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Most classification research focuses on cases in which each abstract feature has the same surface
manifestation whenever it is presented. Previous research finds that people have difficulty learning to
classify when each abstract feature has multiple surface manifestations. These studies created multiple
manifestations by varying aspects of the stimuli irrelevant to the abstract feature dimension. In this
article, multiple manifestations were created by varying aspects of the stimuli relevant to the abstract
feature dimension. People given categories with the family resemblance category structure often used in
psychology experiments had difficulty learning to classify when multiple manifestations were present,
even though the variation was relevant. This effect was reversed when a family resemblance structure
with nondiagnostic values was used.

Category members differ along many dimensions. For example,
cars differ in their size, engine power, styling, and numerous other
attributes. Despite this variation, we have little trouble recognizing
these items as cars and classifying them appropriately. Although
we are sensitive to variation among members of a category, it has
proven difficult to characterize the systematic effects of variability
in laboratory experiments of category learning by classification. In
one study, Yamauchi and Markman (2000) asked people to clas-
sify a set of novel bugs into one of two categories. The two
categories had a linearly separable family resemblance structure
often used in studies of classification (Table 1).

One category tended to have the abstract value A on each feature
dimension, although each exemplar had one feature dimension
with the abstract value B. We refer to the features of an exemplar
of one category that are diagnostic of the other category as excep-
tion features. In contrast, the other category was dominant in the
value B (and had the value A as exception features). For example,
one category might be characterized by exemplars that have four
legs, whereas the other might be characterized by exemplars that
have eight legs. For one group of participants, each feature value
had only a single manifestation. That is, as shown in the top part
of Figure 1, every time a bug with four legs was seen, that bug had
the same version of the four legs. Similarly, for another dimension
such as body marking (stripes vs. dots), there was only one

manifestation of each value. In contrast, a second group of partic-
ipants was presented with bugs for which the abstract feature value
had many different manifestations. For example, although one
category of bugs tended to have four legs, the specific size and
shape of those legs differed from trial to trial. Figure 1 (bottom)
shows four stimuli that all have the same abstract feature structure
but differ in the specific manifestations of those features.

Most laboratory studies of classification correspond to the
single-manifestation condition, in which each abstract feature
value has a single manifestation (e.g., Medin & Schaffer, 1978).
Consistent with previous research, Yamauchi and Markman (2000)
found that participants given the categories with single manifes-
tations of each feature value learned the categories easily. In
contrast, those given the categories with multiple manifestations
had great difficulty learning the categories. Most participants
failed to learn the categories even after 240 training trials.

This result mirrors a previous finding by Medin, Dewey, and
Murphy (1983). In their study, participants learn to classify pho-
tographs into families based on dimensions such as hair color and
smile type. One group of participants was shown a small number
of pictures, and each block consisted of one pass through the set.
This group learned to classify the photographs correctly. In con-
trast, a second group was shown a set of categories that was
characterized by the same set of abstract properties (e.g., light vs.
dark hair), but a new picture was seen on every trial (so that no
picture was seen more than once). This group, for whom the
abstract properties also had different manifestations on each trial,
had great difficulty learning the categories, and 72% of partici-
pants in that study failed to reach the learning criterion.

In this article, we explore the generality of the finding that
learning is made more difficult by the presence of multiple man-
ifestations of the feature values. Although this result is interesting
on empirical grounds alone, it has a number of implications for
current models of category learning, which we discuss later. First,
we present two reasons why the difficulty of classification learning
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would increase with the number of manifestations and describe
two experiments that explore these explanations.

Multiple Manifestations and Learning

A careful examination of the materials in these studies suggests
two potential explanations for the increased difficulty of learning
tasks involving features with multiple manifestations. First, in the
studies by Yamauchi and Markman (2000) and Medin et al.
(1983), the variability was irrelevant to the basis for categoriza-
tion. For example, in the studies by Yamauchi and Markman, the
number of legs was relevant for correct categorization, but the
shape, color, and length of the legs also varied among manifesta-
tions. Thus, the irrelevant variation may have made it difficult for
people to determine which aspects of the features (e.g., the number
of legs) were relevant for correct classification. That is, the cate-
gories were defined in terms of abstract attributes, and the irrele-
vant surface variation of the exemplars may have made it difficult
for people to extract the appropriate abstract features.

A second possibility is that the particular category structure used
in these tasks affects performance. There is much research on
classification that involves stimuli that have multiple manifesta-
tions. In studies by Ashby, Maddox, and Bohil (e.g., Ashby, 1992;
Maddox & Ashby, 1993; Maddox & Bohil, 1998), category ex-
emplars are often defined along two dimensions (e.g., length and
orientation of a line segment), in which the specific values of the
exemplar are drawn from a bivariate normal distribution centered
on some point. Often the distributions of the two categories over-
lap, and so there are some values for each category that are
nondiagnostic, because they may be possessed by members of
either category. Importantly, it is rare that an exemplar of one
category manifests the most typical values of the other category.
This analysis suggests that a category structure involving nondi-
agnostic feature values rather than exception features might lead to
different performance in the face of multiple-feature manifesta-
tions (see Lassaline & Murphy, 1996, for a similar discussion).

One reason for exploring these two category structures is that
they may differ in the degree to which they promote learning by
searching for explicit rules as opposed to using a more holistic
similarity-based process (Lockhead, 1979; J. D. Smith & Kemler-
Nelson, 1984; L. B. Smith, 1989). Hypothesis testing will become
more difficult as the number of manifestations increases because
the number of possible rules is an exponential function of the
number of manifestations. In contrast, the ease of holistic pro-

cesses depends on the similarity relationships among the catego-
ries rather than on the number of manifestations of the features.
Category structures with exception features may promote a rela-
tively more analytical mode of learning than category structures
with nondiagnostic features. Although there are many possible
reasons why these structures might differ, one prominent explana-
tion is that the presence in one category of exception values that
are diagnostic of the other category may lead people to attempt to
explain the occurrence of these discrepant values.

Two experiments addressed these factors. In Experiment 1, we
constructed a classification task that varied the number of mani-
festations of the features using the family resemblance category
structure with exception features. Experiment 2 contrasts perfor-
mance on this category structure with that on a family resemblance
structure with nondiagnostic features. In both of these studies,
manifestations were created by incorporating variation along rel-
evant dimensions instead of along irrelevant dimensions as in
previous research. The stimuli were bugs, like those shown in
Figure 2, that had four relevant dimensions: tail, body, wings, and
antenna. For each dimension, the darkness of the shading of the
feature was relevant. For convenience, we label these levels of
darkness with the numbers 1 to 8, with 1 being the lightest gray
and 8 being the darkest gray.

In Experiment 1, the categories had the family resemblance
structure with exception features used by Yamauchi and Markman
(2000; shown in Table 1), in which the mapping of the values A
and B to light (Levels 1–4) and dark (Levels 5–8) shading was
selected randomly for each dimension for each participant. Thus,
whereas value A might be randomly assigned to Levels 1 to 4

Figure 1. Example of the way multiple-feature manifestations were in-
stantiated in the study by Yamauchi and Markman (2000).

Table 1
Family Resemblance Feature Structure

Exemplar

Dimension

Category1 2 3 4

A1 A A A B A
A2 A A B A A
A3 A B A A A
A4 B A A A A
B1 B B B A B
B2 B B A B B
B3 B A B B B
B4 A B B B B
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along Dimension 1 for a given participant, it might be assigned to
Levels 5 to 8 along Dimension 2 for the same participant. In
Experiment 2, we compare performance with this category struc-
ture with a family resemblance structure that replaces the excep-
tion features with nondiagnostic feature values.

In Experiment 1, the number of feature manifestations was
varied systematically from 1 to 4. In the one-manifestation condi-
tion, the light shading used the value 4 (in the range from 1–8) and
the dark shading used the value 5. The stimuli were pretested to
ensure that these values were discriminable. In the two-
manifestation condition, the values 3 and 4 were used for the light
shading and the values 5 and 6 for the dark shading. The three-
manifestation condition used values 2, 3, and 4 for the light
shading and 5, 6, and 7 for the dark shading. Finally, the four-
manifestation condition used values 1, 2, 3, and 4 for the light
shading and values 5, 6, 7, and 8 for the dark shading. Thus, the
average category members (i.e., the centroids) will get further
apart (and hence more discriminable) as the number of manifes-
tations increases.1

It is not clear whether the single-manifestation condition should
be easier or harder than the multiple-manifestation condition for
items with variation that is relevant to categorization. Although a
large body of research has examined classification performance
when the stimulus values had variation along aspects relevant for
classifying the items (see, e.g., Ashby & Maddox, 1998; Estes,
1994, for a review), no systematic examination of the influence of
increases in the number of manifestations along each dimension
has been undertaken. In addition, because previous research uses
overlapping categories sampled from a multivariate normal distri-
bution, increases in category variability are generally associated
with decreases in optimal accuracy (Maddox & Dodd, 2001). In
the current study, optimal accuracy is constant (100%) in all
conditions.

Experiment 1

Method

Participants. One hundred twelve undergraduates at the University of
Texas at Austin (28/condition) were given course credit for their
participation.

Materials. The stimuli were stylized bugs like those shown in Figure 2.
The head and legs of the bugs did not change. The darkness of the bulbs
on the antennae, the wings, the tail, and a hexagon on the body were varied.
These four properties are referred to as stimulus dimensions. The catego-
ries to be learned had the structure shown in Table 1. The value of light
(Levels 1–4) and dark (Levels 5–8) associated with the values A and B in
Table 1 was determined randomly for each dimension and each participant.

There were eight possible values of darkness for each of the four
dimensions. The lightest gray was created with 85% saturation of the red,
blue, and green channels using a graphics package. Each additional step
involved subtracting 10% saturation from each channel. The darkest gray
involved 15% saturation on each channel. The one-manifestation condition
used only values 4 (light) and 5 (dark). The remaining conditions added
contiguous values, in which the separation between light and dark was
always between Darkness Levels 4 and 5.

On each trial, an abstract stimulus was drawn from the set shown in
Table 1. Specific values for each feature dimension were selected randomly
(with replacement) from the set of possible feature values for that condi-
tion. Each feature value appeared with equal probability. Thus, in the
one-manifestation condition, all of the light-colored features had the fea-
ture value 4, but in the four-manifestation condition approximately 25% of
the light-colored features had the feature value 4.

Trials were grouped into blocks of eight, each consisting of one pass
through the stimulus set. The order of presentation of the stimuli in each
block was determined randomly.

Procedure. Participants were seated at a Macintosh computer with a
color screen. They were told that they would see a number of bugs and
were asked to classify them into one of two mutually exclusive categories
(given the labels Mornek and Plaple). Responses were made by pressing
the “z” and “/” keys on the keyboard. Categories were randomly assigned
to keys for each participant.

On each trial, a stimulus was selected, and the feature values for that
stimulus were determined as shown previously. The stimulus was shown
on the screen along with the instructions to press the button corresponding
to the category to which it belonged. After their response, participants were
told whether they were correct, and the correct category label and the
stimulus remained on the screen for 3 s. The experiment continued until
participants reached a criterion of three consecutive blocks with a com-
bined accuracy of more than 90% (i.e., at least 22 of 24 correct responses)
or until they had reached a maximum of 30 blocks.

Design. The main between-participants factor in this study was num-
ber of feature manifestations. There were four levels of this factor (1, 2, 3,
and 4). The main dependent measures were the number of blocks required
to reach the learning criterion and the proportion of participants reaching
the learning criterion before the 30-block maximum.

1 One possible concern is that the categories may differ by a holistic
property of overall brightness contrast. On this view, people are using a
feature set different from the one we are manipulating. Although this factor
may explain the performance of some participants, each dimension was
randomly assigned to be light or dark for each participant. Overall bright-
ness will allow people to classify all of the stimuli correctly only when all
of the dimensions for a given category are prototypically light or dark. For
any other assignment of values to dimensions, there is at least one stimulus
in each category for which overall brightness is not diagnostic.

Figure 2. Sample stimulus used in the current study.
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Results

The main results are summarized in Table 2. Consistent with
previous research, participants required more blocks to reach the
learning criterion when there were many feature manifestations as
opposed to few feature manifestations. A one-way analysis of
variance (ANOVA) on these data revealed a significant effect of
number of manifestations, F(3, 108) � 6.24, MSE � 56.72, p �
.05. Post hoc contrasts using Tukey’s honestly significant differ-
ence (assuming � � .05) revealed that participants reached the
learning criterion faster in both the one- and two-manifestations
conditions than in the four-manifestations condition. No other
differences between conditions were significant, although the dif-
ference between the two- and three-manifestations conditions was
marginally significant ( p � .08).

This pattern mirrors that obtained by examining the proportion
of participants to reach the learning criterion in each condition. As
shown in Table 2, about half of the participants reached the
criterion in both the one- and two-manifestations conditions. In
contrast, only 29% of the participants reached the criterion in the
three-manifestations condition, and 14% of the participants
reached the criterion in the four-manifestations condition.

One reason why increasing the number of feature manifestations
can make classification more difficult is that people may be
seeking a rule that distinguishes between the categories (Nosofsky,
Palmeri, & McKinley, 1994). The hypothesis space increases
exponentially with the number of feature manifestations on each
dimension, thereby increasing the difficulty of the task. To explore
people’s strategies, we examined the learning curves for more
insight.

To analyze the learning curves, we divided the 30 potential
blocks of trials (240 total trials) into 10 bins of 3 blocks (24 trials)
apiece. For each group of 3 blocks, we calculated the proportion of
correct responses. Many participants reached the 90% accuracy
criterion before completing 30 blocks of trials. For some of these
participants, the last bin may have fewer than 24 trials in it, so the
proportion correct for the number of trials they completed was
calculated.

Then we examined three different accuracy criteria: 70%, 80%,
and 90%. In particular, we determined the first bin of blocks in
which they exceeded each of these three criteria. We selected these
three criteria because if a participant is trying to find a rule that
distinguishes between categories, then a unidimensional rule is
likely to be the first one selected. Any unidimensional rule will
correctly classify 75% of the stimuli, and so we expect that
participants in all conditions will reach at least 70% accuracy fairly
quickly. Achieving higher accuracy rates in this task requires a

more complex rule involving three dimensions or a combination of
a rule and exemplar storage. Because finding complex rules and
storing individual exemplars becomes more difficult as the number
of manifestations increases, there should be a greater difference
between manifestation conditions for the 80% and 90% accuracy
criteria than for the 70% accuracy criterion.

Figure 3A plots the cumulative frequency of participants in each
condition who reached the 70% accuracy criterion for the first time
in each of the 10 bins of trials. Figures 3B and 3C show the same
plots for the 80% and 90% accuracy criteria, respectively. Con-
sistent with the idea that participants look for a rule that allows
them to classify the items, participants in all four conditions
reached the 70% accuracy criterion at about the same rate. Fur-
thermore, the proportion of participants reaching this criterion by
the 10th bin of blocks is about the same for all conditions. Indeed,
the highest proportion of participants reaching this criterion is in
the four-manifestations condition, which exhibited the worst over-
all learning performance.

In contrast, the patterns for the 80% and 90% criteria are
different from that of the 70% criterion (although they are similar
to each other). Participants in the one- and two-manifestations
conditions reached these learning criteria faster than those in the
three- and four-manifestations conditions. Furthermore, more par-
ticipants reached these criteria by the 10th bin of blocks in the one-
and two-manifestations conditions than in the three- and four-
manifestations conditions. These data are consistent with the hy-
pothesis that people learn these categories by hypothesis testing.

Discussion

These results are compatible with those of Yamauchi and Mark-
man (2000) and Medin et al. (1983), who found that increasing the
number of manifestations of the features increased the difficulty of
learning these categories by classification. These results further
suggest that participants in all manifestation conditions were fast
to reach a 70% accuracy criterion (which they could achieve using
a simple unidimensional rule). The differences among the mani-
festation conditions were most apparent for the more stringent
80% and 90% accuracy criteria.

This experiment differed from previous research in that the
variation among the manifestations was relevant to classification.
Specifically, the darkness of the colors distinguished between the
two categories, and the number of manifestations was imple-
mented by increasing the number of levels of darkness that par-
ticipants were shown during training.

This result is surprising in view of research by Ashby and
Maddox (1992; Maddox & Ashby, 1993), who demonstrated that
people can learn categories in which exemplars are drawn from a
bivariate normal distribution. As discussed, however, these cate-
gories differ from the family resemblance structure with exception
features in that feature values diagnostic of one category rarely
occur in exemplars of the other category. We address this issue in
Experiment 2.

Experiment 2

To explore the influence of this difference between stimulus
sets, we generated a new family resemblance structure (Table 3).
Three possible feature values are denoted A, B, and C. Category A

Table 2
Summary of the Results of Experiment 1

No. of feature
manifestations

Summary of
feature values

Blocks to
criterion Proportion

reaching
criterionM SD

1 4�5 22.32 8.85 .50
2 34�56 21.61 9.72 .54
3 234�567 26.46 6.67 .29
4 1234�5678 29.14 3.09 .14
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Figure 3. Graphs of the cumulative proportion of participants reaching learning criteria in Experiment 1. A:
70% accuracy criterion; B: 80% accuracy criterion; C: 90% accuracy criterion.
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has the value A on two of four dimensions of each exemplar.
Category C has the value C on two of four dimensions of each
exemplar. In addition, each exemplar has the value B on two of
four dimensions. This value is nondiagnostic because it appears
equally often in each category. As discussed, this category struc-
ture with nondiagnostic values may give rise to relatively more
holistic processing than does the exception feature structure used
in Experiment 1. We contrast performance on these two category
structures in Experiment 2.

The values for A and C were randomly assigned to light or dark
shades of gray for each dimension for each participant. The value
B was always assigned values 4 and 5 of the eight levels of
darkness. Thus, participants had to learn that moderate values of
gray were not diagnostic in this task, but that light or dark values
could be used to distinguish among the categories. Furthermore,
this particular category structure was used because it requires
attending to at least three dimensions to correctly classify all of the
exemplars. The exception feature structure used in Experiment 1
also requires attending to at least three dimensions.

Although we are able to equate the number of dimensions to
which participants must attend, it is not possible to equate the
complexity of the rule needed to classify all exemplars correctly.
In the structure with nondiagnostic values, a simple disjunctive
rule (e.g., If {Dim 1 � A or Dim 2 � A or Dim 3 � A}, then
category � A) will suffice. In contrast, in the structure with
exception features, a parity rule on three dimensions is required
(e.g., If {[Dim 1 � A and Dim 2 � A] or [Dim 1 � A and Dim 3 �
A] or [Dim 2 � A and Dim 3 � A]}, then category � A). This
difference in complexity suggests that the nondiagnostic feature
structure might be easier to learn overall than the exception feature
structure, but it does not predict that these structures should differ
in the influence of the number of manifestations of the features.

In Experiment 2, the number of manifestations was varied by
starting with the values adjacent to the neutral values (3 and 6).
Because there are only eight levels of darkness overall, we can
explore one, two, and three manifestations. These conditions were
run both for the nondiagnostic feature structure in Table 3 as well
as the exception feature structure used in Experiment 1 (see Table
1). For the exception feature structure, the one-manifestation con-
dition also used the values 3 and 6, with higher manifestation

conditions adding values further from the boundary between light
and dark values.

This implementation of the manifestation conditions will help to
rule out an alternative explanation for Experiment 1. The values 4
and 5, which formed the boundary between light and dark values
in Experiment 1, are fairly close together. Thus, it is possible that
when new darker and lighter values were added, the boundary
between light and dark values became hard to find. On this view,
the multiple-manifestations conditions were more difficult because
of confusions about the boundary between light and dark values. In
Experiment 2, the light and dark values are quite discriminable. If
increasing the number of manifestations still makes the classifica-
tion task more difficult for the exception feature structure, then the
results of Experiment 1 probably do not reflect difficulties in
discriminating between the light and dark values.

Finally, one additional change to the method was made. There
are 12 stimuli in the nondiagnostic feature condition, so each block
for this structure requires 12 trials. To equate the number of trials
in each block for each structure, the exemplars of one category for
the exception feature structure were arbitrarily repeated twice in
each block. Thus, this category was always presented twice as
often as the other. If anything, this change should ease learning of
the exception feature stimuli.

For the exception feature stimuli, the predictions are clear. As
we found in Experiment 1, increasing the number of feature
manifestations should increase the difficulty of the learning task.
The predictions for the nondiagnostic feature structure are open.
One possibility is that this structure will act like the exception
feature structure, in which case learning will be easier when there
are few manifestations than when there are many. A second
possibility is that the opposite pattern will be obtained. As dis-
cussed previously, as the number of manifestations increases, the
category centroids get further apart, and so the categories become
more discriminable. If we are correct in assuming that the nondi-
agnostic feature structure will promote holistic processing, then
increasing the number of feature manifestations will ease learning.

Method

Participants. Seventy-four undergraduates at the University of Texas
received course credit or were paid for their participation.

Design. This experiment is a 2 (category structure: exception feature
vs. nondiagnostic) � 3 (manifestations: 1, 2, and 3) between-subjects
factorial design. Each condition had 12 participants except for the one-
manifestation condition in the nondiagnostic structure and the two-
manifestation condition in the exception feature structure, both of which
had 13.

Materials. The exception feature stimuli were the same as those used
in Experiment 1. For every participant, the values A and B on each
dimension were assigned randomly to light or dark. In a change from
Experiment 1, the single-manifestation condition used the values 3 and 6
for light and dark values, respectively. The two-manifestation condition
used the values 2 and 3 for light and 6 and 7 for dark. Finally, the
three-manifestation condition used the values 1, 2, and 3 for light and 6, 7,
and 8 for dark. Each block for these materials consisted of 12 trials: two
repetitions of the exemplars of category A and one repetition of the
exemplars of category B.

The nondiagnostic feature structure is shown in Table 3. The manifes-
tation conditions were implemented in the same way as they were for the
exception feature structure. In this case, the values A and C for each
dimension were assigned randomly to light or dark. The nondiagnostic

Table 3
Family Resemblance Feature Structure With
Nondiagnostic Values

Exemplar

Dimension

Category1 2 3 4

A1 A A B B A
A2 A B B A A
A3 B B A A A
A4 B A A B A
A5 A B A B A
A6 B A B A A
B1 C C B B C
B2 C B B C C
B3 B B C C C
B4 B C C B C
B5 C B C B C
B6 B C B C C
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feature values (B) were given the value of 4 or 5 (selected randomly for
each nondiagnostic feature for each trial).

Procedure. The procedure in this study was identical to that in Exper-
iment 1, except there were 12 trials in each block. The accuracy criterion
was at least 32 correct trials in three consecutive blocks (i.e., 36 trials).

Results

The mean number of blocks to reach criterion for each condition
was analyzed in a 2 (category structure) � 3 (manifestations)
ANOVA. These data are presented in Table 4. The ANOVA
revealed a significant main effect of category structure, F(1,
68) � 17.75, p � .001, reflecting the fact that participants required
fewer blocks on average to learn the categories with nondiagnostic
features (m � 12.27) compared with those with exception features
(m � 21.41).

This effect must be interpreted in view of a significant interac-
tion between category structure and manifestations, F(2,
66) � 5.82, p � .01. This interaction reflects the fact that increas-
ing the number of feature manifestations made the classification
task more difficult for participants given the exception feature
structure but easier for those given the nondiagnostic feature
structure. For stimuli with one manifestation of each feature,
participants given the exception feature structure required nonsig-
nificantly fewer blocks to reach the learning criterion (m � 16.08)
than those given the nondiagnostic feature structure (m � 17.38),
t(23) � 0.29, p � .10. In contrast, for the categories with two
manifestations of the features, participants given the exception
feature structure required significantly more blocks to reach the
learning criterion (M � 23.46) than did those given the nondiag-
nostic feature structure (M � 9.33), t(23) � 4.05, p � .01.
Likewise, when the stimuli had three manifestations of the fea-
tures, participants given the exception feature structure required
significantly more blocks to reach the learning criterion
(M � 24.50) than did those given the nondiagnostic feature struc-
ture (M � 9.67), t(22) � 4.34, p � .01.

As we found in Experiment 1, the mean number of blocks to
reach the criterion is paralleled by the proportion of participants
who reached the learning criterion within 30 blocks. For partici-
pants given the exception feature structure, the proportion of
participants reaching the learning criterion decreased with the
number of manifestations, with .73, .42, and .33 reaching the
criterion in the one-, two-, and three-manifestations conditions,
respectively.2 In contrast, the proportion of participants given the
nondiagnostic feature structure who reached the learning criterion
increased with the number of manifestations, with .62, .92, and .92

reaching the criterion in the one-, two-, and three-manifestations
conditions, respectively.

To explore the learning data more carefully, we performed
learning curve analyses similar to those for Experiment 1. Figure
4 plots histograms of the cumulative proportion of participants in
each condition who reached 70%, 80%, and 90% criteria within
bins of three blocks (36 trials). For the 70% criterion the pattern is
similar to what we observed in Experiment 1. The curves are not
well differentiated by condition except for an overall tendency for
participants to reach this criterion faster given the nondiagnostic
feature structure compared with the exception feature structure.
For the 80% and 90% criteria, the pattern is somewhat different.
For the exception feature structure, there is a clear difference
between the single-manifestation condition and the multiple-
manifestations conditions by the 80% criterion. In contrast, for the
nondiagnostic feature structure, the curves for the three-
manifestations condition are closer together. By the 90% criterion,
there is a separation between the single-manifestation condition
and the two- and three-manifestations conditions for both the
exception feature structure and the nondiagnostic feature structure.

Discussion

The key result of this experiment is that the influence of a larger
number of manifestations was different for the nondiagnostic
feature structure than for the exception feature structure. As be-
fore, increasing the number of feature manifestations increased the
difficulty of learning for participants given the exception feature
structure. In contrast, increasing the number of feature manifesta-
tions made the nondiagnostic feature structure easier. This ease
reflects that the way the manifestations were added makes the
categories more discriminable as the number of manifestations
increases.

Because this feature structure is not often used, we performed
another study testing 133 participants in the nondiagnostic feature
structure.3 In this study, participants given one manifestation per
feature value learned the categories in an average of 17.53 blocks,
those given two manifestations learned in an average of 14.60
blocks, and those given three manifestations learned in an average
of 10.81 blocks. Thus, we replicated the finding that learning
categories with this nondiagnostic feature structure becomes easier
as the number of manifestations increases.

Analysis of individual participants’ data suggests that they may
be using different strategies to learn these categories. As discussed,
simple unidimensional rules correctly classify 75% of the items.
These data were consistent with the possibility that participants
given the exception feature structure were performing hypothesis
testing. On this view, participants quickly settled on a unidimen-
sional rule in all conditions that provided fairly good performance.
Participants in the two- and three-manifestations conditions had
more difficulty exceeding an 80% criterion than those in the

2 The proportion of participants reaching the learning criterion is some-
what higher in Experiment 2 than in Experiment 1; however, Experiment 2
extended for 360 trials before terminating, whereas Experiment 1 ended
after 240 trials.

3 Within this group, two different sets of instructions were tested. There
was no reliable influence of this instructional manipulation on perfor-
mance.

Table 4
Number of Blocks to Reach the Learning Criterion by
Participants in Experiment 2

Feature structure

No. manifestations

1 2 3

M SD M SD M SD

Exception 16.08 10.78 23.46 9.85 24.50 8.92
Nondiagnostic 17.38 10.95 9.33 7.29 9.67 7.81
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Figure 4. Graphs of the cumulative proportion of participants reaching learning criteria in Experiment 2. A:
70% accuracy criterion; B: 80% accuracy criterion; C: 90% accuracy criterion.
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one-manifestation condition. This result is consistent with the
observation that the space of possible rules increases with the
number of manifestations.

In contrast, participants given the nondiagnostic feature struc-
ture exceeded the 70% and 80% criteria fairly rapidly in all
conditions. If these participants were starting with unidimensional
rules, then there should have been a larger disparity among the
curves for the 80% criterion. Instead, consistent with the idea that
the categories in the single-manifestation condition are less dis-
criminable than those in the two- and three-manifestations condi-
tions, achieving 90% accuracy was harder for participants in the
one-manifestation condition than in the two- and three-
manifestations conditions. Thus, these data are compatible with the
prospect that participants were using a similarity-based process
when given the nondiagnostic feature structure.

General Discussion

In these studies, we explored two factors that might influence
the observation that learning categories by inductive classification
becomes more difficult as the number of manifestations of the
features of those categories increases. First, we examined variabil-
ity along values relevant to classification as opposed to the vari-
ation along aspects irrelevant to classifying that were used in the
past. Even when the feature manifestations varied along dimen-
sions relevant to classification, however, the difficulty of learning
still increased with the number of feature manifestations.

In contrast, the type of category structure learned had a signif-
icant impact on the relationship between number of manifestations
and ease of learning. Previous research examining the number of
feature manifestations used family resemblance category struc-
tures with exception features in which exemplars had some fea-
tures that were diagnostic of the other category. In Experiment 2,
we introduced a category structure with nondiagnostic features that
were equally predictive of both categories. No exemplar had
feature values that were actually diagnostic of the other category.
With this category structure, increasing the number of manifesta-
tions actually made classification easier.

It is important to note that classification gets easier as the
number of manifestations increases because new manifestations
were added farther from the boundary between light and dark
values. Thus, in our studies the categories became more percep-
tually discriminable as more manifestations were added. It is this
aspect of the stimulus design that makes it surprising that increas-
ing the number of feature manifestations makes classification
learning harder for participants given the exception feature
structure.

Accounting for These Findings

The pattern of data obtained in these two studies is not clearly
predicted by any of the major classes of categorization models. To
clarify this point, we briefly discuss prototype models, exemplar
models, rule-based models, and decision-bound models. Finally,
we speculate on the potential role of rule- and similarity-based
processes in these category structures.

Prototype models assume that categories are represented by
some central tendency that reflects average or typical values along

each dimension (e.g., Posner & Keele, 1970; Reed, 1972). For
example, after repeated trials, we might expect the two categories
in the current research to be represented by the average darkness
values along each dimension. Classifying a new instance involves
selecting the prototype to which the new exemplar is most similar.
Because of the way new manifestations were added in this study,
the perceptual discriminability of the categories increases with the
number of manifestations for both exception feature and nondiag-
nostic feature structures. Thus, prototype models would predict
that increasing the number of manifestations would ease category
learning. This result was obtained only for the nondiagnostic
feature structure.

Decision-bound models (Ashby & Maddox, 1992, 1993; Ashby
& Perrin, 1988) assume that people seek a multidimensional rule
that guides the classification decision in the face of perceptual and
criterial noise. Decision-bound models predict that classification
performance should improve as category discriminability in-
creases. Thus, these models also predict the results from the
nondiagnostic feature structure correctly but not the results from
the exception feature set. It is not surprising that these models give
the correct prediction for the nondiagnostic structure, because this
structure was modeled on the kinds of materials used in studies
testing decision-bound models.

Rule-based models do not account for the whole pattern of data
obtained here either. Some research has examined how the com-
plexity of rules influences category acquisition (e.g., Feldman,
2000). This work suggests that categories described by more
complex rules are harder to learn than categories described by
simple rules. On this view, the exception feature structure should
be harder to learn than the nondiagnostic feature structure (as we
observed). However, there is no obvious basis for predicting that
these structures should be influenced in different ways by changes
in the number of manifestations.

If rules are learned through a process of hypothesis testing, then
a rule-based account could predict that increasing the number of
manifestations would make category learning more difficult, be-
cause the space of possible rules increases with the number of
manifestations. As the number of manifestations increases, the
learner must make conjectures both about which dimensions
should be incorporated into a rule and also about the location of the
boundary between values diagnostic of each category. Because this
rule space increases in size, the average time to search this space
for a good rule is also likely to increase. This explanation is
compatible with the data from the exception feature structure but
not the nondiagnostic feature structure.

Finally, exemplar models can fit data in which increasing the
number of manifestations increases the difficulty of learning, de-
creases the difficulty of learning, or has no effect on learning. We
conducted simulations using Nosofsky’s (1986) generalized con-
text model (GCM) to confirm the predictions of exemplar models,
but the basic intuition underlying the predictions is straightfor-
ward. The similarity scaling parameter, c, in the GCM determines
the effect of the similarity between the new exemplar and known
exemplars. For large values of the c parameter, only known ex-
emplars that are very similar to the new exemplar influence clas-
sification. In the limit, this parameter can be set so that only known
exemplars that are identical to the new one will influence classi-
fication. In this case, if there are no identical exemplars in mem-
ory, the model will guess. For this setting of the similarity scaling
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parameter, the model is basically a look-up table with guessing.
This version predicts that classification will become more difficult
as the number of manifestations increases, because increasing the
number of manifestations decreases the likelihood that a new
exemplar will be identical to one seen before.

For small values of this scaling parameter, a variety of similar
exemplars can be used to influence classification. Because the
categories used in these studies have a family resemblance struc-
ture, and the exemplars of the categories are generally more
discriminable as the number of feature manifestations increases,
this parameter setting predicts that classification will become
easier as the number of manifestations increases. Finally, given
that these patterns are obtained by varying a single parameter,
there are also intermediate values of the parameters for which
changes in the number of manifestations have no effect on classi-
fication. Although exemplar models are able to fit any of these
patterns of data, there is no principled reason for the value of this
scaling parameter to be different for the exception feature structure
than it is for the nondiagnostic feature structure. Exemplar theo-
rists might want to explore this issue in more detail.

It is possible that the best model of our findings will combine
more than one approach to categorization. Support for this
possibility comes from our examination of the speed with which
participants reached 70%, 80%, and 90% accuracy. On the basis
of these data, we speculated that participants given the excep-
tion feature structure may be forming rules, whereas those
given the nondiagnostic structure may be performing a more
similarity-based process. Although we find this possibility in-
teresting, two factors limit our confidence in this explanation.
First, there is no principled reason why people should engage in
more rule-based processing for the exception feature structure
than for the nondiagnostic feature structure. It may be that they
find it strange to encounter the presence of features that are
highly diagnostic of one category in exemplars of another
category, but that does not explain why this structure promotes
rule-based learning.

Second, in the replication of the nondiagnostic feature structure
mentioned in the Discussion section of Experiment 2, we con-
trasted two instruction conditions. In one, people were asked to
learn the categories by forming a rule. In the second, they were
asked to learn the categories by looking for overall similarities
among items. This instruction manipulation had no appreciable
effect on performance. This null effect may reflect that people are
not able to implement a particular learning strategy just because
they are instructed to do so. Further research must explore reasons
for the difference between the two category structures.

To summarize, extant models of category learning do not pro-
vide a good explanation for the pattern of data in the current study.
Prototype and decision-bound models predict that increasing the
number of manifestations should decrease the difficulty of learn-
ing, as was observed for the nondiagnostic feature structure. Rule-
based models predict that increasing the number of manifestations
should increase the difficulty of learning, as was observed for the
exception feature structure. Finally, exemplar models account for
either pattern of data depending on how similarity is scaled, but
there is no principled reason why the feature structures used in
these studies should differ in the scaling of similarity.

Implications for Categorization Research

These results raise a significant concern for laboratory studies of
categorization. The inductive classification task is used extensively
in research because it is assumed to provide a good analogue to the
types of learning that people perform when acquiring natural
categories. Thus, findings like those of Medin, Dewey, and Mur-
phy (1983) and Yamauchi and Markman (2000) are troubling
because they suggest that a fairly small extension of the classifi-
cation task yields behavior that is incompatible with people’s
manifest ability to learn natural categories despite the variations in
the manifestations of their features.

The current results suggest that the use of exception feature
category structures should be scrutinized. Many laboratory tasks
use category structures in which features have two possible values,
some of which are diagnostic of one category and some of which
are diagnostic of the other. The results of Experiments 1 and 2
suggest that exception feature structures may induce a mode of
processing that is incompatible with the presence of multiple-
feature manifestations. In the interest of improving the fit between
the laboratory and the world, more consideration should be given
to category structures that involve nondiagnostic values rather than
exception features.
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