
Productivity Gains in Flexible Robotic Cells

H. Neil Geismar ∗

Suresh P. Sethi ∗

Jeffrey B. Sidney †

Chelliah Sriskandarajah ∗

∗ University of Texas at Dallas, USA, {ngeismar,sethi,chelliah}@utdallas.edu

† University of Ottawa, Canada, sidney@management.uottawa.ca

March 27, 2004

Abstract

Flexible robotic cells combine the capabilities of robotic flow shops with those of flexible

manufacturing systems. In an m-machine flexible cell, each part visits each machine in the same

order. However, the m operations can be performed in any order, and each machine can be

configured to perform any operation. We derive the maximum percentage increase in through-

put that can be achieved by changing the assignment of operations to machines. We find that

no increase can be gained in two-machine cells, and the gain in three- and four-machine cells

each is at most 142
7
%. For this calculation, the assignment remains constant throughout a lot’s

processing. Additionally, we determine the throughput increase that can be gained by varying

the assignment of operations to machines for successive parts within a processing lot.

Key Words and Phrases: flexible robotic cells, robotic open shop, scheduling, sequencing.

1 Introduction

Robots are used in a wide range of applications in manufacturing companies (Asfahl 1985, Miller

and Walker 1990). One important application of robots in manufacturing is their use for material

handling in robotic cells. In such a cell, the robot is located at the approximate center of the

workcell, and a number of machines (M1, M2, . . . , Mm) and an input/output (I/O) hopper

are arranged around it. A real-world example of a three-machine robotic cell is given in Asfahl

(1985). In this example, a robotic cell processes castings for truck differential assemblies. The

cell includes a drilling machine (operation: cross pin drill), a boring machine (operation: bore

pinion holes), another drilling machine (operation: ear hole drill), and an input/output hopper.

Although these operations can be done any order, for operational convenience the cell operates

as a flow shop in which the robot moves the parts from I/O to machine M1, M2, M3, and

finally to I/O. There are many manufacturing environments such as the above example that

can operate as an open shop: the order of the operations is immaterial.

We consider a circularly-configured robotic cell in which each job (part) visits the machines

in the following sequence: (I/O, M1, M2,. . . , Mm, I/O). Each job requires m operations

(o1, o2, . . . , om) which can be performed in any order. Furthermore, we assume that an operation

oi requiring processing time of pi can be assigned to any of the m machines by relatively fast

and inexpensive tool changes. This assumption is valid in the current modern manufacturing

environment because the use of flexible manufacturing machines which have quick tool-changing

capability is growing in industry. We shall refer to such a system as a flexible robotic cell.

A two-machine robotic cell is illustrated in Figure 1. The machines are served by a central

robot. The robot arm rotates and moves to handle inter-machine movements of parts. A part

is picked up at the hopper (I/O), processed once on each machine, and finally dropped at the

hopper (I/O), i.e., after operations have been assigned to machines, the cell operates as a flow

shop. The processing of any part on a machine is nonpreemptive. Each machine can process at

most one part at a time and has neither an input nor an output buffer. Thus, any part in the

cell is always either on one of the machines, at I/O, or being handled by the robot. Moreover,

even if a part has completed processing on a machine, no other part can be loaded onto that

1

M1

I/O

M2

¹¸

º·
h

v

Robot

Figure 1: A Two Machine Robotic Cell.

machine until the robot has removed that part from the machine (this is a blocking condition).

After loading a part onto a machine, the robot either waits at that machine for the part to

finish processing, moves to another machine to unload a different part (when that part finishes

processing on that machine), or moves to the I/O hopper to pick up a new part.

At any given instant of time, the state of the system is specified by the list of parts that are

in process, where each of these parts is residing (either on the robot or on a machine), exactly

how much work remains to be done at each machine for each part currently in progress, and the

location of the robot. A cyclic schedule is one in which the same sequence of states is repeated

over and over again (with the obvious proviso that the specific jobs in the system are changing).

A cycle in such a schedule begins at any given state and ends when that state is encountered

next. In each cycle of a cyclic schedule, one or more parts will be completed. If k parts are

produced in a cycle, we call the cycle a k-unit cycle. In this paper we confine our discussion

to cyclical schedules which are one-unit cycles, and we shall be interested in the steady state

operations of the system under various cyclic scheduling schemes.

The robotic cells in this study belong to the class of flexible manufacturing systems (FMS).

An FMS contains computer numerically controlled machine tools that are connected by an

automated material handling system and are controlled by a central computer (Stecke 1989,

Askin and Standridge 1995). What distinguishes a flexible robotic cell from other robotic cells

is that the machines are automatically reprogramable to perform different operations, and such

2

a change in a machine’s operation can be performed quickly. This capability is called machine

flexibility. Furthermore, because the m fixed operations can be performed on each part in any

order, they have operation flexibility (Sethi and Sethi 1990).

We investigate the productivity gains in flexible robotic cells by comparing their throughputs

for various assignments of operations to machines. Since all parts produced are identical, for a

given assignment of operations to machines, we need only to determine the sequence of moves

performed by the robot. The objective is the maximization of the steady state throughput.

The degree to which the throughput can be improved by allowing the robotic cell to be

operated as a flexible manufacturing system with the ability to assign operations to machines

will be investigated under two different scenarios. In the first, the assignment of operations to

machines, once chosen, remains fixed throughout a lot’s processing. For example, if m = 3, then

the operations could be processed in the order (o2, o3, o1) in a three-machine flow shop where

each job is first processed on M1 (operation o2), then on M2 (operation o3), and finally on M3

(operation o1). In the second scenario we allow on-line tool changes. In this case, each machine

can change its tooling quickly so that a particular machine can perform different operations

on successive parts without causing a delay. For example, the first part is processed in order

(o1, o2, o3), and the second part is processed in order (o2, o3, o1), even though each visits the

machines in the same order. In both cases, we assume that any of the six permutations of the

operations of a job is feasible with respect to the processing order. It is obvious that there is

potential for improvement of throughput if all permutations are possible.

The remainder of this paper is organized as follows. In Section 2 we provide a brief literature

review. In Section 3 we specify notation for robotic cell scheduling problems. In Section 4 we

define one-unit cycles and show how to derive their cycle time formulas for robotic flow shop

cells. In Section 5 we examine the throughput gains that can be achieved in a flexible robotic

cell by choosing an assignment of operations to machines that remains fixed. In Section 6 we

discuss throughput gains achieved by assignment changes in flexible robotic cells that use on-line

tool changes. Finally, Section 7 concludes the study and provides recommendations for future

research.

3

2 Literature Review

There have been several studies devoted to the problem of scheduling in robotic flow shop cells.

Detailed reviews of the literature can be found in surveys by Crama et al. (2000) and Dawande

et al. (2002b). The performance of a robotic cell depends directly on the sequence of robot

moves. As a result, finding an efficient robot move sequence has recently attracted considerable

research attention.

Sethi et al. (1992) consider the problem of minimizing the cycle time in robotic flow shop

cells with m = 2 and m = 3 that produce a single part-type. For two-machine cells, the optimal

solution is given by a simple cycle producing one unit. For three-machine cells, they identify six

one-unit cycles and conditions under which each is optimal in the class of one-unit cycles.

Sethi et al. (1992) also prove that a one-unit cyclic solution is optimal over the class of all

solutions, cyclic or otherwise, in a two-machine cell. In the three-machine case, Crama and van

de Klundert (1999) and Brauner and Finke (1999) show that the best one-unit cycle is optimal

among the class of all cyclic solutions. Brauner and Finke (1997, 2001) show that in m-machine

cells (for m ≥ 4), the conjecture is not true.

One-unit cycles are attractive from a practical point of view because of their conceptual

simplicity and their ease of implementation. Crama and van de Klundert (1997) provide a

polynomial-time dynamic programming algorithm for minimizing cycle time over all one-unit

cycles in an m-machine cell producing a single part-type. The complexity of the problem for

k-unit cycles remains an open question for k ≥ 2.

A thorough survey of the literature concerning flexible manufacturing systems can be found

in Sethi and Sethi (1990). In this article that expands on the work of Browne et al. (1984),

they define different types of flexibility, e.g., process, routing, product, volume, expansion,

material handling, machine, and operation. Stecke (1985) defines and describes design, planning,

scheduling, and control problems for FMS. Reviews of scheduling applications in FMS include

Harmonosky and Robohn (1991), Basnet and Mize (1994), and Rachamadugu and Stecke (1994).

4

3 Notation

The following notation used to describe a robotic cell is similar to that in Sethi et al. (1992):

M1, . . . ,Mm : the machines in the robotic cell in the processing order.

I/O : the input/output hopper, also called M0 or Mm+1 (and referred to as a machine).

o1, . . . , om : the operations required for a part.

pj : the processing time of operation oj.

σ : permutation of operations o1, . . . , om.

vector (oσ(1), . . . , oσ(m)) : order of processing the operations, where oσ(i) is the ith operation, and

it is performed on machine Mi.

δ : the time taken by a rotational robot movement when traveling between two consecutive

machines Mj−1 and Mj, 1 ≤ j ≤ m + 1, where both M0 and Mm+1 mean I/O.

ε : the time taken by the robot to pick up or drop off a part at I/O, or the time taken by the

robot to load or unload a part at any machine.

E = (χ1, . . . , χm,Mh) : the current state of the system, where χi = φ (respectively, Ω) if

machine Mi is free (resp., occupied by a part), and the robot has just loaded machine Mh,

for 1 ≤ h ≤ m + 1.

Si,m : robot move cycle i for a cell having m machines.

Ti: the cycle time for robot move cycle Si,m (it will be apparent from context how many machines

are in the cell being discussed).

The robot travel time between locations x and y is denoted by the symmetric function `(x, y).

For example, in a two-machine robotic cell, `(I/O, M1) = δ, `(M1,M2) = δ, and `(M2, I/O) = δ.

In a three-machine robotic cell, `(I/O, M1) = δ, `(M1, M2) = δ, `(M2,M3) = δ, `(M3, I/O) = δ,

`(I/O, M2) = 2δ, and `(M1,M3) = 2δ.

The standard classification scheme for scheduling problems (Graham et al., 1979) as updated

for robotic cells by Dawande et al. (2002b) denotes the robotic flow shop scheduling problem by

RFm|(blocking,A,cyclic-1)|Ct. The three fields indicate the scheduling environment (RFm: m-

machine robotic flow shop), restrictive requirements (blocking,A,cyclic-1: the cell has blocking,

5

additive travel-time, and we seek one-unit cyclic solutions), and the objective function to be

minimized (Ct : the per unit cycle time under a steady state repetitive manufacture of parts).

For flexible robotic cells, the classification scheme uses a different value in the first field.

Because we consider two different problems for flexible robotic cells, we have two notations.

The scheduling problem for flexible robotic cells in which the assignment of operations to ma-

chines remains fixed throughout a lot’s processing is denoted by FRCm|(blocking,A,cyclic-1)|Ct.

The scheduling problem for a flexible robotic cell using on-line tool changes is denoted by

OFRCm|(blocking,A,cyclic-1)|Ct.

4 One-unit Cycles

The concept of activity is very useful in the study of robotic cells. Activity Ai, i = 0, . . . , m,

consists of the following sequence:

1. The robot unloads a part from Mi

2. The robot travels from Mi to Mi+1

3. The robot loads this part onto Mi+1.

The activity sequence (Ai, Ak) implies that after completing activity Ai by loading machine

Mi+1, the robot travels to machine k to begin activity Ak. Note that when using activity

notation, we can never instruct a robot that is currently holding a part to unload a machine.

Similarly, we can never instruct an empty robot to load a machine.

Define the function F (Ai, t) to represent the time of completion of the tth execution of any

activity Ai, for fixed i. Given a feasible infinite sequence of activities and a compatible initial

state, we can define the long-run average throughput, or simply throughput, of that sequence to

be

µ = lim
j→∞

t

F (Am, t)
.

Intuitively, this quantity represents the long-term average number of completed parts placed

into the input/output hopper per unit time (Crama and van de Klundert 1997).

6

Obtaining a feasible infinite sequence of activities that maximizes throughput is a fundamen-

tal problem of robotic cell scheduling. Such a sequence of robotic moves is called optimal. Most

studies focus on infinite sequences of activities in which a sequence of m + 1, or some integral

multiple of m + 1, activities is repeated cyclically.

The study of cyclic production is motivated by its prevalence in industrial implementations.

Additionally, Dawande et al. (2002a) show that it is sufficient to consider only cyclic solutions in

order to maximize throughput. Cyclic production employs a repeatable sequence of activities.

For example, (A0, A2, A4, A3, A1) is a sequence of activities that produces a part in a four-

machine cell. Such a sequence can be repeated, with each repetition producing a single part.

Since a part must be processed on all m machines and then placed into the input/output hopper,

m+1 different activities (exactly one of each of the m+1 activities A0, A1, . . . , Am) are required

to produce a part. More precisely, we have the following definition:

Definition: A k-unit cycle is the performance of a feasible sequence of robot moves which loads

and unloads each machine exactly k times in a way which leaves the cell in exactly the same

state as its state at the beginning of those moves.

To be feasible, a sequence of activities must satisfy two criteria:

• The robot cannot be instructed to load an occupied machine.

• The robot cannot be instructed to unload an unoccupied machine.

All one-unit cycles are feasible.

A description of the state of the robotic cell at any given instant of time includes where the

robot is, where the semifinished parts are, and to what extent each part has been processed.

Such a precise mathematical statement of the state is not required in this paper, because it deals

only with a steady state analysis.

In a k-unit cycle, let Aj
i denote the jth instance of activity Ai, i = 1, . . . , m; j = 1, . . . , k.

Definitions: (Crama and van de Klundert 1997) A robotic cell repeatedly executing a k-unit

cycle π of robot moves is operating in steady state if there exist constants T (π) and N such that

7

for every Aj
i , i = 0, . . . ,m, and for every t ∈ Z+ such that t > N , F (Aj

i , t+1)−F (Aj
i , t) = T (π).

T (π) is called the cycle time of π.

The per unit cycle time of a k-unit cycle π is T (π)/k. This is the reciprocal of the throughput

and is easier to calculate directly. Therefore, rather than maximizing throughput, we minimize

per unit cycle time. In this study we consider only one-unit cycles. Obviously, in this case the

cycle time equals the per unit cycle time.

Brauner and Finke (2001) show that repeating a k-unit activity sequence will enable the

robotic cell to reach a steady state (or cyclic solution) in finite time. Therefore, since we are

maximizing the long-run average throughput, i.e., assuming that the cells operate in steady

state for an infinite time, there is no contribution from the initial transient phase. Hence, there

is no loss of generality by studying only the steady state behavior.

4.1 Two-machine Robotic Cells

It has been proven (Sethi et al. 1992) that in an m machine robotic cell there are m! one-unit

cycles, corresponding to the m! permutations of {A1, . . . , Am}. Thus, the two robot move cycles

in a two-machine robotic cell are S1,2 = (A0, A1, A2) and S2,2 = (A0, A2, A1). We now derive the

cycle times for producing parts in a robotic flow shop (RF2|(blocking,A,cyclic-1)|Ct) using these

two cycles. These results will be directly applicable to larger cells and to flexible robotic cells.

For S1,2, if we start from the initial state E = (φ, Ω, M2), where the robot has just loaded

part Pi onto M2 and M1 is free, the robot move cycle includes the following activities: wait

until Pi is processed: (p2), unload Pi from M2: (ε) move to I/O: (δ), drop Pi at I/O: (ε), pick

up Pi+1 at I/O: (ε), move to M1: (δ), load Pi+1 on M1: (ε), wait until Pi+1 is processed: (p1),

unload Pi+1 from M1: (ε), move to M2: (δ), and load Pi+1 on M2: (ε). Thus,

T1 = 3δ + 6ε + p1 + p2. (1)

For S2,2, if we start from the initial state E = (Ω, Ω,M1), where the robot has just loaded

part Pi+1 onto M1 and M2 is occupied by part Pi, the robot move sequence includes the following

activities: move to M2: (δ), if necessary wait until Pi is processed at M2: (w2), unload Pi from

M2: (ε), move to I/O: (δ), drop Pi at I/O: (ε), move to M1: (δ), if necessary wait until Pi+1 is

8

processed at M1: (w1), unload Pi+1 from M1: (ε), move to M2: (δ), load Pi+1 on M2: (ε), move

to I/O: (δ), pick up part Pi+2 at I/O: (ε), move to M1: (δ), load Pi+2 on M1: (ε). Therefore,

T2 = 6δ + 6ε + w1 + w2, where

w1 =max{0, p1 − w2 − 3δ − 2ε}, and

w2 =max{0, p2 − 3δ − 2ε}.
By combining the expressions for w1 and w2, we obtain the following result:

T2 = max{6δ + 6ε, p1 + 3δ + 4ε, p2 + 3δ + 4ε}. (2)

Lemma 1 In RF2|(blocking,A,cyclic-1)|Ct, cycle S1,2 is optimal if δ ≥ (p1 + p2)/3, whereas

cycle S2,2 is optimal if δ ≤ (p1 + p2)/3.

Proof: Follows from equations (1) and (2). See also Sethi et al. (1992).

4.2 Three-machine Robotic Cells

In a three-machine robotic cell, the six one-unit cycles are

S1,3 = (A0, A1, A2, A3), S2,3 = (A0, A2, A1, A3),

S3,3 = (A0, A1, A3, A2), S4,3 = (A0, A3, A1, A2),

S5,3 = (A0, A2, A3, A1), S6,3 = (A0, A3, A2, A1)

Their cycle times are presented in the following lemma.

Lemma 2 For problem RF3|(blocking,A,cyclic-1)|Ct, the cycle times of the six one-unit cycles

(S1,3, . . . , S6,3) are given by:

T1 = 4δ + 8ε + p1 + p2 + p3

T2 = max{8δ + 8ε, 4δ + 6ε + p1, 4δ + 4ε + p2, 4δ + 6ε + p3, 2δ + 4ε + p1+p2+p3

2
}

T3 = max{8δ + 8ε + p1, 4δ + 6ε + p1 + p2, 4δ + 4ε + p3}
T4 = max{8δ + 8ε + p2, 4δ + 6ε + p2 + p3, 4δ + 6ε + p1 + p2}
T5 = max{8δ + 8ε + p3, 4δ + 6ε + p2 + p3, 4δ + 4ε + p1}
T6 = max{12δ + 8ε, 4δ + 4ε + p1, 4δ + 4ε + p2, 4δ + 4ε + p3}.

Proof: Similar to the derivation of equations (1) and (2) and Sethi et al. (1992).

9

4.3 Four-machine Robotic Cells

In a four-machine robotic cell, the twenty-four one-unit cycles are

S1,4 = (A0, A1, A2, A3, A4), S2,4 = (A0, A1, A3, A2, A4),

S3,4 = (A0, A2, A1, A3, A4), S4,4 = (A0, A2, A3, A1, A4),

S5,4 = (A0, A3, A1, A2, A4), S6,4 = (A0, A3, A2, A1, A4),

S7,4 = (A0, A2, A3, A4, A1), S8,4 = (A0, A3, A2, A4, A1),

S9,4 = (A0, A3, A4, A1, A2), S10,4 = (A0, A4, A1, A2, A3),

S11,4 = (A0, A2, A4, A1, A3), S12,4 = (A0, A4, A1, A3, A2),

S13,4 = (A0, A1, A3, A4, A2), S14,4 = (A0, A3, A1, A4, A2),

S15,4 = (A0, A3, A4, A2, A1), S16,4 = (A0, A4, A2, A1, A3),

S17,4 = (A0, A1, A4, A2, A3), S18,4 = (A0, A4, A2, A3, A1),

S19,4 = (A0, A1, A2, A4, A3), S20,4 = (A0, A2, A1, A4, A3),

S21,4 = (A0, A2, A4, A3, A1), S22,4 = (A0, A4, A3, A1, A2),

S23,4 = (A0, A1, A4, A3, A2), S24,4 = (A0, A4, A3, A2, A1)

The cycle times for these cycles are presented in the following lemma. Note that in a four-

machine cell, when the robot moves from M4 to M1 (or vice versa), it travels via I/O (requiring

time 2δ) rather than via M2 and M3 (which would require time 3δ).

Lemma 3 For problem RF4|(blocking,A,cyclic-1)|Ct, the cycle times of the twenty-four one-unit

10

cycles are given by:

T1 = 5δ + 10ε + p1 + p2 + p3 + p4

T2 = max{9δ + 10ε + p1, 4δ + 4ε + p3, 5δ + 8ε + p2 + p1, 5δ + 8ε + p4 + p1,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T3 = max{9δ + 10ε + p4, 4δ + 4ε + p2, 5δ + 8ε + p1 + p4, 5δ + 8ε + p3 + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T4 = max{10δ + 10ε + p3, 5δ + 6ε + p2 + p3, 5δ + 6ε + p1, 5δ + 8ε + p4 + p3,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T5 = max{10δ + 10ε + p2, 5δ + 6ε + p3 + p2, 5δ + 8ε + p1 + p2, 5δ + 6ε + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/2}
T6 = max{13δ + 10ε, 4δ + 4ε + p3, 4δ + 4ε + p2, 5δ + 6ε + p1, 5δ + 6ε + p4,

(5δ + 10ε + p1 + p2 + p3 + p4)/3}
T7 = max{9δ + 10ε + p3 + p4, 5δ + 8ε + p2 + p3 + p4, 4δ + 4ε + p1}
T8 = max{13δ + 10ε, 4δ + 4ε + p3, 5δ + 6ε + p2, 9δ + 8ε + p4, 4δ + 4ε + p1}
T9 = max{10δ + 10ε + p4 + p2, 5δ + 8ε + p3 + p4 + p2, 5δ + 6ε + p1 + p2}

T10 = max{9δ + 10ε + p2 + p3, 5δ + 8ε + p4 + p2 + p3, 5δ + 8ε + p1 + p2 + p3}

11

T11 = max{10δ + 10ε, 5δ + 6ε + p2, 5δ + 6ε + p4, 5δ + 6ε + p1, 5δ + 6ε + p3}
T12 = max{13δ + 10ε, 5δ + 6ε + p4, 9δ + 8ε + p1, 4δ + 4ε + p3, 9δ + 8ε + p2, 5δ + 6ε + p1 + p2}
T13 = max{10δ + 10ε + p1 + p4, 5δ + 6ε + p3 + p4, 5δ + 6ε + p2 + p1}
T14 = max{15δ + 10ε, 10δ + 8ε + p3, 10δ + 8ε + p1, 10δ + 8ε + p4, 10δ + 8ε + p2, 5δ + 6ε + p3 + p4,

5δ + 6ε + p3 + p2, 5δ + 6ε + p1 + p2}
T15 = max{13δ + 10ε + p4, 5δ + 6ε + p3 + p4, 4δ + 4ε + p2, 4δ + 4ε + p1}
T16 = max{13δ + 10ε, 9δ + 8ε + p4, 4δ + 4ε + p2, 5δ + 6ε + p1, 9δ + 8ε + p3, 5δ + 6ε + p4 + p3}
T17 = max{10δ + 10ε + p1 + p3, 5δ + 6ε + p4 + p3, 5δ + 8ε + p2 + p1 + p3}
T18 = max{13δ + 10ε + p3, 5δ + 6ε + p4 + p3, 5δ + 6ε + p2 + p3, 4δ + 4ε + p1}
T19 = max{9δ + 10ε + p1 + p2, 4δ + 4ε + p4, 5δ + 8ε + p3 + p1 + p2}
T20 = max{13δ + 10ε, 4δ + 4ε + p2, 9δ + 8ε + p1, 4δ + 4ε + p4, 5δ + 6ε + p3}
T21 = max{13δ + 10ε, 9δ + 8ε + p2, 4δ + 4ε + p4, 9δ + 8ε + p3, 4δ + 4ε + p1, 5δ + 6ε + p2 + p3}
T22 = max{13δ + 10ε + p2, 4δ + 4ε + p4, 5δ + 6ε + p3 + p2, 5δ + 6ε + p1 + p2}
T23 = max{13δ + 10ε + p1, 4δ + 4ε + p4, 4δ + 4ε + p3, 5δ + 6ε + p2 + p1}
T24 = max{15δ + 10ε, 4δ + 4ε + p4, 4δ + 4ε + p3, 4δ + 4ε + p2, 4δ + 4ε + p1}

Proof: Similar to the derivation of equations (1) and (2) and Sethi et al. (1992).

5 Flexible Robotic Cells: Throughput Comparison

We examine the throughput gains in flexible robotic cells for all possible assignments of op-

erations to machines. In this section the assignment of operations to machines remains fixed

throughout a lot’s processing (problem FRCm|(blocking,A,cyclic-1)|Ct for m = 2, 3, 4).

This particular version of the throughput problem and the one of Section 6 are based upon

two assumptions:

1. Any of the m! processing orders for the operations of a part in an m-machine cell is feasible.

12

2. The machines are converted according to the specified order of operations. For example,

if m = 3 and the operations are processed in the order (o3, o1, o2), then o3 is processed for

p3 time on M1, o1 is processed for p1 time on M2, and o2 is processed for p2 time on M3.

5.1 Comparison of Performance: Two-Machine Robotic Cells

We now show that in problem FRC2|(blocking,A,cyclic-1)|Ct the flexibility to assign operations

to machines does not allow for an increase in throughput. We will denote a permutation of

operations by a 2-vector of the form (oi, oj). This notation indicates that operations oi and oj

are done on machines M1 and M2, respectively.

Lemma 4 The flexibility to assign operations to machines in a two-machine flexible robotic cell

(FRC2|(blocking,A,cyclic-1)|Ct) provides no increase in throughput.

Proof: That the two permutations (oi, oj) and (oj, oi) will have the same time performance can

be seen by interchanging values of p1 and p2 in equations (1) and (2).

5.2 Comparison of Performance: Three-Machine Robotic Cells

Since the optimal cyclic solution in a three-machine cell is given by a one-unit cycle (Crama

and van de Klundert 1999, Brauner and Finke 1999), we consider only one-unit cycles (FRC3|
(blocking,A,cyclic-1)|Ct). As before, we will denote a permutation of operations by a 3-vector

of the form (oi, oj, ok). In other words, operations oi, oj, ok are done on machines M1,M2,M3,

respectively.

For convenience, we denote order (oi, oj, ok) as simply (i, j, k) in the rest of the paper. As a

result of the two assumptions stated at the start of Section 5, the formulas for Ti (1 ≤ i ≤ 6)

stated in Lemma 2 may be applied to any of the six permutations of the operations. In fact,

for any order α = (i, j, k) of operations, let Ti(α), 1 ≤ i ≤ 6, denote the corresponding value of

the ith cycle time measure from Lemma 2 if the operations are processed in the order α. For

example, if α = (2, 1, 3) then p1 and p2 are simply interchanged in each of the formulas, e.g.,

T3(α) = max{8δ + 8ε + p2, 4δ + 6ε + p1 + p2, 4δ + 4ε + p3}. For the sake of efficiency in the

13

remainder of this section, Ti will denote the cycle time value when the order of operations is

(1, 2, 3).

Let OPT (α) = min{Ti(α) | 1 ≤ i ≤ 6}. Let Ti,j(α) be the jth term in the maximization

expression which gives the value of Ti(α), where the terms are ordered as in the formulas for

Ti given in Lemma 2. For example, T2,4(1, 2, 3) = 4δ + 6ε + p3 and T2,4(2, 3, 1) = 4δ + 6ε + p1.

The following theorem states that OPT (α) ≥ (6/7)OPT (β) for all permutations α and β, i.e.,

at most a 142
7
% decrease in OPT can be obtained by changing the order of operations.

Theorem 1 Let α and β be two different orders of the operations for a three-machine flexible

robotic cell. Then OPT (β) ≤ (7/6)OPT (α), and this bound is tight.

Proof: The proof will be presented in the form of six lemmas. The basic approach is to assume

that an overall optimal solution (over all orders of operations (i, j, k)) is obtained using the order

(1, 2, 3). This leaves six possibilities as to which of the six expressions Ti, 1 ≤ i ≤ 6, yields

the optimal value OPT. For each i = 1, . . . , 6, we assume Ti = OPT and then show that for

any order of operations β 6= (1, 2, 3), there exists at least one j such that Tj(β) ≤ (7/6)OPT =

(7/6)Ti.

Lemma 5 T2 ≤ T4.

Proof: Clearly, T2,1 ≤ T4,1, T2,2 ≤ T4,3, T2,3 ≤ T4,3, and T2,4 ≤ T4,2. Finally,

T2,5 = 2δ + 4ε + (
∑

pi/2) ≤ 1

2
(T4,2 + T4,3),

which implies that either T2,5 ≤ T4,2 or T2,5 ≤ T4,3. Hence, for j = 1, . . . , 5, T2,j is less than or

equal to at least one of the T4,k’s.

As a result of Lemma 5, we need not analyze the case for which T4 = OPT , since this case

will be covered by the case T2 = OPT . In other words, OPT = min{T1, T2, T3, T5, T6}. Our

result can be easily proven for two of these cycles:

Lemma 6 If T1 = OPT or T6 = OPT , then Theorem 1 holds.

14

Proof: T1(α) is the same for all permutations α, and T6(β) is the same for all permutations

β. Therefore, if T1 = OPT , then OPT (α) ≤ T1(α) = T1 = OPT ; if T6 = OPT , then

OPT (β) ≤ T6(β) = T6 = OPT.

Lemma 7 T1(α) = OPT, ∀α, if p1 + p2 + p3 ≤ 4δ. T6(α) = OPT, ∀α, if δ = 0.

Proof: Trivial.

Hence, we may assume for the remainder of the proof that 0 < 4δ < p1 + p2 + p3.

Lemma 8 If 0 < 4δ < p1 + p2 + p3, then T2 = OPT implies that Theorem 1 holds.

Proof: T2 = max{8δ + 8ε, 4δ + 6ε + p1, 4δ + 4ε + p2, 4δ + 6ε + p3, 2δ + 4ε + (
∑

pi/2)}.
Suppose that for some permutation β and some number µ > 1, we have

OPT (β) = min{T1(β), T2(β), T3(β), T5(β), T6(β)}
≥ µ ·OPT = µT2. (3)

First, note that relation (3) implies T2(β) > T2. Necessary conditions for T2(β) > T2 are

p2 > max{p1, p3} and that p2 is processed first or last among the operations of β, in which case

T2(β) = 4δ + 6ε + p2.

Relation (3) also implies many other inequalities, some of which will be used to prove that

µ ≤ 7/6. First, we need to prove that µ < 5/4. Suppose µ ≥ 5/4. Then,

T2(β) = 4δ + 6ε + p2 ≥ 5

4
T2

≥ 5

4
max{T2,1, T2,3}.

Thus,

4δ + 6ε + p2 ≥ 5

4
T2,1 = 10δ + 10ε

⇐⇒ p2 ≥ 6δ + 4ε, (4)

and

4δ + 6ε + p2 ≥ 5

4
T2,3 = 5δ + 5ε +

5

4
p2

⇐⇒ p2 ≤ −4δ + 4ε. (5)

15

Since δ > 0, (4) and (5) contradict each other, and we may conclude that µ < 5/4.

We now apply three other inequalities:

T2(β) ≥ µT2 ≥ µT2,1

4δ + 6ε + p2 ≥ µ(8δ + 8ε)

⇐⇒ p2 ≥ (8µ− 4)δ + (8µ− 6)ε

⇐⇒ (µ− 1)p2 ≥ (8µ2 − 12µ + 4)δ + (8µ2 − 14µ + 6)ε, (6)

and

T2(β) ≥ µT2,3

4δ + 6ε + p2 ≥ µ(4δ + 4ε + p2)

⇐⇒ (µ− 1)p2 ≤ (4− 4µ)δ + (6− 4µ)ε. (7)

Combining (6) and (7) yields

(8µ2 − 12µ + 4)δ + (8µ2 − 14µ + 6)ε ≤ (µ− 1)p2

≤ (4− 4µ)δ + (6− 4µ)ε

⇐⇒ (8µ− 8)δ + (8µ− 10)ε ≤ 0.

Since 1 < µ, we have(8µ− 8) > 0 and
δ

ε
≤ 10− 8µ

8µ− 8
. (8)

Note that

T6 ≥ µT2,3 ⇒ T6 = 12δ + 8ε. Thus,

T6(β) = T6 ≥ µT2,1 implies

12δ + 8ε ≥ µ(8δ + 8ε)

⇐⇒ (12− 8µ)δ + (8− 8µ)ε ≥ 0.

Since µ < 5/4, we have (12− 8µ) > 0 and
δ

ε
≥ 8µ− 8

12− 8µ
. (9)

Combining (8) with (9) yields

8µ− 8

12− 8µ
≤ 10− 8µ

8µ− 8
,

which when solved yields µ ≤ 7/6.

16

Lemma 9 The bound of (7/6) in Lemma 8 (and therefore in Theorem 1) is tight.

Proof: The Lemma 8 case of T2 = OPT yields the result. Use δ = 1, ε = 2, p1 = p3 = 8, and

p2 = 12 with β = (2, 1, 3).

Consider the two orders of operation α = (i, j, k) and β = (k, j, i), where β is the reverse of

α. It is easy to prove that Ti(α) = Ti(β) for i = 1, 2, 4, 6, and that

T3(α) = T5(β) and T5(α) = T3(β).

Hence,

OPT (α) = T3(α) ⇐⇒ OPT (β) = T5(β),

and OPT (α) = T5(α) ⇐⇒ OPT (β) = T3(β).

From these results (symmetries), it follows that we need to consider only one of the two cases

T3 = OPT and T5 = OPT. Therefore, to prove Theorem 1, the only remaining case that we

need to consider is T5 = OPT.

Lemma 10 If 0 < 4δ < p1 + p2 + p3, then T5 = OPT implies that Theorem 1 holds.

Proof: Either T2 is also optimal, i.e., T2 = T5 = OPT , in which case Lemma 8 applies, or

T2 > T5. We therefore assume T2 > T5.

We use the same approach as in Lemma 8. First note that

T2,1 ≤ T5,1, T2,3 ≤ T5,2, T2,4 ≤ T5,2,
and T2,5 ≤ 1

2
(T5,2 + T5,3), which implies that

either T2,5 ≤ T5,2 or T2,5 ≤ T5,3.

 (10)

Since we are assuming that T2 > T5, relations (10) imply T2,2 = T2 > T5 = OPT. Thus,

T2,2 = 4δ + 6ε + p1 > T5,2 = 4δ + 6ε + p2 + p3 so p1 > p2 + p3.

It follows that for any β,

T2(β) ≤ 4δ + 6ε + p1 = T2. (11)

17

Assume that µ > 7/6 is achievable using some permutation β. Then T6(β) = T6 > (7/6)T5. If

T6 = 4δ + 4ε + p1, then 4δ + 4ε + p1 > (7/6)T5,3 = (7/6)(4δ + 4ε + p1), which is a contradiction.

If T6 = 12δ + 8ε, then we have

T6 >
7

6
T5,1,

12δ + 8ε >
7

6
(8δ + 8ε + p3) ≥ 7

6
(8δ + 8ε)

⇐⇒ 2δ > ε, (12)

and

T2 ≥ T2(β) >
7

6
T5,3,

4δ + 6ε + p1 >
7

6
(4δ + 4ε + p1)

⇐⇒ −4δ + 8ε > p1, (13)

and

T2 ≥ T2(β) >
7

6
T5,1,

4δ + 6ε + p1 >
7

6
(8δ + 8ε),

6p1 > 32δ + 20ε. (14)

(13) and (14) imply

32δ + 20ε < −24δ + 48ε,

⇐⇒ 2δ < ε. (15)

Since (12) contradicts (15), the assumption that µ > 7
6

is achievable must be wrong. This

completes the proof of Lemma 10 and of Theorem 1.

5.3 Comparison of Performance: Four-Machine Robotic Cells

Although the optimal cycle may not be a one-unit cycle if m = 4, we limit our analysis to only

one-unit cycles (FRC4|(blocking,A,cyclic-1)|Ct). We will denote a permutation of operations by

18

a 4-vector of the form (oi, oj, ok, ol). In other words, operations oi, oj, ok, ol are done on machines

M1,M2,M3,M4, respectively.

For convenience, we denote order (oi, oj, ok, ol) as simply (i, j, k, l) in the rest of the paper.

The formulas for one-unit cycles Ti (1 ≤ i ≤ 24) were developed in Lemma 3. For any order

α = (i, j, k, l) of operations, let Ti(α), 1 ≤ i ≤ 24, denote the corresponding value of the ith cycle

time measure, and let OPT (α) = min{Ti(α) | 1 ≤ i ≤ 24}. Note that the cycle time formula

has the following form: Ti(α) = max{Ti,j(α) | 1 ≤ j ≤ ki}, where Ti,j(α) is the jth term in the

maximization expression for Ti, which has ki arguments.

We must consider all twenty-four permutations of operations. These permutations are de-

noted α1, α2, . . . , α24, with α1 = (1, 2, 3, 4). As before, we assume that an overall optimal solution

is obtained using α1.

We now present a mixed integer program [MIP] that finds the ratio µ = max
2≤r≤24

{OPT (αr)/OPT (α1)}.
The first constraints, (C1), (C2), and (C3), derive the values for T1(αr), . . . , T24(αr), for

r = 1, . . . , 24, and arbitrary values of δ, ε, and pi, i = 1, . . . , 4. The next three constraints,

(C4), (C5), and (C6), find OPT (α1) = min
1≤i≤24

{Ti(α1)} and set it equal to 1. Constraint (C7)

and the objective function find U = min
2≤r≤24

{OPT (αr)} = min
2≤r≤24

{ min
1≤i≤24

{Ti(αr)}} and force µ to

be as large as possible.

[MIP]

Maximize U

subject to:

Ti(αr) ≥ Ti,j(αr), r = 1, . . . , 24; i = 1, . . . , 24; j = 1, . . . , ki (C1)

Ti(αr) ≤ Ti,j(αr) + M(1−W r
i,j), r = 1, . . . , 24; i = 1, . . . , 24; j = 1, . . . ki (C2)

∑ki

j=1 W r
i,j = 1, r = 1, . . . , 24; i = 1, . . . , 24 (C3)

Ti(α1) ≥ 1, i = 1, . . . , 24 (C4)

Ti(α1)Yi ≤ 1, i = 1, . . . , 24 (C5)
∑24

i=1 Yi = 1 (C6)

U ≤ Ti(αr), r = 2, . . . , 24; i = 1, . . . , 24 (C7)

δ, ε, U, T1(αr), . . . , T24(αr) ≥ 0, r = 1, . . . , 24

19

pi ≥ 0, i = 1, . . . , 4

W r
i,j, Yi ∈ {0, 1}, r = 1, . . . , 24; i = 1, . . . , 24; j = 1, . . . ki,

where M is a large positive number.

Theorem 2 The mixed integer program [MIP] states that (µ)OPT (α1) ≥ OPT (αr), 2 ≤ r ≤
24, and µ > 1, i.e., µ is the largest ratio of increase in OPT that can be obtained by changing

the order of operations.

Proof: This result follows directly from the explanation that precedes [MIP]. It is easy to see

that min
1≤i≤24

{Ti(α1)} ≤ min
2≤r≤24

{ min
1≤i≤24

{Ti(αr)}} ≤ µ min
1≤i≤24

{Ti(α1)} if and only if there exists an

optimal solution to program [MIP] with U > 1.

Because the number of cycles that produce two or more units is large, we have not enumerated

them. Of course, the methodology we describe here could be used to check whether such cycles

could provide an improvement in cycle time. In view of the simplicity of one unit-cycles and

the results in this section which provide easy comparability of their cycle times, we recommend

their use. Note that we can estimate µ for cycles that produce any number of units by running

the program [MIP]. The optimal solution gives a tight upper bound, and the variable values

δ, ε, and pi, i = 1, . . . , 4, achieve this bound.

We now show that for m = 4, at most a 142
7
% increase in throughput can be obtained by

changing the order of operations.

Theorem 3 Let α and β be two different orders of the operations for a four-machine flexible

robotic cell. Then OPT (β) ≤ (7/6)OPT (α), and this bound is tight.

Proof: The proof will be presented in a structure similar to that of Theorem 1: we use eight

lemmas and consider cases that are divided by the value of i, where Ti = OPT and Ti denotes

Ti(1, 2, 3, 4), 1 ≤ i ≤ 24, for the remainder of this section. We first disqualify eight cycles

because they are dominated by other cycles.

Lemma 11 For a given assignment of operations to machines, we have the following dominance

relationships: Cycles S4,4, S5,4, S9,4, S13,4, and S17,4 are dominated by Cycle S11,4. Cycles S12,4,

S14,4, and S16,4 are dominated by Cycle S6,4.

20

Proof: For cycles S4,4 and S11,4, T11,1 ≤ T4,1, T11,2 ≤ T4,2, T11,3 ≤ T4,4, T11,4 ≤ T4,3, and

T11,5 ≤ T4,2. The proofs for the other pairs are similar.

We now show symmetry for five pairs of cycles. These results imply that for each pair we

need only consider cases in which one of them is optimal.

Lemma 12 Regarding Theorem 3, we have the following equivalences:

• Theorem 3 holds for T2 = OPT if and only if it holds for T3 = OPT .

• Theorem 3 holds for T7 = OPT if and only if it holds for T19 = OPT .

• Theorem 3 holds for T8 = OPT if and only if it holds for T20 = OPT .

• Theorem 3 holds for T15 = OPT if and only if it holds for T23 = OPT .

• Theorem 3 holds for T18 = OPT if and only if it holds for T22 = OPT .

Proof: It is straightforward to verify that min{Th(i, j, k, l)|1 ≤ h ≤ 24} = min{Th(l, k, j, i)|1 ≤
h ≤ 24}. That result along with the following equalities yields the result:

T3(i, j, k, l) = T2(l, k, j, i), T19(i, j, k, l) = T7(l, k, j, i),

T20(i, j, k, l) = T8(l, k, j, i), T22(i, j, k, l) = T18(l, k, j, i),

T23(i, j, k, l) = T15(l, k, j, i).

Hence, we need not consider cases in which cycles S3,4, S19,4, S20,4, S22,4, or S23,4, are optimal.

Lemma 13 Theorem 3 holds if T1 = OPT , T11 = OPT , or T24 = OPT .

Proof: T1, T11, and T24 are each independent of the assignment of operations to machines.

Hence, Ti(β) = Ti < (7/6)Ti, ∀β, for i ∈ {1, 11, 24}.

Lemma 14 Regarding Theorem 3, we have the following implications:

• If Theorem 3 holds for T2 = OPT , then it holds for T7 = OPT .

21

• If Theorem 3 holds for T6 = OPT , then it holds for T8 = OPT .

• If Theorem 3 holds for T2 = OPT , then it holds for T10 = OPT .

• If Theorem 3 holds for T6 = OPT , then it holds for T15 = OPT .

• If Theorem 3 holds for T6 = OPT , then it holds for T18 = OPT .

• If Theorem 3 holds for T6 = OPT , then it holds for T21 = OPT .

Proof:

T2(k, j, i, l) ≤ T7(i, j, k, l), T6(j, i, k, l) ≤ T8(i, j, k, l),

T2(k, j, i, l) ≤ T10(i, j, k, l), T6(k, j, i, l) ≤ T15(i, j, k, l),

T6(l, j, k, i) ≤ T18(i, j, k, l), T6(j, i, l, k) ≤ T21(i, j, k, l).

Lemma 15 T1(α) = OPT, ∀α, if p1 + p2 + p3 + p4 ≤ 4δ. T24(α) = OPT, ∀α, if δ = 0.

Proof: Trivial.

Our task now is to show that Theorem 3 holds for cells in which 0 < 4δ <
∑

pi and either

OPT = T2 or OPT = T6.

Lemma 16 If 0 < 4δ <
∑

pi, then T6 = OPT implies that Theorem 3 holds.

Proof:

Case 1: T24(β) = 15δ + 10ε, ∀β. T6 ≥ 13δ + 10ε, ∀β, implies

T24(β)

T6

≤ 15δ + 10ε

13δ + 10ε
≤ 15

13
<

7

6
.

Case 2: T24(β) = 4δ + 4ε + max pi, ∀β. T6 ≥ 4δ + 4ε + max pi, ∀β, implies

T24(β)

T6

≤ 4δ + 4ε + max pi

4δ + 4ε + max pi

≤ 1 <
7

6
.

22

Lemma 17 If 0 < 4δ <
∑

pi, then T2 = OPT implies that Theorem 3 holds.

Proof:

Case 1: T11 = 10δ + 10ε. T2 ≥ p1 + 9δ + 10ε implies that

T11(β)

T2

≤ 10δ + 10ε

p1 + 9δ + 10ε
≤ 10

9
<

7

6
.

Case 2: T11 = 5δ + 6ε + max pi. First, it is easy to see that T11 > T2 implies that T11(β) =

5δ + 6ε + p3, ∀β. Furthermore, T6 > T2 implies that T6(β) = 13δ + 10ε, ∀β.

a) T2 = 9δ + 10ε + p1. This implies that p3 ≤ 5δ + 6ε + p1, so

OPT (β) ≤ min{T6(β), T11(β)} ≤ min{13δ + 10ε, 10δ + 12ε + p1}

Therefore,

OPT (β)

T2

≤ min

{
13δ + 10ε

9δ + 10ε + p1

,
10δ + 12ε + p1

9δ + 10ε + p1

}
≤ min

{
13δ + 10ε

9δ + 10ε
,
10δ + 12ε

9δ + 10ε

}
.

Now assume that the result does not hold. This would imply that both terms in the

minimization exceed 7/6:

13δ + 10ε

9δ + 10ε
> 7/6 ⇒ ε <

3

2
δ and

10δ + 12ε

9δ + 10ε
> 7/6 ⇒ ε >

3

2
δ.

This contradiction implies that at least one of these two terms must be less than 7/6.

b) T2 = 4δ + 4ε + p3. This implies that p3 ≥ 5δ + 6ε. Hence,

OPT (β)

T2

≤ min

{
13δ + 10ε

4δ + 4ε + p3

,
5δ + 6ε + p3

4δ + 4ε + p3

}
≤ min

{
13δ + 10ε

9δ + 10ε
,
10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above.

c) T2 = 5δ + 8ε + p1 + p2. This implies that p2 ≥ 4δ + 2ε and that p3 ≤ δ + 4ε + p1 + p2,

so T11 ≤ 6δ + 10ε + p1 + p2. Hence,

OPT (β)

T2

≤ min

{
13δ + 10ε

5δ + 8ε + p1 + p2

,
6δ + 10ε + p1 + p2

5δ + 8ε + p1 + p2

}

≤ min

{
13δ + 10ε

9δ + 10ε
,
10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above. This argument applies to T2 = 5δ + 8ε + p1 + p4, too.

23

d) T2 = (5δ + 10ε +
∑

pi)/2. This implies that p3 < −(3/2)δ + ε +
∑

pi/2. Therefore,

T11 <
7δ + 14ε +

∑
pi

2
.

T2 > p1 + 9δ + 10ε implies
∑

pi > 2p1 + 13δ + 10ε ≥ 13δ + 10ε. Hence,

OPT (β)

T2

≤ min

{
26δ + 20ε

5δ + 10ε +
∑

pi

,
7δ + 14ε +

∑
pi

5δ + 10ε +
∑

pi

}

≤ min

{
26δ + 20ε

18δ + 20ε
,
20δ + 24ε

18δ + 20ε

}
= min

{
13δ + 10ε

9δ + 10ε
,
10δ + 12ε

9δ + 10ε

}
≤ 7

6
,

as in a) above.

Lemma 18 The bound of (7/6) in Lemma 17 (and therefore in Theorem 3) is tight.

Proof: Let δ = 2, ε = 3, p1 = 0, p2 = p4 = 8, p3 = 28, and β = (2, 3, 1, 4). OPT = T2 = 48.

OPT (β) = T3(β) = T4(β) = T6(β) = T8(β) = T11(β) = T16(β) = T18(β) = T20(β) = 56.

Therefore, OPT (β)/OPT = 7/6.

This completes the proof of Theorem 3.

6 On-Line Tool Changes

We now consider the case in which the operation performed by a particular machine changes

during the processing of a lot. This assumes that tool changes can be made very quickly on

each machine. Each part will still visit the machines in order M1,M2, . . . , Mm, but operations

performed by a particular machine will vary from part to part. Each part must still be subject

to each of the m operations. Our concern is whether varying the order in which the processes

are performed can increase throughput. We first examine two-machine cells, then generalize to

larger ones.

Recall that for m = 2 the order of operations (i, j) means that operation oi is performed on

machine M1 and that operation oj is performed on machine M2. We can specify the order of

operations for each part, e.g., the first part is processed in order (i, j), the second in order (j, i),

etc. Obviously, if robot cycle S1,2 is used, then the throughput does not change if the order

24

of operations changes: T1 = 3δ + 6ε + p1 + p2, independent of the assignment of operations to

machines. However, if robot cycle S2,2 is used, then the throughput may be improved by using

a varying order of operations. This problem is designated OFRC2|(blocking,A,S2,2)|Ct.

To study problem OFRCm|(blocking,A,Sq,m)|Ct, we define the notation Sq,m[β1, β2, . . . , βk]

to be the k-unit cycle generated by repeating k times the one-unit robot move cycle Sq,m, with

the assignment of operations to machines being β1 for the first part, β2 for the second part, . . . ,

and βk for the kth part. In the cases studied here, k = m. If the k-unit cycle under consideration

uses the same assignment of operations throughout its performance, we simply have the one-unit

cycle Sq,m of Section 4. Similarly, to maintain consistency with the notations of Section 3, we

define Tq[β1, β2, . . . , βk] to be the cycle time of Sq,m[β1, β2, . . . , βk].

When performing cycle S2,2[(i, j)(j, i)], the waiting times differ from those of cycle S2,2, so

T2[(i, j)(j, i)]/2 6= T2 (as defined in equation (2)). In cycle S2,2[(i, j)(j, i)], the robot’s movements

are identical to those described for S2,2 in Section 4.1. If part h is produced in sequence (i, j) and

part h + 1 is produced in sequence (j, i), then part h will undergo operation oj on machine M2

while part h + 1 is undergoing operation oj on M1. Similarly, part h + 1 will undergo operation

oi on machine M2 while part h+2 is undergoing operation oi on M1. If wr
g indicates the robot’s

waiting time at machine Mg when it is performing operation r, then we have the following values

for waiting times:

wi
1 = max{0, pi − 3δ − 2ε− wi

2} (first part)

wj
2 = max{0, pj − 3δ − 2ε} (first part)

wj
1 = max{0, pj − 3δ − 2ε− wj

2} (second part)

wi
2 = max{0, pi − 3δ − 2ε} (second part),

so the time required to complete the two parts is

T2[(i, j), (j, i)] = 12δ + 12ε + wi
1 + wj

2 + wj
1 + wi

2

= 12δ + 12ε + max{0, pi − 3δ − 2ε}+ max{0, pj − 3δ − 2ε}
= max{6δ + 6ε, pi + 3δ + 4ε}+ max{6δ + 6ε, pj + 3δ + 4ε}.

Hence, T2[(i, j), (j, i)]/2 ≤ T2, and alternating the operations on the machines will reduce the

25

per unit cycle time by min{|pj − pi|, max{0, pi− 3δ− 2ε, pj − 3δ− 2ε}}/2. Gantt charts for S2,2

and S2,2[(i, j)(j, i)] can be found in Figure 2.

S2,2

M1:

M2:

P1, o1

P1, o2

P2, o1

P2, o2

P3, o1

P3, o2

P4, o1

P4, o2

P5, o1

P5, o2

P6, o1

P6, o2

P7, o1

P7, o2

P8, o1

P8, o2

M1:

M2:

S2,2[(i, j)(j, i)]

P1, o1

P1, o2

P2, o2

P2, o1

P3, o1

P3, o2

P4, o2

P4, o1

P5, o1

P5, o2

P6, o2

P6, o1

P7, o1

P7, o2

P8, o2

P8, o1

Figure 2: Gantt charts for S2,2 and S2,2[(i, j)(j, i)]

With these results, we have the following lemma, which is analogous to Lemma 1:

Lemma 19 In ORF2|(blocking,A,cyclic-2)|Ct, cycle S1,2 is optimal if δ ≥ (p1 + p2)/3, while

cycle S2,2[(i, j), (j, i)] is optimal if δ ≤ (p1 + p2)/3.

Proof: Same as for Lemma 1.

Similarly, if in a three-machine cell we perform S6,3 (OFRC3|(blocking,A,S6,3)|Ct) so that

the order in which operations are performed rotates in order (i, j, k), (j, k, i), (k, i, j), then the

time required to produce three successive units is

T6[(i, j, k), (j, k, i), (k, i, j)] = 36δ + 24ε + wi
1 + wj

2 + wk
3 + wj

1 + wk
2 + wi

3 + wk
1 + wi

2 + wj
3

= 36δ + 24ε + max{0, pi − 8δ − 4ε}+ max{0, pj − 8δ − 4ε}
+ max{0, pk − 8δ − 4ε}

= max{12δ + 8ε, pi + 4δ + 4ε}+ max{12δ + 8ε, pj + 4δ + 4ε}
+ max{12δ + 8ε, pk + 4δ + 4ε} ≤ 3T6.

These results can be easily extended to OFRCm|(blocking,A,Sm!,m)|Ct, m ≥ 4.

26

7 Conclusions and Recommendations for Future Study

We have examined the productivity gains that can be achieved in flexible robotic cells by chang-

ing the assignment of operations to machines. If this assignment remains constant throughout a

lot’s processing, flexibility provides no throughput increase for a two-machine cell. Furthermore,

for both three- and four-machine cells, the maximum productivity increase is 142
7
%. We have

also shown that flexible cells that support on-line tool changes can be scheduled in a way that

increases throughput. Both results should be very useful to robotic cell designers and to those

considering the purchase of such a system, because flexible robotic cells are more expensive than

robotic flow shops.

It is curious that the results of Section 5 show that the maximum throughput increase in a

flexible robotic cell is 142
7
% for both m = 3 and m = 4. It is not clear whether this trend would

continue for m ≥ 5. Examining this trend would be a challenging and useful question for future

research. Another interesting line of inquiry would be to quantify the overall productivity gains

for cells having m ≥ 4, as the best one-unit cycle may not be optimal among the class of all cyclic

solutions (Brauner and Finke 1997, 2001). Another direction for future research is towards find-

ing similar results for cells that produce different part-types. Foundational work for such cells

can be found in Hall et al. (1997), Hall et al. (1998), Kamoun et al. (1999), and Sriskandarajah

et al. (1998). Dual gripper robotic cells, too, may prove to be a profitable field for the examina-

tion of flexible robotic cells. Cyclic solutions for dual gripper robotic cells have been studied in

Su and Chen (1996), Sethi et al. (2001), Sriskandarajah et al. (2004), and Geismar et al. (2003).

Acknowledgments: The research was supported in part by the Natural Sciences and Engi-

neering Research Council of Canada (Grant number OGP0002507) and the University of Texas

at Dallas.

27

References

Asfahl, C.R., Robots and Manufacturing Automation, John Wiley & Sons, New York (1985).

Askin, R.G. and Strandridge, C.P., Models and Analysis of Manufacturing Systems, John Wiley

& Sons, New York (1995).

Basnet C. and Mize, J.H., “Scheduling and Control of Flexible Manufacturing Systems: A

Critical Review,” International Journal of Computer Integrated Manufacturing, Vol 7, No.

6, pp. 340-355 (1994).

Brauner, N. and Finke, G., “Final Results on the One-cycle Conjecture in Robotic Cells,”

Internal note, Laboratoire LEIBNIZ, Institut IMAG, Grenoble, France (1997).

Brauner, N. and Finke, G., “On the Conjecture in Robotic Cells: New Simplified Proof for the

Three-Machine Case,” INFOR, Vol. 37, pp. 20-36 (1999).

Brauner, N. and Finke, G., “Cycles and Permutations in Robotic Cells,” Mathematical and

Computer Modeling, Vol. 34, pp. 565-591 (2001).

Browne, J., Dubois, D., Rathmill, K., Sethi, S.P., and Stecke, K.E., “Classification of Flexible

Manufacturing Systems,” The FMS Magazine, Vol. 2, No. 2, pp. 114-117 (April 1984).

Crama, Y., Kats, V., van de Klundert, J., and Levner, E., “Cyclic Scheduling in Robotic Flow

Shops,” Annals of Operations Research: Mathematics of Industrial Systems (2000).

Crama, Y. and van de Klundert, J., “Cyclic Scheduling of Identical Parts in a Robotic Cell,”

Operations Research, Vol. 45, pp. 952-965 (1997).

Crama, Y. and van de Klundert, J., “Cyclic Scheduling in 3-machine Robotic Flow Shops,”

Journal of Scheduling, Vol. 2, pp. 35-54 (1999).

Dawande, M., Geismar, N., and Sethi, S., “Dominance of Cyclic Solutions and Challenges in

the Scheduling of Robotic Cells,” under review in SIAM Review (2002a).

28

Dawande, M., Geismar, N., Sethi, S., and Sriskandarajah, C., “Sequencing and Scheduling in

Robotic Cells: Recent Developments,” under review in Journal of Scheduling (2002b).

Geismar, H.N., Dawande, M., and Sriskandarajah, C., “Scheduling Constant Travel-Time Dual

Gripper Robotic Cells with Parallel Machines,” Working paper, University of Texas at Dallas

(2003).

Graham, R.L., Lawler, E.L., Lenstra, J.K., and Rinnooy Kan, A.H.G., “Optimization and

Approximation in Deterministic Sequencing and Scheduling: a Survey,” Annals of Discrete

Mathematics, Vol. 5, pp. 287-326 (1979).

Hall, N.G., Kamoun, H., and Sriskandarajah, C., “Scheduling in Robotic Cells: Classification,

Two and Three Machine Cells,” Operations Research, Vol. 45, pp. 421-439 (1997).

Hall, N.G., Kamoun H., and Sriskandarajah, C., “Scheduling in Robotic Cells: Complexity and

Steady State Analysis,” European Journal of Operational Research, Vol. 109, pp. 43-63

(1998).

Harmonosky, C.M. and Robohn, S. F., “Real-Time Scheduling in Computer Integrated Man-

ufacturing: A Review of Recent Research,” International Journal of Computer Integrated

Manufacturing, Vol. 4, No. 6, pp. 331-340 (1991).

Kamoun, H., Hall, N.G., and Sriskandarajah, C., “Scheduling in Robotic Cells: Heuristics and

Cell Design,” Operations Research, Vol. 47, pp. 821-835 (1999).

Miller, R.K. and Walker, T.C., FMS/CIM Systems Integration Handbook, The Fairmont Press,

Lilburn, GA (1990).

Rachamadugu, R. and Stecke, K.E. “Classification and Review of FMS Scheduling Procedures,”

Production Planning and Control, Vol. 5, No. 1, pp. 2-20 (1994).

Sethi, A.K. and Sethi, S.P., “Flexibility in Manufacturing: A Survey,” International Journal of

Flexible Manufacturing Systems, Vol. 2, pp. 289-328 (1990).

29

Sethi, S.P., Sidney, J.B., and Sriskandarajah, C., “Scheduling in Dual Gripper Robotic Cells for

Productivity Gains,” IEEE Transactions on Robotics and Automation, Vol. 17, No. 3, pp.

324-341 (2001).

Sethi, S.P., Sriskandarajah, C., Sorger, G., BÃlażewicz, J., and Kubiak, W., “Sequencing of

Parts and Robot Moves in a Robotic Cell, ” International Journal of Flexible Manufacturing

Systems, Vol. 4, pp. 331-358 (1992).

Sriskandarajah, C., Drobouchevitch, I. G., Sethi, S., and Chandrasekaran, R., “Scheduling

Multiple Parts in a Robotic Cell Served by a Dual Gripper Robot,” Operations Research,

Vol. 52, No. 1, pp. 65-82 (2004).

Sriskandarajah, C., Hall, N.G., and Kamoun, H., “Scheduling Large Robotic Cells without

Buffers”, Annals of Operations Research, Vol. 76, pp. 287-321 (1998).

Stecke, Kathryn E., “Design, Planning, Scheduling, and Control Problems of Flexible Manufac-

turing Systems,” Annals of Operations Research, Vol. 3, pp. 3-12 (1985).

Stecke, Kathryn E., “FMS Design and Operating Problems and Solutions,” Proceedings of the

Second Intelligent FA Symposium, pp. 17-32 (July 19-21, 1989)

Su, Q and Chen, F., “Optimal Sequencing of Double-Gripper Gantry Robot Moves in Tightly-

Coupled Serial Production Systems,” IEEE Transactions on Robotics and Automation, Vol.

12, pp. 22-30 (1996).

30

