate resulting in an overall SNR improvement. This clearly shows,
that if the SNR of X̄(k, l) is close to the atual input SNR the spatial filter can be
negatively affected and in this case the single-channel postfilter will only make the
performance worse.

In this experiment, the SNR of X̄(k, l) is fixed at 7.5dB which is based on the
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observation made above. The effect of the spatial mismatch for the rank-1 SDW-
MWFµ is shown in Fig. 4.5(a)-(b). It is clear that the spatial mismatch has an
effect on the SNR improvement especially for spatial mismatch case 1, where the
assumed location of the noise sources are chosen closer to the speech location. For
spatial mismatch case 2 the SNR improvement is still better with a lower signal
distortion compared to the performance with a perfect VAD. The effect of the
spatial mismatch is also evaluated for the rank-1 SDW-MWFcombined when α is
set to 0 and 0.1 which is shown Fig. 4.5(c)-(d). If the desire is to keep the signal
distortion lower than in the case with a perfect VAD using the rank-1 SDW-MWFµ,
then α should be set to 0.1. Again it is observed that the SNR improvement for
certain spatial scenarios results in an increased signal distortion especially when
α=0. However, it is clear that the proposed estimation of the correlation matrices
with the rank-1 SDW-MWFcombined is able to outperform the rank-1 SDW-MWFµ
using a perfect VAD.

Simulation results for the traditional SDW-MWFµ using the robust estimation
of the correlation matrices is also compared to the rank-1 SDW-MWFµ using a
perfect VAD to estimate and update the correlation matrices, which is shown in
Figure 4.6. Since the traditional SDW-MWFµ jointly applies the spatial filter and
the spectral filter it is clear that when µ = 1 the SNR improvement is very low.
However with µ = 3 and 5 the SDW-MWFµ outperforms the rank-1 SDW-MWFµ
both in terms of SNR improvement and signal distortion.

Simulation results for the SDW-MWFµ with the robust estimation of the
correlation matrices are also evaluated for different SNR of X̄(k, l) and with spatial
mismatch, which is shown in Figure 4.7. Again it is clear that a high SNR of
X̄(k, l) performs better and with µ = 5 the SDW-MWFµ still outperforms the
rank-1 SDW-MWFµ. The same trend is observed for the spatial mismatch cases.

4.4 Conclusion

In this chapter we have introduced an SDW-MWF-based NR that incorporates
a robust method to estimate and update the correlation matrices. The robust
estimation of the correlation matrices is based on introducing prior knowledge
of the correlation matrices together with a continuous updating approach based
on the conditional SPP. Combining this method to estimate and update the
correlation matrices with a weighting factor to trade-off between NR and speech
distortion that also varies for each frequency and for each frame, resulted in a novel
SDW-MWF based NR that improves the robustness and the tracking capabilities.

Experimental results show that the proposed algorithm improves the SNR and
the signal distortion compared to the traditional method with a perfect VAD
used to estimate and update the correlation matrices for both the SDW-MWF
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and the rank-1 SDW-MWF approaches. Analysis has shown that the estimated
correlation matrices using a perfect VAD results in negative power in the estimated
speech correlation matrix which in practice should not happen since the speech
correlation matrix is estimated by subtracting the noise-only correlation matrix
from the speech-plus-noise correlation matrix.

The SDW-MWF based NR proposed here has solved the problems of estimating
and updating the correlation matrices in a robust way such that the speech
correlation matrix can be reliably estimated. This is achieved by continuously
estimating the noise-level in the speech-plus-noise and the noise-only correlation
matrix during both speech-plus-noise and noise-only periods. Is has also been
shown how the conditional SPP can be used to further improve the single-channel
postfilter by exploiting the proposed correlation matrices. Furthermore, the
proposed correlation matrices also alleviate the sensitivity of the traditional SDW-
MWF which was the reason to use the rank-1 SDW-MWF in the first place.
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Figure 4.1: Illustration of the estimation errors in the correlation matrices using
a traditional perfect VAD approach.
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Figure 4.2: Illustration of the estimation errors in the correlation matrices using
the proposed method.
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Figure 4.4: (a)-(b) SNR improvement and SD using a rank-1 SDW-MWFµ for
scenarios where the SNR of the priors are varied. (c)-(d) SNR improvement and
SD using rank-1 SDW-MWFcombined for scenarios where α is varied and the prior
is fixed at SNR=7.5dB.
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Figure 4.5: (a)-(b) SNR improvement and SD using a rank-1 SDW-MWFµ
for scenarios where spatial mismatch is introduced and the prior is fixed at
SNR=7.5dB. (c)-(d) SNR improvement and SD using a rank-1 SDW-MWFcombined

for scenarios where spatial mismatch is introduced and the α is set to 0.1 and 0
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Figure 4.6: SNR improvement and SD for the comparison between the rank-
1 SDW-MWFµ, using a perfect VAD, to the SDW-MWFµ using the robust
correlation matrices.
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Figure 4.7: SNR improvement and SD for the comparison between the rank-
1 SDW-MWFµ, using a perfect VAD, to the SDW-MWFµ using the robust
correlation matrices with spatial mismatch.



Chapter 5

Robust Capon beamforming
for small arrays

This chapter presents a different multi-channel NR algorithm based on a standard
Capon beamformer (SCB) also referred to as an MVDR beamformer. The main
difference between the SCB and the MWF is that the SCB relies on a correct
estimation of the steering vector of the target speech signal whereas the MWF
is uniquely based on the estimated correlation matrices. This means that the
estimated correlation matrices are not mainly responsible for the SCB performance
but the target now is to find a robust method to estimate the steering vector.
Therefore a robust Capon beamformer (RCB) is presented where the target is
to adaptively estimate the steering vector in the presence of reverberation and
noise. The proposed RCB is based on using prior knowledge of the steering vector
combined with a steering vector uncertainty principle.

Section 5.1 gives a short introduction to the SCB problem and the motivation for
the proposed RCB.

Section 5.2 introduces the concept behind the SCB together with the problem of
having a mismatch between the presumed and the actual steering vector.

Section 5.3 reviews some previous popular methods for the RCB, where inspiration
for the proposed RCB is taken from an approach related to the uncertainty based
beamformers.

Section 5.4 presents the proposed RCB that has an adaptive estimation of the
steering vectors which is based on using prior knowledge to constrain the steering
vectors based on an uncertainty principle. The focus of the proposed RCB is on
small arrays and low complexity and therefore the computational complexity is
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also compared between the SCB and the RCB.

Section 5.5 presents the experimental results to confirm the robustness of the
estimated steering vectors.

5.1 Introduction

The SCB [22] suffers from a substantial performance degradation when there is
a mismatch between the presumed and the actual steering vector of the target
signal. Therefore many approaches have been proposed to improve the robustness
of the SCB. A variation of the SCB is known as the linearly constrained minimum
variance (LCMV) beamformer [93] where a set of linear constraints is added. These
constraints broaden the main beam by imposing a set of unity-gain constraints for
steering vectors close to the presumed steering vector of the target signal such
that robustness against a steering vector mismatch is achieved. A drawback with
the LCMV is that each constraint removes one degree of freedom for interference
suppression. Other robust extensions of the SCB have been based on diagonal
loading of the sample correlation matrix [28][244]. The main problem with these
approaches is to find the optimal value of the diagonal loading factor and that
it reduces performance and the beam sharpness. Recent approaches estimate
the diagonal loading factor based on the uncertainty region of the presumed
steering vector of the target signal. These methods are robust against target signal
suppression when the actual steering vector is within the predefined uncertainty
region. Spherical [126][233], ellipsoid [7][122][125][134][214] and polyhedron [241]
uncertainty regions have all been studied.

In [129][130] it is shown that a frequency-domain SCB outperforms a time-domain
Frost beamformer and a generalized sidelobe canceler for a scenario with two or
more nonstationary interfering speech sources and an array with two microphones.
A frequency-domain SCB exploits the time-frequency sparseness of the sources
better than a time-domain implementation.

In [130][129] a fixed steering vector is used for the target signal; the goal in this
chapter is to extend the frequency-domain SCB to an adaptive frequency-domain
RCB. The RCB proposed here is based on a gradient approach where the steering
vector is adaptively estimated based on a predefined level of uncertainty in the
steering vector. The proposed RCB offers a low complexity, simple implementation
and suffers no loss of degrees of freedom for interference suppression.
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5.2 Standard Capon Beamforming (SCB)

5.2.1 Optimization criterion for SCB

The goal of the SCB is to minimize the total beamformer output variance while
constraining the target speech signal response to be unity to prevent speech signal
suppression. The SCB design can be formulated as

min
W(k,l)

WH(k, l)Rx(k, l)W(k, l), s. t. ēH(k, l)W(k, l) = 1 (5.1)

where ē(k, l) is the presumed steering vector of the target speech signal. The
closed-form solution to (5.1) is given by Capon [22] as

WSCB(k, l) =
R−1
x (k, l)ē(k, l)

ēH(k, l)R−1
x (k, l)ē(k, l)

, (5.2)

where the output power σ2 is given by

σ2 =
1

ēH(k, l)R−1
x (k, l)ē(k, l)

. (5.3)

5.2.2 Mismatch between presumed and actual steering vector

As mentioned, the SCB does not provide robustness against the case where there
is a mismatch between the presumed and the actual steering vectors ē(k, l) and
ex(k, l), respectively. The mismatch between the presumed and the actual steering
vector can be described as

ex(k, l) = ē(k, l) + ∆ē (5.4)

where ∆ē is an unknown complex vector. Under such mismatch the constraint
ēH(k, l)WSCB(k, l)=1 leads to part of the speech signal being suppressed and
hence a degradation in SNR and signal distortion. The goal is then to design a
RCB that can compensate for the mismatch ∆ē by estimating the actual steering
vector ex(k, l).

5.3 Previous work on robust Capon beamformers

In the past, many RCB approaches have been proposed. In this section, we
briefly review some popular methods such as the linearly constrained minimum
variance (LCMV) beamformer, the diagonal-loading-based beamformer, and the
uncertainty-based beamformer.
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5.3.1 Linearly constrained minimum variance

In [93][222] the LCMV beamformer is proposed where the linear constraint in (5.1)
is generalized such that the output power is minimized while restricting the filter
weights to satisfy one or more linear equality constraints. The LCMV design can
be formulated as

min
W(k,l)

WH(k, l)Rx(k, l)W(k, l), s. t. CHW(k, l) = f (5.5)

where C is the constraint matrix and the vector f specifies the corresponding
constraint value for each vector. These additional linear constraints can be
either directional constraints [220] or derivative constraints [3][18], where the core
idea is to broaden the main beam of the beampattern so that it is more robust
against steering vector mismatch. It should however be mentioned that for every
additional linear constraint imposed, the beamformer loses one degree of freedom
for interference suppression, which is undesirable for small arrays.

5.3.2 Diagonal-loading-based beamformer

In [23][125] the diagonal-loading-based RCB is proposed where a regularization of
the correlation matrix is included. The diagonal-loading-based RCB design can
be formulated as

min
W(k,l)

WH(k, l)(Rx(k, l) + γI)W(k, l), s. t. ēH(k, l)W(k, l) = 1 (5.6)

where γ is the regularization factor and I is the identity matrix. The problem
here is the difficulty of specifying the optimal value of γ. If γ is set too large the
beamformer loses interference suppression performance, and if γ is set too small
the robustness is sacrificed.

5.3.3 Uncertainty-based beamformer

A recent robust beamforming approach suggests that the steering vector mismatch
can be accounted for based on a predefined uncertainty region around the presumed
steering vector. The uncertainty-based RCB design can be formulated as [134][122]

min
W(k,l)

WH(k, l)Rx(k, l)W(k, l), s. t. |WH(k, l)(ē(k, l) + ∆)| ≥ 1,

for all ‖∆‖ ≤ ε (5.7)

where ∆ is the steering vector mismatch as in (5.4) and ε denotes the uncertainty
region. This contraint forces the magnitude responses for an uncertainty set of
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steering vectors to exceed unity. The drawback of the uncertainty-based RCB
formulation in (5.7) is the infinite number of constraints. The performance is said
to be optimal if ε is large enough to cover the mismatch between the presumed and
the actual steering vector of the target signal. In [233] the problem is reformulated
as a second-order cone programming problem, based on a spherical uncertainty
set, which can be solved (although at very high computational complexity) using
the well-established interior-point method. In order to use standard optimization
techniques, the uncertainty region has often been generalized to an ellipsoid
[134][125][7] or a polyhedron [241].

5.3.4 Max-min optimization

An alternative consists in estimating the steering vector e which results in the
maximal output power [244][174], i.e.,

max
e(k,l)

min
W(k,l)

WH(k, l)Rx(k, l)W(k, l), s. t. eH(k, l)W(k, l) = 1, ‖e(k, l)‖2 = 1

(5.8)
where the unit norm is included to avoid a scaling ambiguity in the output power.
With (5.3) the expression in (5.8) can be simplified to

max
e(k,l)

1

eH(k, l)R−1
x (k, l)e(k, l)

, s. t. ‖e(k, l)‖2 = 1 (5.9)

which is equivalent to

min
e(k,l)

eH(k, l)R−1
x (k, l)e(k, l), s. t. ‖e(k, l)‖2 = 1. (5.10)

This is a principal eigenvector problem where the eigenvalue corresponding to the
largest eigenvector of Rx(k, l) provides the estimate of the steering vector e(k, l).
If the speech signal is not the dominant signal the solution in (5.9) leads to a
wrong solution. In this case a subset of eigenvalues (speech-plus-noise) can be
chosen at the cost of a reduced resolution [174]. The problem in (5.10) has been
reformulated in [125] as

min
e(k,l)

eH(k, l)R−1
x (k, l)e(k, l) s. t. ‖e(k, l)− ē(k, l)‖2 ≤ ε. (5.11)

The idea behind (5.11) is illustrated in Figure 5.1. The radius ε of the sphere
defines the uncertainty region. The solution to (5.11) is typically solved by
observing that the solution to (5.11) will be on the boundary of the constraint,
and the changing the inequality constraint to an equality constraint [125] i.e.,

min
e(k,l)

eH(k, l)R−1
x (k, l)e(k, l) s. t. ‖e(k, l)− ē(k, l)‖2 = ε. (5.12)
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Figure 5.1: Hyperplane for the RCB defined in (5.11).

This problem can be solved by using the Lagrange multiplier methodology which
is based on the function

f = eH(k, l)R−1
x (k, l)e(k, l) + λ(‖e(k, l)− ē(k, l)‖2 − ε) (5.13)

where λ ≥ 0 is the Lagrange multiplier. Differentiation of (5.13) with respect to
e(k, l) gives the optimal steering vector

ê(k, l) =

(
R−1
x (k, l)

λ
+ I

)−1

ē(k, l) (5.14)

= ē(k, l)− (I + λRx(k, l))
−1ē(k, l) (5.15)

where the Lagrange multiplier λ ≥ 0 can be estimated by solving the constraint
equation

g(λ) , ‖(I + λRx(k, l))
−1ē(k, l)‖2 = ε. (5.16)

which is shown to have a unique solution. Then by replacing the expression in
(5.14) with ē(k, l) in (5.2) gives

WDL(k, l) =
(Rx(k, l) + 1

λI)−1ē(k, l)

ēH(k, l)(Rx(k, l) + 1
λI)−1Rx(k, l)(Rx(k, l) + 1

λI)−1ē(k, l)
. (5.17)

This kind of RCB belongs to the class of diagonal loading based beamformers,
which we will refer to as RCB-DL, where the diagonal loading factor is estimated
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based on a given uncertainty set. The challenge is then again to find an optimal
value for the radius ε. If ε is set too large the beamformer loses degrees of freedom
for interference suppression, if ε is set too small the uncertainty region may not
be sufficient to compensate for the steering vector mismatch.

5.4 Robust Capon beamforming (RCB)

Previous practical RCB methods mostly belong to the class of diagonal-loading-
based beamformers [233][134][125][7], where the amount of diagonal loading may
be calculated based on the uncertainty region around the presumed steering vector.
This form of regularization reduces the beamformer’s interference suppression
capabilities, particularly for small arrays. In this section, we present an RCB that
exploits the same uncertainty region but does not depend on a diagonal loading
and where the steering vector is estimated based on a gradient algorithm. The
new method can obtain both robustness and much greater noise suppression.

5.4.1 Proposed RCB formulation

The problem is that we obviously do not know the exact steering vector, only a
region in which it should lie, i.e., if the selected vector from this region differs from
the actual steering vector, the beamformer will attempt to minimize the output
power by suppressing the target speech signal. If the selected vector is equal to
the actual steering vector, the beamformer cannot cancel the target speech signal
which leads to a larger output power. The proposed RCB formulation, when the
uncertainty region is defined as a sphere, can be written as

max
e(k,l)

min
W(k,l)

WH(k, l)Rx(k, l)W(k, l), s. t. eH(k, l)W(k, l) = 1,

‖e(k, l)− ē(k, l)‖2 ≤ ε, ‖e(k, l)‖2 = ‖ē(k, l)‖2
(5.18)

The proposed RCB differs from (5.7) in that instead of insisting to have a
distortionless response for the entire uncertainty region an optimal steering vector
is now estimated within the uncertainty region such that eH(k, l)W(k, l)=1 for
that particular steering vector and hence the beamformer can do whatever is best
elsewhere in the uncertainty region, thus allowing better performance in terms
of suppressing noise. So, instead of having multiple constraints we now have a
single adapted constraint. The proposed RCB also differs from (5.11) in that
an additional constraint is included to avoid a scaling ambiguity (as in (5.8)),
since the uncertainty region is defined as a sphere and certain steering vectors can
therefore increase the power. The constraint ‖e‖2=‖ē‖2 therefore ensures that the
estimated steering vector has the same power as the presumed steering vector.
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θ

θē
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e

Figure 5.2: Hyperplane for the proposed RCB defined in (5.19).

The proposed RCB is shown in Figure 5.2 where the estimated steering vector lies
within the uncertainty region, i.e., the beamformer is allowed to steer in certain
directions as long as it remains within the predefined uncertainty region. Increasing
or decreasing ε in our case only impacts the steering capabilities. The proposed
RCB therefore suffers no loss of degrees of freedom for interference suppression,
since the width of the beam is not increased. The proposed RCB also has the
advantage of a low complexity and simple implementation, since the solution does
not include an infinite number of constraints and hence a closed-form update
expression can be derived.

Using the output power defined in (5.3), the optimization problem can be written
as

min
e(k,l)

eH(k, l)R−1
x (k, l)e(k, l), s. t. ‖e(k, l)− ē(k, l)‖2 ≤ ε,

‖e(k, l)‖2 = ‖ē(k, l)‖2.

(5.19)

As with all robust beamformers based on an uncertainty region, success depends
on selecting a proper value of ε, since a large ε value may cause the steering vector
to steer towards the interferences and a small ε value may not be sufficient to
accommodate for the steering vector mismatch.
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∇ e
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Figure 5.3: Gradient projected onto the tangent plane.

5.4.2 Gradient update of the steering vector

In this section, an algorithm is presented for adaptively estimating the steering
vectors, based on (5.18) and a gradient approach. The gradient of the output
power with respect to the estimated steering vector e is:

∇e =
d

de

(
eH(k, l)R−1

x (k, l)e(k, l)
)

= −2R−1
x (k, l)e(k, l). (5.20)

Additionally, we propose to project the gradient onto the tangent plane:

∇̂e = ∇e− e(k, l)
eH(k, l)∇e

‖e(k, l)‖2
. (5.21)

The projection of the gradient onto the tangent plane is shown in Figure 5.3.
Assuming that the gradient change is small, the benefit of the projection is that
it remains close to the constrained steering vector norm, i.e., ‖e(k, l)‖2=‖ē(k, l)‖2.
Furthermore, projecting the gradient onto the tangent plane before estimating the
stepsize guarantees that any step remains within the tangent plane, which may
not be the case if the projection is performed after the estimation of the stepsize.
The stepsize in the gradient direction (tangent plane) can be calculated as follows:

min
µ

(e(k, l) + µ∇̂e)HR−1
x (k, l)(e(k, l) + µ∇̂e), s. t. ‖µ∇̂e‖2 ≤ ‖αe(k, l)‖2

(5.22)

where α controls the maximum stepsize change for each update. The constraint
limits the change in the steering vector so as to avoid potential adaptation noise or
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artifacts. The maximum stepsize yields a maximum reduction in the error criterion
at each update. The stepsize µ can be found by differentiating (5.22) with respect
to µ:

d

dµ
(e(k, l) + µ∇̂e)HR−1

x (k, l)(e(k, l) + µ∇̂e) (5.23)

and setting the derivative to zero

∇̂eHR−1
x (k, l)e(k, l) + eH(k, l)R−1

x (k, l)∇̂e + 2µ∇̂eHR−1
x (k, l)∇̂e = 0 (5.24)

gives

µ = −
∇̂eHR−1

x (k, l)e(k, l) + eH(k, l)R−1
x (k, l)∇̂e

2∇̂eHR−1
x (k, l)∇̂e

. (5.25)

The estimated stepsize µ is only used if ‖µ∇̂e‖2 ≤ ‖αe(k, l)‖2 otherwise the
stepsize is normalized as

µ = α
‖e(k, l)‖

‖∇̂e‖
. (5.26)

The steering vector is then updated as follows:

ê(k, l) = e(k, l) + µ∇̂e, (5.27)

and is selected if ‖ê(k, l)− ē(k, l)‖2 ≤ ε otherwise the previous estimated steering
vector is selected. To satisfy the norm constraint in (5.19) the normalized updated
steering vector can be written as

ê(k, l) = ê(k, l)
‖ē(k, l)‖

‖ê(k, l)‖
. (5.28)

The proposed RCB can then be written as

WRCB(k, l) =
R−1
x (k, l)ê(k, l)

êH(k, l)R−1
x (k, l)ê(k, l)

. (5.29)

It is also clear that, when the sphere reduces to a single point, the proposed RCB
is equivalent to the SCB.

5.4.3 Computational complexity

The computational complexity of the SCB is analyzed in [130] and here we will
analyze the complexity of the proposed RCB. The comparison is made in terms of
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distance = 1 meter

Loudspeaker positions
Reverberant room

Omni−directional microphones

RightLeft

0◦

−45◦

−30◦

15◦

90◦

75◦

45◦

30◦
−15◦

−90◦

−75◦

−60◦
60◦

∆15◦

Figure 5.4: Simulation setup with loudspeaker positions.

real additions, real multiplications, and real divisions, by assuming that two real
additions are required for each complex addition, four real multiplications and
two real additions are required for each complex multiplication, and two complex
multiplications and two real divisions for each complex division are required. Table
5.1 summarizes the computational complexity, for an example withM=2 (number
of microphones) and K=1024 (FFT length). This shows that the increase in
computational complexity for the RCB is not that large compared to the SCB.
Furthermore the proposed RCB design gives a simple implementation and no loss of
degrees of freedom for interference suppression. The performance of the proposed
RCB is shown in the following section.

5.5 Experimental results

5.5.1 Experimental set-up

Simulations have been performed in a reverberant rectangular conference room
with dimensions 9m x 4m x 2.75m (length x width x height) and a reverberation
time, T60 ≈ 0.37s, with two omnidirectional microphones in free-field separated
by 15cm. Further details can be found in [130]. The loudspeakers are positioned
at 1m from the microphones in the frontal horizontal plane at angles ranging
from -90◦ to +90◦ relative to the microphones, with a spacing of 15◦, which is
illustrated in Figure 5.4. The speech signals consist of male and female sentences
each approximately 2.5s. in duration. The signals are sampled at 22.05 kHz. The
spatial scenarios used in the simulations are listed in Table 5.2. A total of three
simulations are performed, i.e., the case with two, three and four interferences. For
each simulation the first 2.5s sentence uses the configuration ”a” and the next 2.5s
sentence uses the configuration ”b”. The beamformer is evaluated for a different
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Part of RCB Complex Complex Real Real Real
algorithm additions multiplies additions multiplies divisions

Gradient estimation 0 0 0 0 0

Projection M + (M − 1)
(
K
2 + 1

)
2M

(
K
2 + 1

)
0 0 2

Stepsize M(M − 1)
(
K
2 + 1

)
M2
(
K
2 + 1

)
2M

(
K
2 + 1

)
4M

(
K
2 + 1

) (
K
2 + 1

)

Gradient update M
(
K
2 + 1

)
0 0 2M

(
K
2 + 1

)
0

Stepsize constraint 0 0 3M − 1
(
K
2 + 1

)
4M + 2

(
K
2 + 1

) (
K
2 + 1

)

Steering vector constraint 2M
(
K
2 + 1

)
0 2M − 1

(
K
2 + 1

)
2M + 1

(
K
2 + 1

)
0

SCB [130] - - 55355 59455 1026
Proposed RCB - - 74861 83578 1030

Table 5.1: Total computational complexity for the proposed RCB compared to SCB.
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Notation Spatial angle of source(s)
1a Speech at 0◦, noise at -30◦ and 30◦

1b Speech at 0◦, noise at -45◦ and 45◦

2a Speech at 0◦, noise at -90◦, -30◦ and 45◦

2b Speech at 0◦, noise at -90◦, 45◦ and 75◦

3a Speech at 0◦, noise at -90◦, -45◦, 45◦ and 90◦

3b Speech at 0◦, noise at -90◦, -30◦, 30◦ and 90◦

Table 5.2: Spatial scenarios for the experimental evaluation

range of input SNR’s and for different values of αx defined in (2.9). An FFT
length of 1024 with 50% overlap was used in all simulations. The radius ε of
the uncertainty region is defined as ε=||βē(k, l)||2, where different values of β are
considered and since the target speech signal is coming from 0◦ angle then ē = e1.

5.5.2 Results

The SNR and SD for the three cases are shown in Figure 5.5, 5.6 and 5.7.
The performance benefits in terms of output SNR of the proposed RCB is
clear, especially when αx =0.75 and αx=0.85 with β=0.35, and furthermore the
distortion is also much lower. When αx=0.95 the performance of the proposed
RCB is closer to the SCB (especially at low input SNR) but the benefit still
remains at higher input SNR. It is worth noting that in the case with two
interferers the SCB outperforms the RCB with β=0.35 at low input SNR, but
this can be avoided when β=0.15. This does not seem to happen for the case with
three and four interferers, which suggests that for the case with two interferers,
αx=0.95 was sufficient to track the non-stationarity of the sources. It is clear
that the performance of the SCB highly depends on the accuracy of the estimated
correlation matrices, whereas the proposed RCB is more robust. The reduced
performance when αx=0.95 for the proposed RCB can be caused by the limited
tracking performance.

Overall it seems that β = 0.35 is a reasonable value and therefore it would be
interesting to evaluate the RCB performance for larger values of β. This would
then correspond to an estimation of the steering vector that is not constraint. For
this purpose the experiment with four interferers is repeated with different values
of β which is shown in Figure 5.8. From this it is clear that β = 0.35 gives the best
performance in terms of SNR and SD. It is especially worth noting the increase in
distortion when β = 0.95. This shows the importance of estimating robust steering
vectors.
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Figure 5.5: SNR and SD for two interferers for different values of αx and. (*) SCB,
(�) RCB (β = 0.15), (♦) RCB (β = 0.35).

The proposed RCB is also compared to a diagonal loading based beamformer
referred to as RCB-DL. The diagonally loaded correlation matrix can then be
written as

R̂DL = R̂x(k, l) + δI (5.30)

where δ is the value of diagonal loading factor and I is the identity matrix. In this
case we define δ to be a fraction of the largest eigenvalue. The comparison between
the proposed RCB and the RCB-DL is shown in Figure 5.9. The results show a
small but consistent SNR benefit for the proposed RCB compared to the RCB-DL.
At the same time the proposed RCB maintains a low distortion compared to the
RCB-DL.
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Figure 5.6: SNR and SD for three interferers for different values of αx. (*) SCB,
(�) RCB (β = 0.15), (♦) RCB (β = 0.35).

5.6 Conclusion

In this chapter, a frequency-domain RCB is presented which is based on a gradient
approach where the steering vector is estimated adaptively based on a predefined
uncertainty region of the steering vector mismatch. Experimental results for a
scenario with a microphone array containing two omnidirectional microphones and
with competing speakers in a reverberant room demonstrate that the proposed
RCB outperforms the SCB in terms of output SNR and signal distortion. The
proposed RCB showed robustness especially in the case where a small forgetting
factor was used to estimate the correlation matrices, whereas the SCB showed
a significant performance degradation. The proposed RCB also showed a small
SNR benefit compared to a diagonal loading based beamformer. However the SNR
benefit was achieved at a lower distortion. Furthermore, the proposed RCB offers
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Figure 5.7: SNR and SD for four interferers for different values of αx. (*) SCB,
(�) RCB (β = 0.15), (♦) RCB (β = 0.35).

a low complexity, simple implementation and no loss of degrees of freedom for
interference suppression.
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Figure 5.8: SNR and SD for four interferers for different values of αx. (*) RCB
(β = 0.75), RCB (β = 0.95), (♦) RCB (β = 0.35).
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Figure 5.9: SNR and SD for four interferers for different values of αx. (x) RCB-DL
(δ = 0.05), (*) RCB-DL (δ = 0.10), (�) RCB-DL (δ = 0.15), (♦) RCB (β = 0.35).



Chapter 6

Dynamic range compression
(DRC)

This chapter introduces the DRC algorithm used in this dissertation. DRC is a
basic component in digital hearing aids and the use of DRC in hearing aids has
increased over the years [150][201]. The role of the DRC is to estimate a desirable
gain to map the wide dynamic range of an input audio (e.g. speech) signal into the
reduced dynamic range of a hearing impaired listener. DRC is a signal processing
strategy that makes speech audible over a wide range of sound levels and reduces
the dynamic range of speech signals. Basically, a DRC is an automatic gain control,
where the gain is automatically adjusted based on the intensity level of the input
signal. Typically the design of DRC is based on clean speech scenarios without
considering the presence of background noise. Therefore the work here is focussed
on the design of DRC operating in the presence of background noise, i.e., to analyze
how the DRC reacts to the background noise compared to clean speech scenarios.

Section 6.1 presents the design of the DRC algorithm used in this work together
with the typical parameters that are involved in a DRC algorithm.

Section 6.2 analyzes the effect that the background noise has on the DRC. First
it is shown why a typical DRC algorithm is bound to degrade the SNR especially
when noise dominant segments recieves more amplification compared to speech
dominant segments.

Section 6.3 presents the experimental results to confirm the observation made in
Section 6.2 and to properly state the problem and the negative effect that the
background noise has on the DRC.

101
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Figure 6.1: Block diagram of the multi-band DRC.

6.1 Design of DRC algorithms

Reduced audibility and reduced dynamic range between the hearing threshold
and and the uncomfortable level are some of the problems that people with a
sensorineural hearing loss are dealing with [45][100]. The role of dynamic range
compression (DRC) algorithms in hearing aids is to map the wide dynamic range
of speech signals into the reduced dynamic range of hearing impaired listeners.
Hearing aids or more specifically DRC should enhance the speech signal such that
all of the important features of the speech signal are above the hearing threshold
but at the same time below the discomfort level [149]. This is achieved by allowing
more gain at low input levels and less at higher input levels which means that the
DRC provides comfort for loud sounds and audibility for soft sounds.

Even though DRC is a main component in hearing aids there is still a disagreement
about the best way to incorporate DRC in hearing aids [45][100]. In the past
extensive work has analyzed the challenges and difficulties in the design of DRC
algorithms [21][53][120][149][154][215][175][231]. The general design of different
DRC algorithms can be found in [13][87][110][127][193]. The aim here is to show
the effect that background noise has on DRC, and to discuss the problems and
challenges when designing DRC algorithms in the presence of background noise.

6.1.1 Multi-band compression

The developments on DRC have mainly been focussed on multi-band DRC since
the hearing loss and the dynamic range of speech varies markedly with frequency
[148][193][26]. This can be achieved by using filter banks [110][109] or an FFT
approach. In this work the critical bands [247] are realized using an FFT approach
such that the FFT bins are combined to produce a critical band spectrum, i.e.,
by using individual FFT bins at low frequencies and by combining FFT bins
at higher frequencies [110][61][96]. A block diagram of the multi-band DRC is
shown in Figure 6.1. First the input signal is divided into frames using either
an overlap-add or an overlap-save procedure with a window function. Then an
FFT is performed on each frame and as input to the DRC the FFT bins are
combined to produce a critical band spectrum. The DRC block then estimates
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the required DRC gain based on the input level from each critical band. The
estimated DRC gain is then converted back to the linear frequency and applied to
the input spectrum. The final step is the reconstruction and the ISTFT operation.
In the next section we will describe the operation inside the DRC block.

6.1.2 DRC parameters

The DRC is typically defined by the following parameters:

• Compression threshold (CT).

• Compression ratio (CR).

• Attack (at) and release time (rt).

• DRC gain GsdB.

The CT is defined in dB and corresponds to the point where the DRC becomes
active, i.e., where the gain is reduced. The CR determines the degree of
compression. A CR of 2 (i.e. 2:1) means that for every 2dB SPL increase in
the input signal, the output signal increases by 1dB SPL. The attack and release
time are defined in milliseconds and specify how fast the gain is changed according
to changes in the input signal. The attack time is defined as the time taken for
the compressor to react to an increase in input signal level. The release time is
the time taken for the compressor to react to a decrease in input SPL and GsdB

is defined as the speech DRC gain. For the DRC the input level for each critical
band in dB SPL is defined as

P in,s
DRC,dB(k′, l) = 20 log10

(
|P in

DRC(k′, l)|

Pref

)
(6.1)

where k′ is used to indicate that the linear frequency is now mapped to the Bark
scale and Pref is the reference sound pressure (20 micro Pascal). The DRC curve
is defined based on a linear curve and a compression curve defined in (6.2) and
(6.3), respectively:

Plin,dB(k′, l) = P in,s
DRC,dB(k′, l) +GsdB (6.2)

Pcp,dB(k′, l) = CT +
1

CR
· (P in,s

DRC,dB(k′, l)− CT) +GsdB (6.3)

The output level in dB SPL is then given by

P out,s
DRC,dB(k′, l) =

{
Plin,dB(k′, l) if P in,s

DRC,dB(k′, l) < CT

Pcp,dB(k′, l) if P in,s
DRC,dB(k′, l) ≥ CT

(6.4)
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A DRC curve that shows the output SPL as a function of the input SPL with
CR=2, CT=30dB and GsdB=30dB is shown in Figure 6.2. Finally the DRC gain
in dB is calculated as the output level minus the input level, i.e.,

GDRC,dB(k′, l) = P out,s
DRC,dB(k′, l)− P in,s

DRC,dB(k′, l). (6.5)

The attack and release time are then applied to the DRC gain GDRC,dB(k′, l)
typically using a first-order recursive averaging filter which can be written as

ĜDRC,dB(k′, l) =

{
Gdiff(k′, l) · λrt +GDRC,dB(k′, l), if Gdiff(k′, l) ≥ 0
Gdiff(k′, l) · λat +GDRC,dB(k′, l), else

(6.6)

where λrt and λat represents the release (rt) and the attack (at) time, respectively,
and

Gdiff(k′, l) = ĜDRC,dB(k′ − 1, l)−GDRC,dB(k′, l). (6.7)

represent the difference between the DRC gain estimated in (6.5) and (6.6). A more
detailed illustration of the DRC block in Figure 6.1 is shown in Figure 6.3. This
shows that the DRC operates on each critical band independently and the DRC
characteristic (input-output mapping) is equal for each critical band. Therefore the
DRC only depends on the intensity level (input SPL), i.e., the DRC curve shown
in Figure 6.2 does not change its characteristic depending on speech dominant
segments or noise dominant segments.
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Figure 6.3: Illustration of the overall steps in the multi-band DRC

6.2 The effect of background noise on DRC

In the past, DRC algorithms have mainly been designed under the assumption
that the input signal does not contain background noise which in many cases is
not a valid assumption. In this section, the effect of background noise on DRC
is illustrated through a number of examples where the idea is to show how the
DRC reacts to different input SNRs both for speech dominant segments and for
noise dominant segments. The evaluation is based on objective measures such as
intelligibility-weighted SNR and frequency-weighted log-spectral signal distortion
measure.

6.2.1 Undesired amplification over frequencies

Figure 6.4 shows the estimated input SPL and the corresponding DRC gain for
each critical band. The DRC gain in this case is estimated with the compression
characteristic shown in Figure 6.2. The first observation made is that for a 0dB
input SNR the noisy speech input SPL is higher compared to the clean speech
input SPL. This leads to a lower DRC gain for the noisy speech, e.g., at critical
band 5, 11 and 15 the DRC gain is 11.5dB, 13.15dB and 6.20dB lower compared
to the clean speech DRC gain, respectively. This means that for low input SNR
the estimated gain may not be sufficient to compensate for the hearing loss. This
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could also explain that in the presence of background noise a linear amplification
is typically preferred [92][154]. When the input SNR is increased the noisy speech
DRC gain approaches the clean speech DRC gain. This shows that for speech
dominant segments it is desirable to have the noisy speech as close as possible to
the clean speech, which is a typical objective for noise reduction algorithms.

A second observation can be made by using critical band 10 and 14 for the 0dB
scenario which suggests that these two critical bands do not contain noise. The
problem is that for critical band 10 and 14 the DRC gain is much higher compared
to the neighboring critical bands. This can be a major problem if we consider the
NR problem and the case where the noise has been reduced for certain frequencies.
The DRC will then consider the noise as a low input signal and apply higher
amplification compared to the speech which is considered a high input signal. This
could lead to certain frequencies containing speech being masked by the noise.

A third observation that can be made is that the short-time spectrum of the speech
is bound to be more flat after the DRC has been applied. In [236] it was concluded
that multi-band DRC unnecessarily attenuates important information regarding
the shape of the short-time speech spectrum, i.e., the height of spectral peaks is
reduced and the floor of the spectral valleys is increased which flattens the short-
time speech spectrum, resulting in poor speech perception. However this problem
is not directly related to the presence of the noise but rather the design of the
DRC.
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Figure 6.4: Illustration of the estimated input SPL and the corresponding DRC
gain for a speech dominant frame.

For a noise dominant segment the situation will be much different as shown in
figure 6.5. First of all it is clear that the clean speech input SPL is very low and
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therefore from the DRC point of view maximum amplification is applied. When the
input SNR increases, e.g., when the input SNR is 10dB, the DRC gain approaches
maximum amplification which is highly undesired when the noise is so dominant
which also suggests that for higher input SNR the DRC may amplify the noise
more compared to low input SNR scenarios. This can potentially lead to a greater
SNR degradation. In speech dominant segments the lower critical bands, e.g., 1
to 5 contain a high input SPL and therefore a lower DRC gain is applied. This is
the opposite for the noise dominant segments where a much higher DRC gain is
applied for the lower critical bands, see Figure 6.4(a) and Figure 6.5(a). This is
highly undesired if the noise dominant frame occurs right before a speech dominant
frame which again could mask some features in the speech dominant frames.
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Figure 6.5: Illustration of the estimated input SPL and the corresponding DRC
gain for a noise dominant frame.

6.2.2 Undesired amplification over time

In this section we will analyze how the DRC reacts to the background noise by
analyzing different critical bands for various frames. The aim is to show how the
DRC can negatively affect different frequencies over time, e.g., if certain frequencies
are amplified more compared to neighboring frequencies or frames.

The input SPL and the estimated DRC gain for the clean speech, noisy speech, and
the noise-only signals are shown in Figure 6.6 and 6.7. An interesting observation
can be made using critical band 7 shown in Figure 6.6(e)-(f) which shows that
for frames up to 30 the noise is very dominant (noise dominant segments) and
for frames between 30-40 the clean speech is mixed with the noise (speech-plus-



108 DYNAMIC RANGE COMPRESSION (DRC)

noise segments) whereas for frames between 40-50 the speech is dominant (speech
dominant segments). Looking at the corresponding DRC gain the problem is that
the gain applied to the noise dominant segments is more or less equal to the speech
dominant segments. In this case it would be better to actually apply the DRC
gain estimated for the noise-only signal. The same observation can be made with
critical band 12. Looking at the DRC gain for the clean speech it is also clear that
the DRC kind of flattens the level between the low input SPL and high input SPL
which is the purpose of the DRC, i.e., making soft sounds audible while avoiding
loud sounds becoming too loud. This can have an effect on the speech if the signal
information over frequency and time is smoothed. It is also worth noting that
at critical band 1 and 4 the speech and the noise are better mixed, since speech
contains more energy at lower frequencies, resulting in less difference between the
DRC gain.

Intuitively these experiments show that it would be better to apply less gain to the
noise dominant segments compared to the speech dominant segments in order not
to degrade the SNR. At the same time a smoothing between the noise dominant
segments and speech dominant segments could also be avoided if knowledge is
available regarding which critical bands contain speech or noise.

6.2.3 Compensation of speech and noise dominant segments

In this section we will analyze how the DRC gain can be modified if the SNR
should be preserved. This of course can only be possible if knowledge regarding
the speech and the noise-only contributions is available. For the analysis we will
exploit the knowledge of the clean speech and the noise-only input SPL as shown in
Figure 6.6 and 6.7 to mark out the speech dominant, noise dominant, and speech-
plus-noise segments. Once this is done the DRC can be modified in the following
way:

• For speech dominant segments set GsdB=30dB

• For speech-plus-noise segments set GsdB=25dB

• For noise dominant segments set GsdB=20dB

This of course would correspond to the hearing aid user manually adjusting the
volume based on the acoustic environment but for this analysis the aim is to show
how the overall DRC gain over the various frames can be modified to avoid a
SNR degradation. The estimated DRC gain for the noisy speech with and without
the modified DRC gain is shown in Figure 6.8 for 0dB input SNR together with
the distinction of speech dominant segments=1, noise dominant segments=0, and
speech-plus-noise segments=0.5.
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As an example we can again use critical bands 7 and 12 which show that for frames
up to 30 the noise is very dominant and then the following frames indicate that
the speech is dominant. Basically in this simple experiment the goal is to show
that the gain applied to noise dominant segments should never be higher than the
gain applied to the speech dominant segments. The effect of being able to make a
distinction between speech and noise and to be able to reduce the gain properly can
be illustrated by looking at the average DRC gain applied for the speech dominant
segments and for the noise dominant segments. The average DRC gain across all
frames for different critical bands is shown in Table 6.1. This shows that with the
modified DRC gain the noise receives much less amplification but an important
observation here is that with the noisy speech with the standard DRC the gain is
almost equal independently of whether speech or noise is present. This problem is
further emphasized with the DRC estimated on the clean speech which shows that
the noise dominant segments at all time receive higher amplification compared to
the speech dominant segments.

In practice the clean speech and the noise-only signals are of course not available
and furthermore it is not practical to manually reduce the gain dependent on
whether speech or noise is present. Therefore in Chapter 7 we will present
a modified DRC algorithm that automatically can reduce the gain based on
exploiting the conditional SPP which has already proven to be valuable in the
SDW-MWF based NR algorithms, see Chapter 3 and Chapter 4.

6.3 Experimental results

This section presents the experimental results for the analysis of the background
noise on the DRC and to confirm the observations made in Section 6.2.

6.3.1 Experimental set-up

Simulations have been performed with speech signals from the HINT-database
[167] and the noise signals consisting of a multi-talker babble from Auditec [5].
The signals are sampled at 16kHz. The DRC is implemented based on 20 critical
bands [247] which is realized by using individual FFT bins at low frequencies and
by combining FFT bins at higher frequencies [110]. The following parameters are
used during the simulations:

• Input level is set to 65dB SPL at the microphone.

• Attack and release time are set to at=10ms and rt=20ms.

• Compression ratio is varied from CR=1.5, 2, 2.5 and 3.
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Modified DRC gain (Noisy speech)
Critical band Speech Speech-plus-noise Noise
1 (avg. gain) 16.0dB 10.9dB 4.0dB
4 (avg. gain) 15.6dB 14.2dB 8.8dB
7 (avg. gain) 17.9dB 16.6dB 7.7dB
9 (avg. gain) 21.4dB 18.2dB 10.5dB
12 (avg. gain) 15.1dB 17.9dB 13.3dB
15 (avg. gain) 22.5dB 17.5dB 12.4dB

DRC gain (Noisy speech)
Critical band Speech Speech-plus-noise Noise
1 (avg. gain) 16.0dB 15.9dB 14.0dB
4 (avg. gain) 15.6dB 19.2dB 18.8dB
7 (avg. gain) 17.9dB 21.6dB 17.7dB
9 (avg. gain) 21.4dB 23.2dB 20.5dB
12 (avg. gain) 15.1dB 22.9dB 23.3dB
15 (avg. gain) 22.5dB 22.5dB 22.4dB

DRC gain (Clean speech)
Critical band Speech Speech-plus-noise Noise
1 (avg. gain) 15.5dB 16.8dB 17.5dB
4 (avg. gain) 15.7dB 19.8dB 23.7dB
7 (avg. gain) 18.2dB 23.1dB 27.4dB
9 (avg. gain) 21.1dB 25.8dB 29.1dB
12 (avg. gain) 15.2dB 26.6dB 29.9dB
15 (avg. gain) 24.9dB 28.4dB 29.8dB

Table 6.1: Average DRC gain for speech dominant, noise dominant, and speech-
plus-noise segments.

• Compression threshold is set to CT=30dB.

6.3.2 Analysis procedure

The effect of the background noise on the DRC is analyzed using the procedure
shown in Figure 6.9 in which three different experiments will be conducted.

In the first experiment, the DRC gain is based on the noisy speech signal, i.e.,

P in
DRC,dB(k′, l) = 20 log10

(
|X(k′, l)|

Pref

)
(6.8)

which is illustrated with the shaded DRC block which is the true signal processing
path when background noise is present in the input signal. The estimated DRC
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gain based on the noisy speech signal is then applied to the clean speech and the
noise-only signal. The SNR improvement is then estimated based on X̂s and X̂n.
The signal distortion is estimated between X̂s and X̄s, which will be defined later.

In the second experiment, the DRC gain is based on the clean speech, i.e.,

P̄ in
DRC,dB(k′, l) = 20 log10

(
|Xs(k′, l)|

Pref

)
(6.9)

which is then applied to both Xs(k′, l) and Xn(k′, l). The purpose here is to show
that even when access to the clean speech is available this does not result in the
optimal DRC gain.

In the third experiment, a separate DRC is applied to the clean speech as in (6.9)
and for the noise-only signal

P̃ in
DRC,dB(k′, l) = 20 log10

(
|Xn(k′, l)|

Pref

)
. (6.10)

The purpose here is that, since we have access to the clean speech and the noise-
only signal we can reduce the hearing aid gain for the noise-only signal such that
GndB < G

s
dB where GndB is the gain applied to the noise-only signal. The goal is

then to reduce GndB until the SNR is preserved. The SNR improvement is then
estimated based on X̄s and X̄n

6.3.3 Results

The results from the first experiment are shown in Figure 6.10. Overall, the SNR
degradation is less significant at low input SNR which is supported by Figure 6.5(a).
At high input SNR the noise dominant segments receive maximum amplification
which leads to the large SNR degradation. The distortion decreases at high
input SNR which also correlates well with Figure 6.4(c) where the DRC gain
is approaching the clean speech DRC gain at high input SNR. It is also clear the
SNR degradation is worse at higher CR.

The results for the second experiment are shown in Table 6.2. As expected the
SNR degradation is even worse when the clean speech DRC gain is applied to the
noisy input signal, which again is explained by the excessive amplification of noise
dominant segments. Since the DRC is based on the clean speech the input SNR
does not play a role here. Basically the results in Table 6.2 correspond to an input
SNR of 30dB in Figure 6.10. This shows that even if the NR algorithm is able to
significantly improve the SNR this may just be compromised by the DRC.

The results for the third experiment are shown in Figure 6.11 which shows the
SNR degradation when GndB=30dB compared to the case where GndB is reduced.
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CR 1.5 2 2.5 3
∆SNRintellig -4.7dB -6.7dB -7.9dB -8.4dB

Table 6.2: The SNR improvement when the clean speech DRC gain is applied to
the noisy input signal.

The results show that in order to compensate for the SNR degradation the gain
GndB for the noise DRC needs to be reduced further at high input SNR. This of
course only holds if the input SNR is fixed otherwise the gain GndB needs to be
changed accordingly.

6.4 Conclusion

In this chapter the DRC is analyzed when operating in the presence of background
noise. Typically DRC algorithms are designed under the assumption of clean
speech. It is shown that when the DRC gain for each critical band is based
solely on the input level a significant SNR degradation is observed which is highly
undesired. The SNR degradation is more severe at higher input SNR since low
level noise signal in this case the noise are now amplified more compared to the
high level speech signals.

On the other hand, when the DRC is based on a low input SNR signal the DRC
gain is much lower compared to the DRC gain estimated on the clean speech
signal and therefore the estimated DRC gain may be too low to compensate for
the hearing loss. Through a number of examples it has also been shown that
a multi-band DRC can reduce the shape of the short-time speech spectrum by
making the spectrum more flat. Through experiments it has been shown that in
order to preserve the SNR, knowledge of the speech and the noise preferably for
different frequencies and for different frames is required such that the DRC gain
for each critical band can vary depending on the speech and the noise and not
only on the input level.

The experimental results show that when background noise is present an SNR
degradation of 2-3dB is observed whereas at high input SNR an SNR degradation
of 4-8dB is observed depending on the CR. The signal distortion is also higher for
low input SNR which shows that the noise indeed has an influence on the DRC
since the signal distortion is very low at high input SNR.

To summarize, it has been shown that the background noise indeed has a negative
effect on the DRC. First of all a significant SNR degradation is observed and
secondly the background noise also has an influence on the level of the estimated
DRC gain. This problem can be solved by reducing the noise, i.e., increasing the
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SNR. However this is where the interaction between the DRC and the background
noise is most severe. The challenge is therefore to estimate the speech dominant
segments and the noise dominant segments and to automatically adjust the DRC
gain based on this information.
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Figure 6.6: Estimated input SPL and DRC gain for the noisy speech, the clean
speech, and the noise-only signals for critical band 1, 4, and 7.
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Figure 6.7: Estimated input SPL and DRC gain for the noisy speech, the clean
speech, and the noise-only signals for critical band 9, 12, and 15.
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Figure 6.8: Example of compensating for undesired amplification of noise by
defining speech dominant segments and noise dominant segments.
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Figure 6.9: Evaluation set-up for analyzing the effect of background noise on DRC.
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Figure 6.10: SNR improvement and signal distortion for different CR at various
input SNR.
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Figure 6.11: SNR preservation when knowledge of clean speech and noise-only
contributions are available together with the noise DRC gain required to preserve
the SNR.



Chapter 7

SDW-MWF based noise
reduction and dynamic range
compression

This chapter addresses the issue of having NR and DRC combined. NR and
DRC are basic components in hearing aids, but generally these components are
developed and evaluated independently of each other. Hearing aids typically use a
serial concatenation of NR and DRC. However, the DRC in such a concatenation
negatively affects the performance of the NR stage: the residual noise after
NR receives more amplification compared to the speech, resulting in an SNR
degradation. The integration of NR and DRC has not received a lot of attention
so far.

In this work, an MWF based approach is presented for speech and noise scenarios,
where an SDW-MWF based NR algorithm is combined with DRC. The proposed
solution is based on modifying the SDW-MWF and the DRC to incorporate the
conditional SPP in order to avoid residual noise amplification. The approach is
analyzed to verify if there are any undesired interaction effects between the NR
and the DRC. The work is evaluated by means of objective measures.

Section 7.1 explains the problem statement and motivation for having NR and
DRC combined. The evaluation of the combined scheme is also introduced which
is based on introducing the concept of using a speech DRC and a noise DRC.

Section 7.2 presents a serial concatenation of a SDW-MWFµ based NR and DRC
which will serve as a baseline for the proposed combined approaches.

Section 7.3 presents a combined SDW-MWFSPP based NR and dual-DRC. Here
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it is shown how the conditional SPP can be reused from the SDW-MWFSPP such
that the standard DRC can be extended to a dual-DRC approach.

Section 7.4 presents a combined SDW-MWFFlex based NR and dual-DRC. Here
the concept of a flexible weighting factor from the SDW-MWFFlex is reused to
avoid the noise DRC in the dual-DRC compromising the speech DRC.

Section 7.5 presents the experimental results to confirm that the serial concatena-
tion of NR and DRC leads to a performance degradation and to verify that the
combined approach is able to compensate for this undesired degradation.

7.1 Problem statement and motivation

The design and benefits of single-channel and multi-channel NR algorithms
have been widely studied [15][49][56][74][93][207]. The same goes for the design
and evaluation of different DRC algorithms [13][87][110][127][193]. Although
sophisticated algorithms for NR and DRC exist there is still a question as to
how these algorithms should be combined, which unfortunately, has not received
a lot of attention so far. Combining hearing aid algorithms in general is indeed
a challenging task since each algorithm can counteract and limit the functionality
of other algorithms.

In [2][30] experiments have been conducted to evaluate different combinations of
NR and DRC. One of the main conclusions was that a serial concatenation of
NR and DRC performs suboptimally due to the interaction effects between the
NR and the DRC. In [29] it was shown that the NR algorithm does enhance the
modulation depth of a noisy speech but when the DRC is activated the modulation
depth of the speech envelope is greatly reduced. This indicates that the noise level
is increased compared to the speech level, which is clearly undesirable.

An important issue is the evaluation of such combined and integrated schemes,
where the lack of an overall design criterion indeed makes the evaluation more
difficult. In the evaluation the crucial question will be as to which effects are most
damaging to speech intelligibility, e.g., the amount of background noise, distortion
or the audibility.

When combining NR and DRC a main problem is that each algorithm serves a
different purpose. The objective of the NR algorithm in speech and noise scenarios
is to maximally reduce the noise while minimizing speech distortion, e.g., based
on temporal, spectral and spatial signal information. The DRC on the other hand
is designed to amplify sounds based on their intensity level and a compression
characteristic. Figure 7.1(a)-(b) shows the two ways to serially concatenate NR
and DRC. The main issues can be stated as follows:
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Figure 7.1: NR and DRC in a serial concatenation compared to an integrated
scheme.

• When NR is performed before DRC, as in Figure 7.1(a), the residual noise
receives more amplification compared to the speech, which consequently
defeats the purpose of using NR. From a DRC point of view there is no
distinction between speech dominant segments and noise dominant segments,
so all low intensity segments are amplified equally. This means that the
reduced noise level, from the DRC point of view, is considered a low level
signal which is then amplified while the speech is considered a high level
signal, and receives less amplification. This leads to the undesired SNR
degradation.

• When DRC is performed before NR, as in Figure 7.1(b), the DRC
can negatively affect the NR especially so in a multi-channel NR where
the correlation between the microphone signals can be affected by the
independent DRC on the microphone signals. Furthermore in this set-up
the DRC is based on the speech-plus-noise level rather than the speech-plus-
residual noise level and so the applied gain in this case may be too small to
make the soft speech segments audible.

To avoid any undesired interaction effects it is desirable to combine NR and DRC
in an integrated scheme, as in Figure 7.1(c), which is the goal of this work. In the
sequel, the serial concatenation shown in Figure 7.1(a) will serve as a reference
system and the proposed solution will be referred to as the combined approach.

A combined NR and DRC system that could be viewed as the ideal system is
shown in Figure 7.2. The idea here is that if the clean speech and the noise-only
contribution can be perfectly extracted then a speech DRC can be applied to the
clean speech and a noise DRC to the noise-only contribution. The gain difference
between the speech DRC and the noise DRC indicates a target noise suppression
which means that the noise DRC gain can be set to zero, i.e., to suppress all noise,
or it can be a scaled version of the speech DRC gain, i.e., GndB < G

s
dB. The gain
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Figure 7.2: Ideal system where the speech and the noise-only contributions are
extracted which then are compressed separately.

difference between the speech DRC curve and the noise DRC curve is defined as

∆GdB = GsdB −G
n
dB. (7.1)

Finally, the overall output signal is the sum of the two compressed components.
Since the ideal case does not contain residual noise then the SNR will improve
when the noise DRC gain GndB decreases compared to the speech DRC gain GsdB.
The goal is then to compare the performance of the combined approach against this
ideal performance, and any deviation from this will be considered as an undesired
effect of having a NR and DRC combined.

Next we presents three different approaches to combine a SDW-MWF based NR
and DRC. A SDW-MWFµ serially concatenated with a DRC is described first and
is considered to be the baseline system. The SDW-MWFµ is then replaced by the
SDW-MWFSPP and SDW-MWFFlex together with a dual-DRC approach.

7.2 Combined SDW-MWFµ based NR and DRC

First the perfect extraction of the clean speech and the noise-only contribution
in Figure 7.2 is replaced with a SDW-MWFµ based NR. The estimated speech
component can then be written as

Zs(k, l) = WH(k, l)
(
Xs(k, l) + Xn(k, l)

)

= Zss(k, l) + Zsn(k, l) (7.2)

where Zss(k, l) is the speech component in Zs(k, l) and Zsn(k, l) is residual noise.
This is where the usual problem with a cascade of NR and DRC appears since
the estimated speech component Zs(k, l) is indeed bound to have residual noise,
which then could be amplified by the DRC. i.e.,

Ẑs(k, l) = Zs(k, l)GsDRC,dB(k, l). (7.3)
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Figure 7.3: A serial concatenation of a SDW-MWFµ based NR and DRC.

Any such residual noise, from the speech DRC point of view, is now considered
a low level signal which is then amplified, while the actual speech component is
considered a high level signal which is then compressed. This leads to the undesired
SNR degradation.

In a similar manner the noise component Xn1 (k, l) in the first microphone signal
can be estimated with a SDW-MWFµ given as

Vµ(k, l) = (Rs(k, l) + µRn(k, l))−1 µRn(k, l)e1

= e1 −Wµ(k, l) (7.4)

which leads to the estimated noise component

Zn(k, l) = VHµ (k, l)X(k, l) (7.5)

= X1(k, l)− Zs(k, l).

The combined SDW-MWF based NR and DRC is shown in Figure 7.3. At this
point it is important to emphasize that the main challenge is the estimation of the
speech component, which is shown with the solid box in Figure 7.3. On the other
hand, the estimated noise component Zn(k, l) in (7.5) is better controlled since
the noise DRC can be set to zero, i.e., to suppress all noise, or it can be a scaled
version of the speech DRC as explained in section 7.1.

The speech and the noise problem in DRC is shown with an example, see Figure
7.4 where the speech and the noise input SPL are located at 50dB and 30dB,
respectively. This shows that with the given DRC curve the output SPL between
the speech and the noise is reduced by 10dB which is obviously undesired.



124 SDW-MWF BASED NOISE REDUCTION AND DYNAMIC RANGE COMPRESSION

0 20 40 60 80 100 120
0

20

40

60

80

100

120

input SPL (dB)

ou
tp

ut
 S

P
L 

(d
B

)

 

 

P out,s
DRC,dB

SpeechNoise

20dB

10dB

Figure 7.4: Illustration of the output SPL after the DRC with the noise located
at 30dB input SPL and the speech at 50dB SPL.

7.3 Combined SDW-MWFspp based NR and dual-

DRC

The DRC described in Chapter 6 amplifies signals based on their intensity level
and makes no distinction between speech dominant segments and noise dominant
segments. The aim could then be to identify the speech dominant segments and
the noise dominant segments such that the residual noise amplification can be
avoided. By reusing the conditional SPP p(k, l) estimated in the SDW-MWFSPP

a dual-DRC approach is introduced such that a different DRC curve is applied to
the speech dominant segments and to the noise dominant segments. The two DRC
curves are defined similarly as in (6.2)-(6.4) and the overall DRC output power is
then defined as

P outdual-DRC,dB(k, l) = p(k, l) · P out,sDRC,dB(k, l) + (1− p(k, l)) · P out,nDRC,dB(k, l) (7.6)

where P out,sDRC,dB(k, l) and P out,nDRC,dB(k, l) are defined by the speech DRC curve and
the noise DRC curve, respectively. The dual-DRC gain is then defined as

Gdual-DRC,dB(k, l) = P outdual-DRC,dB(k, l)− P in,sDRC,dB(k, l). (7.7)

The dual-DRC approach is illustrated in Figure 7.5 with an example where the
input SPL is 60dB and the output SPL now depends on the conditional SPP p(k, l).
The procedure is as follows:
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Figure 7.5: Dual-DRC with the conditional speech presence probability p(k, l) to
provide a weighting between the two DRC curves.

• If speech is present (p(k, l)=1) the speech DRC curve is applied.

• If speech is absent (p(k, l)=0) it is undesirable to amplify the residual noise
compared to the speech and therefore a lower gain is applied, i.e., the noise
DRC curve is applied.

• For the in-between cases a weighted sum of the two DRC curves is used.

The rationale behind the noise DRC curve is that it results in a lower gain
compared to the speech DRC curve, as the goal indeed is to apply a lower gain to
the noise dominant segments compared to the speech dominant segments.

The proposed MWF based NR and dual-DRC using SDW-MWFSPP is shown in
Figure 7.6. The main difference between this approach and the MWF based NR
and DRC using SDW-MWFµ is that the speech DRC in Figure 7.3 implicitly
assumes that the estimated speech component does not contain residual noise.
The gain difference between the noise DRC curve and the speech DRC curve in
the dual-DRC is given by

∆Gdual,dB = GsdB −G
n
H1,dB (7.8)

where GnH1,dB is the noise DRC curve in the dual-DRC approach. Based on the
example given in Figure 7.4 it is shown in Figure 7.7 that the noise DRC gain
GnH1,dB has to be 10dB lower than GsdB to compensate for the 10dB reduction
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Figure 7.7: Illustration of the output SPL after the dual-DRC with the noise
located at 30dB input SPL and speech at 50dB SPL.

between the speech and the noise output SPL. The properties of GnH1,dB can be
summarized as follows:

• If GnH1,dB is set too low the desired hearing aid gain GsdB may be
compromised.

• If GnH1,dB is set too high the impact of p(k, l) may be too small to compensate
for the residual noise amplification.

The goal of the dual-DRC is thus to find a proper trade-off between NR and DRC,
i.e., SNR improvement and the desired DRC gain.
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7.4 Combined SDW-MWFflex based NR and flex dual-
DRC

Following the above discussion it is desirable to minimize the term in (7.8) without
sacrificing the SNR improvement. This can be achieved by not only using the
conditional SPP p(k, l) introduced in the SDW-MWFSPP but also the H0 and H1

state detection P (l) introduced in the SDW-MWFFlex. A flexible dual-DRC can
then be written as

P outflex-DRC,dB(k, l) = P (l)
[
p(k, l)P out,sDRC,dB(k, l) + (1 − p(k, l))P out,nDRC,dB(k, l)

]

+ (1− P (l))P out,nDRC,dB(k, l)

=

{
H1 : p(k, l)P out,sDRC,dB(k, l) + (1 − p(k, l))P out,nDRC,dB(k, l)

H0 : P out,nDRC,dB(k, l)
(7.9)

where the noise DRC curve P out,nDRC,dB(k, l) in the H1 and H0 states can be either
similar or in the H0 state the gain can be set lower. The flexible dual-DRC gain
is given by

Gflex-DRC,dB(k, l) = P outflex-DRC,dB(k, l)− P in,sDRC,dB(k, l). (7.10)

The rationale behind the flexible dual-DRC is:

• When a H1 state is detected, i.e., P (l)=1, a dual-DRC is applied using GsdB

and GnH1,dB.

• When a H0 state is detected, i.e., P (l)=0, a DRC is applied with GnH0,dB ≤
GnH1,dB.

The DRC gain difference between the noise DRC curve and the speech DRC curve
in the flexible dual-DRC is then given by

∆Gflex,dB = P (l)
[
GsdB −G

n
H1dB

]
+ (1− P (l))GnH0dB

=

{
H1 : GsdB −G

n
H1dB

H0 : GnH0dB

(7.11)

The proposed MWF based NR and the flexible dual-DRC using SDW-MWFFlex

is shown in Figure 7.8.
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Figure 7.8: A combined approach of a SDW-MWFFlex based NR and a flexible
dual-DRC.

7.5 Experimental results

In this section, experimental results for the combined approaches are presented.
The simulations aim at showing the undesired interaction effects when a MWF
based NR and DRC are serially concatenated, and to compare this approach to
the proposed combined approaches using the introduced dual-DRC.

7.5.1 Experimental set-up

Both the MWF based NR and the DRC are implemented using an FFT length
of 128 with half overlapping frames. The DRC is implemented based on critical
bands [247] which is realized by using individual FFT bins at low frequencies and
by combining FFT bins at higher frequencies [110]. The following parameters are
fixed during all simulations:

• Input level is set to 65dB SPL at the microphone.

• Attack and release time are set to at=10ms and rt=20ms.

• Compression ratio CR=2.

• Compression threshold is set to CT=30dB.

In order to evaluate the effect from the DRC on the different SDW-MWF based NR
algorithms and to make a fair comparison each SDW-MWF algorithm is adjusted
such that the SNR improvement and SD are as similar as possible, see table 7.1.
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Method SDW-MWFµ SDW-MWFSPP SDW-MWFFlex

Input SNR 0dB 0dB 0dB
∆SNR 13.1dB 13.2dB 13.9dB
SD 4.2dB 4.3dB 4.2dB

Table 7.1: SNR improvement and SD of the different SDW-MWF based NR.

GsdB GndB GnH1,dB GnH0,dB

(7.1) (7.1) (7.8) (7.11)
SDW-MWFµ 30dB 0 N/A N/A
SDW-MWFSPP 30dB 0 10dB-30dB N/A
SDW-MWFFlex 30dB 0 27.5dB 20dB-25dB

Table 7.2: Gain settings for first experiment.

Figure 7.9 shows how the signals used in the objective measures is estimated. In
the first experiment the aim is to show the degradation of the NR performance
which means that the signals X̄s and X̄n are compared to the input signals Xs

and Xn. The signal distortion is estimated between X̀s and X̄s.

In the second experiment, the performance of the different schemes is compared
to the ideal performance which is shown with the signals X̀s and X̀n. This is an
ideal performance since the DRC gain applied to the Xs does not contain noise
and the SNR would then improve when the DRC gain is reduced for Xn. This
ideal performance is then compared to Ẑs = X̄s + X̄n and Ẑn = X̆s + X̆n.

7.5.2 Results

The gain settings in the first experiment are shown in Table 7.2. Notice that
GndB is set to zero since the aim is to show the effect of the DRC on the SNR
improvement for the NR performance shown in Table 7.1. The results for these
experiments are shown in Figure 7.10 and 7.11. This shows that the DRC degrades
the SNR improvement of the SDW-MWFµ and the SDW-MWFSPP by 6dB which
is illustrated at ∆Gdual,dB=0dB compared to Table 7.1. The dotted line shows the
SNR improvement for SDW-MWFSPP and dual-DRC as a function of ∆Gdual,dB.
Better performance is achieved when ∆Gdual,dB increases as this increases the
impact of the dual-DRC. The SDW-MWFFlex based NR and the flexible dual-
DRC is seen to achieve a larger SNR improvement at a small increase in SD as
low as 1dB.

The gain settings in the second experiment are shown in Table 7.3. In this
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Figure 7.9: Illustration of the signals used in estimating the objective measures.

GsdB GndB GnH1,dB GnH0,dB

(7.1) (7.1) (7.8) (7.11)
SDW-MWFµ 30dB 0dB-30dB N/A N/A
SDW-MWFSPP 30dB 0dB-30dB 20dB-27.5dB N/A
SDW-MWFFlex 30dB 0dB-30dB 27.5dB 20dB-25dB

Table 7.3: Gain settings for second experiment.

experiment, the performance of the different schemes is compared to the ideal
performance, i.e., when the speech DRC is applied to the clean speech and the
noise DRC is applied to the noise-only signal, see section 7.1. The results for
these experiments are shown in Figure 7.12 and 7.13. The dashed line shows the
ideal output SNR which as expected improves when ∆GdB is increased. For the
combined schemes the output SNR also improves but at the same time it is clear
that the SNR improvement is smaller than in the ideal case. This happens because
the signal filtered by Wµ(k, l), WSPP(k, l) and WFlex(k, l) contains residual noise
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Figure 7.12: The effect of ∆GdB on the output SNR for SDW-MWFµ and SDW-
MWFSPP based NR and DRC.

which subsequently receives more amplification compared to the speech. It is also
worth noting that when ∆GdB < 20dB the output SNR is higher for SDW-MWFµ
and DRC which is due to the fact that the overall gain with the DRC is higher
than with the dual-DRC gain. Using the flexible dual-DRC improves the output
SNR but it is still far from the ideal performance.

7.6 Conclusion

In this chapter, the undesired interaction effects in a serial concatenation of a MWF
based NR and DRC are analyzed. First of all it is shown that having a traditional
SDW-MWFµ based NR and DRC leads to a SNR degradation. The reason for
this is that a traditional DRC only uses the input level of a signal segment to
estimate the gain independently of whether a speech dominant segment or a noise
dominant segment is present. This is highly undesirable since this consequently
defeats the purpose of having a NR algorithm, as the residual noise receives more
amplification compared to the speech after the NR stage.

The combined solutions proposed here are based on two modifications both in the
MWF based NR process and in the DRC. The first modification is to incorporate
the conditional SPP in the NR process, which is referred to as SDW-MWFSPP.
Using the conditional SPP serves the purpose of identifying the speech dominant
segments and the noise dominant segments. The second modification is based on
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Figure 7.13: The effect of ∆GdB on the output SNR for SDW-MWFµ and SDW-
MWFFlex based NR and DRC.

reusing the conditional SPP estimated in the SDW-MWFSPP to change the DRC
into a dual-DRC that incorporates the conditional SPP. The dual-DRC uses two
compression curves instead of one compression curve in a traditional DRC. The
two compression curves allow for a switchable compression characteristic based on
the conditional SPP, i.e., a smaller gain is applied to the noise dominant segments
whereas in the speech dominant segments the aim is to apply a gain similar to a
traditional DRC. Another solution has been proposed based on the SDW-MWFFlex

where the conditional SPP is combined with a H0 and H1 state detection in order
to incorporate a flexible weighting factor in the NR process. This principle has
been reused in the dual-DRC referred to as the flexible dual-DRC. The idea is that
in the H0 a lower gain can be applied without compromising the amplification in
the H1 state.

Experimental results indeed confirm that a serial concatenation of NR and DRC
degrades the SNR improvement provided by the NR, whereas the combined
approach proposed here shows less degradation of the SNR improvement at a
low increase in distortion compared to a serial concatenation. It has been shown
that even with the SDW-MWFSPP and the dual-DRC the SNR is still far from the
ideal performance. The approach with the SDW-MWFFlex and the flexible dual-
DRC is able to get get closer to the ideal performance. Therefore the integration
of NR and DRC still remains an open problem and in this work we have shown
how significant the NR performance can be degraded.





Chapter 8

Prediction error method-based
adaptive feedback cancellation

This chapter introduces the prediction error method-based adaptive feedback
cancellation (PEM-based AFC) together with the idea of using a near-end signal
model. In [208] four commercial hearing aids were evaluated and compared to
the PEM-based AFC [209][210]. It was shown that the PEM-based AFC offered
a high added stable gain (ASG) compared to certain commercial hearing aids.
However the PEM-based AFC was more sensitive towards tonal input signals.
This is mainly due to the near-end signal model used which in this case was based
on linear prediction (LP). For this reason a cascaded near-end signal model is
introduced.

The notation related to PEM-based AFC will be given together with the
evaluation using objective measures such as maximum stable gain (MSG) and
filter misadjustment which differ from the objective measures used to evaluate
the NR algorithms. Furthermore the advantage and disadvantage of the current
PEM-based AFC will be discussed and the motivation for further research on the
PEM-based AFC will be explained.

Section 8.1 introduces the idea behind AFC with emphasis on the PEM which we
will refer to as PEM-based AFC. It is also explained why the PEM-based AFC
leads to an unbiased estimate of acoustic feedback path.

Section 8.2 introduces the use of a near-end signal model based on LP. Furthermore
it is discussed why an LP model in certain cases will fail to provide a proper
decorrelation when the near-end signal is tonal such as speech and music.

Section 8.3 introduces a cascaded near-end signal model based on LP and a
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Figure 8.1: Concept of an adaptive feedback cancellation (AFC) algorithm.

pole zero LP (PZLP) model. The idea is that the LP can model the noise
component whereas the PZLP can model the tonal components. In this way a
better decorrelation effect is achieved with tonal input signals. Section 8.4 presents
the experimental results for the PEM-based AFC using a single near-end signal
model and a cascaded near-end signal model. These results serve as the baseline
for further developments on the PEM-based AFC.

8.1 Adaptive feedback cancellation (AFC)

The adaptive feedback cancellation concept is set-up in Figure 8.1. The
microphone signal is given by

y(t) = v(t) + x(t) = v(t) + F (q, t)u(t) (8.1)

where q denotes the time shift operator and t is the discrete time variable. F (q, t)
is the feedback path between the loudspeaker and the microphone, v(t) is the
near-end signal, x(t) is the feedback signal. The forward path G(q, t) maps the
microphone signal y(t), possibly after AFC, to the loudspeaker signal u(t). It
typically consists of an amplifier with time-varying gain K(t) cascaded with a
linear equalization filter J(q, t), such that

G(q, t) = K(t)J(q, t). (8.2)

The aim of the AFC is to place an estimated finite impulse response (FIR) adaptive
filter F̂ (q, t) in parallel with the feedback path, having the loudspeaker signal as
input and the microphone signal as the desired output. The feedback canceller
F̂ (q, t) produces an estimate of the feedback signal x(t) which is then subtracted
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from the microphone signal y(t). The feedback-compensated signal is given by

d(t) = v(t) + [F (q, t) − F̂ (q, t)]u(t). (8.3)

8.1.1 Prediction error method

The main problem in identifying the feedback path model is the correlation
between the near-end signal and the loudspeaker signal, due to the forward path
G(q, t), which causes standard adaptive filtering algorithms to converge to a biased
solution [229][85]. This means that the adaptive filter does not only predict and
cancel the feedback component in the microphone signal, but also part of the
near-end signal, which results in a distorted feedback-compensated signal d(t).
The PEM-based AFC is shown in Figure 8.2. An unbiased identification of the
feedback path model can be achieved by applying decorrelation in the adaptive
filtering circuit, i.e., by first prefiltering the loudspeaker and the microphone signals
with the inverse near-end signal model Ĥ−1(q, t) (see Figure 8.2) before feeding
these signals to the adaptive filtering algorithm. The near-end signal model and
the feedback path model can be jointly estimated using the PEM [229][209][228].
The PEM delivers an unbiased estimate of the feedback path coefficient vector
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f(t) =
[
f0(t) f1(t) . . . fnF (t)

]
, where nF is the feedback path model order, by

minimization of the prediction error criterion

min
f̂(t)

t∑

k=1

ε2(k) (8.4)

if the prediction error is calculated as

ε(t) = H−1(q, t)
[
y(t)− F̂ (q, t)u(t)

]
(8.5)

where H(q, t) is a linear model for the source signal v(t). The model structure
of H(q, t) and the estimation of its parameters will be discussed in details in the
remainder of this chapter.

8.2 Single near-end signal model

In PEM-based AFC the near-end signal is typically modelled with an LP model
[209][210], i.e.,

v(t) = HLP(q, t)r(t)

=
1

1 +
∑nC
i=1 ci(t)q

−i
r(t), (8.6)

where r(t) is a white noise signal and nC is the model order. The prediction error
for the PEM-based AFC using an LP model is then

ε(t) = H−1
LP (q, t) [y(t)− F (q, t)u(t)] . (8.7)

The drawback with an LP model for the near-end signal is that the white noise
assumption is not valid for periodic signals such as voiced speech where the
excitation r(t) is an impulse train [209].

8.3 Cascaded near-end signal model

The idea behind using a cascaded near-end signal model is that the tonal
components can be represented by one model and the noise components by another
model. In [228] it has been proposed that a PZLP model of order 2P [24] can
be used to represent P tonal components. Still, by constraining the poles and
the zeros to lie on a common radial line in the z-plane, the number of unknown
parameters in the pole-zero model can be limited to P and the LP parameters
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can be uniquely related to the unknown frequencies [227]. The constrained PZLP
(CPZLP) model can be written as

v(t) =

(
P∏

n=1

1− 2ρ cosωnz
−1 + ρ2z−2

1− 2 cosωnz−1 + z−2

)
e(t) (8.8)

where ωn denotes the frequencies and ρ the pole radius. The CPZLP minimization
criterion is given by

min
ω

V (ω) = min
ω

1

M

M∑

t=1

e2(t,ω) (8.9)

with the residual signal defined as the output from the prediction error filter (PEF)

e(t,ω) =

(
P∏

n=1

1− 2 cosωnz
−1 + z−2

1− 2ρ cosωnz−1 + ρ2z−2

)
v(t) = H−1

CPZLP(q, t)v(t) (8.10)

and ω = [ω1 ... ωP ]T . The CPZLP minimization in (8.9)-(8.10) can be solved
in a decoupled fashion, using an iterative line search optimization [227]. Using the
CPZLP model for the tonal components and an LP model for the noise components
the prediction error using a cascaded near-end signal model can then be written
as

ε(t) = H−1
LP(q, t)H−1

CPZLP(q, t) [y(t)− F (q, t)u(t)] (8.11)

with the PEF for the noise component r(t) defined as H−1
LP (q, t) = C(q, t) =

1 +
∑nC
i=1 ci(t)q

−i which is straightforward using LP on the output signal of the
first PEF H−1

CPZLP(q, t).

8.4 Experimental results

In this section, experimental results for the PEM-based AFC with the decorrelation
prefilters H−1

LP (q, t) and H−1
CPZLP(q, t) are presented both when using a single-near

end signal model, referred to as AFC-LP, and a cascaded near-end signal model,
referred to as AFC-CPZLP.

8.4.1 Experimental set-up

The near-end noise model order is fixed to nC = 30 and the near-end speech
model is varied from P=15, 10, and 5. Both near-end signal models are estimated
using 50% overlapping data windows of length M = 320 samples. The NLMS
adaptive filter length is set equal to the acoustic feedback path length, i.e., nF
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= 200 (measured hearing aid feedback path). The near-end signal is a 30 second
male speech signal sampled at fs= 16 kHz. The speech signal is taken from an
interview with two male Dutch-speaking subjects that was digitally broadcasted
by the Flemish Radio and Television Network (VRT). The forward path gain
K(t) defined in (8.2) is set 3 dB below the maximum stable gain (MSG) without
feedback cancellation.

8.4.2 Performance measures

To assess the performance of the AFC algorithm the following measures are used.
The achievable amplification before instability occurs is measured by the MSG,
which is defined as

MSG(t) = −20 log10

[
max
ω∈P
|J(ω, t)[F (ω, t)− F̂ (ω, t)]|

]
(8.12)

where J(q, t) = G(q,t)
K(t) denotes the forward path transfer function without the

amplification gain K(t), and P denotes the set of frequencies at with the feedback
signal x(t) is in phase with the near-end signal v(t). The misadjustment between
the estimated feedback path f̂(t) and the true feedback path f represents the
accuracy of the feedback path estimation and is defined as

MAF = 20 log10

||̂f(t)− f||2
||f||2

. (8.13)

8.4.3 Results

The first simulation, is performed with a single near-end signal model using an
LP model since this is the motivation for introducing the cascaded near-end
signal model. The instantaneous value of the MSG(t) and the corresponding
misadjustment is shown in Figure 8.3. The MSG(t) curves have been smoothed
with a one-pole low-pass filter to improve the clarity of the figures. The
instantaneous value of the forward path gain 20 log10K(t) and the MSG without
acoustic feedback control (MSG F (q)) are also shown. It is clear that the LP model
is initially able to provide sufficient decorrelation resulting in increased MSG and
misadjustment. However over time it can be observed that the LP model fails
which can be due to the tonal components in the speech. Once instability occurs
it can be a problem to recover due to the closed loop.

The second simulation is performed with a cascaded near-end signal model using a
CPZLP model combined with a LP model for different order P which can be seen
in Figure 8.4. In general the MSG is higher for AFC-CPZLP compared to AFC-LP
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Figure 8.3: Instantaneous MSG vs. time for simulations with speech for PEM-
based AFC in hearing aids and misadjustment between the estimated feedback
path f̂(t) and the true feedback path f using AFC-LP.

and the corresponding misadjustment is also lower. An important observation here
is that the AFC-CPZLP provides a strong decorrelation such that a stable MSG
and misadjustment is achieved. A lower order also seems to perform better both in
terms MSG and misadjustment. However when P=5 the AFC performance drops
below the AFC performance of P=10. This of course leads to the question as to
which order P is the optimal for speech in terms of the AFC performance.

8.5 Conclusion

In this chapter we have introduced the PEM-based AFC using a near-end signal
model based on LP. Another solution is based on using a cascaded near-end signal
model based on a LP and a PZLP model such that the tonal and the noise
components are modelled separately.

Experimental results show that the PEM-based AFC with LP is not able to provide
sufficient decorrelation and therefore a low MSG is achieved with a rather high
filter misadjustment. The cascaded near-end signal model is able to outperform
the single near-end signal model both in terms of MSG and filter misadjustment.

It has been shown that the PEM-based AFC performance highly depends on the
near-end signal model. Especially the modelling of the tonal components seems
to play a crucial role since the tonal components are more correlated compared to
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Figure 8.4: Instantaneous MSG vs. time for simulations with speech for PEM-
based AFC in hearing aids and misadjustment between the estimated feedback
path f̂(t) and the true feedback path f using AFC-CPZLP.

the noise components. In Chapter 9 we will therefore improve the modelling of
the tonal components by exploiting typical information regarding the speech, e.g.,
pitch, amplitude, order, voiced and unvoiced segments. Furthermore the use of a
sinusoidal near-end signal model is proposed.



Chapter 9

PEM-based AFC using a
harmonic sinusoidal near-end
signal model

This chapter addresses the issue of designing improved prediction error filters
for PEM-based AFC. To this aim a harmonic sinusoidal near-end signal model
is introduced together with various pitch estimation techniques. Basically the
idea is to find an improved method to represent the near-end signal by using the
knowledge that we have regarding speech signals. For this purpose we have turned
our attention to the research area of speech and audio coding based on harmonic
sinusoidal based pitch estimation techniques. The reproduction of speech signals
highly depends on an accurate estimation of parameters such as pitch, amplitude,
model order, and the selection of voiced-unvoiced frames. It is therefore interesting
to analyze if a more accurate estimation of the near-end signal model would result
in improved PEM-based AFC performance.

Section 9.1 introduces the harmonic sinusoidal near-end signal model together with
three methods to estimate the pitch. Furthermore it is also shown the model order
and the amplitude of the harmonics can be estimated.

Section 9.2 presents the PEF that incorporates the pitch, harmonics amplitudes,
and the model order in the PZLP model.

Section 9.3 explains how voiced-unvoiced frames affect the AFC correlation
problem which is measured using the spectral flatness measure (SFM). The idea
here is to use a voiced-unvoiced detection in the PEF to switch between a single
near-end signal model and a cascaded near-end signal model. This can be beneficial
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for two reasons. First of all unvoiced frames do not produce a high signal
correlation in the AFC compared to voiced frames. Furthermore the complexity
can be reduced by exploiting the unvoiced frames and hence using a single near-
end signal model for unvoiced frames and a cascaded near-end signal model for
voiced frames.

Section 9.4 presents the experimental results for the PEM-based AFC using the
improved near-end signal model based on harmonic sinusoidal modelling.

9.1 Harmonic sinusoidal near-end signal model

In a harmonic sinusoidal near-end signal model [163][164] the tonal components
are represented as a sum of real harmonically related sinusoids. This means that
the sinusoids are assumed to have frequencies that are integer multiples of a
fundamental frequency ω0, i.e., ωn = nω0. This follows naturally from voiced
speech being quasi-periodic. The near-end signal v(t) consisting of a sum of real
harmonically related sinusoids and additive noise can be written as,

v(t) =

P∑

n=1

an cos(nω0t+ φn) + r(t), t = 1, ...,M (9.1)

where P is the model order, ω0 ∈ [0, π] is the pitch frequency, an the amplitude,
and φn ∈ [0, 2π) the phase of the nth sinusoid, and r(t) the noise which is assumed
to be autoregressive, i.e., r(t) = 1

C(q,t)e(t), with C(q, t) = 1 +
∑nC
i=1 ci(t)q

−i.

The pitch estimation technique used here is primarily based on optimal filtering
(optfilt) [27] of the feedback-compensated signal d(t), which ideally corresponds to
the near-end signal v(t). However we will also include some other pitch estimation
methods in order to show how the different pitch estimation techniques affect the
AFC performance. The different pitch estimation techniques together with the
estimation of the harmonic amplitudes and the model order are explained in the
following sections.

9.1.1 Optimal-filtering based pitch estimation

The idea behind pitch estimation based on filtering is to find a filter that passes
power undistorted at the harmonic frequencies nω0, while minimizing the power
at all other frequencies. This filter design problem can be stated mathematically
as [27]

min
h

hHRh s.t. hHZ = 1, (9.2)
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with 1 = [1 ... 1]T ∈ R2P , Z = [z(ω0) z∗(ω0) ... z(ω0P ) z∗(ω0P )], h is the
length-N impulse response of the filter, and R is the covariance matrix defined as

R = E{d(t)dH(t)}, (9.3)

where (·)
H

denotes Hermitian transpose and d(t) is a vector containing M
consecutive samples of the feedback-compensated signal d(t) [27]. Using the
Lagrange multiplier method, the optimal filter can be shown to be

h = R−1Z
(

ZHR−1Z
)−1

1 (9.4)

This filter is signal adaptive and depends on the unknown fundamental frequency.
Intuitively, one can obtain a fundamental frequency estimate by filtering the signal
using the optimal filters for various fundamental frequencies and then picking the
one for which the output power is maximized, i.e.,

ω̂0 = arg max
ω0

E{|hHd(t)|2}

= arg max
ω0

1H
(

ZHR−1Z
)−1

1. (9.5)

This method has demonstrated to have a number of desirable features, namely
excellent statistical performance and robustness against periodic interference [27].

9.1.2 Subspace-orthogonality based pitch estimation

The idea behind subspace methods is to divide the full space into a so-called signal
subspace containing the signal of interest and its orthogonal complement, the noise
subspace. The subspace orthogonality method is based on the observation that
the sinusoids in (9.1) are all orthogonal to the noise. The covariance matrix of the
observed signal in (9.1) can be shown to be

R = E{d̃(t)d̃H(t)} (9.6)

= ZPZH + σ2I (9.7)

where d̃(t) is a vector containing M consecutive samples of the analytical
counterpart of the feedback-compensated signal d(t) [27] since the subspace
methods assumes a complex signal model. Furthermore, Z is a Vandermonde
matrix containing the sinusoids of the model in (9.1), and P is the covariance
matrix of the amplitudes, which can be shown to be diagonal under certain
conditions. Finally, σ2 denotes the variance of the additive noise, and I is the
identity matrix. In the presence of colored noise, it is required that pre-whitening
is applied, as the model in (9.7) would otherwise be invalid. Exploiting the fact
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that the noise subspace eigenvectors G are orthogonal to the columns of the matrix
Z, it follows that the fundamental frequency ω0 can be estimated as

ω̂0 = arg min
ω0

||ZHG||2F , (9.8)

where Z depends on ω0. More specifically, the matrix G is constructed from the
M − 2P least significant eigenvectors of R.

9.1.3 Subspace-shift-invariance based pitch estimation

The next method is based on a particular property of the signal subspace generated
by signals as in (9.1), namely the shift-invariance property. The signal subspace
is spanned by the columns of the matrix S formed from the 2P most significant
eigenvectors of R. Two matrices S and S are constructed by removing the last and
first row of the matrix S which can be shown to be related by a linear transform
as S = SΞ. The problem of finding the fundamental frequency can then be seen
as a fitting problem, i.e.

S ≈ SQD̃Q−1 (9.9)

where D̃ = diag
(
[ejω0 e−jω0 ... ejω0P e−jω0P ]

)
is a diagonal matrix containing

the unknown fundamental frequency. The matrix Q contains the eigenvectors of
the matrix Ξ̂ = (SHS)−1SHS. The fundamental frequency can then be estimated
as

ω̂0 = arg min
ω0

||S− SQD̃Q−1||2F , (9.10)

which can be simplified significantly, as shown in [27].

9.1.4 Amplitude and models order estimation

Once ω0 is known, the amplitude of the sinusoids can be estimated using a least
squares approach:

â =
(

ZHZ
)−1

ZHd (9.11)

with â =
[
â1 . . . âP

]
. Finally, the number of harmonics P can be determined

by using a maximum a posteriori (MAP) criterion [27][47],

P̂ = arg min
P
M log σ̂2

P + P logM +
3

2
logM (9.12)

where the first term is a log-likelihood term which comprises a noise variance
estimate that depends on the candidate model order, the second term is the
penalty associated with the amplitude and phase, while the third term is due
to the fundamental frequency.
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9.2 PZLP using pitch estimation based PEF

Inserting the estimated pitch of the model (9.1) in (8.10) the PEF H−1
Pitch(q, t) for

the harmonic sinusoidal near-end signal can be written as a cascade of second-order
sections:

H−1
Pitch(q, t) =

P∏

n=1

1− 2νn cosnω0z
−1 + ν2

nz
−2

1− 2ρn cosnω0z−1 + ρ2nz
−2

(9.13)

where the poles and zeros are on the same radial lines, with the poles positioned
between the zeros and the unit circle, i.e., 0 ≪ ρn < νn ≤ 1. The advantage
of H−1

Pitch(q, t) is that the frequencies are assumed to be an integer multiple of a
fundamental frequency which follows naturally from voiced speech being quasi-
periodic. This assumption is not made in the general CPZLP model (9.1) where
all the frequencies are estimated independently. Furthermore, the pitch estimation
also offers a method to incorporate the amplitude an and the order P , see below.

In [163] the performance of the PEF in (9.13) was analyzed in terms of different
pitch estimation techniques, incorporating optimal filtering and subspace methods.
The use of the estimated pitch, i.e., ω0 = ω̂0 in general resulted in better
performance in the PEM-based AFC. The PEF in (9.13) is generally designed with
the zero radii fixed to νn = 1 and the pole radii fixed to ρn = 0.95, and with a
fixed order P . This would result in a PEF that applies equal (infinity) suppression
for all frequencies ωn = nω0 by placing all the zeros on the unit circle. However,
speech is a non-stationary signal with time-varying pitch, harmonic amplitudes,
and number of harmonics. Here, the pitch PEF is further improved by including
the amplitudes an and the estimated order P = P̂ which again outperformed the
CPZLP model.

9.2.1 Incorporating amplitude, order and pitch information

For an example speech frame, with a spectrum shown in Figure 9.1, the
corresponding PEF response is shown in Figure 9.2 (when CPZLP (8.8) is used for
frequency estimation) and Figure 9.3(top, when pitch estimation (9.13) is used).
A first observation is that the PEF applies equal (infinity) suppression for all
frequencies when all the zeros are placed on the unit circle. The PEF using pitch
estimation in Figure 9.3(top) shows that the PEF has a more dense structure in
the low frequency region when harmonicity is assumed.

Pitch and variable model order estimates are straightforward to include in the
PEF, by setting ω0 = ω̂0 and P = P̂ . From the design of the PEF it is clear
that the zero radius determines the notch depth, which should correspond to the
inverse of estimated amplitudes. Incorporating the amplitude in the PEF then
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Figure 9.1: Speech spectrum used to estimate the PEF.
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Figure 9.2: PEF using CPZLP for frequency estimation, (top) notch filters up to
8000Hz and (bottom) notch filters up to 1400Hz.

follows from the design rule in [226], i.e.,

νn = max
(
ρn, 1−

1− ρn
ân

)
. (9.14)

For the harmonic amplitudes estimated in (9.11) and the pitch estimated in (9.5)
the PEF is shown in Figure 9.3(bottom) which shows a more signal dependent
behavior, when compared to the corresponding speech spectrum shown in Figure
9.1.
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Figure 9.3: PEF using optimal filtering based pitch estimation (top) without
incorporating amplitude information and (bottom) with incorporating amplitude
information.

In previous work [163], besides assuming infinite notch depth, the model order is
also assumed to be equal for every speech frame. This may not be the optimal
solution since speech generally can be considered voiced or unvoiced, resulting
in different harmonic amplitudes and number of harmonics. A histogram of the
estimated number of harmonics using (9.12) for the speech signal used in the
evaluation in Section 9.4 is shown for different frames in Figure 9.4. This indeed
suggests, that the harmonic sinusoidal near-end signal model order varies across
different frames and that the fixed model order of P = 15 used in [163] indeed is
too high compared to the estimated model order P̂ .

The prediction error using a cascaded harmonic sinusoidal near-end signal model
can then be written as

ε(t) = H−1
LP (q, t)H−1

Pitch(q, t) [y(t)− F (q, t)u(t)] . (9.15)

9.3 Voiced-unvoiced detection

Previous design of the PEF has been focused on time-varying parameters such
as frequency, amplitude and the number of harmonics of a typical speech signal.
However, the motivation behind the cascaded near-end signal model is due to the
fact that a single near-end signal model, e.g., an LP model can not model the tonal
components such as voiced speech. As an additional ingredient we will analyze
the performance of the PEF by introducing a voiced-unvoiced detector.
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Figure 9.4: Number of harmonics P̂ for each frame.

9.3.1 ZCR and energy based voiced-unvoiced detection

It is well-known that a speech signal can be divided into voiced and unvoiced
frames. The voiced-unvoiced parts of a speech signal can be extracted using
information such as zero crossing rate (ZCR) and the energy in a given frame
[6][4][178][192][133]. The ZCR indicates the number of times the amplitude of a
speech signal for a given time frame (samples) passes through a value of zero, i.e.,

ZCR =

M∑

t=1

1− sgn[d(t)]sgn[d(t+ 1)]

2
(9.16)

where sgn is the signum function. The ZCR is low for voiced speech and high for
unvoiced speech. The short-time energy of a speech frame is given by

Energy =
1

M

M∑

t=1

d2(t). (9.17)

The energy is high for voiced speech and low for unvoiced speech. Voiced speech
has a high energy due to the periodicity while unvoiced speech is non-periodic.
Examples of the ZCR for selected voiced and unvoiced frames are shown in Figure
9.5. This shows that the ZCR is much lower for voiced speech compared to
unvoiced speech. Figure 9.5 also shows a typical characteristic for a given voiced
and unvoiced frame. Tracking the non-stationarity of a speech signal should then
also reflect a distinction of the voiced and unvoiced frames and should therefore
also be included in the PEF.
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Figure 9.5: Examples of ZCR for selected voiced and unvoiced frames and
illustration of a typical voiced and unvoiced frame.

9.3.2 Spectral flatness of the residual

The important issue here is how the voiced-unvoiced frames affects the PEF and
hence the PEM-based AFC performance. It is not clear if the cascaded near-end
signal model always has an advantage, e.g., when a given frame is unvoiced. The
purpose of the PEF is to make the spectrum of the filtered near-end signal as
white as possible by modelling the near-end signal. As an attempt to analyze
the performance of the PEF the spectral flatness measure (SFM) of the filtered
near-end signal (residual) is used [138], i.e.,

SFM =
exp

[
1
L

∑L−1
k=0 ln |E(ej

2πk
L , ξ)|

]

1
L

∑L−1
k=0 |E(ej

2πk
L , ξ)|

(9.18)

with E(ej
2πk
L , ξ), k = 0, ..., L−1 the L-point DFT of the residual e(t, ξ). The SFM

is expressed on a dB-scale where 0dB corresponds to a flat spectrum.

Figure 9.6 shows the SFM for selected voiced frames and the residual from the
different PEFs. A first observation is that the SFM for the voiced frames is rather
low, due to the periodicity, which indicates a potential high correlation. The SFM
for the LP shows that the LP can increase the SFM however not as good as with
the CPZLP (8.10) or with the pitch estimation (9.13). This suggests that for the
voiced frames a cascaded near-end signal model is desired. It is not clear how
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Figure 9.6: SFM for selected voiced frames and for the different PEF.

the SFM directly relates to the PEM-based AFC performance but it does show
that the SFM differs significantly from frame to frame and that the PEF therefore
should be signal adaptive. On the other hand, the SFM for unvoiced frames is
much higher compared to voiced frames and hence a single LP model should be
sufficient, which is shown in Figure 9.7. It is also clear that a cascaded near-end
signal model does not offer anything additional in terms of SFM for unvoiced
frames. Applying a cascaded near-end signal model when an unvoiced frame is
detected is undesirable since the spectrum is already flat. Combining the ZCR
and the short-time energy for the speech signal used in the simulation resulted in
the following classification of voiced-unvoiced frames, out of 3000 frames 751 are
classified as unvoiced. This also means that the complexity can also be further
reduced compared to always using a cascaded near-end signal model which is a
desirable feature in hearing aids.

9.4 Experimental results

In this section, experimental results for the PEM-based AFC with the improved
near-end signal model is presented and compared to the results presented in
Chapter 8.



EXPERIMENTAL RESULTS 153

0 10 20 30
−25

−20

−15

−10

−5

0

Frame

S
F

M
 (

dB
)

 

 

Unvoiced speech

0 10 20 30
−10

−5

0

Frame

S
F

M
 (

dB
)

 

 

LP

0 5 10 15 20 25 30

−10

−5

0

Frame

S
F

M
 (

dB
)

 

 

CPZLP
optfilt

Figure 9.7: SFM for selected unvoiced frames and for the different PEF.

9.4.1 Experimental set-up

The LP model order is fixed to nC = 30. Both near-end signal models are estimated
using 50% overlapping data windows of length M = 320 samples. The NLMS
adaptive filter length is set equal to the acoustic feedback path length, i.e., nF =
200 (measured hearing aid feedback path). The optimal filtering length in (9.2)
is set to N = M

4 . The near-end signal is a 30 second male speech signal sampled
at fs= 16 kHz. The speech signal is taken from an interview with two male
Dutch-speaking subjects that was digitally broadcasted by the Flemish Radio and
Television Network (VRT). The forward path gain K(t) is set 3 dB below the
maximum stable gain (MSG) without feedback cancellation.

9.4.2 Results

Different pitch estimation techniques

The instantaneous value of the MSG and the misadjustment for the different pitch
estimation techniques with P = 10 for different stepsize µ is shown in Figure
9.8. The MSG curves have been smoothed with a one-pole low-pass filter to
improve the clarity of the figures. The instantaneous value of the forward path
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gain 20 log10K(t) and the MSG without acoustic feedback control (MSG F (q))
are also shown.

The AFC-LP is included as a reference since this performance is a baseline for
introducing a cascaded near-end signal model [209]. At some point the MSG in
the AFC-LP decreases and even gets close to instability. Compared to the AFC-
CPZLP, the MSG in this case seems to be more stable with an overall higher MSG
compared to the AFC-LP even though the misadjustment is lower for the AFC-LP.
The benefit of AFC-CPZLP can be explained by the benefit of using a cascaded
near-end signal model. A cascade of near-end signal models removes the coloring
and periodicity (due to glottal excitation) in voiced speech segments. On the other
hand, a single short-term predictor fails to remove the periodicity, which causes
the loudspeaker signal still being correlated with the near-end signal during voiced
speech.

The MSG is in general higher using AFC-shiftinv, AFC-orth and AFC-optfilt
compared to the existing methods AFC-LP and AFC-CPZLP, which supports
the conjecture that an accurate estimation of the near-end signal model results in
a better decorrelation and hence an increase in MSG. Using lower stepsize shows
a significantly better convergence behavior for AFC-shiftinv, AFC-orth and AFC-
optfilt compared to AFC-CPZLP. From these results, it is clear that the frequency
estimation methods have a great impact on the AFC performance. On the other
hand, it is worth noting that the choice of the stepsize seems to have a great
impact on the convergence for AFC-shiftinv, AFC-orth and AFC-optfilt, whereas
AFC-CPZLP seems to stabilize faster but at a larger error.

Amplitude and model order

The instantaneous value of the MSG and the corresponding misadjustment for the
case where the amplitude and the order estimation is incorporated in the PEF
is shown in Figure 9.9(e)-(f) and is compared to using a fixed order as shown in
Figure 9.9(a)-(d). For the scenarios with fixed orders the MSG is in general higher
for AFC-optfilt compared to AFC-CPZLP and the corresponding misadjustment
is also lower for AFC-optfilt. For the AFC-CPZLP a fixed order of 20 seems to be
the best choice whereas for AFC-optfilt a fixed order of 10 gives the best result.
The fact that AFC-optfilt can achieve a better performance than AFC-CPZLP
with a lower order can be explained by using Figures 9.2 and 9.3. The structure
of the PEF is more dense towards lower frequencies when the pitch estimation
method is used and it is therefore anticipated that the PEF using CPZLP does not
sufficiently suppress the tonal components when a lower order is used. Furthermore
it is also clear that a fixed order of 30 is too high, which is supported by Figure
9.4, especially when the PEF applies infinite suppression.

Using a variable order compared to a variable amplitude (with a fixed model
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order 30) for AFC-optfilt almost results in the same AFC performance, with a
small advantage for the variable order performance. The performance when both
variable order and variable amplitude are included in the PEF is not shown since
the performance is similar to the case when only a variable amplitude is used. This
probably happens because at very low amplitude the PEF results in a pole-zero
cancellation and no suppression is applied. However the variable amplitude and
variable order scenarios slightly outperform the AFC-optfilt with fixed order while
the advantage compared to AFC-CPZLP is significant.

Voiced-unvoiced detection

The instantaneous value of the MSG and the corresponding misadjustment for
the case where a voiced-unvoiced detector is incorporated in the PEF is shown
in Figure 9.10(c)-(d) and is compared to using a fixed order as shown in Figure
9.10(a)-(b). In general the MSG is higher for AFC-optfilt compared to AFC-
CPZLP and the corresponding misadjustment is also lower for AFC-optfilt. For
both AFC-optfilt and AFC-CPZLP a lower order seems to perform better both
in terms of MSG and misadjustment. AFC-optfilt with P=10 performs poorly
around 15 seconds into the simulation but this problem seems to vanish when
the voiced-unvoiced detector is used. The voiced-unvoiced detector improves the
AFC-optfilt with up to 2-4dB in MSG. For AFC-CPZLP the performance does
not change much using the voiced-unvoiced detector actually the MSG decreases
up to 1-2dB in MSG when the voiced-unvoiced detector is used. Again a small
advantage is observed for the AFC-optfilt when using the voiced-unvoiced detector
but compared to AFC-CPZLP the performance difference is significant.

9.5 Conclusion

In this chapter we have introduced a PEM-based AFC with an improved PEF
that exploits a harmonic sinusoidal near-end signal model. We have shown that
various pitch estimation techniques can improve the PEM-based AFC performance.
In addition including information such as amplitude, number of harmonics, and a
voiced-unvoiced detector can improve the design of the PEF. Furthermore it has
been shown why a single near-end signal model based LP fails to provide sufficient
decorrelation due to the SFM for voiced frames. This is the motivation behind
using a cascaded near-end signal model here.

Experimental results show that in general the PEM-based AFC performance is
improved when a cascaded near-end signal model is used. However the inclusion
of speech features such as pitch, amplitude, number of harmonics, and a voiced-
unvoiced detector further improved the accuracy of the near-end signal model



156 PEM-BASED AFC USING A HARMONIC SINUSOIDAL NEAR-END SIGNAL MODEL

leading to an increased PEM-based AFC performance. The overall message is
that exploiting more relevant speech features in the near-end signal model can
indeed lead to an increased AFC performance.
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Figure 9.8: MSG and misadjustment for PEM-based AFC using different pitch
estimation techniques.
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Figure 9.9: MSG and misadjustment for PEM-based AFC when a variable
amplitude and order is used compared to a fixed order.
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Figure 9.10: MSG and misadjustment for PEM-based AFC when a voiced-unvoiced
detector is used.





Chapter 10

Conclusion and further
research

This chapter summarizes the main conclusions presented in this dissertation
together with some future research perspectives.

10.1 Conclusion

Hearing impairment can be caused by many factors, e.g., daily exposure to
excessive noise in the work environment and listening to loud music which are
scenarios that we all can be exposed to in our daily life. Hearing loss can also
be age-related which makes the research on hearing aids very important. For
hearing aid users background noise and acoustic feedback imposes a major problem
in terms of speech understanding and listening comfort. If these problems are
not resolved some hearing aid users may even choose not to use their hearing
aids. The overall objective of this dissertation is the design of DSP algorithms for
hearing aids. The focus is on three main areas such as NR, AFC, and DRC. The
DSP algorithms considered here are all adaptive approaches which is important
when dealing with time-varying acoustic environments, reverberation, and non-
stationary signals such as speech and multi-talker babble.

10.1.1 Noise reduction

The research on the NR problem has been focussed on the SDW-MWFµ since this
approach offers many desirable features, i.e., no a priori information regarding

161
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the desired signal model is required such as microphone configuration, speaker
position, and also no calibration procedure is needed. However since the SDW-
MWFµ does not require any a priori information the performance of the SDW-
MWFµ highly depends on the accuracy of the estimated correlation matrices. It is
therefore expected that the SDW-MWFµ is more sensitive to inaccurate estimation
of the correlation matrices, e.g., due to non-stationary signals, VAD error, and
reverberation. Furthermore the SDW-MWFµ is based on an assumption that the
spatial and the spectral signal characteristic of the noise vary slowly over time
typically in the order of seconds which is a problem since both speech and noise
are non-stationary signals. Another problem is that the noise-only correlation
matrix is kept fixed during speech-plus-noise periods and vice versa. This is a
major problem when dealing with non-stationary noise sources since the speech
correlation matrix is estimated by subtracting the noise-only correlation matrix
from the speech-plus-noise correlation matrix. For this reason a rank-1 SDW-
MWFµ has been proposed which has shown to be less sensitive to errors in the
correlation matrices. Furthermore, the SDW-MWFµ offers a trade-off between NR
and speech distortion by increasing a weighting factor µ. The problem is that the
SNR improvement comes at a cost of a higher signal distortion. The reason for
this is that the weighting factor is typically fixed for each frequency and for each
frame.

In Chapter 2 we have shown that the SDW-MWFµ is able to improve the SNR,
when µ is increased, but the cost is a higher signal distortion which is highly
undesirable. However with the rank-1 SDW-MWFµ the SNR improvement is
comparable to SDW-MWFµ with µ=5 but the signal distortion is much lower.
This makes the rank-1 SDW-MWFµ an interesting approach which is used as a
baseline for comparison for the research and development on the SDW-MWFµ.
It is also shown how high and low reverberation scenarios negatively affect the
SDW-MWFµ based NR performance especially for high reverberation scenarios
and at low input SNR. Also for certain spatial scenarios the SNR improvement is
very limited. For this reason we will primarily focus on high reverberation and
low input SNR scenarios.

In Chapter 3 we have analyzed whether a weighting factor that is fixed for
each frequency and for each frame is an optimal way to make the trade-off
between NR and speech distortion. We have therefore proposed to incorporate
the conditional SPP in the SDW-MWFµ, referred to as SDW-MWFSPP, such that
speech dominant segments and noise dominant segments are weighted differently.
The conditional SPP is estimated and updated for each frequency and for each
frame which also improves the tracking of the non-stationarity of the speech and
the noise. As opposed to SDW-MWFSPP another flexible weighting factor is
proposed that combines the conditional SPP with a per frame decision in order to
make a flexible weighting between NR and speech distortion, which is referred to
as SDW-MWFflex. Through experiments it has been demonstrated that the SDW-
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MWFSPP and SDW-MWFflex outperform the SDW-MWFµ both in terms of SNR
improvement and signal distortion. The same experiments were conducted with
the rank-1 formulation which showed that the rank-1 SDW-MWFµ could not be
improved with the rank-1 SDW-MWFSPP and the rank-1 SDW-MWFflex without
increasing the signal distortion. This suggests that with the rank-1 SDW-MWFµ
the optimal performance was immediately achieved.

In Chapter 4 we have addressed the problem of how the correlation matrices are
estimated and updated both in terms of the robustness and tracking capabilities.
To improve the SDW-MWFµ based NR we have proposed to estimate the
correlation matrices with the use of prior knowledge such that the estimated
correlation matrices are guaranteed to have a certain structure which also makes
the corresponding filter valid. This prior knowledge is then combined with a
continuous updating approach based on the conditional SPP which improves the
tracking capabilities since the correlation matrices are now updated during noise-
only periods and speech-plus-noise periods. The differences between the proposed
method to estimate and update the correlation matrices have also been compared
to the traditional method using a perfect VAD. Using the proposed estimation of
the correlation matrices with the proposed weighting factors a novel SDW-MWF
based NR was achieved that outperformed both the SDW-MWFµ and the rank-1
SDW-MWFµ both in terms of SNR improvement and signal distortion.

In Chapter 5 we have presented a different multi-channel NR technique based
on the well-known SCB also known as the MVDR beamformer. The problem
with the SCB differs from the SDW-MWFµ in the sense that the SDW-MWFµ
performance relies solely on the correlation matrices. The SCB performance on
the other hand depends on the steering vector being accurately estimated. For
this reason a RCB was proposed based on using an uncertainty principle such that
the steering vector could be properly constrained and estimated. The proposed
RCB is focussed on low computational complexity and small arrays which are
important factors in hearing aids. The proposed RCB was compared to the SCB
both in terms of SNR improvement, signal distortion and computation complexity.
Through experimental simulations it has been shown how the RCB was able to
outperform the SCB with a very low increase in computational complexity.

10.1.2 Combined noise reduction and dynamic range compres-
sion

Combining DSP algorithms for hearing aids is a challenging task and very
important since different algorithms can interact in a negative way such that
each algorithm that worked independently is now compromised. The problem
of having NR and DRC combined is considered to be a major problem since these
algorithms serve different purposes. The target of NR is to reduce the noise as
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much as possible while preserving the speech. The DRC is basically designed to
amplify sounds based on the input level without considering whether the signal
contains speech or noise. This can degrade the overall performance especially if the
reduced noise level is lower than the preserved speech level and the corresponding
amplification is therefore higher for the noise. In this way the NR and the DRC
counteract each other.

In Chapter 6 the design of a DRC algorithm has been introduced and the
attention has been focussed toward the scenario where the DRC operates in the
presence of background noise. It was shown that the SNR was negatively affected
when the DRC was operating in the presence of background noise. During the
analysis it was shown how the SNR could be preserved if the DRC gain could be
reduced in certain critical bands assuming that knowledge of the speech and the
noise was available. This suggested that if the speech dominant segments and the
noise dominant segments could be weighted differently the SNR degradation could
be avoided. Through experimental simulations it was shown how the presence of
background noise negatively affected the DRC and the SNR.

In Chapter 7 we have presented a combined SDW-MWF based NR and DRC
where we have analyzed the undesired interaction effect when the NR and the
DRC operate together. It has been shown that the DRC negatively affects any
SNR improvement achieved from the NR stage which is highly undesired. This
happens because the DRC estimates the gain based solely on the input level such
that any low level segments receive higher amplification compared to high level
segments. Since the aim of NR is to reduce the noise while preserving the speech
then from the DRC point of view the reduced noise is now being considered as a
low level segment and is therefore amplified with a higher gain compared to the
speech that supposedly should be preserved from the NR point of view. This then
leads to the undesired SNR degradation. For this purpose we have proposed to
incorporate the conditional SPP into the DRC which was referred to as the dual-
DRC. Using the dual-DRC with the conditional SPP the gain is now modified such
that the estimation of the DRC now takes speech dominant segments and noise
dominant segments into account. Through experimental simulations is has been
demonstrated that using the dual-DRC leads to less SNR degradation.

10.1.3 Feedback cancellation

Acoustic feedback is a problem that has a major effect on the performance of a
hearing aid. Acoustic feedback is caused by the acoustic coupling between the
loudspeaker and the microphone(s) such that amplified sound leaks out and get
picked up by the microphone in the hearing aid creating a closed signal loop.
Acoustic feedback limits the maximum gain that can be used in the hearing
aid which can lead to problem compensating for the hearing loss resulting in
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audibility problems. Furthermore, acoustic feedback is audible as a continuous
high-frequency tone emanating from the hearing aid leading to a reduced listening
comfort and sound quality.

In Chapter 8 we have shown that the acoustic feedback problem can be dealt
with by using a PEM-based AFC approach where LP was used to model the near-
end signal. The inverse of the near-end signal model then acts as decorrelation
prefilters when applied to the loudspeaker and the microphone signals. However it
was shown that using the LP model alone did not provide sufficient decorrelation
and therefore this approach did not provide a stable AFC performance. For this
reason a cascaded near-end signal model was also proposed using a LP model
combined with a PZLP model. Then the LP can model the noise components
while the PZLP can model the tonal components. This resulted in an improved
AFC performance in terms of MSG and filter misadjustment.

In Chapter 9 we have improved the cascaded near-end signal model in PEM-based
AFC by exploiting the characteristic of speech signals. The idea is to incorporate
information such as pitch, amplitude, and the number of harmonics into the PEF
used to model the near-end signal. The detection of voiced-unvoiced frames are
also included in the cascaded near-end signal model such that in unvoiced frames
only a single near-end signal model is used. This is based on the fact that the
correlation is highest for voiced frames and therefore a cascaded near-end signal
model is used when a voiced frame is detected. Furthermore, a single near-end
signal model using LP also has a lower computational complexity compared to
using a cascaded near-end signal model. Through experimental simulations it was
shown that an accurate modelling of the near-end signal can result in improved
PEM-based AFC performance both in terms of MSG and filter misadjustment.

10.2 Suggestions for further research

10.2.1 Noise reduction

Perceptual evaluation. In this dissertation, the experimental results were
demonstrated by using objective measures such as intelligibility weighted SNR
and signal distortion. However perceptual evaluation using both normal hearing
and hearing impaired subjects needs to be validated before the actual benefit of
the proposed SDW-MWF can be properly understood. It would in particularly
be interesting to evaluate if hearing aid users would benefit from the improved
tracking with the proposed correlation matrices and the proposed weighting factors
which should improve the spectral filtering. For normal hearing subjects the
question is whether the inclusion of a non-linear weighting factor that changes
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for each frequency and for each frame would be negatively perceived compared to
using a fixed weighting factor.

Perceptual motivated weighting factor. In this dissertation, we have
proposed to incorporate the conditional SPP in the SDW-MWF such that speech
dominant segments and the noise dominant segments are weighted differently.
It was shown that in certain scenarios the SNR improvement was achieved
without increasing the signal distortion but for certain spatial scenarios the SNR
improvement came at the cost of a higher signal distortion. In further research
it would therefore be interesting to combine the proposed weighting factor with
a perceptual motivated weighting factor. Inspiration can be taken from single-
channel NR where masking threshold has been used in the NR process such that
the noise is only attenuated when its level exceeds the masking threshold. In
this way the signal distortion could be kept low without compromising the SNR
improvement. Other information could also be incorporated in the SDW-MWF
such as hearing models or hearing loss profile.

Improved spatial filtering in the MWF. In this dissertation, we have used a
monaural hearing aid system with two microphones that are located at one single
ear. Furthermore we have been focussed on the spectral filtering/tracking part of
the SDW-MWF rather than the spatial part. However with the opportunity to
exploit a wireless link between the left and the right hearing aid extensive research
has been conducted in the area of binaural NR. In future research it would therefore
be relevant to evaluate the proposed SDW-MWF in a binaural hearing aid system
such that the spatial filtering could be improved. In addition to improving the
spatial filter it would also be interesting to evaluate if the proposed SDW-MWF
has any effect on the sound localization performance since past work has been
focussed on the trade-off between NR and preservation of localization cues using
a SDW-MWF setup. It would then be interesting to evaluate if the improved
spectral filtering has any negative effect in terms of localization performance.

10.2.2 Combined noise reduction and dynamic range compres-
sion

In this dissertation, we have analyzed the undesired interaction effect when NR
and DRC are combined. It has been shown that the DRC negatively affects the
SNR improvement achieved from the NR stage. Is has also been observed that
the SNR degradation is worse at high input SNR since the noise in this case is
now considered to be a low level segment and therefore a higher gain is applied
compared to the speech which is considered to be a high level segment. In future
research it would be interesting to fully integrate the NR with the DRC. A first step
could be to limit the NR performance with the knowledge of the DRC parameters
(e.g. CR, CT, attack and release time) such that a SNR is achieved that leads to
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a minimal SNR degradation from the DRC. This can be achieved by exploiting
the fact that the proposed weighting factor controls the spectral filtering of the
SDW-MWF which means that the spectral filter needs to be integrated in the
DRC.

10.2.3 Feedback cancellation

In this dissertation, several ways to estimate and model the near-end signal has
been proposed which is used in the PEM-based AFC as a decorrelation process. We
have shown that including relevant speech information such as pitch, amplitude,
number of harmonics, and the knowledge of voiced-unvoiced frames in a cascaded
near-end signal model leads to an improved AFC performance in terms of MSG
and filter misadjustment. In future work it would be interesting to be able to
directly link the estimation of the accuracy of the near-end signal model with
the actual AFC performance. At this point the decorrelation of the loudspeaker
and the microphone signal with the inverse near-end signal model is viewed as a
separate process compared to the actual the AFC performance.

Combined noise reduction and feedback cancellation is also an area which
should be explored since this could potentially change the design of the PEM-
based AFC. For example the design of AFC algorithms are primarily performed
using a single-microphone whereas NR typically uses a multi-microphone set-up.
Future research could be in the direction of extending the PEM-based AFC with
a single-channel NR and analyzing the interaction effect. At the same time the
PEM-based AFC could also be extended to a multi-microphone scenario which
then allows for a more sophisticated set-up with NR and AFC.

Combined NR and DRC with AFC is also an interesting area which
again would completely change the design objectives. The development on the
PEM-based AFC has been performed with a linear gain but a more realistic
compensation is with the use of DRC. The interaction between the NR and DRC
has already been shown and therefore a scenario with all components included
would potentially reveal the actual performance that can be achieved.
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