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Abstract

When a mesh of simplicial elements (triangles or tetrahedra) is used to form a piecewise linear approximation of a function, the
accuracy of the approximation depends on the sizes and shapes of the elements. In finite element methods, the conditioning of
the stiffness matrices also depends on the sizes and shapes of the elements. This paper explains the mathematical connections
between mesh geometry, interpolation errors, and stiffness matrix conditioning. These relationships are expressed by error bounds
and element quality measures that determine the fitness of a triangle or tetrahedron for interpolation or for achieving low condition
numbers. Unfortunately, the quality measures for these two purposes do not agree with each other; for instance, small angles are
bad for matrix conditioning but not for interpolation. Several of the upper and lower bounds on interpolation errors and element
stiffness matrix conditioning given here are tighter than those that have appeared in the literature before, so the quality measures
are likely to be unusually precise indicators of element fitness.
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1 Introduction

Interpolation, contouring, and finite element methods rely
on the availability of meshes whose elements have the right
shapes and sizes. The accuracy or speed of some applica-
tions can be compromised by just a few bad elements. Algo-
rithms for mesh generation and mesh improvement are ex-
pected to produce elements whose “quality” is as good as
possible. However, forty-odd years after the invention of the
finite element method, our understanding of the relationship
between mesh geometry, numerical accuracy, and stiffness
matrix conditioning remains incomplete, even in the simplest
cases. Engineering experience and asymptotic mathemati-
cal results have taught us that equilateral elements are usu-
ally good, and skinny or skewed elements are usually bad.
However, there has been insufficient mathematical guidance
for, say, choosing the better of two elements of intermediate
quality.

This paper examines triangular and tetrahedral meshes used
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for piecewise linear interpolation (including finite element
methods with piecewise linear basis functions). The quality
of a mesh depends on the application that uses it. Interpola-
tion accuracy is important for most tasks. For finite element
methods, discretization errors and the condition number of
the global stiffness matrix are important too. Error bounds
and quality measures are provided here that estimate the in-
fluence of element geometry on accuracy and conditioning,
and can guide numerical analysts and mesh generation algo-
rithms in creating and evaluating meshes.

Interpolation on a triangular or tetrahedral mesh constructs a
function that attempts to approximate some “true” function,
whose exact identity might or might not be known. For ex-
ample, a surveyor may know the altitude of the land at each
point in a large sample, and use interpolation over a trian-
gulation to approximate the altitude at points where readings
were not taken. If a triangulation’s sole purpose is as a ba-
sis for interpolation, the primary criterion of its fitness is how
much the interpolated function differs from the true function.
There are two types of interpolation error that matter for
most applications: the difference between the interpolated
function and the true function, and the difference between
the gradient of the interpolated function and the gradient of
the true function. Errors in the gradient can be surprisingly



important, whether the application is rendering, mapmaking,
or simulation, because they can compromise accuracy or cre-
ate unwanted visual artifacts. In finite element methods they
contribute to discretization errors.

If the true function is smooth, the error in the interpolated
function can be reduced simply by making the triangles or
tetrahedra smaller. However, the error in the gradient is
strongly affected by the shape of the elements as well as their
size, and this error is often the primary arbiter of element
quality. The enemy is large angles: the error in the gradient
can grow arbitrarily large as angles approach 180◦. Bounds
on the errors associated with piecewise linear interpolation
are discussed in Section 2.

If your application is the finite element method, then the
condition number of the stiffness matrix associated with the
method should be kept as small as possible. Poorly con-
ditioned matrices affect linear equation solvers by slowing
them down or introducing large roundoff errors into their re-
sults. Element shape has a strong influence on matrix condi-
tioning, but unlike with interpolation errors, small angles can
have as bad an effect as large ones. The relationship between
element shape and matrix conditioning depends on the par-
tial differential equation being solved and the basis functions
and test functions used to discretize it. Bounds on condition
number must be derived on a case-by-case basis. The stiff-
ness matrices associated with Poisson’s equation on linear
elements are studied in Section 3.

The discretization error is the difference between the ap-
proximation computed by the finite element method and the
true solution. Like stiffness matrix condition numbers, dis-
cretization error depends in part on the partial differential
equation and the method of discretization. However, dis-
cretization error is closely related to the interpolation errors,
and is mitigated by elements whose shapes and sizes are se-
lected to control the interpolation errors.

Quality measures for evaluating and comparing elements are
discussed in Section 4. These include measures of an ele-
ment’s fitness for interpolation and stiffness matrix forma-
tion. The quality measures discussed in this paper can be
used in either an a priori or a posteriori fashion, and are de-
signed to interact well with numerical optimization methods
for mesh smoothing.

The results of this paper can be extended to anisotropic
meshes, whose elements are elongated in response to prop-
erties of an interpolated function or a differential equa-
tion. Specifically, long, thin, correctly oriented elements can
achieve the best tradeoff between interpolation error and the
number of elements when the function being interpolated
has a large curvature along one axis and very little curva-
ture along an orthogonal axis. Elongated, correctly oriented
elements can achieve the best matrix conditioning for partial
differential equations whose coefficients create anisotropy.
These extensions are omitted because of space, but they ap-
pear in the full-length version of this paper. All the deriva-
tions and proofs of the results may be found there too.
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Figure 1: Quantities associated with triangles and
tetrahedra.

Table 1 is a reference chart for the notation used in this pa-
per. Some of the quantities are illustrated in Figure 1. Trian-
gle vertices and edges are numbered from 1 to 3, with vertex
vi opposite edge i. Tetrahedron vertices and faces are num-
bered from 1 to 4, with vertex vi opposite face i.

The value rcirc is the radius of the circumcircle or circum-
sphere of a triangular or tetrahedral element t, rin is the ra-
dius of the incircle or insphere of t, and rmc is the radius
of the min-containment circle or sphere of t. The circumcir-
cle, or circumscribed circle, of a triangle is the unique circle
that passes through all three of its vertices, and the circum-
sphere of a tetrahedron passes through all four of its vertices.
The incircle, or inscribed circle, of a triangle is the smallest
circle that touches all three of its sides, and the insphere of
a tetrahedron is the smallest sphere that touches all four of
its triangular faces. The min-containment circle of a triangle
is the smallest circle that encloses the triangle; its center is
either the circumcenter of the triangle or a midpoint of one
of its edges. The min-containment sphere of a tetrahedron
is the smallest sphere that encloses it; its center is either the
circumcenter of the tetrahedron, the circumcenter of one of
its triangular faces, or a midpoint of one of its edges.

Some of the quantities are signed, which means that they are
negative for inverted elements. To say an element is inverted
is to presuppose that it has a fixed topological orientation,
defined by an ordering of its vertices. For instance, a trian-
gle is inverted if its vertices are supposed to occur in coun-
terclockwise order, but upon inspection occur in clockwise
order. The topology of a mesh determines the orientation of
each element relative to the orientations of all the others.

2 Element Size, Element Shape, and
Interpolation Error

This section describes the mathematical relationship be-
tween the size and shape of an element and the errors in a



Table 1: Notation used in this paper. Signed quantities are negative for inverted elements. Edge lengths are always
nonnegative.

A The signed area of a triangle.

V The signed volume of a tetrahedron.

A1, A2, A3, A4 The unsigned areas of the faces of a tetrahedron.

Arms The root-mean-square face area of a tetrahedron,
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`1, `2, `3 The edge lengths of a triangle.

`rms The root-mean-square edge length of a triangle,

√

√

√

√

1

3

3
∑

i=1

`2i .

`min, `med, `max The minimum, median, and maximum edge lengths of an element. (`med is defined for triangles only.)

`ij The length of the edge connecting vertices vi and vj .

amed, amax

The median- and maximum-magnitude signed altitudes of a triangle: amed = 2A/`med and
amax = 2A/`min.

rcirc

The signed circumradius of an element (the radius of its circumscribing circle or sphere). To avoid
possible division by zero, calculate 1/rcirc instead of rcirc.

rin

The signed inradius of an element (the radius of its inscribed circle or sphere). For a triangle,
rin = 2A/(`1 + `2 + `3). For a tetrahedron, rin = 3V/

∑

4

i=1
Ai.

rmc

The unsigned radius of the min-containment circle or sphere of an element (the smallest circle or sphere
that encloses the element).

θi The angle at vertex vi of a triangle.

θmin, θmax The signed minimum and maximum angles of a triangle.

θij In a tetrahedron, the dihedral angle at the edge connecting vertices vi and vj .

piecewise linear approximation of a function.

The celebrated paper of Babuška and Aziz [2] demonstrates
that the accuracy of finite element solutions on triangular
meshes degrades seriously as angles are allowed to approach
180◦, but the same is not true as angles are allowed to ap-
proach 0◦, so long as the largest angles are not too large.
In other words, small angles are not deleterious to the inter-
polation accuracy or the discretization error (although they
may be deleterious to the stiffness matrix). Previously, re-
searchers had believed that small angles must be prohibited.

The Babuška–Aziz paper is more often cited than under-
stood, as it is cast in the language of functional analysis.
Its results are asymptotic and offer little guidance in, say,
how to compare two differently-shaped elements of interme-
diate quality. This section presents error bounds (and Sec-
tion 4 presents related quality measures) that can be used to
accurately judge the shape and size of an element. These
bounds are stronger than the classical bounds of approxi-
mation theory—asymptotically stronger in some cases. The
bounds for triangles are tight to within a small constant fac-
tor. Unfortunately, all proofs are omitted because of con-
straints on space.

Let T be a triangular or tetrahedral mesh, and let f(p) be
a continuous scalar function defined over the mesh. Let
g(p) be a piecewise linear approximation to f(p), where
g(v) = f(v) at each vertex v of T , and g(p) is linear over
any single element of T . Table 2 gives bounds on two types
of interpolation error associated with g. The norm ‖f −g‖∞
is defined to be the maximum pointwise interpolation er-
ror over the element t, maxp∈t |f(p) − g(p)|. The norm
‖∇f − ∇g‖∞ is the maximum magnitude of the pointwise
error in the interpolated gradient, maxp∈t |∇f(p)−∇g(p)|.

If f(p) is arbitrary, g(p) can be an arbitrarily bad approxi-
mation of f(p). The error can be bounded only if f(p) is
constrained in some way. A reasonable constraint, which
yields the error bounds in Table 2, is to assume that f(p)
is smooth and the absolute curvature of f(p) is bounded in
each triangle t by some constant 2ct (where ct may differ
for each t). The curvature f ′′

d (p) of the function f at the
point p along an arbitrary direction vector d is its directional
second derivative along d. Specifically, let the point p have



Table 2: Bounds on interpolation error for a single element t. The function g is a linear approximation of f over t.
All bounds assume that the magnitude of the directional second derivative of f does not exceed 2ct anywhere in the
element t. The “weaker but simpler upper bounds” are not asymptotically weaker; they are weaker than the stronger
upper bounds by a factor of no more than three. Each lower bound implies that there exists some function f for which
the error is at least as large as the lower bound.

‖f − g‖∞ ‖∇f −∇g‖∞

Upper bound, triangles ctr
2

mc ct
`max`med (`min + 4rin)

2A

Weaker but simpler upper
bound, triangles

ct
`2max

3
ct

3`max`med`min

2A

Lower bound, triangles ctr
2

mc 2ct max

{

rcirc, amax,
√

`2max − a2

med

}

Note: for triangles, ct
`max`med`min

2A
= ct

`max

sin θmax

= 2ctrcirc

Upper bound, tetrahedra ctr
2

mc ct

1

3V

∑

1≤i<j≤4
AiAj`

2

ij + 2 maxi

∑

j 6=i Aj`ij
∑

4

m=1
Am

Weaker but simpler upper
bound, tetrahedra

ct
3`2max

8
ct

∑

1≤i<j≤4
AiAj`

2

ij

V
∑

4

m=1
Am

Lower bound, tetrahedra ctr
2

mc 2ctrcirc

Note: for tetrahedra, ct

∑

1≤i<j≤4
AiAj`

2

ij

3V
∑

4

m=1
Am

= ct

∑

1≤i<j≤4
`2ij`kl/ sin θkl

2
∑

4

m=1
Am

,

where i, j, k, and l are distinct in each term of the summation

coordinates (x, y, z), and consider the Hessian matrix

H(p) =







∂2

∂x2 f(p) ∂2

∂x∂y
f(p) ∂2

∂x∂z
f(p)

∂2

∂x∂y
f(p) ∂2

∂y2 f(p) ∂2

∂y∂z
f(p)

∂2

∂x∂z
f(p) ∂2

∂y∂z
f(p) ∂2

∂z2 f(p)






.

(For the two-dimensional case, delete the last row and col-
umn of H(p).) To support matrix notation, each point or
vector p is treated as a d × 1 vector whose transpose pT is
a 1 × d vector. The notation d

T H(p)d denotes the scalar
result of the matrix multiplication

d
T H(p)d =

[

dx dy dz

]

H(p)





dx

dy

dz



 .

For any unit direction vector d, the directional curvature is
f ′′
d (p) = d

T H(p)d. If d is not a unit vector, it is easy
to show that f ′′

d (p) = d
T H(p)d/|d|2. Assume that f is

known to satisfy the following curvature constraint:1 for any
direction d,

|f ′′
d (p)| ≤ 2ct.

1For those familiar with matrix norms, note that ‖H‖2 =
max|d|=1 |d

T H(p)d|, so the constraint can be written ‖H‖2 ≤
2ct. An equivalent statement is that the eigenvalues of H are all in
[−2ct, 2ct].

How does one obtain bounds on curvature to use in gener-
ating, evaluating, or improving a mesh? The per-element
curvature bounds 2ct sometimes come from a priori error
estimators, based on knowledge of the function to be inter-
polated. Sometimes they are provided by a posteriori error
estimators, which are estimated from a finite element solu-
tion over another mesh of the same domain. If bounds on
curvature are not available, it might not be possible to bound
the interpolation error, but the formulae in Table 2 may still
be used to compare elements, by dropping ct from each for-
mula. This is equivalent to assuming that there is some un-
known bound on curvature that holds everywhere.

Let’s examine the bounds. The upper bound on ‖f − g‖∞,
the maximum interpolation error over t, is ctr

2

mc. This
bound is tight: for any triangle or tetrahedron t with min-
containment radius rmc, there is a function f such that ‖f −
g‖∞ = ctr

2
mc. This bound (and its tightness) was first de-

rived by Waldron [12], and it applies to higher-dimensional
simplicial elements as well.

Interestingly, Rajan [10] shows that for any set of vertices in
any dimensionality, the Delaunay triangulation of those ver-
tices minimizes the maximum min-containment radius (as
compared with all other triangulations of the vertices).

It is interesting to compare this bound to the bounds usually
given for interpolation, which implicate the maximum edge



Figure 2: A visual illustration of how large angles, but not small angles, can cause the error ∇f − ∇g to explode. In
each triangulation, 200 triangles are used to render a paraboloid.

length of each element. To obtain a specified level of accu-
racy, a mesh is refined until no edge is larger than a specified
length. However, the min-containment radius of an element
gives a tighter bound on ‖f − g‖∞ than the maximum edge
length.

Unfortunately, the min-containment radius rmc is expensive
to compute. The maximum edge length `max is a much faster
alternative. For a triangle, rmc ≤ `max/

√
3, and for a tetra-

hedron, rmc ≤
√

3/8`max. Substitution yields the faster-to-
compute but slightly looser bounds ‖f − g‖∞ ≤ ct`

2

max/3
(for triangles), ‖f − g‖∞ ≤ 3ct`

2

max/8 (for tetrahedra).

The error f − g is not the only concern. In many applica-
tions, g is expected to accurately represent the gradients of
f , and the error ∇f−∇g is just as important or more impor-
tant than f − g. Consider using the finite element method to
find a piecewise linear approximation h to the true solution
f of a self-adjoint second-order partial differential equation.
Although g and h are both piecewise linear functions, they
differ because h does not usually equal f at the mesh ver-
tices. Nevertheless, the discretization error f − h normally
can be bounded only if both f − g and ∇f − ∇g can be
bounded. Simulations of mechanical deformation provide a
second example, where the accuracy of ∇g is particularly
important because ∇f (the strains) is of more interest than f
(the displacements). Visualization of height fields provides
a third example, as we shall see shortly.

Newly derived bounds on ‖∇f −∇g‖∞ appear in Table 2.
The bounds reveal that ‖∇f − ∇g‖∞ can grow arbitrarily
large as elements become arbitrarily badly shaped, unlike
‖f−g‖∞. Observe that the area or volume appears in the de-
nominator of these bounds. Imagine distorting a triangle or
tetrahedron so that its area or volume approaches zero. Then
∇g may or may not approach infinity, depending on whether
the numerator of the error bound also approaches zero.

First imagine an isosceles triangle with one angle near 180◦

and two tiny angles. As the large angle approaches 180◦, A
approaches zero and the edge lengths do not change much,
so the error bounds grow arbitrarily large. Now imagine an

35
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65

40 20

20

40
40

40

20

Figure 3: As the large angle of the triangle approaches
180◦, or the sliver tetrahedron becomes arbitrarily flat,
the magnitude of the vertical component of ∇g be-
comes arbitrarily large.

isosceles triangle with one tiny angle and two angles near
90◦. As the tiny angle approaches zero, A approaches zero,
but `min and rin approach zero at the same rate, so the error
bounds change little. Hence, angles near 180◦ are harmful,
whereas angles near zero are, by themselves, benign. The
same can be said of the dihedral angles of tetrahedra.

Figure 2 visually illustrates these effects. Three triangu-
lations, each having 200 triangles, are used to render a
paraboloid. The mesh of long thin triangles at right has no
angle greater than 90◦, and visually performs only slightly
worse than the isotropic triangulation at left. (The slightly
worse performance is because of the longer edge lengths.)
However, the middle paraboloid looks like a washboard, be-
cause the triangles with large angles have very inaccurate
gradients.

Figure 3 shows why this problem occurs. The triangle illus-
trated has values associated with its vertices that represent
heights (or, say, an approximation of some physical quan-
tity). The values of g at the endpoints of the bottom edge are
35 and 65, so the linearly interpolated value of g at the cen-
ter of the edge is 50. This value is independent of the value
associated with the top vertex. As the angle at the upper ver-
tex approaches 180◦, the interpolated point (with value 50)
becomes arbitrarily close to the upper vertex (with value 40).
Hence, ∇g may become arbitrarily large (in its vertical com-
ponent), and is clearly specious as an approximation of ∇f ,



even though g = f at the vertices.

The same effect is seen between two edges of a sliver tetra-
hedron that pass near each other, also illustrated in Figure 3.
A sliver is a tetrahedron that is nearly flat even though none
of its edges is much shorter than the others. A typical sliver
is formed by uniformly spacing its four vertices around the
equator of a sphere, then perturbing one of the vertices just
off the equator so that the sliver has some (but not much)
volume.

Because of this sensitivity, mesh generators usually choose
the shapes of elements to control ‖∇f − ∇g‖∞, and not
‖f − g‖∞, which can be reduced simply by using smaller
elements. Section 4 presents quality measures that judge the
shape of elements based on their fitness for interpolation.

Table 2 gives two upper bounds on ‖∇f − ∇g‖∞ over a
triangle. The “weaker but simpler upper bound” is not as
good an indicator as the stronger upper bound, but it has the
advantages of being smooth almost everywhere (and there-
fore more amenable to numerical optimization) and faster to
compute. Both upper bounds are almost tight, to within a
factor of three: for any triangle t, there is a function f such
that ‖∇f −∇g‖∞ = 2ctrcirc, and the weaker upper bound
is 6ctrcirc.

These bounds are interesting because the two-dimensional
Delaunay triangulation minimizes the maximum circumra-
dius, just as it minimizes the maximum min-containment ra-
dius. (Unfortunately, this property does not hold in three or
more dimensions, unlike Rajan’s min-containment result.)

The upper bound of 6ctrcirc and the lower bound of 2ctrcirc

can be expressed in three different forms (see the first note
in Table 2), one of which implicates the largest angle of the
triangle. The upper bound 3ct`max/ sin θmax can be loosely
decomposed into a size contribution 3ct`max and a shape
contribution 1/ sin θmax. This seems to suggest that a trian-
gular mesh generator should seek to minimize the maximum
angle, but Section 4 discusses slightly better shape measures.
For triangles with no large angle, the error decreases pro-
portionately to the length of the longest edge. (Incidentally,
Bramble and Zlámal [5] derived a well-known upper bound
proportional to ct`max/ sin θmin. Replacing θmin with θmax,
as done here, obviously leads to different conclusions.)

The bounds for tetrahedra are more difficult to interpret than
the bounds for triangles. The alternative form for the error
bound (bottom of Table 2) suggests that the error may ap-
proach infinity as the sine of a dihedral angle θkl approaches
zero. However, the error does not approach infinity if the
length `ij of the opposite edge approaches zero at the same
rate as the angle. If an angle θkl is small but the opposite
edge length `ij is not, the tetrahedron must have a large di-
hedral angle as well. Small dihedral or planar angles are not
problematic for interpolation unless a large angle is present
too.

Figure 4 provides some insight into which tetrahedron
shapes are good or bad for accurate interpolation. The

Bad

Good

Figure 4: The top four tetrahedron shapes incur lit-
tle interpolation error. The bottom three tetrahedron
shapes can cause ‖∇f − ∇g‖∞ to be unnecessarily
large, and to grow without bound if the tetrahedra are
flattened.

“good” tetrahedra are of two types: those that are not flat,
and those that can grow arbitrarily flat without having a large
planar or dihedral angle. The “bad” tetrahedra have error
bounds that explode, and a dihedral angle or a planar angle
that approaches 180◦ , as they are flattened. (Unfortunately,
most of the “good” tetrahedra in the figure are bad for stiff-
ness matrix conditioning because of the small angles.)

The upper bounds for tetrahedra are not known to be asymp-
totically tight, but I conjecture that they are. Unfortunately,
it is difficult to develop a strong lower bound that covers all
tetrahedron shapes. However, the no-large-angle condition is
necessary. For any tetrahedron with a dihedral angle or pla-
nar angle approaching 180◦, there is a function f for which
‖∇f −∇g‖∞ approaches infinity.

3 Element Size, Element Shape, and
Stiffness Matrix Conditioning

This section describes the mathematical relationship be-
tween the shapes of elements and the condition numbers of
the stiffness matrices used in the finite element method. It
assumes that the reader is familiar with the finite element
method; no introduction is given here, but many good texts
are available, including Johnson [8], Strang [11], and Becker,
Carey, and Oden [3]. The main points are that both small
and large angles can cause poor conditioning, and that the
relationship can be quantified in a way useful for comparing
differently shaped elements.

The finite element method is different for every partial dif-
ferential equation, and unfortunately, so is the relationship
between element shape and matrix conditioning. As a con-
crete example, I will study the Poisson equation,

−∇2f(p) = η(p),

where η(p) is a known function of p, and the goal is to find an
approximation h(p) of the unknown function f(p) for some
specified boundary conditions.

In the Galerkin formulation of the finite element method, the



piecewise approximation h is composed from local piece-
wise basis functions, which are in turn composed from shape
functions. Each shape function is defined on just one ele-
ment. If h is piecewise linear, then the shape functions are
the barycentric coordinates of p.

For each element t, the finite element method constructs a
(d + 1) × (d + 1) element stiffness matrix Kt, where d is
the dimension. The element stiffness matrices are assem-
bled into an n× n global stiffness matrix K, where n is (for
Poisson’s equation on linear elements) the number of mesh
vertices. The assembly process sums the entries of each el-
ement stiffness matrix into the entries of the global stiffness
matrix.

The difficulty of solving the linear system of equations as-
sociated with the finite element method typically grows with
the condition number κ = λK

max/λK
min of K, where λK

max

and λK
min are the largest and smallest eigenvalues of K. A

large condition number means that iterative solvers will run
slowly, and direct methods may incur excessive roundoff er-
ror.

λK
min is closely tied to properties of the physical system be-

ing modeled, and to the sizes of the elements. Fried [7] of-
fers a lower bound for λK

min that is proportional to the area
or volume of the smallest element, and an upper bound pro-
portional to the largest element. Fortunately, λK

min is not
strongly influenced by element shape.

In contrast, λK
max can be made arbitrarily large by a single

badly-shaped element. λK
max is related to the largest eigen-

values of the element stiffness matrices as follows. For each
element t, let λt

max be the largest eigenvalue of its element
stiffness matrix. Let m be the maximum number of elements
meeting at a single vertex. Fried shows that

max
t

λt
max ≤ λK

max ≤ m max
t

λt
max,

so κ is roughly proportional to the largest eigenvalue among
the element stiffness matrices.

Let’s examine some element stiffness matrices and their
eigenvalues. The element stiffness matrix for a triangle is

Kt =
1

8A





2`21 `23 − `21 − `22 `22 − `21 − `23
`23 − `21 − `22 2`22 `21 − `22 − `23
`22 − `21 − `23 `21 − `22 − `23 2`23





=
1

2





cot θ2 + cot θ3 − cot θ3 − cot θ2

− cot θ3 cot θ1 + cot θ3 − cot θ1

− cot θ2 − cot θ1 cot θ1 + cot θ2



 .

If one of the angles approaches 0◦ or 180◦, its cotangent
approaches infinity, and so does λt

max. Therefore, both small
and large angles can ruin matrix conditioning.

The eigenvalues of Kt are the roots of its characteristic poly-
nomial p(λ). For triangles,

p(λ) = λ3 − `21 + `22 + `23
4A

λ2 +
3

4
λ.

The roots of this polynomial are λ = 0 and

λ =
`21 + `22 + `23 ±

√

(`2
1
+ `2

2
+ `2

3
)2 − 48A2

8A
.

The largest root λt
max is a scale-invariant indicator of the

quality of the triangle’s shape. (Scale-invariant means that if
t is scaled uniformly without any change to its shape, λt

max

does not change.) This eigenvalue is used as a quality mea-
sure in Section 4. If a simpler or smoother indicator is de-
sired, the radical can be dropped, but the simplified bound is
only tight to within a factor of two.

`21 + `22 + `23
8A

≤ λt
max ≤ `21 + `22 + `23

4A
.

Suppose the mesh has no badly shaped triangles—for ev-
ery triangle t, λt

max is bounded below some small constant.
In this case, λK

max is also bounded below a small constant.
Because the lower bound on the smallest global eigenvalue
λK

min is proportional to the area Amin of the smallest trian-
gle, κ ∈ O(1/Amin). If the triangles are of uniform size,
κ ∝ 1/`2 where ` is the typical edge length. Since the area
of the domain is fixed, κ ∝ n where n is the number of
mesh vertices. (The number of vertices and elements is typ-
ically dictated by the need to limit the discretization error,
and therefore the interpolation error.) Highly nonuniform
meshes suffer from worse conditioning. This serves as a re-
minder that the urge to refine meshes to reduce interpolation
and discretization errors can lead to other sorts of trouble.

If t is a linear tetrahedron, the element stiffness matrix is

Kt =
1

6









∑

16=i<j `ij cot θij −`34 cot θ34

−`34 cot θ34

∑

26=i<j 6=2
`ij cot θij

−`24 cot θ24 −`14 cot θ14

−`23 cot θ23 −`13 cot θ13

−`24 cot θ24 −`23 cot θ23

−`14 cot θ14 −`13 cot θ13
∑

36=i<j 6=3
`ij cot θij −`12 cot θ12

−`12 cot θ12

∑

i<j 6=4
`ij cot θij









.

Tedious manipulation reveals that the characteristic polyno-
mial of Kt is

p(λ) = λ4 −
∑

4

i=1
A2

i

9V
λ3 +

∑

1≤j<k≤4
`2jk

36
λ2 − V

9
λ.

There does not seem to be a simple expression for the roots
of this polynomial (except the smallest root λ = 0), but they
can be found numerically or by the cubic equation. How-
ever, these are expensive computations. Furthermore, if we
wish to use numerical optimization methods to move the ver-
tices and improve the element quality, it is helpful to be able
to compute the gradient of λt

max with respect to the vertex
positions. This gradient is expensive to compute without a
closed-form expression, and it is singular for an equilateral
tetrahedron. For these reasons, a simpler and smoother mea-
sure of the conditioning of Kt is useful.



An estimate of λt
max follows from the fact that each element

stiffness matrix is known to be positive indefinite, so all the
eigenvalues are nonnegative. The second coefficient of the
characteristic polynomial is the (negated) sum of the eigen-
values, one of which is known to be zero, so

∑

4

i=1
A2

i

27V
≤ λt

max ≤
∑

4

i=1
A2

i

9V
,

giving upper and lower bounds tight to within a factor of
three.

λt
max and λK

max are not scale-invariant (as they are for tri-
angles). If t is scaled uniformly, λt

max grows linearly with
`max. Thus, the largest tetrahedron in a mesh may determine
the largest eigenvalue of the global stiffness matrix, and the
shapes of the largest tetrahedra may be more important than
the shapes of the smaller ones. However, this must not be
misinterpreted to imply that refining tetrahedra is always a
good way to improve the condition number, because λK

min is
proportional to the volumes of the tetrahedra. A better rec-
ommendation is to use tetrahedra that have good shapes and
are as uniform as they can be without compromising speed
or interpolation accuracy. To judge tetrahedron shapes, Sec-
tion 4 discusses how to define scale-invariant quality mea-
sures related to λt

max.

If the mesh has no badly-shaped tetrahedra, the largest global
eigenvalue λK

max is proportional to the length `max of the
longest edge in the entire mesh. The lower bound on λK

min is
proportional to the volume Vmin of the smallest tetrahedron,
so κ ∈ O(`max/Vmin). If the tetrahedra are of uniform size,
κ ∝ 1/`2, just like in the two-dimensional case. Hence,
κ ∝ n2/3. However, nonuniform meshes and meshes with
poorly-shaped tetrahedra can have much worse conditioning.

4 Quality Measures

Ideally, an algorithm for mesh generation or mesh improve-
ment would optimize the fidelity of the interpolated surface
over the mesh, or the accuracy of the approximate solution
of a system of partial differential equations. However, these
criteria are difficult and expensive to measure. At any rate, a
single mesh is typically used to interpolate several different
surfaces, or to solve several different numerical problems.

Instead, mesh generation and improvement algorithms usu-
ally select a single, easily-computed quality measure to eval-
uate the individual elements they create. For instance, a pro-
gram might try to maximize the minimum angle.

Table 3 tabulates several quality measures for evaluating tri-
angular and tetrahedral elements. These measures are related
to the fitness of the elements for interpolation and stiffness
matrix formation. For each measure, the higher the value
of the quality measure, the better the element. All the mea-
sures are positive for properly oriented elements, zero (or un-
defined) for degenerate elements, and negative for inverted
elements. Some of the measures depend on both size and
shape, and some (the scale-invariant measures) depend on
shape only.

In an ideal mesh, the sizes of the elements are controlled by
the need to bound ‖f − g‖ and ‖∇f −∇g‖, for which pur-
pose the error bounds are intended. Each element should
be small enough that both these errors are below some
application-determined bound—but no smaller, because an
application’s running time is tied to the number of elements.

The shapes of elements are usually controlled by the need
to bound ‖∇f −∇g‖ and the largest eigenvalue of the ele-
ment stiffness matrix. For these purposes either the size-and-
shape quality measures or the scale-invariant quality mea-
sures might be best, depending on the circumstances. For ap-
plications that have no stiffness matrix and do not care about
accurate gradients (the latter being unusual), the shapes of
elements are controlled by the need to bound ‖f − g‖. (For
most applications, the scale-invariant measures related to
‖f − g‖∞ should rarely be used.)

The size-and-shape quality measures for interpolation are
just the reciprocals of the error bounds. (Constants have been
dropped because the measures are used only to compare el-
ements.) Maximizing an element’s measure is equivalent to
minimizing its error. The reciprocals of the error bounds,
rather than the error bounds themselves, are preferable for
several reasons: the reciprocals are not infinite for degener-
ate elements; they vary continuously from negative for in-
verted elements to positive for correctly oriented elements;
and they have better behaved derivatives (with respect to the
position of each vertex), a helpful property for optimization-
based mesh smoothing methods. Some of the quality mea-
sures vary smoothly with the vertex positions, and some
do not. The smooth measures simplify optimization-based
smoothing, but they are based on weaker bounds, so they are
less accurate indicators than the nonsmooth measures.

For some purposes, scale-invariant measures of quality are
more appropriate. Size-and-shape measures give no consid-
eration to the number of elements needed to solve a problem,
but the number should be controlled, because the computa-
tion time for applications is at least linearly proportional to
the number of elements. The number of elements needed to
cover a domain is inversely proportional to their average area
or volume. How can we measure an element’s ability to of-
fer low error and high volume? The first impulse might be
to express the ratio of error to area or volume, but the error
‖∇f − ∇g‖ varies according to the square root of area or
the cube root of volume, so a ratio is not appropriate.

A better idea is to use a measure that compares an element’s
error bound with other elements of the same area or volume.
The method I advocate here is to scale an element t uni-
formly until its area or volume is one, then evaluate its qual-
ity using the size-and-shape quality measure. This two-step
procedure can be replaced by a single formula that yields ex-
actly the same result. To find this formula, begin with the
size-and-shape quality measure. Multiply every length by a
scaling factor s, every area by s2, and every volume by s3.
Then set s = A−1/2 if t is a triangle, or s = V −1/3 if t
is a tetrahedron, thereby scaling the element so its area or
volume is one.



Table 3: Quality measures related to interpolation error or stiffness matrix conditioning for a single element. λmax is the
largest eigenvalue of an element stiffness matrix (see Section 3), and is computed numerically from the characteristic
polynomial or by the cubic equation. See Section 1 for explanations of other notation.

Triangles Tetrahedra
Interpolation quality measures, based on ‖f − g‖∞
Size and shape
(mostly size)

1

ctr2
mc

1

ctr2
mc

Scale-invariant
(rarely useful)

A

r2
mc

V

r3
mc

Interpolation quality measures, based on ‖∇f −∇g‖∞

Size and shape
A

ct`max`med(`min + 4|rin|)
V
∑

4

m=1
Am

ct(
∑

1≤i<j≤4
AiAj`2ij + 6|V |maxi

∑

j 6=i Aj`ij)

Size and shape
(smooth)

A

ct`1`2`3

V
∑

4

m=1
Am

ct

∑

1≤i<j≤4
AiAj`2ij

Scale-invariant
A

(`max`med(`min + 4|rin|))2/3 V

(

∑

4

m=1
Am

∑

1≤i<j≤4
AiAj`2ij + 6|V |maxi

∑

j 6=i Aj`ij

)3/4

Scale-invariant
(smooth)

A

(`1`2`3)2/3 V

(

∑

4

m=1
Am

∑

1≤i<j≤4
AiAj`2ij

)3/4

Conditioning quality measures

Scale-invariant
A

3`2rms +
√

(3`2rms)2 − 48A2

V 1/4

λ
3/4

max

Scale-invariant
(smooth)

A

`2rms

V

A
3/2

rms

This procedure converts the measure A/(ct`1`2`3) to
A3/2/(`1`2`3). (The constant ct is dropped because it is ir-
relevant for shape comparisons. The curvature bound deter-
mines the ideal size, but not the ideal shape.) This measure
is flawed for two reasons: it is undefined if A is negative,
and its gradient (with respect to the position of any vertex) is
zero for degenerate elements, which can be crippling if the
measure is used as an objective function for optimization-
based smoothing. This problem is fixed by raising the qual-
ity measure to a power of 2/3 to ensure that the numerator
is A, yielding the quality measure A/(`1`2`3)

2/3. (For the
tetrahedral measure, use a power of 3/4 to ensure that the
numerator is V .) The justification for doing this is that rais-
ing the quality measure to a power does not change which
element is preferred in any comparison. The same treatment
generates all the scale-invariant measures in Table 3.

For matrix conditioning, only scale-invariant measures are
offered here. Unlike with interpolation error, the effect of
an element’s size on conditioning cannot be judged in isola-
tion. To minimize the condition number, the element sizes
should be kept as uniform as possible. A quality measure for
a single element cannot measure this uniformity.

Figure 5 illustrates the two nonsmooth quality measures re-
lated to ‖∇f −∇g‖∞ over a triangle. In these contour plots,

two vertices of a triangle are fixed at the coordinates (0, 0)
and (1, 0), and the third vertex varies freely. The contours il-
lustrate the quality of the triangle as a function of the position
of the third vertex: the lighter the region, the higher the qual-
ity. Observe that the scale-invariant measure penalizes small
angles more strongly than the size-and-shape measure, be-
cause triangles with small angles consume computation time
without covering much area.

Figure 6 illustrates the two quality measures related to
‖∇f −∇g‖∞ over a tetrahedron. Three vertices of a tetra-
hedron are fixed at the coordinates (0, 0, 0), (

√
3/2, 1/2, 0),

and (
√

3/2,−1/2, 0), and the fourth vertex varies freely
along the x- and z-axes. Each plot depicts a cross-section
of space, y = 0, as Figure 7 shows.

Figure 8 illustrates the two quality measures (one for trian-
gles, one for tetrahedra) associated with the maximum eigen-
value of the element stiffness matrix.

Should you use an error bound, a size-and-shape measure,
or a scale-invariant measure? The answer depends on where
and how the bound or measure is used. The rest of this
section gives suggested answers for mesh refinement, mesh
smoothing, topological transformations, and point place-
ment. For mesh refinement and topological transformations,
the error bounds are most useful when an application can
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Figure 5: Two nonsmooth interpolation-based quality
measures for a triangle with vertices (0, 0), (1, 0), and
(x, y). The top measure is a size-and-shape measure;
the bottom measure is scale-invariant.

establish pointwise upper bounds on the sizes of the inter-
polation errors it is willing to accept. (For mesh smoothing,
such bounds are unnecessary.)

Mesh refinement. In mesh refinement algorithms, including
Delaunay refinement, an element is refined if it is too large
or badly shaped. There is no need to try to wrap up ele-
ment quality into a single measure; instead, an element can
be required to pass separate tests for interpolation error and
stiffness matrix conditioning.

To control interpolation accuracy, the error bounds are most
appropriate. There are two such bounds—one related to the
absolute interpolation error, and one related to the error in
the gradient. The application that uses the mesh should set a
pointwise maximum for one or both of these errors. A mesh
refinement program can compare each element against both
error bounds, and refine any element that fails either test.

If bounds on the maximum allowable errors are not available,
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Figure 6: Two nonsmooth interpolation-based qual-
ity measures for a tetrahedron with vertices (0, 0, 0),
(
√

3/2, 1/2, 0), (
√

3/2,−1/2, 0), and (x, 0, z). The top
measure is a size-and-shape measure; the bottom
measure is scale-invariant.

or if estimates for ct are not available, another approach is to
choose an upper limit on the number of elements, and re-
peatedly refine the element with the smallest size-and-shape
measure. This has the effect of keeping interpolation error
bounds as uniform across elements as possible. (If ct is un-
known, simply drop it from the measure.)

An advantage of error bounds and size-and-shape measures
over scale-invariant measures for mesh refinement is that the
restrictions on shape are gradually relaxed as the element
sizes decrease, so overrefinement is less likely.

Only scale-invariant measures are available for matrix con-
ditioning, and these can be dangerous in the context of re-
finement, because the creation of smaller elements can oc-
casionally decrease λK

min and worsen the conditioning of the
stiffness matrix. Refining an element to achieve a slight im-
provement in its smallest angle can be a false economy. One
option is to use a measure for matrix conditioning to compare
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Figure 7: The tetrahedron configuration and cross-
section of space used to plot the tetrahedron quality
measures in Figures 6 and 8.

an element with the elements that will appear if the original
element is refined. If the worst new element is better than
the original by a margin large enough to justify the smaller
elements, go ahead and refine the original element. If it is
not possible to determine the new elements in advance, then
the scale-invariant measure can be used with a weak bound
on the minimum acceptable quality, so that an element is
refined if it is likely to be replaced by much better shaped
elements.

Optimization-based mesh smoothing. As I have men-
tioned, the error bounds are poorly behaved objective func-
tions for numerical optimization, and the quality measures
behave much better. For applications in which interpola-
tion error is important but matrix conditioning is not, the
size-and-shape measures are suitable for smoothing because
they make appropriate tradeoffs between the size and shape
of an element. Note, however, that because the size-and-
shape measures do not penalize small angles harshly, an
optimization-based smoother must take extra care not to cre-
ate degenerate or inverted elements.

There is at least one common circumstance in which the
scale-invariant measures might do better. Suppose the input
to the smoother is a graded mesh generated by some other
program that had access to information about the ideal sizes
of elements, but the mesh smoother does not have that in-
formation. (This information might include the value of ct

for each triangle and a function that specifies the maximum
allowable interpolation error at each point in the domain.)
In this circumstance, the size-and-shape measures will try
to make the mesh more uniform, whereas the scale-invariant
measures will better preserve the original sizes of the ele-
ments.

Unfortunately, optimization-based smoothing can only opti-
mize one objective function. For applications in which only
interpolation error is important, the quality measure associ-
ated with ‖∇f −∇g‖∞ is recommended over the measure
associated with ‖f −g‖∞, because the error in the gradients
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Figure 8: Two matrix conditioning-based scale-
invariant quality measures. At top are level sets of
A/(

∑

`2i +
√

(
∑

`2i )
2 − 48A2) for a triangle with ver-

tices (0, 0), (1, 0), and (x, y). Below that are level sets
of V 1/4/λ

3/4

max for a tetrahedron with vertices (0, 0, 0),
(
√

3/2, 1/2, 0), (
√

3/2,−1/2, 0), and (x, 0, z).

can approach infinity if the element shape is poor. For appli-
cations in which matrix conditioning is important, there is a
natural tension between the needs of interpolation and matrix
conditioning. This tension can be resolved by using a con-
ditioning measure alone, or by using a “combined” measure
that is a weighted harmonic mean of two scale-invariant mea-
sures. For example, given an interpolation-based measure
Q1 and a conditioning-based measure Q2, define a “com-
bined” measure Q where

1

Q
=

w

Q1

+
1 − w

Q2

and the constant weights w and 1 − w are chosen according
to how much influence each measure should have. An ad-
vantage of the harmonic mean is that if one of the original
measures assigns a low score (near zero) to an element, its
opinion dominates.



Topological transformations. Although topological trans-
formations and smoothing are both mesh improvement meth-
ods, they differ in that transformations can change the num-
ber of elements. The size-and-shape measures related to in-
terpolation tend to prefer transformations that increase the
number of elements, so they run the risk of overrefining the
mesh. This pitfall is avoided by the use of an error thresh-
old, probably the same threshold used for mesh refinement.
Specifically, a topological transformation that increases the
number of elements is performed only if it eliminates an ele-
ment whose bound on interpolation error exceeds the thresh-
old, and all the new elements are better. If bounds on the
maximum allowable errors are not available, an alternative
is to use scale-invariant measures.

For applications in which matrix conditioning is important,
the comments on smoothing apply to topological transfor-
mations as well.

Vertex placement in advancing front methods. An ad-
vancing front mesh generator should try to place the largest
possible element whose bounds on interpolation error meet
the prescribed thresholds, and which perhaps meets a thresh-
old on a conditioning measure as well. (The conditioning
measure is scale-invariant; the error bounds are not.)

5 Related Work

Error estimates and quality measures for finite elements have
been the subject of much research. Only a tiny fraction can
be mentioned here.

Much of the work on error estimates (including the afore-
mentioned paper of Babuška and Aziz [2]) is built on func-
tional analysis and embedding theorems. Apel’s habilita-
tion [1, especially Section 10] includes an excellent sum-
mary. These results are asymptotic in nature, and ignore the
constants associated with the error bounds. The premise of
this paper is that small constants and nearly-tight bounds are
valuable, because quality measures based on precise bounds
are better able to choose among differently-shaped elements
of similar quality, or to trade off element size against element
shape.

Some a posteriori error indicators are not asymptotic. No-
table examples include indicators proposed by Berzins [4],
which estimate the interpolation error by approximating the
true local solution by a quadratic function. The two main
distinctions between the present work and Berzins’ are that
Berzin’s indicators are approximations (not true upper and
lower bounds as here), and they are for a posteriori use
(whereas the bounds given here can be used as either a priori
or a posteriori error estimates).

Many quality measures have appeared in the meshing liter-
ature; see Field [6] for a survey. However, none of these
quality measures appears to have been derived from error
estimates, nor from the study of stiffness matrix condition-
ing. (Knupp [9] presents quality measures based on the con-
dition number of a transformation matrix, but it is not an

element stiffness matrix.) Section 4 demonstrates that qual-
ity measures can be derived from these numerical consid-
erations. Mesh generators that optimize these measures are
likely to come closer to the goal of minimizing the interpo-
lation and discretization errors (for a fixed number of ele-
ments), or minimizing the condition number of the global
stiffness matrix.
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[5] J. Bramble and M. Zlámal. Triangular Elements in the
Finite Element Method. Mathematics of Computation
24:809–820, 1970.

[6] David A. Field. Qualitative Measures for Initial
Meshes. International Journal for Numerical Methods
in Engineering 47:887–906, 2000.

[7] Isaac Fried. Condition of Finite Element Matrices
Generated from Nonuniform Meshes. AIAA Journal
10(2):219–221, February 1972.

[8] Claes Johnson. Numerical Solution of Partial Differ-
ential Equations by the Finite Element Method. Cam-
bridge University Press, New York, 1987.

[9] Patrick Knupp. Matrix Norms & the Condition Num-
ber: A General Framework to Improve Mesh Qual-
ity via Node-Movement. Eighth International Mesh-
ing Roundtable (Lake Tahoe, California), pages 13–22,
October 1999.

[10] V. T. Rajan. Optimality of the Delaunay Triangulation
in R

d. Proceedings of the Seventh Annual Symposium
on Computational Geometry, pages 357–363, 1991.

[11] Gilbert Strang and George J. Fix. An Analysis of the Fi-
nite Element Method. Prentice-Hall, Englewood Cliffs,
New Jersey, 1973.

[12] Shayne Waldron. The Error in Linear Interpolation at
the Vertices of a Simplex. SIAM Journal on Numerical
Analysis 35(3):1191–1200, 1998.


