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ABSTRACT

We describe a method to select edgels and to calculate gradient
orientation-based template descriptors for edgel features. An edgel
is selected within a grid block based on gradient magnitude; its
position and orientation are used to determine a canonical frame
where the descriptor is computed based on quantized orientation.
The resulting descriptor is efficiently matched using logical opera-
tions. We demonstrate the use of the resulting edgel detection and
description method for planar object detection and pose estimation.

Index Terms: I.4.7 [Computing Methodologies]: Image Pro-
cessing and Computer Vision—Feature Measurement; I.4.8 [Com-
puting Methodologies]: Image Processing and Computer Vision—
Scene Analysis

1 INTRODUCTION

Object detection and pose estimation are important steps in regis-
tering the appearance of virtual objects in real imagery, a corner-
stone of Augmented Reality (AR) applications. While “corners”
are commonly used in feature tracking approaches [6, 7], there are
objects and scenes with few if any distinct corners. Examples in-
clude the palm of a hand, uniformly colored objects such as walls
and desk tops, line drawings. For such “textureless” objects, oc-
cluding boundaries are often the most salient and photometrically
stable feature.

Taylor et al. [6] detect FAST corner features [5] from multiple
synthesized viewpoints and bin the normalized intensity of the re-
sulting (warped) images to construct a descriptor. They introduce
an efficient method of comparing the binarized histograms using
SIMD instructions to achieve high frame-rate and detect multiple
objects in real-time. While SIFT [4] descriptors are widely used in
wide-baseline matching and object detection, their computational
cost hinders efficient operation on mobile devices with limited com-
puting power, although Wagner et al. [7] have optimized SIFT de-
scriptors for real-time detection and tracking. They also use [5] for
detecting keypoints (“corners”).

On the other hand, Hinterstoisser et al. [3] use dominant orien-
tation templates to detect textureless objects. They compare orien-
tations on regions with high gradient magnitude using SIMD op-
erations to compute the matching score, similar to [6]. Recently,
Hagbi et al. [2] introduced a shape descriptor for pose estimation
for mobile augmented reality. They allow natural shapes to be a
reference object, which can be hand-drawn shapes.

2 METHODOLOGY

We introduce a template based on edge segments (“edge elements”,
or “edgels”) that describes the local appearance around a collection
of edgels. Efficiently matching these template descriptors allows
object detection and pose estimation under viewpoint changes and
partial occlusions.
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Figure 1: (a) Given an image, edgels selected at multiple scales are
shown. (b) For an edgel, the support region is canonized with the
edgel’s position and orientation. The edgel template is constructed
as a matrix φ ∈ {0,1}B×K

2.1 Edgel Selection
Given a grayscale image I(x,y), we build an image pyramid by blur-
ring and downsampling.For each scale-dependent sampling of the
image I(x,y;σ), at each scale level σ , we compute the first-order
approximation of the image gradient ∇I(x,y;σ) using a 5×5 Gaus-
sian kernel, and Sobel operators along the x and y directions. Then
we divide the image into NB×NB grid block regions, and select the
pixels that have maximum gradient magnitude in each block. Fur-
thermore, we only select an edge pixel whose magnitude is larger
than a threshold θ1. The edge detection procedure provides a (scale-
dependent) measure of edge orientation, or its normal direction r.
Therefore, we represent an edge element, or “edgel”, as (x,y,r,σ)
with its (x,y) position, gradient orientation r, and scale σ . In Fig-
ure 1a, representative examples of selected edgels are shown.

2.2 Edgel Templates
Edgel detection provides a similarity reference frame, consisting
of an origin (x,y), a direction r, and a unit σ . By assigning
each of them to the same “canonical” reference, for instance via
(x,y) 7→ (0,0), r 7→ e1

.
= [1, 0], and σ 7→ 1, we obtain a description

of the image that is invariant to similarity transformations locally in
a neighborhood of size σ around the point (x,y).

To calculate the canonized descriptor, we sample gradient orien-
tations ∇I(x,y;σ)/‖∇I‖ in the canonical frame, that is organized
into a “support region” consisting of K = M×M subregions, where
each subregion is comprised of NR ×NR pixels. Thus, a support
region of an edgel (x,y,r,σ) covers MNR×MNR pixels centered at
(x,y) and rotated so that r corresponds to the abscissa of the local
reference frame. In Figure 1b, a canonized support region of an
edgel is illustrated.

For each subregion, we select an edgel whose gradient magni-
tude is the largest within the subregion and is larger than a threshold
θ2; we then take the orientation of the selected edgel for the sub-
region. This is done similarly to the edgel selection in Section 2.1,
but with a different threshold. Here we choose a threshold θ2 to be
smaller than θ1 in order to make the edgel template descriptor rich



enough to describe the support region of the edgel. In our imple-
mentation, we chose θ1 = 50, and θ2 = 2.

We quantize the orientations in the edgel templates using B bins
to uniformly divide r ∈ [0, . . . ,π), and represent the subregion as a
vector R(r) ∈ {0,1}B whose i-th element Ri(r) is defined as below:

Ri(r) =
{

1 if (i−1)π
B ≤ r < iπ

B
0 otherwise

for i = 1,2, . . . ,B (1)

An edgel template φ is finally constructed by stacking R(r) vec-
tors of K subregions as a matrix φ ∈ {0,1}B×K . Note that some
subregions may not have edgels with magnitudes larger than θ2, in
which case their R(r) vectors are zeros. In Figure 1b, the construc-
tion of an edgel template is illustrated.

2.3 Matching Edgel Templates
The matching score of two edgel templates is computed as:

F(φ1,φ2)
.
=

1
K
‖φ1 ◦φ2‖ (2)

where φ1,φ2 ∈ {0,1}B×K are edgel templates, and the norm is the
sum of entry-wise product of the two matrices. Hence, F(φ1,φ2) is
the ratio of the number of subregions in the support region that have
same quantized edgel orientations between the two templates.This
computation can be efficiently implemented using bit-wise logical
operations and bit-count operation, similar to [6, 3].

We perform object detection and pose estimation using a coarse-
to-fine matching scheme. For a test image, edgels are selected in
multiple scales, and their edgel template descriptors φtest are com-
pared to the reference object’s edgel templates φre f ; among all puta-
tive matches with F(φre f ,φtest) > θF , we choose the matches with
highest matching scores. Geometric constraints are then applied,
i.e. homography for planar objects with RANSAC [1].

3 EXPERIMENTS

We implemented edgel selection and template descriptor described
in previous sections, and used the edgel templates for real-time ob-
ject detection and pose estimation. For image sequences taken from
a webcam at 640×480 resolution, the first frame is used as a refer-
ence object and the subsequent ones are used to detect edgels and
matching their corresponding edgel templates. Then the homogra-
phy is computed to render the reference object in each test image.
The experiments are performed on a laptop with a 2.53GHz Intel
Core 2 Duo CPU. Table 1 shows the computation time for the tasks
involved in the experiments.

During these experiments, the edgel templates of the reference
object are selected without synthesizing the reference image in per-
spective viewpoints, unlike to [6]. However, the results show that
moderate to significant viewpoint changes are handled well, with-
out time-consuming viewpoint synthesis steps for learning a refer-
ence object, as shown in Figure 2. More significant scale changes
and perspective distortions can be covered when we utilize such
learning procedures with edgel templates. Some failure cases can
be seen in Figure 3.

Tasks Time (ms)
grayscale image pyramids 2.7
image gradients 7.1
extracting edgel templates 16.5
matching edgel templates 20.2
homography / RANSAC 9.1
total 55.6

Table 1: Runtime computation time.

Figure 2: Representative snapshots of object detection and pose
estimation under viewpoint changes and partial occlusions.

Figure 3: Failure cases: (left) incorrectly estimated homography,
(right) missed target under severe blur and occlusion.

4 CONCLUSION

We described a method to select edgels and to calculate orientation-
based edgel template descriptors. We also demonstrated using
edgel templates for object detection and pose estimation under sev-
eral nuisances including translation, rotation, scale changes, and
occlusions. Exhaustive comparisons with different types of features
and methods are left for future work. In addition, we plan to design
a hierarchical selection and matching scheme for edgel templates.
We also expect to optimize the implementation on mobile devices.
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