
 

 Abstract�A spatio-temporal map of gene activity in the 
brain would be an important contribution to the understanding 
of brain development, disease, and function. Such a resource is 
now possible using high-throughput in situ hybridization, a 
method for transcriptome-wide acquisition of cellular 
resolution gene expression patterns in serial tissue sections. 
However, querying an enormous quantity of image data 
requires computational methods for describing and organizing 
gene expression patterns in a consistent manner. In addressing 
this, we have developed procedures for automated annotation 
of gene expression patterns in the postnatal mouse brain. 
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I.  INTRODUCTION 
 
 Understanding the functions of gene products is 
significantly aided by determining where and when genes 
express [1]. In situ hybridization (ISH) with non-radioactive 
probes is a histological method for marking the cells that 
express a particular gene. Expression distribution at the level 
of individual cells is important to develop an understanding 
of the role of genes in controlling cell identity and cell 
differentiation. Recently developed high-throughput (HT) 
ISH equipment reliably and rapidly performs ISH, thus 
allowing the determination of thousands of gene expression 
patterns in serially sectioned tissues [2]. By annotating the 
gene expression patterns in the resulting images, the ISH 
data can be much more readily queried and compared [3]. 
To accomplish this, we have combined a cell-based gene 
expression signal detection technique with a surface 
representation algorithm. This union of methods led to the 
development of a simple procedure for the rapid annotation 
of expression patterns. 
 

 
II.  METHODOLOGY 

 
A.  Data Production 
   

Postnatal day 7 (P7) mouse brains were serially sliced 
to create sets of 20µm-thick sagittal tissue cryosections. 
Next, a Tecan Genesis robot platform carried out ISH on the 
brain sections. In this step, cellular mRNAs were hybridized 
with digoxygenin (DIG)-tagged riboprobes that in turn were 
detected by a sensitivity enhancing amplification reaction 
[4]. This resulted in distinctly localized blue/purple dye 
precipitates in the cells containing the mRNA transcript of 
interest (Fig. 1). Lastly, a Leica bright field microscope 
equipped with a motorized stage digitally imaged these 
sections at 50x magnification resulting 24-bit RGB images 
with a resolution of 3.3 microns per pixel (Fig. 1) [2]. 

 
B.  Signal Detection 

 
Estimating the quantity of dye precipitate in each cell 

throughout every image is a necessary step in determining 
the relative amount and distribution of mRNA transcripts. 
We developed celldetekt for this task. This program applied 
a sliding-window technique to determine the size and 
location of precipitate clusters, and produced color-coded 
maps representing the expression strengths of cells (Fig. 2) 
[5]. Cellular expression strength categories were set as 
strong (cell body filled with precipitate), moderate (about 
half filled with precipitate), weak (small amounts of 
precipitate), and no precipitate detected. Celldetekt isolated 
expression signal using an intensity threshold at 100 green 
[6]. Then, a 3x3 pixel window traversed the entire image 
and marked locations where signal completely occupied the 
window as strongly expressing cells. The average area of a 
cell body is 10µm in diameter, which is equivalent to the 
3x3 pixel window size at the image resolution. The process 
repeated for moderately (2x2 window) and weakly (1x1 
window) expressing cells. Non-expressing cells were 
detected by the same protocol using an intensity threshold of 
240 gray. 
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C.  Segmentation 
 
The anatomy of the mammalian brain consists of major 

functional structures. An accurate segmentation of different 
structures is a prerequisite for the appropriate assignment of 
gene expression patterns to each structure. We defined a set 
of standard sagittal brain sections based upon the 11 sections 
illustrated in Valverde�s atlas of the mouse brain [7] and 
marked the locations and boundaries of major brain 
structures (e.g., cerebellum, cortex, thalamus). Then we 
developed a method based on subdivision mesh technology 
to apply these structure boundaries to tissue sections from 
different brains. A subdivision mesh is a coarse mesh of 
quadrilaterals with a set of subdivision rules for generating 
smooth, increasingly fine quadrilateral meshes [8]. We 
created a set of meshes for the standard brain tissue sections 
and associated each quadrilateral in the coarse mesh with a 
specific anatomical structure. The fine mesh thus accurately 
represented the layout of anatomical structures in the 
standard tissue section [9]. Next, standard anatomical 
meshes were fit to the HT-ISH images collected. We used 
cross-correlation to detect key anatomical features in the set 
of images for each gene in order to match images with the 
correct mesh. The atlas meshes of the standard sections were 
then deformed to overlay the anatomical boundaries of the 
chosen ISH sections. (Fig 3.) 

Automated fitting methods developed include an affine 
fit using principle component analysis to detect the primary 
axis of the brain, local fit of exterior boundaries to the tissue 
boundary using iterated least squares [9], and anatomical 
landmark detection for fitting interior boundaries [10].  
After automated fitting, the mesh layout was visually 

verified to ensure proper boundary placement. Then each 
quadrilateral in the finely subdivided mesh was linked to the 
cellular expression strength quantities in the directly 
underlying tissue.  Through these steps, the calculated 
cellular expression strengths were organized into a common 
subdivision-based atlas of the brain.  

 
D.  Expression Pattern Annotation 

 
ISH patterns in major anatomical structures are 

customarily annotated in a textual manner by classifying the 
distribution of gene expression as either ubiquitous (U), 
scattered (S), regional (R) or not detected (ND) (as in [11]). 
With the cellular expression strengths attached to the 
quadrilaterals in the subdivision mesh atlas, the total 
percentage of cells expressing (TPCE) in each structure was 
calculated for each gene.  In addition, the scaled weighted 
deviation (SWD) in the percentage of cells expressing the 
gene across the quadrilaterals of the structure was also 
calculated. The weighting was by the number of cells in 
each quadrilateral and the scaling by the total percentage of 
expression in the structure. For our automated annotation 
method, ND was assigned to structures where the TPCE was 
less than 1%, and U assigned to structures with a TPCE 
greater than 50%. When TPCE was between 1%-50%, R 
was assigned for SWD greater than 0.7, and S for less than 
0.7. These values were chosen based on patterns in the 
cortex for 30 genes. In cases where a particular structure 
exhibited multiple specific patterns for different expression 
signal strengths, the annotation for the strongest signal was 
assigned.  

 

 
 

Fig. 2. Automated cell signal strength classification marks the different 
gene expression levels by color: red (strong), blue (moderate), weak 

(yellow), and gray (none) 

 
 

Fig. 3. A subdivision mesh respresentation of a brain tissue section is 
used to define boundaries of the anatomical structures. 

 
 

Fig. 1. Gene expression display using in situ hybridization.  ISH marks the cells expressing a probed gene of interest.  
More dye precipitate (dark blue) indicates greater amounts of the specified mRNA in the cell. 
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III.  RESULTS 

 
The accuracy of celldetekt was evaluated by comparing 

its signal strength classification for 255 cells at 50x 
magnification with classifications performed visually by an 
expert at 200x resolution (see Table I). 85% correctly 
matched, with the remainder placed into adjacent categories. 
Importantly, there was a low incidence of false positives of 
gene expression. These results suggest that automated 
cellular gene expression signal strength classification can be 
performed at 3.3µm/pixel resolution. 

Examples of annotation results are shown in Fig. 4. The 
validity of automated pattern annotation was assessed 
through a comparison with visual pattern assessment of 178 
patterns across different structures and genes (see Table II). 
Automated annotation matched visual annotation 90% of the 

time, with the majority of the discrepancies occurring when 
the automated method assigned a scattered pattern. All 
instances of structures visually identified as expressing were 
detected by the automated method as a pattern. 

 
 

IV.  DISCUSSION 
 

Each of the two computational steps has the potential 
for error.  The sources of these errors are inherent to the data 
itself. The tissue sections can contain dust or air bubbles that 
produce a dark signal, which is then detected as gene 
expression. It may be possible to develop a method to 
digitally identify and remove such artifacts prior to 
precipitate detection. The other source of error is due to 
inherent differences between anatomical structures. The 
thresholds used for categorizing patterns based on SWD and 

 
 

Fig. 4. Illustrations of automated annotation results for four different genes. Examples are shown for adenylate cyclase 5 (Adcy5), RAR-related orphan 
receptor beta (Rorb), somatostatin (Sst), and lipidosin (Lpd). Expression strength of patterns are either strong (+++), moderate (++), or weak (+). 

  
 TABLE I 

CELLULAR GENE EXPRESSION SIGNAL CLASSFICATION 
 

Automated Classification  
Visually 

Observed None Weak Moderate Strong 

None 61 1 0 0 

Weak 15 51 7 0 

Moderate 0 18 48 2 

Strong 0 0 15 57 

  
 TABLE II 

GENE EXPRESSION PATTERN CLASSFICATION 
 

Automated Classification  
Visually 
Observed None Scattered Regional Ubiquitous 

None 35 3 1 0 

Scattered 0 41 2 0 

Regional 0 4 56 2 

Ubiquitous 0 6 0 28 
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TPCE were set using only one structure, the cortex. 
However, other structures of the brain have different shapes 
and layouts of substructures. It may be possible to address 
this by using different threshold values for each structure. 

Expression characterization is most significant when it 
is reproducible. However, visual annotation is prone to 
human error and subjectivity. Automated annotation is an 
objective process. More importantly, automated methods 
take advantage of modern computational power to 
accomplish the task rapidly. This is especially beneficial 
when dealing with large data quantities as in the case of 
genome-wide analysis of cellular gene expression.  

Automated annotation would also allow one to develop 
better characterizations of patterns beyond the traditional 
categories. Whereas many cases of expression patterns are 
clearly ubiquitous, scattered, or regional, often the 
appropriate pattern category is not clear. Reporting instead 
the numerical values of SWD and TPCE would provide 
additional information, allowing one to know exactly how 
much expression there is and how evenly it is distributed 
across a structure. 

In a common spatial context, comparison of expression 
patterns should provide a mechanism for identifying 
candidate genes involved in specific biological or 
pathological processes. We have begun the process of 
creating a platform for organizing and mining gene 
expression patterns. This prototype resource is currently 
accessible at http://www.geneatlas.org. By providing web 
access to the data and powerful search tools, users can query 
data with a minimum investment in time and effort. 
Expanding the dataset to include thousands of annotated 
gene expression patterns should aid in the identification of 
genes that express in similar fashions, e.g. synexpression 
groups [12], and in uncovering general rules of spatial 
expression regulation. 
 
 

V.  CONCLUSION 
 

Placing gene expression patterns into a common spatial 
framework and generating unbiased characterizations of 
patterns will greatly facilitate the mining of gene activity 
data for biologically important information. The 
combination of HT-ISH data collection, automated cellular 
expression signal detection, and subdivision mesh-based 
segmentation enables the automated annotation of gene 
expression patterns. ISH relies on RNA probes that can be 
readily designed for all known transcripts of the mouse 
genome, and thus it is possible to generate in the near future 
a transcriptome-wide digital gene expression pattern atlas of 
the mouse brain using the techniques described here. 
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