
Reasoning Strategies for Semantic Web Rule

Languages

by

Joseph Scharf

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2008

c© Massachusetts Institute of Technology 2008. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 1, 2008

Certified by. .
Tim Berners-Lee

Senior Research Scientist, Computer Science and Artificial
Intelligence Lab

Thesis Supervisor

Certified by. .
I Dunno

Professor, Mechanical Engineering
Thesis Reader

Accepted by .
I Dunno

Chairman, Department Committee on Graduate Students

2

Reasoning Strategies for Semantic Web Rule Languages

by

Joseph Scharf

Submitted to the Department of Electrical Engineering and Computer Science
on May 1, 2008, in partial fulfillment of the

requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

This is the text for the abstract.

Thesis Supervisor: Tim Berners-Lee
Title: Senior Research Scientist, Computer Science and Artificial Intelligence Lab

Thesis Reader: I Dunno
Title: Professor, Mechanical Engineering

Acknowledgments

This is the text for the Acknowldegments.

Contents

1 Introduction 13

2 Background 15

2.1 RDF Data Model . 15

2.2 RDFS Reasoning . 15

2.3 OWL . 15

2.4 Rule Languages . 15

2.4.1 N3Logic . 15

2.4.2 SWRL . 15

2.4.3 AIR . 15

2.4.4 RIF ?? . 15

3 AIR Reasoner 17

3.1 Introduction . 17

3.2 Overview . 18

3.2.1 Dependency Tracking . 18

3.2.2 AIR policy language . 21

3.3 RETE AIR Reasoner . 27

3.4 TREAT AIR Reasoner . 27

3.5 TMS . 27

3.6 Proof Generation . 27

3.7 Related Work . 27

7

4 Cwm Reasoner 29

4.1 Introduction . 29

4.2 Overview . 29

4.3 Forward Chained Reasoner . 29

4.3.1 Technique . 29

4.3.2 Builtins . 29

4.4 Backward Chained Reasoner . 29

4.5 SPARQL query engine . 29

4.6 Proof Generation and Checking . 29

5 Related Work 31

6 Contribution 33

7 Conclusion 35

List of Figures

3-1 AIR ontology . 22

9

List of Tables

11

Chapter 1

Introduction

13

Chapter 2

Background

2.1 RDF Data Model

2.2 RDFS Reasoning

2.3 OWL

2.4 Rule Languages

2.4.1 N3Logic

2.4.2 SWRL

2.4.3 AIR

2.4.4 RIF ??

15

Chapter 3

AIR Reasoner

3.1 Introduction

Justifications are required to explain reasoning results and usually include the knowl-

edge and rules used to infer these results. For policy reasoners, this justification

becomes especially important because it provides important insights into the policy

development and enforcement process. Policy administrators use these justifications

to confirm the correctness of the policy and to check that the result is as expected.

Users, on the other hand, mainly utilize them to check that the policy enforcement

process works as it should and in the case of failed queries to figure out what addi-

tional information is required to get the correct result.

Our policy approach tracks dependencies during the reasoning process in order to

provide integrated justification support where policy administrators are not required

to handle or manipulate these dependencies or justifications. We use a production rule

system as a reasoner and a Truth Maintenance System (TMS) as the dependency-

tracking mechanism. Our reasoner has additional features for improved reasoning

efficiency such as goal direction, which controls how much inferencing the reasoner

does. The reasoner also supports the extraction of portions of explanations in or-

der to prevent the user from being overwhelmed by irrelevant data and rules. As

explanations are usually in the form of proof trees, we have developed a graphical

justification user interface, which presents the explanation either in a Semantic Web

17

rule language or in a graphical layout that highlights the result of the reasoning and

allows the explanation to be explored.

Based on this approach, we propose a new policy language aimed at meeting policy

compliance requirements of open, decentralized information infrastructures such as

the World Wide Web and large enterprise systems. The policy reasoner must be able

to search over a knowledge base as open as the Semantic Web, but must also be able

to assert closure over some set of facts in order to reach a useful result. These open

environments point to the need for flexible dependency tracking that gives users and

administrators the most complete possible view of the inference as well as efficient

ways of reasoning.

3.2 Overview

3.2.1 Dependency Tracking

A deductive reasoning system derives conclusions from previous deductions or premises

by the application of deductive rules. For any given conclusion, it is useful to know

the specific set of premises that it was derived from; this set is called the set of

dependencies for the conclusion. Dependency tracking is the process of maintaining

dependency sets for derived conclusions.

Some dependency-tracking mechanisms provide additional features. For exam-

ple, a Truth Maintenance System (TMS) [?] keeps track of the logical structure of

a derivation, which is an effective explanation of the corresponding conclusion. An-

other useful feature, also provided by a TMS, is the ability to assume and retract

hypothetical premises.

There are several reasons why dependency tracking is useful for policy systems:

• The dependency set for a result provides a natural focus when trying to solve

policy compliance problems.

• A dependency-tracking mechanism that tracks derivation structure can provide

a concise explanation for a result. This is essential for confirming that a policy

is correctly modeled. It can also help identify situations where a policy is having

unanticipated or undesirable consequences.

• A dependency-tracking mechanism that supports hypothetical premises can

simplify analysis and design of policies. It can be used to test the response

of a policy to a hypothetical situation. Or it can be used to construct an argu-

ment based on a supposed but as-yet unsupported belief.

We have chosen to use a TMS as the dependency-tracking mechanism for our

project. The TMS provides considerable power in a very simple mechanism; its

primary cost is the memory required to record the structure of a derivation. Although

the TMS technology was invented in the 1970s, it is not well known outside the

artificial intelligence community, and consequently there are no uses of this technology

in policy systems of which we are aware.

One possible complaint about dependency tracking is that its use might clutter

the description of a policy, obscuring its meaning. In practice, this is not usually a

problem since most of the information needed to support dependency tracking can be

inferred from the policy description. To see how this is done, we first need to define

some terms.

Our reasoner is a kind of production-rule system in which the condition of a rule

is a pattern to be matched against a set of believed statements. When the pattern

matches, the rule’s action is performed. Typically the action asserts new beliefs,

causing them to be added to the set.

When something is added to the belief set, it is associated with a justification for

its belief. In the case of a simple statement of fact, there is a trivial justification that

the statement is an assumption. A derived statement has a justification based on the

inputs used to make the derivation.

In such a simple rule system, all of the dependency information is implied by the

rules themselves. If a new belief is asserted by a rule’s action, then its justification

is the set of statements that matched the rule’s pattern. More precisely, we believe

the asserted statement if and only if we believe every one of the matched statements.

Additionally, the justification records an identifier for the rule; this identifier together

with the matched statements provide all the relevant information about the particular

deduction step just performed. Typically these deduction steps build on one another,

resulting in a tree-like justification structure for any given belief, in which the belief

is the trunk of the tree and the assumptions are the leaves. This tree structure is a

complete explanation of the support for the belief.

Our reasoner is not quite so simple. It has additional features, such as goal

direction, for which the correct dependency structure is not always inferrable from the

rule. To handle such situations, we provide a means to write explicit justifications. In

practice, this is used only occasionally, and has little impact on the overall readability

of a policy description.

Finally, one problem with this dependency-tracking mechanism is that it can

record too much information. It has no way to distinguish between deductions that

are interesting and that should appear as part of an explanation, and those that

should be omitted. For example, suppose the statement “Bob has a sister named

Alice” is believed and that some rule has a pattern “?X has a brother named ?Y”. A

rule can be written to deduce “Alice has a brother named Bob” so the pattern can

match, but that deduction step won’t be very interesting for most end users.

Our system provides a simple means for policy authors to elide uninteresting

deduction steps from explanations. When writing a rule that makes such a deduction

step, the author declares it as hidden, and any deduction made by that rule will not

appear in the resulting explanation. This distinction is under the control of the policy

author, so the consequent hiding can be tailored to the users in the policy domain.

Let’s reconsider our example to see how this works. Assign the following names:

• A: “Bob has a sister named Alice”

• B: “Alice has a brother named Bob”

• R1: rule with pattern “?X has a brother named ?Y”

• R2: rule that deduces B from A

In the absence of any hiding, the result of rule R1 will be shown as derived from

B, and B in turn will be shown as derived from A via R2. However, if R2 is marked

hidden, then the result of rule R1 will be shown as derived directly from A, while

B won’t be shown at all. A person reading the explanation will see that R1 was

triggered by A, which is semantically obvious even though syntactically incorrect.

3.2.2 AIR policy language

AIR (Accountability In RDF) is a policy language that exploits our dependency

tracking approach. The policies are represented in Turtle [?], which is a human

readable syntax for RDF. AIR constructs allow policy writers to explicitly control

how the reasoning happens by invoking rules according to pattern matches and are

based on AMORD constructs [?]. AMORD is a production-rule system that features

pattern matching, dependency tracking, nesting of rules, and goal direction. The

combination of these features provides expressive power (pattern matching and rule

nesting), efficient execution (goal direction), and integrated explanations (dependency

tracking).

AIR consists of an ontology and a reasoner, which when given a set of policies

and data in Turtle, attempts to compute compliance of the data with respect to the

policies. Each computed compliance result has an associated explanation outlining

the derivation of the result from the inputs.

The AIR ontology comprises several classes and properties that are used to define

rule-based policies. Please refer to Figure 3-1 for an overview of the AIR classes,

properties, and their relationships.

There are two top-level classes in AIR: Abstract-action and Abstract-container.

Policy is a subclass of Abstract-container. The Abstract-container class has

properties for defining variables, belief rules, goal rules, belief assertions, and goal

assertions that Policy inherits. Variables are scoped to the container they appear

in. For example, in the following declaration the scope of variable :REQ is within

:DIGPolicy and the rules it contains including :rule1 and :rule2. The scope of

variable :MEMBER declared in :rule1 is :rule1 and the scope of variable :MEMBER and

LEGEND

Abstract-
container
variable
rule
goal-rule
assertion
goal-assertion
assert
assert-goal

Abstract-
action

label
justification

Policy Abstract-rule
pattern
matched-graph
new-node

Goal-rule Belief-rule

Abstract-
assertion

statement

Belief Goal

Justification
rule-id
antecedent

Contradiction Graph

Pattern

rdfs:
Resource

compliant-with
non-compliant-with

Class name
Attributes
Attributes

Subclass name
Attributes
Attributes

Figure 3-1: AIR ontology

:FOAF-REQ declared in :rule2 is :rule2. If :REQ is bound before :rule1 or :rule2

are invoked then it is passed as a value and not as a variable. (Variables do not have

to be uppercase.)

:DIGPolicy a air:Policy;

air:variable :REQ, :REQUESTER,

:RESOURCE, :MEMBERLIST;

air:rule :rule1, :rule2.

:rule1 a air:Belief-rule;

air:variable :MEMBER.

:rule2 a air:Belief-rule;

air:variable :MEMBER, :FOAF-REQ.

An Abstract-rule is a subclass of both Abstract-container and Abstract-

action and its subclasses are Goal-rule and Belief-rule. Instances of Goal-

rule match statements that are asserted as goals, and are used sparingly in typical

applications. The rule property applies to all Abstract-containers and is used to

attach rules to policies as shown in the example above.

A rule consists of a pattern, a matched-graph variable, a justification, a label,

and zero or more actions. The matched-graph variable, justification, and label are

optional. Omitting the matched-graph variable means there’s no direct reference for

the matched graph, which often isn’t needed. Omitting the justification means a

default justification is used, also the usual case. For example, the following belief rule

declares a variable and has a label and a pattern.

:rule1 a air:Belief-Rule;

air:variable :MEMBER;

air:label "Member access";

air:pattern {

:MEMBER air:in :MEMBERLIST.

:MEMBER a foaf:Person;

foaf:openid :REQUESTER.

}.

Belief rules implement forward-chaining deduction, while goal rules provide a

means to limit the application of rules (and consequently the amount of compu-

tation performed). In the following example, a belief rule :ruleB has a nested goal

rule r1 that controls the introduction of sub-class type inference. The outer rule

fires whenever a sub-class relationship is believed, causing r1 to be enabled. R1 is

applied when there is a goal to show that some resource is a member of the class :V2,

enabling the belief rule r2. R2 implements the implication ”if a resource is a member

of a subclass :V3, it’s also a member of the containing class :V2”.

:ruleB a air:Belief-rule;

air:variable :V1, :V2, :V3, :V4;

air:label "sub-class implication";

air:pattern {

:V3 rdfs:subClassOf :V2.

};

air:goal-rule [# sub-rule r1

air:pattern { :V1 a :V2. };

air:rule [# sub-rule r2

air:pattern { :V1 a :V3. };

air:assert { :V1 a :V2. };

];

].

The purpose of the goal rule r1 is to limit the deductions made by the system. If

:ruleB were rewritten as a belief rule, as below, it would make all possible deductions

of this kind, whether they were needed or not. The use of a goal rule instead limits

the deductions to those actually asked for (specified as goals) rather than for every

possible deduction.

:ruleB a air:Belief-rule;

air:variable :V1, :V2, :V3;

air:label "sub-class implication";

air:pattern {

:V3 rdfs:subClassOf :V2.

:V1 a :V3.

};

air:assert { :V1 a :V2. }.

The action of a rule consists of a set of assertions and sub-rules. A sub-rule

appearing in the action of a containing rule is initially inactive, meaning it is not

eligible for matching. When the containing rule’s pattern matches and its action is

performed, the sub-rule becomes active and its pattern will be matched as needed.

:SomePolicy a air:Policy;

air:rule [

air:label "containing rule";

air:pattern { ... };

air:rule [

air:label "sub-rule";

air:pattern { ... };

air:assert { ... };

air:rule [

air:label "sub-sub-rule";

air:pattern { ... };

air:assert { ... }

]

]

] .

An assertion appearing in the action of a rule can be either a belief or a goal. If it

is a belief, the asserted statement can be matched against belief rules and if it is a goal

the asserted statement can be matched against goal rules. In the following example,

a belief assertion is associated with :rule2, so when the rule’s pattern matches, the

statement is asserted as a belief. Variables :MEMBERLIST, :REQUESTER, and :DIG are

bound before the rule is invoked.

:rule2 a air:Belief-rule;

air:variable :MEMBER;

air:label "Member access";

air:pattern {

:MEMBER air:in :MEMBERLIST.

:MEMBER a foaf:Person;

foaf:openid :REQUESTER.

};

air:assert {

:MEMBER foaf:member :DIG

} .

AIR provides a small library that implements some simple RDFS [?] and OWL

[?] deduction rules. For example, if a relation R is declared to be transitive, and the

belief set contains xRy and yRz, the library can deduce xRz. The library provides a

number of generally useful deductions, and will be augmented with new rules as the

need arises.

The properties dealing with policy compliance are compliant-with and non-

compliant-with; they specify that the subject is or is not compliant with the object

policy. For example, the following policy has a single rule, which when matched

asserts that the request is compliant with the policy.

:rule6 a air:Belief-Rule;

air:variable :MEMBER, :FOAF-REQ;

air:label "Member referral access";

air:pattern {

:MEMBER air:in :MEMBERLIST.

:MEMBER foaf:knows :FOAF-REQ.

:FOAF-REQ foaf:openid :REQUESTER.

};

air:assert {

:REQ air:compliant-with :DIGPolicy

} .

3.3 RETE AIR Reasoner

3.4 TREAT AIR Reasoner

3.5 TMS

3.6 Proof Generation

3.7 Related Work

The explanation framework in [?] provides natural language explanations for ques-

tions about policy decisions including explanations for failed results. The explanation

generation process is separate from the regular query process and uses abductive rea-

soning, a method of inferring which hypothesis best explains the facts, to obtain a

proof. Parts of the proof language in the proof are then substituted with natural

language structures. Abductive reasoning is known to produce incorrect results and

as the proof generation process is different from the query process it could infer an

explanation that is different from that inferred by the query process. Another prob-

lem is that the explanation for failed policy results (e.g. why-not) ends up being the

list of all rules that the user did not match. This means that the user has to sort

through a lot of potentially irrelevant information and the disclosure of these addi-

tional policy rules could also be a privacy risk. In our approach, the proof generation

happens along with the inference and is not a separate process. We track the rules

and statements that were actually used to infer the statement (policy decision). Also,

by explicitly handling failed results or unmatched cases using the alt construct, it is

possible to provide explanations for failed (or incompliant) policy decisions without

revealing all unmatched rules.

Our proofs could be easily converted to generic proof representation formats such

as PML for display and analysis. PML is a general proof language or ”proof inter-

lingua” that is used to describe proof steps generated by different kinds of reasoning

engines. Once written in PML a user could Inference Web (IW) is a framework for dis-

playing and manipulating proofs defined in Proof Markup Language (PML) [?]. IW

concentrates on displaying proofs whereas our approach is mainly about generating

these proofs.

Both WhyNot [?] and the Know system [?] focus explicitly on failed queries and

try to suggest changes to the knowledge base that will cause these queries to succeed.

Our justification approach is more general and allows failures to be captured in policies

so explanations can be provided for both successful and failed policy decisions.

Chapter 4

Cwm Reasoner

4.1 Introduction

4.2 Overview

4.3 Forward Chained Reasoner

4.3.1 Technique

4.3.2 Builtins

4.4 Backward Chained Reasoner

4.5 SPARQL query engine

4.6 Proof Generation and Checking

29

Chapter 5

Related Work

31

Chapter 6

Contribution

33

Chapter 7

Conclusion

35

