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Abstract  To make e-society, e-governance and cloud computing systems be utilized more widely, this paper 
proposes a scheme to collect attribute values belong to same data holders and calculate functions of them without 
knowing correspondences between the attribute values and their holders or links among attribute values of same 
holders. Different from most of other schemes the proposed scheme is based on linear Mix-net that exploits secret 
key encryption functions such as linear equation based (LE-based) and multidimensional array based (MA-based) 
ones, therefore it can handle real numbers that appear in many important business and engineering applications 
efficiently in the same way as integers. In addition, anonymous tag based credentials used in the scheme ensure the 
correctness of calculation results. Although the scheme can calculate only linear combinations of attribute values 
when LE-based encryption functions are used, if they are replaced with MA-based ones, it can calculate also general 
polynomial functions of attribute values. 
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1. Introduction 
Data collection systems are ones that collect attribute 

values belong to same data holders and calculate functions 
of them, and by using these systems, government agencies 
can quickly and correctly calculate taxes of citizens for 
example. However, many people do not want such 
systems because their all information are linked and may 
be used for other purposes. Same difficulties exist in many 
applications in e-society and e-governance systems. To 
make e-society, e-governance and cloud computing 
systems be utilized more widely, this paper proposes a 
scheme that enables entities (e.g. servers in cloud 
computing systems) to collect attribute values belong to 
same data holders and calculate functions of them without 
knowing links between attribute values and their holders 
or among attribute values of same holders. 

The above scheme can be developed by using Mix-nets 
[2,4,5] as shown in Figure 1 that consist of data holders, 
authority A, and mix-servers M1, M2, ---, MN in the 
encryption and the decryption stages. Here, each data 
holder P owns its attribute values XP(1), XP(2), ---, XP(Q), 
and although each XP(q) is disclosed by some reasons (e.g. 
if XP(q) is the amount of P’s deposit in a bank P must 
disclose it to the bank) P wants to conceal the fact that 
XP(q) belongs to it from others including A and mix-
servers (actually, P must conceal also links among XP(1), -
--, XP(Q) because they are good clues to identify P). On 

the other hand, A needs to calculate functions of attribute 
values of same data holders and let data holders take 
actions according to the calculation results (e.g. pay taxes). 

 

Figure 1. Configuration of a data collection system 

To satisfy these requirements, mix-servers M1, ---, MN 
in the encryption and the decryption stages repeatedly 
encrypt individual attribute values and decrypt encrypted 
function values respectively while disclosing their 
encryption and decryption results publicly so that they can 
convince others of their correct encryptions and 
decryptions. An important things here are firstly 
encryption functions are probabilistic (this means they 
generate different encryption forms even for same plain 
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texts) and secondly each Mh shuffles its encryption or 
decryption results before it discloses them. Therefore no 
one can know the correspondence between attribute values 
received by M1 in the encryption stage and final 
decryption results calculated by M1 in the decryption stage 
unless all mix-servers conspire. 

In detail, each data holder P informs 1st mix-server M1 
in the encryption stage of its q-th attribute value XP(q) 
without disclosing its identity, and provided that kh is an 
encryption key of Mh’s encryption function E(kh, x) for 
each h, M1, ---, MN repeatedly encrypt each XP(q) to E(kN*, 
XP(q)) = E(kN, E(kN-1, --- E(k1, XP(q)) --- )) while 
shuffling their encryption results. After that, authority A 
collects E(kN*, XP(1)), E(kN*, XP(2)), ---, E(kN*, XP(Q)) 
that correspond to anonymous data holder P, and 
calculates E(kN*, f(XP(1), ---, XP(Q))), an encryption form 
of function value f(XP(1), ---, XP(Q)). Then, MN, MN-1, ---, 
M1 in the decryption stage repeatedly decrypt each E(kN*, 
f(XP(1), ---, XP(Q))) to f(XP(1), ---, XP(Q)) so that P that 
owns XP(1), ---, XP(Q) can know value f(XP(1), ---, XP(Q)), 
and finally A asks individual anonymous data holders to 
take actions according to their function values. 

But to implement this scheme the following difficulties 
must be removed. The 1st difficulty is about the 
anonymity of data holders, i.e. each data holder P must 
convince 1st mix-server M1 of its eligibility without 
disclosing its identity. About the 2nd and the 3rd 
difficulties, authority A must collect P’s encrypted 
attribute values E(kN*, XP(1)), ---, E(kN*, XP(Q)) from all 
encryption results in the encryption stage, on the other 
hand, P must identify its function value f(XP(1), ---, XP(Q)) 
from all decryption results in the decryption stage. The 4th 
and the 5th difficulties relate to mechanisms to calculate 
encryption form E(kN*, f(XP(1), ---, XP(Q))) and to ensure 
mix-servers’ correct handlings of attribute values. Namely, 
each encryption function E(kh, x) must have specific 
features to enable A to calculate E(kN*, f(XP(1), ---, XP(Q))) 
from E(kN* XP(1)), ---, E(kN*, XP(Q)). Also, even if some 
entities behave dishonestly, A and data holders must detect 
incorrect calculation results and identify entities liable for 
them to re-calculate correct values.  

Among these difficulties, the 1st difficulty can be 
removed by anonymous authentication schemes [6,7,12], 
in addition some of them can handle also the 2nd, the 3rd 
and the 5th difficulties. But currently available schemes 
are not practical for handling the 4th difficulty. Namely, 
although simple ElGamal re-encryption schemes [4] 
enable authority A to calculate encrypted weighted sum of 
attribute values E(kN*, a1XP(1)+ --- +aQXP(Q)) as E(kN*, 
a1XP(1))+ --- +E(kN*, aQXP(Q)) and recent fully 
homomorphic encryption functions [8,9] may enable A to 
calculate arbitrary function E(kN*, f(XP(1), ---, XP(Q))) as 
f(E(kN*, XP(1)), ---, E(kN*, XP(Q))), they are designed for 
handling integer values. Therefore they are not practical to 
handle real number attribute values that appear in many 
important business and engineering applications. 

The scheme proposed in this paper exploits linear 
equation based (LE-based) encryption functions [10] to 
enable authority A to efficiently calculate weighted sums 
of real number attribute values. A can calculate also their 
general polynomial functions, when LE-based encryption 
functions are replaced with multidimensional array based 
(MA-based) ones [10] which are both additive and 
multiplicative. 

2. LE-based Encryption Functions 
A linear equation based (LE-based) encryption function 

considers information as integers or real numbers, and 
encrypts an (H+G)-dimensional vector of integers or real 
numbers X = {x1, x2, ---, xH, r1, r2, ---, rG } to (H+G)-
dimensional vector X* = {x*1, x*2, ---, x*H+G} by using 
secret (H+G)x(H+G)-dimensional coefficient matrix Q = 
{qij}, i.e. x*i = qi1x1+qi2x2+ --- +qiHxH+qi(H+1)r1+ --- 
+qi(H+G)rG for each i [10]. Where, each xj constitutes a real 
term that corresponds to information to be encrypted, on 
the other hand, each rh is a random number secret of the 
information holder and constitutes a dummy term. 

Then, for an entity that does not know matrix Q it is 
difficult to calculate X from X*; but when Q is known, 
anyone can calculate X from X* by solving the linear 
equations provided that Q has its inverse. Therefore, 
coefficient matrices Q and Q-1 work as an encryption and 
a decryption keys. Here, it is apparent that encryption 
function E(Q, X) is additive, i.e. provided that s and t are 
real numbers and sX represents the product of scalar 
number s and vector X, when X and Y are encrypted to, 
E(Q, X) and E(Q, Y), sE(Q, X)+tE(Q, Y) is decrypted to 
sX+tY. Also, because each xj, rh and elements of matrix Q 
are not limited to integers, LE-based encryption functions 
can handle real numbers in totally the same way as integers.  

However the above additive feature introduces a serious 
drawback, i.e. LE-based encryption functions are weak 
against plain text attacks. When mutually independent 
(H+G)-dimensional vectors A1*, A2*, ---, A(H+G)* are known 
as encryption forms of known vectors A1, A2, ---, AH+G, 
because arbitrarily given (H+G)-dimensional vector X* is 
represented as X* = g1A1*+ ---- +gH+GA(H+G)*, X* can be 
easily decrypted to X = g1A1+ ---- +gH+GAH+G without 
knowing coefficient matrix Q. Therefore, LE-based 
encryption functions must be used in applications where 
data are encrypted and decrypted by same entities, i.e. in 
these applications entities that encrypt information do not 
need to disclose at least dummy term values to others in 
their plain forms and plain text attacks become difficult (it 
must be noted that by various reasons real part values 
must be disclosed in their plain forms in many 
applications). Because entities that encrypt and decrypt 
data are same, a fact that lengths of encryption keys are 
prone to being long is not a disadvantage either. 

LE-based encryption functions can be intensified 
further by inserting secret dummy elements at random 
positions in encrypted vectors, i.e. elements of encryption 
form {x*1, x*2---, x*H+G} and secret dummy vector {w*1, 
w*2, ---, w*L} are merged while being shuffled to constitute 
(H+G+L)-dimensional encryption form {X*’} = {w*1, w*2, 
x*3 w*3, x*1---, w*4} for example. As a consequence, 
positions where x*1, x*2---, x*G+H are located in {X*’} must 
be determined in order to decrypt {X*’}. When L-dummy 
elements {w*1, w*2---, w*L} are added to (H+G)-
dimensional vector {x*1, x*2---, x*H+G}, H+G+LPH+G number 
of possibilities must be examined to remove the dummy 
elements, and when (H+G) and L are set to 50, H+G+LPH+G 
is 100P50 > 2500.  

On the other hand, solving linear equations is not 
difficult when the coefficient matrix is given. For example, 
LU-decomposition [3] solves linear equations with 
sufficient performance in terms of both computation speed 
and accuracy. Computation speed is fast enough compared 
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with that of modern asymmetric key encryption functions 
such as RSA even the dimensions of coefficient matrices 
are more than 100, also computation errors are small enough.  

However, it is still easy to generate consistent 
encryption forms even without knowing encryption keys. 
By linearly combining known encryption forms, anyone 
can generate consistent encryption forms of variety of data 
without knowing the key as same as man in the middle 
attacks in environments where public key encryption 
functions are used. But many mechanisms are available to 
remove these threats, e.g. implicit transaction links (ITLs) 
[10] enable entities to detect forged encryption forms 
without examining individual forms.  

About the verifiability, although LE-based encryption 
functions are secret key based, correctness of E(Q, x) can 
be verified by using the additive property as follow. 
Conceptually, entity V that verifies E(Q, x*), encryption 
form of x, generates arbitrary vectors {E(Q, T1), ---, E(Q, 
Tm)} as a set of encryption forms of test values, and asks P, 
which had calculated E(Q, x*), to decrypt them to {T1, ---, 
Tm}. After that, V calculates X = w0E(Q, x*)+w1E(Q, T1)+ 
--- +wmE(Q, Tm) while generating random numbers w0, w1, 
----, wm secret from P, and asks P to decrypt X. Then, 
because E(Q, x) is additive X must be decrypted to X = 
w0x+w1T1+ ---- +wmTm if E(Q, x*) and E(k, T1), ---, E(k, 
Tm) are correct. But if they are incorrect, P that does not 
know w0, w1, ---, wm cannot calculate X from X.  

Here, actually X, E(Q, x*), E(Q, T1), ---, E(Q, Tm) in the 
above are vectors, therefore P obtains multiple relations 
about (m+1)-variables w0, w1, ---- wm, which may enable 
P to calculate w0, w2, ---- wm when m is small. But a slight 
extension disables P to calculate w0, w1, ---- wm even 
when m is small. This means P does not need to disclose 
numbers of plain and encryption forms pairs of test values. 
P does not need to disclose dummy terms of vector X and 
each test vector Tj either; in other words, verification of 
dummy terms has no meaning for V because they can 
have any values without making real terms inconsistent. 
Then, encryption function E(Q, x) can be protected from 
plain text attacks even in environments where correctness 
of numbers of encryption forms are verified.  

3. Linear Mix-net 
A scheme that enables authority A to calculate linear 

combinations of attribute values belong to same data 
holders without knowing correspondences between 
attribute values and their holders can be developed by 
linear Mix-nets as below [11]. As mentioned before, one 
of advantages of linear Mix-nets is they use LE-based or 
MA-based encryption functions and can handle real 
numbers and integers efficiently totally in the same way. 

Here, implementation of a re-encryption scheme based 
on LE-based encryption functions E(k1, x), E(k2, x), ---, 
E(kN, x) is straightforward, i.e. 1st mix-server M1 encrypts 
real number or integer x to z1-dimensional vector {x1(1), 
x1(2), ---, x1(z1)} based on its secret coefficient matrix 
{q1(i, j)} and dummy terms, and merges it and dummy 
elements {y1(z1+1), y1(z1+2), ---, y1(z*

1)} to construct z*
1-

dimensional vector E(k1, x) = {x1(1), x1(2), ---, x1(z*
1)}. 

Then 2nd mix-server M2 adds dummy terms to {x1(1), ---, 
x1(z*

1)} to construct z2-dimensional (z2 > z*
1) vector 

{x1(1), ---, x1(z*
1), x1(z*

1+1), ---, x1(z2)}, encrypts it to 

{x2(1), x2(2), ---, x2(z2)} by calculating each x2(s) as a 
linear combination of x1(1), ---, x1(z2) while using secret 
coefficient matrix {q2(i, j)}, and merges it and dummy 
elements {y2(z2+1), y2(z2+2), ---, y2(z*

2)} to construct z*
2-

dimensional vector E(k2, E(k1, x)) = {x2(1), x2(2), ---, 
x2(z*

2)}. Remaining mix-servers behave in the same way.  
In the remainder, a linear Mix-net is configured based 

on LE-based encryption functions, and notation E(kh*, x) 
is used to represent re-encryption form E(kh, E(kh-1, --- 
E(k1, x) --- )). 

3.1. Configuration of LE-based Linear Mix-net 
In LE-based linear Mix-net, mix-servers are arrayed 

also in the verification stage and numbers of mix-servers 
in the encryption and the decryption stages are not equal, 
i.e. it consists of data holders, authority A, mix-servers M1, 
---, MT in the encryption and the verification stages and 
M1, ---, MN (N < T) in the decryption stage as shown in 
Figure 2. As same as in Figure 1 mix-servers in the 
encryption stage repeatedly encrypt individual attribute 
values, and based on the encryption results, authority A 
calculates encrypted weighted sums of individual data 
holders’ attribute values to be repeatedly decrypted by 
mix-servers in the decryption stage. But different form 
Figure 1 mix-servers in the encryption stage encrypt single 
attribute value XP(q) into multiple different forms, also 
before entering the decryption stage mix-servers in the 
verification stage decrypt individual encrypted attribute 
values to convince others of their honest encryptions. 

 

Figure 2. Configuration of LE-based linear Mix-net 
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Where, although each Mh in all stages discloses its 
encryption and decryption results publicly despite E(kh, x) 
is weak against plain text attacks to prove its correct 
handlings of attribute values, E(kh, x) is protected because 
Mh in each stage shuffles its encryption or decryption 
results. For an entity that does not know shuffling rules, 
every possible input and output values pair of Mh is a 
candidate of plain and encryption (or encryption and plain) 
forms pair of E(kh, x), and provided that Ω and Ψ are the 
number of data holders and the dimension of vector E(kh, 
x) respectively, ΩPΨ number of possibilities must be 
examined for obtaining Ψ-mutually independent plain and 
encryption forms pairs (ΩPΨ is greater than 101000 when Ω 
= 200 and Ψ = 100). 

Figure 3 shows the data structure of data holder P’s q-th 
attribute value XP(q) that P puts in the encryption stage. 
Attribute ID and attribute parts correspond to q-th attribute 
name Iq (e.g. height of persons) and attribute value XP(q) 
itself (e.g. height of a particular person P). About copy ID 
part value d, P generates multiple copies for single XP(q) 
and d is the identifier of the d-th copy. The holder part 
value Zr(q, d)·R

mod B is calculated by P from publicly known 
integer Zr(q, d)

mod B as a used seal of P’s anonymous tag 
based credential S(P, R) [12] (B is a publicly known 
sufficiently large appropriate integer and notation mod B is 
omitted in the remainder). 

 

Figure 3. Data structure of attribute values 

In detail, for its q-th attribute value XP(q), P shows D-
quadruplets E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} (d =, 1, 2, 
---, D) to 1st mix-server M1 to be encrypted repeatedly to 
quadruplets E1(XP(q, d)) = {Iq, d, E(k1, XP(q)d), Zr(q, 

d)·R·u(1)}, ---, EN(XP(q, d)) = {Iq, d, E(kN*, XP(q)d), Zr(q, 

d)·R·u*(N)}, ---, ET(XP(q, d)) = {Iq, d, E(kT*, XP(q)d), Zr(q, 

d)·R·u*(T)}, (d =, 1, 2, ---, D) by M1, ---, MN, ---, MT in the 
encryption stage, where E(kh*, XP(q)d) represents a re-
encryption form of XP(q) that is generated based on 
dummy terms and dummy elements corresponding to copy 
ID value d, therefore although E(kh*, XP(q)1), ---, E(kh*, 
XP(q)D) are decrypted to same value XP(q) they have 
different forms. 

About the verification stage, authority A collects 
quadruplets ET(XP(q, 1)), ---, ET(XP(q, D)), which are 
calculated from E0(XP(q, 1)), ---, E0(XP(q, D)) in the 
encryption stage corresponding to attribute value XP(q), to 
construct single triplet ET(XP(q)) = {Iq, E(kT*, XP(q)*), 
Zr(q)·R·u*(T)·w(A)} that has the same structure as in Figure 3 
except it does not include the copy ID part. Then, MT, ---, 
M1 decrypt ET(XP(q)) repeatedly to triplets ET-1(XP(q)), ---, 
E0(XP(q)). Important things are firstly E(kT*, XP(q)*) in 
triplet ET(XP(q)) is decrypted also to XP(q), and secondly, 
each mix-server Mh cannot identify the correspondence 
between Eh(XP(q, d)) in the encryption stage and Eh(XP(q)) 
in the verification stage for each d, in other words, 
attribute and holder parts values in triplets ET(XP(q)), ---, 
E1(XP(q)) have different forms from those in quadruplets 
ET(XP(q, d)), ---, E1(XP(q, d)).  

Finally, the data structure of the weighted sum of P’s 
attribute values X(P) = a1XP(1)+ --- +aQXP(Q) put in the 

decryption stage consists of attribute part and holder part 
values pair EN(X(P)) = {E(kN*, X(P)), ZR·u*(N)·r*}. Its 
attribute part and holder part values are aggregations of 
those in 1st copies of re-encrypted quadruplets EN(XP(1, 
1)), ---, EN(XP(Q, 1)) in the encryption stage, i.e. E(kN*, 
X(P)) = a1E(kN*, XP(1)1)+ --- +aQE(kN*, XP(Q)1) and 
ZR·u*(N)·r* = ZR·u*(N)·r(1, 1)·r(2, 1)---·r(Q, 1). Here, it must be noted 
that authority A generates EN(X(P)) from EN(XP(1, 1)), ---, 
EN(XP(Q, 1)) instead of ET(XP(1, 1)), ---, ET(XP(Q, 1)). 

Under the above settings, first 3 difficulties in 
Introduction are removed by anonymous credential S(P, R) 
and holder part values of quadruplets in the encryption 
stage and pairs in the decryption stage. In detail, to 
register itself as an authorized entity, each data holder P 
shows its exact identity to authority A, and A issues 
integers Zr(1, d), ---, Zr(Q, d) (d = 1, 2, ---, D) and anonymous 
credential S(P, R) that includes P’s secret unique integer R 
to P. After that, P generates secret integer y(P, q), 
calculates S(P, R)y(P, q), and shows S(P, R)y(P, q) together 
with XP(q) to 1st mix-server M1 in the encryption stage. 
At the same time, P calculates holder part value Zr(q, d)·R 
from Zr(q, d) for each d as a used seal of S(P, R) to be 
incorporated in each quadruplet E0(XP(q, d)) = {Iq, d, 
XP(q), Zr(q, d)·R}, where, anonymous credential S(P, R) 
forces P to honestly calculate holder part value Zr(q, d)·R 
from Zr(q, d) by using secret integer R in S(P, R). About 
integers Z and r(q, d), Z is common to all attribute vales of 
all data holders and publicly known, on the other hand, r(q, 
d) is unique to q-th attribute values for each d and it is 
secret from all entities including A and mix-servers. 

Then the 1st difficulty is removed, i.e. anonymous 
credential S(P, R) enables P to convince M1 of its 
eligibility without disclosing its identity or secret integer 
R [12]. Here, P assigns different values to secret integers 
y(P, 1), ---, y(P, Q), also each holder part value Zr(q, d)·R is 
constructed by integers Z, r(q, d) and R with the above 
properties. Therefore entities other than P cannot identify 
links among P’s attribute values XP(1), ---, XP(Q) even if 
they examine credential forms S(P, R)y(P, 1), ---, S(P, R)y(P, 

Q) or used seals Zr(1, d)·R, ---, Zr(Q, d)·R. When difficulties of 
solving discrete logarithm problems are considered, to 
know that the above credential forms or used seals are 
calculated from same S(P, R) or R is computationally 
infeasible for entities that do not know y(P, q), R or r(q, d). 

About the 2nd and the 3rd difficulties, holder part value 
Zr(q, d)·R in initial quadruplet E0(XP(q, d)) is transformed to 
Zr(q, d)·R·u(1)·u(2)---u(N) = Zr(q, d)·R·u*(N) by M1, ---, MN in the 
encryption stage as a holder part value of re-encrypted 
quadruplet EN(XP(q, d)), and before entering the 
decryption stage, A asks mix-servers to calculate (Zr(q, 

1)·R·u*(N))r(1, 1)·r(2, 1)---r(q-1, 1)·r(q+1, 1)---r(Q, 1) = ZR·u*(N)·r(1, 1)·r(2, 1)---r(Q, 

1) = ZR·u*(N)·r* from Zr(q, 1)·R·u*(N) for each q. Therefore, value 
ZR·u*(N)·r* becomes common to P’s all encrypted 
quadruplets EN(XP(1, 1)), ---, EN(XP(Q, 1)), and as a result, 
to calculate pair EN(X(P)) = {E(k*, X(P)), ZR·u*(N)·r*} A can 
collect EN(XP(1, 1)), ---, EN(XP(Q, 1)) despite that M1, ---, 
MN shuffle their encryption results. Here, u(h) is mix-
server Mh’s secret integer common to all attribute values 
of all data holders, and although no one knows each r(q, d) 
mix-servers can calculate ZR·u*(N)·r* from Zr(q, 1)·R·u*(N) as in 
Sec. 3.2.3.  

In the same way, A can collect all quadruplets ET(XP(q, 
1)), ---, ET(XP(q, D)) corresponding to XP(q) to construct 
triplet ET(XP(q)) to be decrypted in the verification stage. 
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Also, P can identify finally decrypted pair E*
0(X(P)) = 

{X(P), ZR·u*(N)·r*·v*} in the decryption stage based on its 
holder part value ZR·u*(N)·r*·v*, i.e. provided that mix-servers 
calculate Zu*(N)·r*·v* separately, only P that knows R can 
calculate ZR·u*(N)·r*·v* in pair E*

0(X(P)) from Zu*(N)·r*·v*. 
Moreover although R is P’s secret, P must calculate it 
honestly as a used seal of its credential S(P, R). 

In the above, unique integer r(q, d) secret from all 
entities can be generated easily. In detail, each Mh 
generates its secret integer r(q, d; h) and calculates Zr(q, d; 

1)·r(q, d; 2)---r(q, d; h-1)·r(q, d; h) from Zr(q, d; 1)·r(q, d; 2)---r(q, d; h-1) 
received from Mh-1 to forward the result to Mh+1 so that 
finally MT can calculate Zr(q, d; 1)·r(q, d; 2)---r(q, d; T) = Zr(q, d). 
Namely, no one knows all r(q, d; 1), ---, r(q, d; T) and 
calculating r(q, d) from Zr(q, d) is a discrete logarithm 
problem. Also uniqueness of r(q, d) can be maintained by 
discarding r(q, d) to replace it with new one when mix-
servers had calculated same value Zr(q, d) before. Integers 
u*(N), v* and r* are generated in the same way. Therefore, 
no one can know values of r(q, d), u*(N), v* or r*, and as a 
result, anyone including P itself cannot examine holder 
part values to know the correspondence between P and 
encrypted quadruplet EN(XP(q, d)) or between finally 
decrypted pair E*

0(X(P)) and each EN(XP(q, d)). 
LE-based encryption functions and the verification 

stage remove the remaining difficulties. Firstly, encryption 
function E(kN*, x) is additive because each E(kh, x) is LE-
based. Therefore, authority A can calculate encryption 
form E(kN*, a1XP(1)+a2XP(2)+ --- +aQXP(Q)) from 
encrypted attribute values E(kN*, XP(1)1), E(kN*, XP(2)1), --
-, E(kN*, XP(Q)1) as E(kN*, a1XP(1)+ --- +aQXP(Q)) = 
E(kN*, XP(1)1)+ --- +E(kN*, XP(Q)1). Namely, the 4th 
difficulty is removed if function f(x1, ---, xQ) is a linear 
combination of attribute values x1, ---, xQ.  

About the 5th difficulty, mix-servers in the encryption 
and the verification stages transform each attribute value 
in different ways, i.e. corresponding to same attribute 
value XP(q), mix-server Mh in the encryption stage 
calculates quadruplet Eh(XP(q, d)), and Mh+1 in the 
verification stage calculates triplet Eh(XP(q)) so that no 
one can identify the correspondence between them. 
Therefore, if initial quadruplet E0(XP(q, d)) was 
dishonestly transformed to Eh(X*

P(q, d)) by Mh in the 
encryption stage, even Mh in the verification stage cannot 
replace E(kh*, X*

P(q)*) in Eh(X*
P(q)) with E(kh*, XP(q)*) 

that is finally decrypted to XP(q), because it does not know 
triplet Eh(X*

P(q)) corresponding to Eh(X*
P(q, d)). This 

means authority A can verify the correct encryption of 
each E0(XP(q, d)) by comparing XP(q) in it and X*

P(q) in 
decrypted triplet E0(X*

P(q)) in the verification stage, i.e. 
EN(X*

P(q)) is incorrect when XP(q) ≠ X*
P(q). Here, data 

holder P can identify triplet E0(X*
P(q)) corresponds to it in 

the same way as it finds pair E*
0(X(P)) in the decryption stage.  

By exploiting, integers Zr(1, d), ---, Zr(Q, d), verifiable 
features of LE-based encryption functions and features of 
anonymous tag based credentials, A and data holders also 
can detect dishonesties in the decryption stage, identify 
liable entities, and re-calculate correct results without 
knowing secrets of honest entities, i.e. the 5th difficulty is 
removed. 

3.2. Behaviours of the LE-based Linear Mix-net 
After quadruplets E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} 

(d = 1, 2, ---, D) were disclosed publicly corresponding to 

attribute value XP(q) of anonymous data holder P, 
individual mix-servers and authority A behave as below. 
In the remainder, u*(h), v*(h) and w*(h) represent products 
u(1)u(2)---u(h), v(N)v(N-1)---v(h) and w(A)w(N)w(N-1)--
-w(h), and as a special case v* = v*(1) and w* = w*(1). 
Where, u(h), v(h) and w(h) are integers common to all 
attribute values of all data holders and secrets of h-th mix-
server Mh, and w(A) is a secret integer of authority A and 
common to all attribute values of all data holders. 

3.2.1. Encryption Stage 
1st mix-server M1 in the encryption stage that picks 

disclosed E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} encrypts 
XP(q) to E(k1, XP(q)d) by encryption key k1, calculates 
Mr(q, d)·R·u(1) from Mr(q, d)·R by using secret integer u(1), and 
constructs quadruplet E1(XP(q, d)) = {Iq, d, E(k1, XP(q)d), 
Zr(q, d)·R·u(1)}. Other mix-servers behave in the same way, 
i.e. each Mh picks Eh-1(XP(q, d)) = {Iq, d, E(k(h-1)*, XP(q)d), 
Zr(q, d)·R·u*(h-1)} disclosed by Mh-1, encrypts E(k(h-1)*, XP(q)d) 
to E(kh*, XP(q)d) and calculates Zr(q, d)·R·u*(h) from Zr(q, 

d)·R·u*(h-1) by its secret key kh and secret integer u(h), and 
constructs Eh(XP(q, d)) = {Iq, d, E(kh*, XP(q)d), Zr(q, d)·R·u*(h)} 
to disclose it publicly. As a result, E0(XP(q, d)) received 
by M1 is finally transformed to EN(XP(q, d)) and ET(XP(q, 
d)) by MN and MT respectively, where each Mh shuffles its 
generating quadruplets of course. 

Then, because no one knows all keys k1, ---, kN , ---, kT 
nor integers u(1), ---, n(N), ---, u(T), anyone cannot link 
E0(XP(q, d)) to EN(XP(q, d)) or ET(XP(q, d)) unless all mix-
servers conspire. Anyone except P cannot know links 
among P’s attribute values XP(1), XP(2), ---, XP(Q) either. 
About encryption function E(kh, x), although each Mh 
shuffles its encryption results, anyone can obtain a plain 
and encryption forms pair of E(kh, x). Namely, if an entity 
calculates Xh-1 and Xh as sums of all attribute part values 
in quadruplets that Mh receives and generates respectively, 
{Xh-1, Xh} is a plain and encryption forms pair because 
E(kh, x) is additive. But, Mh can protect E(kh, x) from 
plaintext attacks because known pair is only {Xh-1, Xh}.  

3.2.2. Verification Stage 
After the encryption stage, authority A conducts the 

verification stage to examine whether individual 
quadruplets were honestly encrypted or not, and when 
dishonestly handled quadruplets are detected it asks mix-
servers to carry out the encryption stage again while using 
new secret values including encryption keys. Also, A 
identifies dishonest mix-servers if necessary to replace 
them with new ones as will be discussed in Sec. 3.4.2. 
Therefore, the encryption stage eventually generates 
correct encryption results. 

To examine individual quadruplets, firstly authority A 
collects ET(XP(q, 1)) = {Iq, 1, E(kT*, XP(q)1), Zr(q, 1)·R·u*(T)}, 
---, ET(XP(q, D)) = {Iq, D, E(kT*, XP(q)D), Zr(q, D)·R·u*(T)} 
corresponding to each attribute value XP(q) of each data 
holder P. Here, provided that r(q, d; h) and r(q) represent 
products r(q, 1; h)·r(q, 2; h)---r(q, d-1; h)·r(q, d+1; h)---r(q, 
D; h) and r(q, 1)·r(q, 2)---r(q, D) respectively, each Mh 
receives Zr(q, d)·R·u*(T)·r(q, d; 1)·r(q, d; 2)---·r(q, d; h-1) from Mh-1 and 
calculates Zr(q, d)·R·u*(T)·r(q, d; 1)·r(q, d; 2)---·r(q, d; h-1)·r(q, d; h) by using 
its secret integer r(q, d, h) to forward it to Mh+1. As a result, 
MT calculates Zr(q, d)·R·u*(T)·r(q, d; 1)---·r(q, d; T) = Zr(q, d)·R·u*(T)·r(q, 

1)·r(q, 2)---·r(q, d-1)·r(q, d+1)---r(q, D) = Zr(q)·R·u*(T). Therefore, A can 
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collect EN(XP(q, 1)), ---, EN(XP(q, D)) that include 
Zr(q)·R·u*(T) as their holder part values.  

After that, each Mh (h ≤ Y < N) calculates dh1E(kT*, 
XP(q)1)+ --- +dhDE(kT*, XP(q)D)+E(kT*, 0h(P, q)) = E(kT*, 
dh1XP(q)1+ --- +dhDXP(q)D+0h(P, q)) = E(kT*, XP(q; h)), 
and A calculates {E(kT*, XP(q; 1))+ --- +E(kT*, XP(q; 
Y))}/Y = E(kT*, XP(q)*). Here, dh1, dh2, ---, dhD are real 
numbers secrets of Mh and relation dh1+ --- +dhD = 1 holds, 
and E(kT*, 0h(P, q)) is Mh’s secret encryption form of 
value 0. Therefore each E(kT*, XP(q; h)) is decrypted to 
XP(q). In addition, E(kT*, XP(q)*) is also represented as 
E(kT*, XP(q)*) = E(kT*, d1XP(q)1+ --- +dDXP(q)D+0*(P, q)) 
for some real number coefficients d1, ---, dD that satisfy 
d1+ --- +dD = 1 (where E(kT*, 0*(P, q)) = {E(kT*, 01(P, q)+ 
--- +0Y(P, q))}/Y), and this means E(kT*, XP(q)*) is also 
decrypted to XP(q). But no one knows coefficients d1, ---, 
dD or encryption form E(kT*, 0*(P, q)) because dh1, dh2, ---, 
dhD and E(kT*, 0h(P, q)) are known only to Mh.  

About encryption form E(kT*, 0h(P, q)), each Mh can 
generate it by choosing data holders P(h1), ---, P(hS), 
attribute IDs Iq(h1), ---, Iq(hS) and copy IDs pairs {d(h1), d(h1)}, 
---, {d(hS), d(hS)} arbitrarily as its secrets and linearly 
combining {E(kT*, XP(hs)(q(hs))d(hs))-E(kT*, XP(hs)(q(hs))d(hs))} 
by its secret coefficients, i.e. E(kT*, XP(hs)(q(hs))d(hs)) and 
E(kT*, XP(hs)(q(hs))d(hs)) are encryption forms of same value 
XP(hs)(q(hs)). Mh also can identify pair {E(kT*, 
XP(hs)(q(hs))d(hs)), E(kT*, XP(hs)(q(hs))d(hs))} because they are 
accompanied by same holder part value Zr(q(hs))·R(hs)·u*(T). 

Then A generates secret integer w(A), and constructs 
triplet ET(XP(q)) = {Iq, E(kT*, XP(q)*), Zr(q)·R·u*(T)·w(A)} to 
disclose it publicly, and mix-servers MT, ---, M1 in the 
verification stage repeatedly decrypt ET(XP(q)) to E0(XP(q)) 
= {Iq, XP(q), Zr(q)·R·u*(T)·w*}. In detail, each Mh picks 
Eh(XP(q)) = {Iq, E(kh*, XP(q)*), Zr(q)·R·u*(T)·w*(h+1)} disclosed 
by Mh+1, decrypts E(kh*, XP(q)*) to E(k(h-1)*, XP(q)*) 
calculates Zr(q)·R·u*(T)·w*(h) = Zr(q)·R·u*(T)·w*(h+1)·w(h) by using 
key kh

-1 and integer w(h), constructs triplet Eh-1(XP(q)) = 
{Iq, E(k(h-1)*, XP(q)*), Zr(q)·R·u*(T)·w*(h)}, and discloses it to be 
picked by Mh-1. As a consequence, M1 generates decrypted 
triplet E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*}.  

Here, although A and MN, ---, M1 shuffle their 
calculation results, links among copies of quadruplets 
ET(XP(q, 1)), ---, ET(XP(q, D)) are revealed. Nevertheless, 
P can preserve its privacy, i.e. they are encryption forms 
of same attribute value XP(q). Also, mix-servers can 
protect their encryption functions from plain text attacks 
despite anyone can obtain plain and encryption forms pair 
{0, E(kT*, 0)} as above, i.e. no one knows its dummy term 
values. 

<Detecting dishonesties in the encryption stage> 
In the above, because no one knows coefficients d1, ---, 

dD, encryption form E(kh*, 0*(P, q)) or integer w*(h), 
anyone cannot link triplet Eh(XP(q)) = {Iq, E(kh*, XP(q)*), 
Zr(q)·R·u*(T)·w*(h+1)} to corresponding quadruplet Eh(XP(q, d)) 
= {Iq, d, E(kh*, XP(q)d), Zr(q, d)·R·u*(h)}. This means if initial 
quadruplet E0(XP(q, d)) is dishonestly encrypted to 
ET(X*

P(q, d)) in the encryption stage, any Mh in the 
verification stage cannot modify corresponding triplet 
Eh(X*

P(q)) to Eh(XP(q)) so that it is finally decrypted to 
E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*} (actually, 1st mix-
server M1 can do as will be discussed later).  

Authority A detects dishonesties in the encryption stage 
by using this property. In detail, firstly A requests mix-

servers to calculate integer Zr(q)·u*(T)·w* for each q to 
disclose it publicly. After that for each q, each data holder 
P calculates used seals Zr(q, 1)·R and Zr(q)·R·u*(T)·w* of its 
credential S(P, R) from Zr(q, 1) and Zr(q)·u*(T)·w*, and based 
on Zr(q, 1)·R and Zr(q)·R·u*(T)·w* finds E0(XP(q, 1)), i.e. 1st copy 
of the initial quadruplet corresponding to attribute value 
XP(q), and triplets E0(X*

P(q)) in the verification stage.  
Then, P shows initial quadruplet and decrypted triplet 

pair <E0(XP(q, 1)), E0(X*
P(1))> to A while convincing A of 

its ownership of the pair by used seals Zr(q, 1)·R and 
Zr(q)·R·u*(T)·w*, and A determines pair <E0(XP(q, 1)) = {Iq, 1, 
XP(q), Zr(q, 1)·R}, E0(X*

P(q)) = {Iq, X*
P(q), Zr(q)·R·u*(T)·w*}> is 

inconsistent, i.e. at least one copy E0(XP(q, d)) was 
dishonestly handled, when XP(q) ≠X*

P(q). Here, 
correctness of XP(q) in E0(XP(q, 1)) is ensured because P 
shows XP(q) to M1 in its plain form. About privacy 
preservation, P must report pairs separately and without 
disclosing its identity of course.  

A also can force all data holders to report their all pairs, 
i.e. when no one appears as the holder of pair <E0(XP(q, 
1)), E0(XP(q))>, it asks all data holders to calculate used 
seals of their credentials from Zr(q, 1) and Zr(q)·u*(T)·w* while 
disclosing their identities as will be discussed in Sec. 3.4.3. 
In a case where mix-servers transform holder part value 
Zr(q, d)·R in E0(XP(q, d)) to an invalid value P cannot 
identify its decrypted triplet in the verification stage, but 
even in this case A can detect the dishonestly handled 
quadruplet as E0(XP(q, 1)) that is not paired with any 
triplet.  

In the above, mix-servers M1, ---, MT can calculate 
Zr(q)·u*(T)·w* as same as Zr(q)·R·u*(T) at the beginning of this 
subsection. Namely provided that r(q; h) represents 
product r(q, 1; h)·r(q, 2; h)---r(q, D; h), each Mh calculates 
Z{r(q; 1)·r(q; 2)----r(q; h-1)·r(q; h)}·{u(1)·u(2)----u(h-1)·u(h)}·{w(A)·w(1)·w(2)----w(h-

1)·w(h)} from Z{r(q; 1)----r(q; h-1)}·{u(1)----u(h-1)}·{w(A)·w(1)----w(h-1)} 
given by Mh-1 to forward it to Mh+1 so that finally MT 
calculates Z{r(q; 1)----r(q; T)}·{u(1)----u(T)}·{w(A)·w(1)----w(T)} = 
Zr(q)·u*(T)·w*. Here, although P knows integer R, it cannot 
identify triplet Eh(XP(q)) = {Iq, E(kh*, XP(q)*), 
Zr(q)·R·u*(T)·w*(h+1)} based on Z{r(q; 1)----r(q; h)}·{u(1)----u(h)}·{w(A)·w(1)--

--w(h)} disclosed by Mh for h > 1, because r(q; 1)----r(q; 
h)u(1)----u(h)w(A)w(1)----w(h) and r(q)u*(T)w*(h+1) are 
different.  

About privacy of data holder P, P is anonymous, and 
because it reports pairs <E0(XP(1, 1)), E0(XP(1))>, ---, 
<E0(XP(Q, 1)), E0(XP(Q))> separately, anyone other than P 
cannot know links among XP(1), ---, XP(Q). Although 
E0(XP(q)) includes plain attribute value XP(q), XP(q) is 
publicly known from the beginning.  

<Dishonest 1st mix-server M1> 
1st mix-server M1 in the encryption stage can encrypt 

E0(XP(q, d)) dishonestly while making triplet E0(XP(q)) in 
the verification stage include consistent attribute value 
XP(q). For example, provided that X*

P(q) is a unique value, 
even if M1 dishonestly encrypted E0(XP(q, d)) = {Iq, d, 
XP(q), Zr(q, d)·R} to E1(X*

P(q, d))= {Iq, d, E(k1, X*
P(q)), Zr(q, 

d)·R·u(1)} in the encryption stage for each d, because X*
P(q) 

is unique it can identify incorrect triplet E0(X*
P(q)) = {Iq, 

X*
P(q), Zr(q)·R·u*(T)·w*} in the verification stage and replace 

X*
P(q) in it with XP(q) to produce correct decrypted triplet 

E0(XP(q)) = {Iq, XP(q), Zr(q)·R·u*(T)·w*}.  
To disable above dishonesties, in other words, to 

convince others that M1 is honest, after completing the 
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verification stage, A discloses its secret integer w(A) and 
asks mix-servers M1, M2, ---, MY (Y < N) to disclose their 
encryption keys k1, k2, ---, kY, and secret integers u(1), 
u(2), ----, u(Y), w(1), W(2), ---, w(Y). Namely, by the 
disclosed information, anyone can confirm M1 is honest. 
On the other hand, encryption keys kY+1, ---, kN, ---, kT and 
integers u(Y+1), ---, u(N), ---, u(T), w(Y+1), ---, w(N), ---, 
w(T) are still secrets of MY+1, ---, MT, therefore secrets of 
honest data holders can be preserved. Also, A and mix-
servers replace secret integers w(A), u(1), ---, u(T), w(1), -
--, w(T) and encryption keys k1, ---, kT with new ones for 
handling new sets of attribute values.  

About last mix-server MT, if it conspires with authority 
A, it also can encrypt ET-1(XP(q, d)) to ET(X*

P(q, d)) 
dishonestly and decrypt ET(X*

P(q)) to ET-1(XP(q)) that is 
finally decrypted to correct value XP(q), but incorrect 
ET(X*

P(q, d)) does not affect the final calculation results 
because MN+1, MN+2, ---, MT are not involved in the 
decryption stage. 

3.2.3. Calculating Encrypted Weighted Sums of 
Attribute Values 

To calculate encrypted weighted sums of attribute 
values corresponding to individual data holders, provided 
that rq(h) and r* represent products {r(1, 1; h)·r(2, 1; h)--- 
r(q-1, 1; h)·r(q+1, 1; h)---r(Q, 1; h)} and {r(1, 1)·r(2, 1)---
r(Q, 1)} respectively, authority A asks mix-servers M1, ---, 
MT to transform the holder part value of each quadruplet 
EN(XP(q, 1)) = {Iq, 1, E(kN*, XP(q)1), Zr(q, 1)·R·u*(N)} from 
Zr(q, 1)·R·u*(N) to ZR·u*(N)·r*, i.e. each Mh calculates Zr(q, 

1)·R·u*(N)·rq(1)·rq(2)---rq(h-1)·rq(h) from Zr(q, 1)·R·u*(N)·rq(1)·rq(2)--- rq(h-1) 
received from Mh-1 to forward the result to Mh+1. 
Therefore, finally MT calculates Zr(q, 1)·R·u*(N)·rq(1)---rq(T) = 
ZR·u*(N)·r(1, 1)---r(Q, 1) = ZR·u*(N)·r*, and same value ZR·u*(N)·r* is 
assigned to P’s quadruplets EN(XP(1, 1)), ---, EN(XP(Q, 1)) 
as their holder part values. Then, A can collect EN(XP(1, 
1)), ---, EN(XP(Q, 1)) from all quadruplets disclosed by 
MN to calculate the encrypted weighted sum of P’s 
attribute values as E(kN*, X(P)) = E(kN*, a1XP(1)1+ --- 
+aQXP(Q)1) = a1E(kN*, XP(1)1)+ --- +aQE(kN*, XP(Q)1) and 
to construct pair E*

N(X(P)) = {E(kN*, X(P)), ZR·u*·r*}. 

3.2.4. Decryption Stage 
In the decryption stage, mix-servers MN, MN-1, ---, M1 

repeatedly decrypt pair E*
N(X(P)) to E*

N-1(X(P)) = {E(k(N-

1)*, X(P)), ZR·u*(N)·r*·v(N)}, E*
N-2(X(P)) = {E(k(N-2)*, X(P)), 

ZR·u*(N)·r*·v*(N-1)}, ---, E*
0(X(P)) = {X(P), ZR·u*(N)·r*·v*}. Here, 

although each Mh shuffles its decryption results A can 
verify correct decryptions of E*

N(X(P)) partially without 
knowing secrets of mix-servers by exploiting additive 
feature of each E(kh, x). Namely, if A calculates sums of 
attribute part values in all pairs received and generated by 
Mh as Xh and Xh-1 respectively, both Xh and Xh-1 must be 
encryption forms of X, weighted sum of all attribute 
values of all data holders. This means {Xh-1, Xh} is a plain 
and encryption forms pair of E(kh, x), and additive (as a 
result verifiable) feature of E(kh, x) enables A to force 
mix-servers to decrypt pairs so that sums of their 
decrypted attribute part values coincide with X even if 
they decrypt individual pairs dishonestly.  

About encryption function E(kh, x) of each mix-server 
Mh, because Mh shuffles its decryption results, no one 
other than Mh can identify plain and encryption forms pair 
{E(k(h-1)*, X(P)), E(kh*, X(P))} except the above pair {Xh-1, 

Xh}. Therefore, Mh can protect E(kh, x) from plain text 
attacks also in the decryption stage.  

Nevertheless, data holder P can find its pair E*
0(X(P)) = 

{X(P), ZR·u*(N)·r*·v*} to take actions for the pair. Firstly, A 
asks mix-servers to calculate Zu*(N)·r*·v* in the same way as 
in Sec. 3.2.3. Then, each P calculates (Zu*(N)·r*·v*)R = 
ZR·u*(N)·r*·v* from Zu*(N)·r*·v* based on integer R in its 
credential S(P, R), finds pair E*

0(X(P)) according to 
ZR·u*(N)·r*·v*, and convinces A of its ownership of E*

0(X(P)). 
Where, although P is anonymous, A can confirm P’s 
ownership of pair E*

0(X(P)), because P must calculate 
ZR·u*(N)·r*·v* honestly as a used seal of S(P, R).  

3.3. Detecting Dishonesties 
In the encryption stage, data holder P puts its initial 

quadruplet E0(XP(q, d)) = {Iq, d, XP(q), Zr(q, d)·R} honestly, 
because P shows XP(q) in its plain form and it calculates 
Zr(q, d)·R from Zr(q, d) as a used seal of its credential. This 
means P cannot behave dishonestly in any stage. Also, the 
verification stage ensures that mix-servers in the 
encryption stage eventually generate correct encryption 
results. Therefore, remaining dishonesties to be detected 
are ones in the decryption stage, i.e. each mix-server Mh 
may replace elements of pair E*

h(X(P)) with those of other 
pair E*

h(X(P*)) and may simply decrypt E*
h(X(P)) 

incorrectly.  
Provided that volume of duties P must accomplish 

increases (or decreases) when weighted sum of P’s 
attribute values X(P) increases, authority A can easily 
detect above dishonesties as below. Namely as mentioned 
in the previous subsection, each mix-server Mh in the 
decryption stage must decrypt each pair E*

h(X(P)) it 
receives from Mh+1 so that Xh-1, sum of attribute part 
values in all pairs it generates, is finally decrypted to X, 
the weighted sum of attribute values of all data holders. 
Therefore, if dishonesties bring any benefit to a data 
holder some other data holder necessarily suffers loss. For 
example, if X(P*) is the amount data holder P* must pay, 
when X(P*) becomes less than the actual value, for at least 
one other data holder P, weighted sum of its attribute 
values X(P) becomes larger than the actual value. As a 
result, P claims decrypted pair E*

0(X(P)) is incorrect. It is 
also possible to endow each P with the ability to 
automatically notice A that E*

0(X(P)) is incorrect by 
distributing adequate computer programs to data holders. 

Also, each data holder P must appear to take actions for 
E*

0(X(P)) as will be discussed in Sec. 3.4.3, although X(P) 
in it may not be correct. Here, Mh may transform a holder 
part value of E*

h(X(P)) = {E(kh*, X(P)), ZR·u*(N)·r*·v(h+1)} in 
the decryption stage to an invalid value or to the one 
corresponding to data holder P* different from P. But 
decrypted pairs accompanied by invalid holder part values 
are detected as the ones of which holders cannot be 
identified by the procedure in Sec. 3.4.3. In the latter case, 
some data holders claim that weighted sums of their 
attribute values are incorrect.  

3.4. Identifying Dishonest Entities 

3.4.1. Dishonest Mix-servers in the Decryption Stage 
When authority A determines some decrypted pairs 

include invalid holder part values or some data holders 
claim that decrypted pairs corresponding to them are 
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incorrect, A can identify liable entities and re-calculate 
correct pairs without knowing secrets of honest entities. In 
the following, pair E*

0(X*(P)) = {X*(P), ZR·u*(N)·r*·v*} in the 
decryption stage is assumed incorrect, i.e. it is a pair that 
includes an invalid holder part value or that is claimed as 
inconsistent by anonymous data holder P.  

To identify mix-servers liable for each incorrect pair 
E*

0(X*(P)), authority A requests mix-servers M1, ---, MN to 
prove their correct decryptions. In detail, M1 finds pair 
E*

1(X*(P)) = {E(k1, X*(P)), ZR·u*(N)·r*·v*(2)} that corresponds 
to E*

0(X*(P)), and A confirms that M1 certainly had 
received E*

1(X*(P)) from M2 in the decryption stage and 
E*

0(X*(P)) is the correct decryption form of E*
1(X*(P)). In 

the same way, each Mh finds pair E*
h(X*(P)) = {E(kh*, 

X*(P)), ZR·u*(N)·r*·v*(h+1)} corresponds to E*
h-1(X*(P)) = 

{E(k(h-1)*, X*(P)), ZR·u*(N)·r*·v*(h)} forwarded by Mh-1, and A 
confirms Mh certainly had received E*

h(X*(P)) from Mh+1 
and E*

h-1(X*(P)) is the correct decryption form of 
E*

h(X*(P)). Namely, Mh is dishonest when E*
h(X(P)) that 

is decrypted to E*
h-1(X*(P)) does not exist. 

Here, A can examine the consistency of pair 
<E*

h(X*(P)), E*
h-1(X*(P))> without knowing secrets of Mh. 

Namely, consistency of attribute part values E(kh*, X*(P)) 
and E(k(h-1)*, X*(P)) can be verified because E(kh, x) is 
additive and verifiable (moreover, encryption keys of M1, 
---, MY are disclosed as in Sec. 3.2.2). About holder part 
values, pair {ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if 
ZR·u*(N)·r*·v*(h) is calculated from ZR·u*(N)·r*·v*(h+1) by using 
Mh’s secret integer v(h) that is common to all attribute 
values of all data holders. Therefore, when A calculates 
product of holder part values in all pairs Mh had generated 
in the decryption stage as Z*

R*·u*(N)·r*·v*(h) for each h and 
defines Z-

R·u*(N)·r*·v*(h) = Z*
R*·u*(N)·r*·v*(h)/ZR·u*(N)·r*·v*(h), along 

the scheme of Diffie and Hellman [1], it can determine 
pair {ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if 
ZR·u*(N)·r*·v*(h) and Z-

R·u*(N)·r*·v*(h) are calculated as 
(ZR·u*(N)·r*·v*(h+1))v(h) and (Z-

R·u*(N)·r*·v*(h+1))v(h) by same 
unknown integer v(h).  

In the following notations ZP(h+1), Z-(h+1), ZP(h) and 
Z-(h) represent ZR·u*(N)·r*·v*(h+1), Z-

R·u*(N)·r*·v*(h+1), 
ZR·u*(N)·r*·v*(h) and Z-

R·u*(N)·r*·v*(h) respectively, therefore pair 
{ZR·u*(N)·r*·v*(h+1), ZR·u*(N)·r*·v*(h)} is consistent if relations 
ZP(h+1)v(h) = ZP(h) and Z-(h+1)v(h) = Z-(h) hold for same 
unknown v(h). Also it must be noted that ZP(h+1)Z-(h+1) 
= Z*

R*·u*(N)·r*·v*(h+1). Then, to confirm relations ZP(h+1)v(h) = 
ZP(h) and Z-(h+1)v(h) = Z-(h), A generates its secret 
integers δ1, δ2, δ3, calculates pairs {ZP(h+1)δ1, ZP(h)δ1}, 
{Z-(h+1)δ2, Z-(h)δ2}, {(ZP(h+1)Z-(h+1))δ3, (ZP(h)Z-(h))δ3}, 
and shows ZP(h+1)δ1, Z-(h+1)δ2, (ZP(h+1)Z-(h+1))δ3 to Mh. 
After that Mh calculates (ZP(h+1)δ1)v(h), (Z-(h+1)δ2)v(h), 
{(ZP(h+1)Z-(h+1))δ3}v(h) from them and its secret integer 
v(h), and finally A confirms that ZP(h) and Z-(h) were 
calculated by same v(h) if relations (ZP(h+1)δ1)v(h) = 
ZP(h)δ1, (Z-(h+1)δ2)v(h) = Z-(h)δ2 and {(ZP(h+1)Z-
(h+1))δ3}v(h) = {ZP(h)Z-(h)}δ3 hold.  

In the above, even if Mh had calculated ZP(h) and Z-(h) 
as ZP(h+1)λ and Z-(h+1)v(h) respectively while using 
different integers λ and v(h), it still can satisfy relations 
(ZP(h+1)δ1)λ = ZP(h)δ1 and (Z-(h+1)δ2)v(h) = Z-(h)δ2 despite 
it does not know δ1 or δ2. But according to the difficulty of 
solving discrete logarithm problems, it cannot find integer 
λ* that satisfies relation {(ZP(h+1)(Z-(h+1))δ3}λ* = (ZP(h)Z-
(h))δ3 = (ZP(h+1)λZ-(h+1)v(h))δ3, because it cannot represent 

ZP(h+1) or Z-(h+1) as a function of Z-(h+1) or ZP(h+1) 
respectively. 

Then, once Mh was identified as dishonest, Mh, ---, M1 
must honestly decrypt E*

h(X(P)) to generate correct 
decrypted pair E*

0(X(P)) = {X(P), ZR·u*(N)·r*·v*} (because A 
can verify correct decryption of Mh as above). About data 
holder P, it can conceal the correspondence between X(P) 
and it because it is still anonymous. But it must be noted 
that to protect E(kh, x) from plain text attacks (in other 
words not to disclose many plain and encryption forms 
pairs) A can examine only predefined number of incorrect 
decrypted pairs even if many decrypted pairs are 
determined as incorrect as will be discussed in Sec. 3.4.2. 
In addition, in cases where last mix-server MN is dishonest, 
incorrect pair <E*

N(X(P)), E*
N-1(X*(P))> is disclosed, and 

corresponding data holder P may obtain plain and 
encryption forms pairs {XP(1), E(kN*, XP(1)1)}, ---, 
{XP(Q), E(kN*, XP(Q)1)}, i.e. P knows its attribute values 
XP(1), ---, XP(Q) and can know encrypted quadruplets 
EN(XP(1, 1)), ---, EN(XP(Q, 1)) as A collects them to 
calculate E*

N(X(P)). Despite E(k1, x), ---, E(kN, x) are 
weak against plain text attacks, still they can be protected 
because the number of disclosed pairs is not large except 
cases where many attribute values are assigned to each 
data holder. But when individual data holders have many 
attribute values A must carry out all stages again as below.  

Namely, when A cannot identify dishonest mix-servers 
among M1, M2, ---, MU (U < N), it conducts all stages 
again from the encryption stage while arraying mix-
servers in the different order so that MU+1, MU+2, ---, MN 
are allocated before M1, M2, ---, MU in the encryption 
stage. Then, if MN behaves dishonestly again A can 
identify it without worrying about the disclosure of 
numbers of pairs {XP(1), E(kN*, XP(1)1)}, ---, {XP(Q), 
E(kN*, XP(Q)1)}. Fortunately, usually authority A or mix-
servers do not behave dishonestly, because they are not 
anonymous, their dishonesties are necessarily revealed 
and they cannot continue their businesses after their 
dishonesties are revealed. This means that in actual 
applications authority A can conduct all stages again from 
the start without degrading the performance. Another 
fortunate thing is data holders are not required to put their 
attribute values again to re-conduct individual stages. 

3.4.2. Dishonest Mix-servers in the encryption and the 
verification stages 

As in Sec. 3.2.2, authority A conducts the encryption 
stage again when initial quadruplet E0(XP(q, 1)) is not 
paired with any triplet in the verification stage or some 
data holder P claims pair <E0(XP(q, 1)), E0(X*

P(q))> is 
inconsistent. But if A wants to remove dishonest mix-
servers or replace them with new ones, it must identify 
dishonest mix-servers. A can identify dishonest mix-
servers in the encryption and the verification stages 
without knowing secrets of honest entities as below.  

Provided that pair <E0(XP(q, 1)), E0(X*
P(q))> is 

inconsistent or E0(XP(q, 1)) is not accompanied by any 
triplet, to identify dishonest mix-servers, firstly 1st mix-
server M1 encrypts E0(XP(q, 1)), ---, E0(XP(q, D)) to 
E1(XP(q, 1)), ---, E1(XP(q, D)) by using secret parameters 
that it had used in the encryption stage. In the same way, 
each Mh encrypts quadruplets Eh-1(XP(q, 1)), ---, Eh-1(XP(q, 
D) forwarded by Mh-1 to Eh(XP(q, 1)), ---, Eh(XP(q, D)) to 
forward the result to Mh+1, and Mh is determined as 
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dishonest if it cannot show consistent pair <Eh-1(XP(q, d)), 
Eh(XP(q, d))>.  

Authority A identifies dishonest mix-servers in the 
verification stage in the same way. Here, A can verify 
Mh’s correct encryption of Eh-1(XP(q, d)) and correct 
decryption of Eh(X*

P(q)) without knowing secrets of Mh as 
same as in the decryption stage. But when the number of 
inconsistent pairs is large, many plain and encryption 
forms pairs are disclosed. Therefore, A examines only 
predefined number of inconsistent pairs even if many pairs 
are inconsistent as same as in Sec. 3.4.1. Namely, after 
identifying dishonest mix-servers based on the limited 
number pairs, it conducts the encryption and the 
verification stages again, and identifies remaining 
dishonest mix-servers if exist. Here, re-executions of the 
stages do not degrade the performance in actual 
applications because usually A or mix-servers do not 
behave dishonestly as discussed previously.  

3.4.3. Data Holders without Responses 
In the decryption stage, authority A can force each 

anonymous data holder P to honestly report decrypted pair 
E*

0(X(P)) = {X(P), ZR·u*(N)·r*·v*} corresponds to it as below. 
A in the verification stage also can force each P to report 
pair <E0(XP(q, 1)), E0(XP(q))> honestly in the same way. 

When no one appears as the holder of pair E*
0(X(P)), 

conceptually, A asks all registered data holders to 
calculate used seals of their credentials from value 
Zu*(N)·r*·v*, which is calculated by M1, ---, MT as same as 
ZR·u*(N)·r* in Sec. 3.2.3, while disclosing their identities, 
and identifies P that calculates (Zu*(N)·r*·v*)R as the holder. 
Namely, only P that knows R in credential S(P, R) can 
calculate holder part value ZR·u*(N)·r*·v* in E*

0(X(P)) from 
Zu*(N)·r*·v* and P must calculate it honestly.  

But if honest data holder Pj calculates (Zu*(T)·r*·v*)R(j), 
because Pj is disclosing its identity A can know that pair 
E*

0(X(Pj)) = {X(Pj), ZR(j)·u*(N)·r*·v*} belongs to Pj despite Pj 
is honest. Therefore instead of (Zu*(N)·r*·v*)R(j), Pj calculates 
used seal (Zu*(N)·r*·v*·μ)R(j) while generating its secret integer 
μ. In detail, Pj calculates pair {Z*

μ = Zu*(N)·r*·v*·μ, ZR
μ = 

ZR·u*(N)·r*·v*·μ} from Z* = Zu*(N)·r*·v* and ZR = ZR·u*(N)·r*·v*, 
and calculates used seal (Z*

μ)R(j) to show it with pair{Z*
μ, 

ZR
μ}, after that A compares (Z*

μ)R(j) and ZR
μ. Then, Pj can 

conceal the correspondence between it and E*
0(X(Pj)) 

because Pj did not calculate (Z*
μ)R(j) before.  

Here, A can confirm that Pj used same μ for calculating 
Z*

μ and ZR
μ without knowing μ as same as in Sec. 3.4.1 

[12]. But it must be noted that different from pair 
{ZR·u*(N)·r*·v*(h+1), Z-

R·u*(N)·r*·v*(h+1)} in Sec. 3.4.1, P that 
knows its secret integer R can calculate ZR in pair {Z*, ZR} 
as a function of Z*, i.e. ZR = Z*

R. Therefore, when P 
defines integers μ* and μ2 arbitrarily, calculates μ1 as μ1 = 
(R+1)μ*-Rμ2 and reports pair {Z*

μ1, ZR
μ2} instead of {Z*

μ, 
ZR

μ}, for Z*
δ1, ZR

δ2 and (Z*ZR)δ3 that A calculates by using 
its secret integers δ1, δ2, δ3, P can show consistent values 
(Z*

δ1)μ1, (ZR
δ2)μ2 and {(Z*ZR)δ3}μ*. Namely, (Z*

δ1)μ1 = 
Z*

μ1∙δ1, (ZR
δ2)μ2 = ZR

μ2·δ2 and {(Z*ZR)δ3}μ* = {(Z*
R+1)δ3}μ* = 

(Z*
μ1+R·μ2)δ3 = (Z*

μ1ZR
μ2)δ3.  

To disable P to use relation ZR = Z*
R, A defines integer 

β and examines consistencies of 2 pairs {βμ, Z*
μ} and {βμ, 

ZR
μ}. Then, because P cannot represent β or Z* as a 

function of Z* or β, P must calculate βμ and Z*
μ by using 

same integer μ. In the same way, P must calculate βμ and 
ZR

μ by using same integer μ, as a consequence, A can 

convince itself that Z*
μ and ZR

μ were calculated by same 
integer μ. 

4. Conclusion 
As above, linear Mix-nets based on LE-based 

encryption functions can calculate linear combinations of 
real numbers owned by same data holders while 
preserving privacies of data holders and protecting 
encryption functions from plain text attacks. Here, it is 
apparent that linear Mix-nets can have totally the same 
features even if MA-based encryption functions are used 
instead of LE-based ones. Therefore, when LE-based 
encryption functions are replaced with MA-based ones 
which are both additive and multiplicative, they can 
calculate also general polynomial functions of attribute 
values.  

About dishonesties of relevant entities, proposed linear 
Mix-net successfully detects inconsistent encryption and 
decryption results, and identifies dishonest entities to 
generate correct results without disclosing secrets of 
honest entities. An advantage in handling dishonesties is 
data holders cannot behave dishonestly. Therefore, 
together with the fact that authority A or mix-servers do 
not behave dishonestly usually (because they are not 
anonymous and their dishonesties are necessarily 
revealed), procedures including re-executions of stages for 
identifying dishonest entities and re-calculating correct 
encryption and decryption results do not degrade the 
performance in actual applications. 
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