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Summary 

Recently, there has been increasing research to discover genomic biomarkers, haplotypes, 
and potentially other variables that together contribute to the development of diseases. 
Single Nucleotide Polymorphisms (SNPs) are the most common form of genomic 
variations and they can represent an individual’s genetic variability in greatest detail. 
Genome-wide association studies (GWAS) of SNPs, high-dimensional case-control 
studies, are among the most promising approaches for identifying disease causing 
variants. METU-SNP software is a Java based integrated desktop application specifically 
designed for the prioritization of SNP biomarkers and the discovery of genes and 
pathways related to diseases via analysis of the GWAS case-control data. Outputs of 
METU-SNP can easily be utilized for the downstream biomarkers research to allow the 
prediction and the diagnosis of diseases and other personalized medical approaches. Here, 
we introduce and describe the system functionality and architecture of the METU-SNP.  
We believe that the METU-SNP will help researchers with the reliable identification of 
SNPs that are involved in the etiology of complex diseases, ultimately supporting the 
development of personalized medicine approaches and targeted drug discoveries. 

1 Introduction 

Identification of genetic variations that are the underlying causes of complex diseases is one 
of the current challenges of bioinformatics and genomic medicine, which draws great 
attention recently. Our understanding of the genetic etiology of human diseases is limited 
because of the massive number of genetic variations in the human genome and the complex 
relationships between multiple genes and environmental factors underlying diseases. With the 
completion of Human Genome Project in 2003, it is now possible to convey research studies 
to associate genetic variations in the human genome with common and complex diseases. 
Genome-wide association studies (GWAS) are one of the most widely used types of analysis 
in which most of the genome is studied for investigating variants. The major study design 
used in GWAS is the case-control study approach in which allele frequencies in patients are 
compared to a control group. 

The human genome can be represented as an array of 3.3 billion letters from the set of {A, C, 
G, T} representing nucleotides Adenine, Cytosine, Guanine and Thymine. The nucleotide 
sequence does not differ across the populations in more than 99% of the positions of the 
whole genome. However, individuals possess genetic variations in about 1% of their genomic 
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sequences. Among those variations, the most frequently observed are changes at single  
nucleotide level, called Single Nucleotide  Polymorphisms  (SNPs,  pronounced  snips), when 
occurred in over 1% of a given population. Recent developments in genotyping technologies, 
public access to whole genome and other genetic information and the start of the International 
HapMap Project [1],[2] have facilitated the implementation of SNP based GWAS.

Investigating the genetic factors associated with the complex diseases and determining the 
contribution of multiple genes on a disease phenotype require working with a considerably 
large number of SNPs and individuals in a typical GWAS setting. Currently, it is infeasible to 
gather information and perform analysis on all of the SNPs in the human genome that are 
estimated to be around 30 million1

In order to identify an informative SNP subset it is required to prioritize the SNPs according 
to well-defined criteria so that biologically more relevant SNPs are not overlooked among 
statistically significant SNP set. An intelligent way of performing such a prioritization is to 
develop a scoring mechanism for each SNP that would reflect SNP’s biological and statistical 
relevance. Such an endeavor requires the employment of integrative approaches by 
incorporating information from biological databases to determine and rank the SNPs with 
high statistical association according to their potential for effecting biological functions. 

. This problem presents itself at three different levels: (1) 
the selection of the set of SNPs to be included in case-control based GWAS, (2) the 
prioritization of thousands of SNPs that are statistically found to be associated with the 
phenotype, (3) the identification of the smallest set of SNPs (informative SNPs) that can be 
utilized as a biomarker panel of the phenotype for downstream applications. 

This study presents an integrated software application called METU-SNP, which is 
specifically designed for use in SNP based GWAS. METU-SNP is a java based desktop 
application, which provides state-of-the-art Analytic Hierarchy Process (AHP) based SNP 
prioritization and Gene Set Enrichment Analysis frameworks. It is also equipped with 
machine learning based feature selection schemes for further reducing the data dimension. 
The METU-SNP database gathers data from major public databases such as dbSNP [3], 
Entrez Gene [4], KEGG [5] and Gene Ontology [6]. Graphical User Interface (GUI) of 
METU-SNP offers access to the functionality provided by well-known third party tools 
utilized for GWAS such as PLINK [7] and BEAGLE [8].  

The system architecture, components of the graphical user interface and capabilities of 
METU-SNP are presented in the following sections along with a case study. 

2 System Overview 

2.1 Availability 

METU-SNP software is publicly accessible at http://metu.edu.tr/~yesim/metu-snp.htm. The 
website also contains video tutorial and help files. The integrated database is required for 
prioritization and gene/pathway based functionality and it is offered as an SQL dump file2

In order for a flawless installation and execution of the software, the following requirements 
should be satisfied for the platform: 

. 

• Java Runtime Environment  5.0 or above, 
• MySQL 5.0 or above, 
• At least 5 GB free disk space, 

                                                 
1 http://www.ncbi.nlm.nih.gov/SNP/snp_summary.cgi 
2 Interested users should contact yesim@metu.edu.tr for the download link. 
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• At least 2GB RAM. 

2.2 Functionality 

METU-SNP provides the life scientist with an all-in-one tool for the case-control studies of 
SNP genotyping data from both microarray and next generation sequencing experiments. The 
raw GWAS data can be processed till an informative SNP subset, which is both statistically 
and biologically relevant for the phenotype under investigation, is achieved. Significant genes 
and pathways are also listed as an output at the end of the analysis. METU-SNP GUI is 
designed to guide the user through a step-by-step analysis process as depicted in Figure 1. 
GUI consists of 6 tabs corresponding to each steps of the analysis: (1) configuration, (2) 
preprocess, (3) genome-wide association, (4) SNP prioritization, (5) SNP selection and (6) 
performance. 
 

 
Figure 1: METU-SNP GUI. 

 

2.2.1 Configuration 

In the configuration step the user defines the mysql database name, user name/ password and 
the location of the GWAS case-control data files for use in the subsequent analysis steps. Data 
files should be in the form of pedigree (ped) and map format3

                                                 
3 http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml 

 to be compatible with PLINK. 
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User is also given the option to define test data for prioritization and selection steps. 
Separated test sets can be used in k-fold cross validation runs at the performance step.  

2.2.2 Preprocess 

In the preprocessing step user is able to apply quality control (QC) based filtering and 
imputation on the raw SNP genotyping data, which usually includes redundant SNPs and 
individuals that do not satisfy certain thresholds such as minor allele frequency, missingness 
and Hardy Weinberg equilibrium.  A comprehensive guide containing further information on 
the thresholds is provided on PLINK website4

After specifying QC thresholds, user is given the option to impute the data with high missing 
rate by utilizing BEAGLE software. A threshold for allelic r2 (default being 0.95) can be 
specified in order to include only well imputed markers in subsequent analysis. In order to 
provide an overview for the data after filtration, a set of descriptive statistics files, which are 
created as output during PLINK based QC analysis is provided.  

. The same default values of PLINK (0.05 for 
minor allele frequency, 0.1 for SNP missingness rate, 0.1 for individual missingness rate and 
0.001 for Hardy Weinberg equilibrium) are set for METU-SNP as the most commonly used 
parameters for GWAS. User is able to change these values easily from the user interface.  

2.2.3 Genome-wide Association 

Third step in METU-SNP based analysis is the determination of the statistical significance of 
SNPs by calculating p-values of association. Depending on user’s choice, three different 
methods can be used to calculate p-values: (1) uncorrected, (2) Bonferroni [9] and (3) False 
Discovery Rate [10]. The latter two approaches include adjusting for multiple testing. 
Depending on the threshold set by the user, SNPs are labeled as significant5

Next, a second wave GWAS is performed by calculating the combined p-values as described 
in [11], to reveal statistically significant (enriched) genes and pathways. Fisher’s combination 
test is applied to combine p-values of all SNPs within a gene, where the statistics for 
combining K SNPs is given by 

 or not in the 
related database table. Most widely accepted threshold for p-value is 0.05 and it is set as 
default. However according to the requirements of the analysis, it is possible to specify other 
threshold values as well. 

𝑍𝐹 =  −2∑ 𝑙𝑛𝑃𝑖𝐾
𝑖=1 ,                                                             

which follows 𝜒2𝐾2  distribution. In order to determine the overrepresentation of significantly 
associated genes among all genes in a pathway, the hypergeometric test (Fisher’s exact test) is 
used. Assuming that total number of genes is N, the number of genes that are significantly 
associated with the disease is S and the number of genes in the pathway is m; p-value of 
observing k-significant genes in the pathway is calculated by:  

𝑝 = 1 −  ∑
�𝑆𝑖��

𝑁−𝑆
𝑚−𝑖�

�𝑁𝑚�
𝑘
𝑖=0 . 

                                                 
4 http://pngu.mgh.harvard.edu/~purcell/plink/thresh.shtml 
5 Significance label for SNPs, genes and pathway is used to calculate total score in AHP based prioritization 
scheme. 
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Depending on the calculated statistics, user is able to label genes and pathways as significant. 
To label a gene as significant three thresholds are provided: (1) combined p-value, (2) min 
SNP p-value and (3) max SNP p-value. The combined p-value statistics of the genes are 
determined according to the p-values calculated for each SNP that maps to the particular gene. 
Here, second and third user defined parameters allow users to determine the enrichment of 
genes by looking at individual p-values of mapping SNPs instead of the calculated combined 
p-value. Likewise, to determine if a pathway is significant three user defined parameters are 
offered: (1) combined p-value, (2) the number of significant genes and (3) the proportion of 
significant genes. We regard pathways as a combination of genes. Therefore, in addition to 
the combined p-value it is also possible to determine the enrichment of the pathway by 
evaluating how many significant genes there are within the pathway or proportion of 
significant genes over all the genes associated with the pathway. Following this step, three 
output files are created as explained in Table 1. 
     

Table 1: Output files created at the end of genome wide association analysis. 

File Field # Description 

snp.txt 

1 SNP rs ID (as in dbSNP) 

2 p-value (according to the specified type of test) 

3 Significance (0 = not significant, 1 = significant) 

gene.txt 

1 Entrez gene ID 

2 p-value (according to the specified threshold) 

3 Significance (0 = not significant, 1 = significant) 

pathway.txt 

1 pathway ID (as in MySQL database) 

2 p-value / significant gene info  
(according to the specified threshold) 

3 Significance (0 = not significant, 1 = significant) 

 

2.2.4 SNP Prioritization 

SNP prioritization functionality utilizes our novel AHP based prioritization scheme6

 

.  This is 
an intelligent scoring mechanism that takes statistical and biological information into account 
for ranking SNPs after GWAS. AHP based prioritization involves forming a multi-
hierarchical tree structure in which genomic location, molecular pathway data, disease 
annotation data and statistical information (GWAS p-value association and gene set 
enrichment analysis findings) are integrated. Weight scores are calculated for each leaf node, 
following a pair-wise comparison between nodes in the same level of the tree.   In order to 
calculate the final score, which will guide the ranking of SNPs in the prioritization process, an 
indicator function Ik(SNPi) is used as follows: 

𝐼𝑘(𝑆𝑁𝑃𝑖) = � 1 0�
 𝑖𝑓 𝑆𝑁𝑃𝑖 𝑖𝑠 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡 𝑓𝑜𝑟 𝑙𝑒𝑎𝑓 𝑛𝑜𝑑𝑒 𝑘 

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
� 

The final score 𝑆(SNP𝑖) can be calculated for a particular SNP by using: 
 

         𝑆(SNPi) = ∑ 𝐼𝑘(𝑆𝑁𝑃𝑖)𝑊𝑘
𝑛
𝑘=1  for i = 1,..., m,          

                                                 
6 Manuscript is submitted to the Journal of Bioinformatics. 
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where m denotes the number of SNPs for which AHP scores are calculated and W denotes the 
weight vector for leaf nodes. 

SNPs are ranked in a descending order according to the AHP scores where top ranking SNP is 
predicted to have the highest priority for the study. Two supplementary output files are 
created that presents the details of related SNP-gene-pathway information and DO-GeneRIF 
information inherent in the database structure (Table 2 and 3). 
 

Table 2: Sample SNP-gene-pathway mapping according to AHP based ranking for Alzheimer’s 
disease. 

SNP ID P-value 
 of SNP Gene ID Significance of Gene Pathway Title Significance 

of Pathway 

4651138 0.008 3915 Significant Endoderm development Not Significant 

4651138 0.008 3915 Significant Cell migration Significant 

2230806 0.121 19 Significant ATP binding Not Significant 

2230806 0.121 19 Significant Membrane fraction Significant 

 

Table 3: Sample DO-GeneRIF information according to AHP based ranking for Alzheimer’s 
disease. 

SNP ID Gene ID Entrez 
Symbol DO ID Disease Name RIF 

4651138 3915 LAMC1 289 Endometriosis 
mRNA encoding laminin-alpha1, -beta1, and -
gamma1 chains was expressed in 90% of 
endometriotic lesions. 

2070045 6653 SORL1 10652 Alzheimer's 
disease 

SORL l are associated with Alzheimer's 
disease and releated to the trafficking of 
Amyloid Protein Precursor in subcellular lever. 

 

2.2.5 SNP Subset Selection 

The functionality used to select a subset of SNPs to represent the whole set, is based on our 
novel Simulated Annealing (SA) based selection algorithm [12]. SA algorithm depends on a 
machine learning approach in order to further decrease data dimension without interfering the 
prediction performance of resulting SNP set. We have set our goal as to find the minimal set 
of representative SNPs for which the prediction error of selected SNP set over unselected set 
is minimized and used the following objective function: 
 

� 𝑁𝑎𝑖𝑣𝑒𝐵𝑎𝑦𝑒𝑠�𝐺𝑅 ,𝐺𝑇𝑖�
𝑛−𝑘

𝑖=1
𝑛 − 𝑘

−
𝑘
𝑛

, 
 
where n denotes the cardinality of the overall SNP set, 𝐺𝑅denotes genotype data related with 
representative SNP set R of cardinality k and 𝐺𝑇𝑖denotes genotype data related with 𝑆𝑁𝑃𝑖 ∈
𝑆\𝑅. 
 
Naive Bayes classifier is set as default and additional classifiers offered by WEKA7

                                                 
7http://weka.sourceforge.net/doc/weka/classifiers/Classifier.html 

 can also 
be used. Current version of METU-SNP only supports those WEKA classifiers, which can 
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handle multi-valued nominal attributes. A SNP subset is created as an output, which can be 
regarded as the minimal set of representative SNPs with competitive prediction accuracy. 

2.2.6 Performance 

The prediction performance of the resulting SNP subsets after AHP based prioritization and 
SA based selection steps can be measured in the final step of METU-SNP analysis. WEKA 
based classifiers supporting multi-valued nominal attributes can be used as supervised 
learning methods for performance measurement. At the initial configuration step of METU-
SNP a test set has to be separated for the performance measures to be calculated. 

Additionally, in order to measure the prediction performance of SNP sets created at either 
prioritization or selection step, METU-SNP creates an output file that contains certain 
classification measures such as correctly classified instances, incorrectly classified instances, 
Kappa statistic, mean absolute error, root mean squared error, root relative square error and 
confusion matrix (Figure 2). 
 

 
Figure 2: Sample text file that is created after performance measures calculation step. 

 

3 System Architecture 

METU-SNP is a Java based desktop application written with Java Swing GUI (Graphical 
User Interface) architecture using JDBC to interact through mysql databases (Figure 3). The 
application can be installed and run on a stand-alone computer in which Java Run Time 
Environment and MySQL database is previously installed. 

3.1 Third Party Tools 

In a typical GWAS, researcher basically follows a 4 step process: (1) a large number of 
individuals with disease or another trait of interest alongside with a suitable comparison group 
is selected, (2) in order to assure high genotyping quality, DNA isolation, genotyping and data 
review is performed, (3) statistical tests are applied to observe the association between SNPs 
and disease/trait, (4) significantly associated SNPs are prioritized and a representative SNP 
subset is selected,(5) Fine mapping to DNA locus and biological interpretation is performed.  
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Figure 3: System architecture for METU-SNP. 

 

Many software tools such as PLINK, BEAGLE, SNPTEST [13] and GENABEL [14] have 
been developed recently that could be utilized for step 2 and step 3. METU-SNP specifically 
aims to support steps 4 and 5, where SNP prioritization and biological interpretation is 
automated. So, functionality offered by third party open-wares geared towards step 2 and step 
3 is utilized to complement unique functionalities offered by METU-SNP to build an 
integrated system for GWAS. The logical flow of the METU-SNP system and integration of 
third party tools is presented in Figure 4. 

3.1.1 PLINK 

PLINK is an open-source whole genome association analysis toolset that offers immense set 
of functions for GWAS including: data management, summary statistics for quality control, 
population stratification detection, basic association testing, copy number variant analysis, 
meta-analysis, result annotation and reporting. In METU-SNP framework PLINK is used: (1) 
to divide the genomic data into chromosomal units to comply with BEAGLE format for 
imputation, (2) to perform quality control based filtering to exclude the SNPs or individuals 
that do not satisfy user defined thresholds, (3) to determine p-value association statistics, (4) 
to complete certain data management tasks, such as extracting set of SNPs, individuals etc., 
which is challenging to due to the size of the data sets with other tools. 

PLINK is essentially utilized in two major steps of the analysis process: (1) quality control 
based filtering and (2) association analysis. 

3.1.2 BEAGLE 

Imputation is a statistical method to substitute a calculated value for a missing data point and 
can be used to replace missing/un-genotyped data when percentage of the missing values 
exceeds a certain threshold specified by the researcher.  Lately, imputation is becoming a part 
of the GWAS. Various methods have been proposed to predict sporadic missing data by 
imputation [15] and it has been used in the meta-analysis of different diseases and traits [16, 
17]. Several software programs have been developed so far to account for the missing data in 
genetic data sets. Among those are BEAGLE, IMPUTE [13], MACH, fastPHASE [18] and 
PLINK.  We have chosen to integrate BEAGLE’s imputation routine, which is based on 
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Hidden Markov Models as it is one of the methods with highest accuracy and reasonable 
execution time [8].  
 

 
Figure 4: Logic flow of METU-SNP software system. 

 

3.1.3 WEKA 

WEKA is an open source machine learning and data mining tool developed and maintained 
by University of Waikato, New Zealand. An extensive set of algorithms for pre-processing, 
classification, regression, clustering and association are included within the WEKA 
collection. METU-SNP utilizes WEKA for implementing the SA algorithm and evaluating the 
prediction accuracy of the selected SNP sets after AHP based prioritization and SA based 
informative SNP selection steps via cross validation. 

3.2 METU-SNP Integrated Database 

METU-SNP database is MySQL 5 based relational database that incorporates data from major 
biological databases. Entity-Relationship diagram of the database that presents table details 
can be found in Figure 5. Our prioritization scheme requires integration of primary public 
databases because of the need of mappings for: (1) SNP to Gene, (2) Gene to Disease, (3) 
Gene to Biological Pathway. 

3.2.1 SNP Data 

Annotations for 11,833,664 SNPs, based on dbSNP build 128, are provided within METU-
SNP framework and the details are explained in Table 4.  
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Figure 5: ER diagram of METU-SNP relational database. 

 

Table 4: SNP Annotation sources integrated into METU-SNP. 

Resource   Description of extracted annotations   SNPs annotated 

dbSNP, build 128  SNPs rs IDs and basic annotations  11,833,664 

HapMap  Allele frequencies from HapMap project  3,967,349 

Tagger (HapMap)  Haplotype tags in CEU (0.8 r2 cutoff)  tags 695,153,tagged 2,009,725 

Tagger (HapMap)  Haplotype tags in CHB (0.8 r2 cutoff)  tags 580,509,tagged 1,908,721 

Tagger (HapMap)  Haplotype tags in JPT (0.8 r2 cutoff)  tags 562,741,tagged 1,883,580 

Tagger (HapMap)  Haplotype tags in YRI (0.8 r2 cutoff)  tags 1,282,451,tagged 1,571,139 

UCSC  PhastCons conserved elements, 28-way vertebrate  434,235 

UCSC  PhastCons conserved elements, 28-way mammal  322,704 

Delta-MATCH  Transcription factor binding sites, scored by ΔZ  2,456,473 

PupaSuite  Transcription factor binding sites (Transfac)  81,293 

PupaSuite  Transcription factor binding sites (JASPER)  60,082 

PupaSuite  DNA triplex sequences  439,350 

PupaSuite  Exonic splicing enhancers (ESE)  153,523 

PupaSuite  Exonic splicing silencers (ESS)  22,926 

PupaSuite  miRNA sequences  20,716 

PupaSuite  New splice site formation  13,415 

PupaSuite  Splice site disruption  1,574 

Affymetrix  Genome-Wide Human SNP Array 6.0 (+11 others)  924,216 

Illumina  Human 1M BeadChip (+7 others)  1,126,075 

Polyphen  Structure-based predictions  53,720 

SNP3D  Structure-based predictions  4,792 

SNP3D  Sequence-based predictions  28,136 
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Reference SNP ID (rsID) from dbSNP is used as the primary key for a particular SNP. Basic 
annotations such as associated gene ID and symbol for all human SNPs are extracted from 
dbSNP.  PupaSuite [19] annotations allow scoring of SNPs based on their function class, 
overlap with splicing regulatory elements, miRNA target sequences and conserved regions in 
the genome. An additional table holds the SNP pairs with high Linkage Disequilibrium 
(coefficient of correlation 𝑟2 ≥ 0.8 in each HapMap population) defining the correlations 
among SNPs. UCSC [20] provides genomic coordinates of highly conserved elements across 
multiple species, allowing for the identification of SNPs overlapping with evolutionarily 
conserved regions of the human genome. Additionally, information related with mouse ECR 
(Evolutionary Conserved Regions) values originally extracted from ECRBase [21] are 
integrated into METU-SNP database and used within prioritization scheme. 

3.2.2 Gene Data 

Gene related information is extracted from NCBI Entrez Gene [22] and Entrez Gene ID is 
used as the primary key for identifying a particular gene. SNP-Gene associations are extracted 
from NCBI and dbSNP. 45,379 genes are annotated and relevant information is organized in 
the database as shown in Table 5. 
 

Table 5: Gene based annotation from NCBI Entrez Gene. 

Field Description 

Entrez Symbol NCBI Entrez Gene official gene symbol    

Entrez Gene ID  NCBI Entrez Gene ID     

Gene type Gene type: protein-coding, tRNA, etc.     

Entrez full name  Full name from NCBI Entrez Gene   

Chr Chromosome 

Start Pos (bp) Start Position in base pairs (NCBI Mapview)   

Stop Pos (bp) Stop Position in base pairs (NCBI Mapview)   

Size (kb) Size of transcript in kb (NCBI Mapview)   

Cytogenetic Pos. Cytogenetic Position        
 

3.2.3 Pathway Data 

Gene and pathway information is integrated from major biological repositories. A summary of 
the integrated resources is presented in Table 6.  

Pathway-based analysis of GWA data is emerging as a useful tool for discovery of underlying 
molecular mechanisms of diseases associated with particular SNP biomarkers. In second 
wave GWAS, where combined p-value approach is used to identify associated genes and 
pathways to a phenotype; it is assumed that markers underlying a disease or phenotype are 
enriched in genes acting within the same pathway.  

For each particular pathway suggested, METU-SNP provides the gene IDs within the pathway 
and an URL link to the listed pathway that would help researcher to reach external 
information. Table 7 presents an example for the type of information that is held within the 
database structure. 
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Table 6: Biological pathway resources used for annotation. 

Resource    Description of annotations Number of Pathways Number of Genes 

Gene Ontology Molecular Function  2,479 10,644 

Gene Ontology Biological Process  3,066 10,793 

Gene Ontology Cellular Component  636 6,236 

KEGG Pathway/gene associations 177 3,901 

WikiPathways Pathway/gene associations 106 3,089 

BioCarta Pathway/gene associations 314 1,375 

BioCyc Pathway/gene associations 179 452 

 

 

Table 7: Sample biological pathway information inherent within METU-SNP database. 

Pathway System Pathway Title URL Link Entrez Gene IDs 

KEGG 
Ascorbate and 
aldarate 
metabolism 

http://www.genome.jp/dbget-
bin/get_pathway?org_name=hsa&mapno=00
053 

217,218,219,220, 
223,224,501,7358, 
55586 

BioCarta 

Degradation of 
the RAR and 
RXR by the 
proteasome 

http://www.biocarta.com/pathfiles/h_rarPath
way.asp 5914,1022, 6256 

GO Process Single strand 
break repair 

http://www.ebi.ac.uk/ego/QuickGO?mode=d
isplay&entry=GO:0000012 3981,7141,7515, 54840 

GO Function 

1-alkyl-2-
Acetylglyceroph
osphocholine 
esterase activity 

http://www.ebi.ac.uk/ego/QuickGO?mode=d
isplay&entry=GO:0003847 5049,5050,5051, 7941 

GO Component Gamma-tubulin 
complex 

http://www.ebi.ac.uk/ego/QuickGO?mode=d
isplay&entry=GO:0000930 7283,8409,9793, 80184 

BioCyc Methionine 
biosynthesis IV 

http://biocyc.org/META/NEW-
IMAGE?type=PATHWAY&object=ADEN
OSYLHOMOCYSCAT-PWY 

4548,23743,635 

WikiPathways 
Pentose 
Phosphate 
Pathway 

http://www.wikipathways.org/index.php/Pat
hway:Homo_sapiens:Pentose_Phosphate_Pat
hway 

2539,25796,5226, 
22934,7086,6888, 6120 

 

3.2.4 Disease Data  

We have utilized the GeneRIF-Disease Ontology (DO) mapping approach to construct our 
gene-disease association tables. It is suggested that GeneRIF-Disease Ontology (DO) 
mapping performs better than OMIM when the prediction performances are compared [23, 
24]. Mapping process is illustrated in Figure 6, where the association between Gene ID: 7040 
and DO ID: 2585 is shown.  
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We have adopted the mapping format of the relational database at DO-RIF project page of 
Northwestern University8

 

. The summary statistics of the annotation data residing in our 
database is presented in Table 8. 

 
Figure 6: An example DO-GeneRIF mapping. 

 

Table 8: Annotation statistics related with disease data. 

Description of Annotations Number of Items 

Disease 14,889 

Disease with at least one mapping 1,851 

Genes with at least one mapping 4,070 

Average mappings per disease 14.64 
 

4 Results and Discussions 

In order to evaluate the usability and performance of METU-SNP we used two real life 
GWAS data sets. The first data set was the whole genome association Rheumatoid Arthritis 
(RA) data from the North American Rheumatoid Arthritis Consortium (NARAC) including 
868 cases and 1,194 controls. The NARAC data was used in the Genetic Analysis Workshop 
16 (GAW 16) previously. It consists of 501,463 SNP-genotype fields from the Illumina 550K 
chip. The second data set was whole genome association data for Alzheimer’s disease (AD) 
from the Alzheimer’s disease Neuroimaging Initiative (ADNI) database. The ADNI data used 
included 149 AD cases and 182 controls. It consists of 555,850 SNP-genotype fields from the 
Illumina 610 Quad chip. 

METU-SNP based analysis successfully identifies statistically significant SNPs, genes and 
pathways for the data sets under consideration. The novel AHP based algorithm is 
implemented and used for the prioritization of SNPs that are both statistically and biologically 
relevant. Next, the dimension of the SNP set is further decreased by applying machine 
learning based SA algorithm. Finally, the prediction performance for the resulting SNP sets is 
calculated and the results are cross-checked with the current literature.  
                                                 
8http://projects.bioinformatics.northwestern.edu/do_rif/ 
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4.1 Analysis Results 

Quality control based filtering is applied by using following thresholds: minor allele 
frequency = 0.05, SNP missingness rate = 0.1, individual missingness rate = 0.1, Hardy 
Weinberg Equilibrium = 0.001. Missing markers are handled by imputation and test sets are 
separated to measure the prediction performance of the prioritized sets for both data sets. 
After the preprocessing step, the number of SNPs is decreased from 555,850 to 517,003 for 
the AD data with 112 cases and 121 controls separated for the training set and 22 cases and 27 
controls for the test set, and from 501,463 to 473,613 for the RA data with 522 cases and 716 
controls for training set and 180 cases and 232 controls for test set. 

Following the preprocessing step, the association study is performed and p-values are 
calculated for individual SNPs. Multiple hypothesis correction using false discovery rate is 
only applied to RA data as results were too conservative for ALZ data set. Additionally, 
statistically significant genes and pathways are determined by the combined p-value approach 
as stated in Section 2.2.3. We used p-value of 0.05 as the threshold of significance for SNPs, 
genes and pathways. Top 5 significant SNPs, genes and pathways according to p-values are 
presented in Tables 9, 10 and 11. 
 

Table 9. Top 5 SNPs with the lowest p-values. 

RANK 
Alzheimer's Disease Rheumatoid Arthritis  

Chromosome SNP p-value Chromosome SNP p-value 

1 17 rs4795895 8.27E-07 6 rs2395175 1.02E-67 

2 17 rs1233651 1.27E-06 6 rs660895 7.10E-66 

3 17 rs885691 1.27E-06 6 rs2395163 2.04E-52 

4 18 rs12457258 1.84E-06 6 rs6910071 1.34E-50 

5 17 rs6505403 4.91E-06 6 rs3763309 1.96E-46 
 

Table 10. Top 5 genes with the lowest combined p-values. Given the p-value threshold of 0.05; 
2,076 genes are listed as significant for AD and 69 of them are listed as significant for RA.  

RANK 
Alzheimer's Disease Rheumatoid Arthritis  

Gene ID Full Name Locus Gene 
ID Full Name Locus 

1 220963 
Solute carrier family 16, 
member 9 (monocarboxylic 
acid transporter 9) 

10q21.2 177 
Advanced glycosylation 
end product-specific 
receptor 

6p21.3 

2 10665 Chromosome 6 open 
reading frame 10 6p21.3 7916 HLA-B associated 

transcript 2 6p21.3 

3 84679 
Solute carrier family 9 
(sodium/hydrogen 
exchanger),  member 7 

Xp11.3 3122 
Major histocompatibility 
complex, class II, DR 
alpha 

6p21.3 

4 83891 Sorting nexin 25 4q35.1 6891 
Transporter 2, ATP-
binding cassette, sub-
family B (MDR/TAP) 

6p21.3 

5 84182 Family with sequence 
similarity 188,  member B 7p14.3 7148 Tenascin XB 6p21.3 
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Table 11. Top 5 pathways with the lowest combined p-values. Given the p-value threshold of 
0.05; 256 pathways are listed as significant for AD and 119 of them are listed as significant for 
RA. 

RANK 
Alzheimer's Disease Rheumatoid Arthritis  

Pathway 
System Pathway Title p-value 

Pathway 
System Pathway Title p-value 

1 KEGG 3-Chloroacrylic 
acid degradation 5.09E-06 GO Function MHC class II 

receptor activity 2.16E-19 

2 WikiPathways IL-1 NetPath 13 4.19E-04 GO Process 

Antigen 
processing and 
presentation of 
peptide or 
polysaccharide 
antigen via MHC 
class II 

6.23E-16 

3 WikiPathways Ribosomal 
Proteins 4.3E-04 GO 

Component 
MHC class II 
protein complex 6.23E-16 

4 GO Component Golgi apparatus 4.39E-04 KEGG 
Antigen 
processing and 
presentation 

4.79E-15 

5 GO Component Cell junction 6.75E-04 WFINFLAM Phagocytosis-Ag 
presentation 8.23E-13 

 

AHP based prioritization is performed for both RA data and AD data following the 
association step. For the RA data 7,155 SNPs with p < 0.5 and for the AD data 26.545 SNPs 
with p < 0.05 are considered for prioritization. In the 5-fold cross validation (CV), Naive 
Bayes classifier is used as the supervised learning scheme. Following classification measures 
are used for performance evaluation: (1) Accuracy: (TP + TN) / (P + N), (2) Recall: TP / (TP 
+ FN), (3) Negative Predictive Value (NPV): TN / (TN + FN), (4) Precision: TP / (TP + FP), 
(5) Specificity: TN / (FP + TN). Here, TP denotes True Positive, TN denotes True Negative, 
FP denotes False Positive and FN denotes False Negative for a 2x2 confusion matrix.Table 12 
presents top 10 SNPs prioritized with  the novel AHP algorithm and Table 13 depicts 
prediction performance of resulting SNP sets. 
 

Table 12.  Top 10 SNPs according AHP prioritization of GWAS for  AD data and RA data. 

RANK Alzheimer's Disease Rheumatoid Arthritis 

Chr. SNP P-value P-Value Rank Chr. SNP P-value P-Value Rank 

1 1 rs4651138 0.03702 19,320 6 rs2070600 1.18E-11 89 

2 11 rs2070045 0.02771 14,429 6 rs2256175 3.37E-4 148 

3 1 rs4652769 0.02968 15,460 6 rs3134943 0.001351 248 

4 8 rs3779870 0.04915 25,918 6 rs3134940 0.0001395 209 

5 8 rs10808738 0.02714 14,117 6 rs3093662 0.0002165 218 

6 8 rs4395923 0.02714 14,119 6 rs2256028 0.01838 388 

7 11 rs4936637 0.02771 14,428 6 rs2074488 9.82E-8 101 

8 1 rs6424883 0.04604 23,915 6 rs1063355 8.27E-05 204 

9 1 rs10752893 0.04604 23,920 6 rs9264536 0.3904 5,759 

10 X rs1800464 0.03104 16,393 6 rs2395471 0.2843 2,568 
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Table 13.  5-fold Cross Validation results for AHP based prioritized list of SNPs over disease 
trait for AD and RA data. 

 

Alzheimer's Disease Rheumatoid Arthritis 

  Acc. Rec. NPV Prec. Spec. Acc. Rec. NPV Prec. Spec. 

AHP 0.571 0.636 0.636 0.519 0.519 0.786 0.733 0.800 0.767 0.828 
 

In the next step, the dimension of the AD data is reduced from 26,545 to 596 and the RA data 
is reduced from 7,155 to 481 SNPs by utilizing SA based algorithm while conserving the 
prediction performance. 5-fold classification of SA based list against WEKA based methods 
Chi-square and Relief-F is depicted in Table 14, which shows the performance of the SA 
based selection algorithm against other well-known filtering based attribute selection 
schemes. 
 

Table 14.  5-fold Cross Validation results for SA based selected list of SNPs over disease trait for 
AD and RA data. 

 
Alzheimer's Disease Rheumatoid Arthritis 

Measure SA-SNP Chi-Square Relief-F SA-SNP Chi-Square Relief-F 

Accuracy 0.5306 0.6327 0.4898 0.7160 0.7306 0.7039 

Recall 0.5333 0.6667 0.6000 0.6265 0.7108 0.6988 

NPV 0.7200 0.8077 0.7143 0.7549 0.7922 0.7768 

Precision 0.3333 0.4348 0.3214 0.6541 0.6519 0.6170 

Specificity 0.5294 0.6176 0.4412 0.7764 0.7439 0.7073 
 

5 Conclusions and Future Works 

Here, we have introduced a java based integrated software system, METU-SNP, which can be 
effectively used for the GWAS and post-GWAS analysis of case-control based genotyping 
data for SNP-complex disease association. METU-SNP offers state-of-the-art AHP based 
SNP prioritization and Gene Set Enrichment Analysis frameworks and integrates well known 
third party tools such as PLINK and BEAGLE. METU-SNP, as an all-in-one GWAS 
application, offers a user friendly Graphical User Interface to manage the third party tools and 
it is equipped with novel functionality to prioritize and filter the most relevant SNPs from a 
massive initial SNP set.  

METU-SNP version 1.0 is a java based desktop application with a MySQL back-end. The 
database integrates biological data from different major databases such as dbSNP, Entrez 
Gene, KEGG, Gene Ontology etc. The database structure currently lacks automated update 
functionality and it is designed to optimize the performance of AHP algorithm. Currently we 
are developing a new integrated SNP database with automated update functionality to 
periodically synchronize with the major biological databases. As a next step, METU-SNP 
functionality will be ported into the web environment, which will be hosted on a dedicated 
“secure” server within Middle East Technical University (METU) premises. The web based 
version will help us to reach a wider range of researchers worldwide. Additionally, 
development of a tool for graphical representation of the outputs and snp-gene-pathway 
relations, along with increased compatibility with different file formats are expected to be 
incorporated in the web based version. 
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The METU-SNP application provides researchers with a powerful tool that can be effectively 
used for GWAS of SNP genotyping data for case-control type analysis. We believe that 
METU-SNP will facilitate the reliable identification of SNPs that are involved in the etiology 
of complex diseases and ultimately support timely identification of genomic disease 
biomarkers, and the development of personalized medicine approaches and the targeted drug 
discoveries. 
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