
Energy-Efficient Mobile System Design:
The User’s Perspective

Lin Zhong

A Dissertation

Presented to the Faculty

of Princeton University

in Candidacy for the Degree

of Doctor of Philosophy

Recommended for Acceptance

by the Department of

Electrical Engineering

September, 2005



© Copyright by Lin Zhong, 2005. All rights reserved.



Abstract

Mobile systems, such as smart-phones and Pocket PCs, are likely to become personal servers

for future pervasive computing. This dissertation highlights the energy efficiency bottleneck such

systems face in achieving this goal: the slow-user problem, i.e., an increasingly powerful computer

spends most of its energy waiting for a constantly slow user. To tackle this bottleneck, it proposes

to evaluate and improve the energy efficiency of a mobile system from the user’s perspective.

The dissertation first highlights the slow-user problem and the importance of user interfaces and

human factors. It offers a theoretical analysis for interface power and energy requirements, and

a comprehensive energy characterization of state-of-the-art user interfaces. Based on this charac-

terization, it presents a comparative study of their energy efficiency. It then tackles the slow-user

problem in three different ways. First, it proposes to increase user productivity without much power

overhead with a Bluetooth-based personal-area network of low-power interfacing devices. The net-

work consists of a wrist-watch, single-hand single-tap multi-finger keypad, smart speech portal, and

information-capturing devices. They synergistically provide a user with natural and power-efficient

access to a mobile system. Second, it proposes to reduce the interfacing power requirement without

decreasing user productivity much. Motivated by the memory-cache theory, the dissertation shows

how a low-power interface cache device can be used to host simple interactive tasks outsourced from

a mobile system, and thus improve the overall energy efficiency. Third, the dissertation proposes to

aggressively power-manage a mobile system in its idle periods during human-computer interaction.

It uses user interface information to predict user delays based on history and theories from the field

of psychology. It shows that such a delay prediction can be combined with power management to

significantly reduce idle power consumption.

iii



Acknowledgments

It seems that most, if not all, dissertations start by thanking the advisor. It becomes hard to

tell whether the advisor is special. Hence, my apology first to my advisor, Prof. Niraj K. Jha, for

abusing his perfectionism in publications, including this dissertation. Advising twelve to sixteen

Ph.D students during my five-year tenure in his group, he has never failed to return my draft with

every typo and grammatical mistake corrected, in time. However, I always manage to skip some of

his corrections. Therefore, all remaining typos and mistakes are mine alone. Prof. Jha has advised

me on all the work included in this dissertation and all the electronic design automation (EDA) work

I have done at Princeton. His accessibility, deep and broad knowledge have been a great fortune for

not only me but the whole group. I have especially benefited from his unwillingness to solve the

same problem more than once and his courage to venture into new fields. He will continue to be my

model of a great researcher and mentor.

During my pursuit of Ph.D., I have been fortunate to have had help from or work with many

people. Profs. Ruby B. Lee and Margaret R. Martonosi served on my Ph.D. oral examination com-

mittee. Prof. Ron Weiss encouraged me to look beyond a course project to explore the possibility

of using cells for molecular electronics fabrication. I had the fortune to work with Drs. Anand

Raghunathan and Srivaths Ravi as an intern at NEC Labs, America, in the summer of 2003 and Mr.

Michael J. Sinclair as an intern at Microsoft Research in the summers of 2004 and 2005. I learned

a great deal from my internship supervisors and am deeply indebted to them for their generous

help to my career. Michael also worked with me very closely on the work in Chapter 6 performed

during my first internship at Microsoft Research. I was also fortunate enough to collaborate with

many members of Prof. Jha’s group. Drs. Jiong Luo, Tat-Kee Tan, Weidong Wang, Li Shang,

iv



Yunsi Fei, Keith Vallerio and I teamed up to develop a low-power high-level synthesis tool. Tat-

Kee and Weidong developed the power measurement toolkit used in Chapters 4 and 8. Yunsi and

I worked on dynamic software management on mobile systems. Keith and I extended the work in

Chapter 4 to energy-efficient graphical user interface design. Pallav Gupta and I worked on inter-

connect power modeling. We later on worked with Rui Zhang on EDA for nanotechnologies. Le

Yan and I collaborated on making operating systems more responsive to users without sacrificing

power efficiency. I thank all my collaborators for the opportunity to work with them and all the

things that I learned from them. All works included in this dissertation have appeared in refereed

publications. Blind reviewers helped us refine them before they appeared in publication, and helped

us broaden our thinking. I thank them all for their criticism and suggestions. I am honored to have

Prof. Niraj K. Jha, Dr. Anand Raghunathan, and Dr. Srivaths Ravi as my dissertation readers whose

comments have helped make this dissertation much better. Pallav and Chao Huang helped me with

many administrative issues while I was finishing this dissertation away from Princeton.

Many people offered a lot of help during my academic job search. I was honored to have Prof.

Niraj K. Jha, Prof. Ron Weiss, Prof. Li-Shiuan Peh, Dr. Anand Raghunathan, and Mr. Michael J.

Sinclair as my references. Stacey Weber and Sarah Braude provided significant assistance. Former

Princeton students, Drs. Robert Dick, Yuan Xie, Zhijie Shi, and Yunsi Fei offered me invaluable

counseling.

I would also like to thank my many colleagues and friends in the Princeton and Seattle areas,

where great things always happen.

Finally, I thank Yuanyuan for making everything meaningful and for helping me become a better

person everyday.

v



Contents

Abstract iii

Acknowledgments iv

Contents vi

List of Figures x

List of Tables xii

1 Introduction 1

1.1 Mobile systems: The future of personal computing . . . . . . . . . . . . . . . . . 1

1.1.1 The convergence of evolution . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 The blessing of computing and curse of interfaces . . . . . . . . . . . . . . 3

1.2 Energy efficiency and the slow-user problem . . . . . . . . . . . . . . . . . . . . . 5

1.3 Energy efficiency: The user’s perspective . . . . . . . . . . . . . . . . . . . . . . 7

1.4 Dissertation contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Related Work 10

2.1 System view of a mobile system . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Energy optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Hardware activity reduction . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.2 Hardware activity balance . . . . . . . . . . . . . . . . . . . . . . . . . . 13

vi



2.2.3 Power management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.4 Performance scaling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3 System support for energy optimization . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.1 Compilation for performance scaling . . . . . . . . . . . . . . . . . . . . 26

2.3.2 OS support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4 Energy analysis and characterization . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 User interfaces and human factors . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3 Energy Efficiency Limits Imposed by Human Factors 33

3.1 Sensory perception-based limits . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.1.1 Visual output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.1.2 Auditory output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.3 Power reduction techniques . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2 Input/output speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Energy Consumption of Graphical User Interfaces 39

4.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.1 Mobile software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.1.2 Mobile GUI platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2 GUI energy consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.1 System information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3.2 Energy measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.3 Methodology and benchmarks . . . . . . . . . . . . . . . . . . . . . . . . 46

4.4 GUI energy characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.5 GUI design for energy efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

vii



5 Energy Efficiency of Mobile User Interfaces 62

5.1 Characterization setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 Visual interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.3 Auditory interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.3.1 Direct recording and playback . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3.2 Speech recognition and synthesis . . . . . . . . . . . . . . . . . . . . . . 66

5.4 Manual input techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.5 A comparative study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.5.1 Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5.2 Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.6 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.7 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6 Pervasive Interfacing: A Personal-Area Network of Wireless Interfacing Devices 78

6.1 Design principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

6.2 Bluetooth-based PAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2.1 Bluetooth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2.2 PAN manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.3 System power optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.4 Violin-pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.5 Smart speech portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Information-capturing devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6.7 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.8 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

7 Interface Cache 96

7.1 Interface cache . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.2 Bluetooth-based cache-watch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

viii



7.4 Design issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.5 Related devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.6 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

8 Power Management Based on User Delay Prediction 109

8.1 The slow-user problem revisited . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

8.2 Interaction modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

8.3 Psychology-based user delay models . . . . . . . . . . . . . . . . . . . . . . . . . 116

8.4 History-based user delay model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.5 Implementation of user delay prediction . . . . . . . . . . . . . . . . . . . . . . . 122

8.6 Theoretical analysis of DPM/DVS . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.6.1 DPM and DVS techniques . . . . . . . . . . . . . . . . . . . . . . . . . . 124

8.6.2 Theoretical energy saving and latency overhead . . . . . . . . . . . . . . 124

8.7 Power models and DPM/DVS policies . . . . . . . . . . . . . . . . . . . . . . . . 126

8.7.1 System power model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.7.2 DPM/DVS policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.7.3 System implementation issues . . . . . . . . . . . . . . . . . . . . . . . . 130

8.8 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.8.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8.8.2 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

8.9 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.10 Chapter summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

9 Conclusions 147

9.1 Dissertation summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

9.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

9.3 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

References 150

ix



List of Figures

2.1 System view of a mobile system . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4.1 A hardware perspective of GUI energy consumption. . . . . . . . . . . . . . . . . 43

4.2 A software perspective of GUI energy consumption. . . . . . . . . . . . . . . . . . 43

4.3 Looking for a file and creating an email. . . . . . . . . . . . . . . . . . . . . . . . 44

4.4 Outline of the target for benchmark “Event loop”. The context uses the same code

but with line13 commented out. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Additional energy for showing texts of different sizes. . . . . . . . . . . . . . . . . 53

4.6 Additional energy for showing menu windows containing different numbers of items. 54

4.7 Additional energy for showing windows of different sizes. . . . . . . . . . . . . . 54

5.1 Baseline power and additional hardware power consumption . . . . . . . . . . . . 65

5.2 Additional energy per word/letter forTranscriber . . . . . . . . . . . . . . . . . . 69

5.3 Ratio of energy consumptions for text output over speech output under different

scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.4 Ratio of energy consumption for different text-entry methods over speech-based text

entry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 The maximal number of words per command for better energy efficiency . . . . . . 74

6.1 System overview of the PAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.2 Paging/Page-Scan session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Bluetooth power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.4 Software installed on iPAQ; the PAN manager is shaded . . . . . . . . . . . . . . . 84

x



6.5 The violin-pad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.6 Double button design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.7 The smart speech portal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.8 State-machine description of PIC I software . . . . . . . . . . . . . . . . . . . . . 91

7.1 The prototype of a wrist-watch as the interface cache for iPAQ . . . . . . . . . . . 98

7.2 Command format for the communication protocol . . . . . . . . . . . . . . . . . . 100

7.3 State-machine description of the cache-watch interface . . . . . . . . . . . . . . . 102

7.4 Power consumption for the cache-watch in different modes . . . . . . . . . . . . . 103

7.5 Cache-watch battery lifetime for different average communication intervals . . . . 103

7.6 Minimal frequency reduction for improving energy efficiency . . . . . . . . . . . . 105

8.1 Power consumption of Sharp Zaurus while runningCalculator. . . . . . . . . . . 110

8.2 Interactive application: eventloop and event handlers . . . . . . . . . . . . . . . . 112

8.3 An STD for the QtopiaCalculator. . . . . . . . . . . . . . . . . . . . . . . . . . 114

8.4 A menu window from the Qtopia applicationContact. . . . . . . . . . . . . . . . 118

8.5 User delay statistics for StateNumber of Calculator for User 1. . . . . . . . . . 120

8.6 Triangle distribution of user delays for a state . . . . . . . . . . . . . . . . . . . . 127

8.7 Power modes and mode transitions. . . . . . . . . . . . . . . . . . . . . . . . . . 128

8.8 Energy savings based on predicted user delays . . . . . . . . . . . . . . . . . . . . 136

8.9 Percentage of lazy errors and energy savings . . . . . . . . . . . . . . . . . . . . . 137

8.10 Tradeoff between percentage of lazy errors and energy savings for User 1. . . . . . 139

8.11 Tradeoff between percentage of lazy errors and energy savings for User 2. . . . . . 140

8.12 Energy saving changes with mode power and transition time . . . . . . . . . . . . 141

8.13 Energy saving changes with mode power and transition time . . . . . . . . . . . . 142

xi



List of Tables

3.1 Typical text-entry speeds for different methods . . . . . . . . . . . . . . . . . . . 38

4.1 GUI nomenclatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2 Hardware and software information on mobile systems . . . . . . . . . . . . . . . 45

4.3 Benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.4 Coding and compilation information for benchmarks . . . . . . . . . . . . . . . . 49

4.5 System energy breakdown for mobile systems . . . . . . . . . . . . . . . . . . . . 50

4.6 Energy characterization in EUs for different GUI platforms . . . . . . . . . . . . . 52

4.7 Energy breakdown for presenting screens of different colors . . . . . . . . . . . . 55

4.8 Energy for different colors for the QPE theme on Zaurus . . . . . . . . . . . . . . 56

4.9 Additional energy for showing and hiding windows of different colors on a black

background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.10 Different color patterns on iPAQ1 . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.11 Additional energy for different input methods . . . . . . . . . . . . . . . . . . . . 59

5.1 System information for iPAQ and Zaurus . . . . . . . . . . . . . . . . . . . . . . 63

5.2 Power consumption for different auditory outputs . . . . . . . . . . . . . . . . . . 67

5.3 Additional energy consumption for inputting a letter . . . . . . . . . . . . . . . . . 69

7.1 Memory cache vs. interface cache . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.1 Percentage of system time and energy spent waiting for user input . . . . . . . . . 111

8.2 Number of choices for different user interface features used in the Hick-Hyman Law 118

xii



8.3 Parameter values for the psychology-based model . . . . . . . . . . . . . . . . . . 132

8.4 Actual user delay statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

8.5 Tasks for usage trace collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

xiii



Chapter 1

Introduction

This dissertation addresses energy efficiency of mobile systems. Energy efficiency is not a

new concern. Both academia and industry have made significant progress toward energy-efficient

computing from both the hardware and software perspectives. However, for mobile systems, on

which most applications are interactive, a new perspective is needed. This dissertation is devoted to

such a perspective, namely, theuser’s perspective.

In this chapter, we first survey mobile systems in Section 1.1. Then we highlight the energy

efficiency challenge for them in Section 1.2 and discuss how one can meet this challenge from the

user’s perspective in Section 1.3. We describe the dissertation contributions and provide its overview

in Section 1.4.

1.1 Mobile systems: The future of personal computing

Mobile systems are personal computing systems much smaller than laptops. They provide a

different set of services from what personal computers (PCs, desktops and laptops) do. We first

outline their recent history, and then survey the computing and interfacing issues.

1



2

1.1.1 The convergence of evolution

Mobile systems have been evolving along three different tracks. The first track is personal

computing, primarily including personal digital assistants (PDAs). Such miniature computers pro-

vide a subset of PC services as a natural extension to the form factor of laptops. Due to the much

lower user productivity1 possible on them, only personal information management (PIM) applica-

tions have seen some success. In fact, sales of PDAs2 have been declining globally in recent years

(2001-2004), according to IDC, a market research firm [81]. The second track is personalconnectiv-

ity, including internet connectivity and voice communication. Cell phones are a prominent example

that have penetrated all walks of life. By the middle of 2004, there were already 1.5 billion cell

phone users around the globe, according to the International Telecommunication Union [104]. The

sales of cell phones are enjoying a 29% annual increase at the time of this writing. The third track

is personalentertainment, including games and media. Mobile game consoles, such as Nintendo’s

Game Boyand Sony’s PSP, and mobile media players, such as Apple’s iPod and Sony’s Walkman,

have seen considerable market success.

Mobile systems used to evolve along these tracks separately. Recently, however, there has

been a significant convergence, especially in cell phones [41,147]. More and more cell phones now

provide PDA-like services such as PIM and productivity. Such systems are often called PDA phones

or smart-phones. For example, the popular BlackBerry smart-phones provide voice communication

and email services on the same system. Cell phones with digital cameras, or camera phones, have

already become popular. Motorola is releasing cell phones that play music like the Apple iPod.

Although a full convergence is yet to be welcomed by users [73] due to the increased cost per

system, it is inevitable in the long run because hardware costs drop constantly. Mobile systems

with such a convergence will be very promising candidates for serving the needs of future personal

computing3 . Mobile systems, especially smart-phones, seem to be now on an evolutionary track to

become the single powerful system that people will carry with them everywhere.

1User performance or what a user can do in a unit time.
2The BlackBerry smart-phones from Research in Motion, Ltd. are excluded.
3Here and thereafter, we use “computing” to refer to computing, storage and connectivity.



3

1.1.2 The blessing of computing and curse of interfaces

Mobile systems always lag behind PCs in computing capacity. However, they benefit from the

same technological progress that enables PCs to become increasingly powerful. In some sense, mo-

bile system designers are able to learn many lessons from PCs to enable more efficient computing.

While PCs are integrated at the board level, most mobile systems employ systems-on-a-chip (SoCs).

While most PCs use processors based on the less efficient CISC architecture, most mobile systems

use processors based on the more efficient RISC architecture [85]. While PCs have just begun to

use multi-core architectures, handsets have enjoyed a dual-core architecture for a long time. More-

over, SoCs used in mobile systems usually have better support for power-saving mechanisms, such

as dynamic voltage/frequency scaling and power management. With the massive storage capacity

available from the micro drive technology [87] and high-speed connectivity from the third gener-

ation cellular networks, WiFi and Bluetooth, mobile systems are enjoying the same, if not more,

computing capacity that our PCs enjoyed 5-10 years ago.

Unfortunately, user productivity, e.g., text entry speed, on mobile systems is still much lower

than that on our PCs 10, or even 20, years ago. The main reason is that their size stays unchanged.

Their small size has prevented them from enjoying a full-size display and keyboard, which are key

to user productivity on PCs. This curse of interfaces not only prevents them from providing more

services to users, but also imposes a great limitation on their energy efficiency. Therefore, we briefly

survey interfacing technologies for mobile systems next.

Graphical user interfaces: Graphical user interfaces (GUIs) have become the basic software

mechanism for human-computer interaction. Most GUIs are developed using a toolkit based on a

certain platform available to the corresponding operating system (OS). For example, both PalmOS

and Windows CE provide their own GUI platforms and toolkits. Linux-based mobile systems can

either use the Qt/Embedded or X Window system, enjoying more choices of toolkits. Except those

for PalmOS, all platforms and toolkits were originally designed for PCs and later ported to mobile

systems. Therefore, many desktop vestiges can be found in the GUIs for mobile systems [213].

They may negatively affect energy efficiency and user productivity.

Stylus and touch-screen: The stylus and touch-screen duo has been widely accepted as the



4

default hardware interfacing mechanism on PDAs [68,190]. Along with the touch-screen, the stylus

can be used as a finger to interact with GUIs. However, by converting the hand into one finger, such

an interfacing method wastes our most powerful interaction tools, i.e., our fingers. It is no wonder

that virtual (software) keyboard-based text entry is much slower. The stylus can also be used like

a pen. There have been many text entry methods based on drawing or handwriting with a stylus.

Unfortunately, we draw or write much slower than we type. Suffering from these severe inherent

limitations, the stylus and touch-screen duo has received little welcome from smart-phone users, as

a recent survey indicated [73].

Display: Although mobile systems can only afford very small displays, they do enjoy the

same technological progress in displays that laptop PCs do [115]. Displays for mobile systems

and laptops have been based on different liquid-crystal display (LCD) technologies [113]. Since

LCDs are not light-emitting, external illumination is required, in the form of either ambient light

or front/back lighting. The LCD and its lighting are notorious for being among the largest power-

consumers in a mobile system. On the one hand, having a much smaller display than a laptop

hurts user productivity. On the other hand, since it is easier to produce smaller displays with new

display technologies, mobile systems have been at the forefront in employing them. The most recent

example is the organic light-emitting diode (OLED) technology [58]. Since OLED-based displays

obviate the need for external lighting, they can be much more power-efficient than LCDs. They

have already appeared on cell phones and digital cameras, and are about to debut on PDAs. With

plastic substrates, the OLED technology also promises a flexible or foldable display [59] that can

be handled like a piece of paper.

Keyboard and keypads: Foldable full-size keyboards for mobile systems have been available

for a long time. For example, HP offers a Bluetooth foldable keyboard for its popular iPAQ PDAs.

Foldable full-size displays and keyboards may eventually enable mobile systems to take over most

services from laptops. However, mobile systems are not just replacements for laptops. They provide

many new services because they are immediately accessible and ready to serve with little space

requirements. Unfortunately, setting up a foldable display/keyboard takes time and space, which

eliminates such an advantage. Therefore, the curse of interfaces will not be dispersed by such



5

convertible interfaces. On the other hand, popular manual text entry methods suffer from a very

low speed, such as multi-tap (used on cell phones), thumbing (used on mini-qwerty keyboards on

PDAs), Thumbscript [206] and Fastap [46]. They share the same two problems. First, they are

physically attached to the computer. The user has to hold the computer to type. Second, the user

can at most employ two fingers for typing. Chording-based keypads [137, 209] do make full use

of fingers. Nevertheless, they enjoy little market success because chording imposes a significant

memory load on the user.

Handwriting/speech recognition-based input: Handwriting recognition based text entry has

been available for a long time in various forms on mobile systems used for personal computing.

The speed is now limited by the human writing speed and handwriting recognition accuracy, in-

stead of by the time taken to perform handwriting recognition. Unlike the keyboard input, software

or hardware, handwriting with a stylus makes a continuous demand on the processor, leading to

poor energy efficiency, as we will see in this dissertation. Handwriting recognition based input

requires the most resources, in terms of the number of fingers and energy, yet delivers the lowest

productivity [234]. As mini hardware keyboards are making their way to high-end mobile sys-

tems, handwriting recognition is becoming a secondary choice. On the contrary, speech recognition

based input first appeared on cell phones for command and control, e.g., voice dialing, and is gain-

ing ground for use on PDAs. Due to the relatively limited computing capacity of mobile systems,

speech recognition on them is likely to remain command and control-oriented, and domain-specific

in the near future, like Voice Command [145] from Microsoft. Although speech recognition-based

command and control requires higher power consumption, it does not require the display or stylus.

As its accuracy improves, speech recognition based input will become very energy-efficient [234].

1.2 Energy efficiency and the slow-user problem

The curse of user interfaces is not the only challenge that mobile systems have to face. Moore’s

Law predicts that computing capacity doubles every 18 months in terms of the number of transis-

tors per integrated circuit (IC). As the computing capacity of mobile systems increases, users are

spending more time with them and relying on them for increasingly diverse services. Unfortunately,



6

battery capacity in terms of volumetric or gravimetric energy density is increasing at a much slower

pace, about 5-10% annually for Li-ion batteries. Thus, energy efficiency is another challenge that

mobile systems have to face. More importantly, tackling the curse of user interfaces is essential to

meet the challenge of energy efficiency, as we will see soon.

Improving energy efficiency is the main focus of this dissertation. The specific approach this

dissertation takes stems from the observation that there is no Moore’s Law for human capacity

growth. While processors become faster and interfaces become fancier, we, as human beings, still

have to read the display, make a decision, and physically move during interaction at the same speed

that the previous generation did. Such a speed gap leads to a phenomenon that we call theslow-

user problem. That is,an increasingly fast and power-hungry computer spends most of its time

and energy waiting for a constantly slow human user for interactive tasks. Obviously, the curse of

interfaces on mobile systems just exacerbates the slow-user problem.

If one looks at the power consumption trace of a mobile system engaged in human-computer

interaction, there are flat valleys separated by major power peaks, corresponding to the system’s re-

sponses to user input. In the valleys, the system waits for user input. The width of a valley is usually

on the order of seconds, while the width of a peak is much smaller, on the order of milliseconds.

According to our analysis [233],a mobile system spends over 90% of its time and energy in the val-

leys waiting for user input. Similar findings have been made in [53] for desktops. Moreover, mobile

systems interact with users through their interfacing components, such as displays and speakers.

Energy characterization work [234] clearly shows thatinterfacing components consume a signifi-

cant portion of total power. Since how long the interfacing components stay active is determined

by users, who are slow as compared to computers, power-hungry interfacing components make the

slow-user problem worse.

In summary, mobile systems usually spend most of their timeidle instead of computing, and

interfacing is equally, if not more, important as computing with regard to power consumption.

Therefore, the slow-user problem cannot be solved by efficient computing techniques, whether ap-

plied to hardware or software. Instead, it indicates that energy consumption of mobile systems

is significantly affected by the user, who is usually ignored. To successfully tackle the slow-user



7

problem, we need to take the user into consideration and optimize mobile systems from the user’s

perspective.

1.3 Energy efficiency: The user’s perspective

Why is energy or power consumption important? From the user’s perspective, the concern is

not really the power consumption, energy consumption, or even battery lifetime. Instead, it is what

the user can do, given the battery lifetime. Energy efficiency is, therefore, better evaluated in terms

of energy consumption per user task. At a higher level, one needs to evaluate

User productivity
Average power consumption

or

(User productivity)× (Power efficiency).

From such a perspective, user interfaces and human factors have a large impact on energy efficiency,

simply because they determine not only the power consumption but also the user productivity. Most

low-power research has focused on reducing the power consumption, given a computation or inter-

active task. It is equally, if not more, important to optimize the interactive task itself, i.e., reduce

the interaction power, and improve user productivity. This, indeed, is the approach taken by this

dissertation that includes user interfaces and human factors in low-power research.

From the user’s perspective, energy efficiency is determined by the tradeoff between user pro-

ductivity and power consumption. In this dissertation, we will show how user productivity can be

improved without increasing power consumption much and how power consumption can be reduced

without sacrificing user productivity much.

There is a larger context for optimizing mobile systems from the user’s perspective. First, more

efforts should be devoted to making computers moreuseful instead of powerful. It was found

that computers are successful in doing things that are impossible for human beings, i.e., compute-

intensive tasks, but not equally successful for helping to increase user productivity for simple inter-

active tasks [123]. As argued in [192], “the old computing was about what computers could do; the



8

new computing is about what users can do.” Second, less efficient computing can be tolerated for

higher productivity of designers, e.g., programming with high-level languages.

1.4 Dissertation contributions

Viewing energy efficiency from the user’s perspective, this dissertation presents a comprehen-

sive treatment of the slow-user problem using an interdisciplinary approach. It makes the following

contributions.

• Limits of interface energy efficiency: The dissertation offers a theoretical analysis for inter-

face energy requirements based on human sensory and speed limits. It highlights the impor-

tance of user interfaces and human factors in determining energy efficiency as compared to

computing. It also provides a theoretical foundation for energy-efficient user interface design.

• Interface energy characterization: The dissertation offers a comprehensive energy charac-

terization of GUIs and other interfacing methods available on commercial mobile systems.

Based on the characterization, it offers a comparative study for their energy efficiency. It con-

cludes that speech-based input has a great potential to become the most energy-efficient input

method since we can speak at a much higher rate than we can write or type. This comparative

study offers guidelines for energy-efficient user interface design.

• Interface cache: Motivated by the memory-cache theory, the dissertation shows how a low-

power interface cache device can be used to handle simple interactive tasks outsourced from

a host computer, and thus improve the overall energy efficiency. It saves energy essentially by

bringing the interface energy requirements closer to the theoretical minimal without sacrific-

ing user productivity much. The dissertation describes the design and prototype of a wireless

wrist-watch as an interface cache device for serving a mobile system.

• Novel interfacing paradigm and devices: The dissertation discusses the system and hard-

ware design for a Bluetooth-based personal-area network (PAN) of low-power wireless inter-

facing devices for improving the user productivity on mobile systems. The network consists



9

of a wrist-watch, single-hand single-tap multi-finger keypad, smart speech portal, and GPS

receiver. In addition to providing interfaces individually, these devices can serve a mobile sys-

tem in a synergistic fashion. Collectively, they provide the user with immediate and natural

access to computing power, and enable more and better services.

• Power management based on user delay prediction: Since mobile systems spend most of

their time in waiting for users, reducing power consumption during user delays will be most

effective for improving energy efficiency. The dissertation proposes to predict user delays

based on user interface information, human-computer interaction history, and theories from

the field of psychology. It shows that such a delay prediction can be combined with dynamic

power management (DPM) for aggressive power reduction.

The dissertation is organized as follows. It discusses related work in Chapter 2. It starts with the

theoretical analysis of how human factors impose limits on interfacing energy/power requirements

in Chapter 3. It then presents an energy characterization of GUIs on commercial mobile systems in

Chapter 4. It provides energy characterization for other interfacing methods on commercial mobile

systems and a comparative study for them in Chapter 5. It discusses the design and prototype of a

PAN of wireless low-power interfacing devices in Chapter 6. It proposes the concept of a wireless

interface cache device and presents a prototype design in the form of a wrist-watch in Chapter 7.

In Chapter 8, it presents techniques to predict user delays during human-computer interaction for

aggressive power management. It concludes and discusses future work in Chapter 9.



Chapter 2

Related Work

In this chapter, we discuss related energy analysis and optimization techniques. We first present

a system view of a mobile system in Section 2.1 as the context. Then we survey related energy

optimization techniques in Section 2.2, and their system support in Section 2.3. We discuss re-

lated energy analysis and characterization work in Section 2.4. In Section 2.5, we discuss works

that consider user interfaces and human factors for energy savings. We summarize the chapter in

Section 2.6.

2.1 System view of a mobile system

The energy efficiency of a mobile system is determined by three factors: the user, software, and

hardware, as illustrated in Figure 2.1. The user is the ultimate consumer of hardware resources in-

cluding energy, and has a significant impact on energy efficiency. Software includes an OS, various

applications, and their user interfaces. Applications serve the user through user interfaces and incur

hardware activities through the OS.

Major hardware components include the SoC (processor), memory (usually RAM), mass stor-

age (either hard drive or flash memory), network interface, display, and other interfacing hardware.

Energy optimization inside a hardware component through better material, mechanical, device, cir-

cuit, and architecture design [27, 222] is important. However, we will not discuss such work since

this dissertation is not concerned with hardware design per se. Hardware components can also pro-

10



11

Processor Memory
Secondary 

storage
Network 
interface

Display & 
other interface 

hardware

Operating system

Application software

User interface software

User

Software

Hardware

Figure 2.1: System view of a mobile system

vide power-saving mechanisms for software use through standard interfaces, such as the Advanced

Configuration and Power Interface (ACPI) [2]. There are mainly two such mechanisms, power

management and performance scaling.

Given the hardware, energy optimization usually reduces to hardware behavior optimization

because energy is eventually consumed by hardware. There are three ways to optimize hardware

behavior for energy savings. One can reduce the number of hardware activities because fewer

hardware activities consume less energy. One can balance activities between different hardware

components so that the overall energy consumption is reduced. Most importantly, one can change

the hardware behavior to utilize the hardware power-saving mechanisms. Techniques optimizing

hardware behavior in all three ways will be extensively surveyed in this chapter.

Since software, especially the OS, resides just above the hardware, its interaction with the hard-

ware has been the focus of past research for energy efficiency. The user is involved only in gen-

erating software traces or through the use of abstract stochastic models. This dissertation, instead,

focuses on the interaction between the software and user, especially user interfaces and human fac-

tors, for energy-saving opportunities.



12

2.2 Energy optimization

In this section, we survey techniques that optimize hardware behavior for energy savings. We

address techniques that reduce hardware activity in Section 2.2.1. We discuss techniques that bal-

ance activities among different hardware components in Section 2.2.2. Since techniques that utilize

the hardware power-saving mechanisms have been the most effective and popular, we cover them

in Sections 2.2.3 and 2.2.4 under power management and performance scaling, respectively.

2.2.1 Hardware activity reduction

If software can finish the same computation with fewer instructions, it consumes less energy.

From this perspective, many software performance optimizations done by compilers [3, 4, 6, 36,

151] save energy. If user productivity can be increased without much power overhead, energy

efficiency will be improved as the product of user productivity and power efficiency. From this

perspective, many user interface techniques that enhance user performance also improve energy

efficiency [7,191]. Vallerioet al. investigate how GUIs can be designed to improve energy efficiency

of mobile systems in [213]. When evaluating the impact of such performance improvements on

energy efficiency, we must recognize that they save energy not only in “computing” components

but also in power-hungry interfacing components, such as displays. Since they are out of the scope

of this dissertation, we will not discuss these techniques further except briefly in Section 2.2.2.

Instead, we focus on a group of techniques that reduce software functionality to reduce hardware

activity for saving energy. They are calledsoftware adaptationtechniques.

For data-intensive applications, hardware activity can be reduced by reducing data fidelity.

Lower data fidelity means less data processing and hardware activity. The Odyssey system [56,57,

158] provides OS support for applications to reduce input data fidelity. Data fidelity is application-

specific, e.g., vocabulary size of speech recognition and video quality for a video player. The

Puppeteer system [44] scales data fidelity to a higher level based on input components. In [13],

Bharghavan and Gupta discuss an application adaptation framework. In [187], Shenoy and Radkov

propose to transform the requested network data stream to reduce receiving and decoding energy.

In [155], Narayanan and Satyanarayanan provide examples of computation fidelity reduction for



13

mobile applications. Mohapatraet al. investigate how video quality can be sacrificed for power

savings in [148]. All these techniques are targeted at a single application. In [42], Efstratiouet

al. propose a platform to coordinate adaptation of different applications to avoid competition for

hardware resources. In [47], Feiet al. propose and implement a user-level coordination framework

to adapt multiple applications for energy savings. The framework employs a priority-based pre-

emption policy to coordinate running applications. By monitoring the energy supply and demand,

it is able to select the right trade-off between energy conservation and application quality of service

(QoS).

2.2.2 Hardware activity balance

We have discussed techniques that reduce software functionality to reduce hardware activity in

the previous subsection. In this subsection, we discuss techniques that balance activities among

different hardware components to reduce the overall energy consumption.

Computation and interface: Many techniques that improve software and user performance,

as discussed in Section 2.2.1, save energy by balancing the energy consumption of the computation

and interface. Suppose a performance optimization technique can reduce the task time by a fraction

α, while increasing the power consumption of some hardware components by a fractionβ. These

hardware components are usually “computing” components, such as the processor and memory.

Other hardware components, such as the display, are unaffected. Letγ denote the fraction of total

power consumed by those affected hardware components before optimization. The optimization

will save energy if and only if

(1− α) · {(1− γ) + (1 + β) · γ} < 1

or

α +
α

β · γ > 1.

A simple corollary is that the optimization will save energy if



14

α > β · γ.

For handhelds,γ is typically smaller than 0.5. Thus, the task time decrease only needs to be

half of the power increase in the “computing” components for the technique to save energy.

Computation and communication: There are two seemingly opposite, but actually comple-

mentary, ways for tradeoffs between computation and communication energy consumption. On

the one hand, computation offloading techniques [126,162,181] outsource compute-intensive tasks

from a mobile system through a network interface to a wall-powered computer. With extra energy

consumed in the network interface, these techniques save more energy in “computing” hardware

components. On the other hand, Barr and Asanovic [8] find that overall energy consumption can

be reduced by compressing data before transmitting them through the network interface. Anandet

al. [5] propose to determine whether to retrieve files from the local hard drive or through the network

interface based on the power-saving modes they are in.

Techniques surveyed so far are mostly effective for compute-intensive tasks. As we mentioned

in Chapter 1, however, a mobile system is likely to spend most of its time and energy in idle periods

instead of computing. Even worse, systems are usually designed for peak performance, although

the majority of applications do not require peak performance. This leads to energy waste in unnec-

essarily powerful hardware components most of the time. Many hardware components, therefore,

provide power-saving mechanisms for software, especially the OS, to tackle these two problems.

For idle periods, there is thepower management mechanism; and for unnecessarily high perfor-

mance, there is theperformance scalingmechanism. We next survey relevant techniques.

2.2.3 Power management

Power management [11] reduces the hardware functionality to save power. It stops the clock

or powers off subcomponents after saving the operational context. As a result, a power-managed

hardware component may not be fully functional and is said to be in apower-saving mode. It has

to restart the clock or power-on corresponding subcomponents, and restore the saved operational

context to exit the power-saving mode before restoring functionality. Such a process takes time,



15

which is called theexit latency. A hardware component can provide different power-saving modes

with different combinations of power saving and exit latency. Typically, more the power savings,

longer the exit latency.

Industrial support for power management has been surveyed in [116]. ACPI has become the

de facto interface for a hardware component to export its power-saving modes. A system needs to

determine when to put a hardware component into which power-saving mode, and for how long to

avoid performance degradation due to exit latencies. The key problem is hardware usage prediction,

especially to know when and for how long a hardware component will be idle. Four different

approaches have been investigated for this purpose.

Greedy approach: The greedyapproach makes no prediction at all. A hardware component

enters a power-saving mode immediately after becoming idle; it wakes up when it receives a request.

This approach limits itself to power-saving modes with relatively short exit latencies to avoid per-

formance degradation. Its power-saving capability is thus limited. Due to its simplicity, however,

this approach has been widely adopted by the industry and has been implemented in many OSs.

Intel’s QuickStart technology [101] puts a processor into a power-saving mode even between two

keystrokes. The Linux kernel puts an idle processor immediately into a power-saving mode when

there is no process running. Similarly, the processor of the IBM Linux watch system [110] enters its

STANDBY mode whenever possible and wakes up upon user input. The STANDBY mode has an

exit latency longer than 200ms, which is obviously perceptible to the user and is thus unacceptable

for most applications on mobile systems. Nevertheless, IBM researchers consider it acceptable for

applications on the Linux watch. In [16], Brakmoet al. implement a technique, calledµSleep,

that uses the SLEEP mode of Intel SA-1100 with an exit latency of about 10ms to reduce idle time

power consumption. Fortunately, the latency is well below the human-perceptual threshold.

Time-out approach: The second approach istime-out. That is, a hardware component enters

a power-saving mode when it has been idle longer than a threshold period of time. Usually, longer

the idle time, deeper the power-saving mode. The hardware component wakes up upon receiving

a request as in the greedy approach. Also like the greedy approach, time-out is simple and widely

used. In [125], Liet al. investigate time-out power management for a hard drive using field-



16

collected traces. They find that more energy can be saved with a much shorter threshold (2 seconds)

to spin down a hard drive than used by the industry then. They point out that hard-drive spin-

down introduces user-perceptible latencies. They also find that the addition of a hard-drive cache

does help save energy. Dougliset al. [39] propose to adapt the time-out threshold according to

user’s access patterns and priorities. Helmboldet al. [84] employ machine learning techniques

for adapting the time-out threshold based on recent hardware activity. In [118], time-out power

management for a hard drive with only one power-saving mode (spin-down) is formulated as a

rent-to-buyproblem. Putting a hard drive into the spin-down mode corresponds to buying. Iraniet

al. [105] extend the analysis of [118] to multiple power-saving modes. The deterministic online

algorithm discussed in [105] determines for a hardware component which power-saving mode to

enter based on how long it has been idle. They show that such a time-out strategy is two-competitive,

i.e., the energy consumption is at most two times the minimal. They also propose to learn the

distribution of idle periods online and adapt the time-out thresholds for entering different power-

saving modes. The effects of exit latencies thus introduced are later studied in [180]. The time-out

approach is typically used with power-saving modes with relative large power savings and long exit

latencies, complementary to the greedy approach. Although widely used, it is unable to exploit

short idle periods such as those that occur during human-computer interaction.

Predictive approach: The third approach ispredictive. That is, the length of the next idle

period of a hardware component is predicted based on its history. It is then put into the proper

power-saving mode immediately. The hardware component can be woken up before the predicted

idle period elapses or by a request. In [69, 70], Goldinget al. extensively survey and study general

techniques for predicting idleness in a computer and its components. All the techniques addressed

are based on a model in which a hardware component receives requests with different statistics.

Golding et al. also discuss the application of idle period prediction to hard-drive power manage-

ment. The same philosophy is employed in [196]. Srivastavaet al. use two heuristics based on the

history of a hardware component’s busy and idle periods to determine whether the next idle period

will be long enough to justify a shutdown. The first heuristic is based on a linear or quadratic re-

gression model. The second heuristic is simply based on whether the previous busy period is longer



17

than a threshold. Srivastavaet al. obtain these heuristics through an analysis of the durations of

busy and idle periods in collected traces. They acknowledge that there is a noticeable degradation

in interactive performance if the exit latency is long but do not investigate how such a degradation

can be avoided. In [95], the same approach is used but with an exponential-average prediction equa-

tion. To avoid performance degradation, Hwang and Wu attempt to wake up the power-managed

hardware component before the next busy period. In [233], we use user interface information to

predict idle periods during human-computer interaction for power management. By waking the sys-

tem up before the next user input, we can make different tradeoffs between power savings and user

productivity degradation.

Stochastic modeling approach: The most sophisticated approach is based onstochastic mod-

eling. Most techniques with this approach are based on the following model. The hardware com-

ponent to be power-managed is regarded as aservice provider, which has a collection of states

corresponding to power-saving modes. The requests for it are assumed to be generated by aser-

vice requester. The requests can be buffered in aservice queuewhen the service provider is in

non-operational modes. In [10], Beniniet al. use a discrete-time controllable Markov process

for modeling the service provider, a discrete-time Markov process for the service requester, and a

discrete-time stationary controllable Markov process for the service queue. Based on these models,

the power management problem is reduced to estimation of different parameters of the models and

a stochastic decision process that minimizes a given cost formulation. Qiuet al. [172] extend this

approach by using the continuous Markov process for the service provider, using two service queues

of different priorities, and using the Poisson process for the service requester. The Poisson process

model of the service requester makes the system event-driven. In [32], Chunget al. extend the

model of the service requester and employ online adaptation to handle unknown or non-stationary

workload. S̆imuníc et al. [210] extend the event-driven model of [172] by using a time-indexed

semi-Markov process. Moreover, they find that the Poisson process cannot appropriately model

service requesters in reality. For a Poisson process, event arrival intervals have an exponential dis-

tribution. On the contrary,̆Simuníc et al. find Pareto distributions model these intervals better when

the service queue is empty. They correct the misuse of exponential distributions for other model



18

components based on their observations of real systems as well. They also propose to formulate the

power management problem usingrenewal theory, which is simpler and less versatile than Markov

processes. A stochastic modeling technique usually gives the optimal solution when its assumptions

about the statistics of the service provider, requester, and queue are true. Unfortunately, in reality,

not all these assumptions are always true, leading to an inferior power management policy. More-

over, the stochastic modeling approach is much more complicated than the other three approaches.

It has been greeted without much enthusiasm by the industry so far.

Opportunity enhancement: Besides the above four approaches for determining how to power-

manage a system during idle periods, researchers have also investigated techniques to increase the

size of idle periods. Lorch and Smith propose OS techniques in [129] to detect whether a processor

is executing useful work and expose its idleness for power management. Shihet al.[188] investigate

how a low-power and low data rate radio module can be used as a radio-activity monitor. The

power-hungry main wireless module can be put into power-saving modes most of the time and can

be woken up by the monitor. In [83], Heathet al. propose application transformations to increase

the idle time of a peripheral device.

Buffering (caching) the requests or input data to a hardware component can extend its idle

period. Bertoziiet al.[12] propose to buffer streaming multimedia data so that the network interface

can be power-managed without interrupting a continuous playback. In [164], Papathanasiou and

Scott study OS hard-drive caching and pre-fetching for increasing hard-drive power management

opportunities. Cai and Lu [24] investigate buffering as a general mechanism to increase power

management opportunities. They formulate the buffer management problem as aninventory control

problem. Buffering is also used for performance scaling, as will be discussed later.

When multiple service providers serve multiple requests, properly scheduling the serving of

these requests may also extend the idleness of the service providers. This has been investigated by

many researchers. We will discuss it further when we address system support for energy optimiza-

tion. Since the idle periods that a scheduler can affect are usually very short, scheduling is a more

powerful tool for performance scaling than for power management.



19

2.2.4 Performance scaling

Unlike power management, performance scaling does not affect the hardware functionality but

changes the performance. Although it usually saves less power than power management does, it can

be applied to more scenarios because there is no functionality change.

General performance scaling: “Performance” has different meanings for different hardware

components. For ICs including processors, performance means speed or clock frequency. Supply

voltage reduction is very effective in saving both energy and power consumption [21]. Because a

lower supply voltage incurs a longer gate delay [88],supply voltage scalingis usually combined

with clock frequency scalingor speed scaling. Frequency reduction itself only saves power but

not energy for the affected hardware component. Moreover, leakage power will be significant in

future technologies. Increasing the gate threshold voltage will reduce leakage power but increase

the gate delay. Thus,threshold voltage scalingthrough adaptive body biasing (ABB) [119] can also

be combined with supply voltage and frequency scaling [74,111]. The tradeoff is not only between

speed and energy consumption but also between switching and leakage energy consumption.

For hard drives, performance means data rate. The spindle motor of a hard drive can rotate at dif-

ferent speeds [80]. Lower the speed, lower are the date rate and power consumption. For displays,

performance can be color, contrast, or brightness. The luminance of a pixel on an OLED-based

display can be individually controlled. By darkening the pixels outside the window of user focus,

one can reduce the display power consumption without sacrificing its usability much [107]. Tech-

niques have been proposed to scale the absolute luminance for power savings without sacrificing

the relative luminance based on screen contrast [28,29,61].

Processor performance scaling – theories and simulations: The majority of performance

scaling research is focused on processors, which provide well-defined and flexible support for scal-

ing. Performance scaling can utilize processor idle periods that are too short for a processor to enter

a power-saving mode. By reducingprocessorperformance to remove these idle periods, one can

save energy for a given computation without sacrificingsystemperformance, e.g., as perceived by

the user. If execution delay is tolerable, more energy can be saved by reducing processor perfor-

mance further.



20

All performance scaling techniques are concerned with obtaining information about processor

idleness and managing delay introduced by performance reduction. Weiseret al. [217] are the first

to study processor performance scaling for energy reduction. They rightly point out that clock

frequency reduction must be combined with supply voltage reduction to save energy. Henceforth,

in many works that follow, determining the appropriate processor performance level to finish a task

is calledvoltage scheduling. Weiseret al. evaluate energy efficiency in terms ofmillion instructions

per Joule. They propose an interval-based algorithm, PAST, that uses the processor activity in the

last interval to predict that of the current interval for performance scaling. However, their conclusion

that “it is better to spread work out by reducing cycle time (and voltage) than to run the CPU at full

speed for short bursts and then idle” may not always be correct. Based on implementation and

measurements, Miyoshiet al. [146] find that for some processors it consumes less energy to run

as fast as possible (i.e., no performance scaling) and then enter a power-saving mode. It is very

important to balance the opportunities for power management and performance scaling.

Govil et al. [76] extend the work in [217] with more sophisticated prediction heuristics. They

reluctantly conclude that “simple algorithms based on rational smoothing rather than ‘smart’ pre-

dicting may be most effective” [76]. Peringet al. [165] further extend these two works with traces

from PDA applications, including an interactive one. Their contribution primarily lies in break-

ing the processor activities into application-specific events, instead of fixed-length intervals. Each

event is associated with a deadline, which is also application-specific. For example, an event for

an interactive application is defined as from the start of a user input to when the computer finishes

processing it. The deadline is chosen to be50ms, which is below the human-perceptual threshold

for causality [109]. Only when an event is finished after the deadline, a penalty is imposed. Such

a method obviously benefits from extra information from applications so that it can slow down the

processor in a better way. It is, however, hard to automate and critically dependent on the quality of

event definitions. Peringet al. present the same technique with more processor information in [166].

Ishihara and Yasuura present in [106] an elegant theoretical analysis of power-delay optimization for

determining the supply voltages for a deadline-bounded task. They assume the frequency is scaled

according to the supply voltage. They also offer aninteger linear programming(ILP) formulation



21

for determining the optimal supply voltages for multiple real-time tasks with hard deadlines. Qu

extends such a theoretical analysis in [176] with different constraints on supply voltages.

In [130], Lorch and Smith make a very important observation on the tradeoff between compu-

tation and interface energy consumption, as we discussed in Section 2.2.2. They further conclude

that “one should reduce the voltage only when it will not noticeably affect performance.” This con-

clusion is a precursor of our definition of energy efficiency from the user’s perspective. Lorch

and Smith also find that a continuously increasing supply voltage instead of a constant one for a

deadline-bounded task consumes minimal energy if the time distribution of its processor workload

is pre-known. Based on this conclusion, they propose an algorithm for processor acceleration to

conserve energy (PACE). The algorithm modifies any voltage scheduling algorithm as proposed

in [76, 165, 217]. Since no processor can scale its supply voltage continuously, Lorch and Smith

have to change the supply voltage only at discrete time points. Moreover, since the processor work-

load is usually unknowna priori, they have to rely on sampling and distribution estimation tech-

niques. Using benchmarks including interactive applications, they show that PACE can improve

most voltage scheduling algorithms, but with an unrealistic assumption that the supply voltage can

be any value between the minimum and maximum. PACE also assumes there is only one process

running at a time, which is, again, unrealistic for most application scenarios for modern mobile

systems. Moreover, the results are from simulation of collected traces. For a real system, such fre-

quent supply-voltage changes, as required by PACE, may incur significant performance and energy

overhead in addition to bringing up many other system issues. When Lorch and Smith report their

implementation of PACE in [128], they conclude that PACE would not save energy for processors

then available.

Processor performance scaling – implementations: Burd et al. report their implementation

of a dynamic voltage-scalable processor in [20, 21] and the corresponding system implementation

of a voltage scheduler in [165, 166]. In [79], Grunwaldet al. implement the voltage schedul-

ing algorithms from [76, 165, 217] on a COMPAQ Itsy Pocket computer. The Itsy system has

an Intel StrongARM SA-1100 SoC and runs the Linux/X Window system. The SoC runs with a

clock frequency between 59MHz and 206MHz according to software specification. They manage



22

to run the SoC with two supply voltages, 1.23V and 1.5V. They find that processor behavior is very

hard to predict, especially for interactive applications. They conclude that all these proposed algo-

rithms [76, 165, 217] work in non-desirable ways and make the Itsy system less responsive. They

also observe nonlinearity in the relation between processor frequency and idleness, mainly due to

the processor-memory bottleneck. The impact of such system issues on energy saving through per-

formance scaling is investigated in depth by Martin and Siewiorek in [141] based on measurements

of an Itsy system with scalable frequency. Again, these works illustrate how theoretical analysis

and simulation can differ from results based on real implementations. Interestingly, the processor-

memory bottleneck is the basis for compiler-directed performance scaling in [92], as we will discuss

later in Section 2.3.

Commercially, Intel’s Pentiumr III Mobile processor [103] debuted with the SpeedStepr tech-

nology [102], and Transmeta’s CrusoeTM processor with the LongRun technology [208]. A Pentiumr

III Mobile processor with the SpeedStepr technology offers only two performance levels: one for

maximum performance and the other for optimized battery lifetime. The processor can change

levels according to user choice or power-supply status, i.e., wall-power or battery. Transmeta’s

LongRunTM technology offers more performance levels. The frequency and supply voltage of a

CrusoeTM processor can be adjusted stepwise (33MHz for frequency and 25mV for supply volt-

age) according to the performance requirement [54]. Notably, the LongRunTM technology is im-

plemented as firmware on the processor. There is no need for any OS support. As opposed to the

taxonomy used in this dissertation, Transmeta regards performance scaling as a power management

technology.

Flautner and Mudge realize the limitations of application-dependent techniques studied in [165].

They propose an episode-based algorithm in [52] and implement it in the Linux kernel for a Sony

laptop with a CrusoeTM processor [51]. An episode resembles an event in [165]. However, an

episode is application-independent and is automatically detected as either interactive or periodic.

Flautner and Mudge regard the duration of an interactive episode as the latency for the computer

to respond to a user input. The start of an interactive episode is noted when the X server sends a

socket message to another process. The X server, receiving process, and all other processes com-



23

municating with them form thetask setof the episode. When the behavior of all processes in the

task set meets certain criteria, the episode is regarded as finished. A periodic episode is detected

by monitoring processor execution. To guarantee computer responsiveness, processor performance

is scaled according to the interactive episode duration. Unfortunately, the lack of cooperation from

the Windowing system imposes severe limitations. First, Flautner and Mudge have to modify many

system calls and kernel modules to implement their episode-detection mechanism based on inter-

process communication via UNIX sockets. Second, the duration of a detected interactive episode by

their method is different from the response time to a user input. For example, when the user is en-

gaged with the foreground GUI application, another background GUI application can communicate

with the X server. In this case, the task set will include the background GUI application, and their

method to determine the end of an episode will not give the computer response time to a user input

for the foreground application. As a result, their performance scaling techniques cannot guarantee

computer responsiveness very well.

Lorch and Smith describe a processor performance scaling system for Windows 2000, called

RightSpeed, in [128,131]. The RightSpeed system implements PACE [130] and a task-specification

interface for an application to convey information to the OS. The authors admit that few applications

will abide by such an interface. For this reason, they implement a task detector to automatically

obtain needed application information. A user interface event marks the start and type of a task,

which completes when all non-idle processes are blocked and there is no I/O activity, or another

user interface event is received. Such a detector is very similar to the interactive episode detection

mechanism in [52], although it shuns the latter’s complication. Like the interactive episode in [52],

a task thus detected does not necessarily correspond to the processing of a user interface event.

Although Lorch and Smith claim that the RightSpeed system reduces deadline misses for tasks,

meeting a task deadline is different from keeping the computer responsive. Even worse, they find

that PACE does not save energy for processors then available. Nevertheless, they find that different

types of user interface events incur different processor loads. They successfully exploit this fact in

the RightSpeed system [131].

In [220], Yan et al. propose to seek full cooperation from the windowing system to solve



24

the problem that techniques in [52, 128] face. Instead of using kernel activities to determine the

computer response time, the authors use the X server to mark the start of a user event and use the

event-loop mechanism of the Xlib to mark the end of a computer response. There is no kernel

modification at all. With help from the windowing system, the computer response time is accurately

and efficiently determined. Yanet al. also show the response time can be used to drive processor

performance scaling to save energy while keeping the computer responsive. The techniques are

implemented on a Pentiumr IV Mobile based IBM ThinkPad laptop running Redhat Linux. More

importantly, the techniques handle multiple running applications naturally.

Real-time and multimedia applications: Real-time and multimedia applications have been

researchers’ favorite for studying performance scaling. A real-time application usually provides task

and deadline information that techniques discussed above sorely need. A multimedia application

incurs periodic and even more predictable processor activity, and is in most cases a soft real-time

application. Since this dissertation is not focused on either real-time or multimedia applications, we

will survey these works only briefly.

Although a mobile system usually runs multiple processes even if only one application is en-

gaged in user interaction, most performance scaling techniques discussed so far virtually ignore

multiple processes and their scheduling due to diverse process characteristics. Only for real-time

systems, process scheduling has become a practical and dominant mechanism for performance scal-

ing [89,90,117,124,135,136,159,168,189]. Jha offers a very good survey in [108]. Kwon and Kim

also provide a survey in a very recent journal article [120]. Among all these works, only Pillai and

Shin [168] offer an implementation based on Linux.

Hugheset al. [93] study how architectural adaptation can be combined with performance scal-

ing to save energy for multimedia applications. Luet al. [132] and Imet al. [98] propose to use

buffers at different stages of media processing for processor performance scaling. As discussed in

Section 2.2.3, a buffering mechanism is also used to increase the opportunity for power manage-

ment in [12, 24, 164]. Like the authors of [79], Pouwelseet al. [169] also manage to change the

supply voltage of an Intel StrongARM SA-1100 process on their LART system. They point out

that it is difficult to predict the media processing workload based on history and that inaccurate



25

prediction significantly reduces energy savings. While Choiet al. [30] use frame-based history to

improve prediction for performance scaling, Pouwelseet al. argue that applications should explic-

itly convey their estimation of workload to the OS for performance scaling. They demonstrate how

media processing programs can be modified to convey such information in [169–171]. A similar

approach is reported by Chunget al. in [33]. Lu et al. [134] adopt a control system approach to

performance scaling for frame-based multimedia workloads. In its essence, however, this approach

just involves nonlinear history-based workload prediction. These approaches rely on application-

specific workload estimation and require changes to the source code. Yuanet al. [223, 224] find

that workload (demand) distributions for multimedia applications are usually very stable. They em-

ploy a simple histogram-based technique to estimate such distributions online, different from what

is used in [130]. They then integrate voltage scheduling and process scheduling based on such an

estimation in the GRACE framework.

Summary: Processor performance scaling techniques consists of three parts:workload esti-

mation, process scheduling, and performance setting. Workload can be estimated in many different

forms. Processor utilizationin an interval and its different averages are used in [76, 217].Work-

load distributionis used in [130, 223, 224].Task durationis used in [52, 128, 220]. For real-time

and multimedia applications, workload can be better estimated and deadlines are usually known.

Although process scheduling is ignored by many researchers who assume only one process is run-

ning, it is critical for systems running multiple processes, especially deadline-bounded ones such

as real-time and multimedia applications. Process scheduling is often integrated with performance

setting [168, 223] in that a system determines which process to run with what performance. Since

most commercial processors only offer a limited set of performance levels, performance setting

usually has to use this limited set to approximate an algorithm that requires continuously scal-

able performance [130]. For a workload, estimated or pre-known, a fixed performance level can

be selected [51, 76, 165, 217], or a selected series of performance levels can be applied consecu-

tively [130,132].



26

2.3 System support for energy optimization

We have so far surveyed related techniques for energy optimization. Most mobile systems, how-

ever, need to implement these techniques as part of the OS or application programs. System support

from the compiler, middleware, and OS are therefore necessary. Indeed, the implementation-based

works discussed above do implement some system support, but in a technique-specific fashion. We

next survey general system support techniques from the compiler and OS worlds in Sections 2.3.1

and 2.3.2, respectively.

2.3.1 Compilation for performance scaling

Mosseet al. [149] were among the first to use compilation for performance scaling. They use

a compiler to insert check-points into program source code so that workload information can be

obtained at run-time for performance scaling. However, the compiler itself does not make any

decision about performance scaling. Hsuet al. [91] were the first to use compilation to identify

program regions for which performance can be scaled down. Hsu and Kremer summarize and ad-

vance their previous work on compiler-assisted performance scaling in [92]. Their most updated

compiler technique uses the program profile to identify program regions in which the processor can

be slowed down for reasons like the processor-memory bottleneck. The compiler inserts systems

calls to change processor performance directly and off-line. The technique is implemented using the

SUIF 2 open-source compiler system [200] and tested on a Linux-based laptop with the SPECfp95

benchmark. The SPECfp95 benchmark is compute-intensive but not very processor-intensive, as

data exchange with the memory is significant. It provides significant opportunities for the proposed

technique. As a result, one has to be careful when evaluating the technique for typical mobile ap-

plications. Xieet al. [219] explicitly consider the processor-memory bottleneck and performance

scaling overhead while extending the theoretical analysis in [106,182] to explore opportunities and

limitations of compile-time performance scaling. Their technique requires a detailed execution pro-

file of the program and solution of large mixed-integer linear programming problems. Moreover,

the technique is validated by simulation instead of implementation. For example, the system over-

head of performance scaling is more than the latency for a processor to change its performance



27

level because the performance scaling instruction from a running program has to go through the

OS. All these compiler-assisted performance scaling techniques, unfortunately, suffer from a seri-

ous limitation: they are unable to handle multiple processes. As a program augmented by these

techniques starts, it changes processor performance regardless of the processor load. Such a limita-

tion is inherent in the technique because the program running context cannot be known at the time

of compilation. Without interaction with the OS and its supports, compiler-assisted performance

scaling techniques will fall short of their target.

2.3.2 OS support

The OS on a computer manages almost all the hardware resources. Most energy optimization

implementations discussed in Section 2.2.3 and Section 2.2.4 are actually implemented as parts of

the OS. In these implementations, the OS monitors the resource usage, makes predictions, and de-

termines the power-saving mode or performance level for a hardware component. Yet these imple-

mentations do not manage the energy consumption of the whole system. We next discuss additional

works that study general OS support for system-wide energy optimization.

Energy or battery lifetime seems like just another resource to be managed by the OS. In fact, it is

very different from conventional hardware resources. First, energy is consumed through many hard-

ware components. Second, while conventional resource management has focused on scheduling to

avoid “contention,” energy can be consumed by multiple hardware components simultaneously.

“Contention” matters only when the battery discharge rate and thermal management are matters of

concern. Third, while conventional resource management is concerned with better utilization of a

hardware component for higher performance, energy management is more concerned with creating

opportunities for hardware power-saving mechanisms, e.g., elongating idle periods. As a result,

OS-based energy management is very challenging.

Neugebauer and McAuley extend their process-based resource accounting in the Nemesis OS to

include energy consumption in [157]. They use the same pricing mechanism used for conventional

resources to manage energy consumption. Such a direct extension actually ignores the three points

made above, and is thus inadequate. In the Milly Watt project, researchers from Duke University



28

propose to regard energy as one of the most important resources that the OS manages [43,212]. They

discuss their implementation, ECOSystem, in [228]. Like Nemesis [157], the energy management

in ECOSystem is built upon process-based energy accounting with acurrentcymodel. A unit of

currentcy is the right to consume a certain amount of energy within a certain period of time. Both

the Nemesis OS and ECOSystem suffer from two fundamental limitations. First, they account for

energy consumed by a process by how many hardware activities it incurs. However, the same

activity often consumes different amounts of energy in a hardware component, depending on the

context. For example, suppose processA writes 1KB data to the hard drive every one minute and

processB writes 1MB data to it every one second. ProcessA will consume very different amounts

of energy in the hard drive, depending on whether ProcessB is running or not. When ProcessB

is running, the hard drive will stay in the run mode and ProcessA will consume insignificant extra

energy. When processA is running alone, the hard drive will enter a power-saving mode between

the accesses and the extra energy consumed by the hard drive due to processA will be significant,

especially in view of the energy overhead for hard-drive mode switchings. Second, both Nemesis

and ECOSystem fail to separate hardware information from the kernel because they implement

power models for hardware components in the kernel for energy accounting. Consequently, the OS

has to be customized for every different computer system it runs on. Due to these two limitations,

their approach has not yet seen much popularity.

Lu et al. [133] take a much less aggressive approach. They use the exponential average of the

access intervals of a process as the process-specific utilization of a hardware component. Then they

aggregate utilizations from all processes, weighted by each process’s share of the component, to

obtain the component utilization. A hardware component is shut down when its utilization is lower

than a threshold. They also schedule requests to a hardware component to increase the opportunities

for power management. Their system, however, suffers from several limitations. First, they require

the application to tell the OS when it needs a hardware component and the deadline by which such a

need is satisfied. Although this automatically solves the most difficult problems, i.e., workload and

deadline estimation, for power management and performance scaling, it is not easy to do in reality.

Second, although they identify several parameters that affect the tradeoff between energy saving



29

and performance, there is no feedback mechanism for the system to balance them. In addition to

these limitations, the system is not verified with real applications or traces. The workloads used in

the study are unrealistic. Workload 1 only records user activities with long idle periods whereas

workloads 2 and 3 are completely synthetic. Although Luet al. emphasize that these techniques are

targeted at interactive applications, user-perceived performance or computer responsiveness is not

reported.

In [5], Anandet al. propose and implement interfaces between the power management module

and device drivers so that a device can export its power model and current operational mode. They

also implement application programming interfaces (APIs) for an application to retrieve device

information related to power. Based on these interfaces, they implement middleware to balance

the energy consumed by the hard drive and network interface. To minimize energy consumption

by choosing from among alternative devices for the same service, they use a mechanism based on

ghost hints. A ghost hint informs an application about how much energy would be consumed if a

different device were used for the service. This work successfully minimizes changes to the kernel

and separates concerns of performance and energy by implementing power models in device drivers.

By using ghost hints to account for energy in the program execution context, it also addresses the

issues raised above about managing energy as a resource. However, power management is not

transparent to application developers, who have to customize, mostly manually, their source code

according to the supported APIs.

Viewing the OS as only one layer of the system, another group of researchers proposes to pro-

vide cross-layer supports for energy optimization, i.e., to orchestrate the application software, mid-

dleware, OS, and hardware. Energy-aware software adaptation is a preliminary form of cross-layer

solution, as discussed in Section 2.2.1. Flinn and Satyanarayanan [56, 57] extend the Odyssey

platform to adapt input data fidelity for multiple applications based on predicted energy demand

and targeted battery lifetime. The platform supports cross-layer energy optimization only when

data fidelity reduction increases idle periods since only time-out-based power management is used.

A significant cross-layer synergy is supported in the GRACE cross-layer adaptation framework

proposed in [225]. The framework scales multimedia quality, OS services, and processor perfor-



30

mance simultaneously for energy savings according to user preferences. A similar work is reported

in [148].

2.4 Energy analysis and characterization

By now, we have surveyed energy optimization and their system support techniques. In this

section, we briefly survey works that offer insights into how energy and power are consumed in a

system. Many works characterize power consumption by different hardware components of mobile

systems. Power characterizations for laptops can be found in [127]. Energy characterization for

the Itsy Pocket computer is presented in [45, 55]. That for a Palm Pilot is offered in [34]. Power

characterization for Intel’s experimental personal server, a handheld, is offered in [178].

Brookset al. design and implement a processor power simulator, Wattch [18], based on the

SimpleScalar simulator and data from Intel. Similar processor power simulators have also been

implemented by others, such as SimplePower [221]. Wattch has been widely used in academia for

studying architectural techniques for processor power reduction. It is widely known, however, that

different power simulators often arrive at very different estimates [66]. Unfortunately, without ac-

curate data and models from industry, researchers in academia have to rely on these simulators. For

other hardware components, modeling is much easier since cycle accuracy is usually unnecessary.

Stemmet al. [198] were the first to offer a detailed power characterization of several wireless net-

work interfaces on handhelds. They point out that power management of the idle time is much more

important than reducing data transfer for energy efficiency. Zedlewskiet al. investigate hard-drive

power modeling in [227]. They implement a hard-drive power simulator, called Dempsey, based

on measurement [230].

There are also a number of software energy characterization works. Energy consumption of

the OS, especially real-time embedded system OS, has been extensively studied [1, 9, 38, 201].

General software energy estimation and optimization techniques have also been investigated ex-

tensively [152, 194, 202, 207, 211]. Our work in [232] and [234] is the first to characterize energy

consumption of user interfaces.



31

2.5 User interfaces and human factors

In this dissertation, we address energy efficiency from the user’s perspective, and focus on the

impact of user interfaces and human factors. Therefore, we briefly discuss related work that takes

them into consideration in this section.

Interactive applications incur many computer idle periods. Our analysis [233] shows that a

computer spends most of its time and energy in such idle periods for interactive applications. Many

power management and performance scaling works [52,79,130,165] use interactive applications as

benchmarks. Nevertheless, these works treat them in the same fashion as compute-intensive ones

without exploiting human factors to make resource usage prediction better. Some of them [52,130]

propose to use the human-perceptual threshold to slow down the system so that it can respond

before the user can perceive the delay. They still focus on system busy time although most energy is

consumed in the system idle time. In [131], Lorch and Smith find that different user interface events

incur different computation loads for the processor. Therefore, they propose to conduct performance

scaling based on user interface event information. Again, they target the system busy time. On the

contrary, we investigate how user interface information can be used to predict the system idle time

for power management in [233]. In [37], Dalton and Ellis propose to use sensors and cameras

to detect user presence for power management. Although the energy overhead for their detection

method is very high, such a method points to a new direction for making power management user-

aware and context-aware.

Human users only have a limited visual field. Display areas outside the visual field present little

information. In [107], HP researchers propose to darken display areas outside the window of user

focus to save power. This is possible only for OLED-based displays, for which the luminance of

individual pixels can be controlled separately. User studies of this technique are reported in [14,

82]. Unfortunately, luminance of individual pixels on LCDs cannot be controlled separately since

current mobile computers use a single back or front lighting. Flinn and Satyanarayanan [56] propose

to use multiple lightings, calledzoned backlighting, to tackle this problem. Although the zoned

backlighting is much simpler than the HP’s pixel darkening technique, it has not yet seen much

industrial acceptance.



32

2.6 Chapter summary

The energy efficiency of a mobile system is determined by its user, software, and hardware.

Given the hardware, researchers have mostly looked at the interaction between software and hard-

ware for energy-saving opportunities, especially those for hardware power-saving mechanisms.

This chapter presented an extensive survey of techniques from such an endeavor. These techniques

address energy efficiency from the perspectives of hardware and software. Many of them are effec-

tive only for compute-intensive or even processor-intensive applications. For more energy-saving

opportunities on mobile systems, we need to look into the interaction between the user and system,

and address energy efficiency from the user’s perspective. As can be seen from this chapter, tech-

niques considering user interfaces and human factors have been surfacing recently. The remaining

chapters try to establish the efficacy of such techniques.



Chapter 3

Energy Efficiency Limits Imposed by

Human Factors

Starting from this chapter, we are going to explore in depth the energy-saving opportunities for

mobile systems from the user’s perspective. Since our focus is on user interfaces and human factors,

we examine how such factors impose limits on the energy efficiency of mobile systems, address-

ing limits on interface power/energy consumption and interaction speed in Sections 3.1 and 3.2,

respectively.

3.1 Sensory perception-based limits

Landauer [122] showed that the theoretical minimal energy consumption of an irreversible logic

operation iskT ln2, wherek is the Boltzmann constant andT is the temperature.kT is of the order

of 10−21J at room temperature. All commercially available computing devices use irreversible

logic operations and are hence governed by this bound. On the other hand, the computer has to

communicate with its human user through the latter’s sensory channels. These channels in fact set

the minimal power/energy requirements for the computer output.

33



34

3.1.1 Visual output

Human vision energy thresholds have been measured in different forms [22] in terms of minimal

absolute energy, minimal radiant flux, and just-perceptible luminance. Minimal absolute energy is

measured for a very small solid-angle field, e.g., a point source, presented for a very short time

(10−3s) so that no temporal summation of radiant flux occurs. Minimal radiant flux is measured

for a very small solid-angle field lasting for a long time so that temporal summation of radian flux

occurs. Just-perceptible luminance is measured for a large-area visual field. These thresholds are

used to estimate the energy/power dissipation lower bound for displaying information as follows.

Minimal absolute energy: Let us assume the user’s cornea area isA, viewing distanceD, and

viewing angleΩ. We assume the light irradiance is the same for every point within the viewing

angle at the same distance from the point source. LetEmin(λ) denote the minimal light energy

reaching the cornea that is detectable by the user for light of wavelengthλ. The total energy emitted

by the source is thus:

E(λ) =
ΩD2

Ai
·Emin(λ)≈ΩD2

A
·Emin(λ)

whereAi is the area of the viewing sphere that is incident on the cornea.Ai is approximated as the

cornea areaA.

Experimental results reported by psychology researchers [22] indicate thatEmin for light of

wavelength510nm is about2·10−17∼6·10−17J . AssumingA = 0.5cm2, D = 0.3m, andΩ =

0.125·2π sr, we haveE≈3·10−14∼9·10−14J , which is about seven orders of magnitude larger than

the energy required for an irreversible logic operation.

Note that the energy limit derived above is for rod vision, which is the colorless human vision

under extremely low luminance. Only the cone vision contains color and is normally required for

human-computer interaction. The energy threshold for cone vision forλ = 510nm is more than

100 times that of rod vision. For users to sense color, the minimal energy would thus be of the order

of 10−11J .

Minimal radiant flux : Let Rmin(λ) denote the minimal radiant flux for light of wavelengthλ

that humans can sense. For the viewing distanceD and viewing angleΩ, the source radiant power



35

is given by:

Φmin(λ) =
Rmin(λ)·ΩD2

683·V (λ)

whereV (λ) is the relative visibility factor and683 is the spectral efficiency forλ = 550nm

in lumen/W . According to [22], the minimal radiant flux for white light rod vision is about

4·10−9lumen/m2. AssumingV (λ) for white light to be 0.8, we obtainΦmin ≈ 5·10−13W un-

der the same assumptions forD andΩ as before.

Just-perceptible luminance: Suppose the just-perceptible luminance for light of wavelengthλ

is Lmin(λ). Let S denote the area of the display andΩ the viewing angle. The total display radiant

power,Φmin(λ), is then

Φmin(λ) =
Lmin(λ)·S·Ω

683·V (λ)

For white light,Lmin has been determined to be7.5·10−7candella/m2 [22]. With the same

assumptions as above, the minimal radiant power for a12.1′′ laptop display and white light is about

5·10−11W . For comfortable reading, the luminance level is, however, about100
π candella/m2 [22],

which requires a radiant power of about2mW for a12.1′′ display. This minimal radiant power for

comfortable reading is about seven orders of magnitude larger than the just-perceptible threshold.

3.1.2 Auditory output

Let Ω denote the solid hearing angle andD the distance between ears and the sound source. The

minimal sound intensity human beings can hear is about10−12W/m2 for a sound field of relatively

long duration (>300ms) [63]. Below 300ms, the threshold sound intensity increases fast as the

sound duration decreases [63]. Therefore, we can estimate the minimal energy,Emin, for human

beings to detect one bit of auditory information to be

Emin = 10−12·300·10−3ΩD2

AssumingΩ = 0.125π sr andD = 0.3m, we haveEmin≈10−14J , which is of the same

order of magnitude as the minimal energy required for displaying one bit of visual information.

Note that the minimal sound intensity varies for sounds of different frequencies.10−12W/m2 is

approximately the just-perceptible intensity of sound at a1000Hz frequency, which belongs to the



36

span of frequencies human beings are most sensitive to. A normal conversation generates a sound

level that is about106 times larger than the just-perceptible sound intensity. Therefore, for a user

to obtain auditory information from a computing system, the sound intensity should be no less than

10−6W/m2. For the values ofΩ andD given above, this results in an acoustic energy requirement

of about10−8J . Moreover, the above thresholds assume no noise (just-perceptible intensity) or

relatively low noise (conversational intensity). When ambient noise increases, the output sound

level has to increase accordingly, according to Webber’s Law [63].

3.1.3 Power reduction techniques

Based on the above discussion, we can formulate the power requirement of a visual/auditory

output as follows

P ∝ Ω·D2

η(λ)·V (λ)
(3.1)

whereη(λ) is the conversion efficiency from electrical power to light/sound radiant power for wave-

lengthλ, andV (λ) the relative human sensitivity factor. Most display research efforts have been

devoted to improvingη(λ) by adopting new display devices. For organic light-emitting devices

(OLEDs), the bestη(λ) so far is70lumen/W for λ = 550nm [58]. This is about10-fold smaller

than the theoretical683lumen/W upper limit [22].

Reducing the viewing/hearing distanceD seems to be the most effective way to reduce output

power requirement. Unfortunately, it poses a practical problem for visual output since it requires

changes to the way a display is used. Moreover, reducingD may also have an impact on other

display parameters such as pixel size and aperture (the ratio of the effective area to display area). A

head-mounted display is a successful example where a reducedD is used. However, it is promising

only for limited scenarios such as military and virtual reality applications at this moment. Unlike

head-mounted displays, their auditory counterparts, earphones, are quite popular. Due to their ex-

tremely smallD andΩ, earphones are much more power-efficient than loudspeakers, as we will see

in Chapter 5.

Moreover, many applications do not need a large viewing/hearing angle. The viewing/hearing



37

angle can be controlled to reduce output power consumption too. Another hint from Equation (3.1)

is that choosing the colors/sounds with a higher human sensitivity, thus higherV (λ), will also

reduce power. Human vision sensitivities to different colors differ by several orders of magnitude.

However, user experience with colors is quite complicated since color contrast and aesthetics also

matter.

3.2 Input/output speed

The energy consumption per task depends not only on power consumption but also on the task

duration, or speed. We next characterize input/output speeds for human-computer interaction, which

will be used to compare the energy efficiency of different interfacing technologies in Chapter 5. This

subsection draws upon many previous surveys.

Speaking/listening/reading speeds: 150 words per minute (wpm) is regarded as normal for

conversational English for both speaking and listening. When speaking to computers, users tend to

be slower at about100wpm [112]. Also, users can listen to compressed speech at about210wpm [160].

Such speaking and listening rates set limits to the energy efficiency of speech-based interfaces, as

shown in Chapter 5. Furthermore, when speech-recognition errors have to be corrected, the speak-

ing rate is reduced drastically to as low as25wpm [112]. For reading printed English text,250 to

300wpm is considered typical [26]

Text entry: Text entry on mobile systems is well-known to be much slower than on PCs with

a full-size QWERTY keyboard. Table 3.1 summarizes results from the literature about input speeds

for popular text entry methods available on commercial mobile systems, such as HP iPAQ and Sharp

Zaurus, which are studied in this work. “Typical speed” refers to the raw speed regardless of accu-

racy while “Corrected speed” refers to real speed when error correction is taken into consideration.

Note that handwriting speed is for hand-printing, which serves as an upper bound for the input

speed for any handwriting recognition-based text entry. The corrected word per minute (cwpm)

for handwriting recognition is around7 [35]. We assume that the error rate is low for hardware

mini-keyboard thumbing, i.e., typing with two thumbs, and error correction is fast, as assumed for

the virtual keyboard in [35].



38

Table 3.1: Typical text-entry speeds for different methods

Method Typical speed Corrected speed

(wpm) (cwpm)

Hardware mini-keyboard thumbing 23 [197] 22

Virtual keyboard with stylus 13 [186] 12 [35]

Handwriting 15 [139] 7 [35]

Stylus/touch-screen: For GUI-based human-computer interaction, the speed is usually depen-

dent on how fast the user can respond to the GUI. The user has to perceive the computer output

through aperceptual process, make a decision through acognitive process, and then carry out the

decision through amotor processto respond to the computer. In [233], we characterized the user

delays and investigated how they could be predicted for aggressive power management. As we are

more interested in typical delays for energy-efficiency evaluation, we assume that a500 to 1000ms

user delay is typical for GUI operations on mobile systems such as handhelds.

3.3 Chapter summary

This chapter examined how human factors impose limits on energy efficiency with regard to

interface power/energy consumption and user productivity (speed). It highlighted the importance of

user interfaces and human factors, as compared to computing, and provided theoretical foundations

for improving user interfaces for better energy efficiency. It also offered the theoretical minimum

power/energy requirements for interfacing. Although such requirements are orders of magnitude

larger than those for computing, they are still far beyond the reach of state-of-the-art user interfaces

as we will see in the following two chapters.



Chapter 4

Energy Consumption of Graphical User

Interfaces

In the previous chapter, we theoretically analyzed how human factors impose limits on the en-

ergy efficiency of a mobile system. In this chapter and next, we characterize the energy consumption

of state-of-the-art user interfaces on mobile systems. Such a characterization is the first step toward

energy-efficient user interface design.

Because GUIs have become the basic software mechanism for human-computer interaction, in

this chapter, we investigate their energy consumption on three popular mobile GUI platforms. We

first offer background information on mobile GUI platforms in Section 4.1. Then we analyze how

energy is consumed by a GUI in Section 4.2, and describe the experimental setup and benchmarks

in Section 4.3. Based on the experimental results presented in Section 4.4, we offer insights for

energy-efficient GUI design in Section 4.5. We summarize the chapter in Section 4.6.

4.1 Background

In this section, we first discuss the relevant features of mobile software, and then provide infor-

mation on mobile GUI platforms and development toolkits studied in this chapter.

39



40

4.1.1 Mobile software

Most of the software loaded on mobile systems is interactive (some exceptions are video/audio

players, which are CPU-intensive). Such a software has two prominent properties. First, the execu-

tion time usually does not depend on the CPU speed, but on the user speed. Second, most system

resources are dedicated to human-computer interaction.

User interfaces consisted of an average of 48% of the application code even a decade ago [154].

The use of modern GUIs will only increase their share of the application code and resource usage.

As a result, it is important to optimize GUIs for energy savings. A GUI is responsible for interacting

with users. First, it presents information to users graphically, usually through GUI windows such

as buttons, menus, message boxes, and text windows. Second, it takes inputs from a user in the

form of a user responding to GUI windows. Most GUI platforms are extended to include many non-

user interface system functionalities, such as file and network operations, typically by wrapping

corresponding system calls into a GUI API. In this chapter, we are only concerned with those parts

that present and receive user input [153].

4.1.2 Mobile GUI platforms

Almost no GUI application is programmed to directly manipulate display devices. Different

APIs are used to accelerate GUI development and improve hardware independence. Such APIs

are called GUI platforms. In this chapter, we study three of the most popular GUI platforms on

mobile systems, i.e., Qt, Microsoft Windows (or Windows), and X Window system. Since the

nomenclatures used by these GUI platforms are quite different, Table 4.1 summarizes the different

terms.

X Window system: The C-based X Window system [218] is almost ubiquitous on computers

running under Unix-like operating systems (OSs). The X Window system has a client-server archi-

tecture, in which a single X server serves requests from different GUI applications (called X clients)

through inter-process communication. Each application registers the types of events it wishes to

handle with the X server, and also registers an event processing routine with each registered event

type. When events associated with a window occur, the X server only sends events of registered



41

Table 4.1: GUI nomenclatures

Qt Windows X/GTK

Event Signal/ Event Message Signal/ Event

Window Widget Control/ Window Widget

Event processing routine Slot Callback Callback

types to the window, which in turn calls the corresponding processing routine. The X server han-

dles events of unregistered types as the default. Wrapper toolkits are typically used to facilitate GUI

development. GTK [67], one of the most popular toolkits, is used in this chapter. An embedded

port of GTK, called GPE [77], is actively under development. In this study, we use the X Window

system that comes with the Familiar project [204] and GTK-related libraries from the public Skiff

cluster [205]. We use X/GTK to refer to the X Window system and GTK.

Qt: The Qt platform is a C++ based GUI API. It handles events through class member slots

and signals. While Qt works with multiple OSs, its embedded port, Qt/Embedded [174], currently

only works under Linux. Unlike Qt for PCs, Qt/Embedded applications directly work on the kernel

framebuffer without an X server. The absence of an X server reduces its memory requirement

significantly. One can also expect an improvement in its performance and energy efficiency. Qtopia,

an application environment, has been developed using Qt/Embedded. There is also an open-source

fork of Qtopia called Opie [161]. In this study, we use the Qt/Embedded system shipped with a

Sharp Zaurus handheld. In the following discussions, Qt is used to refer to Qt/Embedded.

Windows: Unlike Unix/Linux systems, Microsoft Windows GUI is integrated with the Win-

dows OS. Such an integration may offer Windows benefits in terms of GUI energy efficiency. Every

Windows window has an event handler. All events generated within a window are passed to its event

handler through an event loop. There are multiple ways to develop GUI applications for Windows,

e.g., using Win32 API, MFC, ATL, or Visual Basic. Unlike the X Window system, a significant

number of Windows developers use the Win32 API directly to write Windows applications. There-



42

fore, the Win32 API is adopted in this chapter for energy characterization.

Other GUI platforms : We do not address other mobile GUI platforms in this first study. One

of the better known is the Palm GUI widely used with Palm OS [163] powered handhelds. No Palm

handheld uses an Intel StrongARM processor yet, which would make a fair comparison difficult.

Java and Visual Basic are also popular for GUI development. However, their well-known perfor-

mance disadvantages compared to C/C++ are also translated into energy disadvantages, although

they may have advantages in other aspects. Other GUI platforms/toolkits for embedded Linux are

described in a recent article [203].

4.2 GUI energy consumption

Before energy characterization, it is worthwhile to analyze how energy is consumed by a GUI.

In this section, we will do so from three perspectives: hardware, software and user.

Hardware: In the mobile systems we study, the Intel StrongARM SA-1110 SoC is used. It

has an integrated LCD controller (LCDC). A framebuffer is implemented in off-chip memory (main

memory) to store pixel data for a full screen. Whenever there is a screen change, the processor

generates new data for the changing screen pixels and stores them into the framebuffer. This implies

more energy consumption with larger temporal changes in the screen. Meanwhile, to maintain a

screen on the LCD, the LCDC must sequentially read screen data from the framebuffer and refresh

the LCD pixels even when there is no screen change. This in turn implies more energy consumption

with larger spatial changes in the screen. The on-chip system bus and off-chip data buses also

consume energy for data transfers.

The display itself consists of several parts: LCD power circuitry, a front light, and an LCD.

The LCDs used in the systems we studied are color active thin film transistor (TFT) LCDs. In such

LCDs, each pixel has three components: R, G and B, signifying red, green and blue, respectively.

Liquid crystals for each component are independently oriented by two polarizers, which are con-

nected to a storage capacitor. The capacitor is in turn charged and discharged through a TFT to

accommodate screen changes. It must be refreshed at a high rate to maintain an appropriate volt-

age across the polarizers so that the corresponding liquid crystals remain properly oriented. The



43

Processor

Framebuffer

LCDC

L
C

D
 a

nd
 t

ou
ch

-s
cr

ee
n Hardware 

interrupt

Refresh 
screen Fetch 

pixel data

Generate 
screen data

Figure 4.1: A hardware perspective of GUI energy consumption.

GUI platform

OS

Hardware 
interrupt

Event loop

OS

Update screenAccept event 

Drive 
LCD

GUI app.

Figure 4.2: A software perspective of GUI energy consumption.

hardware perspective is summarized in Figure 4.1.

Software: A GUI platform is highly OS-dependent. It is impossible to compare GUI platforms

without taking the OS into account. The following software processes are involved in GUI usage.

First, the OS handles hardware interrupts generated by a user. It then produces events for the GUI

platform. The latter delivers events to the GUI application, which catches events through an event

loop. Thereafter, the application instructs the platform as to how the GUI should change. The plat-

form coordinates GUIs of different applications, determines how the screen changes, generates new

screen pixel data, and then calls OS services to update the screen. Interrupt handling, event process-

ing and screen updating are the three basic steps in the above process. The software perspective is

summarized in Figure 4.2.

User: From the user’s perspective, a GUI consumes energy through user-GUI interaction ses-



44

Figure 4.3: Looking for a file and creating an email.

sions, in which a user locates the application, starts it, interacts with it and finally closes it. Such a

process usually consists of a series of window operations, such as creation, switching, and manipu-

lation, with intermittent idle intervals, in which the system waits for user input.

Figure 4.3 gives the second-by-second energy consumption for two GUI sessions executed on an

HP/Compaq iPAQ with Pocket PC 2002. The first session is to look for a file using the file manager.

The first peak around four seconds is due to activation of the “Start” menu and stepping through

its items to locate “Programs”. The second peak at10 seconds is due to activation of “Programs”.

The third peak at12 seconds is due to activation of the file manager in the Programs window. The

last peak is due to moving of the scroll bar in the file manager to locate the file in the file list

and then closing the file manager. The other session, creating an email, is just to open the “New”

menu and create a new email message. The two sessions consume4.7 and1.4 Joules more energy,

respectively, than consumed in the corresponding idle period. Being idle for one second consumes

5.9 Joules in these measurements. Creating an email consumes much less extra energy because it

requires fewer GUI manipulations. Moreover, since it takes much less time, more email sessions are

possible compared to file manager sessions in a fixed amount of battery lifetime. From these two

examples, it is obvious that window operations are energy-expensive and an energy-efficient GUI



45

Table 4.2: Hardware and software information on mobile systems

iPAQ1 iPAQ2 Zaurus

Vendor HP/Compaq Sharp

Model 3870 SL5500

SoC Intel StrongARM SA-1110 206MHz

Storage 32MB ROM, 64MB RAM 16MB ROM, 64MB RAM

Display 240×320, 16bit color, reflective with front light

OS MS Pocket PC 2002 Familiar Linux 2.4.18 Embedix Linux 2.4.6

GUI Windows X/GTK Qt

should reduce the number of window operations and usage time.

4.3 Experimental setup

In this section, we first provide information on the mobile systems used and the energy mea-

surement setup, then detail the benchmarks and GUI energy characterization methodology.

4.3.1 System information

The information on the mobile systems used in this chapter is summarized in Table 4.2.

The two iPAQs are placed in the same charging cradle when energy is measured. The Zaurus,

instead, is directly charged by the same AC/DC converter used for the iPAQs. Energy is measured

when the batteries are fully charged. All other detachable peripherals, such as CompactFlash cards,

serial and USB ports, are disconnected. Since no current GUI platform has an effect on the front

light, it is turned off unless otherwise indicated.



46

4.3.2 Energy measurement

The measurement equipment consists of a Windows PC, hardware data acquisition card, and

wire connector box. The PC is installed withNational Instrument’s data acquisition software called

Labview. The voltage is measured across a sense resistor connected in series with the battery to

obtain the system power consumption. It is sampled at a rate of400Hz. Labview is programmed

to integrate power every second. By carefully designing the benchmarks, the energy consumption

of software events of interest can be captured. The energy measurements for a given benchmark

were made on mobile systems on the same day without interruption to minimize the day-to-day

difference due to changes in temperature and resistance of the sense resistor.

4.3.3 Methodology and benchmarks

While the source code of Qt and X/GTK are freely available, that of Windows is not. How-

ever, the GUI APIs of all three platforms are well-documented. The GUI API is an appropriate

level of abstraction for modeling GUI platforms. Based on the GUI APIs and platform architec-

tures, we adopt a controlled black-box methodology to characterize different aspects of GUI energy

consumption, as explained next.

Additional energy: To account for energy differences due to the OS and hardware, we use the

concept ofadditional energy. When a software or hardware event occurs in the system within a

certain time interval, the software running in the interval is called atarget. We design the software

to be exactly the same except that it does not trigger that event during the same time interval.

The resultant software is called acontext. The additional energy of the event is defined as the

target energy minus the context energy. For every GUI event we characterize, a context is carefully

designed. Measurement of a target and corresponding context is repeated in an interleaved way to

reduce the impact of random factors.

Normalized energy: We denote the additional energy for performing certain compute-intensive

jobs in each system as theenergy unit(EU). The compute-intensive job we chose was the jpegfdct islow

routine in file jfdctint.c from Independent JPEG Group’s implementation of JPEG, which comes

with the Mibench benchmarks [142]. It performs a forward discrete cosine transform (DCT) on an



47

eight-by-eight block of integers. Three different sets of inputs are randomly chosen from the large

image file included in MiBench. To obtain the additional energy for performing one such DCT, we

repeat the DCT a total of3 × 105 times over the set of chosen input data. This is assumed to be

the target, which takes our systems about four seconds to complete. The context in this case simply

involves making the system idle. The energy of every benchmark is measured with a companion

measurement of the EU. In most cases, we report experimental results normalized to the EU thus

obtained. This accounts for differences in the hardware and OS. The EU for the three systems we

studied is between8 and10 µJoules.

The benefits of using the EU are as follows. Experiments were conducted on different days

for different benchmarks. The absolute energy figure for an event varied slightly from day to day.

However, the energy remained quite constant if normalized to the corresponding EU (within 1%).

Moreover, since the EU is only dependent on the SoC and memory, the comparison of non-LCD

energy consumption of different systems is fairer after normalization.

Benchmarks: We designed the benchmarks to characterize different aspects of GUI platforms

including event handling, typical window operations, and window properties. Also, we character-

ized common window types and their related usage. Different input methods were also character-

ized. The benchmarks are described in Table 4.3. Unless otherwise indicated, they were coded

for all three GUI platforms. The coding and compilation information is given in Table 4.4. The

source code for benchmarks used in this chapter can be downloaded from [195]. Most benchmarks

were coded using a similar scheme in which a timer is set to start some processing. In a target, the

processing triggers the event we wish to characterize; in the corresponding context, the processing

is the same except that the event is not triggered. A snapshot of the “Event loop” benchmark target

coded for Windows is shown in Figure 4.4 to illustrate such a scheme. Note that its context uses the

same code except that line13 is commented out. Routines to turn the LCD off and on were inserted

at the beginning and end of the benchmarks to obtain the additional energy due to the LCD.



48

Table 4.3: Benchmarks

Benchmark Description

Event handling

Event loop Send and get an event

System event Use stylus to tap a window which is programmed to ignore that event

Basic window operations

Create window Create and then destroy a window

Show window Show and then hide a full screen window

Using windows of different types

Menu Show and then hide a menu window of four items

Message box Show a dialog box with “OK” and accept user confirmation

Scroll bar Move a scroll bar of half screen height with various speeds

Tabbed panel Switch between two full screen tabbed panels (iPAQ1 and Zaurus only)

Window properties (iPAQ1 only)

Size Show and then hide menu windows of different numbers of items, nor-
mal windows of different sizes (60×80, 90×120, 120×160, 180×240, and
240×320 pixels, respectively), text windows of different text sizes

Colors Present a full screen window of different colors

Color sequence Show and then hide full screen windows of different colors on a black
background

Color patterns Present full screen windows of black and white checkerboard patterns with
different block sizes

Different user input methods

Virtual keyboard Push “x” on the virtual keyboard

Hardware button Trigger the right cursor key button

Stylus tap Same as System event

Stylus move Move stylus vertically along the screen for half screen height on a window
which is programmed to ignore corresponding events



49

Table 4.4: Coding and compilation information for benchmarks

Qt Windows X/GTK

Coding language C++ C C

IDE N/A eMbedded Visual C++ 3.0 N/A

Compilation setting gcc -O2 Default gcc -O2

Figure 4.4: Outline of the target for benchmark “Event loop”. The context uses the same code but
with line 13 commented out.



50

Table 4.5: System energy breakdown for mobile systems

Handheld LCD Front light Others EU

% EU % EU % EU µJoule

iPAQ1 idle 9 18,800 73 147,100 18 35,300 8.0

DCT 7 53 40 112,600

iPAQ2 idle 14 20,600 53 77,700 33 48,200 9.8

DCT 9 34 57 129,100

Zaurus idle 11 25,200 80 180,000 9 19,000 9.3

DCT 8 59 33 99,300

4.4 GUI energy characterization

In this section, we present experimental results for the three mobile systems, and analyze them

from the perspectives of software, hardware, and user.

Energy breakdown: Table 4.5 gives the energy breakdown by hardware for the systems tar-

geted when they are idle and while performing the aforementioned DCT computation. It also gives

the one-second energy consumption in EUs for different components. The LCD energy is obtained

by comparing the system energy before and after the LCD is turned off. Front-light energy is ob-

tained in the same way. “Others” refers to the system energy minus the LCD and front-light energy.

It includes the energy consumed by all other hardware. The table shows that the front light and the

TFT LCD consume a large fraction of system energy. The percentages are larger than those reported

for notebook computers [31], in which a hard-disk, system-on-board and more powerful processor

are used instead of Flash memory and SoCs.

With the front light turned off, the TFT LCD consumes from 14% to 55% of the system energy,

depending on how busy the CPU is. However, it should be noted that during interactive application

usage, the CPU is idle most of the time.



51

Event handling and basic window operations: Table 4.6 presents the additional energy in EUs

for GUI event handling and basic window operations. “Event loop” shows the additional energy for

an event to go through the event loop. It is very energy-efficient compared to “System event,” which

includes additional energy for hardware interrupt, OS and platform event processing. Windows

outperforms Qt and X/GTK significantly, which may be attributed to tighter integration of its GUI

platform and OS.

“Create window” shows the additional energy for a GUI platform to claim and relinquish re-

sources for a window according to the request from the applicaion. “Show window” shows the

additional energy for the GUI platform to show and hide a full screen window according to the

request from the application. The background window is identical to the one shown so that no ad-

ditional energy is incurred due to framebuffer updating, LCDC or LCD. The additional energy can

only be attributed to changes in the internal data of the GUI platform as in the cases of “Event loop”

and “Create window”. While Qt and Windows are relatively close, X/GTK performs significantly

worse in “Show window.” This hints at the overhead of an X server.

Window types: Table 4.6 also shows the additional energy required for using different types of

windows and showing an eighty-letter text. It is obvious that using different window types consumes

quite different amounts of energy even when the window sizes and colors are similar, as in a message

box and a four-item menu window. Different window types necessitate different user interactions

too, which further differentiate their energy consumption. There are several observations worth

noting, as discussed next.

First, the same interactive function may be implemented using different window types with

different energy efficiencies. For instance, both tabbed panels and a scroll bar can be used to browse

a long list. Their energy consumption differs drastically since a scroll bar requires many more

screen updates than tabbed panels. Second, “Message box” of Windows outperforms others simply

because it allows a “Message box” to be much simpler than Qt or X/GTK does. For example,

“Message box” of Qt has 3D effects and must contain at least one button. This indicates that an

inflexibility in the GUI platform can cause extra energy consumption. Finally, Windows performs

much worse for “Menu,” although it does well in other window types, because it animates menu



52

Table 4.6: Energy characterization in EUs for different GUI platforms

Qt Windows X/GTK

Event handling

Event loop 27 11 40

System event 1,100 300 900

Basic window operations

Create window 1,900 2,600 1,000

Show window 9,900 7,900 18,000

Using windows of different types

Menu 12,800 15,400 6,100

Message box 14,400 6,000 13,300

Scroll bar 33,400∼78,000 20,000∼59,000 38,800∼84,000

Tabbed panel 10,300 12,000 -

Draw text - 1,600 -

windows. When a menu is tapped, the menu window gradually, but quickly, drops out. Such an

animation or continuous screen change requires many more processor cycles, framebuffer updates

and screen refreshes, thus leading to much more additional energy. Using a scroll bar to browse

a window also requires continuous screen changes. For energy efficiency, such continuous screen

changes should be avoided, at the expense of a slight sacrifice in GUI aesthetics.

Size: We have experimented with different sizes for text, menus and windows. Figures 4.5 to 4.7

show the additional energy required. They also show the equation for the best-fit line, obtained

through linear regression. The relationship between the size and additional energy is approximately

linear. Each letter consumes about 12 EUs. Each new menu item consumes about 220 EUs. These

data suggest that GUI designs should be economical to be energy-efficient. Moreover, the huge



53

y = 12 x + 532

0

1000

2000

3000

0 50 100 150 200

# of letters

A
d

d
it

io
n

a
l 

e
n

e
rg

y
 (

E
U

)

Draw text

Figure 4.5: Additional energy for showing texts of different sizes.

constants in the linear regression equations also imply that if a user needs to view a large number of

items, putting them in as few windows as possible saves significant energy.

Color: Color affects the additional energy consumption of a GUI in several ways. Our first

experiment measures the energy consumption of iPAQ1 when the CPU is idle for one second with

screens of different colors. Since each pixel consists of three color components, R, G, and B, we

perform measurement for colors containing different combinations of these three components. We

also perform measurements with the LCD turned off to obtain the energy consumption of the LCD

only. Table 4.7 summarizes the results under energy consumed by the LCD and the non-LCD

energy. It also shows the percentage energy increase compared with pure white. R, G, B, and RG

refer to red, green, blue, and yellow, respectively. They have R, G, B, and R and G component(s)

deactivated, respectively. “Grey” refers to the color obtained when the corresponding originally

activated component(s) is (are) half-activated. For example, when all three components are fully

activated, the color is “Full” black. When they are half-activated, the color is “Grey” black. The

energy difference disappears after the LCD is turned off, which demonstrates that it is the LCD that

makes the difference.

There are two observations one can make. First, the more color components activated, the more

the energy consumption. In a reflective TFT LCD, when one color component is deactivated, the

corresponding liquid crystals are fully unpolarized, and there is no need to repeatedly charge the



54

y = 220 x + 14412

14000

15000

16000

17000

18000

0 2 4 6 8 10 12 14

# of items

A
d

d
it

io
n

a
l 

e
n

e
rg

y
 (

E
U

)

Menu

Figure 4.6: Additional energy for showing menu windows containing different numbers of items.

y = 0.06 x + 4040

0

2000

4000

6000

8000

10000

0 20000 40000 60000 80000 100000
# of pixels

A
d

d
it

io
n

a
l 

e
n

e
rg

y
 (

E
U

)

Show window

Figure 4.7: Additional energy for showing windows of different sizes.



55

Table 4.7: Energy breakdown for presenting screens of different colors

Color Non-LCD (EU) LCD (EU) % Increase

Black Full 36,100 18,700 3.3

Grey 36,100 19,100 5.5

Red Full 36,100 18,500 2.2

Grey 36,100 18,700 3.3

Green Full 36,100 18,500 2.2

Grey 36,100 18,700 3.3

Blue Full 36,100 18,600 2.8

Grey 36,100 18,700 3.3

Yellow (RG) 36,100 18,300 1.1

White 36,100 18,100 0

polarizers. For instance, “White” has all three color components deactivated and consumes the least

energy, while “Black” has all three activated and consumes more energy. This observation is the

same as that made in [29] for a transmissive TFT LCD. More interestingly, the second observa-

tion is that a half-activated component consumes more energy than an activated component, as the

“Grey” ones consume more energy than their “Full” counterparts. As mentioned in Section 4.2,

each color component has a TFT to charge a storage capacitor, which maintains the appropriate

voltage between the polarizers. When a component is half-activated, the capacitor may put the TFT

into a state that draws a higher amount of current, which contributes to higher energy consumption.

It must also be mentioned that the relation between pixel power consumption and storage capacitor

voltage can be different for different LCD technologies. For example, we find that power consump-

tion for “Grey” is between that for “Full” and “Black” for the Zaurus LCD. Cheng and Pedram [28]



56

Table 4.8: Energy for different colors for the QPE theme on Zaurus

Theme color Energy (Joule) Over Bright(%)

Bright 0.416 0

Purple 0.417 0.4

Desert 0.422 1.5

Grey 0.423 1.6

also made a similar finding for a transmissive LCD from Philips. Nevertheless, the impact of color

on LCD power consumption is obvious.

On Zaurus, users can choose different colors for GUI themes. Table 4.8 gives the system energy

for presenting the “Application” window with different colors for the QPE theme for one second.

It confirms the observation made in the iPAQ1 experiment. It also shows the percentage system

energy increase when compared with that of the “Bright” theme color.

Color sequence: As the analysis in Section 4.2 reveals, temporal changes in the screen cost

energy. When the screen changes color, the CPU consumes additional energy to generate data for

the framebuffer, the framebuffer has to be then updated, and corresponding liquid crystals have

to change orientation. The second experiment was designed to measure the energy of iPAQ1 for

changing the screen from black to different colors. To eliminate the additional energy due to the

LCD presenting different colors, it is turned off. Therefore, the experiment mainly accounts for the

additional energy due to the first two of the three processes mentioned above. The data are presented

in Table 4.9. It demonstrates the more the color changes, in terms of (R,G,B) components, the larger

the additional energy consumption. This implies that a GUI with a constant color theme will be more

energy-efficient than one that often changes color.

Color patterns: As also evident through the analysis in Section 4.2, spatial changes within a

screen also impact energy consumption. We call how colors are distributed on the screen itscolor

pattern. The color pattern determines the spatial changes within the screen. Even if the percentage



57

Table 4.9: Additional energy for showing and hiding windows of different colors on a black back-
ground

New color White Yellow (RG) Red (R) Grey Black

Add. energy (EU) 8,000 7,900 7,500 7,700 7,400

of pixels of each color remains constant (then the LCD consumes constant energy), different pixel

arrangements can introduce different switching activities in the hardware including the LCDC, sys-

tem bus, and external bus, because data for the screen have to be constantly transferred from the

framebuffer sitting in the off-chip memory to the LCDC, and then to the LCD for refreshing the

storage capacitors. We measure the energy consumption of the system when the system is idle with

full-screen windows of checkerboard patterns on iPAQ1. A checkerboard pattern consists of alter-

nating white and black blocks. For each pattern, the white and black blocks each take up half of the

screen pixels so that the LCD energy consumption does not vary. However, as expected, the energy

consumption increases when block size decreases, which leads to more spatial changes within the

screen. Table 4.10 shows the energy consumption for one second and also gives the percentage en-

ergy increase compared with that of presenting a fully white screen. It also shows the system energy

for presenting the starting home screen for Pocket PC 2002. The energy difference in Table 4.10 is

due to the showing of the screen only. The screen with smaller blocks takes more CPU time and

energy to generate the screen data, which is a separate issue from what we are concerned with here.

The above results imply that a plain GUI is more energy-efficient than fancy ones.

Input method: From the user’s perspective, a user interacts with GUIs through different input

methods, and uses a certain input method to interact with a certain type of window. Table 4.11

provides the energy consumption for different input methods on the targeted mobile systems. It also

shows the number of stylus taps an input method is equal to (denoted by #) with regard to energy

consumption. The stylus tap is the most commonly used input method. Hardware buttons are used

to trigger the most-used applications. Virtual keyboard is necessary for text input, although Zaurus

also comes with a mini hardware keyboard that we do not characterize in this chapter. Stylus move



58

Table 4.10: Different color patterns on iPAQ1

Pattern Energy (Joule) Over white (%)

Full white 0.575 0

Full black 0.581 1.0

120×160 block 0.577 0.3

30×40 block 0.584 1.6

12×16 block 0.588 2.3

3×4 block 0.598 4.0

MS home 0.590 2.6

is typically used to move a window like a scroll bar.

A stylus move is very expensive in all three systems. Moreover, it is usually associated with

continuous screen changes such as window moving and resizing, for which the energy cost is sig-

nificant. Moreover, a virtual keyboard is very expensive on iPAQ1 and Zaurus because they have

the auto-completion feature in order to accelerate user input. Since reducing usage time saves a sig-

nificant amount of energy, auto-completion is generally more energy-efficient. This issue is further

addressed in [213]. Moreover, inputting text is much slower using a virtual keyboard than a real

keyboard. Thus, it increases usage time significantly on mobile systems, and leads to more energy

consumption from the user’s perspective. For energy efficiency, stylus move and text input should

be minimized.

GUI platform comparison : In general, all three GUI platforms characterized in this chapter

perform similarly with regard to their energy usage. All are descendants of GUI platforms used

in non-energy critical computers. Most likely, none of them is designed with energy efficiency

as a goal. Each contains areas for improvement. Windows performs better in event and interrupt

handling due to its tighter integration with the OS, but suffers due to its PC lineage. X/GTK is



59

Table 4.11: Additional energy for different input methods

Input method Qt Windows X/GTK

EU # EU # EU #

Stylus tap 1,100 1 300 1 900 1

Hardware button 1,400 1.3 560 1.9 1,300 1.4

Virtual keyboard 4,000 3.6 4,700 15.7 1,200 1.3

Stylus move ∼13,500 ∼12.3 ∼5,700 ∼19.0 ∼3,000 ∼3.3

better in providing most implementation flexibility for designing an energy-efficient GUI, but suffers

from using an X server and lack of enough features. Qt offers more features for a fancy user

interface, but suffers from limited flexibility for making a GUI simpler. Moreover, since each of

them only works with a unique OS and requires a different license, a platform choice is further

complicated. Nevertheless, the energy characterization of GUI platforms presented here should

help GUI designers make a better decision and help GUI platform/toolkit developers improve their

work with regard to energy consumption.

4.5 GUI design for energy efficiency

As the results presented above show, the energy impact of GUIs is significant. It is extremely

important to optimize them when energy consumption is of concern. Although GUI design is an

established discipline in the community of human-computer interaction, no previous research takes

energy efficiency into consideration. Based on the GUI energy characterization presented in this

chapter, we next offer some first insights into energy-efficient GUI design, and compare them with

the traditional do’s and don’ts for GUI design [109] when possible.

Improve user productivity : Mobile systems spend most of their time and energy during idle

periods in human-computer interaction. The energy consumed by most GUI operations, as charac-



60

terized in this chapter, will appear insignificant when compared with that consumed in idle periods.

Hence, reducing the task time is the most effective way of energy reduction, and an energy-efficient

GUI should be designed for maximum user productivity. Fortunately, user productivity has been one

of the most important concerns of conventional GUI design. For example, fast access to functional-

ities is regarded as important by traditional GUI design [109] (pp. 62-78). With a direct impact on

energy efficiency, user productivity becomes even more important for mobile systems.

Minimize screen changes: There are several ways for minimizing screen changes, some of

which agree with the traditional methods for GUI design to preserve display inertia. For example,

GUI changes may be cached. That is, consecutive changes taking place within a short time interval

can be presented as one single change without affecting user interaction. This also means that

continuous screen changes as animation and window scrolling should be avoided, which disagrees

with the traditional method for providing visual continuity [109] (p. 282).

Avoid or minimize text input : Traditional wisdom [109] (pp. 121-128) makes this recommen-

dation to minimize user switching between a mouse and keyboard. This is even more important

from the energy point of view for mobile systems since text input is much slower for them. For

example, if the range of inputs is known beforehand, a list can be supplied to ask users to choose,

instead of type in, text.

Reduce redundancy: This both disagrees and agrees with traditional wisdom. Traditional

wisdom asks for an animated progress indicator to improve software responsiveness while a simple

busy indicator may be more energy-efficient. Traditional wisdom also asks for consistent menus

which keep useless menu items on the menu window, but deactivate them, in order to improve user

friendliness [109] (p. 62). However, such items may be removed to save energy once a user has

become familiar with the software. To summarize, features that do not improve user productivity

should be avoided. This does agree with traditional wisdom on task queue optimization for ignoring

outdated user requests [109] (p. 397).

Do something while waiting for user input: Since being idle consumes a lot of power, a

more aggressive way to improve user productivity is to speculate on what may be the user input and

get the result ready before the next input is provided. For example, auto-completion in the virtual



61

keyboard is one way of speculating. Moreover, tasks can be reordered to first present those windows

on the screen that ask for user input, and then go ahead with processing of other tasks. This idea

coincides with the traditional wisdom of dynamic time management [109]. However, it is used for

a different purpose here.

Style and color: First, being economical and terse is important, as we have shown that the

window size and text size do matter in terms of energy. Second, choosing colors that consume less

power on the display is also important. For example, colors with fewer color components consume

less power for TFT LCDs, as shown in this chapter. Moreover, color changes from window to

window and fine color patterns or highly decorated windows should also be avoided, and plain

windows should be preferred.

Make GUI energy-aware: While energy efficiency refers to energy consumption per task,

energy awarenessrefers to the capability of trading other aspects of a task for energy savings.

Many insights offered above save energy with sacrifice in another aspect. For example, not showing

progress bars may be somewhat awkward; inconsistent menus may be slightly confusing; a plain

theme may render software less attractive. Moreover, new display technologies [14, 29, 61, 167]

allow tradeoffs between GUI aesthetics and energy savings. Instead of using an energy-efficient

GUI all the time, a mobile system needs an energy-aware GUI that adapts to energy availability for

the best tradeoff.

4.6 Chapter summary

This chapter presented the first study to characterize the energy consumption of GUIs imple-

mented on three popular mobile GUI platforms. It analyzed the GUI energy consumption from the

perspectives of hardware, software, and user, demonstrating that a GUI has a significant impact on

energy consumption. It highlighted the energy impact of interfacing, as compared to “computing.”

Based on the characterization, it offered insights for improving GUIs for energy savings, and pro-

vided a solid foundation for further research on energy-aware and energy-efficient GUI design [213].



Chapter 5

Energy Efficiency of Mobile User

Interfaces

In Chapter 4, we presented an energy characterization of mobile GUIs. Without quantitatively

considering user productivity, however, we were unable to truly evaluate the energy efficiency of a

GUI. In this chapter, we first extend our energy characterization to other state-of-the-art interfaces,

and then evaluate their energy efficiency based on user productivity information. The chapter is

organized as follows. We first describe the experimental setup in Section 5.1. Then we present

an energy characterization of visual and auditory interfaces, and manual input techniques in Sec-

tions 5.2, 5.3 and 5.4, respectively. We present a comparative study of them in Section 5.5. After

that, we present observations for techniques presented in Chapter 4 and this chapter in Section 5.6.

We summarize the chapter in Section 5.7.

5.1 Characterization setup

Table 5.1 provides information on system settings and input methods for the two mobile systems

characterized in this chapter. Both are new models of the iPAQ and Zaurus used in the previous

chapter. iPAQ is also equipped with Bluetooth. Note that several different handwriting recognition

schemes are available on both computers. The user can input text letter-by-letter using letter or

62



63

Table 5.1: System information for iPAQ and Zaurus

iPAQ Zaurus

Model HP iPAQ 4350 Sharp SL5600

SoC Intel XScale400MHz

Storage 32MB ROM, 64MB RAM 16MB ROM, 64MB RAM

Display 240× 320, 16-bit color

Transflective/back light Reflective/front light

OS MS Pocket PC 2003 Embedix Plus PDA 2.0 (Linux 2.4.18)

Battery 1560mAh/3.7V 1700mAh/3.7V

Text entry Touch-screen with stylus

Hardware mini-keyboard (QWERTY)

Virtual keyboard (QWERTY)

Handwriting recognition

Image/Video N/A CF digital camera

Audio Integrated mic., speaker & headphone jack

Speech recog. Voice Command [145] N/A



64

block recognition on both systems. The user can also input a group of letters using Microsoft

Transcriber[144] on the iPAQ.

Power measurements: Power measurements are obtained by measuring the voltage drop across

a100mΩ sense resistor in series with the5V power supply cord. The measurement system consists

of a Windows XP PC with a GPIB card and an HP Agilent 34401A digital multimeter. A program,

developed with Visual C++, runs on the PC and controls the digital multimeter to measure the

voltage value. The value is sampled about200 times per second.

Basic power breakdown: We first characterize the power consumption due to hardware activi-

ties initiated by user interaction. We use the power consumption of idle systems (in the IDLE mode)

with the display off as the baseline, and present the power consumption of additional hardware ac-

tivities as additional power consumption relative to the baseline. The additional power/energy con-

sumption of an event is obtained through two measurements, as described in Section 4.3: one for

the system power/energy consumption during the period an event of interest occurs; the other for

the system power/energy consumption during the same period when the event does not occur. For

example, the additional power consumption of the LCD is obtained by subtracting the system power

when the system is idle and the LCD is off from that when the system is idle and the LCD is on.

The power characterization results are presented in Figure 5.1. In this figure, “BT Trans.” refers to

Bluetooth transmitting data at 9.6 Kbps; “BT Paging” refers to Bluetooth seeking a connection with

another device, and “Comp.” refers to measurements when the system is repeatedly performing the

DCT described in Section 4.3.

5.2 Visual interfaces

We first examine visual interfaces.

Graphical user interface: In Chapter 4, we presented a comprehensive analysis of the energy

consumption required for GUI manipulations. In [233], we showed, however, that most of the

system energy is consumed when the system waits for the next user input. If we ignore the additional

energy consumed by the system to generate a GUI response, GUI manipulation-based interfaces

basically consume energy through a static display and an idle system. As pointed out in Chapter 4,



65

470
84

383

985

444
82

189

244

295

1540

0 400 800 1200 1600

   iPAQ

Zaurus

Power/Extra Power (mW)

Baseline
LCD
Lighting
Comp.
BT Paging
BT Trans.

Figure 5.1: Baseline power and additional hardware power consumption

the most effective system energy reduction strategy is to improve user productivity so that more

tasks can be accomplished given the same battery lifetime. In Section 5.5, the energy efficiency of

GUIs is compared with other interfacing technologies based on the length of the corresponding GUI

operation.

Visual input : Gesture recognition and lip-reading have been proposed as possible techniques

for multi-modal human-computer interaction. Both require video or image input. We used a CF

digital camera card on Zaurus to obtain its power cost. When the camera is turned on with a

480 × 320 resolution and faces a static object, the system consumes about1.35W . When the

object moves, the power consumption increases slightly to about1.36W . This is close to the power

consumption when the user is preparing for a shot,e.g., adjusting the focus and view. Also, it takes

about0.33J to capture a480 × 320 picture. Since a user usually takes more than a few seconds

to prepare a shot, it is obvious that it is more important to reduce the user’s preparation time and

system power consumption during that time than reduce these for actually capturing the picture.

5.3 Auditory interfaces

We next examine the auditory interfaces available on iPAQ and Zaurus.



66

5.3.1 Direct recording and playback

An auditory signal can be directly recorded and played back for interfacing purposes. Direct

recording is often used for note-taking and direct playback for short sound responses from the

computers such as warnings and notifications. If there are too many sound responses to be feasible

for direct playback, speech synthesis is required.

Direct recording: iPAQ provides a hardware button to start recording (11KHz 16-bit Mono),

which is very useful for audio note-taking. The recording consumes525mW . The additional power

consumption is thus199mW . Zaurus draws about198mW additional power consumption when

recording (16KHz 16-bit Mono).

Direct playback: A WAV sound clip (32KHz 16-bit mono) was played on both iPAQ and Za-

urus. To separate the power consumption of the speaker subsystem, the clip was played at different

volumes. Table 5.2 shows the power consumption under various scenarios. “Half” volume assumes

that the volume controller is set at the half mark on each system. In this scenario, the clip is not

comfortably enjoyable on either system, even in a quiet office environment, if the system is about

two feet from the user head. All the system power numbers include that consumed by the LCD.

The additional power consumption of the speaker subsystem is obtained by comparing the sys-

tem power consumption before and after the system is muted. This has a significant impact on

system power efficiency if the auditory output is used. Notably, using an earphone instead of the

built-in loudspeaker reduces power by more than300mW and410mW for iPAQ and Zaurus, re-

spectively. The data also indicate that using a simpler audio format (WAV as opposed to MP3)

reduces power consumption at the cost of increasing the storage requirement. Since the additional

power consumption of the speaker subsystem for playing MP3 is similar to that for playing WAV,

the power consumption for playing MP3 at different volumes is not presented.

5.3.2 Speech recognition and synthesis

We next examine the Microsoft Voice Command [145] on iPAQ to obtain its power for a speech

recognition-based interface. Voice Command is similar to the MiPad Tap & Talk system [121]

except that synthesized speech is used as feedback to the user. Not having a detailed knowledge of



67

Table 5.2: Power consumption for different auditory outputs

iPAQ (mW ) Zaurus (mW )

Format Volume System Extra Speaker System Extra Speaker

WAV Max. 747 420 367 1,030 546 422

Half 552 232 172 637 153 29

Muted 380 53 0 608 124 0

Earphone Max. 445 118 65 619 135 11

MP3 Earphone Max. 476 149 N/A 632 148 N/A

its implementation, we adopted a black-box approach. We recorded both the power trace and the

audio input/output and then aligned them to divide the power trace into meaningful segments. We

fed different inputs to Voice Command to elicit certain behaviors from it.

Speech acquisition without speech being detected: We first evaluated Voice Command under

no sound. Hence, the speech detection module does not detect any speech. A reasonable speech

recognition implementation will discard most of the acquired speech without performing feature ex-

traction under this scenario. Therefore, the power consumption can be attributed to the microphone

subsystem and speech detection module. From the power trace, we observed that Voice Command

calls the speech detection module about every250ms. Each call contributes to a peak in the power

trace, leading to an average additional power consumption of126mW .

Speech acquisition with speech being detected: We next evaluated Voice Command when

fed with irrelevant utterances, which are detected as speech but not recognized. The power trace

generated was very similar to the one when there was no speech except that the peaks became wider

when the input utterances became more continuous. These wider peaks can be attributed to feature

extraction performed immediately after speech is detected and recognition decoding after a certain

amount of speech is detected. The typical power consumption for processing a continuous irrelevant

utterance is about780mW . Interestingly, if the utterance is relevant or recognizable, the average



68

power consumption is actually much lower. For all the traces we obtained with a valid command,

the power consumption is usually about680mW in this case. The higher power consumption with

irrelevant utterances may be introduced by a larger search space. For valid utterances, the search

space can be significantly pruned because some very promising search paths can be identified early.

Speech synthesis: We recorded the power trace for iPAQ when it synthesized the speech output

for speech recognition. The additional power consumption for the speaker subsystem at maximum

volume is181mW , which is significantly smaller than that shown in Table 5.2. This is due to

the fact that the sound clip used for generating the table is a continuous flow of music while the

synthesized speech output only uses the speaker subsystem intermittently, leading to a much lower

duty cycle. The non-speaker subsystem power for speech synthesis is about75mW . Compared to

the383mW additional power required for performing DCT (see Figure 5.1), such a speech synthesis

is not computationally demanding on iPAQ at all.

It is worth noting that for many voice commands, the display need not be on. This means that82

to 526mW (82 + 444) power reduction is possible (see Figure 5.1). As we will see in Section 5.5,

speech recognition-based interfaces are more energy-efficient in many scenarios only if the display

is turned off when compared to several other interfacing technologies.

5.4 Manual input techniques

We next characterize the additional energy consumption for various manual input techniques

for text entry. For letter-based input, such as letter recognition and virtual keyboard, we examine

the additional energy consumption for inputting a letter; for word-based input, such asTranscriber,

we examine the additional energy consumption for inputting words of different lengths. Table 5.3

presents the additional energy consumption for inputting a letter. Figure 5.2 presents the additional

energy consumption for inputting words of different lengths usingTranscriberon iPAQ. The energy

consumption per letter increases slightly as the word becomes longer due to a larger recognition

effort.

The above text-entry methods consume energy through touch-screen usage and related CPU

activities. However, the energy thus consumed is insignificant compared to that consumed by the



69

Table 5.3: Additional energy consumption for inputting a letter

Input method Additional energy (mJ)

iPAQ Zaurus

Hardware keyboard ∼30 ∼50

Virtual keyboard ∼10 ∼80

Letter recognition ∼30 ∼330

0

0.1

0.2

0.3

0.4

0.5

1 2 3 4 5

No. of letters per word

E
ne

rg
y 

(J
o

ul
e

) Energy per word

Energy per letter

Figure 5.2: Additional energy per word/letter forTranscriber

LCD, which needs to be on during text entry. Therefore, the energy cost per letter is not the only

indicator of the energy efficiency of a text entry method. What matters more is the entry speed, as

we will see in Section 5.5.

5.5 A comparative study

Based on the discussion of interaction speeds and energy characterization presented in Chap-

ter 3, and Sections 5.2 and 5.3, we next compare the energy efficiency of different user interfaces.

As speech-based interfaces are gaining ground, we use such an interface as the baseline.



70

5.5.1 Output

We first examine the energy efficiency for presenting language-based information through speech

or text.

When the information to be presented is long enough, the reading/speaking rate determines

the duration of presentation. LetRspk denote a comfortable speaking rate andRrd a comfortable

reading rate inwpm. Let Ptxt denote the system power consumption for presenting text. For

simplicity, we assume thatPtxt is roughly constant for presenting any text. We ignore the energy

consumed to render the GUI for the text. The computer is basically idle after the text is presented

on the display. On the contrary, the computer has to be active when the text is spoken back to the

user. LetPspk denote the corresponding system power consumption.

The ratio of energy consumption for text and speech outputs is therefore

routput =
Rspk

Rrd
· Ptxt

Pspk

The following techniques can impactroutput: Pspk can be changed drastically by turning the dis-

play on or off or by using an earphone instead of the loudspeaker;Ptxt can be reduced by employing

aggressive power management [16, 233]. Figure 5.3 gives different values ofroutput for iPAQ and

Zaurus under some possible scenarios based on data presented in Sections 5.2 and 5.3. We assume

Rrd = 250wpm andRspk = 150wpm. “Light” indicates that the back light or front light is on and

“PM” or “NPM” refers to whether aggressive power management [16,233] is employed or not. The

X-axis denotes whether the display, together with lighting for “Light,” is on or off and whether the

built-in loudspeaker or earphone is used for speech output. For Zaurus, the direct playback power

consumption is used asPspk. Note that the speech output is more energy-efficient if and only if the

ratio is greater than 1.

For iPAQ, when the back light is on for night-time text reading, a synthesized speech output

through an earphone with the display off would be more energy-efficient than a text output. For

Zaurus, a speech output consistently consumes more energy for day-time usage when the front light

is not needed. It is more energy-efficient only when the display does not need to be on. Its advantage

primarily comes from the fact that the speech output does not mandate that the power-hungry display



71

0

1

2

3

display
off/earphone

display
off/loudspeaker

display
on/earphone

display
on/loudspeaker

r o
ut

pu
t

Light/NPM-iPAQ

NPM-iPAQ

Light/PM-iPAQ

Light/NPM-Zaurus

NPM-Zaurus

Light/PM-Zaurus

Figure 5.3: Ratio of energy consumptions for text output over speech output under different scenar-
ios

be on. On the other hand, it consumes two to three times more energy if the loudspeaker is used and

the display is left on. The key to improving energy efficiency for a speech output is therefore to turn

off the display and adopt a low-power audio delivery method other than a loudspeaker.

When the information is very short, such as short messages and notifications, the presenta-

tion duration is not primarily determined by the reading/speaking rate but other time overheads for

eye/hand movements and distraction. Therefore, speech and audio delivery can be very energy-

efficient [62,179] since it is not visually intrusive and persistent. Such short messages and notifica-

tions, if delivered as GUI presentations, could interrupt user’s ongoing work and require user action

to respond,e.g., to close the popup message box, leading to a larger energy overhead.

5.5.2 Input

Next, we compare the energy efficiency of different input methods. There are two types of input,

namely, text and control.

Text entry: In Section 5.4, we derived the additional energy consumption for inputting a letter

under different text-entry methods. As pointed out in Chapter 3, the corresponding input speeds

vary a lot. LetRentry denote the typical input speed inwpm. Let e denote the additional energy



72

consumed for inputting one letter using the method characterized in Section 5.4 andPidle denote the

system idle-time power consumption. We assume an average word requires six letter inputs [26],

including a space. On the other hand, letRspk denote a comfortable speaking rate for recognition-

based input andPrecog the system power consumption during speech recognition. If we ignore the

energy consumed during the delay between the end of speech and the end of speech recognition, the

ratio of the energy consumptions for manual text entry and speech-based text entry is given by

rinput =
Pidle

Rentry
· 60 + e · 6

Precog

Rspk
· 60

=
Rspk·Pidle

Rentry·Precog
+

e·Rspk

10·Precog

Obviously, the energy efficiency of an input method is primarily determined by its input speed.

Although Voice Command is not intended for text entry, we assume speech recognition-based

text entry would have similar power characteristics and therefore use the power consumed by the

Voice Command recognition process asPrecog. Figure 5.4 plots therinput for the hardware mini-

keyboard (HW MKB), virtual keyboard (VKB), and letter recognition (Letter Recog.) using data

from Chapter 3, and Sections 5.2 and 5.3. For each method, four cases are shown. “ideal” refers

to typical input speed without considering error correction; “No LCD” refers to comparisons to

speech recognition with the display off; “No LCD/Light” refers to night-time usage with the back

light on as compared to speech recognition with the display off. Except for “ideal,” input speeds are

expressed incwpm. The break-even line withrinput equal to 1 is also shown. For any point above

this line, the speech recognition-based input is more energy-efficient. From Figure 5.4, the potential

energy advantages for speech recognition-based text input are obvious since speech is potentially

much faster than any other text input method. However, a recognition-based input method usually

incurs much higher input errors, leading to a much lower speed incwpm. For example, the speed

of handwriting recognition is about half the speed of handwriting. Studies in [35] have shown that

speech recognition speeds of17cwpm are already available and may reach45 to 50cwpm in the

near future. If the power consumption for correcting errors in speech recognition is about the same

as the power consumption during recognition, Figure 5.4 shows that speech recognition is already

more energy-efficient than letter recognition and also the virtual keyboard for night-time usage if the

speech recognition-based interface does not require the display to be on. Moreover, when a speed of

45 to50cwpm is achieved by the speech recognition-based interface, it will be more energy-efficient



73

0.1

1

10

100

0 20 40 60 80 100 120 140 160

Speech recog. input rate (cwpm)

r in
pu

t
HW MKB-ideal VKB-ideal Letter Recog.-ideal
HW MKB VKB Letter
HW MKB-No LCD VKB-No LCD Letter Recog.-No LCD
HW MKB-No LCD/Light VKB-No LCD/Light Letter Recog.-No LCD/Light

Figure 5.4: Ratio of energy consumption for different text-entry methods over speech-based text
entry

than most text-entry methods, even the hardware mini-keyboard. Comprehensive treatments of error

correction and speech recognition throughput are provided in [35,112,199].

Command and control: Error correction drastically decreases the input speed for speech

recognition-based text entry, leading to a much lower energy efficiency. For command/control ap-

plications such as Voice Command, however, errors can be corrected much faster,e.g., by reissuing

the command. Moreover, for such applications, the recognition accuracy is usually much higher.

This leads to a higher throughput and thus a higher energy efficiency. For a command/control task,

let us assume it may takeM stylus taps or it may take aW -word voice command. LetN denote

the speaking rate incwpm. Based on the traces collected for system usage [233], we assume each

stylus tap is accompanied by a750ms user delay, which is mostly an underestimation for typical

menu selections on iPAQ. Moreover, we assume that the energy consumed by the GUI response can

be ignored compared to that consumed during the user delay. Therefore,rcc, which represents the

ratio of the energy consumptions by GUI-based and speech-based command/control, is given by:

rcc =
Pidle

Precog
· M ·N ·0.75

60·W



74

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5
No. of taps

M
ax

im
al

 n
o

. o
f w

o
rd

s 
p

er
 c

m
m

an
d

Ideal
95% accurate
95% accurate/No LCD
95% accurate/No LCD/Light

Figure 5.5: The maximal number of words per command for better energy efficiency

Obviously, the shorter a voice command, the more energy-efficient it is. Figure 5.5 shows the

maximal number of words per command required so that speech-based command/control is more

energy-efficient than GUI operations with different numbers of taps under various scenarios. 100%

accurate speech recognition withN = 150 is used to draw the “ideal” line. Note that 150 wpm

is regarded as the conversational English speaking rate. In other cases, 95% speech recognition

accuracy is used withN = 100, assuming10 times more energy/time required to correct an error

compared to speech recognition. Such an assumption is pessimistic since most errors can be cor-

rected by simply reissuing the command. “No LCD” and “No LCD/Light” have the same meaning

as in Figure 5.4.

Figure 5.5 shows thata one-word voice command is more energy-efficient than GUI operations

with two or more taps. If the display can be turned off for speech-based command/control, its

advantage is higher.

Taking notes: Speech and handwriting recognition-based text entries are mostly hindered by

their low accuracy and high cost for correcting errors. However, if text transcription is not needed

in real-time,e.g., when using an audio recording or handwriting to take a note, it is most energy-

efficient to use speech since speaking is much faster than any other input method. However, if the



75

note has to be retrieved in the format that it was recorded before recharging, there is a tradeoff

between the energy consumptions for taking a note and for retrieving it, especially when it has to be

retrieved multiple times.

5.6 Observations

Based on the energy characterization presented in this chapter and Chapter 4, we can make the

following observations for improving energy efficiency.

Speed matters: The faster a task is accomplished and the higher the user productivity, the more

energy-efficient the system usually is. From this perspective,interface designers share a significant

responsibility for designing an energy-efficient system. In most cases, improving user productivity

may incur average power consumption increase. As long as the productivity improvement percent-

age is larger than average power increase percentage, the energy efficiency is improved.

In terms of the specific interfacing methods, speech-based input stands out since speech is inher-

ently much faster than other input methods. For recognition-based input, such as handwriting and

speech recognition, accuracy is important due to the high cost of correcting errors. Thus, accuracy

is also important for energy efficiency.

Display matters: The energy efficiency for a display-based interface suffers a lot since its

average power consumption includes that of the display, which is large. Touchscreen/stylus-based

interaction basically integrates the input hardware with the output hardware, leading to a high power

consumption even for making an input, especially for night-time usage. When the power-hungry

display has to be on with a slow input rate,e.g., for all the manual text-entry methods, energy

efficiency is drastically reduced. Speech-based interfaces again may enjoy an energy efficiency

advantage since their display usage can be carefully avoided.

The power consumption landscape, however, is likely to change in a few years due to progress

in new display technologies. OLEDs [58] promise high-quality low-power flexible displays for

mobile computers. More importantly, bistable display technologies [40, 114, 229] will reduce the

static power consumption to nearly zero. This will significantly reduce the energy that a system

spends in waiting for user inputs.



76

Audio matters: Surprisingly, our energy characterization results showed that the speaker sub-

system is also power hungry, drawing as much as367mW and422mW of power for iPAQ and

Zaurus, respectively. This power consumption can be drastically reduced by using earphones in-

stead of loudspeakers. However, the wires connecting the earphones may impact other usage issues.

Since iPAQ Bluetooth consumes more than470mW additional power when actively transmitting

data (see “BT Trans.” in Figure 5.1), a Bluetooth headset is unlikely to reduce the audio delivery

power consumption. Therefore,for better exploiting the speed of speech-based interfaces, low-

power wireless voice stream delivery between the user and computer is critical.

Amdahl’s Law for energy: Amdahl’s Law has been widely used for guiding performance

improvement [85]. It indicates that we need to “make the common case fast” [85]. The same law

can be easily extended to energy reduction. Suppose the energy consumption for a user task comes

from many sources. A particular source contributes to aFraction of the total. If we can reduce

the energy consumption from that source by a percentage, termedReduction, we can reduce the

energy consumption for that task by

Reductionoverall = Fraction×Reduction.

Such a law indicates we should focus on the larger sources. There are two implications. First,

we should focus on the system components that consume more energy. For example, we should fo-

cus on the display instead of the processor for most GUI-based tasks on mobile systems. Second, we

should focus on the time interval when most energy is spent. For example, we should focus on sys-

tem idle periods instead of busy periods for most interactive tasks, because the system spends most

of its energy in idle periods [233]. This also reaffirms our conclusion in Section 5.2 on improving

the energy efficiency of the CF digital camera. These two implications are extremely important for

interactive systems that engage users through user interfaces since conventional low-power research

has focused on how to make computing more power-efficient.



77

5.7 Chapter summary

This chapter presented energy characterization of state-of-the-art user interfaces on two com-

mercial mobile systems. Based on energy characterization and user productivity information, it

offered a comparative study of these interfaces. Specifically, it found that speech-based interfaces

have a large potential to outperform other input methods because a human user can speak much

faster than write or type. On the other hand, a speech-based output suffers from high power con-

sumption required for audio delivery without enjoying a significant speed advantage over text-based

output. Along with Chapter 4, this chapter demonstrated the significant energy efficiency impact

of user interfaces. They not only showed that state-of-the-art user interfaces consume far more en-

ergy/power than the theoretical minimal as presented in Chapter 3, but also highlighted the slow-user

problem as first discussed in Chapter 1. That is, low user productivity (speed) on mobile systems

has become a great challenge to their energy efficiency; energy consumption in idle periods is the

bottleneck. Tackling the slow-user problem will be the focus of the following three chapters.



Chapter 6

Pervasive Interfacing: A Personal-Area

Network of Wireless Interfacing Devices

Chapters 3 to 5 have already highlighted the slow-user problem that severely limits the energy

efficiency of mobile systems. On the other hand, as argued in Chapter 1, mobile systems are on

their evolutionary track to serve people for pervasive computing, connectivity, and entertainment.

Unfortunately, not only has the slow-user problem become a great bottleneck to this goal, but also

to solve it means to provide a user with natural access to his or her mobile system anywhere and

anytime in an energy-efficient fashion. We call the solutionpervasive interfacing, which is the focus

of this chapter. In this chapter, we present a Bluetooth-based PAN of wireless interfacing devices

for pervasive interfacing. The chapter is organized as follows. We set out the design principles in

Section 6.1, and then describe the Bluetooth-based PAN and its power optimization in Sections 6.2

and 6.3, respectively. Since we leave the cache-watch for Chapter 7, we provide details of the other

two devices, violin-pad and smart speech portal, in Sections 6.4 and 6.5, respectively. After that, we

describe how information-capturing devices, such as a Bluetooth global positioning system (GPS)

receiver, can be included in the PAN in Section 6.6. We address works related to our system in

Section 6.7 and conclude in Section 6.8. Although user studies are critical for such a system that is

intended for interfacing, we focus on thesystem and hardware design issuesin this dissertation.

78



79

6.1 Design principles

In view of the limitations of the current interfacing paradigm, we follow a number of principles

for developing new interfacing devices:

• Separating interfacing from computing;

• Separating information capturing from storage;

• Employing more interaction channels such as speech;

• Simplicity: low-power and inexpensive designs.

Most current interfacing paradigms require a user to hold a mobile system in hand to operate,

leading to a great waste of our most powerful tools, our fingers, as well as the most precious com-

puting resource, attention, according to [60, 193]. Henceforth, we treat the first two principles as

critical. We follow them by employing Bluetooth to connect a mobile system and its interfacing de-

vices into a wireless PAN. We designed a wireless keypad, calledviolin-pad, which is small enough

to be attached to a keychain. Since it is physically detached from the mobile system, the user can

hold it in one hand and type in a fashion similar to playing violin. We also designed a wrist-watch,

calledcache-watch, which talks to the mobile system from time to time to display critical infor-

mation on the wrist. Although the use of Bluetooth increases interface power consumption of a

mobile system, the latter’s energy efficiency will still be improved if user productivity is improved

accordingly, as discussed in Section 2.2.2.

As Chapters 3 and 5 demonstrate, human users have very different speeds for different interac-

tion methods. The most popular methods, i.e., keyboard, stylus, and handwriting, suffer great speed

limitations due to the human factors. It is, therefore, critical to employ more interaction channels

that human beings excel at. Speech, as shown in Chapter 5, is a promising candidate. As mentioned

in that chapter, however, speech-based interfaces face a great challenge in delivering a noise-resilient

and high-quality voice stream to and from the mobile system in a user-friendly fashion. We design

asmart speech portalbased on bone-conduction sensing to respond to this challenge.



80

GPS, health 
monitoring sensors, 

and other information-
capturing devices

Blue-watch:
• Extended display
• Remote control

Violin-pad:
Single-hand single-tap 
multi-finger keypad

Smart speech portal:
Noise-resilient high-
quality speech stream

Digital hub:
• PAN manager
• Device managers

Figure 6.1: System overview of the PAN

As to the last principle, we believe that new interfacing devices have to be inexpensive to gener-

ate a market and train users. They have to be low-power to obviate frequent rechargings. We design

the wireless interfacing devices as inexpensive add-on devices to the mobile system. For each add-

on device, we partition the interfacing task so that only the minimal set of functionalities remain on

it. The data processing, control and application-layer protocols are implemented with only one or

two Microchip mid-range micro-controllers.

Figure 6.1 shows a system view of our PAN of interfacing devices for a mobile system. The

mobile system is the PAN center, called thedigital hub. The PAN manager and device managers

are middleware installed on the mobile system. The PAN manager coordinates communications

between the mobile system and its add-on devices, while a device manager interprets raw data

received from the corresponding add-on device, controls it, and functions like its device driver.

6.2 Bluetooth-based PAN

In this section, we provide details of the PAN that integrates a mobile system and its wireless

interfacing devices.



81

TC

TPC TPS

Time (ms)

Paging/Page Scan

TPSS

Figure 6.2: Paging/Page-Scan session

6.2.1 Bluetooth

The Bluetooth standard [15] provides a number of profiles for different applications. For ex-

ample, most Bluetooth headsets implement the Headset Profile, which provides a two-way 64kbps

(kilo-bit per second) voice stream. Using the profiles simplifies application development at the ex-

pense of a loss in flexibility and increase in hardware complexity. Since we wish to simplify the

add-on devices as much as possible, we choose the simplest profile, the Serial Port Profile (SPP), for

all devices. The add-on devices only send out and receive raw data through SPP, while the device

managers installed on the mobile system interpret the data accordingly.

Establishing a connection: To establish a connection between two Bluetooth devices, one of

them has to initiate the connection byPaging. It is called theinitiator. The other device must do

Page Scanto accept the initiation and establish the connection. It is called theresponder.

Both Paging and Page Scan are carried out in sessions. In a Paging/Page-Scan session, a Blue-

tooth device does Paging/Page-Scan forTPS seconds everyTPC seconds.TPS , TPC , and the length

of a session,TPSS , can be changed by software. Usually,TPS andTPC are multiples of a 625µs

slot and are on the order of milliseconds andTPSS is on the order of seconds. Figure 6.2 shows that

a Bluetooth device enters a Paging/Page-Scan session everyTC seconds.

In our PAN of interfacing devices, both the initiator and responder specify the Bluetooth address

that they wish to connect to. The mobile system can be either an initiator or responder. The smart

speech portal and the violin-pad initiate the connection with the mobile system upon user’s instruc-



82

tion. Such devices are calledactivedevices since they require user engagement to function. The

cache-watch, GPS receiver and other information-capturing devices are responders. They are called

passivedevices since they function under the control of the mobile system without user engagement.

iPAQ Bluetooth: The HP iPAQ Pocket PC 4350 described in Section 5.1 is the mobile system

in our prototype system. It is equipped with Windows CE Pocket PC 2003 edition and a Bluetooth

protocol stack from WIDCOMM (acquired by BROADCOM). The Bluetooth protocol stack em-

ulates two virtual serial ports, each for incoming and outgoing connections. Since a port cannot

communicate with more than one Bluetooth device simultaneously, our mobile system is able to

communicate with only two devices at the same time, which is a limitation of this implementation.

Since we have more than two devices, a time-division access scheme has been implemented. Note

that “incoming” and “outgoing” only refer to which party initiates the connection. Both ports are

full duplex.

Bluetooth-RS232 adapter: The adapters, called Promi-ESDTM , used in the interfacing de-

vices are manufactured by Initium [99] and belong to two classes. Class I adapters have larger

transmission power than class II ones as specified by the Bluetooth Standard v1.1. They include a

low-power implementation of the Bluetooth SPP. The low-power Park mode is supported only for a

connection between two Promi-ESDTM modules, which is not true in our project. Other Bluetooth

low-power modes are not supported at all. As a result, we have to rely on the supported APIs to

configure the parameters for Page Scan/Paging and connect/disconnect for power management. A

Promi-ESDTM module can be configured so that it connects to or can be connected from a certain

Bluetooth address.

Power characteristics: Figure 6.3 shows the power characteristics for the Promi-ESDTM class

I and iPAQ 4350 Bluetooth modules. In the STANDBY mode, the Bluetooth module is powered-on

but not active. There are no data for the iPAQ Bluetooth STANDBY mode since we were not able to

put the iPAQ Bluetooth module into the STANDBY mode. In the PENDING mode, the Bluetooth

module is in a Paging/Page-Scan session. Note that we use the default values forTPC (1024 slots)

andTPS (128 slots), which have an impact on the power consumption in the PENDING mode. In

the CONNECTED mode, the Bluetooth module is connected with another Bluetooth device, ready



83

0

100

200

300

400

500

600

STANDBY PENDING CONNECTED 9.6kbps 230.4kbps

P
ow

er
 (

m
W

)
Promi-ESD iPAQ

Figure 6.3: Bluetooth power consumption

for data transmission. Figure 6.3 also shows the power consumed when the Bluetooth module is

connected and transferring data at9.6kbps and230.4kbps.

The data for Promi-ESDTM class I module are taken from the manufacturer’s manual except

that the power consumption for230.4kbps is based on our measurement. Those for class II modules

are similar. The power consumption for the iPAQ 4350 Bluetooth module was also measured. All

the power measurements were based on measurements of the voltage drop across a100mΩ sense

resistor embedded in the power supply. The voltage drop was measured with an Agilent 34401A

digital multi-meter. The power consumption of the iPAQ Bluetooth module shown in Figure 6.3 is

actually the extra power consumption, which is the difference between the power consumption of

an idle iPAQ with Bluetooth off and that of the same iPAQ with Bluetooth in different modes. The

results show that the Promi-ESDTM is much more power-efficient than the iPAQ since the former

has a much more efficient hardware implementation.

6.2.2 PAN manager

The PAN manager on the mobile system is critical to the functions of the PAN. It was developed

using Microsoft embedded Visual C++ and the BTAccess library [19]. It consists of three major

components and interacts with the device managers and Bluetooth protocol stack, as illustrated in



84

Power manager

Application software

Incoming-port 
manager

Outgoing-port 
manager

Scheduler

Bluetooth stack

Device managers

Active devices Passive devices

Figure 6.4: Software installed on iPAQ; the PAN manager is shaded

Figure 6.4. When a new device joins the PAN for the first time, it has to register with the PAN

manager through a Bluetooth Discovery process. After that, both the add-on device and the PAN

manager remember each other’s unique Bluetooth address. The PAN manager also gets informa-

tion about the add-on device’s type and device manager. After being registered, the add-on device

can join the PAN by connecting with the mobile system directly without the standard Bluetooth

Discovery process.

Incoming-port manager: The incoming-port manager controls the connections of the mobile

system with active devices, such as the smart speech portal and violin-pad. It forces the mobile

system to enter a Page-Scan session periodically since requests for connection from active devices

should be served timely. In our prototype, we use the default values ofTPC andTPS , and choose

TC andTPSS to be 4 and 2 seconds, respectively. There is a tradeoff between energy consumption

and connection delay involved. We address this issue in Section 6.3. The user can also manually

stop or start the manager to save energy of the mobile system. Once a connection is established, the

corresponding device manager is called.

Outgoing-port manager: Passive devices, such as the cache-watch and information-capturing

devices, connect to the outgoing-port as responders. Unlike active devices, such as the violin-pad,

the communication delay between passive devices and the mobile system is usually tolerable. There-



85

fore, the outgoing-port manager schedules the communication to share the port among all passive

devices. The device managers for those passive devices run even when there is no connection. They

interact with applications, such as Outlook, and send requests for a connection to the scheduler. The

port manager buffers these requests, surveys the PAN members periodically to check which passive

devices are available, and schedules its outgoing connection accordingly. When a connection to a

passive device is scheduled, the outgoing-port manager forces the mobile system to enter and stay

in a Paging session for a certain period of time until the connection is established.

Power manager: The power manager is responsible for system and Bluetooth power manage-

ment of the mobile system. Ideally, the power manager should be able to place the Bluetooth module

into different power-saving modes based on information from the incoming-port and outgoing-port

managers. Unfortunately, since we do not have direct access to the Bluetooth protocol stack on

iPAQ, the power manager in the prototype can only turn the Bluetooth on and off for power savings.

6.3 System power optimization

Battery lifetime is critical to all devices involved in the PAN. For the mobile system, Bluetooth

is one of the largest power consumers. It inflicts the primary power overhead on the mobile system

for using a wireless PAN. For the interfacing device prototypes, the Bluetooth modules dominate the

power consumption, usually taking more than 90% of the total. Therefore, we focus on Bluetooth

for power optimization.

Scheduled communication for passive devices: For a passive device, such as the cache-watch

and GPS receiver, Bluetooth consumes most of its energy in the Page-Scan sessions since data com-

munication is usually very brief. Fortunately, as mentioned before, the mobile system knows when

it needs to talk to a passive device with information from the outgoing-port scheduler. Therefore,

when the mobile system is connected to a passive device, the outgoing-port manager predicts when

the mobile system will seek communication with the passive device again based on prior history or

a prefixed schedule. The mobile system then notifies the passive device just before the end of the

current communication. The passive device will shut its Bluetooth module down or put it into the

STANDBY mode, depending on when the next communication is scheduled. Later on, both the mo-



86

bile system and passive device enter the PENDING mode just before the scheduled communication

so that both will spend minimal time in the PENDING mode. Only when they lose synchronization

do they enter the PENDING mode periodically to re-synchronize.

Tradeoffs for active devices: Active devices, such as the violin-pad and smart speech portal,

typically seek connection with the mobile system when the user explicitly makes such a request. The

connection latency is important to the user. Since user behavior is very hard to predict in this case,

to guarantee minimal latency, the mobile system Bluetooth would need to stay in the PENDING

mode all the time, which will drain the battery very quickly. Therefore, we trade connection latency

for energy saving on the mobile system. Instead of staying in the PENDING mode, the mobile

system enters it and stays in it for 2 seconds every 4 seconds. With an extra latency of 2 seconds,

we reduce the energy consumption by half. Moreover, users can manually start or stop the mobile

system Bluetooth Page-Scan session if more energy savings are desired.

Real-time data compression: Smaller the amount of data transferred, smaller is the energy

consumption. However, data compression can only benefit data-intensive devices. The only data-

intensive device in the PAN is the smart speech portal. We design a simple real-time differential

speech coding scheme to reduce its data rate and energy consumption.

Limitations : Despite the above optimizations, we still suffer from limitations imposed by Blue-

tooth itself and its implementations on iPAQ and Promi-ESDTM . Establishing a connection is a

lengthy and power-hungry process for Bluetooth. We have observed that it consumes most of the

energy for passive devices. When we started our project, only two wireless PAN technologies were

commercially available: Bluetooth and ZigBee. We chose Bluetooth over ZigBee for two reasons.

First, a variety of Bluetooth modules are widely available and high-end PDAs/smart-phones have

already been equipped with Bluetooth. Second, ZigBee does not provide a data rate high enough for

media applications we envisioned for the future. We are now evaluating the possibility of a hetero-

geneous wireless PAN with ZigBee for low data-rate applications and Bluetooth for high data-rate

ones. The Bluetooth implementation on the iPAQ also severely limits its energy efficiency. The

Bluetooth protocol stack is implemented in software. That is, the whole system except the display

has to be on if Bluetooth is needed. A much better approach would be to implement the Bluetooth



87

(a) Prototype (b) Usage

Figure 6.5: The violin-pad

protocol stack on a separate system so that Bluetooth can operate without the whole system being

active and the system can be woken up based on Bluetooth activities. The lack of support for low-

power modes in Promi-ESDTM is also a limiting factor. For the current prototypes, we have to shut

down the Promi-ESDTM modules to save energy, and pay the price in terms of latency and energy

overhead for reconnecting. In summary, the energy efficiency of the whole PAN can be significantly

improved based on better wireless modules.

6.4 Violin-pad

As shown in Chapters 3 and 5, slow text entry is an obstacle to high energy efficiency and

new services on mobile systems. In this section, we present our solution to this problem, a keypad

inspired by the violin, called violin-pad.

Design: Figure 6.5(a) shows the violin-pad prototype. The electrical part consists of two mod-

ules: Promi-ESDTM class II and Microchip PIC16LF873. Although it is the electrically simplest

one of the three devices, the violin-pad is mechanically the most challenging due to its size. We

have to make sure that proper tactile feedback is provided to the user and the buttons are properly

designed to achieve a decent input speed with a low error rate. 12 of the 20 mechanical buttons

are two-way rocker-buttons, i.e., they can be pressed toward either the top or the bottom end with

different directions corresponding to different inputs. The button design used in this prototype is

illustrated in Figure 6.6. Such buttons are calleddouble buttons.



88

Side view

Top view

Side view

Top view

Figure 6.6: Double button design

The alphabet and digit input relies on the 12 double and 4 regular buttons. They are organized

into four columns, each akin to a violin string, and four rows, to each of which a finger is devoted.

The double buttons in the third column have a prominent texture so that the user can feel which

column the fingers are on. For the current version, the keys are organized primarily according to the

alphabet. Since the user’s hand is in control when the violin-pad is used, there is a button for the

user to switch it on/off. Upon being switched on, the violin-pad enters a Paging session to connect

to the mobile system. It draws about 33mW power during active usage.

Usage: The violin-pad is intended to be used in a fashion similar to how a violinist positions

fingers on the violin neck. That is, the user holds the pad in one hand and uses four fingers for

active typing, as illustrated in Figure 6.5(b). However, the user can use it in any other preferred

way. We are still conducting user studies of the violin-pad with initial results being very promising.

In addition to providing fast text-entry, the violin-pad can be used together with the cache-watch for

short-message inputs without the user having to take out the mobile system. These two devices can

communicate through the mobile system at the same time because they connect to different iPAQ

Bluetooth virtual serial ports.

The main concern with respect to the violin-pad and other active devices is the connection

latency with the mobile system. As mentioned in Section 6.3, the mobile system enters a Page-



89

Scan session only periodically for reducing Bluetooth-related energy consumption. After the user

requests a connection, there may be a latency of up to two seconds before violin-pad’s Paging

actually catches mobile system’s Page Scan. Then it takes about three more seconds to establish the

connection. That is, the user has to expect a latency of three to five seconds. Latency improvement

without power overhead is possible only if more Bluetooth low-power modes are supported.

Related devices: Text-entry for a highly mobile device is challenging due to the available real-

estate. Starner offers an excellent survey in [197] on this topic. It is no surprise at all that many

existing solutions are not satisfactory. Many suffer from very low speed, such as Multi-tap (used on

cell phones), Thumbscript [206] and Fastap [46]. They share the same two problems. First, they are

physically attached to the host device. The user has to hold the mobile system to type. Second, the

user can at most employ two fingers for typing. The violin-pad solves these two problems by using

Bluetooth and a violin-neck-like design. The design of Twiddler [137,209] could look similar to the

violin-pad. However, cording, which is key to Twiddler, imposes a significant memory load on its

user. On the contrary, the violin-pad is based on single-tap instead of cording. Moreover, Twiddler

is wired instead of being wireless, and was not designed for a size that can fit into a keychain.

6.5 Smart speech portal

The most challenging device of the three is the smart speech portal. Indeed, there is a Bluetooth

Headset Profile, which was intended for voice communication instead of speech interface. The

supported audio quality (8K samples per sec. and 8 bits per sample) is not recognition-friendly or

noise-resilient. Moreover, it becomes difficult to implement features facilitating speech recognition

if the Headset Profile is used. In this section, we provide details of the smart speech portal. Based on

the simplest Serial Port Profile, it offers better audio quality (11K samples per sec. and 10 bits per

sample) and uses a bone-conduction sensor to provide a clean voice stream for recognition. With

the smart speech portal, the user can just talk to establish a connection between the speech portal

and mobile system, send speech data in a real-time fashion to the mobile system, and leverage the

computing power on the mobile system for a speech interface. Extreme care has been taken to

pack speech and bone-conduction data into the230kbps Bluetooth serial port and implement power



90

(a) Prototype

Two channel 
audio data

Data from the 
digital hub

Control

Bone-conduction 
sensor data

Two-way BT 
serial port

PIC IIPIC I

Promi-ESD

Close-talk 
mic. data

(b) Data and control flow

Figure 6.7: The smart speech portal

management using only minimal hardware and computing power.

Hardware design: Figure 6.7(a) shows a prototype of the smart speech portal. Note that the

close-talk microphone and the bone-conduction sensor are plug-ins not shown in this picture.

The prototype consists of two Microchip PIC16LF873 (PIC I and PIC II), one Promi-ESDTM

class I module, and one operational amplifier module (National LM6134). The Promi-ESDTM class

I module is used because we found that data loss is significant for class II modules when the data

rate is high. PIC I is devoted to packing data and sending them to the mobile system; PIC II is in

charge of speech detection using bone-conduction sensing, receiving data from the mobile system

and power management. A simplified block diagram is offered in Figure 6.7(b). The prototype

draws about 23mW when Bluetooth is disconnected but not off, about 33mW when connected but

the user is not talking, and about 125mW when the user is talking.

Software design: PIC II implements a basic speech detection scheme based on zero-cross rate

and energy of the bone-conduction signal [177]. This information is conveyed to PIC I through the

speakingcontrol signal. It also determines how long the user has either been talking or remained



91

STANDBY PENDING
connecting=1

connected=1

Connected Transmitting

speaking=1

connected=0
connecting=0

speaking=0 for 
two sec.

ACTIVE

connecting=0

Figure 6.8: State-machine description of PIC I software

silent. When the Bluetooth is disconnected and PIC II finds the user has been talking for a certain

period of time (two seconds in the prototype), it raises theconnectingcontrol signal to PIC I. When

Bluetooth is connected and PIC II finds the user has remained silent for a certain period of time (10

seconds in the prototype), it lowers the connecting signal. PIC II also obtains the status information

of the Bluetooth module and conveys it to PIC I via theconnectedcontrol signal. PIC II is also in

charge of receiving and interpreting data from the mobile system via the Bluetooth module. With

speech recognition on the mobile system, a user can use voice command to control the speech portal

such as turning it off.

Software on PIC I is best illustrated by Figure 6.8. Each state in the state machine corresponds

to a different Bluetooth mode. When PIC I is in STANDBY, the Bluetooth module can be shut

down or put into the STANDBY mode. Upon receiving the connecting signal, PIC I enters the

PENDING mode and sends commands to the Bluetooth module to start a Paging session. When

the connected signal is high, PIC I enters the ACTIVE mode, which has two sub-modes. When

the speaking signal is on, it starts analog-to-digital conversion and data coding/transfer immediately

(Transmittingsub-mode); if the speaking signal is off for two seconds, it stops data transfer to the

Bluetooth module (Connectedsub-mode), which drastically reduces the power consumption. Just

before stopping, it also sends a special series of data to the mobile system so that the latter knows

that transmission is about to pause. This is useful when a time stamp is needed for each segment of



92

speech. The data from the bone-conduction sensor can be used to suppress noise [231]. They also

provide robust information on the user’s oral activity. We have been investigating how to utilize

such an information for interfacing. For this purpose, the smart speech portal also sends the bone-

conduction data to the mobile system for further processing. Since the bone-conduction signal is

low-pass filtered, it is sampled at a rate half of that for the close-talk microphone. PIC I utilizes a

simple differential speech coding algorithm to reduce data rate and power consumption.

Device manager and applications: The device manager on the mobile system is responsible

for decoding the data into a continuous voice stream, which can either be recorded or supplied

to a speech recognizer. It also detects whether data loss has occurred in transmission. With the

prototype, a user can connect the smart speech portal to the mobile system by talking for a few

seconds. The user can disconnect by either remaining silent for a while or simply uttering the

corresponding voice command. While the smart speech portal is connected to the mobile system,

the user can access the mobile system’s computing power in a hands-free fashion through robust

command and control speech recognition.

There have been research activities to record a user’s daily activity as the digital diary [64]. A

digital camera has already been prototyped for this application [65]. Because personal voice is an

integral part of personal life, the smart speech portal can also be employed for digital diary-like ap-

plications. Since the smart speech portal only records data when the user is talking, it automatically

solves the privacy and data volume problem that many digital diary recording devices may face.

Related devices: Sensors and bone-vibration have long been used for enhancing speech quality

and improving speech recognition [78, 231]. None of the known devices are wireless or designed

for mobile systems. Bluetooth Headset Profile-based wireless headsets have been commercially

available. Again, all these devices are intended for voice communication instead of speech-based

interfaces. The Nomadic Radio system [183] is a wireless LAN-based feature-rich audio interface.

The authors focus more on the system than the interfacing device. Therefore, for the hardware

device, power-hungry wireless microphones and stereo transmitters are used. Moreover, the system

is intended to work with PCs instead of a mobile system.



93

6.6 Information-capturing devices

In last two sections, we provided details on two of the wireless interfacing devices designed

to join a mobile system-centered PAN for pervasive interfacing. In this section, we address how

information-capturing devices can be added to the mobile system-centered PAN to enable more

services.

Information-capturing devices such as sensors and GPS receivers are passive devices in our

system. Like the cache-watch, they are connected by the mobile system using scheduled communi-

cation as described in Section 6.3. They also abide by instructions from it for power and information

management. We have incorporated a Bluetooth GPS receiver into the system. The GPS receiver

connects to the iPAQ Bluetooth outgoing port as a passive device and sends data to the iPAQ pe-

riodically. Since the GPS receiver was purchased off-the-shelf, we were not able to program it for

power-management schemes such as those used in the cache-watch. Instead, the PAN manager

in the mobile system schedules the connection with it and the cache-watch. Once connected, the

mobile system reads information from it and disconnects immediately. In this way, the mobile sys-

tem is able to collect the user’s position information periodically. If the GPS receiver’s firmware

could be modified, the scheduled communication could be readily used for energy saving. Other

information-capturing devices, such as cameras and sensors for user physiological information, can

be incorporated into the PAN in a similar way. Therefore, such a mobile system-centered PAN pro-

vides an ideal platform for context-aware applications, and personal services such as digital diary

and continuous health monitoring.

The issue with sensors is that a Bluetooth module can be too expensive in terms of power

consumption, as discussed in Section 6.3. There are two ways to solve this problem. Some sensors

can be embedded on other add-on devices. For example, the sensors for skin moisture, pulse rate,

and body temperature can be mounted on the cache-watch to share the Bluetooth module. The other

solution is to implement a heterogeneous PAN with both Bluetooth and ZigBee, as mentioned in

Section 6.3.



94

6.7 Related work

As works related to each interfacing device have been addressed in the corresponding section,

we address works related to our system: the mobile system-centered PAN of interfacing devices.

PAN technologies have been investigated for many years. Using PAN for pervasive/wearable com-

puting is a natural choice since devices serving the user have to communicate with each other.

Bluetooth-based desktop sets, including a mouse and a full-size keyboard, have been commercially

available for some years. However, such desktop sets were intended to eliminate cords instead of

serving pervasive computing.

In 2003, Motorola unveiled its Offspring concept design [150], in which a mobile system, called

wireless digital assistant (WDA), connects to a number of interfacing devices through Bluetooth.

However, there have been no updates on the design since then. IBM Zurich Lab also has an ongoing

project called “Personal Mobile Hub” [94] that consists of a mobile system-centered PAN. These

works and ours share the vision for the future of mobile systems. However, our work is focused on

how to access the computing power on the digital hub pervasively.

The Spartan BodyNet [49] is most related to our work. The Spartan BodyNet is a Berkeley Dot

Mote-based low data-rate wireless PAN with three interfacing devices. The TiltType wrist device

is a tilting input device in the form of a watch. The notification ring use two LEDs to attract user

attention, and a phicon authorizes a certain level of functionality from the PAN. Since the authors

are more interested in describing each device, they offered no detail on how the PAN is managed.

On the contrary, we emphasize the importance of PAN design and its management following our

guiding principles. Moreover, the devices designed for the Spartan BodyNet offer the user very

limited capacity to access the computing power on the mobile system. Indeed, they are not intended

to provide pervasive interfacing capacity. On the contrary, our devices are designed explicitly for

this goal.



95

6.8 Chapter summary

This chapter presented the design and prototype of a mobile system-centered PAN of low-power

wireless interfacing devices, as our first step toward pervasive interfacing and solving the slow-user

problem. The PAN improves the energy efficiency of a mobile system through improving user

productivity without increasing power consumption much. It is centrally managed by the mobile

system, and interfacing devices can join as add-on devices. Three add-on devices have been de-

signed and prototyped for this purpose in this work. The violin-pad and the cache-watch provide

the mobile system the two basic means of interfacing, text-entry and display, at the same time. The

smart speech portal provides a hands-free speech portal to support the maturing speech recognition

technology. With these devices, the user does not have to physically access or operate the mobile

system to use its computing power, unless there is a need for the larger display. The PAN also

provides a platform on which new services, such as personal digital diary and continuous personal

health monitoring, can be based.



Chapter 7

Interface Cache

The essence of the slow-user problem is the speed gap between an increasingly powerful com-

puter and a constantly slow user. Chapter 6 addressed this speed gap by improving user speed with-

out increasing power consumption much. Unfortunately, user speed is eventually limited by human

factors. The approach of Chapter 6 has its own limits. Even with perfect user interfaces, a mobile

system will still face the slow-user problem, spending most of its time waiting for a constantly slow

user. On the other hand, as Chapters 3 to 5 clearly show, energy requirements of state-of-the-art

interfaces are far from the theoretical minimal. In fact, interfacing components, such as the display

and speaker subsystems, are among the most power-consuming components. Since interfacing com-

ponents have to be on when interacting with the slow user, they aggravate the slow-user problem.

Realizing that human speed is essentially limited, this chapter takes an opposite yet complementary

approach: reducing interfacing power consumption without reducing user productivity much. The

chapter is organized as follows. We first offer the motivation in Section 7.1, and then present the

design and prototype of the cache-watch in Section 7.2. The cache-watch was first introduced as

an add-on device to the PAN in Chapter 6. We will, however, now focus on its role as an interface

cache for a mobile system. We provide the evaluation of the cache-watch and address the general

design issues of interface cache devices in Sections 7.3 and 7.4, respectively. We discuss related

work in Section 7.5 and summarize the chapter in Section 7.6.

96



97

7.1 Interface cache

Within a computer, there is another speed mismatch, which is between the processor and mem-

ory. This problem is partially alleviated by using a cache [85], a much smaller but faster memory

unit, to hold frequently-accessed data. A similar idea can be employed to address the speed mis-

match between the user and computer as well, with the cost to be reduced being power consumption

and its capability measured as capacity to accommodate interactive tasks from the host computer.

This motivated us to design a low-power wireless device, to which the host computer can outsource

simple interactive tasks. As an interface solution to the energy efficiency bottleneck due to a slow

user, such a device functions like a cache for more expensive interfaces on the host, reducing inter-

facing energy requirements without sacrificing user productivity much. It saves energy essentially

by bringing the interface energy requirements closer to the theoretical minimal without sacrificing

user productivity much for the simple outsourced tasks. Table 7.1 summarizes the analogy between

the memory cache and interface cache.

Table 7.1: Memory cache vs. interface cache

Memory cache Interface cache

Speed mismatch Processor & memory Computer & user

Task to outsource Frequently accessed dataFrequent interactive tasks

Cost to reduce Memory access latency Interfacing power

7.2 Bluetooth-based cache-watch

Our cache device takes the form of a wrist-watch that communicates with a mobile system

wirelessly. It is the cache-watch introduced in Chapter 6 as an add-on device to the Bluetooth-based

PAN. The cache-watch prototype and its host, the iPAQ used in Chapters 5 and 6, are shown in

Figure 7.1.



98

Figure 7.1: The prototype of a wrist-watch as the interface cache for iPAQ

As an interface cache, the watch provides the host computer with a limited display. It provides

two different services: active and passive. The cache-watch stays connected with the host and

waits for user input for the active service. The user input can be echoed on the watch in real-time.

For passive service, the watch communicates with the host from time to time to receive data. The

connection can be closed after data transmission but the user can still access the data cached on the

watch. The cache-watch provides its services through a simple application-layer protocol. It is up to

the host computer to determine what and how to display and how the connection is managed using

the protocol. The cache-watch simply follows instructions from the host computer as a slave.

Hardware components: The cache-watch consists of three major components: a Microchip

PIC16LF88 microcontroller, a2 × 8 monochrome character LCD, and a Bluetooth-RS232 adapter

(Promi-ESD class II) from Initium [99]. One MAX604 linear regulator is also used. The system is

powered by a 3.6V supply with three800mAh rechargeable AAA batteries. The microcontroller is

run at a10MHz clock frequency, drawing a current of less than0.6mA. It drives the LCD module

directly but controls the Bluetooth adapter through a9.6Kbps serial port. The LCD module draws a

current of about1mA. There is no lighting for the LCD module in the prototype, a limitation of the

current implementation that can be easily alleviated. Therefore, we assume that the LCD module

can be used at night time in the following discussion.

The Bluetooth-RS232 adapter implements the simplest Bluetooth application profile, the Serial



99

Port Profile (SPP). Two devices with Bluetooth SPP can communicate in the same way they would

with an RS232 serial port connection. The Bluetooth adapter has a number of operational modes.

When it is not connected or seeking a connection, it is in the STANDBY mode, drawing about6mA

current, but can be turned off for more energy savings. In the following discussion, we use the

STANDBY mode to refer to both situations. When the Bluetooth adapter is seeking a connection

through a Page-Scan session, it is in the PENDING mode, drawing about19mA current. In the

PENDING mode, it does Page-Scan forTPS ms everyTPC ms. TPS must be a multiple of a

625µs slot. This was described in detail in Section 6.2.1. BothTPS andTPC can be configured

through commands from the RS232 serial port, leading to different average power consumption.

When the Bluetooth adapter is connected, it is in the ACTIVE mode, drawing about9mA current

for no data transmission and about28mA during active data transmission at9.6Kbps.

Communication design: Since the data for the passive service are not time-critical, the host

buffers data for a certain period of time and a connection to the host is required only from time

to time. The communication between the cache-watch and its host computer is not data-intensive

and communication occurs only sporadically. Therefore, energy consumption due to data com-

munication is very small compared to that required to establish a connection. However, based on

our energy characterization data presented in Section 7.3, it is more energy-efficient to disconnect

and then reestablish a connection in a cooperative fashion when the connection is required more

than 30 seconds later. By “cooperative,” we mean that both the cache-watch and the host enter the

PENDING mode at the same time.

When the host is connected to the cache-watch, it schedules the next communication with the

cache-watch according to prior-history-based prediction. It then determines whether the current

connection should be maintained or closed based on when the connection will be required the next

time. If the connection needs to be closed, the host notifies the cache-watch when it will seek

a connection the next time. After receiving such a notification, the cache-watch shuts down its

Bluetooth adapter and forces it back into the PENDING mode when the specified time has elapsed.

This ensures that a connection is established in a cooperative fashion, and keeps the cache-watch

and the host synchronized with a relatively low energy overhead, as we will see in Section 7.3. If the



100

Magic series I Magic series II

2 bytes 2 bytes

Command type

1 byte

Command data

Up to 176 bytes

Instructional      4 bytes

Informative       Up to 176 bytes

Management      4 bytes

Reverse             16 bytes

Figure 7.2: Command format for the communication protocol

cache-watch loses synchronization with the host, they enter the PENDING mode to re-synchronize.

It is the host computer that is charged with communication scheduling. The cache-watch simply

follows commands. Such a task partition again simplifies the design of the cache-watch while

offering most flexibility for application development.

Communication protocol: The communication protocol, called the synchronization protocol,

for the host and watch has a critical impact on the complexity and functionality of the cache-watch,

since the cache-watch basically interprets commands from the host based on the protocol. The

protocol is interpreted by PIC. The basic communication unit is a command with the format shown

in Figure 7.2. Each command is demarcated by two sets of two bytes each, called the magic series.

Command data are formatted and interpreted according to the command type. Commands of the

first three types are sent from the host to the cache-watch. Theinstructionalcommands are used to

instruct the cache-watch to disconnect or switch between passive and active services.Informative

commands are used to update the internal memory of the cache-watch for display. The command

data not only specify the text to be displayed but also how it should be displayed. Themanagement

command notifies the cache-watch about the host schedule for the next connection so that the cache-

watch can shut down the Bluetooth adapter beforehand. Unlike the first three types of commands,

a reversecommand is sent from the cache-watch to the host. Every time they are connected, the

cache-watch first sends a reverse command to the host to notify the latter about what the user has

done with text messages, such as deleting or confirming a text message.

Software design: The software on PIC is developed using PicBasic Pro. Timing is imple-

mented using TIMER1 in PIC, which is configured to generate an interrupt every52.4288µs. In the

interrupt handler, the time and display are updated. Counting 19 interrupts as one second leads to



101

an inaccuracy of about +4 seconds every 1000 seconds. This inaccuracy is taken into consideration

when the cache-watch times itself for the next scheduled connection with the host. In the main loop,

PIC reads its hardware UART and interprets the data according to the synchronization protocol. For

the passive service, the connection is closed immediately after data exchange and the cache-watch

displays the cached messages. For the active service, the connection is maintained until the host

or the user instructs it to be closed by an instructional command or a button click. Following in-

structions from the host or user, PIC can send AT commands to change modes for the Bluetooth

adapter.

Software on the iPAQ, calledwatch manager, was developed using Embedded Visual C++ and

built upon the BTAccess library [19]. The watch manager functions like a device driver. On the

one hand, it implements the synchronization protocol. On the other hand, it collects information

from different application software, such as Outlook, according to the user configuration. The

information is buffered in the watch manager and then sent to the cache-watch when it connects to

the host. Each time it is connected to the cache-watch, the manager schedules the next connection

and notifies the cache-watch through a management command.

Interface design: For this prototype, we used very simple interfaces to support the targeted

services: a2 × 8 monochrome LCD and three tact buttons, Buttons 1, 2, 3. The user can change

the cache-watch service mode by clicking Button 3. When the cache-watch is in the passive service

mode, a Button 3 click puts the Bluetooth adapter into the PENDING mode unless the connection

with the host is established. When the cache-watch is in the active service mode, a Button 3 click

simply closes the connection and brings the Bluetooth adapter back to the STANDBY mode to wait

for the next scheduled connection.

In the active service mode, a Button 1 click clears the display and sends a negative confirmation

back to the host, while a Button 2 click simply sends a positive confirmation. In the passive service

mode, the user can use Buttons 1 and 2 to browse the text messages cached in the cache-watch. The

interface is better represented as a finite-state machine, as shown in Figure 7.3. In theauto state,

the cache-watch displays valid message entries in its message cache by rolling the text messages

through the first line of the LCD. Each message is rolled according to its meta-data, which specify



102

Auto Manual

Button 1 and 2

Button 1 or 2

Off
Button 1 or 2

Button 1 double-click or time-out

Button 2 
double-click 
or Button 1 
or Button 2

Figure 7.3: State-machine description of the cache-watch interface

its priority in terms of how many times it has to be repeated with each display cycle. In themanual

state, the user can use Buttons 1 and 2 to browse valid entries. Clicking Button 1 induces a skip to

the next valid entry whereas clicking Button 2 rolls the current message on the LCD by one letter.

Double-clicking Button 2 marks the entry currently on the LCD as invalid and confirmed, which is

conveyed to the host via a reverse command next time the cache-watch gets connected to the host.

7.3 Evaluation

We evaluated the prototype watch device as the wireless cache for iPAQ in order to see whether

or by how much it would improve the battery lifetime of iPAQ. Instead of using user studies and

subjective metrics, we focused on evaluating the design with related objective metrics. We first

present the energy characterization results and then an analysis of energy-efficiency improvement.

Since the non-Bluetooth components on the cache-watch are not power-managed, they draw

about2mA current all the time. Figure 7.4 presents the power consumption for the cache-watch in

terms of current consumption at 3.6V when the Bluetooth adapter is in different modes. Figure 7.5

shows how the cache-watch battery lifetime changes when the average communication interval

changes. If the Bluetooth adapter is not powered off in the STANDBY mode, the battery lifetime

for the800mAh battery pack is more than three days. If the Bluetooth adapter is powered off, the

battery lifetime is more than doubled.

Most of the time, the cache-watch stays disconnected from iPAQ and there is no energy cost for

Bluetooth. Assuming a typical1KB data exchange each time a connection is made, the time for



103

2

8

21

30

11

0 10 20 30 40

W
at

ch
 m

o
de

s

Current drain (mA) @3.6V

BT CONNECTED/NO TRANS.
BT TRANSMISSION
BT PENDING
BT STANDBY
BT Off

Figure 7.4: Power consumption for the cache-watch in different modes

216

277
326

359 378 387 394 397

82 90 95 97 99 99 100 100

0

100

200

300

400

500

0.1 1 10 100

Average communication interval (minute)

B
a

tte
ry

 li
fe

 (
h

ou
r)

Bluetooth off in STANDBY

Bluetooth on in STANDBY

Figure 7.5: Cache-watch battery lifetime for different average communication intervals

data exchange is about 0.118 second. The corresponding energy cost for iPAQ is84.2mJ (based on

a power consumption of470+244 = 714mW from Figure 5.1). LetTp denote the time it takes the

cache-watch and iPAQ to establish a connection cooperatively andTs denote the average interval

between two communication events. Note that when iPAQ is in the PENDING mode doing Paging,

the power consumption isPhost = (84 + 244) = 328mW (see Figure 5.1). On the other hand, we

assume that if the cache-watch is not used, the user has to access iPAQ directly at a frequencyf

with an average duration ofTaccess (f < 1/Taccess). The average power consumption,Ph, of iPAQ

during usage, is about(244 + 82 + 444) = 770mW and(244 + 82) = 326mW with and without



104

the back light, respectively. Let∆f denote the reduction in the iPAQ access frequencyf due to the

use of the cache-watch. Therefore, using the cache-watch improves the energy efficiency of iPAQ if

84.2 + Phost·Tp

Ts + 0.118 + Taccess
< Ph·∆f ·Taccess (7.1)

where the left hand side gives the extra power consumption in iPAQ due to Bluetooth activities

and the right hand side gives the power reduction due to reduced iPAQ accesses. Figure 7.6 plots

the minimal frequency reduction in terms of number of accesses per hour for the cache device

to improve the iPAQ energy efficiency with different average communication intervals (Ts) and

average access durations (Taccess). Based on our measurements,Tp = 2.5s is used. It presents the

results for day-time (without the back light) and night-time (with the back light) access. Different

lines represent different average access durations from8 to 60 seconds. The figure clearly shows

how many accesses per hour have to be outsourced to the cache device to improve the host computer

energy efficiency. For day-time usage, if the cache communicates with the host every 30 minutes

on an average, the host energy efficiency will be improved even if only two 30-second accesses or

three 15-second accesses can be outsourced in a day. For night-time usage, even half the number of

such outsourcings will still improve energy efficiency.

7.4 Design issues

We have shown how the cache-watch can improve the energy efficiency for the host with objec-

tive measures. The cache-watch is one example of wireless interface cache devices. In the following

discussion, we highlight the important issues involved in the design of such devices.

Wireless communication: In terms of form factor, wireless communication between the host

and cache devices is almost mandatory. There are several wireless personal-area network technolo-

gies intended for different data rate and application scenarios. We used Bluetooth in the current

watch prototype because its availability on iPAQ and in the market facilitates prototyping. Un-

fortunately, Bluetooth, especially the iPAQ Bluetooth, imposes a high energy overhead for iPAQ

to establish a connection with the cache-watch, as is apparent from the factor,Phost·Tp in Equa-

tion (7.1). The iPAQ Bluetooth is a software implementation, which requires the whole system,



105

Different access durations (s)

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70
Average communication interval (minute)

∆f
 (1

/h
o

u
r) 60 30 15 8

(a) Day-time access without the back light

Different access durations (s)

0.01

0.1

1

10

100

0 10 20 30 40 50 60 70
Average communication interval (minute)

∆f
 (

1/
h

o
u

r) 60 30 15 8

(b) Night-time access with the back light

Figure 7.6: Minimal frequency reduction for improving energy efficiency



106

except the display, to be on in order to establish a connection. Therefore,Phost becomes328mW

instead of84mW . This issue, however, can be resolved if the iPAQ Bluetooth is implemented in a

separate hardware system. IfPhost can be reduced to100mW , ∆f in Figure 7.6 will be reduced

by almost three times. On the other hand, it is impossible to establish a Bluetooth connection in

much less thanTp = 2.5s. With IEEE 802.15.4 or customized radio modules with a lower power

consumption, shorter connection establishment time or connectionless communication may be em-

ployed to replace Bluetooth since the required data rate is not high. This, however, requires extra

hardware to be added to iPAQ.

Tasks for outsourcing: User studies will be critical for determining which tasks should be

outsourced to obtain the best tradeoff between the energy efficiency of the host computer and com-

plexity/cost of the cache device. First, instead of determining which tasks should be outsourced,

the cache device designer should determine which input/output services the cache device should

provide. It is important that new iPAQ applications can be developed to utilize such services, and

users can specify the applications that should be outsourced to utilize them. For example, the cache-

watch exports its display services through the synchronization protocol and any iPAQ application

can utilize such services by specifying what to display. This gives application developers and users

most flexibility. Second, even if a task itself suffers productivity degradation after being outsourced

to a cache device, energy efficiency and overall productivity may still be improved. For example,

browsing a text message from the cache-watch will be slower than reading it directly from the iPAQ

display. However, if the overhead for the user to take out the iPAQ and power it on/off is considered,

obtaining information from the cache-watch may even be faster. Another example is BlackBerry,

popular smart-phones by RIM Ltd., which can host email tasks. A BlackBerry device can be viewed

as an interface cache device for the laptop computer. Text entry on a BlackBerry device is based on

thumbing, which is much slower than text entry with a full-size keyboard on the laptop computer.

However, a study [71] funded by the manufacturer showed that with a Blackberry smart-phone, the

laptop usage decreased. The primary reason is that with a more readily accessible smart-phone ,

a user can better utilize downtime for productivity,e.g., reading/writing emails while waiting in a

line.



107

Battery partition : A simple question for our interface cache proposal would be: what if we

just give the extra battery capacity of the cache device to the host. In the prototype, such an extra

battery capacity will give iPAQ an extra operating time of about two hours. The rationale behind a

cache device is that we can achieve a longer system operating time by giving some battery capacity

to a low-power interface cache device. Therefore, when designing an interface cache device, we

must consider the usage patterns of both the cache and host devices and user’s expectations of their

battery lifetimes to achieve the best system operating time. Again, user studies will be extremely

important.

7.5 Related devices

Reducing the cost of the interface cache device improves its energy efficiency, while increasing

its hit rate makes it more useful, capable of catering to more applications. However, these two goals

are contradictory. To be energy-efficient, a device must be simple, whereas to be more useful, it

must be feature-rich. Our approach was to implement a minimal set of features/functionalities on the

cache device. Similar wrist-worn devices have been designed including the IBM Linux Watch [97]

and Microsoft SPOT watch [143]. Ericsson demonstrated years ago a Bluetooth watch, Infowear,

which can be synchronized with PCs [185]. All these watches were intended to be self-contained

computer systems. If viewed as cache devices for interfacing, they lie on the other extreme of the

spectrum, embracing a feature-rich and power-hungry design. Indeed, the author of [72] blamed

the high price and short battery lifetime for the lackluster market reception of the Microsoft SPOT

watch. They differ drastically from our design of the interface cache device, which emphasizes

a low-power minimalist approach. The TiltType wrist device demonstrated in [49] displays text

messages from the computer using an XML-like protocol [48]. With a similar minimalist approach,

it was investigated primarily as an input device based on TiltType. None of these devices was

proposed to improve the energy efficiency of the host computer.

Related to the philosophy of using a low-power interface cache device, Intel’s personal server

project envisions that the personal server, a handheld computer-like device, utilizes wall-powered

displays in the environment [215]. Since it can be much more energy-efficient to transmit user



108

interface specifications wirelessly than rendering and presenting the user interfaces, such a parasitic

mechanism can be another user interface solution to overcome the energy efficiency bottleneck due

to a slow user.

7.6 Chapter summary

This chapter tackled the slow-user problem in a very different way from Chapter 6. Instead of

improving user productivity, it argued that the interfacing power consumption can be reduced to

an extreme without sacrificing much user productivity. It proposed a low-power low-cost device to

which a host computer outsources simple yet frequent tasks. Such a device, serving a similar goal

as the cache does for memory, is called an interface cache. This chapter presented our design and

prototype of a Bluetooth wrist-watch, called cache-watch, that serves as the interface cache for a

mobile system. While most other digital watches are designed as complete stand-alone computer

systems, the cache-watch is designed purely to serve the host computer. The system functionality is

carefully partitioned so that only minimal functionality is placed on the cache-watch. Experiments

and analysis presented in this chapter showed that such an interface cache will be able to improve

the energy efficiency of its host computer significantly.



Chapter 8

Power Management Based on User

Delay Prediction

Chapter 6 addressed the slow-user problem by improving user productivity without much power

overhead. On the contrary, Chapter 7 addressed it by bringing interfacing power down to an ex-

treme without much user productivity overhead. This chapter tackles the slow-user problem in a

third way. As a mobile system spends most of its time and energy in idle periods, the Amdahl’s law

of energy discussed in Section 5.6 motivates us to focus on the idle periods, or user delays, during

human-computer interaction for opportunities to improve energy efficiency. This chapter addresses

power management based on user delay prediction. We first revisit the slow-user problem in Sec-

tion 8.1. We address how an interactive application can be modeled as a state-transition diagram

in Section 8.2. Based on such a modeling, we present psychology-based and history-based user

delay predictions in Sections 8.3 and 8.4, respectively. We show how the proposed user prediction

techniques can be implemented in Section 8.5. The predicted user delays can be combined with

DPM/DVS techniques to significantly reduce energy consumption. We offer a theoretical analysis

for user delay prediction-based DPM/DVS policies in Section 8.6. In Section 8.7, we describe the

system power model and power management policies that utilize user delay prediction. We de-

scribe the experimental setup and present experimental results in Section 8.8. We discuss the results

in Section 8.9 and conclude in Section 8.10.

109



110

8.1 The slow-user problem revisited

Most interactive applications simply block and wait idly between user inputs. Such applications

are calledpassively interactive. For example, most personal information management (PIM) and

productivity applications belong to this category. Some other applications proceed in their own way

if there is no user input, e.g., many gaming and GPS applications. Such applications are called

actively interactive. In this chapter, we focus on passively interactive applications and just use the

term “interactive” to refer to them unless otherwise indicated.

Figure 8.1 shows the power trace of a typical interactive application, Qtopia [175]Calculator,

on a Sharp Zaurus SL-5500 handheld computer when a user computes(89×56)÷45. The handheld

is the same one as the Zaurus used in Chapter 4. The power is sampled 400 times per second. The

energy measurement system presented in Section 4.3 is used.

0.1

0.3

0.5

0.7

0.9

1.1

1.3

0 400 800 1200 1600 2000 2400

# Samples

P
ow

er
 (

W
at

t)

Figure 8.1: Power consumption of Sharp Zaurus while runningCalculator.

Calculator is used in a manner similar to a real calculator. Its GUI presents buttons similar to

the hardware buttons on a real calculator. The user enters inputs by tapping the GUI buttons with a

stylus.

As shown in Figure 8.1, there are valleys separated by nine major power peaks, which corre-

spond toCalculator’s responses to tappings of GUI buttons. In the valleys, the system waits for



111

Table 8.1: Percentage of system time and energy spent waiting for user input

Benchmarks User Total time (s) Time (%) Energy (%)

Calculator 1 48 99.4 98.5

2 49 99.8 97.8

Filebrowser 1 188 99.1 97.6

2 106 98.7 96.4

Go 1 1,215 97.9 94.2

2 259 94.6 90.2

Solitaire 1 734 99.8 99.6

2 397 99.1 97.4

user input while the operating system (OS) does maintenance jobs like handling timer interrupts and

scheduling, which introduces small fluctuations and several minor spikes in the valley. Such power

characteristics are typical of most interactive systems.

To see how much time and energy the idle valleys take, we analyzed usage traces from two

users for four Qtopia applications shipped with the mobile system (see Section 8.8 for details). The

percentage of total time and energy the mobile system spent waiting for user input is presented in

Table 8.1. Clearly, over 90% of the time and energy was spent in waiting for user input. Similar

findings have been made in [53] but for desktop computers. This is exactly the slow-user problem.

More importantly, most of the waiting periods are longer than 500ms. Such system idle periods are

long enough for many systems to save energy by entering a low-power mode with a relatively long

exit latency, which is impossible for commonly used timeout-based power management. However,

if the system is woken up from the low-power mode by user input, the exit latencies may be too

long to go unnoticed by users, and may lead to severe degradation in user productivity [23, 140].

Therefore, to effectively utilize such opportunities and avoid sacrifice in computer responsiveness,



112

enterNumber std_buttons

Event handlers

EventloopSystem idle

System busy

User taps a 
digit button

User taps a 
functional button

User input

Figure 8.2: Interactive application: eventloop and event handlers

two questions must be answered:

• When does the system begin waiting for user input?

• How long does it wait?

This chapter is primarily concerned with seeking answers to these questions. We next outline

our approaches.

When does the system begin waiting for user input: Most interactive applications are im-

plemented in an event-driven fashion with an eventloop and a number of event handlers. When the

system is in the eventloop, it is idle, waiting for user input. Upon receiving a user input, the system

calls the corresponding event handlers to respond. After the event handlers finish execution, the

system returns to the eventloop. This is illustrated in Figure 8.2 using the QtopiaCalculator as

an example. Note that only the two primary event handlers,enterNumber(int n)andstd buttons(int

n), are shown for clarity. They are invoked by user tapping a digit button and a functional button,

respectively.

Since the system starts waiting whenever it returns to the eventloop, the application can simply

notify the system when it enters the eventloop.



113

How long does the system wait: This question is equivalent to how long the user delay is.

Without the knowledge of what the user is responding to, it is extremely difficult to answer it.

This is exactly why most conventional DPM/DVS policies are not much successful for interactive

systems, as mentioned in Section 2.2.4. Any information from the interactive application will help.

If we know the application type, we may be able to estimate user delays better since, for example,

user delays for text typing are statistically much shorter than those for playingGo. We can keep

a user delay record for each application and predict its next user delay based on the application-

specific record. This will improve the predictability of user delays, yet still suffer from the fact that

the user may incur very different delays in different parts of the same application. For example, the

user delay after clicking the “File” menu in a text editor will be much longer than that after keying

in a letter.

A step further from the above monolithic view of an application would be to make a distinction

between different parts of an application that have a different impact on user delays. We propose

to model or partition the application from the user’s perspective. Each partition, calledstatein the

following discussion, presents relatively consistent information to the user, and requires relatively

similar user reactions. Therefore, such a state will have more consistent and predictable user delays

than the whole application.

8.2 Interaction modeling

In this section, we explain how an interactive application can be partitioned into states so that the

user interface is relatively consistent in any given state, making the state user delay more predictable.

State-transition diagram extraction: State-transition diagrams (STDs) [216] have been pro-

posed earlier to model computer-human interaction and specify user interface design. In this ap-

proach, an interactive application is modeled as a finite-state machine. Each state corresponds to

a unique functional stage that waits for user input. The application changes state upon a user in-

put/action. Such an STD, provided as a specification of the application, offers a design guide.

However, we need an STD extracted from the implementation in order to implement user delay

prediction.



114

Function Number

Event handler State

State transition

std_buttonsenterNumber

System idle

System busy

Figure 8.3: An STD for the QtopiaCalculator.

As illustrated in Figure 8.2, interactive applications are usually implemented with an eventloop

and event handlers, which define an STD. The application waits for user input in some specific

“state.” Since an event handler processes user inputs and generates new information for the user, it

transitions the application into another state (in some cases, the transition may be to the same state).

Therefore, event handlers, with their triggering user inputs/events, correspond to transition arcs of

the STD. If we assume every event handler transitions the application into a unique state, an STD is

naturally defined by the event handlers. The event handlers that lead to a state in the STD are called

state triggers. The event handlers that lead the application out of a state are calledstate escapers.

As an example, the STD for the QtopiaCalculator is extracted as shown in Figure 8.3. There

are two states:Number after a digit button is tapped andFunction after a function button is tapped.

The corresponding state triggers areenterNumber(int n)andstd buttons(int n), respectively. These

two event handlers are state escapers for bothNumber andFunction. Such acomplete STD

is actually the most detailed STD that can be extracted from the implementation. It provides the

complete system-user interaction description. Note that an event handler in the implementation

may correspond to more than one transition arc since the same event handler can be activated from

different states. Therefore, all the arcs entering a state correspond to the same event handler. In the



115

complete STD, there is a one-to-one mapping between the set of states and the set of event handlers.

If we only care about some specific user delays during system-user interaction or it is hard to

derive the complete STD, we can identify event handlers which lead to the important states only.

Instead of a complete STD, we will then have apartial STD, in which there is a one-to-one mapping

between the set of states and a subset of event handlers. Moreover, an STD, whether complete or

partial, can be compacted by clustering multiple similar states into one, based on user interface

content or profiling, to form aclusteredSTD. In a clustered STD, a state may correspond to more

than one event handler.

The event handler-based STD provides us an opportunity to implement state-specific user delay

prediction. Once we know that a set of event handlers will lead to a state, we can insert code into

these event handlers to convey to the power manager the identity of the state and the predicted user

delay. This is addressed in Section 8.5.

User delay prediction: Unlike many other prediction problems, errors in user delay prediction

may have very different effects on the system and the user. In other words, the cost of errors is

heterogeneous, making solutions from standard time-series prediction theories [17] inapplicable.

If the predicted delay is shorter than the real user delay, the prediction is an underestimation and

conservative. If it is longer than the real user delay, it is an overestimation and aggressive. Un-

derestimation wastes power-saving opportunities, and overestimation may lead to user-perceptible

latencies if the system is put into a power-saving mode with a long exit latency. It has been agreed

upon in human-computer interaction research that a longer system response time may lead to user

productivity degradation and such a degradation is dependent upon users and tasks [184]. For ex-

ample, it was demonstrated in [75] that system response latencies beyond one second could degrade

user productivity by about 50% for some tasks. Such a degradation may easily get rid of any gain

in energy efficiency by using power-saving modes. Unfortunately, there are no established direct

quantitative links between energy efficiency degradation and user-perceived latencies. In this study,

we will evaluate prediction methods in terms of what tradeoffs between energy savings and user-

perceptible latencies they can make. One method can be better than another only in the sense of

Pareto optimality.



116

8.3 Psychology-based user delay models

If the content of the user interface of an STD state is known, the length of the user delay can

be predicted based on what a user sees and how she or he needs to respond. There are three basic

processes involved in a user’s response to a system [25]. During theperceptualprocess, the user

senses inputs from the physical world. In our scenario, it is the process of the user reading informa-

tion presented on the display. During thecognitiveprocess, the user decides on a course of action

based on the input. In our scenario, it is the process of the user deciding which button to push,

which menu item to click, etc. Finally, during themotorprocess, the user executes the decision by

mechanical movements. These three processes are consecutive in time. Before the user physically

touches the system input peripherals, the system is idle.

Perceptual delay: For most modern computer systems, users get information from the system

through visual and auditory channels by reading and listening. In this study, we focus on the visual

channel.

Psychological studies have shown that humans read through discrete eye movements, which

consist offixations and saccades. Fixations are the state in which the eyes are focused on a

object statically. Saccades represent rapid eye movements from one fixation location to another.

Information is absorbed only in fixation, which lasts from60 to 700ms. A saccade takes about

30ms. To estimate the perceptual delay, we have to estimate the number of fixations (or the number

of saccades) and the duration of each. In order not to negatively impact user productivity, we

estimate durations of these delays conservatively.

Computer display information can be categorized as graphical and textual. Graphical informa-

tion is presented through graphical objects which consist of 1) window objects, such as buttons,

radiobuttons, menus etc., and 2) pictures or figures. To simplify delay estimation, we assume each

graphical object requires one separate fixation and each fixation lasts for the minimal60ms. There-

fore, for each graphical object, a delay of90ms (one minimal fixation plus one saccade) is added.

For textual information, psychological studies [26] have shown that college students can raud

(read with comprehension) at a typical rate of 300 standard-length words per minute or five per

second. The standard-length word was assumed to have six characters. For a text withn words, the



117

typical time for rauding is

T =
n×cpw

Wpm× 6
=

n×cpw

30
(s)

wherecpw is the average number of characters per word andWpm is the rauding rate in terms of

the number of standard-length words per minute. If a text is associated with a graphical object, the

reading time is used as the fixation length for the latter. For example, the delay to get information

from a message box which contains a four-word text with an average of six characters per word,

and two buttons with “OK” and “Cancel” on them, respectively, can be estimated as

T = 0.03 +
4×6
30

+ 0.03 +
1×2
30

+ 0.03 +
1×6
30

= 1.157 (s)

where there are three saccades and three fixations, whose lengths are estimated using the rauding

rate.

Cognitive delay: The Hick-Hyman Law [86, 96] states that the time to make a decision (the

reaction time, or RT) based onN distinct choices of equal probabilities is given by

RT = a + b log2 N (s) (8.1)

Parametersa and b are constants that can be empirically determined. Based on the information

in [25], we assumea to be0 andb to be 1
7 . Therefore, to decide which one from two buttons to

tap, a user would approximately think for0.14 second. To choose one item from a menu with four

different items, a user would approximately think for0.29 second. Table 8.2 summarizes how we

apply the Hick-Hyman Law to various user interface features.

The Hick-Hyman Law can be useful only if the number of different choices,N , is known. Un-

fortunately, it is hard or even impossible to estimateN for many cognitive processes. For example,

menu selection may actually involve more choices for a user than the number of menu items because

the user may evaluate the consequence of selecting an item and the possible subsequent choices to

decide whether to select that item or not. A goodGo player evaluates the current choice by con-

sidering what choices he or she would have many steps after this pending move. In this study, we

conservatively assumeN to be the number of most direct choices.

Motor delay: It also takes time for a user to make a physical movement. In most mobile

systems, users respond by touching virtual objects on the touch-screen with a stylus. The Fitts



118

Table 8.2: Number of choices for different user interface features used in the Hick-Hyman Law

GUI features Number of choices

Group of N buttons N

Group of N radiobuttons N

Each checkbox 2 (on or off)

Menu bar with N items N

A list of N items N

Figure 8.4: A menu window from the Qtopia applicationContact.

Law [50, 138] states that for a normal human being, the motor time (MT) to carry out a movement

is related to the size of the target and the distance to the target as

MT = 0.23 + 0.166 · log2(
A

W
+ 1) (s) (8.2)

whereA is the amplitude of the movement andW the width of the target as measured in the direction

of motion. We have adopted the values for coefficients from [138].

The above three models are together referred to asthe psychology-based modelin this chapter.

As an example, there are four items on the popup menu window shown in Figure 8.4. They will

require at least two fixations and two saccades. The perceptual process will take about 180ms. The



119

Hick-Hyman Law indicates that about 290ms will be needed for making a decision from the four

choices. Suppose the hand movement altitude is about one quarter of the screen height and the

width of the target (the menu item) is about one sixteenth of the screen height. Then the Fitts Law

indicates that the motor time will be about 600ms. Altogether, this GUI state will take an average

user more than one second to respond to. User delays of such a duration are long enough to put the

system into a low-power mode with an exit latency up to several hundred milliseconds. However,

they are still too short for conventional timeout-based power management policies.

Perceptual and motor delays can be predicted relatively well. However, the cognitive delay can

be only conservatively predicted based on the Hick-Hyman Law, as mentioned before. Therefore,

the psychology-based model is used to predict the lower bound on the user delay in this study. In

the next section, we propose a history-based user delay model to predict the actual delay.

8.4 History-based user delay model

The psychology-based model is user interface content-based. It predicts user delay based on

what users will see. In some cases, it may be difficult to know the user interface content. Moreover,

it only offers one tradeoff between energy savings and user-perceptible latencies, and does not adapt

to different users and the same user at different times. Therefore, we devise a user delay model based

on past observations. Before introducing the model, we first look into the statistics of user delays.

User delay statistics: Figure 8.5(a) shows the trace of user delays for the stateNumberof the

QtopiaCalculator, collected over three days. Note that the X-axis is not time. The lower bound

predicted by the psychology-based model is also plotted in both figures.

As illustrated by Figure 8.5, the user delays for a state are quite randomly but tightly centered

around the mean length at which the major peak in the distribution is located. A small group of

randomly occurring long delays form a minor peak in the distribution too. Such randomness makes

accurate user delay prediction impossible. The trace also shows the learning effect over the three

days: the delay length in general declines slightly, however, in a less obvious fashion. We also

observed that the standard deviation is large if the mean is large.

History-based model: If we have gathered enough history of the user delays of a state, we



120

200

400

600

800

1000

1200

Occurrences

L
en

g
th

 (m
s)

Psychological

(a) User delay trace

0

5

10

15

20

25

0 200 400 600 800 1000 1200 1400

User delay length (ms)

Psychological

(b) User delay length distribution

Figure 8.5: User delay statistics for StateNumber of Calculator for User 1.

can obtain the distribution similar to Figure 8.5(b). By using different percentiles of the history,

we can make different tradeoffs between overestimation and underestimation, leading to different

tradeoffs between energy savings and user-perceptible latencies. For example, if we use the minimal

value or a value at a very low percentile in the history record, we can essentially achieve a lower-

bound prediction even better than the prediction based on the psychology-based model. There are,

however, some limitations of such methods. First of all, they are not reliable until a significant

history record is available. For example, using the minimal value in the history record can lead to a

lot of overestimation before a reasonable short user delay is observed. Second, they do not capture

long-term trends such as the learning effect effectively. The tradeoff may undergo unwanted changes

over time. Therefore, although such long-term history-based methods have some value, short-term



121

history-based methods are preferred since they do not require a significant history and can adapt to

long-term trends efficiently. Moreover, short-term history-based methods will be computationally

much simpler in general. Therefore, we devise a prediction method similar to the median filter

based on recent history. LetDi
s denote theith last observed delay for an STD states andN the total

number of past user delays recorded for that state.

The delay record is sorted to generate a new series so that

D1
s < D2

s < ... < DN
s

Then we define thehabitual setΦ(p) as

Φ(p) = {DbN ·pc+1]
s , DbN ·pc+2

s , ..., DbN ·(1−p)c
s }

where06p60.5 with a typical value of0.25. Φ(p) contains the centralN ·(1 − 2·p) items of the

sorted series. It is a set extension of the concept of a median. Whenp = 0.5, it reduces to the

median. Whenp = 0, it leads to the mean instead. LetmΦ denote the mean ofΦ(p). Then the next

user delay for the state is predicted as

D = β·mΦ

where0 < β. β is called thepessimism factor and is used to generate different tradeoffs between

overestimation and underestimation. There are two rationales behind using a multiplicative factor

instead of an additive one. First, different states have different mean user delays; and second, states

with larger means usually have larger standard deviations. A constant multiplicative factor works

better for different states than a constant additive factor.

History-based vs. psychology-based models: First of all, the history-based and psychology-

based models are intended for different purposes. The psychology-based model is intended to pre-

dict the lower bound of the user delay length of a state. On the other hand, the history model is to

predict the true length of the next delay. By using the pessimism factor to scale the prediction, it

can achieve many tradeoffs between energy savings and user-perceptible latencies. Moreover, the

psychology-based model is intended to predict the lower bound as a constant that holds for all users

and even after enough practice. On the other hand, the history model is intended to adapt to different

users and the same users at different times effectively.



122

The history- and psychology-based models also complement each other. Indeed, a history-

based model using the minimal or a small percentile of the history can achieve the same goal as the

psychology-based model to predict the lower bound on user delay length but after enough obser-

vations have been made. It is useful only when a long history is available for the user and initial

errors of overestimation can be tolerated. In the case that overestimations are not tolerable, the

psychology-based model can be used before a long history is available.

The history-based model enjoys simplicity of implementation. No knowledge about the user

interface content is required. On the other hand, the psychology-based model has to know the

user interface content, which may be complex and dynamic. Moreover, the Hick-Hyman Law has

limitations in modeling complex cognitive processes. The psychology-based model is more accurate

for user interfaces that do not involve complicated cognitive processes. Therefore, different delay

models should be used for different states and different applications to exploit the strengths of both

the history-based and psychology-based models.

8.5 Implementation of user delay prediction

In this section, we address how user delay prediction can be implemented based on the appli-

cation source code and GUI toolkit. We assume the application can convey to the power manager

the predicted user delay,D, via a functional callNotifyDelay(D). The power manager will then

determine what step to take for saving energy, which will be addressed in Section 8.7.

Fully customized implementation: When the application source code is available, one can

extract the STD for important states and augment the corresponding event handlers for user de-

lay prediction. The beginning of a state’s user delay is marked by the end of its triggers, where

NotifyDelay() should be inserted. For history-based prediction, a global variable,current state,

is added to note the current state. It is updated at the end of state triggers. A global array of

data structures is added for maintaining a delay record for each state. The array is indexed by

current state.

The arrival of the next event, or the start of a state’s escapers, marks the finish of a user delay.

Code can be inserted into the eventloop or corresponding state escapers to estimate the real user



123

delay and update the state’s user delay history.

In the Calculator example, the start and finish ofenterNumber(int n)andstd buttons(int n)

mark the finish and start of user delays, respectively. At their start, the last user delay is estimated

and used to update the delay record according tocurrent state. At their finish,current state is

updated, the starting time of a user delay is marked, andNotifyDelay() is inserted.

GUI toolkit-based implementation: GUI applications are usually built using GUI toolkits,

which provide implementations of the eventloop mechanism, GUI objects and their corresponding

event handlers.

The proposed user delay prediction mechanism can actually be incorporated into the GUI toolkit

so that any application built with it will have the user delay prediction capability. In this subsec-

tion, we demonstrate how this can be implemented on the Qt GUI toolkit [173] using the example

of popup menu windows like the one shown in Figure 8.4. In Qt, popup menus are instantiated as

objects of the classQPopupMenu. Qpopupmenu::show()andQpopupmenu::hide()are called when-

ever a popup menu window is shown and hidden, respectively. The beginning of the user delay is

marked by the end ofshow(), into whichNotifyDelay() can be inserted.

For history-based prediction, the user delay can be estimated as the time elapsed between the

end ofshow() and the beginning ofhide() by augmentingshow() andhide(). The data structures

that maintain the history can be added to theQPopupMenu class. They are accessed at the end of

show() to make the prediction forNotifyDelay() and updated at the beginning ofhide() with the

newly observed used delay.

The QPopupMenuclass also provides enough data through member methods for psychology-

based prediction.size() returns the size information for the popup window.count()and text(int

id) return the number of items on the menu window and the text for theidth item, respectively. A

psychology-based prediction can be obtained with such information.

8.6 Theoretical analysis of DPM/DVS

In the previous sections, we discussed how to determine when a user delay occurs and how to

predict its length. We also demonstrated how user delay prediction can be implemented based on



124

application source code and GUI toolkit. With theNotifyDelay(D) API, an interactive application

can convey the predicted user delay to the power manager. We next show how user delays can be

used to reduce energy consumption through straightforward DPM/DVS policies.

8.6.1 DPM and DVS techniques

DPM/DVS techniques change the system performance level to save power while trying to meet

soft/hard deadlines. The performance level of an interactive system can be changed by shutting

down idle components, putting the processor into different power modes, and scaling the frequency

and supply voltage. Most modern processors used in mobile computing systems support perfor-

mance level changes through software, e.g., Intel StrongARM and XScale processors [100]. Differ-

ent performance levels have different power consumptions. Transitions among levels cause delay

and extra energy consumption. This must be considered when performing DPM/DVS.

Since many GUI operations can be quite demanding, specially on mobile systems, the ideal

setting would be the lowest possible performance level during user idle time and an appropriate

higher level during system response.

8.6.2 Theoretical energy saving and latency overhead

We next present a theoretical analysis of the energy saving and latency overhead when DPM/DVS

techniques are combined with user delay prediction.

For simplicity of exposition, we consider two performance levels for a given user delay. LetD

denote the length of the user delay,P the system power consumption for the higher performance

level, andP ′ that for the lower one. The energy consumption for the system during the user delay

without DPM/DVS will be

E = D·P

Perfect prediction: Suppose we can predict the user delay perfectly, change the system per-

formance to the lower one after the system finishes responding, and change it back to the higher

one right before the next user input. There is no latency overhead. LetPHL andPLH denote the

performance level transition power, andTHL andTLH denote the delay for higher-to-lower and



125

lower-to-higher transitions, respectively. We assume thatD > (THL + TLH). Then the energy

consumption for the system during the user delay with such a performance-level transition is given

by

E0 = (D − THL − TLH)·P ′ + THL·PHL + TLH ·PLH

The energy saving is therefore

∆E0 = E −E0

= D · (P − P ′)− THL(PHL − P ′)− TLH(PLH − P ′)

If we assumeP = PHL = PLH , we have

∆E0 = {D − (THL + TLH)} · (P − P ′)

The energy saving ratio is calculated as

ρ0 =
∆E0

E
= {1− (THL + TLH)

D
} · (1− P ′

P
) (8.3)

If the system changes the performance level back to the higher level upon a user input, we can

obtain the energy saving through a similar analysis as

ρ′ = ρ0 − TLH

D
· P ′

P
(8.4)

In this scenario, the latency overhead isTLH , which can be larger than the 50-100ms human-

perceptible threshold.

Imperfect prediction : If the user delay models are used to predictD asD′ and the system is

put into the lower performance level ifD′ > (THL+TLH) and put back into the higher performance

level right before the predicted user delay elapses, we have

ρ =





ρ0 − TLH
D · P ′

P , D′>D + TLH ;

ρ0 − |D−D′|
D · P ′

P , D6D′ < D + TLH ;

ρ0 − |D−D′|
D · (1− P ′

P ), (THL + TLH)6D′ < D;

0, D′6(THL + TLH).

(8.5)



126

The latency overheads for these four situations areTLH , |D′ −D|, 0, and0, respectively.

It is obvious that the energy saving ratio will increase linearly ifP ′/P decreases. Given the two

performance levels, the energy saving ratio is only dependent on the user delay and prediction error.

Comparingρ with ρ′, we can see that using predicted user delay is actually more energy-efficient if

TLH is large compared with user delay prediction errors. Note that bothρ andρ′ can be negative,

which means energy consumption may increase if performance-level transition is not properly done.

WhenD′ > D, the performance level transition will be triggered by a user input, resulting

in a delay betweenD′ − D to TLH . This is called alazy error. WhenTLH is larger than the

human-perceptible threshold,H, employing user delay prediction for DPM/DVS may introduce

user-noticeable latencies, leading to what is called aserious lazy error(such errors are discussed

in greater detail in Section 8.8.2). We need to address the percentage of serious lazy errors (PSLE)

in this case. For simplicity of analysis, we assume the user delay,D, for a state has a triangle-

distribution,p(D), as shown in Figure 8.6. Such a distribution is a reasonable approximation to that

shown in Figure 8.5(b). The mean,m, denotes how fast the user is in responding to this state, while

the width,d, denotes how predictable the user is. Note that the standard deviation is
√

2/3·d. If

α 6 m is used to predict the user delay, the PSLE will be

PSLE = 100% ·
∫ α−H

0
p(D)dD

=





0%, α < m + H − d;

50% · [1− (m−α+H
d )2], m > α > m + H − d.

It is clear that PSLE increases linearly as the predictionα approaches the meanm. It decreases

linearly as the mean increases, demonstrating longer delays have fewer serious lazy errors. It also

decreases asd decreases, showing better user delay predictability also reduces serious lazy errors.

8.7 Power models and DPM/DVS policies

Based on a predicted delay, the power manager selects an appropriate power-saving performance

level for the state. The system returns to the higher performance level either after a time interval

based on the predicted user delay, or just upon the next user input. Which of these two scenarios



127

p(D)

m-d m m+d

�

D (s)

Figure 8.6: Triangle distribution of user delays for a state

is targeted depends on how aggressive dynamic power optimization needs to be. For example, the

delay overhead for performance level transitions for DVS techniques is typically less than1ms [79,

100, 170]. Thus, one could just let user inputs trigger performance level transitions. However, for

more aggressive power management with an attendant increase in the delay overhead, it is often

necessary to raise the performance level for prompt system response before the user input arrives.

For example, the delay for an Intel StrongARM SA-1110 to transition from the SLEEP mode to

the RUN mode is about160ms [100]. In such cases, the predicted user delay can be used. In this

section, we first establish a system power model for the StrongARM-based Linux handheld used in

our experiments. Then we discuss possible DPM/DVS policies for it.

8.7.1 System power model

The Sharp Zaurus SL-5500 handheld has an Intel StrongARM SA-1110 processor [100], which

can run in three modes: RUN, IDLE, and SLEEP. Moreover, its core clock speed can be varied

between 59 and206MHz in discrete steps. It is put into the IDLE mode by the Linux kernel

whenever there is nothing to run. We constructed a system power model for the handheld based

on power measurements and available industrial data. The modes of system operation and their

corresponding power consumptions are shown in Figure 8.7. Permitted mode transitions are shown

as directed arcs. The delay overhead for mode transitions is marked on the directed arcs [100].



128

RUNIDLE206

IDLE59
SLEEP-
Display

150us

50us

160ms

200us

50us

160ms

150us

200us

1157.9mW441.1mW

335.6mW 243.7mW

RUNIDLE206

IDLE59
SLEEP-
Display

150us

50us

160ms

200us

50us

160ms

150us

200us

1157.9mW441.1mW

335.6mW 243.7mW

Figure 8.7: Power modes and mode transitions.

We assume that the front-light is always off and the display is always on with constant power

consumption of 234.4mW. We assume the power consumption is constant for each operation mode.

Notably, the display consumes about half of the system idle power.

In the system power model, RUN corresponds to the SA-1110 RUN mode when the processor

is busy executing instructions. Its power is measured when the handheld repeatedly computes the

DCT described in Section 4.3. IDLE206 and IDLE59 correspond to the SA-1110 IDLE mode with

a core clock frequency/voltage of 206MHz/1.5V and 59MHz/1.25V , respectively. IDLE59 is a

hypothetical mode for the Zaurus SL-5500 based on other SA-1100 or SA-1110 systems [79, 170,

214]. It is estimated as the display power plus the measured non-display power at 206MHz scaled

down using the same ratio of the power for IDLE59 to that for IDLE206 in the Itsy system power

measurement presented in [214]. SLEEP-Display corresponds to the SA-1110 SLEEP mode when

the display is left on. Therefore, its system power consumption is measured when the system is

suspended, and the display power is added thereafter. Compared to IDLE59, the SLEEP-Display

mode saves more power. However, it should be used with caution since the transition time back to

the RUN mode is large enough for a user to notice. The power measurement equipment is the same

as that described in Section 4.3.



129

8.7.2 DPM/DVS policies

With the user delay information as obtained using models presented in the previous sections,

there are different ways to apply DPM/DVS based on the system power model. The following

DPM/DVS policies are considered in this study.

Linux policy : The Linux kernel automatically puts the system into the IDLE209 mode when-

ever there is no process running and returns it back to the RUN mode upon interrupt. We take this

as the baseline and report results for other techniques against it. The Qtopia environment is also

able to power-manage the front-light and system based on timeout. However, such timeout-based

policies do not benefit from user delays, which are usually no more than a couple of seconds.

Simple and lazy policies: The most straightforward DPM/DVS policy would be to put the

system into the IDLE59 or the SLEEP-Display mode right after the system finishes responding

to the user and put it back into the RUN mode upon a user input. These policies are called the

simple andlazy policies, respectively. Their energy savings can be computed using Equation (8.4).

Since the IDLE59 to RUN mode-transition time is small, there is no concern with regard to user-

perceptible latencies for the simple policy. However, a transition from SLEEP-Display to RUN will

most likely be noticed by users. The lazy policy has 100% serious lazy errors.

Perfect policy: Assuming we can predict user delays perfectly, we can choose to put the system

into the SLEEP-Display mode and wake it up right before the next user input or put the system into

the IDLE59 mode. The energy saving can be computed using Equation (8.3). This is called the

perfect policy since it gives the upper bound on energy savings based on the system power model.

Prediction policies: We can also use delay prediction, discussed in the previous sections, for

DPM/DVS. The energy saving for such prediction policies can be computed using Equation (8.5).

However, there are two concerns with respect to prediction errors. First, in the case of overesti-

mation, the system will wake up from the SLEEP-Display mode upon a user input and enter the

RUN mode directly, resulting in a lazy error, which may be serious. Second, in the case of under-

estimation, the system wakes up and transfers to the IDLE59 mode after the predicted delay to get

ready for the user input and will not be able to fully exploit the idle time to reduce energy by re-

maining in the SLEEP-Display mode. Therefore, we report the average user delay underestimation



130

error. We refer to the DPM/DVS policies based on user delay prediction by the history-based and

psychology-based models ashistory andpsychological, respectively.

Suppose in the GUI shown in Figure 8.4, it actually takes a user 1200ms to physically touch a

menu item with a stylus. According to the system power model, the Linux Kernel DPM policy will

consume about0.53 Joule of system energy. Using the equations from Section 8.6.2, the simple,

perfect and lazy policies will reduce it by about24%, 38%, and32%, respectively. The prediction

policies will reduce the energy up to38%, depending on the prediction error. If the prediction error

is below25%, the energy reduction will be between28% and38%. In view of the 100% serious

lazy errors incurred by the lazy policy, the prediction policies are better.

8.7.3 System implementation issues

When a system is put into a energy-saving mode like SLEEP, the processor is stopped, unable

to accomplish any regular OS maintenance tasks such askswapdand kupdated. There are two

solutions to this problem. The first solution is to treat any kernel event as a scheduled user input.

The system determines whether and how long to stay in the SLEEP-Display mode based on the

next scheduled kernel event and the predicted user delay. This is possible since most Linux kernel

events are scheduled with intervals on the order of seconds. The second solution is to delay non-

urgent kernel event handling until the next user input or till a certain period of time has elapsed.

Another issue is that many passive interactive applications may have still maintain certain trivial

activities when waiting for user input such as a blinking cursor. Activities with a short period are

not compatible with the policies using the SLEEP-Display mode previously addressed. However,

activities with a reasonably long period can be handled as a scheduled user input. For example,

if the cursor blinks once per second, there is still enough time for the SLEEP-Display mode to

save energy. To focus on the investigation of user delay prediction, we ignored these issues in

this chapter by using experiments based on replaying pre-collected usage traces through the system

power model.



131

8.8 Experiments

In this section, we describe the benchmark applications, usage traces and power measurement

setup used in this study, and present the experiment results.

8.8.1 Experimental setup

An application environment, called Qtopia [175] for Linux-based handheld systems, is shipped

with the Sharp Zaurus SL-5500 handheld. The source code for its applications is freely available

under the General Public License. We consider four applications from Qtopia version 1.5.0 as our

benchmarks. They areCalculator, Filebrowser, Go, andSolitaire. Calculator is as described

in Section 8.1.Filebrowser is a GUI application for listing files in the local storage.Go and

Solitaire are two popular games well known by their names.

Based on an analysis of their source code, STDs were extracted. The STD forCalculator is

the same as that shown in Figure 8.3. The STD forFilebrowser has five states after simplification:

Menu after the user chooses one item from any menu,ItemClicked after the user taps an item

in the file list,Arrow after the user taps an arrow on the menu bar (to go back or go upward one

level in the directory hierarchy),Dir after the user taps “Dir” on the menu bar (it waits for the

user to select an item from the “Dir” menu), andSort after the user taps “Sort” on the menu bar

(it waits for the user to select an item from the “Sort” menu). However, onlyItemClicked and

Arrow frequently appeared in the usage traces collected. The STDs for bothGo andSolitaire

only have a single state, which waits for the user’s next step: placing a stone or moving a card.

The parameter values for user delay models were derived for the perceptual, cognitive and motor

processes. Since psychology-based prediction is intended to offer the lower bound for user delays,

the parameter values were chosen conservatively. They are given in Table 8.3. The predicted delays

(Column 6) in the table are used as the initial values for history-based prediction. The statistics of

actual user delays for states with significant occurrences in the collected traces is given in Table 8.4.

The statistics show that user delays with larger means typically have larger standard deviations.

SinceCalculator requires little cognitive processing, its psychology-based prediction is close to

the mean and the standard deviations are relatively small.



132

Table 8.3: Parameter values for the psychology-based model

Benchmark State Per. Cog. Mot. Predicted

(# of fix.) (N) (A/W) delay (ms)

Calculator Number 1 1 0.5 420

Function 1 2 1 630

Filebrowser Menu 4 4 2 1,140

Arrow 2 2 2 820

ItemClicked 2 4 2 960

Dir 1 4 1 770

Sort 1 5 1 810

Go Main 1 1 0.5 420

Solitaire Main 2 2 1 630

Usage trace collection: We collected system-user interaction traces for real usage of the bench-

marks on the handheld. We insertedgettimeofday() at the beginning and end of the event handlers

(usuallyslots in Qt [173]) in the benchmark applications to record the time in microseconds. This

records when the system finishes its response and when it starts processing an incoming event and

changes state. The state name is also recorded. This method counts the delay of the system in gen-

erating an event (calledsignal in Qt) after receiving a user input as part of the user delay instead of

the system busy time. Based on our experience, the error thus introduced is negligible.

Two users participated in the collection of traces. One is a male graduate student majoring

in Engineering while the other is a female graduate student majoring in Social Sciences. Both are

veteran computer users. Before trace collection, they were already familiar with real calculators and

filebrowsing applications. The male user was also familiar with thePatience game inSolitaire.



133

Table 8.4: Actual user delay statistics

Benchmark State User 1 User 2

Mean (ms) Stdev. (ms) Mean (ms) Stdev. (ms)

Calculator Number 625 186 610 263

Function 1,026 522 640 392

Filebrowser Menu - - - -

Arrow 2,838 1,826 2,716 3,134

ItemClicked 2,271 1,482 3,295 2,846

Dir - - - -

Sort - - - -

Go Main 5,375 5,929 1,415 1,130

Solitaire Main 3,040 2,152 2,150 1,887

The female user was not. Neither of them knew how to playGo. They were taught the rules

for playing the games and can be regarded as beginners. They were given instructions on how to

operate the handheld and use the benchmark applications. They were also given time to play with

the benchmark applications on the handheld to get acquainted. Then they were asked to complete

the tasks as described in Table 8.5. Each user was asked to perform the tasks once per day and

for a total of three days. The total length of time of traces for each benchmark and user is given

in Table 8.1. The traces were collected in an office environment. Disturbance was reasonably

minimized. The users were told to perform the tasks in the same way that they would do in real life.

The mean and standard deviation for each STD state’s user delay are shown in Table 8.4

Trace replay: We replayed the collected traces through the system power model detailed in

Section 8.7.1. We applied the power management policies described in Section 8.7.2 in different



134

Table 8.5: Tasks for usage trace collection

Benchmark Task

Calculator Compute formula, each with three two-digit numbers and two operations

Filebrowser Find a given file on the local storage

Go Play a new game for several minutes

Solitaire Play a new Patience game for several minutes

replays to gauge their performance. Since the traces were pre-collected, we implicitly assumed that

user behavior remained unchanged after the users encountered perceptible latencies. Therefore, the

energy savings obtained by policies that incur user-perceptible latencies are only ideal, and are likely

to be reduced in reality due to productivity degradation. However, since the relationship between

productivity degradation and user-perceptible latencies is different in different applications, such

an assumption make our evaluation more general. Moreover, since we evaluate prediction methods

using tradeoffs between such ideal energy savings and user-perceptible latencies, we believe that

there is enough information for system designers to make tradeoffs based on the nature of human-

computer interaction in their applications.

8.8.2 Experimental results

In this section, we present experimental results using the setup described in the previous section.

Energy savings: The energy consumption is obtained by running the usage traces through

the system power model with different DPM/DVS policies. In Figure 8.8, we give energy savings

against the baseline (Linux policy). These include the simple, lazy, perfect, and psychology/history-

based prediction policies. In the history-based prediction policy, the pessimism factorβ is assumed

to be0.4 and the last seven delay records are used starting with the psychological prediction. The

percentage of lazy error (PLE) (the percentage of all predictions that are overestimations) and PSLE

are also reported in Figure 8.9 for the psychological (solid lines) and history (dashed lines) policies.



135

We adopt50ms as the human perceptual threshold.

Notably, the lazy policy’s energy savings are closest to the perfect policy’s in three of the four

benchmarks. Only inCalculator, it is less energy-efficient than the other policies due to the fact

that user delays forCalculator tend to be much shorter and predictable (see Section 8.6.2). How-

ever, the lazy policy has 100% serious lazy errors. Therefore, it will be useful only when system

latencies are tolerable and the user delays are relatively long.

It is worth noting that the psychological policy performs better forCalculator andFilebrowser

than Go and Solitaire compared to the history policy. This is due to the fact that operating

Calculator andFilebrowser is cognitively much simpler and their cognitive processes are bet-

ter modeled by the Hick-Hyman Law.

Tradeoff between lazy errors and energy savings: For the psychological policy, the lazy er-

rors are very few since this model is pessimistic. However, for the history policy, the pessimism

factor controls the tradeoff between the lazy errors and energy saving. Figures 8.10 and 8.11 show

how the energy saving changes with the percentage of lazy errors forCalculator andFilebrowser

as the pessimism factor varies from0.2 to 1.3 for the history policy. It also shows the tradeoff point

for the psychological policy. To achieve the same energy saving as the psychological policy, the

history policy needs to make a lot more lazy errors. This demonstrates the superiority of the psycho-

logical policy when avoiding lazy errors is important. These figures show that psychology-based

prediction works better forCalculator thanFilebrowser compared to history-based prediction

since operating the former is cognitively much simpler.

State-awareness: To show the benefit of being state-aware in history-based prediction, Fig-

ures 8.10 and 8.11 also show the tradeoff curves for state-unaware history-based prediction, which

uses the last seven observed delays of the application to predict the next delay for the same ap-

plication without knowing its states. It is application-based instead of state-based. It is clear that

state-based prediction is better in general. Moreover, the STDs ofCalculator andFilebrowser

are relatively simple. We expect the advantage of state-awareness to be larger for more complicated

applications with a larger number of STD states.

We also note that state-awareness does not benefit User 2 forCalculator, meaning the user did



136

0

10

20

30

40

50

Calculator Filebrowser Go Solitaire

Benchmarks

E
ne

rg
y 

sa
vi

ng
 (%

)

Simple Lazy Perfect Psychological History (0.4)

(a) User 1

0

10

20

30

40

50

Calculator Filebrowser Go Solitaire

Benchmarks

E
ne

rg
y 

sa
vi

n
g

 (%
)

Simple Lazy Perfect Psychological History (0.4)

(b) User 2

Figure 8.8: Energy savings based on predicted user delays



137

0

5

10

15

20

25

30

Calculator Filebrowser Go Solitaire
Benchmarks

%

Energy saving

PLE

PSLE

(a) User 1

0

5

10

15

20

25

Calculator Filebrowser Go Solitaire

Benchmarks

%

Energy saving

PLE

PSLE

(b) User 2

Figure 8.9: Percentage of lazy errors and energy savings



138

not behave very differently when responding to the two STD states. This can also be seen from

Table 8.4. While the mean user delays for theCalculator states in User 1’s trace differ a lot, those

in User 2’s trace do not. This illustrates the difference in behavior between different individuals

when interacting with a computer.

Power-saving mode – power, transition time and policy: It is obvious from the theoretical

analysis in Section 8.6.2 that the energy saving will be more when the power of the power-saving

mode decreases, given that all other aspects remain unchanged. However, as shown by the system

model in Figure 8.7, a power-saving mode with lower power usually incurs a longer transition

time back to the RUN mode. A longer transition not only increases energy overhead but may also

cause a user-perceptible latency if it is larger than the human perceptual threshold,50ms. First,

we would like to investigate how the power-saving mode’s power and transition time will impact

energy savings. Figures 8.12 and 8.13 plot the curves of energy saving vs. the SLEEP-Display mode

power for different policies (Perfect, Lazy, and History) and two different transition times (160ms

and 40ms), all for User 1.

For all policies, energy savings increase linearly as the SLEEP-Display mode power decreases

for all benchmarks. ForCalculator, the user delays are relatively short, which leads to a relatively

large energy saving increase when the transition time decreases from 160ms to 40ms. For other

benchmarks, such a decrease does not bring much energy benefit. This is becauseCalculator

has relatively short user delays. Therefore, decreasing transition time below the human perceptual

threshold is worthwhile only when the expected user delays are short. On the other hand, decreasing

power-saving mode’s power is always effective. For example, if there are two power saving modes

with power/transition time being 150mW/45ms and 200mW/1ms, respectively, the first one will

save much more energy than the second for most interactive applications without causing serious

lazy errors.

The lazy policy’s advantage in energy saving over the history policy increases as the power

decreases. When the transition time is smaller than the human-perceptible threshold of50ms, the

lazy policy can be safely used without causing user-perceptible latencies.



139

15

17

19

21

23

25

27

29

31

0 10 20 30 40 50

Percentage of lazy errors  (%)

E
ne

rg
y 

sa
vi

ng
  (

%
)

Psychology

History-state

History-application

(a) Go

15

17

19

21

23

25

27

29

31

0 10 20 30 40 50

Percentage of lazy errors  (%)

E
ne

rg
y 

sa
vi

ng
  (

%
)

Psychology

History-state

History-application

(b) Filebrowser

Figure 8.10: Tradeoff between percentage of lazy errors and energy savings for User 1.



140

15

17

19

21

23

25

27

0 10 20 30 40 50

Percentage of lazy errors  (%)

E
ne

rg
y 

sa
vi

ng
  (

%
)

Psychology

History-state

History-application

(a) Go

15

17

19

21

23

25

27

0 10 20 30 40 50

Percentage of lazy errors  (%)

E
ne

rg
y 

sa
vi

ng
  (

%
)

Psychology

History-state

History-application

(b) Filebrowser

Figure 8.11: Tradeoff between percentage of lazy errors and energy savings for User 2.



141

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

SLEEP-Display power (mWatt)

E
ne

rg
y 

sa
vi

ng
 (

%
)

Perfect-40

Lazy-40

History-40

Perfect-160

Lazy-160

History-160

(a) Calculator

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

SLEEP-Display power (mWatt)

E
ne

rg
y 

sa
vi

ng
 (

%
)

Perfect-40

Lazy-40

History-40

Perfect-160

Lazy-160

History-160

(b) Filebrowser

Figure 8.12: Energy saving changes with mode power and transition time



142

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

SLEEP-Display power (mWatt)

E
ne

rg
y 

sa
vi

ng
 (

%
)

Perfect-40

Lazy-40

History-40

Lazy-160

Perfect-160

History-160

(a) Go

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200 250 300 350

SLEEP-Display power (mWatt)

E
ne

rg
y 

sa
vi

ng
 (

%
)

Perfect-40

Lazy-40

History-40

Perfect-160

Lazy-160

History-160

(b) Solitaire

Figure 8.13: Energy saving changes with mode power and transition time



143

8.9 Discussions

In the previous section, we showed the effectiveness of combining DPM/DVS with user delay

prediction. We discuss several related issues next.

STD extraction: As may be apparent to the reader, how an STD is extracted for an interactive

application is important for user delay prediction. For example, ifCalculator is modeled with only

one state, which may seem natural, the user delay prediction will degrade as demonstrated for the

history-based model for User 1. Also, the not-so-good performance of user delay models forGo

andSolitaire can be partially attributed to modeling them with a single-state STD. Adding states

into the STD has the potential to improve intra-state consistency and the tradeoff between energy

savings and lazy errors.

User delay uncertainty: Since an STD state presents relatively consistent information to the

user and requires relatively consistent user reaction, we expect the corresponding user delays to be

more predictable. However, there are two factors that contribute to the uncertainty in user delays,

as discussed next.

First, the presented information may vary for different occurrences of the same state. For exam-

ple, it can be dynamic in the case of file browsers and text readers. Such intra-state inconsistency

can be reduced by using more states. The dynamic information problem can be partially solved

by obtaining information about the content, such as obtaining the number of items in the current

directory and the size of the text to be shown. The GUI toolkit-based implementation takes care of

this readily.

Second, a state may require complicated user reactions, or permit very different user reactions.

For a complicated state, the user may respond only after reading different subsets of the information

presented in a state. For example, aSolitaire player may not examine all stacks of cards before

responding. In other words, such a state represents multiple subtasks to a user. However, the

uncertainty is alleviated by the fact that there is usually one subtask most often performed by the

user. For example, aFilebrowser user most likely will read the file list and click a file from the list;

aWord user will type letters most of the time. Therefore, the most frequently-performed subtask(s)

can be used to build the psychology model, as we did forGo andSolitaire. The history-based



144

prediction policy automatically benefits from this fact.

Improving prediction accuracy: We showed in Section 8.6.2 that the energy saving ratio is

directly related to user delay prediction accuracy. The experimental results also demonstrated that

more energy can be saved when delay can be predicted more accurately. To better utilize user delays

for energy reduction, improving prediction accuracy will be important.

In this chapter, we used the psychology-based models and values of their coefficients from

previous work, which were not based on mobile systems. Since our evaluation is based on a mobile

system, this modeling discrepancy may prevent it from benefiting more from our methodology.

We expect psychological experiments on humans using mobile systems to generate more mobile

system-specific user delay models. Moreover, as we have pointed out, the cognitive delay models

based on the Hick-Hyman Law may contribute most to prediction errors for the psychology-based

model. Better cognitive delay models are likely to increase energy savings. Moreover, users may

differ from each other in their perceptual, cognitive, and motor delays, as we can see from Table 8.4.

The same user may improve his/her usage skills due to the learning process. The environment or

context may also change user behavior. Although the history-based model automatically adapts, the

psychology-based model does not. It would be interesting to see how adaptation of user delays to

changing human behavior would improve prediction accuracy and increase energy savings.

Hardware support for interactive systems: Since the display has to be always on during user-

computer interaction, changing the operation mode of other components of the system should be

independent of the display. For example, the system should be able to put its processor to SLEEP

without affecting its display. To the best of our knowledge, there is no such hardware support in

commercially-available mobile computing systems. For displays that need refreshing, the frame-

buffer and the control unit transferring data from it to the display must be on too. In most systems,

these components can be on with others power-managed. For example, in the StrongARM/PXA

family systems-on-chip, the framebuffer sits in the main memory and the LCD controller is one of

the peripheral units. They can be active while many other units are power-managed [100].

Another solution is to use a display that maintains the content itself. In theµSleep work [16], an

LCD with an integrated framebuffer was used. When the system was put into the SLEEP mode, the



145

LCD displayed an image in its own framebuffer automatically without support from the SA-1100

LCD controller. Moreover, bistable LCDs [114, 156, 226] can maintain the screen content even

without the power supply. However, they usually incur more time and energy overheads for screen

changes. They will be ideal for passive interactive systems that have relatively long user delays.

Other ways to benefit from user delay prediction: We showed how user delay prediction can

be utilized for DPM/DVS in the scenario in which there is only one application under consideration.

In other scenarios, an interactive application may be used with other applications running in the

background. A user may enjoy music from the MP3 player, while downloading another MP3 file

and playingSolitaire at the same time. Therefore, it would be better ifSolitaire notifies the OS

about predicted user delays and the OS globally schedules all the processes. The OS scheduler

can make use of the predicted user delays to allocate time slots and performance levels to different

processes in an energy-efficient fashion.

8.10 Chapter summary

This chapter addressed the slow-user problem in a third way: by reducing the energy consumed

during user delays. It proposed an application-based user delay prediction framework. In this frame-

work, an STD is first obtained for the application to model the interaction between the system and

user. User delays are then predicted for each STD state. Within this framework, two prediction

models were proposed. The history-based model predicts the actual delay based on recent observa-

tions. Since it may overestimate the delay, it should only be used when performance level transition

time is not a large concern. In our experiments, it resulted in an average energy saving of 20.7%

with a relatively small percentage of serious lazy errors. This chapter also showed that exploiting

STD states yields a better tradeoff between lazy errors and energy savings. The psychology-based

model exploits the user interface information further and predicts the lower bound on user delays,

i.e., how long it takes the user to read, decide, and move. Our experiments showed that an average

of 21.9% energy savings can be obtained with negligible serious lazy errors. The chapter showed

that the tradeoff between lazy errors and energy savings achieved by the psychology-based model

is beyond the capacity of the history-based model. It also demonstrated how DVS can be simply



146

combined with user delay prediction. An average of 17.6% system energy reduction can be easily

achieved without introducing any user-noticeable delays. For applications more tolerant of system

delays and with longer user delays, an average of 28.9% system energy reduction can be achieved.



Chapter 9

Conclusions

We conclude the dissertation in this chapter. We first summarize it in Section 9.1, then discuss

its limitations in Section 9.2, and address possible future directions for mobile system design from

the user’s perspective in Section 9.3.

9.1 Dissertation summary

This dissertation is devoted to the slow-user problem of mobile systems. That is, an increasingly

fast and power-hungry computer spends most of its time and energy in waiting for a constantly slow

human user for interactive tasks. This problem was highlighted by Chapters 3 through 5 using

theoretical analysis and experimental characterization.

The slow-user problem motivates us to address the energy efficiency issue from the user’s per-

spective and evaluate it using the product of user productivity and power efficiency. In this disserta-

tion, we presented three different approaches to tackle the problem from the user’s perspective. The

approach described in Chapter 6 was to boost user productivity without incurring too much power

overhead. We present the design and prototype of a Bluetooth-based PAN of low-power interfacing

devices. The PAN is intended to provide a user natural and energy-efficient access to the computing

capacity on a mobile system. The approach described in Chapter 7 was to bring the interfacing

power down to an extreme without sacrificing user productivity much. We presented the concept

of an interface cache and a prototype design, cache-watch. The cache-watch hosts simple, yet fre-

147



148

quent, interactive tasks from a mobile system to save the latter’s battery lifetime. The approach

described in Chapter 8 was to reduce power consumption in the idle periods of a mobile system

during human-computer interaction. We proposed modeling of an interactive application with a

state-transition diagram, and prediction of user delays using psychological theories and history. We

then aggressively power manage the mobile system in idle periods based on the user delay predic-

tion. The user’s perspective and these three approaches represent a novel interdisciplinary endeavor

to tackle the slow-user problem and improve the energy efficiency of mobile systems.

9.2 Limitations

We next describe the limitations of our techniques.

Limitations of the work : The work included in this dissertation is the very first effort to tackle

the energy efficiency issue from the user’s perspective. Although we emphasize an interdisciplinary

approach that combines knowledge from both computer engineering and human-computer interac-

tion, we have to admit that we are not human-computer interaction researchers. As a result, work

in this dissertation is limited in its strength in terms of user studies, as is apparent in Chapters 6

through 8. Specifically, we have not yet quantitatively evaluated the user productivity improvement

in Chapter 6, conducted user studies of the cache-watch in Chapter 7, or quantitatively evaluated the

user productivity impact of serious lazy errors in Chapter 8. We have to leave these works for the

future, and seek help from human-computer interaction researchers. However, we believe that this

dissertation is complete as a computer engineering thesis that borrows knowledge from the field of

human-computer interaction.

Limitations of the approaches: One of most important design principles of a complex system

is to separate concerns. That is, a designer should focus on a limited set of concerns, and a system

module should encapsulate its implementation details while providing well-defined interfaces, the

fewer, the better. Unfortunately, the approaches from the user’s perspective require system design-

ers to consider user productivity, and user interface designers to consider battery lifetime. They

also require system modules to interact with each other more, e.g., user interfaces to interact with

the battery. These approaches improve the energy efficiency of a mobile system only with more



149

information about the user and user interfaces. In this sense, they are less generic as compared

to lower level low-power techniques, which save power without knowledge beyond the hardware.

Nevertheless, we believe that such an issue is likely to be alleviated after future research generates

solid guidelines for designers to address the new concern, and tools that automate the interaction

between user interfaces and power management.

9.3 Future work

As this dissertation is the very first effort to address energy efficiency from the user’s perspec-

tive, we expect more research to follow. Especially, we expect human-computer interaction re-

searchers to join us to quantitatively evaluate user productivity and conduct user studies for energy-

efficient mobile system design. To them, the message from this dissertation is clear: energy effi-

ciency must be considered as a direct consequence of user productivity; power consumption must

be taken into consideration when evaluating a user interface.

Moreover, we expect more computer engineering research on mobile systems, especially smart-

phones, for higher user productivity and more services. As illustrated in Chapters 6 and 7, we need

to examine new technologies and investigate their impact on human-computer interaction. While

human-computer interaction researchers focus on user studies of a new interfacing device, we, as

computer engineering researchers, need to invent new devices enabled by new technologies. We

call thistechnology-driven interface design.

Contrary to design from the user’s perspective, past computer engineering research focuses on

design from the perspective of computing. Because of Moore’s Law, the cost of computing keeps

on dropping while the cost of human labor does not. As many researchers have argued [60,123,192,

193], it is time that we rethink computing from the user’s perspective. Instead of high-performance

computing, we need to target high-productivity computing. User productivity should no longer be

the concern of user interface designers only; it should become the concern of computer engineering

researchers as well. We call thisuser-centric computing design. This dissertation is just a humble

step in this direction.



References

[1] A. Acquaviva, L. Benini, and B. Ricćo. Compilers and Operating Systems for Low Power,

Energy characterization of embedded real-time operating systems, pages 53–73. Kluwer

Academic Publishers, Norwell, MA, 2003.

[2] Advanced Configuration & Power Interface.http://www.acpi.info.

[3] A. V. Aho, R. Sethi, and J. D. Ullman.Compilers: Principles, Techniques, and Tools.

Addison-Wesley Longman Publishing Co., Inc., Boston, MA, 1986.

[4] R. Allen and K. Kennedy.Optimizing Compilers for Modern Architectures: A Dependence-

based Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, 2001.

[5] M. Anand, E. B. Nightingale, and J. Flinn. Ghosts in the machine: Interfaces for better power

management. InProc. USENIX/ACM Int. Conf. Mobile Systems, Applications, & Services,

pages 23–35, June 2004.

[6] D. F. Bacon, S. L. Graham, and O. J. Sharp. Compiler transformations for high-performance

computing.ACM Computing Surveys, 26(4):345–420, Dec. 1994.

[7] R. W. Bailey. Human Performance Engineering: Design High Quality Professional User

Interfaces for Computer Products, Applications and Systems. Prentice Hall PTR, Upper

Saddle River, NJ, 3rd edition, 1996.

[8] K. Barr and K. Asanovic. Energy aware lossless data compression. InProc. USENIX/ACM

Int. Conf. Mobile Systems, Applications, & Services, pages 231–244, May 2003.

150



151

[9] K. Baynes, C. Collins, E. Fiterman, B. Ganesh, P. Kohout, C. Smit, T. Zhang, and B. Jacob.

The performance and energy consumption of three embedded real-time operating systems. In

Proc. ACM Int. Conf. Compilers, Architecture, and Synthesis for Embedded Systems, pages

203–210, Nov. 2001.

[10] L. Benini, A. Bogliolo, G. A. Paleologo, and G. De Micheli. Policy optimization for dynamic

power management.IEEE Trans. Computer-Aided Design of IC & Systems, 18(6):813–833,

June 1999.

[11] L. Benini and G. De Micheli.Dynamic Power Management: Design Techniques and CAD

Tools. Kluwer Academic Publishers, Norwell, MA, 1998.

[12] D. Bertozzi, L. Benini, and B. Ricco. Power aware network interface management for stream-

ing multimedia. InProc. IEEE Wireless Communnication Network Conf., pages 926–930,

Orlando, FL, Mar. 2002.

[13] V. Bharghavan and V. Gupta. A framework for application adaptation in mobile computing

environments. InProc. IEEE Computer Software and Application Conf., pages 573–579,

Nov. 1997.

[14] L. Bloom, R. Eardley, E. Geelhoed, M. Manahan, and P. Ranganathan. Investigating the

relationship between battery life and user acceptance of dynamic, energy-aware interfaces on

handhelds. InProc. Int. Conf. Human Computer Interaction with Mobile Devices & Services,

pages 13–24, Sept. 2004.

[15] Bluetooth.http://www.bluetooth.org/.

[16] L. S. Brakmo, D. A. Wallach, and M. A. Viredaz.µSleep: A technique for reducing en-

ergy consumption in handheld devices. InProc. USENIX/ACM Int. Conf. Mobile Systems,

Applications, & Services, pages 12–22, June 2004.

[17] P. Brockwell and R. A. Davis.Introduction to Time Series and Forecasting. Springer-Verlag,

New York, 1996.



152

[18] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-level power

analysis and optimizations. InProc. Int. Symp. Computer Architecture, pages 83–94, June

2000.

[19] BTAccess library.http://www.high-point.com.

[20] T. D. Burd and R. W. Brodersen. Design issues for dynamic voltage scaling. InProc. Int.

Symp. Low Power Electronics & Design, pages 9–14, July 2000.

[21] T. D. Burd, T. A. Pering, A. J. Stratakos, and R. W. Brodersen. A dynamic voltage scaled

microprocessor system.IEEE J. Solid-State Circuit, 35(11):1571–1580, Nov. 2000.

[22] P. Buser and M. Imbert.Vision. The MIT Press, Cambridge, MA, 1992.

[23] T. W. Butler. Computer response time and user performance. InProc. Conf. Human Factors

in Computing Systems, pages 58–62, Dec. 1983.

[24] L. Cai and Y.-H. Lu. Energy management using buffer memory for streaming data.IEEE

Trans. Computer-Aided Design of IC & Systems, 24(2):141–152, Feb. 2005.

[25] S. K. Card, T. P. Moran, and A. Newell.The Psychology of Human-Computer Interaction.

Lawrence Erlbaum Assoc., Hillsdale, NJ, 1983.

[26] R. P. Carver.Reading Rate: A Review of Research and Theory. Academic Press, Inc., San

Diego, CA, 1990.

[27] A. P. Chandrakasan and R. W. Brodersen, editors.Low-Power CMOS Design. Wiley-IEEE

Press, 1997.

[28] W.-C. Cheng and M. Pedram. Power minimization in a backlit TFT-LCD display by concur-

rent brightness and contrast scaling.IEEE Trans. Consumer Electronics, 50(1):25–32, Feb.

2004.

[29] I. Choi, H. Shim, and N. Chang. Low-power color TFT LCD display for handheld embedded

systems. InProc. Int. Symp. Low Power Electronics & Design, pages 112–117, Aug. 2002.



153

[30] K. Choi, K. Dantu, W.-C. Cheng, and M. Pedram. Frame-based dynamic voltage and fre-

quency scaling for a MPEG decoder. InProc. IEEE/ACM Int. Conf. Computer-Aided Design,

pages 732–737, Nov. 2002.

[31] D. Chung. Mobile platform display technology advancements.Intel Developer Forum, Sept.

2002.

[32] E.-Y. Chung, L. Benini, A. Bogliolo, Y.-H. Lu, and G. De Micheli. Power management for

nonstationary service requests.IEEE Trans. Computers, 51(11):1345–1361, Nov. 2002.

[33] E.-Y. Chung, G. De Micheli, and L. Benini. Contents provider-assisted dynamic voltage

scaling for low energy multimedia applications. InProc. Int. Symp. Low Power Electronics

& Design, pages 42–47, Aug. 2002.

[34] T. L. Cignetti, K. Komarov, and C. S. Ellis. Energy estimation tools for the Palm. InProc.

ACM Int. Wkshp. Modeling, Analysis and Simulation of Wireless and Mobile Systems, pages

96–103, Aug. 2000.

[35] P. M. Commarford and J. R. Lewis. Models of throughput rates for dictation and voice

spelling for handheld devices.Int. J. Speech Technology, 7(1):69–79, Jan. 2004.

[36] K. D. Cooper, D. Subramanian, and L. Torczon. Adaptive optimizing compilers for the 21st

century.J. Supercomputing, 23(1):7–22, May 2001.

[37] A. B. Dalton and C. S. Ellis. Sensing user intention and context for energy management. In

Proc. Wkshp. Hot Topics in Operating Systems, pages 23–35, May 2003.

[38] R. P. Dick, G. Lakshminarayana, A. Raghunathan, and N. K. Jha. Power analysis of embed-

ded operating systems. InProc. ACM/IEEE Design Automation Conf., pages 312–315, June

2000.

[39] F. Douglis, P. Krishnan, and B. N. Bershad. Adaptive disk spin-down policies for mobile

computers. InProc. 2nd USENIX Symp. Mobile & Location-Independent Computing, pages

121–137, Apr. 1995.



154

[40] E-Ink: Electronic Ink.http://www.eink.com.

[41] Editor’s Picks: PDA stories from around the Web. Is the PDA dead?

http://news.com.com/2009-10253-5224632.html, Aug. 2004.

[42] C. Efstratiou, A. Friday, N. Davies, and K. Cheverst. A platform supporting coordinated

adaptation in mobile systems. InProc. IEEE Wkshp. Mobile Computing Systems & Applica-

tions, pages 128–137, June 2002.

[43] C. S. Ellis. The case for higher-level power management. InProc. Wkshp. Hot Topics in

Operating Systems, pages 162–167, Mar. 1999.

[44] Eyal De Lara, D. S. Wallach, and W. Zwaenepol. Puppeteer: component-based adaptation

for mobile computing. InProc. USENIX Symp. Internet Technologies & Systems, pages 159–

170, Mar. 2001.

[45] K. I. Farkas, J. Flinn, G. Back, D. Grunwald, and J. Anderson. Quantifying the energy

consumption of a pocket computer and a Java virtual machine. InProc. ACM Int. Conf.

Measurement & Modeling of Computer Systems, pages 252–263, June 2000.

[46] Fastap.http://www.digitwireless.com/.

[47] Y. Fei, L. Zhong, and N. K. Jha. An energy-aware framework for coordinated dynamic soft-

ware management in mobile computers. InProc. IEEE/ACM Int. Symp. Modeling, Analysis

& Simulation of Computer and Telecommunications Systems, pages 306–317, Oct. 2004.

[48] K. P. Fishkin. Personal communication. Dec. 2004.

[49] K. P. Fishkin, K. Partridge, and S. Chatterjee. User interface components for lightweight

WPANs. IEEE Pervasive Computing Magazine, (4), Oct.-Dec. 2002.

[50] P. M. Fitts. The information capacity of human motor system in controlling the amplitude of

movement.J. Experimental Psychology, (47):381–391, 1954.

[51] K. Flautner and T. Mudge. Vertigo: automatic performance-setting for Linux. InProc. Symp.

Operating Systems Design & Implementation, pages 105–116, Dec. 2002.



155

[52] K. Flautner, S. Reinhardt, and T. Mudge. Automatic performance setting for dynamic voltage

scaling. InProc. ACM Ann. Int. Conf. Mobile Computing & Networking, pages 260–271, July

2001.

[53] K. Flautner, R. Uhlig, S. Reinhardt, and T. Mudge. Thread-level parallelism and interactive

performance of desktop applications. InProc. Int. Conf. Architectural Support for Program-

ming Languages & Operating Systems, pages 129–138, Aug. 2000.

[54] M. Fleischmann. Dynamic power management for CrusoeTM processors.White Paper,

Transmeta Corporation, Jan. 2001.

[55] J. Flinn, K. I. Farkas, and J. Anderson. Power and energy characterization of the Itsy pocket

computer (version1.5). Technical Report Technical Note TN-56, Compaq Western Research

Laboratory, Feb. 2000.

[56] J. Flinn and M. Satyanarayanan. Energy-aware adaptation for mobile applications. InProc.

ACM Symp. Operating Systems Principles, pages 48–63, Dec. 1999.

[57] J. Flinn and M. Satyanarayanan. Managing battery lifetime with energy-aware adaptation.

ACM Trans. Computer Systems, 22(2):137–179, May 2004.

[58] S. Forrest. The roadmap to high efficiency organic light emitting devices.Organic Electron-

ics, 4(2-3):45–48, Sept. 2003.

[59] G. H. Gelincket al. Flexible active-matrix electronic ink display.Nature, 3:106–110, Feb.

2004.

[60] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste. Project Aura: Toward distraction-

free pervasive computing.IEEE Pervasive Computing, 1(2):22–31, Apr. 2002.

[61] F. Gatti, A. Acquaviva, L. Benini, and B. Riccó. Low power control techniques for TFT LCD

displays. InProc. ACM Int. Conf. Compilers, Architecture, and Synthesis for Embedded

Systems, pages 218–224, Oct. 2002.



156

[62] W. W. Gaver. Auditory icons: Using sound in computer interfaces.Human-Computer Inter-

action, 2:167–177, 1986.

[63] S. A. Gelfand. Hearing: An Introduction to Psychological and Physiological Acoustics.

Marcel Dekker, Inc, New York, NY, 3rd edition, 1998.

[64] J. Gemmell, G. Bell, R. Lueder, S. Drucker, and C. Wong. MyLifeBits: Fulfilling the Memex

vision. InProc. ACM Int. Conf. Multimedia, pages 235–238, Nov. 2002.

[65] J. Gemmell, L. Williams, K. Wood, R. Lueder, and G. Bell. Passive capture and ensuing

issues for a personal lifetime store. InProc. ACM Wkshp. Continuous Archival & Retrieval

of Personal Experiences, pages 48–55, Oct. 2004.

[66] S. Ghiasi and D. Grunwald. A comparison of two architectural power models. InProc. Int.

Wkshp. Power-Aware Computer Systems, pages 137–152, Nov. 2000.

[67] GIMP toolkit. http://www.gtk.org.

[68] D. Goldberg and A. Goodisman. Stylus user interfaces for manipulating text. InProc. ACM

Ann. Symp. User Interface Software & Technology, pages 127–135, Nov. 1991.

[69] R. Golding, P. Bosch, and J. Wilkes. Idleness is not sloth. InProc. USENIX Winter Tech.

Conf., pages 201–212, Jan. 1995.

[70] R. Golding, P. Bosch, and J. Wilkes. Idleness is not sloth. Tech. Rep. HPL-96-140, HP Labs,

1996.

[71] Goldman Sachs Global Equity Research.Goldman Sachs Mobile Device Usage Study. 2001.

[72] H. Goldstein. A dog named SPOT.IEEE Spectrum, 41(1):72–73, Jan. 2004.

[73] C. S. Golvin and P. Jackson. When will the phone and PDA merge? Today—But the appeal

of these smartphones will be limited. Trend, Forrester Research, Dec. 2004.

[74] R. Gonzalez, B. M. Gordon, and M. A. Horowitz. Supply and threshold voltage scaling for

low power CMOS.IEEE J. Solid-State Circuits, 32(8):1210–1216, Aug. 1997.



157

[75] T. Goodman and R. Spence. The effect of system response time on interactive computer aided

problem solving. InProc. 5th Annual Conf. Computer Graphics & Interactive Techniques,

pages 100–104, Aug. 1978.

[76] K. Govil, E. Chan, and H. Wasserman. Comparing algorithm for dynamic speed-setting of

a low-power CPU. InProc. ACM Ann. Int. Conf. Mobile Computing & Networking, pages

13–25, Nov. 1995.

[77] GPE Palmtop environment.http://gpe.handhelds.org.

[78] M. Graciarena, H. F. H., K. Sonmez, and H. H. Bratt. Combining standard and throat mi-

crophones for robust speech recognition.IEEE Signal Processing Letters, 10(3):72–74, Mar.

2003.

[79] D. Grunwald, P. Levis, K. I. Farkas, C. B. Morrey III, and M. Neufeld. Policies for dynamic

clock scheduling. InProc. Symp. Operating Systems Design & Implementation, pages 73–86,

Oct. 2000.

[80] S. Gurumurthi, A. Sivasubramanium, M. Kandemir, and H. Franke. DRPM: Dynamic speed

control for power management in server class disks. InProc. Int. Symp. Computer Architec-

ture, pages 169–179, June 2003.

[81] Handheld market free fall continues.http://news.com.com/2102-10473-5560453.html. Feb.

2005.

[82] T. Harter, S. Vroegindeweij, E. Geelhoed, M. Manahan, and P. Ranganathan. Energy-aware

user interfaces: An evaluation of user acceptance. InProc. Conf. Human Factors in Comput-

ing Systems, pages 199–206, Apr. 2004.

[83] T. Heath, E. Pinheiro, J. Hom, U. Kremer, and R. Bianchini. Application transformations for

energy and performance-aware device management. InProc. Int. Conf. Parallel Architecture

& Compilation Techniques, pages 121–131, Sept. 2002.



158

[84] D. P. Helmbold, D. D. E. Long, and B. Sherrod. A dynamic disk spin-down technique for

mobile computing. InProc. ACM Ann. Int. Conf. Mobile Computing & Networking, pages

130–142, Nov. 1996.

[85] J. L. Hennessy, D. A. Patterson, and D. Goldberg.Computer Architecture: A Quantitative

Approach. Morgan Kaufmann, 3rd edition, 2002.

[86] W. E. Hick. On the rate of gain of information.Quarterly J. Experimental Psychology,

(4):11–36, 1952.

[87] Hitachi Global Storage Technologies.

http://www.hgst.com/hdd/micro/overvw.htm. 2003.

[88] D. A. Hodges, R. Saleh, and H. G. Jackson.Analysis and Design of Digital Integrated

Circuits in Deep Submicron Technology. McGraw Hill, 3rd edition, July 2003.

[89] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power optimization of

variable voltage core-based systems. InProc. ACM/IEEE Design Automation Conf., pages

176–181, June 1998.

[90] I. Hong, M. Potkonjak, and M. B. Srivastava. On-line scheduling of hard real-time tasks on

variable voltage processor. InProc. IEEE/ACM Int. Conf. Computer-Aided Design, pages

653–656, Nov. 1998.

[91] C. Hsu, U. Kremer, and M. Hsiao. Compiler-directed dynamic frequency and voltage scaling.

In Proc. Wkshp. Power-Aware Computer Systems, Nov. 2000.

[92] C.-H. Hsu and U. Kremer. The design, implementation, and evaluation of a compiler algo-

rithm for CPU energy reduction. InProc. ACM SIGPLAN Conf. Programming Languages

Design & Implementation, pages 38–48, June 2003.

[93] C. J. Hughes, J. Srinivasan, and S. V. Adve. Saving energy with architectural and frequency

adaptations for multimedia applications. InProc. Ann. IEEE/ACM Int. Sym. Microarchitec-

ture, pages 250–261, Dec. 2001.



159

[94] D. Husemann, C. Narayanaswa, and M. Nidd. Personal mobile hub. InProc. IEEE Int. Symp.

Wearable Computers, pages 85–91, Oct.-Nov. 2004.

[95] C.-H. Hwang and A. C.-H. Wu. A predictive system shutdown method for energy saving of

event-driven computation.ACM Trans. Design Automation of Electronic Systems, 5(2):226–

241, Apr. 2000.

[96] R. Hyman. Stimulus information as a determinant of reaction time.J. Experimental Psychol-

ogy, (45):188–196, 1953.

[97] IBM Linux watch.

http://www.research.ibm.com/WearableComputing.

[98] C. Im, S. Ha, and H. Kim. Dynamic voltage scheduling with buffers in low-power multimedia

applications.ACM Trans. Embedded Computing Systems, 3(4):686–705, Nov. 2004.

[99] Initium Promi-ESDTM .

http://www.initium.co.kr/english/promi-esd.html.

[100] Intel PCA processors manuals and guides.

http://www.intel.com/design/pca/applicationsprocessors/manuals/index.htm.

[101] Intel QuickStart Technology.

http://www.intel.com/cd/products/services/EMEA/ENG/notebook/processors/114499.htm#technical2.

[102] Intel SpeedStepr Technology.

http://support.intel.com/support/processors/mobile/pentiumiii/sb/CS-007509.htm.

[103] Intel Technology In New Mobile Pentiumr III Processors Turbo-Charges Mobile PCs.

http://www.intel.com/pressroom/archive/releases/mp011800.htm. Jan. 2000.

[104] International Telecommunication Union. Broadband is key to the information society. Special

report, Global Symposium for Regulators, 2005.



160

[105] S. Irani, S. Shukla, and R. Gupta. Online strategies for dynamic power management in

systems with multiple power-saving states.ACM Trans. Embedded Computing Systems,

2(3):325–346, July 2003.

[106] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable voltage

processors. InProc. Int. Symp. Low Power Electronics & Design, pages 197–202, Aug.

1998.

[107] S. Iyer, L. Luo, R. Mayo, and P. Ranganathan. Energy-adaptive display system designs for

future mobile environments. InProc. USENIX/ACM Int. Conf. Mobile Systems, Applications,

& Services, pages 245–258, May 2003.

[108] N. K. Jha. Low power system scheduling and synthesis. InProc. IEEE/ACM Int. Conf.

Computer-Aided Design, pages 259–263, Nov. 2001.

[109] J. Johnson.GUI Bloopers: Don’ts and Do’s for Software Developers and Web Designers.

Morgan Kaufmann, San Francisco, CA, 2000.

[110] N. Kamijoh, T. Inoue, C. M. Olsen, M. T. Raghunath, and C. Narayanaswami. Energy trade-

offs in the IBM wristwatch computer. InProc. IEEE Int. Symp. Wearable Computers, pages

133–140, Oct. 2001.

[111] J. T. Kao, M. Miyazaki, and A. P. Chandrakasan. A 175-mV multiply-accumulate unit us-

ing an adaptive supply voltage and body bias architecture.IEEE J. Solid-State Circuits,

37(11):1545–1534, Nov. 2002.

[112] C.-M. Karat, C. Halverson, D. Horn, and J. Karat. Patterns of entry and correction in large

vocabulary continuous speech recognition systems. InProc. Conf. Human Factors in Com-

puting Systems, pages 568–575, May 1999.

[113] H. Kawamoto. The history of liquid-crystal displays.Proc. IEEE, 90(4):460–500, Apr. 2002.

[114] Kent Displays, Inc.http://www.kentdisplays.com/product/modules.htm.



161

[115] J. Kimmel, J. Hautanten, and T. Levola. Display technologies for portable communication

devices.Proc. IEEE, 90(4):581–590, Apr. 2002.

[116] J. Kolinski, R. Chary, A. Henroid, and B. Press.Building the Power Efficient PC: A Devel-

oper’s Guide to ACPI Power Management. Intel Press, Aug. 2001.

[117] C. M. Krishna and Y.-H. Lee. Voltage-clock-scaling adaptive scheduling techniques for low

power in hard real-time systems.IEEE Trans. Computers, 52(12):1586–1593, Dec. 2003.

[118] P. Krishnan, P. Long, and J. Vitter. Adaptive disk spindown via optimal rent-to-buy in prob-

abilistic environments.Algorithmica, 23(1):31–56, Jan. 1999.

[119] T. Kuroda, T. Fujita, S. Mita, T. Nagamatsu, S. Yoshioka, K. Suzuki, F. Sano, M. Norishima,

M. Murota, M. Kako, M. Kinugawa, M. Kakumu, and T. Sakurai. A 0.9-V, 150-MHz, 10-

mW, 4mm2 2-D discrete cosine transform core processor with variable threshold-voltage

(VT) scheme.IEEE J. Solid-State Circuits, 31(11):1770–1779, Nov. 1996.

[120] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically variable

voltage processors.ACM Trans. Embedded Computing Systems, 4(1):211–230, Feb. 2005.

[121] L. Deng et al. Distributed speech processing in MiPads multimodal user interface.IEEE

Trans. Speech & Audio Processing, 10(8):605–619, Nov. 2002.

[122] R. Landauer. Irreversibility and heat generation in the computing process.IBM J. Research

& Development, 3:183–191, July 1961.

[123] T. K. Landauer.The Trouble with Computers: Usefulness, Usability, and Productivity. The

MIT Press, June 1996.

[124] S. Lee and T. Sakurai. Run-time voltage hopping for low-power real-time systems. InProc.

ACM/IEEE Design Automation Conf., pages 806–809, June 2000.

[125] K. Li, R. Kumpf, P. Horton, and T. E. Anderson. A quantitative analysis of disk drive power

management in portable computers. InProc. USENIX Winter Tech. Conf., pages 279–291,

Jan. 1994.



162

[126] Z. Li, C. Wang, and R. Xu. Computation offloading to save energy on handheld devices:

a partition scheme. InProc. ACM Int. Conf. Compilers, Architecture, and Synthesis for

Embedded Systems, pages 238–246, Nov. 2001.

[127] J. Lorch. A complete picture of the energy consumption of a portable computer. Master’s

thesis, Computer Science Dept., University of California at Berkeley, 1995.

[128] J. Lorch and A. J. Smith. Operating system modifications for task-based speed and voltage

scheduling. InProc. USENIX/ACM Int. Conf. Mobile Systems, Applications, & Services,

pages 215–229, May 2003.

[129] J. R. Lorch and A. J. Smith. Scheduling techniques for reducing processor energy use in

MacOS.Wireless Network, 3(5):311–324, Oct. 1997.

[130] J. R. Lorch and A. J. Smith. Improving dynamic voltage scaling algorithms with PACE. In

Proc. ACM Int. Conf. Measurement & Modeling of Computer Systems, pages 50–61, June

2001.

[131] J. R. Lorch and A. J. Smith. Using user interface event information in dynamic voltage scaling

algorithms. InProc. IEEE/ACM Int. Symp. Modeling, Analysis & Simulation of Computer

and Telecommunications Systems, pages 46–55, Oct. 2003.

[132] Y.-H. Lu, L. Benini, and G. De Micheli. Dynamic frequency scaling with buffer insertion for

mixed workloads.IEEE Trans. Computer-Aided Design of IC & Systems, 21(11):1284–1305,

Nov. 2002.

[133] Y.-H. Lu, L. Benini, and G. De Micheli. Power-aware operating systems for interactive

systems.IEEE Trans. VLSI Systems, 10(2):119–134, Apr. 2002.

[134] Z. Lu, J. Hein, M. Humphrey, M. Stan, J. Lach, and K. Skadron. Control-theoretic dynamic

frequency and voltage scaling for multimedia workloads. InProc. ACM Int. Conf. Compilers,

Architecture, and Synthesis for Embedded Systems, pages 156–163, Oct. 2002.



163

[135] J. Luo and N. K. Jha. Power-conscious joint scheduling of periodic task graphs and aperiodic

tasks in distributed real-time embedded systems. InProc. IEEE/ACM Int. Conf. Computer-

Aided Design, pages 357–364, Nov. 2000.

[136] J. Luo and N. K. Jha. Battery-aware static scheduling for distributed real-time embedded

systems. InProc. ACM/IEEE Design Automation Conf., pages 444–449, June 2001.

[137] K. Lyons, T. Starner, D. Plaisted, J. Fusia, A. Lyons, A. Drew, and E. W. Looney. Twiddler

typing: One-handed chording text entry for mobile phones. InProc. Conf. Human Factors in

Computing Systems, pages 671–678, Apr. 2004.

[138] I. S. MacKenzie and W. Buxton. Extending Fitts’ law to two-dimensional tasks. InProc.

Conf. Human Factors in Computing Systems, pages 219–226, May 1992.

[139] I. S. MacKenzie and R. W. Soukoreff. Text entry for mobile computing: Models and methods,

theory and practice.Human-Computer Interaction, 17(2-3):147–198, 2002.

[140] I. S. MacKenzie and C. Ware. Lag as a determinant of human performance in interactive

systems. InProc. Conf. Human Factors in Computing Systems, pages 488–493, 1993.

[141] T. L. Martin and D. P. Siewiorek. Nonideal battery and main memory effects on CPU speed-

setting for low power.IEEE Trans. VLSI Systems, 9(1):29–34, Feb. 2001.

[142] MiBench. http://www.eecs.umich.edu/mibench/.

[143] Microsoft SPOT.http://www.spot-watch.com/.

[144] Microsoft Transcriber.

http://www.microsoft.com/windowsmobile/downloads/transcriber.mspx/.

[145] Microsoft Voice Command.

http://www.microsoft.com/windowsmobile/downloads/voicecommand/.

[146] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Rajkumar. Critical power

slope: Understanding the runtime effects of frequency scaling. InProc. Int. Conf. Supercom-

puting, pages 35–44, June 2002.



164

[147] Mobile phones move deeper into PDA turf. http://news.com.com/2102-10413-

5065145.html. Aug. 2003.

[148] S. Mohapatra, R. Cornea, N. Dutt, A. Nicolau, and N. Venkatasubramanian. Integrated power

management for video streaming to mobile handheld devices. InProc. Ann. ACM Int. Conf.

Multimedia, pages 582–591, Nov. 2003.

[149] D. Mosse, B. Aydin, B. Childers, and R. Melhem. Compiler-assisted dynamic power-aware

scheduling for real-time applications. InProc. Wkshp. Compilers & Operating Systems for

Low Power, Oct. 2000.

[150] Motorola Offspring Concept Design, 2003.

http://www.phonescoop.com/articles/motowearables/.

[151] S. S. Muchnick.Advanced Compiler Design and Implementation. Morgan Kaufmann Pub-

lishers Inc., San Francisco, CA, 1997.

[152] A. Muttreja, S. Ravi, A. Raghunathan, and N. K. Jha. Automated performance/energy macro-

modeling of embedded software. InProc. ACM/IEEE Design Automation Conf., pages 99–

102, June 2004.

[153] B. A. Myers. User interface software tools.ACM Trans. Computer-Human Interaction,

2(1):64–103, Mar. 1995.

[154] B. A. Myers and M. B. Rosson. Survey on user interface programming. InProc. Conf.

Human Factors in Computing Systems, pages 195–202, May 1992.

[155] D. Narayanan and M. Satyanarayanan. Predictive resource management for wearable com-

puting. InProc. USENIX/ACM Int. Conf. Mobile Systems, Applications, & Services, pages

113–128, May 2003.

[156] Nemoptic Advanced LCD Technologies.http://www.nemoptic.com.



165

[157] R. Neugebauer and D. McAuley. Energy is just another resource: Energy accounting and

energy pricing in the Nemesis OS. InProc. Wkshp. Hot Topics in Operating Systems, pages

59–64, May 2001.

[158] B. D. Noble, M. Satyanarayanan, D. Narayanan, J. E. Tilton, J. Flinn, and K. R. Walker.

Agile application-aware adaptations for mobility. InProc. ACM Symp. Operating Systems

Principles, pages 276–287, Oct. 1997.

[159] T. Okuma, T. Ishihara, and H. Yasuura. Real-time task scheduling for a variable voltage

processor. InProc. Int. Symp. System Synthesis, pages 24–29, Nov. 1999.

[160] N. Omoigui, L. He, A. Gupta, J. Grudin, and E. Sanocki. Time-compression: Systems con-

cerns, usage, and benefits. InProc. Conf. Human Factors in Computing Systems, pages

136–143, May 1999.

[161] Opie. http://opie.handhelds.org.

[162] M. Othman and S. Hailes. Power conservation strategy for mobile computers using load shar-

ing. SIGMOBILE Mobile Computing and Communication Review, 2(1):44–51, Jan. 1998.

[163] Palm OS development.http://www.palmsource.com/developers/.

[164] A. E. Papathanasiou and M. L. Scott. Energy efficient prefetching and caching. InProc.

USENIX Ann. Tech. Conf., pages 255–268, June-July 2004.

[165] T. Pering, T. Burd, and R. Brodersen. The simulation and evaluation of dynamic voltage

scaling algorithms. InProc. Int. Symp. Low Power Electronics & Design, pages 76–81, Aug.

1998.

[166] T. Pering, T. Burd, and R. Brodersen. Voltage scheduling in the IpARM microprocessor

system. InProc. Int. Symp. Low Power Electronics & Design, pages 96–101, July 2000.

[167] Philips’ display driver solutions for mobile applications.

http://www.semiconductors.philips.com/acrobat/literature/ 9397/75009652.pdf.



166

[168] P. Pillai and K. G. Shin. Real-time dynamic voltage scaling for low-power embedded op-

erating systems. InProc. ACM Symp. Operating Systems Principles, pages 89–102, Oct.

2001.

[169] J. Pouwelse, K. Langendoen, and H. Sips. Dynamic voltage scaling on a low-power micro-

processor. InProc. ACM Ann. Int. Conf. Mobile Computing & Networking, pages 251–259,

July 2001.

[170] J. Pouwelse, K. Langendoen, and H. Sips. Energy priority scheduling for variable voltage

processors. InProc. Int. Symp. Low Power Electronics & Design, pages 28–33, Aug. 2001.

[171] J. Pouwelse, K. Langendoen, and H. J. Sips. Application-directed voltage scaling.IEEE

Trans. VLSI Systems, 11(5):812–826, Oct. 2003.

[172] Q. Qiu, Q. Wu, and M. Pedram. Stochastic modeling of a power-managed system: Construc-

tion and optimization.IEEE Trans. Computer-Aided Design of IC & Systems, 20(10):1200–

1217, Oct. 2001.

[173] Qt. http://www.trolltech.com/.

[174] Qt/Embedded.http://www.trolltech.com/download/qt/embedded.html.

[175] Qtopia.http://www.trolltech.com/products/qtopia/.

[176] G. Qu. What is the limit of energy saving by dynamic voltage scaling? InProc. IEEE/ACM

Int. Conf. Computer-Aided Design, pages 560–563, Nov. 2001.

[177] L. Rabiner and B.-H. Juang.Fundamentals of Speech Recognition. Prentice-Hall, Inc., 1993.

[178] V. Raghunathan, T. Pering, R. Want, A. Nguyen, and P. Jensen. Experience with a low power

wireless mobile computing platform. InProc. Int. Symp. Low Power Electronics & Design,

pages 363–368, Aug. 2004.

[179] T. V. Raman.Auditory User Interfaces: Toward the Speaking Computer. Kluwer Academic

Publishers, Boston, MA, 1997.



167

[180] D. Ramanathan, S. Irani, and R. Gupta. Latency effects of system level power management

algorithms. InProc. IEEE/ACM Int. Conf. Computer-Aided Design, pages 350–356, Nov.

2000.

[181] A. Rudenko, P. Reiher, G. J. Popek, and G. H. Kuenning. Saving portable computer battery

power through remote process execution.SIGMOBILE Mobile Computing and Communica-

tion Review, 2(1):19–26, Jan. 1998.

[182] H. Saputra, M. Kandemir, N. Vijaykrishnan, M. J. Irwin, J. S. Hu, C.-H. Hsu, and U. Kremer.

Energy-conscious compilation based on voltage scaling. InProc. Joint Conf. Languages,

Compilers & Tools for Embedded Systems, pages 2–11, June 2002.

[183] N. Sawhney and C. Schmandt. Speaking and listening on the run: Design for wearable audio

computing. InProc. IEEE Int. Symp. Wearable Computers, page 108, Oct. 1998.

[184] B. Schneiderman. Response time and display rate in human performance with computers.

ACM Comput. Surv., 16(3):265–285, Sept. 1984.

[185] R. Schneiderman. Bluetooth’s slow dawn.IEEE Spectrum, pages 61–65, Nov. 2000.

[186] A. Sears and Y. Zha. Data entry for mobile devices using soft keyboards: Understanding the

effects of keyboard size and user tasks.Int. J. Human-Computer Interaction, 16(2):163–184,

2003.

[187] P. Shenoy and P. Radkov. Proxy-assisted power-friendly streaming to mobile devices. In

SPIE/ACM Conf. Multimedia Computing and Networking, Jan. 2003.

[188] E. Shih, P. Bahl, and M. J. Sinclair. Wake on wireless: An event driven energy saving strategy

for battery operated devices. InProc. ACM Ann. Int. Conf. Mobile Computing & Networking,

pages 160–171, Sept. 2002.

[189] Y. Shin and K. Choi. Power conscious fixed priority scheduling for hard real-time systems.

In Proc. ACM/IEEE Design Automation Conf., pages 134–139, June 1999.



168

[190] B. Shneiderman. Touch screens now offer compelling uses.IEEE Software, 8(2):93–94, 107,

Mar. 1991.

[191] B. Shneiderman.Designing the User Interface: Strategies for Effective Human-Computer

Interaction. Addison Wesley Longman, Reading, MA, 3rd edition, 1998.

[192] B. Shneiderman.Leonardo’s Laptop: Human Needs and the New Computing Technologies.

The MIT Press, Oct. 2002.

[193] D. P. Siewiorek. New frontiers of application design.Communication of ACM, 45(12):79–82,

Dec. 2002.

[194] A. Sinha and A. Chandrakasan. JouleTrack - A web based tool for software energy profiling.

In Proc. ACM/IEEE Design Automation Conf., pages 220–225, June 2001.

[195] Source code for benchmarks.http://www.ee.princeton.edu/∼cad/benchmarks.html.

[196] M. B. Srivastava, A. P. Chandrakasan, and R. W. Brodersen. Predictive system shutdown and

other architectural techniques for energy efficient programmable computation.IEEE Trans.

VLSI Systems, 4(1):42–55, Jan. 1996.

[197] T. Starner. Keyboards redux: Fast mobile text entry.IEEE Pervasive Computing, (3):97–101,

July-Sept. 2004.

[198] M. Stemm and R. H. Katz. Measuring and reducing energy consumption of network inter-

faces in hand-held devices.IEICE Trans. Communications, E80-B(8):1125–1131, 1997.

[199] B. Suhm, B. Myers, and A. Waibel. Multimodal error correction for speech user interfaces.

ACM Trans. Computer-Human Interaction, 8(1):60–98, 2001.

[200] SUIF 2 Compiler System.http://suif.stanford.edu/suif/suif2/.

[201] T. K. Tan, A. Raghunathan, and N. K. Jha. EMSIM: An energy simulation framework for an

embedded operating system. InProc. Int. Symp. Circuits & Systems, pages 464–467, May

2002.



169

[202] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K. Jha. High-level software energy

macro-modeling. InProc. ACM/IEEE Design Automation Conf., pages 605–610, June 2001.

[203] The Embedded Linux GUI/ Windowing Quick Reference Guide.

http://www.linuxdevices.com/articles/AT9202043619.html.

[204] The Familiar project.http://familiar.handhelds.org.

[205] The Skiff cluster.http://www.handhelds.org/projects/skiffcluster.html.

[206] Thumbscript.http://www.thumbscript.com.

[207] V. Tiwari, S. Malik, and A. Wolfe. Power analysis of embedded software: A first step towards

software power minimization.IEEE Trans. VLSI Systems, 2(4):437–445, Dec. 1994.

[208] Transmeta LongRun Technology.

http://www.transmeta.com/crusoe/longrun.html. Jan. 2000.

[209] Twiddler. http://www.handykey.com.

[210] T. S̆imuníc, L. Benini, P. Glynn, and G. De Micheli. Event-driven power management.IEEE

Trans. Computer-Aided Design of IC & Systems, 20(7):840–857, July 2001.

[211] T. S̆imuníc, G. De Micheli, L. Benini, and M. Hans. Source code optimization and profiling

of energy consumption in embedded systems. InProc. Int. Symp. System Synthesis, pages

193–199, Sept. 2000.

[212] A. Vahdat, A. Lebeck, and C. S. Ellis. Every joule is precious: the case for revisiting oper-

ating system design for energy efficiency. InProc. ACM SIGOPS European Wkshp., pages

31–36, Sept. 2000.

[213] K. S. Vallerio, L. Zhong, and N. K. Jha. Energy-efficient graphical user interface design.

IEEE Trans. Mobile Computing: to appear, 2005.

[214] M. A. Viredaz and D. A. Wallach. Power evaluation of a handheld computer.IEEE Micro,

23(1):66–74, Jan./Feb. 2003.



170

[215] R. Want, T. Pering, G. Dianneels, M. Kumar, M. Sundar, and J. Light. The personal server:

Changing the way we think about ubiquitous computing. InProc. Int. Conf. Ubiquitous

Computing, pages 194 – 209, Sept.-Oct. 2002.

[216] A. Wasserman. Extending state transition diagrams for the specification of human-computer

interaction.IEEE Trans. Software Engineering, 11(8):699–713, Aug. 1985.

[217] M. Weiser, B. Welch, A. Demers, and S. Shenker. Scheduling for reduced CPU energy. In

Proc. Symp. Operating Systems Design & Implementation, pages 13–23, Nov. 1994.

[218] X Window System.http://www.x.org.

[219] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage scaling settings: Op-

portunities and limits. InProc. ACM SIGPLAN Conf. Programming Languages Design &

Implementation, pages 49–62, June 2003.

[220] L. Yan, L. Zhong, and N. K. Jha. User-perceived latency driven voltage scaling for interactive

applications. InProc. ACM/IEEE Design Automation Conf., pages 624 – 627, June 2005.

[221] W. Ye, N. Vijaykrishna, M. Kandemir, and M. Irwin. The design and use of SimplePower: A

cycle-accurate energy estimation tool. InProc. ACM/IEEE Design Automation Conf., pages

340 – 345, June 2000.

[222] G. K. Yeap.Practical Low Power Digital VLSI Design. Kluwer Academic Publishers, Nor-

well, MA, 1998.

[223] W. Yuan and K. Nahrstedt. Energy-efficient soft real-time CPU scheduling for mobile mul-

timedia systems. InProc. ACM Symp. Operating Systems Principles, pages 149–163, Oct.

2003.

[224] W. Yuan and K. Nahrstedt. Practical voltage scaling for mobile multimedia devices. InProc.

Ann. ACM Int. Conf. Multimedia, pages 924–931, Oct. 2004.

[225] W. Yuan, K. Nahrstedt, S. Adve, D. Jones, and R. Kravets. GRACE: Cross-layer adaptation

for multimedia quality and battery energy.IEEE Trans. Mobile Computing: to appear, 2005.



171

[226] ZBD Displays Ltd.http://www.zbddisplays.com.

[227] J. Zedlewski, S. Sobti, N. Garg, F. Zheng, A. Krishnamurthy, and R. Wang. Modeling hard-

disk power consumption. InProc. USENIX Conf. File & Storage Technologies, pages 217–

230, Mar.-Apr. 2003.

[228] H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat. ECOSystem: Managing energy as a first

class operating system resource. InProc. Int. Conf. Architectural Support for Programming

Languages & Operating Systems, pages 123–132, Oct. 2002.

[229] Zenithal: Bistable Displays.http://www.zbddisplays.com.

[230] F. Zheng, N. Garg, S. Sobti, C. Zhang, R. E. Joseph, A. Krishnamurthy, and R. Y. Wang.

Considering the energy consumption of mobile storage alternatives. InProc. IEEE/ACM

Int. Symp. Modeling, Analysis & Simulation of Computer and Telecommunications Systems,

pages 36–45, Oct. 2003.

[231] Y. Zheng, Z. Liu, Z. Zhang, M. Sinclair, J. Droppo, L. Deng, A. A. Acero, and X. Huang.

Air-and bone-conductive integrated microphones for robust speech detection and enhance-

ment. InProc. IEEE Wkshp. Automatic Speech Recognition & Understanding, pages 249–

254, Nov.-Dec. 2003.

[232] L. Zhong and N. K. Jha. Graphical user interface energy characterization for handheld com-

puters. InProc. ACM Int. Conf. Compilers, Architecture, and Synthesis for Embedded Sys-

tems, pages 232–242, Nov. 2003.

[233] L. Zhong and N. K. Jha. Dynamic power optimization for interactive systems. InProc. Int.

Conf. VLSI Design, pages 1041–1047, Jan. 2004.

[234] L. Zhong and N. K. Jha. Energy efficiency of handheld computer interfaces: Limits, charac-

terization, and practice. InProc. USENIX/ACM Int. Conf. Mobile Systems, Applications, &

Services, pages 247–260, June 2005.


